WO2019124791A1 - Apparatus for manufacturing alloy foil and alloy foil manufactured using same - Google Patents

Apparatus for manufacturing alloy foil and alloy foil manufactured using same Download PDF

Info

Publication number
WO2019124791A1
WO2019124791A1 PCT/KR2018/014806 KR2018014806W WO2019124791A1 WO 2019124791 A1 WO2019124791 A1 WO 2019124791A1 KR 2018014806 W KR2018014806 W KR 2018014806W WO 2019124791 A1 WO2019124791 A1 WO 2019124791A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy foil
flow rate
electrolytic bath
nickel
control member
Prior art date
Application number
PCT/KR2018/014806
Other languages
French (fr)
Korean (ko)
Inventor
양홍석
이재곤
정관호
김홍준
김현태
김종권
홍재화
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019124791A1 publication Critical patent/WO2019124791A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils

Definitions

  • the present invention relates to an apparatus for manufacturing an alloy foil and an alloy foil manufactured using the same.
  • Plating is done for various purposes. Many plating systems such as copper, nickel, gold, silver, tin, chrome, lead, and zinc have been developed and used until now depending on the purpose and cost of the plating system and method.
  • Iron and its alloys are also one of the most studied alloys. There are two major researches on iron plating. One is the relatively low cost alternative to nickel and chromium, and the other is the development of products with specific properties through alloy plating with other elements. Fe-Ni, Fe-Zn, Fe-Cr-Ni, Fe-P, Fe-B, Fe-C and Fe-C-B.
  • Iron-nickel alloys are one of the areas where many researches have been conducted recently. Iron-nickel-based alloys are used in many fields with excellent physical properties despite their high cost. Among them, permalloy of Fe-80Ni (wt%) has excellent magnetic properties and Fe-36Ni (wt%) Invar alloy has very low coefficient of thermal expansion.
  • Invar alloy has been widely used in precision machinery and semiconductor materials since Bryan was found in 1897 and received the Nobel Prize in 1920.
  • the invar alloy has been linked to the development of various alloys by changing the content of nickel and adding a third alloy element such as cobalt, and the application range of the alloy is being widened.
  • the width, length and thickness direction component of the alloy foil made by electroforming is larger than that of the rolling process.
  • the component difference in the thickness direction of the foil creates a difference in electric field, that is, a difference in the component of the front surface.
  • the component measured on one side of the foil differs from the value measured on the other side, it can be called the component deviation of the former, and this deviation tends to occur in foils made by electroforming.
  • This component deviation means that there are variations on both sides of the physical properties such as strength and thermal expansion coefficient on both sides.
  • the present invention provides an apparatus for removing curl of an alloy foil manufactured by using a drum type negative electrode and a front surface of a front surface of the alloy foil, and an alloy foil having a front side difference of 0.1 wt% or less.
  • an electrolytic cell comprising: an electrolytic bath containing an electrolytic solution; A drum type negative electrode partially immersed in the electrolytic bath and rotated; A cathode immersed in the electrolytic cell and arranged along a periphery of the cathode, the plurality of electrodes being spaced apart from each other; And a liquid supply part immersed in the electrolytic bath and disposed between the anode and the electrolyte to supply an electrolytic solution, wherein a flow rate regulating member is formed on at least one side of the upper end of the anode.
  • the height of the flow control member may be obtained according to the following formula.
  • H is the height of the flow rate control member
  • A is the nickel content of the solution surface
  • B is the nickel content of the drum surface
  • the height of the flow control member may be 100 mm or less.
  • the flow rate controlling member may be made of at least one material selected from the group consisting of polyvinylchloride (PVC), polypropylene (PP), polyethylene (PE), polycarbonate (PC), and polytetrafluoroethylene (PTFE).
  • PVC polyvinylchloride
  • PP polypropylene
  • PE polyethylene
  • PC polycarbonate
  • PTFE polytetrafluoroethylene
  • the flow rate of the anode region where the flow rate regulating member is formed may be 70% or more of the region where the flow rate regulating member is not formed.
  • the alloy foil may be an iron-nickel alloy foil.
  • the difference in electric field of the alloy foil may be 0.1 wt% or less.
  • the present invention it is possible to control the electric field difference of the alloy foil to 0.1 wt% or less, thereby preventing the generation of curl in the subsequent process.
  • Fig. 1 shows the curl which occurs when the foil having the difference in electric field is heat-treated.
  • FIG. 2 is a schematic view of an electroforming apparatus including a conventional drum-shaped negative electrode
  • Figure 3 schematically shows the metal ion concentration at the cathode when electrodeposition is carried out.
  • FIG 4 schematically shows an alloy foil apparatus according to an embodiment of the present invention.
  • Fig. 5 shows the change in the difference of the electric field depending on the height of the flow control member.
  • the present invention relates to an apparatus for producing an alloy foil and an alloy foil manufactured using the same.
  • FIG. 2 is a schematic view of a commonly used electroforming system; Referring to Fig. 2, the iron-nickel alloy foil 1 through electroforming or electroforming can be manufactured as follows.
  • the electrolytic solution is supplied through the liquid-permeable portion 14 into the gap surrounded by the rotating drum-shaped negative electrode 12 provided in the electrolytic bath 11 and the pair of arc-shaped insoluble anodes 13 opposed thereto.
  • an iron-nickel alloy foil (1) is produced by electrodepositing an iron-nickel alloy on the surface of the negative electrode drum by energizing the current and winding it.
  • the electrolytic solution is supplied from the lowermost end of the drum 12, and the supplied electrolytic solution is supplied to the electrolytic bath through the channel between the surface of the drum 12 and the anode 13 And then discharged.
  • the electrodeposition of the metal starts from the left drum surface (position 16-1) in Fig. 3, and the electrodeposition of the metal at the opposite side of the drum surface (position 16-2) is terminated.
  • the two surfaces of the foil have different physical properties.
  • the roughness of the drum surface attached to the drum is the same as that of the drum, but in the case of the solution surface contacting with the solution, the composition of the foil, the kind and amount of additives, Flow rate, and other variables.
  • components of the solution surface may be different from those of the drum surface.
  • the components of the foil are affected by the type and state of the cathode on which the electrodeposition occurs.
  • the electrodeposition is usually carried out on a drum made of titanium or stainless steel.
  • This can lead to component differences. Also, if there is a gap between the left and right gaps, flow (stirring), temperature, etc., around the plating liquid supply nozzle of FIG. 1, a difference may occur.
  • Figure 3 schematically shows the metal ion concentration at the cathode when electrodeposition is carried out.
  • metal ions are consumed because metal ions are electrodeposited. These ions are supplied near the cathode surface through convection and diffusion. These ions are supplied near the cathode surface through migration, convection and diffusion.
  • the metal ion concentration (C a ) of the cathode surface is determined according to the speed of the two ion supply processes and the consumption rate of the cathode.
  • Flow rate supplied by the electroforming apparatus becomes higher the flow rate as a factor causing the convection when desired supply of the respective metal ion C a of each ion is high.
  • concentration and proportion of metal ions in alloy plating are the most influential variables determining the composition of the plating product. That is, the flow rate supplied to the plating cell affects the composition of the product by influencing the metal ion concentration on the surface of the cathode.
  • FIG. 4 is a schematic view of an alloy foil apparatus according to an embodiment of the present invention, and the present invention will be described in detail with reference to FIG.
  • an electrolytic cell comprising: an electrolytic bath (11) containing an electrolytic solution; A drum type negative electrode 12 partially immersed in the electrolytic bath and rotated; A positive electrode (13) immersed in the electrolytic cell and arranged along a periphery of the negative electrode so as to be spaced apart from each other; And a liquid supply portion (14) immersed in the electrolytic bath and disposed between the positive and negative electrodes to supply an electrolytic solution, wherein a flow regulating member (10) is formed on at least one side of the upper end of the positive electrode do.
  • a flow rate regulating member is formed on at least one side of the upper end of the anode.
  • the flow rate controlling member plays a role of making a kind of dam in an area where overflow of the plating liquid occurs, thereby making the water level on both sides different.
  • the height of the flow rate control member can be obtained according to the following equation.
  • H is the height of the flow rate control member
  • A is the nickel content of the solution surface
  • B is the nickel content of the drum surface.
  • difference in nickel content between the solution surface and the drum surface is -0.0281 X (height of the flow control member) +58.31, the height H of the flow control member ) Is 35.6 x D, it can be derived from the relationship of the difference.
  • FIG. 6 shows changes in the composition of the electrodeposited layer depending on the supply amount of the plating liquid.
  • the height of the flow control member is derived from the relationship of 35.6 ⁇ (difference between the nickel content on the solution surface and the nickel content on the drum surface), so that the nickel content in the electrodeposited layer is -0.078 x .
  • the height of the flow rate regulating member may be 100 mm or less (excluding 0), more preferably 20 to 60 mm, in height of the flow rate regulating member. In particular, it is more preferable that the height of the flow rate adjusting member derived from Equation 1 described above is 30 to 40 mm.
  • the flow rate of the anode region in which the flow rate regulating member is formed may be 70% or more, that is, 70 to 100% of the flow rate of the region where the flow rate regulating member is not installed.
  • the flow rate controlling member is preferably made of a nonconductive material.
  • the flow rate controlling member may be made of, for example, PVC, polypropylene, polyethylene, polycarbonate and PTFE, And the like.
  • the apparatus for producing an alloy foil of the present invention can be used without limitation, but can be preferably used for producing an iron-nickel alloy foil.
  • the present invention will be described in more detail with reference to the production of an iron-nickel alloy foil.
  • Nickel is a more rare metal than iron, but it is due to abnormal codeposition that the deposition of iron is easier. This is because the abnormal alloy corresponds to abnormal codeposition.
  • Fe 2 + consumes more ions than Ni 2 + , ie, strong convection and diffusion, because the amount consumed at the cathode is similar for the two ions.
  • a strong agitation or high flow rate plating solution is supplied, the iron content of the product is increased and the nickel content is decreased.
  • FIG. 8 shows an experiment in which the rpm of the rotating agitator is adjusted by the beaker scale to confirm this. Also, when the manufacturing facility equipped with the flow rate control member is used as in the present invention, the nickel content is increased when the supplied flow rate is lowered, as shown in FIG. Therefore, in the case of iron-nickel alloy electroforming, it can be seen that when there is a difference in the composition of the solution surface and the drum surface, the nickel content can be increased by lowering the flow and flow rate in the nickel content region.
  • the alloy foil manufactured using the apparatus for producing an alloy foil according to the present invention has a difference in electric field difference of less than 0.1% by weight, so that the generation of curl in the subsequent process can be prevented.
  • An alloy foil manufacturing apparatus comprising a rotating drum negative electrode, an anode surrounding the rotating drum negative electrode, a nozzle disposed between the anode and the anode, and a winding portion winding the formed foil are prepared and an iron-nickel alloy foil is manufactured using the apparatus.
  • a solution containing 12 g / L of iron ion, 40 g / L of nickel ion, 20 g / L of sodium and 3 g / L of boron was used as the electrolytic solution.
  • the electrolytic solution was supplied at a flow rate of 35 m 3 / hr at a pH of 2.0, a temperature of 57 ° C and a current density of 30 A / dm 2 .
  • the thickness of the produced iron-nickel alloy foil was 20 ⁇ .
  • the components of the drum surface and the solution surface of the foil manufactured without the flow rate controlling member were measured by using an X-ray fluorescence spectrometer (XRF).
  • XRF X-ray fluorescence spectrometer
  • the nickel content on the solution side is 1.6 Ni wt% higher than the drum surface.
  • the nickel component affects the coefficient of thermal expansion (CTE) and strength.
  • FIG. 5 shows the difference in surface area (solution surface component-drum surface component) when flow adjusting members having various heights were provided.
  • FIG. 9 shows that the heat-treated product of the present invention, which has a car of 0 in the case of electric discharge, has no curl.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The present invention relates to an apparatus for manufacturing an alloy foil, comprising: an electrolytic bath containing an electrolyte; a drum type cathode that is rotated while being partially immersed in the electrolytic bath; a plurality of anodes immersed in the electrolytic bath and arranged along the periphery of the cathode so as to be spaced apart from each other; and a electrolyte supply unit immersed in the electrolytic bath and disposed between the anodes to supply an electrolyte, wherein a flow rate regulating member is formed on at least one side of the upper ends of the anodes. According to the present invention, it is possible to control a difference between a front surface and a rear surface of the alloy foil to 0.1 wt% or less, thereby preventing generation of curls in subsequent processes.

Description

합금 포일 제조장치 및 이를 이용하여 제조된 합금포일 Alloy foil manufacturing apparatus and alloy foil manufactured using the same
본 발명은 합금 포일 제조장치 및 이를 이용하여 제조된 합금포일에 관한 것이다.The present invention relates to an apparatus for manufacturing an alloy foil and an alloy foil manufactured using the same.
여러 가지 목적에 의해서 도금은 이루어진다. 사용 목적과 비용에 따라 도금 시스템과 방법이 결정되는데 현재까지 구리, 니켈, 금, 은, 주석, 크롬, 납, 아연 등 많은 도금계가 개발되어 사용되고 있다. Plating is done for various purposes. Many plating systems such as copper, nickel, gold, silver, tin, chrome, lead, and zinc have been developed and used until now depending on the purpose and cost of the plating system and method.
철과 그 합금 역시 많은 연구가 이루어지는 도금계 중 하나이다. 철 도금에 관한 연구는 크게 두 가지로 볼 수 있다. 하나는 상대적으로 저렴한 철로 니켈이나 크롬 등을 대체하는 방향의 연구이고, 또 하나는 다른 원소와의 합금 도금을 통해 특정한 물성을 가진 제품 개발이다. Fe-Ni, Fe-Zn, Fe-Cr-Ni, Fe-P, Fe-B, Fe-C, Fe-C-B 등이 그 예이다.Iron and its alloys are also one of the most studied alloys. There are two major researches on iron plating. One is the relatively low cost alternative to nickel and chromium, and the other is the development of products with specific properties through alloy plating with other elements. Fe-Ni, Fe-Zn, Fe-Cr-Ni, Fe-P, Fe-B, Fe-C and Fe-C-B.
철-니켈계 합금은 최근 많은 연구가 이루어지는 분야 중 하나이다. 철-니켈계 합금은 고가임에도 불구하고 뛰어난 물성으로 여러 분야에서 사용된다. 그 중 Fe-80Ni (wt%)의 퍼말로이(permalloy)는 뛰어난 자기적 특성을 가지고, Fe-36Ni (wt%)의 인바(Invar)합금은 매우 낮은 열팽창 계수를 가진다. Iron-nickel alloys are one of the areas where many researches have been conducted recently. Iron-nickel-based alloys are used in many fields with excellent physical properties despite their high cost. Among them, permalloy of Fe-80Ni (wt%) has excellent magnetic properties and Fe-36Ni (wt%) Invar alloy has very low coefficient of thermal expansion.
인바 합금은 Guillaume가 1897년 발견하여 1920년 노벨상을 받은 이후 정밀 기계, 반도체 재료 등에 많이 활용되고 있다. 또한 인바 합금은 니켈의 함량 변화와 코발트 등의 제3의 합금 원소를 추가 하는 등의 방법을 통해 다양한 합금 개발로 연결되어 그 활용 범위를 넓혀가고 있다.Invar alloy has been widely used in precision machinery and semiconductor materials since Guillaume was found in 1897 and received the Nobel Prize in 1920. In addition, the invar alloy has been linked to the development of various alloys by changing the content of nickel and adding a third alloy element such as cobalt, and the application range of the alloy is being widened.
이와 같이 다양한 분야에 적용되는 철-니켈 합금을 제조하는 방법은 여러 가지가 있으나 현재 주로 사용되는 방법은 전통적인 냉간 압연법이다. 냉간 압연법을 사용하는 경우, 합금의 용해, 단조, 열간 압연, 열처리, 냉간 압연, 열처리 등의 복잡한 공정을 거쳐야 하며 압연 공정은 대규모 설비를 필요로 하고 에너지 소비가 매우 큰 공정이다. There are various methods of manufacturing iron-nickel alloys applicable to various fields as described above, but the main method currently used is conventional cold rolling. When the cold rolling method is used, complicated processes such as melting, forging, hot rolling, heat treatment, cold rolling and heat treatment of alloys must be performed. Rolling is a process requiring large scale equipment and consuming a great amount of energy.
또한, 얇은 박막재를 생산할 경우 압연과 열처리를 반복하는 공정을 거쳐야 하고 두께가 얇아질수록 공정이 복잡해져 생산 원가가 기하급수적으로 상승하고 게재물 문제와 실수율 문제로 두께 15㎛ 이하의 포일은 실용성이 떨어진다. 이와 같은 종래 제조 방법의 한계를 극복하기 위하여 최근 전기주조(전주법)에 의한 철-니켈 합금 박막 제조에 관한 연구가 많이 이루어지고 있다.In addition, when producing a thin film material, it is necessary to repeat the process of rolling and heat treatment. As the thickness becomes thinner, the process becomes complicated and the production cost rises exponentially. Falls. In order to overcome the limitations of the conventional manufacturing method, there have been many studies on the production of iron-nickel alloy thin films by electroforming (electroforming).
전기 주조를 통해 만들어진 합금 포일의 폭, 길이 및 두께 방향 성분 편차는 압연 방법의 그것보다 큰 편이다. 이 중 포일의 두께 방향의 성분 편차가 만들어내는 단적인 예로 전이면차, 즉 전이면의 성분 차이를 들 수 있다. 포일의 한쪽 면에서 측정한 성분이 다른 면에서 측정한 값과 차이가 있을 때 이를 전이면 성분 편차라고 부를 수 있는데, 전기주조로 만들어지는 포일에 이러한 편차가 발생하는 경향이 있다. 이러한 성분 편차는 양면의 강도, 열팽창 계수 등의 물성에 양면에 편차가 있음을 의미한다. The width, length and thickness direction component of the alloy foil made by electroforming is larger than that of the rolling process. Among them, the component difference in the thickness direction of the foil creates a difference in electric field, that is, a difference in the component of the front surface. When the component measured on one side of the foil differs from the value measured on the other side, it can be called the component deviation of the former, and this deviation tends to occur in foils made by electroforming. This component deviation means that there are variations on both sides of the physical properties such as strength and thermal expansion coefficient on both sides.
이러한 포일을 금속 원자의 확산이 이루어지지 않는 비교적 낮은 300℃ 내외의 온도로 열처리할 경우 양면의 편차로 인하여 도 1에 나타낸 것과 같이 포일에 컬이 발생한다. 컬이 일정수준을 넘게 되면 포일 핸들링이나 코팅 등의 공정이 불가능해져 제품으로서의 가치를 잃는다. 따라서 이러한 열처리 후의 컬을 없애기 위해서는 전이면차를 0에 가깝게 제어할 필요가 있다.When the foil is subjected to heat treatment at a relatively low temperature of about 300 캜 at which metal atoms are not diffused, a curl is generated in the foil as shown in Fig. 1 due to the deviation of both sides. If the curl exceeds a certain level, the process of foil handling or coating becomes impossible and the value of the product is lost. Therefore, in order to eliminate the curl after such heat treatment, it is necessary to control the difference of the electric potential close to zero.
본 발명은 드럼 형식의 음극을 이용해 제조한 합금 포일의 컬과 이의 원인이 되는 전이면의 성분 편차를 제거하는 장치 및 이에 따라 전이면차가 0.1 중량% 이하로 제어된 합금 포일을 제공하는데 있다.The present invention provides an apparatus for removing curl of an alloy foil manufactured by using a drum type negative electrode and a front surface of a front surface of the alloy foil, and an alloy foil having a front side difference of 0.1 wt% or less.
본 발명의 일 측면에 따르면, 전해액이 수용되는 전해조; 상기 전해조 내에 일부가 침지되어 회전하는 드럼형 음극; 상기 전해조 내에 침지되고 상기 음극의 둘레를 따라 복수 개가 서로 이격되어 배치된 양극; 및 상기 전해조 내에 침지되고 상기 양극 사이에 배치되어 전해액을 공급하는 급액부;를 포함하고, 상기 양극 상단의 적어도 일측에 유량조절부재가 형성되어 있는 것인 합금 포일 제조장치가 제공된다.According to an aspect of the present invention, there is provided an electrolytic cell comprising: an electrolytic bath containing an electrolytic solution; A drum type negative electrode partially immersed in the electrolytic bath and rotated; A cathode immersed in the electrolytic cell and arranged along a periphery of the cathode, the plurality of electrodes being spaced apart from each other; And a liquid supply part immersed in the electrolytic bath and disposed between the anode and the electrolyte to supply an electrolytic solution, wherein a flow rate regulating member is formed on at least one side of the upper end of the anode.
상기 유량조절부재의 높이가 하기 식에 따라 얻어지는 것일 수 있디.The height of the flow control member may be obtained according to the following formula.
[식 1][Formula 1]
H=35.6 Ⅹ (A-B)H = 35.6 X (A-B)
(여기서, H는 유량조절부재의 높이이고, A는 용액 면의 니켈 함량이며, B는 드럼면의 니켈 함량을 의미한다.)(Where H is the height of the flow rate control member, A is the nickel content of the solution surface, and B is the nickel content of the drum surface).
상기 유량조절부재의 높이가 100mm 이하일 수 있다.The height of the flow control member may be 100 mm or less.
상기 유량조절부재의 재질이 PVC(Polyvinylchloride), PP(Polypropylene), PE(Polyethylene), PC(Polycarbonate) 및 PTFE(Polytetrafluoroethylene) 중에서 선택된 1종 이상일 수 있다.The flow rate controlling member may be made of at least one material selected from the group consisting of polyvinylchloride (PVC), polypropylene (PP), polyethylene (PE), polycarbonate (PC), and polytetrafluoroethylene (PTFE).
상기 유량조절부재가 형성되어 있는 양극 영역의 유량은 유량조절부재가 형성되어 있지 않은 영역의 70%이상일 수 있다.The flow rate of the anode region where the flow rate regulating member is formed may be 70% or more of the region where the flow rate regulating member is not formed.
상기 합금 포일이 철-니켈 합금 포일일 수 있다.The alloy foil may be an iron-nickel alloy foil.
본 발명의 다른 측면에 따르면, 상기 방법으로 제조된 합금 포일이 제공된다.According to another aspect of the present invention, there is provided an alloy foil produced by the above method.
상기 합금 포일의 전이면차가 0.1중량% 이하일 수 있다.The difference in electric field of the alloy foil may be 0.1 wt% or less.
본 발명에 따르면, 합금 포일의 전이면차를 0.1 중량% 이하로 제어할 수 있어, 후속 공정에서 컬의 발생을 방지할 수 있다.According to the present invention, it is possible to control the electric field difference of the alloy foil to 0.1 wt% or less, thereby preventing the generation of curl in the subsequent process.
도 1은 전이면차가 큰 포일을 열처리 하는 경우 발생하는 컬을 나타낸 것이다.Fig. 1 shows the curl which occurs when the foil having the difference in electric field is heat-treated.
도 2는 종래의 드럼형 음극을 포함하는 전기 주조 장치의 개략도이다 2 is a schematic view of an electroforming apparatus including a conventional drum-shaped negative electrode
도 3은 전기 전착이 이루어질 때 음극에서의 금속 이온농도를 개략적으로 나타낸 것이다.Figure 3 schematically shows the metal ion concentration at the cathode when electrodeposition is carried out.
도 4는 본 발명의 일 실시예에 따른 합금 포일 장치를 개략적으로 나타낸 것이다.4 schematically shows an alloy foil apparatus according to an embodiment of the present invention.
도 5는 유량제어부재의 높이에 따른 전이면차의 변화를 나타낸 것이다.Fig. 5 shows the change in the difference of the electric field depending on the height of the flow control member.
도 6 및 7은 도금액 공급 유량에 따른 전착층의 성분 변화를 나타낸 것이다.6 and 7 show changes in the composition of the electrodeposited layer depending on the flow rate of the plating liquid supplied.
도 8은 도금액 공급 유량에 따른 전착층의 성분 변화를 나타낸 것이다.8 shows changes in the composition of the electrodeposited layer depending on the supply amount of the plating liquid.
도 9는 본 발명에 따라 제조된 합금포일을 열처리한 후의 사진을 나타낸것이다.9 is a photograph of the alloy foil manufactured according to the present invention after heat treatment.
이하, 다양한 실시예를 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described with reference to various embodiments. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below.
본 발명은 합금 포일 제조장치 및 이을 이용하여 제조된 합금포일에 관한 것이다.The present invention relates to an apparatus for producing an alloy foil and an alloy foil manufactured using the same.
도 2는 일반적으로 사용되는 전기 주조 시스템의 개략도이다. 도 2를 참조하여 설명하면, 전주법 또는 전기 주조를 통한 철-니켈 합금 포일(1)은 다음에 따라 제조될 수 있다.2 is a schematic view of a commonly used electroforming system; Referring to Fig. 2, the iron-nickel alloy foil 1 through electroforming or electroforming can be manufactured as follows.
전해조(11) 내에 설치된 회전하는 원통형의 드럼형 음극(12)과 이에 대향하는 한 쌍의 원호 형상의 불용성 양극(13)에 둘러싸인 틈으로 급액부(14)을 통해 전해액이 공급된다. 이 때 전류를 통전함으로써, 상기 음극 드럼의 표면에 철-니켈계 합금을 전착시키고, 이를 권취함으로써 철-니켈 합금포일(1)이 제조된다. The electrolytic solution is supplied through the liquid-permeable portion 14 into the gap surrounded by the rotating drum-shaped negative electrode 12 provided in the electrolytic bath 11 and the pair of arc-shaped insoluble anodes 13 opposed thereto. At this time, an iron-nickel alloy foil (1) is produced by electrodepositing an iron-nickel alloy on the surface of the negative electrode drum by energizing the current and winding it.
상기와 같은 전주법에 의해 제조된 철-니켈 합금포일(1)의 두께 방향 조성 편차가 발생하는 원인은 여러 가지가 있다. 도 3의 드럼형 전주장치를 이용하여 금속 포일을 제조하는 경우, 드럼(12)의 최하단부에서 전해액이 공급되고, 공급된 전해액은 드럼(12) 표면과 양극(13) 사이의 유로를 통해 전해조의 상부로 이동하여 배출된다. 이 과정에서 도 3의 좌측 드럼 표면(16-1의 위치)에서부터 금속의 전착이 시작되어 반대측 드럼 표면(16-2의 위치)에서 금속의 전착이 종료된다.There are various reasons why the compositional deviation in the thickness direction of the iron-nickel alloy foil 1 produced by the electroforming method as described above occurs. 3, the electrolytic solution is supplied from the lowermost end of the drum 12, and the supplied electrolytic solution is supplied to the electrolytic bath through the channel between the surface of the drum 12 and the anode 13 And then discharged. In this process, the electrodeposition of the metal starts from the left drum surface (position 16-1) in Fig. 3, and the electrodeposition of the metal at the opposite side of the drum surface (position 16-2) is terminated.
상기와 같이 회전하는 드럼을 음극으로 사용하여 합금포일을 제조하는 경우, 포일의 두 면은 물성이 다르게 된다. 예를 들어, 조도 (roughness)의 경우, 드럼에 부착되어있던 드럼 면의 조도는 드럼의 그것과 동일하나, 용액과 닿아있던 용액 면의 경우, 포일의 성분, 첨가제 종류와 양, 온도, pH, 유량 등 수 많은 변수의 영향을 받아 결정된다.When the alloy foil is manufactured using the rotating drum as the negative electrode, the two surfaces of the foil have different physical properties. For example, in the case of roughness, the roughness of the drum surface attached to the drum is the same as that of the drum, but in the case of the solution surface contacting with the solution, the composition of the foil, the kind and amount of additives, Flow rate, and other variables.
본 발명에서 초점을 맞추는 성분의 경우에도 드럼 면과 용액 면의 성분이 다를 수 있다. 포일의 성분은 전착이 이루어지는 음극의 종류와 상태에 영향을 받기도 하는데 드럼 면의 경우 전착이 통상 타이타늄이나 스테인리스로 만들어진 드럼에서 이루어는 반면, 용액 면의 경우 제품의 중반부터 전착이 이루진다는 차이로 인하여 성분 차이가 발생할 수 있다. 또한 도 1의 도금액 공급 노즐을 중심으로 왼쪽과 오른쪽의 극간, 유동(교반), 온도 등의 차이가 전이면차를 유발할 수 있다.In the present invention, components of the solution surface may be different from those of the drum surface. The components of the foil are affected by the type and state of the cathode on which the electrodeposition occurs. In the case of the drum surface, the electrodeposition is usually carried out on a drum made of titanium or stainless steel. On the other hand, This can lead to component differences. Also, if there is a gap between the left and right gaps, flow (stirring), temperature, etc., around the plating liquid supply nozzle of FIG. 1, a difference may occur.
도 3은 전기 전착이 이루어질 때 음극에서의 금속 이온농도를 개략적으로 나타낸 것이다. 음극에서는 금속이온들의 전착이 이루어지기 때문에 금속 이온들이 소모되는데, 이러한 이온은 대류(convection) 및 확산(diffusion)을 통해 음극면 근처로 공급된다. 이러한 이온은 전기 영동(migration), 대류(convection) 및 확산(diffusion)을 통해 음극면 근처로 공급된다. 상기 두가지 이온 공급 프로세스의 속도와 음극의 소모 속도에 따라 음극면의 금속 이온 농도(Ca)가 결정된다. Figure 3 schematically shows the metal ion concentration at the cathode when electrodeposition is carried out. In the cathode, metal ions are consumed because metal ions are electrodeposited. These ions are supplied near the cathode surface through convection and diffusion. These ions are supplied near the cathode surface through migration, convection and diffusion. The metal ion concentration (C a ) of the cathode surface is determined according to the speed of the two ion supply processes and the consumption rate of the cathode.
전기 주조장치에서 공급되는 유량은 대류를 일으키는 요소로서 유량이 높아지면 각 금속 이온의 공급이 원할해져 각 이온의 Ca는 높아진다. 합금 도금에서 금속 이온의 농도 및 비율은 도금 제품의 성분을 결정짓는 가장 영향이 큰 변수이다. 즉, 도금셀에 공급되는 유량은 음극 표면의 금속이온 농도에 영향을 줌으로서 제품의 성분에 영향을 미친다.Flow rate supplied by the electroforming apparatus becomes higher the flow rate as a factor causing the convection when desired supply of the respective metal ion C a of each ion is high. The concentration and proportion of metal ions in alloy plating are the most influential variables determining the composition of the plating product. That is, the flow rate supplied to the plating cell affects the composition of the product by influencing the metal ion concentration on the surface of the cathode.
이에 본 발명자들은 드럼면과 용액 면이 전착되는 지역의 유량을 제어하면 전이면차를 저감할 수 있음에 착안하고 본 발명을 완성하기에 이르렀다. 도 4는 본 발명의 일 실시예에 따른 합금 포일 장치를 개략적으로 나타낸 것으로 이하에서는 도 4를 참조하여 본 발명을 보다 상세하게 설명하기로 한다.Therefore, the inventors of the present invention focused on the fact that controlling the flow rate of the drum surface and the region where the solution surface is electrodeposited can reduce the difference in the electric field, and have completed the present invention. FIG. 4 is a schematic view of an alloy foil apparatus according to an embodiment of the present invention, and the present invention will be described in detail with reference to FIG.
본 발명의 일 측면에 따르면, 전해액이 수용되는 전해조(11); 상기 전해조 내에 일부가 침지되어 회전하는 드럼형 음극(12); 상기 전해조 내에 침지되고 상기 음극의 둘레를 따라 복수 개가 서로 이격되어 배치된 양극(13); 및 상기 전해조 내에 침지되고 상기 양극 사이에 배치되어 전해액을 공급하는 급액부(14)를 포함하고, 상기 양극 상단의 적어도 일측에 유량조절부재(10)가 형성되어 있는 것인 합금 포일 제조장치가 제공된다.According to an aspect of the present invention, there is provided an electrolytic cell comprising: an electrolytic bath (11) containing an electrolytic solution; A drum type negative electrode 12 partially immersed in the electrolytic bath and rotated; A positive electrode (13) immersed in the electrolytic cell and arranged along a periphery of the negative electrode so as to be spaced apart from each other; And a liquid supply portion (14) immersed in the electrolytic bath and disposed between the positive and negative electrodes to supply an electrolytic solution, wherein a flow regulating member (10) is formed on at least one side of the upper end of the positive electrode do.
본 발명의 합금 포일 제조장치는 양극 상단의 적어도 일측에 유량조절부재가 형성되어 있다. 상기 유량조절부재는 도금액의 범람(overflow)이 일어나는 지역에 일종의 댐을 만들어주어 양측의 수위를 다르게 하는 역할을 수행한다. 상기 유량조절부재가 설치되어 수위가 높아지면 수압이 높아져 유량조절부재가 설치된 쪽의 유량이 감소한다. 유량조절부재의 높이를 조절함으로서 양측의 유량 차이가 조절 가능할 수 있고 이는, 제조되는 포일의 전이면차의 제어할 수 있음을 의미한다.In the apparatus for producing an alloy foil of the present invention, a flow rate regulating member is formed on at least one side of the upper end of the anode. The flow rate controlling member plays a role of making a kind of dam in an area where overflow of the plating liquid occurs, thereby making the water level on both sides different. When the flow rate regulating member is installed and the water level is increased, the water pressure is increased and the flow rate on the side where the flow rate regulating member is installed decreases. By adjusting the height of the flow control member, the flow rate difference between the two sides can be adjusted, which means that the difference in the front of the foil can be controlled.
상기 유량조절부재의 높이는 하기 식에 따라 얻어질 수 있다. The height of the flow rate control member can be obtained according to the following equation.
[식 1][Formula 1]
H=35.6 Ⅹ (A-B)H = 35.6 X (A-B)
(여기서, H는 유량조절부재의 높이이고, A는 용액 면의 니켈 함량이며, B는 드럼면의 니켈 함량을 의미한다.) 도 5는 유량제어부재의 높이에 따른 전이면차의 변화를 나타낸 것으로 도 5를 참조하면, 전이면차(용액 면의 니켈함량과 드럼면의 니켈 함량의 차이)는 -0.0281 Ⅹ (유량조절부재의 높이)+58.31의 관계에 있으므로, 유량조절부재의 높이(H)는 35.6 Ⅹ 전이면차의 관계로부터 도출할 수 있다.(Where H is the height of the flow rate control member, A is the nickel content of the solution surface, and B is the nickel content of the drum surface). (Difference in nickel content between the solution surface and the drum surface) is -0.0281 X (height of the flow control member) +58.31, the height H of the flow control member ) Is 35.6 x D, it can be derived from the relationship of the difference.
한편, 도 6은 도금액 공급 유량에 따른 전착층의 성분 변화를 나타낸 것이다. 상기에서 설명한 바와 같이, 유량조절부재의 높이는 35.6 Ⅹ (용액 면의 니켈함량과 드럼면의 니켈 함량의 차이)의 관계로부터 도출되므로 전착층 내 니켈 함량은 -0.078 Ⅹ 유량의 관계가 성립함을 확인할 수 있다. On the other hand, FIG. 6 shows changes in the composition of the electrodeposited layer depending on the supply amount of the plating liquid. As described above, the height of the flow control member is derived from the relationship of 35.6 χ (difference between the nickel content on the solution surface and the nickel content on the drum surface), so that the nickel content in the electrodeposited layer is -0.078 x .
상기 유량조절부재의 높이는 상기 유량조절부재의 높이가 100mm 이하(0은 제외)일 수 있고, 보다 바람직하게는 20 내지 60mm일 수 있다. 특히 상기에서 설명한 식 1에 따라 도출되는 유량조절부재의 높이는 30 내지 40mm인 것이 보다 바람직하다.The height of the flow rate regulating member may be 100 mm or less (excluding 0), more preferably 20 to 60 mm, in height of the flow rate regulating member. In particular, it is more preferable that the height of the flow rate adjusting member derived from Equation 1 described above is 30 to 40 mm.
또한, 상기 유량조절부재가 형성되어 있는 양극 영역의 유량은 설치되어 있지 않은 지역의 유량의 70% 이상, 즉 70~100%일 수 있다. 도 7에 도시된 바와 같이, 성분) = (유량)*-0.2229 + 51.7의 관계가 성립하는 것을 알 수 있다. 즉, (유량) = (성분)*-4.49 + 232의 관계가 성립한다. 이는 1%의 성분차이를 보상하기 위해선 4.5 m3/h의 유량 변동이 필요함을 의미하며, 이는 유량 차이로 약 15% 정도이므로, 2 Ni wt%의 전이면차가 발생하는 경우 양측에 30% 정도의 유량 차이가 필요함을 알 수 있다.In addition, the flow rate of the anode region in which the flow rate regulating member is formed may be 70% or more, that is, 70 to 100% of the flow rate of the region where the flow rate regulating member is not installed. (Flow) * - 0.2229 + 51.7, as shown in Fig. 7, is established. That is, the relationship (flow rate) = (component) * - 4.49 + 232 holds. This means that a flow rate variation of 4.5 m 3 / h is required to compensate for the component difference of 1%, which is about 15% due to the difference in flow rate. Therefore, if the difference is 2 Ni wt% The flow rate difference between the two is required.
상기 유량조절부재는 비전도성 재질로 이루어져 있는 것이 바람직하며, 특별하게 한정하는 것은 아니나, 예를 들어, PVC(Polyvinylchloride), PP(Polypropylene), PE(Polyethylene), PC(Polycarbonate) 및 PTFE(Polytetrafluoroethylene) 중에서 선택된 1종 이상으로 형성된 것일 수 있다.The flow rate controlling member is preferably made of a nonconductive material. The flow rate controlling member may be made of, for example, PVC, polypropylene, polyethylene, polycarbonate and PTFE, And the like.
양극에는 양전압이 걸려있기 때문에 철과 같은 재질을 사용하는 경우, 산화되어 녹아버리는 현상이 발생한다. 다만 내식성이 좋은 Titanium이나 Hastelloy 같은 고가의 금속을 사용하는 경우를 생각할 수도 있으나, 하지만 시간, 비용을 고려할 때 PVC(Polyvinylchloride), PP(Polypropylene), PE(Polyethylene), PC(Polycarbonate) 및 PTFE(Polytetrafluoroethylene) 중에서 선택된 1종 이상을 사용하는 것이 바람직하다.Since a positive voltage is applied to the positive electrode, when a material such as iron is used, a phenomenon occurs in which the material is oxidized and melted. However, in consideration of time and cost, it is possible to use an expensive metal such as titanium or Hastelloy which has good corrosion resistance. However, considering time and cost, it is possible to use PVC, Polypropylene, PE, Polycarbonate, ) Is preferably used.
한편, 본 발명의 합금포일 제조장치는 제한없이 사용이 가능하나, 바람직하게는 철-니켈 합금 포일을 제조하는데 사용될 수 있다. 이하에서는 철-니켈 합금 포일의 제조를 예시하여 본 발명을 보다 상세하게 설명하기로 한다.On the other hand, the apparatus for producing an alloy foil of the present invention can be used without limitation, but can be preferably used for producing an iron-nickel alloy foil. Hereinafter, the present invention will be described in more detail with reference to the production of an iron-nickel alloy foil.
철-니켈 합금 도금시 50 Ni wt% 내외의 포일을 제조하기 위해서는 도금액내에 Fe2 + 이온보다 높은 농도의 Ni2 + 이온이 사용된다. 니켈이 철보다 희귀한 금속이지만, 철의 전착이 더 쉽게 이루어지는 이상합금도금계 (abnormal codeposition) 때문이다. 이상합금도금계 (abnormal codeposition)에 해당하기 때문이다. Iron-nickel alloy plating in order during the manufacture of the foil by about 50 wt% Ni the Ni 2 + ions in a concentration higher than Fe 2 + ions are used in the plating solution. Nickel is a more rare metal than iron, but it is due to abnormal codeposition that the deposition of iron is easier. This is because the abnormal alloy corresponds to abnormal codeposition.
Ni2 + 이온이 도금액에 더 많은데 비하여, 음극에서 소모되는 양은 두 이온이 비슷하기 때문에 Fe2 +가 Ni2 + 보다 많은 이온의 공급 즉, 강한 대류와 확산을 요하게 된다. 이에 따라 강한 교반 혹은 높은 유량의 도금액이 공급되면 제품의 철 함량은 높아지고 니켈 함량은 낮아진다. Compared to Ni 2 + ions in the plating solution, Fe 2 + consumes more ions than Ni 2 + , ie, strong convection and diffusion, because the amount consumed at the cathode is similar for the two ions. As a result, when a strong agitation or high flow rate plating solution is supplied, the iron content of the product is increased and the nickel content is decreased.
이를 확인하기 위해 비커 스케일로 회전 교반자의 rpm을 조정함으로서 실험한 경우를 도 8에 나타내었다. 또한, 본원발명과 같이 유량조절부재가 설치된 제조 설비를 사용하는 경우, 공급되는 유량이 낮아지면 니켈 함량이 높아지는데 이를 도 6에 나타내었다. 따라서 철-니켈 합금 전기 주조의 경우 용액 면과 드럼 면의 성분에 차이가 있을 경우, 니켈 함량이 낮은 지역의 유동, 유량을 낮혀주면 니켈 함량을 높일 수 있음을 알 수 있다. FIG. 8 shows an experiment in which the rpm of the rotating agitator is adjusted by the beaker scale to confirm this. Also, when the manufacturing facility equipped with the flow rate control member is used as in the present invention, the nickel content is increased when the supplied flow rate is lowered, as shown in FIG. Therefore, in the case of iron-nickel alloy electroforming, it can be seen that when there is a difference in the composition of the solution surface and the drum surface, the nickel content can be increased by lowering the flow and flow rate in the nickel content region.
이와 같이 본 발명에 따른 상기 합금포일 제조장치를 이용하여 제조된 합금포일은 전이면차가 0.1중량%이하이므로, 후속 공정에서 컬의 발생을 방지할 수 있다.As described above, the alloy foil manufactured using the apparatus for producing an alloy foil according to the present invention has a difference in electric field difference of less than 0.1% by weight, so that the generation of curl in the subsequent process can be prevented.
실시예Example
이하, 본 발명을 실시예를 들어 보다 구체적으로 설명한다. 이하의 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. The following examples are intended to further illustrate the present invention and are not intended to limit the present invention.
실시예Example
회전하는 드럼형 음극, 이를 둘러싼 양극, 상기 양극 사이에 배치되어 전해액을 공급하는 노즐 및 형성된 포일을 권취하는 권취부로 구성된 합금포일 제조장치를 준비하고 이를 이용하여 철-니켈 합금포일을 제조하였다.An alloy foil manufacturing apparatus comprising a rotating drum negative electrode, an anode surrounding the rotating drum negative electrode, a nozzle disposed between the anode and the anode, and a winding portion winding the formed foil are prepared and an iron-nickel alloy foil is manufactured using the apparatus.
전해액은 12g/L의 철 이온, 40g/L의 니켈 이온, 20g/L의 나트륨, 3g/L의 보론을 포함하는 용액을 사용하였다. 전해액의 pH는 2.0, 온도는 57℃, 전류밀도는 30 A/dm2인 조건에서 35 m3/hr의 유량으로 상기 전해액을 공급하였다. 제조된 철-니켈 합금 포일의 두께는 20㎛였다.A solution containing 12 g / L of iron ion, 40 g / L of nickel ion, 20 g / L of sodium and 3 g / L of boron was used as the electrolytic solution. The electrolytic solution was supplied at a flow rate of 35 m 3 / hr at a pH of 2.0, a temperature of 57 ° C and a current density of 30 A / dm 2 . The thickness of the produced iron-nickel alloy foil was 20 탆.
먼저, 유량조절부재를 설치하지 않은 상태에서 제조한 포일의 드럼 면 및 용액 면의 성분을 XRF(X-ray Fluorescence Spectrometer)를 사용하여 각각 측정하였다. 그 결과 용액 면은 46.3 Ni wt%였고, 드럼 면은 45.7 Ni wt%였다. First, the components of the drum surface and the solution surface of the foil manufactured without the flow rate controlling member were measured by using an X-ray fluorescence spectrometer (XRF). As a result, the solution surface was 46.3 Ni wt% and the drum surface was 45.7 Ni wt%.
이는 용액 면의 니켈 함량이 드럼 면보다 1.6 Ni wt% 높음을 의미한다. 철-니켈 합금 포일에서 니켈 성분은 열팽창계수(coefficient of thermal expansion, CTE)와 강도에 영향을 미친다. This means that the nickel content on the solution side is 1.6 Ni wt% higher than the drum surface. In an iron-nickel alloy foil, the nickel component affects the coefficient of thermal expansion (CTE) and strength.
이는 열처리시에 양면의 팽창률에 영향을 미쳐, 결과적으로는 Ni 성분이 높은쪽으로 포일이 휘는 현상(컬)을 야기한다. 상술한 바와 같이 도 1을 통하여용액 면의 Ni 함량이 높은 이와 같은 포일을 300℃에서 열처리한 경우, 11 ㎜의 수평컬이 발생하였음을 확인할 수 있다.This affects the expansion ratio of both sides during the heat treatment, resulting in a phenomenon in which the foil bends toward the higher Ni component (curl). As described above, it can be seen from FIG. 1 that when the foil having a high Ni content on the solution surface is heat-treated at 300 ° C, 11 ㎜ of horizontal curl is generated.
드럼 면의 성분이 용액 면의 성분보다 낮으므로, 드럼 면쪽에 PVC 재질의 유량조절부재를 설치하여 상대적으로 유량을 낮게 만들었다. 한편, 상기 유량조절부재는 생산 중 교체가 가능한 탈착식으로 제조되었다. 도 5에 여러 높이의 유량조절부재를 설치하였을 때의 전이면차(용액면 성분 - 드럼면 성분)을 나타내었다. Since the component of the drum surface is lower than the component of the solution surface, a flow regulating member made of PVC is provided on the drum side to relatively lower the flow rate. On the other hand, the flow rate control member was manufactured as a detachable type that can be replaced during production. FIG. 5 shows the difference in surface area (solution surface component-drum surface component) when flow adjusting members having various heights were provided.
도 5에서 확인할 수 있듯이 1 Ni wt%가 넘는 전이면차가 발생하였지만, 드럼면측에 60㎜의 유량조절부재을 설치하면 이를 0에 가깝게 만들 수 있었다. 전이면차가 0에 가까워진 이 제품을 열처리한 경우를 도 9에 나타내었으며 컬이 발생하지 않음을 확인할 수 있었다.As can be seen from FIG. 5, a difference of more than 1 Ni wt% occurred, but if a flow control member of 60 mm was installed on the drum side, it could be made close to zero. FIG. 9 shows that the heat-treated product of the present invention, which has a car of 0 in the case of electric discharge, has no curl.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be obvious to those of ordinary skill in the art.

Claims (8)

  1. 전해액이 수용되는 전해조;An electrolytic bath containing an electrolytic solution;
    상기 전해조 내에 일부가 침지되어 회전하는 드럼형 음극;A drum type negative electrode partially immersed in the electrolytic bath and rotated;
    상기 전해조 내에 침지되고 상기 음극의 둘레를 따라 복수 개가 서로 이격되어 배치된 양극; 및 A cathode immersed in the electrolytic cell and arranged along a periphery of the cathode, the plurality of electrodes being spaced apart from each other; And
    상기 전해조 내에 침지되고 상기 양극 사이에 배치되어 전해액을 공급하는 급액부;를 포함하고,And a liquid-supply unit immersed in the electrolytic bath and disposed between the positive electrodes to supply an electrolytic solution,
    상기 양극 상단의 적어도 일측에 유량조절부재가 형성되어 있는 것인 합금 포일 제조장치.And a flow rate regulating member is formed on at least one side of the upper end of the positive electrode.
  2. 제1항에 있어서,The method according to claim 1,
    상기 유량조절부재의 높이가 하기 식에 따라 얻어지는 것을 특징으로 하는 합금 포일 제조장치.Wherein the height of the flow control member is obtained according to the following formula.
    [식 1][Formula 1]
    H=35.6 Ⅹ (A-B)H = 35.6 X (A-B)
    (여기서, H는 유량조절부재의 높이이고, A는 용액 면의 니켈 함량(중량%)이며, B는 드럼면의 니켈 함량((중량%))을 의미한다.)(Where H is the height of the flow control member, A is the nickel content (wt%) on the solution surface, and B is the nickel content ((wt%)) on the drum surface.
  3. 제1항에 있어서,The method according to claim 1,
    상기 유량조절부재의 높이가 100mm 이하(0은 제외)인 것을 특징으로 하는 합금 포일 제조장치.Wherein the flow control member has a height of 100 mm or less (excluding 0).
  4. 제1항에 있어서,The method according to claim 1,
    상기 유량조절부재의 재질이 PVC(Polyvinylchloride), PP(Polypropylene), PE(Polyethylene), PC(Polycarbonate) 및 PTFE(Polytetrafluoroethylene) 중에서 선택된 1종 이상인 것을 특징으로 하는 합금 포일 제조장치.Wherein the flow control member is made of at least one material selected from the group consisting of polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), polycarbonate (PC), and polytetrafluoroethylene (PTFE).
  5. 제1항에 있어서,The method according to claim 1,
    상기 유량조절부재가 형성되어 있는 양극 영역의 유량은 유량조절부재가 형성되어 있지 않은 영역의 70%이상인 것을 특징으로 하는 합금 포일 제조장치.Wherein the flow rate of the anode region in which the flow rate regulating member is formed is 70% or more of the region in which the flow rate regulating member is not formed.
  6. 제1항에 있어서,The method according to claim 1,
    상기 합금 포일이 철-니켈 합금 포일인 것을 특징으로 하는 합금 포일 제조장치.Wherein the alloy foil is an iron-nickel alloy foil.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 합금 포일 제조장치를 이용하여 제조된 합금 포일.An alloy foil produced by using the apparatus for producing an alloy foil according to any one of claims 1 to 6.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 합금 포일의 전이면차가 0.1중량%이하인 것을 특징으로 하는 합금 포일.Wherein the difference in electric field of the alloy foil is 0.1 wt% or less.
PCT/KR2018/014806 2017-12-22 2018-11-28 Apparatus for manufacturing alloy foil and alloy foil manufactured using same WO2019124791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170178282A KR102065221B1 (en) 2017-12-22 2017-12-22 Apparatus for preparing alloy foil and alloy foil prepared using the same
KR10-2017-0178282 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019124791A1 true WO2019124791A1 (en) 2019-06-27

Family

ID=66992613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014806 WO2019124791A1 (en) 2017-12-22 2018-11-28 Apparatus for manufacturing alloy foil and alloy foil manufactured using same

Country Status (2)

Country Link
KR (1) KR102065221B1 (en)
WO (1) WO2019124791A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010022951A (en) * 1999-05-06 2001-03-26 이철우 THE APPARATUS FOR MANUFACTURING Ni-Fe ALLOY THIN FOIL
JP2002363786A (en) * 2001-06-11 2002-12-18 Mitsui Mining & Smelting Co Ltd Apparatus for electrolytically manufacturing metal foil
JP2004315937A (en) * 2003-04-18 2004-11-11 Nippon Stainless Kozai Kk Insoluble electrode for manufacturing metal foil
KR101320114B1 (en) * 2011-08-30 2013-10-18 니시 코교 가부시키가이샤 Apparatus for the electrolytic deposition of metal foil
KR101630980B1 (en) * 2014-12-12 2016-06-16 주식회사 포스코 Apparatus for continuous electroforming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010022951A (en) * 1999-05-06 2001-03-26 이철우 THE APPARATUS FOR MANUFACTURING Ni-Fe ALLOY THIN FOIL
JP2002363786A (en) * 2001-06-11 2002-12-18 Mitsui Mining & Smelting Co Ltd Apparatus for electrolytically manufacturing metal foil
JP2004315937A (en) * 2003-04-18 2004-11-11 Nippon Stainless Kozai Kk Insoluble electrode for manufacturing metal foil
KR101320114B1 (en) * 2011-08-30 2013-10-18 니시 코교 가부시키가이샤 Apparatus for the electrolytic deposition of metal foil
KR101630980B1 (en) * 2014-12-12 2016-06-16 주식회사 포스코 Apparatus for continuous electroforming

Also Published As

Publication number Publication date
KR102065221B1 (en) 2020-01-10
KR20190076466A (en) 2019-07-02

Similar Documents

Publication Publication Date Title
US4529486A (en) Anode for continuous electroforming of metal foil
US3817843A (en) Electrodeposition of iron foil
US4647345A (en) Metallurgical structure control of electrodeposits using ultrasonic agitation
US3975242A (en) Horizontal rectilinear type metal-electroplating method
CN1061055A (en) Tinsel is carried out the surface-treated method and apparatus
US5015340A (en) Method of continuous coating of electrically conductive substrates
US4834845A (en) Preparation of Zn-Ni alloy plated steel strip
US3901771A (en) One-side electrocoating
WO2014168314A1 (en) Electroplating apparatus for preventing excessive plating of edge
KR101879080B1 (en) Apparatus for preparing fe-ni alloy foil
US4430166A (en) Method and apparatus for electro-treating a metal strip
US3970537A (en) Electrolytic treating apparatus
KR20030007594A (en) Metal Foil Electrolytic Manufacturing Apparatus
WO2019124791A1 (en) Apparatus for manufacturing alloy foil and alloy foil manufactured using same
CH623850A5 (en) Method of selectively electro depositing metals
GB2067223A (en) Apparatus for electroplating strip material without current leakage
CN104818512A (en) Device and method for preparing magnetically soft alloy continuous films through electric deposition of soluble separated anodes
KR20080064720A (en) Bimetals using electroplating and the process of producing the same
JPH02175894A (en) Method and device for tin or tin alloy electroplating
US5100522A (en) Process and apparatus for the manufacture of a metal foil
Ben‐Porat et al. Current distribution during electroplating within a tubular electrode of high ohmic resistance
US1837355A (en) Electrodeposition of alloys
KR100485808B1 (en) electroplating bath for copper-nickel alloy and method for manufacturing thin film using said electroplating bath
KR20010065374A (en) electro-plating method utilizing edge mask to prevent the edge overcoating
US3751354A (en) Electroplating cell including magnetic means to couple concave workpieces to a plating rack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892413

Country of ref document: EP

Kind code of ref document: A1