WO2019124725A1 - Cooling insulation device using mixed insulation oil having magnetic nanofluid mixed therein - Google Patents

Cooling insulation device using mixed insulation oil having magnetic nanofluid mixed therein Download PDF

Info

Publication number
WO2019124725A1
WO2019124725A1 PCT/KR2018/013260 KR2018013260W WO2019124725A1 WO 2019124725 A1 WO2019124725 A1 WO 2019124725A1 KR 2018013260 W KR2018013260 W KR 2018013260W WO 2019124725 A1 WO2019124725 A1 WO 2019124725A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed
magnetic
oil
cooling
insulation
Prior art date
Application number
PCT/KR2018/013260
Other languages
French (fr)
Korean (ko)
Inventor
이호영
Original Assignee
창신대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창신대학교 산학협력단 filed Critical 창신대학교 산학협력단
Publication of WO2019124725A1 publication Critical patent/WO2019124725A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling

Definitions

  • the present invention relates to a cooling insulation device using a mixed insulation oil in which a magnetic nanofluid is mixed with a vegetable insulation oil, and more particularly, to a cooling insulation device using a mixed insulation oil in which an environment- The heat can be efficiently cooled by the magnetic convection effect.
  • the heat generated in the heat generating portion can be effectively cooled while helping to protect the environment.
  • nanofluids The tendency to improve the thermal conductivity of a fluid in which nanoparticles were dispersed was reported by the Argon Research Institute in 1995, and these fluids are called nanofluids.
  • a nanofluid is prepared by using a solid nano powder having a superior thermal conductivity, the thermal conductivity of the basic fluid is greatly increased and the heat transfer performance is improved.
  • nanofluids are being used in places where excessive energy consumption is required for cooling, such as heat exchangers, coolers in vehicles, batteries in electric vehicles, and cooling systems in nuclear reactors.
  • Another object of the present invention is to provide a cooling insulation device which can help to protect the environment by using a mixture of insulating oil of environmentally friendly insulating fluid and magnetic nano fluid.
  • a cooling and insulating device comprises a housing part, a heat generating part disposed inside the housing part and having a coil and generating heat by a power source applied to the coil, And a mixed insulating oil composed of a mixture of an environmentally-friendly insulating oil and a magnetic nanofluid.
  • the cooling insulation device according to the present invention has the following effects.
  • the cooling insulation device can efficiently cool the heat generated in the heat generating portion of the power device by the magnetic convection effect by using the mixed insulating oil obtained by mixing the environmentally friendly insulating oil and the magnetic nanofluid.
  • the cooling insulation device can effectively cool the heat generated in the heat generating portion while helping to protect the environment by using the mixed insulating oil of the environmentally-friendly insulating oil and the magnetic nanofluid.
  • FIG. 1 is a view for explaining a cooling and insulating device according to the present invention.
  • FIG. 2 is a view for explaining the temperature around the heat generating portion in the cooling insulating device according to the present invention.
  • FIG 3 is a view for explaining magnetic convection of a magnetic nanofluid according to the present invention.
  • FIG. 1 is a view for explaining a cooling and insulating device according to the present invention.
  • a heating unit 130 including a coil is disposed inside a housing 110 of a cooling and insulating apparatus.
  • the heating unit 130 is connected to the power supply unit 120, So that heat is generated.
  • the housing 110 is sealed with a heat generating part 130 for generating heat in the power device.
  • insulating oil for inserting power from the heat generating part 130 to the outside is included.
  • the present invention is filled with biodegradable environmentally-friendly insulating oil which can be classified into existing petroleum-based insulating oil.
  • Vegetable oil for example, can be used as an environment-friendly insulating oil.
  • the vegetable oil has excellent electrical insulation properties but the viscosity of the dielectric oil 130 is high so that when the temperature rises around the heater 130, the dielectric oil existing around the heater 130 rises with the temperature of the heater 130, There is a risk of fire due to this.
  • mixed magnetic oil mixed with an environmentally-friendly insulating oil and a magnetic nanofluid is used.
  • a magnetic powder composed of the nanoparticles 150 in a liquid is stably dispersed in a colloid shape, It is a fluid added with an activator.
  • the temperature of the nanoparticles 150 is lowered and the thermal power is lowered.
  • the nanoparticles 150 of the magnetic nanofluids receive relatively little heat from the heat generating part 130, and the temperature of the nanoparticles 150 is lowered. As a result, the magnetizing force is increased.
  • the coil is powered, a magnetic field is formed around the heat generating part 130 including the coil.
  • the magnetic field formed around the heat generating part 130 attracts the low temperature nanoparticles 150 having a large magnetizing force,
  • the high-temperature nanoparticles 150 having a thermal power move to the space where the low-temperature nanoparticles 150 are present.
  • the magnetic nanofluid causes magnetic convection around the heat generating portion 130, and thus the heat generated in the heat generating portion 130 can be easily cooled.
  • FIG. 2 is a view for explaining the temperature around the heat generating portion in the cooling insulating device according to the present invention.
  • the magnetic nanofluids present in the first region A1 closest to the heat generating portion have the highest temperature because the heat generated in the heat generating portion is best transmitted
  • the third The magnetic nanofluids existing in the region A3 have a low temperature because the heat generated in the heat generating portion is relatively not transmitted
  • the second region A2 between the first region A1 and the third region A3 Has a temperature between the first region A1 and the third region A3.
  • FIG 3 is a view for explaining magnetic convection of a magnetic nanofluid according to the present invention.
  • the temperature of the magnetic nanofluids existing in the first region, the second region and the third region becomes lower from the first region to the third region.
  • the magnetic nano- The magnetic nanofluids of the first region having a low magnetizing force and a high temperature are moved upward to move away from the heat generating portion and the magnetizing force is high and the temperature is low.
  • the magnetic nanofluids in region 3 move from the bottom to the heat generating portion.
  • the mixed oil present in the housing can be cooled by heat generated in the heat generating portion by forming magnetic convection around the heat generating portion.
  • the magnetic convection effect is determined by the volumetric power of the flow field.
  • the volumetric force F of the flow field is calculated by the following equation (1) in consideration of the buoyancy and the electromagnetic force density of the Kelvin.
  • ⁇ 0 is the density of the magnetic permeability in vacuum
  • M of the nanoparticle is magnetic degree
  • is the magnetic nanofluids
  • is a coefficient of thermal expansion of the nanoparticles
  • T is the temperature of the magnetic nanofluids
  • T ref is a reference temperature of the buoyancy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The present invention relates to a cooling insulation device using a mixed insulation oil in which a magnetic nanofluid is mixed with a vegetable insulation oil as a base oil. More specifically, the cooling insulation device uses a mixed insulation oil having an eco-friendly insulation oil and a magnetic nanofluid mixed therein and thus can efficiently remove heat generated in a heating portion of an electric power device by the magnetoconvection effect. In addition, the cooling insulation device uses a mixed insulation oil of an eco-friendly insulation oil and a magnetic nanofluid, and thus can contribute to protection of the environment and effective removal of heat generated in the heating portion.

Description

자성 나노유체가 혼합된 혼합 절연유를 사용하는 냉각 절연 장치Cooling insulation device using mixed insulating oil mixed with magnetic nanofluid
본 발명은 식물성 절연유 기반으로 자성 나노유체를 혼합한 혼합 절연유를 사용하는 냉각 절연 장치에 관한 것으로, 보다 구체적으로 친환경 절연유와 자성 나노유체를 혼합한 혼합 절연유를 사용함으로써 전력기기의 발열부에서 발생하는 열을 자기 대류 효과로 효율적으로 냉각할 수 있으며, 친환경 절연유와 자성 나노유체의 혼합 절연유를 사용함으로써 환경 보호에 도움을 주면서 발열부에서 발생하는 열을 효과적으로 냉각할 수 있다. More particularly, the present invention relates to a cooling insulation device using a mixed insulation oil in which a magnetic nanofluid is mixed with a vegetable insulation oil, and more particularly, to a cooling insulation device using a mixed insulation oil in which an environment- The heat can be efficiently cooled by the magnetic convection effect. By using the mixture of the environment-friendly insulating fluid and the magnetic nanofluid, the heat generated in the heat generating portion can be effectively cooled while helping to protect the environment.
나노분말을 분산시킨 유체의 열전도도 향상 경향은 1995년 미국 아르곤 연구소에 의해 보고되었으며, 이러한 유체를 나노유체라 한다. 열전도도가 월등한 고체 나노분말을 이용하여 나노유체를 제조할 경우, 기본 유체 대비 열전도도가 크게 증가하여 열전달 성능이 향상되는 특성을 나타낸다. 이러한 특성에 의해 나노유체는 열교환기, 차량의 냉각기, 전기자동차의 배터리, 원자로의 냉각시스템 등 전기, 전자, 기계분야 등 냉각을 위해 과도한 에너지 소비가 필요한 곳에 이용되고 있다. The tendency to improve the thermal conductivity of a fluid in which nanoparticles were dispersed was reported by the Argon Research Institute in 1995, and these fluids are called nanofluids. When a nanofluid is prepared by using a solid nano powder having a superior thermal conductivity, the thermal conductivity of the basic fluid is greatly increased and the heat transfer performance is improved. With these characteristics, nanofluids are being used in places where excessive energy consumption is required for cooling, such as heat exchangers, coolers in vehicles, batteries in electric vehicles, and cooling systems in nuclear reactors.
초기에 알려진 나노유체는 Al2O3, CuO, Cu등의 금속 및 금속산화물 나노입자를 수용액 함유 기본 유체에 분산하여 제조되었다. 이때, 첨가되는 나노입자의 부피비, 나노유체의 온도가 높을수록 열전도도 향상 폭이 커지는 경향을 보였다. 또한, 나노분말 자체의 열전도도가 높을수록 더 높은 열전도도 향상 경향을 보였다.Early known nanofluids were prepared by dispersing metals such as Al 2 O 3 , CuO, Cu, and metal oxide nanoparticles in a basic fluid containing an aqueous solution. At this time, the higher the volume ratio of the added nanoparticles and the temperature of the nanofluid, the greater the improvement in the thermal conductivity. Also, the higher the thermal conductivity of the nano powder itself, the higher the thermal conductivity.
그러나 이러한 금속 산화물은 높은 비중으로 인해 유체의 흐름이 없을 때 가라앉기 쉽고 강성이 높아 시스템을 가동했을 때 시스템 내부에 손상을 입힐 수 있다. 또한, 열전도도가 높은 금속 나노입자의 안정적인 분산을 위해 매우 많은 양의 분산제 또는 계면 활성제가 사용되는 한계가 있으며, 물 등 극성을 갖는 용매에 분산 가능한 나노입자가 제한되어 있어 활용분야에 적합한 특성을 갖는 나노유체를 제조하는 것에 어려움이 있다. However, these metal oxides tend to sink when there is no flow of fluid due to their high specific gravity, and they have high rigidity, which can cause damage to the inside of the system when the system is operated. In addition, there is a limit in that a very large amount of dispersant or surfactant can be used for stable dispersion of metal nanoparticles having high thermal conductivity, and nanoparticles dispersible in polar solvents such as water are limited. There is a difficulty in manufacturing a nanofluid.
한편, 종래에는 전기, 전자, 기계분야 등 냉각을 위해 정제 광유, 알킬벤젠, 폴리부덴, 알킬나프탈렌, 알킬디페닐에탄, 실리콘유, 에스테르유 등의 다양한 종류의 절연유가 이용되고 있다. 전기 절연유로 염소계 유기 화합물의 일종인 PCBs가 많이 사용되었으나, 생식기관, 내분비계 장애 등을 일으키는 원인물질로 알려져 1970년대 후반부터 국제적으로 사용을 규제하고 있다. On the other hand, various kinds of insulating oils such as refined mineral oils, alkylbenzenes, polybutenes, alkylnaphthalenes, alkyldiphenyl ethanes, silicone oils and ester oils have been conventionally used for cooling in electric, electronic and mechanical fields. PCBs, a kind of chlorinated organic compounds, have been widely used as electric insulating oil, but they are known to cause reproductive or endocrine disorders and have been regulated for international use since the late 1970s.
최근 개발되는 전력기기에 대하여 환경 기후 협약에 따른 규약의 대응으로 인체 및 자연환경에 친화적이어야 하며, 경제성의 향상, 소형화에 대한 요구가 증가되고 있다. 종래의 변압기 오일에 있어서 석유를 기초로 한 광유는 PCB 성분으로 인하여 인체 유해성 및 환경오염 문제가 매우 심각하고 인화점이 150℃ 정도로 낮아 과부하시 폭발의 위험성을 내포하고 있으며, 실리콘유는 동점도가 높아 변압기 내부에서 순환이 양호하기 못해 냉각 효율이 떨어지는 단점이 있었다. Recently developed electric devices are required to be friendly to the human body and natural environment as a countermeasure of codes according to the environmental climate agreement, and the demand for improvement in economy and miniaturization is increasing. In conventional transformer oil, petroleum-based mineral oil has a serious problem of human harm and environmental pollution due to the PCB component and its flash point is low as 150 ℃, which implies the danger of explosion when overloaded. Silicone oil has a high kinematic viscosity, There is a disadvantage in that the cooling efficiency is poor because the circulation inside is not good.
또한, 유입변압기에 있어서 유분출 고장은 도심지에 있어서 화재로 인한 인명사고와 2차적인 문제를 유발시킬 수 있으며, 연소 시 발생하는 탄소가스 증가 및 대기오염, 수질오염 등의 2차적인 환경오염은 심각한 문제가 아닐 수 없다. 또한, 석유 자원 고갈에 따라 절연유의 공급이 불안해지고, 수급 불안정에 따른 원가 상승을 야기한다는 문제점이 있다. In addition, in the inflow transformer, the occurrence of oil spill failure can cause a fire accident and a secondary problem in urban areas. Secondary environmental pollution such as increase of carbon gas generated during combustion and air pollution and water pollution This is a serious problem. In addition, there is a problem that supply of insulating oil becomes unstable due to depletion of petroleum resources, resulting in cost increase due to unstable supply and demand.
본 발명이 이루고자 하는 목적은 종래 나노 유체를 이용한 절연장치가 가지는 문제점을 해결하기 위한 것으로, 본 발명이 이루고자 하는 목적은 친환경 절연유와 자성 나노유체를 혼합하여 전력기기의 발열부에서 발생하는 열을 자기대류효과로 효율적으로 냉각할 수 있는 냉각 절연장치를 제공하는 것이다.SUMMARY OF THE INVENTION The object of the present invention is to solve the problems of conventional insulators using nanofluids, and it is an object of the present invention to provide a method and apparatus for mixing a magnetic oil and a magnetic nanofluid, And to provide a cooling insulation device capable of cooling efficiently by a convection effect.
본 발명이 이루고자 하는 다른 목적은 친환경 절연유와 자성 나노유체의 혼합 절연유를 사용하여 환경 보호에 도움을 줄 수 있는 냉각 절연장치를 제공하는 것이다.Another object of the present invention is to provide a cooling insulation device which can help to protect the environment by using a mixture of insulating oil of environmentally friendly insulating fluid and magnetic nano fluid.
본 발명의 목적을 달성하기 위하여, 본 발명에 따른 냉각 절연장치는 하우징부와, 하우징부 내부에 배치되는, 코일을 구비하며 코일로 인가되는 전원에 의해 열을 발생하는 발열부와, 하우징부 내부에 채워지는, 친환경 절연유와 자성 나노유체의 혼합물로 이루어진 혼합 절연유를 포함하는 것을 특징으로 한다.In order to achieve the object of the present invention, a cooling and insulating device according to the present invention comprises a housing part, a heat generating part disposed inside the housing part and having a coil and generating heat by a power source applied to the coil, And a mixed insulating oil composed of a mixture of an environmentally-friendly insulating oil and a magnetic nanofluid.
여기서 자성 나노입자는 부력과 켈빈의 전자기력 밀도에 따라 발열부를 중심으로 자기 대류되는 것을 특징으로 한다.Here, the magnetic nanoparticles are characterized by magnetic convection about the heat generating portion depending on the buoyancy and the density of the electromagnetic force of the Kelvin.
본 발명에 따른 냉각 절연장치는 다음과 같은 효과를 가진다.The cooling insulation device according to the present invention has the following effects.
본 발명에 따른 냉각 절연장치는 친환경 절연유와 자성 나노유체를 혼합한 혼합 절연유를 사용함으로써, 전력기기의 발열부에서 발생하는 열을 자기대류효과로 효율적으로 냉각할 수 있다.The cooling insulation device according to the present invention can efficiently cool the heat generated in the heat generating portion of the power device by the magnetic convection effect by using the mixed insulating oil obtained by mixing the environmentally friendly insulating oil and the magnetic nanofluid.
또한 본 발명에 따른 냉각 절연장치는 친환경 절연유와 자성 나노유체의 혼합 절연유를 사용함으로써, 환경 보호에 도움을 주면서 발열부에서 발생하는 열을 효과적으로 냉각할 수 있다.Further, the cooling insulation device according to the present invention can effectively cool the heat generated in the heat generating portion while helping to protect the environment by using the mixed insulating oil of the environmentally-friendly insulating oil and the magnetic nanofluid.
도 1은 본 발명에 따른 냉각 절연장치를 설명하기 위한 도면이다.1 is a view for explaining a cooling and insulating device according to the present invention.
도 2는 본 발명에 따른 냉각 절연장치에서 발열부을 중심으로 발열부 주변의 온도를 설명하기 위한 도면이다.FIG. 2 is a view for explaining the temperature around the heat generating portion in the cooling insulating device according to the present invention. FIG.
도 3은 본 발명에 따라 자성 나노유체의 자기 대류를 설명하기 위한 도면이다.3 is a view for explaining magnetic convection of a magnetic nanofluid according to the present invention.
본 발명에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다.It is noted that the technical terms used in the present invention are used only to describe specific embodiments and are not intended to limit the present invention. In addition, the technical terms used in the present invention should be construed in a sense generally understood by a person having ordinary skill in the art to which the present invention belongs, unless otherwise defined in the present invention, Should not be construed to mean, or be interpreted in an excessively reduced sense. In addition, when a technical term used in the present invention is an erroneous technical term that does not accurately express the concept of the present invention, it should be understood that technical terms can be understood by those skilled in the art.
또한, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 본 발명에서, "구성된다" 또는 "포함한다" 등의 용어는 발명에 기재된 여러 구성 요소들, 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Furthermore, the singular expressions used in the present invention include plural expressions unless the context clearly dictates otherwise. In the present invention, terms such as "comprising" or "comprising" and the like should not be construed as encompassing various elements or various steps of the invention, Or may further include additional components or steps.
또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.It is to be noted that the accompanying drawings are only for the purpose of facilitating understanding of the present invention, and should not be construed as limiting the scope of the present invention with reference to the accompanying drawings.
이하 첨부한 도면을 참고로 본 발명에 따른 냉각 절연장치에 대해 보다 구체적으로 살펴본다.Hereinafter, a cooling and insulating apparatus according to the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 냉각 절연장치를 설명하기 위한 도면이다.1 is a view for explaining a cooling and insulating device according to the present invention.
도 1을 참고로 보다 구체적으로 살펴보면, 냉각 절연장치의 하우징(110) 내부에는 코일을 포함한 발열부(130)가 배치되어 있는데, 발열부(130)는 전원부(120)로부터 제공되는 전원을 옴손실시켜 열을 발생하게 된다. 여기서 하우징(110)에는 전력기기에서 열을 발생하는 발열부(130)가 밀봉되어 있는데, 하우징(110) 내부에는 발열부(130)에 흐르는 전원을 외부로 절연시키기 위한 절연유가 포함되어 있다.1, a heating unit 130 including a coil is disposed inside a housing 110 of a cooling and insulating apparatus. The heating unit 130 is connected to the power supply unit 120, So that heat is generated. Here, the housing 110 is sealed with a heat generating part 130 for generating heat in the power device. Inside the housing 110, insulating oil for inserting power from the heat generating part 130 to the outside is included.
본 발명에서는 기존의 석유를 기초로 한 절연유와 대별될 수 있는 생분해성 친환경 절연유로 채워져 있는데, 친환경 절연유의 일 예로 식물성 오일 등이 사용될 수 있다. 식물성 오일은 우수한 전기적 절연 성질을 지니고 있으나, 점성이 높아 발열부(130) 주변에서 온도가 상승하는 경우 발열부(130) 주변에 존재하는 절연유는 발열부(130)의 온도와 함께 상승하게 되며, 이로 인하여 화재 등이 발생할 위험을 가진다.The present invention is filled with biodegradable environmentally-friendly insulating oil which can be classified into existing petroleum-based insulating oil. Vegetable oil, for example, can be used as an environment-friendly insulating oil. The vegetable oil has excellent electrical insulation properties but the viscosity of the dielectric oil 130 is high so that when the temperature rises around the heater 130, the dielectric oil existing around the heater 130 rises with the temperature of the heater 130, There is a risk of fire due to this.
본 발명에서는 친환경 절연유와 자성 나노유체를 혼합한 혼합 절연유를 사용하는데, 여기서 자성 나노유체는 액체 속에 나노입자(150)로 이루어진 자성분말을 콜로이드 모양으로 안정, 분산시킨 다음 침전이나 응집이 생기지 않도록 계면활성제를 첨가한 유체이다.In the present invention, mixed magnetic oil mixed with an environmentally-friendly insulating oil and a magnetic nanofluid is used. In the magnetic nanofluid, a magnetic powder composed of the nanoparticles 150 in a liquid is stably dispersed in a colloid shape, It is a fluid added with an activator.
발열부(130) 주변에 위치하는 자성 나노유체의 나노입자(150)는 발열부(130)로부터 열을 전달받은 경우 같이 온도가 올라가 자화력이 낮아지게 되며, 발열부(130)로부터 멀리 떨어져 있는 자성 나노유체의 나노입자(150)는 발열부(130)로부터 상대적으로 열을 적게 전달받아 온도가 내려가며 이로 인하여 자화력이 커지게 된다. 코일에 전원이 인가되는 경우 코일을 포함한 발열부(130) 주변에서는 자기장이 형성되며, 발열부(130) 주변에서 형성된 자기장은 큰 자화력을 가지는 낮은 온도의 나노입자(150)는 끌어당기고 작은 자화력을 가지는 높은 온도의 나노입자(150)는 낮은 온도의 나노입자(150)가 존재하는 공간으로 이동하게 된다. When the nanoparticles 150 of the magnetic nanofluids located in the vicinity of the heat generating unit 130 receive heat from the heat generating unit 130, the temperature of the nanoparticles 150 is lowered and the thermal power is lowered. The nanoparticles 150 of the magnetic nanofluids receive relatively little heat from the heat generating part 130, and the temperature of the nanoparticles 150 is lowered. As a result, the magnetizing force is increased. When the coil is powered, a magnetic field is formed around the heat generating part 130 including the coil. The magnetic field formed around the heat generating part 130 attracts the low temperature nanoparticles 150 having a large magnetizing force, The high-temperature nanoparticles 150 having a thermal power move to the space where the low-temperature nanoparticles 150 are present.
즉, 발열부(130)를 중심으로 자성 나노유체는 자기대류를 일으키며, 이로 인하여 발열부(130)에서 발생한 열은 용이하게 냉각될 수 있다.That is, the magnetic nanofluid causes magnetic convection around the heat generating portion 130, and thus the heat generated in the heat generating portion 130 can be easily cooled.
도 2는 본 발명에 따른 냉각 절연장치에서 발열부을 중심으로 발열부 주변의 온도를 설명하기 위한 도면이다.FIG. 2 is a view for explaining the temperature around the heat generating portion in the cooling insulating device according to the present invention. FIG.
도 2에 도시되어 있는 바와 같이, 발열부와 가장 가까운 제1 영역(A1)에 존재하는 자성 나노유체는 발열부에서 발생하는 열이 가장 잘 전달되어 가장 온도가 높으며, 발열부에서 가장 먼 제3 영역(A3)에 존재하는 자성 나노유체는 발열부에서 발생하는 열이 상대적으로 전달되지 않아 온도가 낮으며, 제1 영역(A1)과 제3 영역(A3) 사이에 존재하는 제2영역(A2)에 존재하는 자성 나노유체는 제1 영역(A1)과 제3 영역(A3) 사이의 온도를 가지게 된다.As shown in FIG. 2, the magnetic nanofluids present in the first region A1 closest to the heat generating portion have the highest temperature because the heat generated in the heat generating portion is best transmitted, and the third The magnetic nanofluids existing in the region A3 have a low temperature because the heat generated in the heat generating portion is relatively not transmitted and the second region A2 between the first region A1 and the third region A3 Has a temperature between the first region A1 and the third region A3.
도 3은 본 발명에 따라 자성 나노유체의 자기 대류를 설명하기 위한 도면이다.3 is a view for explaining magnetic convection of a magnetic nanofluid according to the present invention.
도 3에 도시되어 있는 바와 같이, 제1 영역, 제2 영역 및 제3 영역에 존재하는 자성 나노유체의 온도는 제1 영역에서 제3 영역으로 갈수록 낮아지는데, 본 발명에서는 식물성 절연유와 함께 자성 나노유체를 혼합한 혼합 절연유를 사용함으로써, 발열부(130)에서 발생한 자기장으로 자화력이 낮고 온도가 높은 제1 영역의 자성 나노유체는 위로 상승하여 발열부로부터 멀어지고 자화력이 높고 온도가 낮은 제3 영역의 자성 나노유체는 하단에서 발열부로 이동하게 된다. As shown in FIG. 3, the temperature of the magnetic nanofluids existing in the first region, the second region and the third region becomes lower from the first region to the third region. In the present invention, the magnetic nano- The magnetic nanofluids of the first region having a low magnetizing force and a high temperature are moved upward to move away from the heat generating portion and the magnetizing force is high and the temperature is low. The magnetic nanofluids in region 3 move from the bottom to the heat generating portion.
이로 인하여 하우징 내부에 존재하는 혼합 절연유는 발열부를 중심으로 자기대류가 형성되어 발열부에서 발생하는 열을 냉각시킬 수 있게 된다. Accordingly, the mixed oil present in the housing can be cooled by heat generated in the heat generating portion by forming magnetic convection around the heat generating portion.
여기서 자기 대류 효과는 유동장의 체적력에 의해 결정되는데, 유동장의 체적력(F)은 부력과 더불어 켈빈의 전자기력 밀도를 고려하여 아래의 수학식(1)과 같이 계산된다.Here, the magnetic convection effect is determined by the volumetric power of the flow field. The volumetric force F of the flow field is calculated by the following equation (1) in consideration of the buoyancy and the electromagnetic force density of the Kelvin.
[수학식 1][Equation 1]
Figure PCTKR2018013260-appb-I000001
Figure PCTKR2018013260-appb-I000001
여기서 μ0는 진공 중의 투자율, 나노입자의 M은 자화 정도, ρ는 자성 나노유체의 밀도, β는 나노 입자의 열 팽창계수, T는 자성 나노유체의 온도, Tref는 부력의 기준온도, g는 중력을 나타낸다. Where μ 0 is the density of the magnetic permeability in vacuum, M of the nanoparticle is magnetic degree, ρ is the magnetic nanofluids, β is a coefficient of thermal expansion of the nanoparticles, T is the temperature of the magnetic nanofluids, T ref is a reference temperature of the buoyancy, g Represents gravity.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

Claims (2)

  1. 하우징부;A housing part;
    상기 하우징부 내부에 배치되는, 코일을 구비하며 상기 코일로 인가되는 전원에 의해 열을 발생하는 발열부; 및A heating unit disposed inside the housing unit and having a coil and generating heat by a power source applied to the coil; And
    상기 하우징부 내부에 채워지는, 친환경 절연유와 자성 나노유체의 혼합물로 이루어진 혼합 절연유를 포함하는 것을 특징으로 하는 냉각 절연 장치. And a mixed insulating oil made of a mixture of an environmentally-friendly insulating oil and a magnetic nanofluid, which is filled in the inside of the housing part.
  2. 제 1 항에 있어서, The method according to claim 1,
    상기 자성 나노입자는 부력과 켈빈의 전자기력 밀도에 따라 상기 발열부를 중심으로 자기 대류되는 것을 특징으로 하는 냉각 절연 장치.Wherein the magnetic nanoparticles are self-convected around the heating portion according to the buoyancy and the density of electromagnetic force of the Kelvin.
PCT/KR2018/013260 2017-12-22 2018-11-02 Cooling insulation device using mixed insulation oil having magnetic nanofluid mixed therein WO2019124725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170178425A KR20190076546A (en) 2017-12-22 2017-12-22 Cooling isolating apparatus using magnetic nano-fluid
KR10-2017-0178425 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019124725A1 true WO2019124725A1 (en) 2019-06-27

Family

ID=66993645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013260 WO2019124725A1 (en) 2017-12-22 2018-11-02 Cooling insulation device using mixed insulation oil having magnetic nanofluid mixed therein

Country Status (2)

Country Link
KR (1) KR20190076546A (en)
WO (1) WO2019124725A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010021785A (en) * 1997-07-14 2001-03-15 추후제출 Colloidal Insulating and Cooling Fluid
KR20110054694A (en) * 2009-11-18 2011-05-25 경상대학교산학협력단 Insulating oil for eco-environment and manufacturing method thereof
KR20130123768A (en) * 2012-05-03 2013-11-13 한국생산기술연구원 Enviromentally affinitive vegetable insulating oil composition
KR20150125444A (en) * 2014-04-30 2015-11-09 한국생산기술연구원 Vegetable dialectic fluid, method therof and electric power machine comprising the same
KR20170043043A (en) * 2015-10-12 2017-04-20 현대자동차주식회사 Nanofluid having electric insulation for cooling and method of preparing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010021785A (en) * 1997-07-14 2001-03-15 추후제출 Colloidal Insulating and Cooling Fluid
KR20110054694A (en) * 2009-11-18 2011-05-25 경상대학교산학협력단 Insulating oil for eco-environment and manufacturing method thereof
KR20130123768A (en) * 2012-05-03 2013-11-13 한국생산기술연구원 Enviromentally affinitive vegetable insulating oil composition
KR20150125444A (en) * 2014-04-30 2015-11-09 한국생산기술연구원 Vegetable dialectic fluid, method therof and electric power machine comprising the same
KR20170043043A (en) * 2015-10-12 2017-04-20 현대자동차주식회사 Nanofluid having electric insulation for cooling and method of preparing same

Also Published As

Publication number Publication date
KR20190076546A (en) 2019-07-02

Similar Documents

Publication Publication Date Title
EP3741824B1 (en) Immersion-type heat-dissipation cooling liquid for power lithium battery and preparation method therefor
JP4797325B2 (en) Coolant and cooling system
KR20130054701A (en) Electric equipment in which heat being dissipated through superficial temperature maintaining member and exchanging fluid
RU2229181C2 (en) Colloid insulating and cooling liquids
CN102637542B (en) Radiator based on circular radiating of liquid metal or alloy thereof for high-capacity direct-current circuit breaker
WO2017083383A1 (en) Floating liquid cooled heat transfer solution
CN108718509A (en) A kind of controller for electric vehicle having high heat dispersion
CN209823474U (en) Wireless charging equipment
CN112615079A (en) Flame-proof battery pack
WO2019124725A1 (en) Cooling insulation device using mixed insulation oil having magnetic nanofluid mixed therein
CN208798300U (en) A kind of liquid metal heat radiation device and its charging pile based on charging pile
CN106385787A (en) Immersion type electronic product and electronic equipment heat radiation system
CN206774355U (en) A kind of silicone oil wet type transformer box body structure
CN108183094A (en) A kind of combined heat radiating system
CN111787760B (en) Heat dissipation device, control method of heat dissipation device and electronic equipment
US20100175905A1 (en) Cooling of high voltage devices
CN204045351U (en) A kind of oil-filled transformer
Esarte et al. Nanofluid as advanced cooling technology. Success stories
CN212461330U (en) Dry-type transformer
WO2013089492A1 (en) Heat-dissipating module for electronic component, and heat-dissipating liquid used therein
CN206378805U (en) Computer installation and its CPU heat abstractors
CN215770784U (en) Explosion-proof device of oil-immersed power transformer
CN219105854U (en) Transformer with good insulating property for mobile phone charger
CN106486270A (en) Rectifier transformer
CN204144016U (en) A kind of environment-friendly type oil immersion-type distribution transformer based on high burning-point vegetable oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890643

Country of ref document: EP

Kind code of ref document: A1