WO2019124653A1 - Production method of oxygen-releasing hydrogel for bioinjection and biomedical use thereof - Google Patents

Production method of oxygen-releasing hydrogel for bioinjection and biomedical use thereof Download PDF

Info

Publication number
WO2019124653A1
WO2019124653A1 PCT/KR2018/006346 KR2018006346W WO2019124653A1 WO 2019124653 A1 WO2019124653 A1 WO 2019124653A1 KR 2018006346 W KR2018006346 W KR 2018006346W WO 2019124653 A1 WO2019124653 A1 WO 2019124653A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
oxygen
calcium
gum
releasing
Prior art date
Application number
PCT/KR2018/006346
Other languages
French (fr)
Korean (ko)
Inventor
박경민
강전일
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Publication of WO2019124653A1 publication Critical patent/WO2019124653A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0015Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0031Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/432Inhibitors, antagonists
    • A61L2300/434Inhibitors, antagonists of enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding

Definitions

  • the present invention relates to a method for producing a bioinjected oxygen-releasing hydrogel using calcium peroxide and a biomedical use thereof, and more particularly to a method for producing a bioinjected oxygen-releasing hydrogel using calcium peroxide. More particularly, the in situ bridged hydrogel is used in a previously reported method for preparing alginate- The present invention relates to a new type of injection-type polymer hydrogel which can be produced through ionic crosslinking of divalent cations using calcium peroxide and capable of releasing high-concentration oxygen in a formed hydrogel matrix.
  • the present invention can be manufactured by a simple method using a natural polymer, alginate, without chemical modification of a polymer, compared with a conventional method of manufacturing a bioinjectable hydrogel, and the physical / chemical / There is an advantage that the characteristic can be easily controlled.
  • Polymer hydrogels composed of a three-dimensional network of hydrophilic polymers are used in a variety of biomedical applications due to their biocompatibility, high water content, good permeability of nutrients and metabolites, structural similarity with natural tissues and multi-tunable properties Has been widely used.
  • in situ bridged hydrogels have been extensively studied as drug / cell carriers, tissue fillers, or tissue engineering supports based on minimally invasive techniques.
  • These in situ bridged hydrogels can be prepared using natural and synthetic polymers, and hydrogels can be formed through various chemical and physical crosslinks.
  • Alginate is an anionic polysaccharide derived from brown algae, and is excellent in biocompatibility and biodegradability and has been applied in various fields in biomedical applications. Ionotropic crosslinking occurs in the presence of divalent cations such as calcium (Ca 2+ ), magnesium (Mg 2+ ), or zinc (Zn 2+ ) ions in the alginate polymer main chain to form a three-dimensional hydrogel network
  • divalent cations such as calcium (Ca 2+ ), magnesium (Mg 2+ ), or zinc (Zn 2+ ) ions
  • CaCO 3 calcium carbonate
  • CaCl 2 calcium chloride
  • ZnCO 3 zinc carbonate
  • Oxygen acts as a metabolic substrate and a signal molecule, which plays an important role in homeostasis maintenance and wound healing.
  • hyperbaric oxygen promotes cell proliferation by temporarily increasing oxygen partial pressure in the cell, increasing reactive oxygen species, and promoting collagen synthesis and processing by oxygen-based lysyl oxidase Promotes angiogenesis. It also promotes angiogenesis and wound healing by causing secretion of growth factors that promote angiogenesis or by allowing stem cells to migrate from the bone marrow.
  • several technologies are recently being developed to transport oxygen.
  • HBOT hyperbaric oxygen therapy
  • PFC perfluorocarbon
  • the present invention meets the above-mentioned conventional demands and reports new researches that have not been reported so far.
  • the present invention provides a method for producing a sustained release oxygen-containing injection-type hydrogel which can easily control biological characteristics, and its various biomedical uses.
  • the present invention relates to a method for producing an ionic cross-linking agent, wherein the natural alginate polymer composed of mannuronic acid and glutaric acid, which is not chemically modified, Based cross-linked polymer hydrogel that produces a crosslinked alginate-based hydrogel and at the same time releases a high concentration of oxygen by decomposition of calcium peroxide in an aqueous solution.
  • the bioinjection type oxygen release which can easily control the physical / chemical / biological properties of hydrogels such as hydrogel mechanical strength, hydrogen peroxide release, oxygen release behavior and the like by controlling composition and concentration of alginate, calcium peroxide and catalase A method for producing a hydrogel is provided.
  • the present invention also provides an implant material for tissue regeneration and filling comprising an alginate-based in situ crosslinked oxygen releasing hydrogel.
  • the present invention also provides a material for tissue adhesion and hemostasis comprising an alginate-based in situ crosslinked oxygen releasing hydrogel.
  • the present invention also provides a carrier for a physiologically active substance or drug carrier, which comprises an alginate-based in situ crosslinked oxygen releasing hydrogel.
  • the new type of in situ crosslinked hydrogel according to the present invention is characterized in that hydrogels formed by calcium ions generated by the decomposition of calcium peroxide and the release behavior of high concentration oxygen generated in the hydrogel can be controlled.
  • the present invention has the novelty of inventing a new alginate hydrogel using calcium peroxide, which has not been reported in studies on the preparation of hydrogels using divalent cations, and can overcome the limitations of oxygen generating hydrogels Based on excellent biocompatibility, various biomedical applications (eg tissue regeneration, artificial tissue preparation, wound healing material, tissue adhesive material, drug delivery system, etc.) are possible.
  • various biomedical applications eg tissue regeneration, artificial tissue preparation, wound healing material, tissue adhesive material, drug delivery system, etc.
  • FIG. 1 is a schematic view showing the formation of a hydrogel for generating oxygen based on alginate.
  • FIG. 2 is an image of decomposition of calcium peroxide and formation of a hydrogel according to a buffer solution.
  • FIG. 3 is a graph showing the hydrogel formation using calcium peroxide and the mechanical strength varying with the concentration of alginate and calcium peroxide (A: alginate, C: calcium peroxide).
  • FIG. 4 is a graph showing hydrogen peroxide decomposition behavior using catalase (A: alginate, C: calcium peroxide).
  • FIG. 5 is a graph showing the oxygen release behavior with addition of calcium oxide concentration and catalase (A: alginate, C: calcium peroxide).
  • Fig. 6 is a diagram showing cell fitness of a hydrogel (A: alginate, C: calcium peroxide).
  • the present inventors have found that a new type of in situ formed hydrogel using calcium peroxide is produced, and a high concentration of oxygen (more than 80%) is generated in such a hydrogel, 25% or more) continued for 48 hours.
  • a polymer hydrogel material capable of releasing oxygen at a high concentration in a simple manner without chemical modification of the polymer can be manufactured, and physical / chemical / biological properties can be easily controlled.
  • the present invention employs calcium peroxide for natural / synthetic polymers with anions to induce ionic interactions and thereby produce oxygen-releasing in situ hydrogels.
  • alginate having a gluconic acid monomer unit having an anion is a natural polymer without chemical modification.
  • the polymer main chain may be selected from the group consisting of Arabic Gum, Tamarind Gum, Karaya Gum, Guar Gum, Locust Bean Gum, Quince Seed Gum, Xanthan Gum, Cyclodextrin, Casein, Tara Gum, Tragacanth Gum, Glucomannan, Glucosamine, Gum Ghatti, Furcelleran, Pullulan, Gellan Gum, Pectin, Agar, Alginate, Carrageenan, Dextrin, Poly Sodium alginate, sodium polyacrylate, propylene glycol alginate, methyl cellulose, sodium carboxymethylcellulose, calcium carboxymethylcellulose, sodium carboxymethyl starch, ), Sodium alginate (Sodiu m Alginate, and sodium caseinate.
  • the present invention is not limited thereto.
  • the oxygen-releasing hydrogel can be produced by in situ crosslinking of a polysaccharide main chain having an anionic glucuronic acid unit by inducing ionic interaction by release of calcium ions in a solution containing calcium peroxide have.
  • DPBS which is a commonly used buffer solution
  • DPBS does not form a hydrogel because calcium ionization is limited
  • Tris-HCl buffer solution A hydrogel is formed by utilizing the fact that calcium ions are released. This was also applicable to calcium hydroxide with low solubility in water to form a hydrogel.
  • the present invention also provides a tissue regeneration, tissue engineering support and implant implant material comprising an oxygen-releasing in situ crosslinked hydrogel.
  • These materials include cartilage regeneration, bone regeneration, alveolar regeneration, skin regeneration, cardiac tissue regeneration, artificial intraocular lens, spinal nerve A regeneration and augmentation, a barrier for adhesion, a urinary incontinence treatment, a filler for wrinkle removal, a burn A wound dressing, a tissue augmentation, and an intervertebral disc treatment.
  • the present invention is not limited thereto.
  • the present invention also provides a material for tissue adhesion and hemostasis comprising the oxygen-releasing in situ crosslinked hydrogel.
  • the material for hemostasis includes at least one of neurosurgical surgery including a vascular surgery area, orthopedic surgery including adhesion of bone, hemostasis of a laceration patient, suture of a femoral artery, cataract incision suture, cartilage healing, skin joining, Gastrointestinal tract differentiation, and tendon / ligament healing.
  • neurosurgical surgery including a vascular surgery area
  • orthopedic surgery including adhesion of bone, hemostasis of a laceration patient, suture of a femoral artery, cataract incision suture, cartilage healing, skin joining, Gastrointestinal tract differentiation, and tendon / ligament healing.
  • orthopedic surgery including adhesion of bone, hemostasis of a laceration patient, suture of a femoral artery, cataract incision suture, cartilage healing, skin joining, Gastrointestinal tract differentiation, and tendon / ligament healing.
  • the present invention is not limited thereto.
  • the present invention also provides a carrier for a physiologically active substance or a drug delivery carrier comprising the oxygen-releasing in situ crosslinked hydrogel.
  • the physiologically active substance or drug may be any one or more selected from the group consisting of a peptide or protein drug, an antibacterial agent, an anti-cancer agent, and an anti-inflammatory agent, but is not limited thereto.
  • the peptide or protein drug may be a fibroblast growth factor (FGF), a vascular endothelial growth factor (VEGF), a transforming growth factor (TGF), a bone morphogenetic factor protein, BMP), human growth hormone (hGH), porcine growth hormone (pGH), granulocyte colony-stimulating factor (G-CSF), erythropoietin (EPO) , Macrophage colony-stimulating factor (M-CSF), tumor necrosis factor (TNF), epidermal growth factor (EGF), platelet-derived growth factor , Interferon- ⁇ , ⁇ , ⁇ , interleukin-2 (IL-2), calcitonin, nerve growth factor (NGF), growth hormone Factor, angiotensin, luteinizing hormone releasing hormone (luteinizin (LHRH agonist), insulin, thyrotropin-releasing hormone (TRH), angiostatin, endostatin, somatostatin, glucagon, endorphin, But
  • said antimicrobial agent is selected from the group consisting of minocycline, tetracycline, oproxacin, phosphomycin, mergein, proproxacin, ampicillin, penicillin, doxycycline, thienamycin, cephalosporin, noradocin, gentamicin, neomycin, It may be advantageous to use a compound selected from the group consisting of paromomycin, micronomycin, amikacin, tobramycin, dibecasin, cytotoxic, sepracur, erythromycin, cyprofloxacin, levofloxacin, enoxasin, vancomycin, imipenem, foscidic acid and mixtures thereof , But the present invention is not limited thereto.
  • the anticancer agent is selected from the group consisting of paclitaxel, texothier, adriamycin, endostatin, angiostatin, mitomycin, bleomycin, cispletin, carboplatin, doxorubicin, daunorubicin, dirubicin, 5-fluorouracil, methotrexate, Actinomycin-D, and mixtures thereof, but is not limited thereto.
  • the anti-inflammatory agent is selected from the group consisting of acetaminophen, aspirin, ibuprofen, diclofenac, indomethacin, piroxycam, fenoprofen, plubiprofen, ketoprofen, naproxen, Camphor, tenoxicam, and mixtures thereof, but is not limited thereto.
  • Alginic acid sodium salt, calcium peroxide (CaO 2 ), calcium hydroxide (Ca (OH) 2 ) and catalase were purchased from Sigma Aldrich (St. Louis, Mo., USA) , UltraPure TM 1M Tris-HCI (pH 8.0) buffer was purchased from Invitrogen (Carlsbad, CA, USA).
  • DMEM penicillin-streptomycin
  • P / S penicillin-streptomycin
  • trypsin / EDTA and DPBS
  • DPBS Dibbecco's modified phosphate buffered saline
  • NBCS newborn fetal serum Calf Serum
  • the hydrogel was prepared by mixing a solution of the alginate polymer dissolved in DPBS at 37 DEG C and calcium peroxide (0 to 0.75 wt%).
  • the type of solvent was changed to DPBS (250 ⁇ l) or Tris-HCl (250 ⁇ l) under a constant composition of Alginate (2 wt%) and CaO 2 (0.75 wt%).
  • the mechanical strength of the alginate hydrogel was measured using a rheometer, and the change in mechanical strength was evaluated by adjusting the concentrations of alginate and calcium peroxide.
  • the concentration of alginate was varied to 0.5 wt%, 1.0 wt%, 1.5 wt%, 2.0 wt%, 2.5 wt%, and 3.0 wt% under a constant composition of the concentration of calcium peroxide (0.3 wt%).
  • the mechanical strength of the hydrogel can be controlled by controlling the concentration of the alginate, and the range was 4 to 1600 Pa.
  • the concentration of calcium peroxide was changed to 0 wt%, 0.15 wt%, 0.3 wt%, 0.45 wt%, 0.6 wt%, 0.75 wt%, and 0.9 wt% under a constant composition of alginate concentration (2.0 wt%). It was confirmed that the mechanical strength of the hydrogel was controllable by controlling the concentration of calcium peroxide, and the range was from 200 to 4000 Pa. On the other hand, when the concentration of calcium peroxide was set to 0 wt%, the hydrogel could not be formed. This is because there is no calcium peroxide and the formation of ionic bond between the calcium ion and the carboxylate functional group of glutaric acid is not achieved.
  • the concentration of calcium peroxide was changed to 0% by weight, 0.15% by weight, 0.45% by weight and 0.75% by weight under a constant composition of alginate (2.0% by weight) %, 0.6 wt%, 0.3 wt%, 0 wt%. It was confirmed that the mechanical strength of the hydrogel can be similarly controlled by adjusting the concentration of calcium peroxide and the amount of calcium ion released by the supplement of calcium hydroxide, and the range was from 1800 to 2100 Pa.
  • the concentration of catalase was changed to 0 U / ml, 50 U / ml, and 100 U / ml to prepare a polymer solution for the hydrogel preparation.
  • hydrogel 100 ⁇ l was prepared using a uniform mold, and 10 minutes later, it was placed in a 1.5 ml EP tube together with the medium (600 ⁇ l) The amount of hydrogen peroxide after 24 hours was measured.
  • the amount of hydrogen peroxide in the medium containing hydrogel could be controlled to 10 ⁇ 520 ⁇ M by controlling the concentration of calcium peroxide.
  • concentration of calcium peroxide increased, because the concentration of calcium peroxide, which is the cause of hydrogen peroxide, increased, and more hydrogen peroxide was generated inside the hydrogel.
  • the amount of hydrogen peroxide in the hydrogel containing 50 U / ml and 100 U / ml catalase could be adjusted to 9 ⁇ 16 ⁇ M, and no significant difference was observed between the groups regardless of the increase in the concentration of calcium peroxide Respectively. This is because hydrogen peroxide produced by calcium peroxide is decomposed into water and oxygen by catalysis.
  • the oxygen release behavior of the hydrogel according to the concentration of calcium peroxide was confirmed for 2 days using an oxygen sensor.
  • the effect of decomposition of hydrogen peroxide generated by the decomposition of calcium peroxide on the oxygen release behavior was analyzed by using catalysis.
  • the concentration of catalase was changed to 0 U / ml and 50 U / ml to prepare a polymer solution for the hydrogel preparation.
  • Hydrogel 300 ⁇ l was prepared to measure the amount of dissolved oxygen in the media containing the hydrogel, and the medium (600 ⁇ l) was added 10 minutes later, and the amount of dissolved oxygen in the medium was measured.
  • the maximum dissolved oxygen level of the medium containing hydrogel prepared with 50 U / ml of catalase could be adjusted to 22.83 ⁇ 81.03%.
  • concentration of calcium peroxide increased, the maximum dissolved oxygen amount of the medium containing hydrogel increased,
  • the oxygen environment was maintained for 24 hours to 48 hours. This is because the concentration of calcium peroxide, which is the oxygen generating factor, increases, and the catalysis increases the oxygen concentration in the hydrogel while decomposing the hydrogen peroxide produced by the calcium peroxide into water and oxygen.
  • the oxygen release time is prolonged and the oxygen concentration is maintained for a long time.
  • human dermal fibroblasts hHDFs
  • hHDFs human dermal fibroblasts
  • the concentration of the cells used in the experiment was 3.0 ⁇ 10 3 cells / well.
  • the cells were cultured for 24 hours at 37 ° C. in 5% CO 2 atmosphere. After 24 hours of hydrogel-loaded eluate was diluted 10 times in the medium, After 24 hours, cell viability was measured using WST-1 assay and Live / Dead Viability / Cytotoxicity Kit.
  • Hydrogel disks were prepared by mixing catalase (0 ⁇ 100 U / ml) for the decomposition of hydrogen peroxide produced during hydrogel formation.
  • Live / Dead analysis is a method of assessing the cytotoxicity by showing the cells killed by cytotoxicity as red and living cells as green.
  • the hydrogel showed similar cell densities regardless of calcium peroxide concentration, and showed cell viability above 105% of that of the control.
  • the hydrogel showed similar cell densities regardless of calcium peroxide concentration, and showed cell viability of over 98% compared to the control. These results show that the ratio of living cells is similar in Live / Dead assay results.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Surgery (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to production of an oxygen-releasing hydrogel for bioinjection. A new type of oxygen-releasing in situ cross-linked hydrogel thus produced is formed as a hydrogel by inducing, by means of calcium ions released by decomposition of calcium peroxide, ion coupling with a negatively charged polymer, and generates and releases highly concentrated oxygen inside the hydrogel. Additionally, the present invention is novel in originating from the first of the studies into formation of a hydrogel using existing alginates to produce a hydrogel using calcium peroxide, is able to improve the limitations of existing oxygen-delivery systems, allows the production of oxygen-releasing hydrogel for bioinjection by a simple and rapid method without chemical synthesis, and has the further advantage of allowing the physical, chemical and biochemical characteristics of the hydrogel to be easily controlled in accordance with production conditions.

Description

생체주입형 산소 방출 하이드로젤의 제조 방법 및 이의 생의학적 용도METHOD FOR PREPARING BIO-INHIBITED OXYGEN-EMITTING HYDROGEL AND BIO-MEDICAL USE
본 발명은 과산화칼슘을 이용한 생체주입형 산소 방출 하이드로젤의 제조방법 및 이의 생의학적 용도에 관한 것으로, 보다 상세하게는 상기 in situ 가교 하이드로젤은 기존에 보고된 알지네이트 기반 하이드로젤 제조 방법에서 사용되지 않았던 과산화칼슘을 이용한 2가 양이온의 이온성 가교 방법을 통해 제조 가능하며, 형성된 하이드로젤 매트릭스에서 고농도 산소를 방출할 수 있는 새로운 형태의 주입형 고분자 하이드로젤에 관한 것이다.The present invention relates to a method for producing a bioinjected oxygen-releasing hydrogel using calcium peroxide and a biomedical use thereof, and more particularly to a method for producing a bioinjected oxygen-releasing hydrogel using calcium peroxide. More particularly, the in situ bridged hydrogel is used in a previously reported method for preparing alginate- The present invention relates to a new type of injection-type polymer hydrogel which can be produced through ionic crosslinking of divalent cations using calcium peroxide and capable of releasing high-concentration oxygen in a formed hydrogel matrix.
또한, 본 발명은 기존 생체주입형 하이드로젤의 제조방법에 비해 고분자의 화학적 개질 없이 천연고분자인 알지네이트를 이용하여 간편한 방법으로 제조할 수 있을 뿐 아니라 제조 조건에 따라 상기 하이드로젤의 물리/화학/생물학적 특성을 쉽게 제어할 수 있는 장점이 있다.In addition, the present invention can be manufactured by a simple method using a natural polymer, alginate, without chemical modification of a polymer, compared with a conventional method of manufacturing a bioinjectable hydrogel, and the physical / chemical / There is an advantage that the characteristic can be easily controlled.
친수성 고분자의 3차원 네트워크로 이루어진 고분자 하이드로젤은 생체 적합성, 높은 수분함량, 영양분과 대사 산물의 우수한 투과성, 천연 조직과의 구조적 유사성 및 다중 가변성(multi-tunable properties)으로 인해 다양한 생의학적 응용분야에 널리 상용되어 왔다.Polymer hydrogels composed of a three-dimensional network of hydrophilic polymers are used in a variety of biomedical applications due to their biocompatibility, high water content, good permeability of nutrients and metabolites, structural similarity with natural tissues and multi-tunable properties Has been widely used.
특히, in situ 가교 하이드로젤은 최소 침습성 기술(minimally invasive techniques)을 기반으로 약물/세포 전달체, 조직 충진제, 혹은 조직공학용 지지체로서 널리 연구되었다. 이러한 in situ 가교 하이드로젤은 천연 및 합성 고분자를 이용하여 제조가 가능하며, 다양한 화학적 및 물리적 가교를 통하여 하이드로젤 형성이 가능하다. In particular, in situ bridged hydrogels have been extensively studied as drug / cell carriers, tissue fillers, or tissue engineering supports based on minimally invasive techniques. These in situ bridged hydrogels can be prepared using natural and synthetic polymers, and hydrogels can be formed through various chemical and physical crosslinks.
알지네이트는 갈조류 유래의 음이온성 폴리사카라이드로 생체적합성 및 생체분해성이 우수하여 다양한 분야에서 생체의학적으로 응용되고 있다. 칼슘 (Ca2+), 마그네슘 (Mg2+) 또는 아연 (Zn2+) 이온과 같은 2가 양이온의 존재하에 알지네이트 고분자 주사슬간의 이온성 가교 (Ionotropic crosslinking)가 발생하여 3차원 하이드로젤 네트워크를 형성할 수 있으며, 최근에는 탄산칼슘 (CaCO3), 염화칼슘 (CaCl2) 또는 탄산아연 (ZnCO3) 등이 새로운 가교제로 사용되고 있다. 과산화칼슘은 물 존재 시 수산화칼슘으로 분해되며 과산화수소 또는 산소를 발생하는 특성을 가지며, 칼슘이온을 방출할 수 있는 것으로 알려져 있다. 이러한 특징을 활용하여, 과산화칼슘은 다양한 생의학적 응용에 많이 사용되고 있지만, 아직까지 과산화칼슘의 이용하여 알지네이트 기반의 생체주입형 산소 방출 하이드로젤은 보고된 바가 없다. Alginate is an anionic polysaccharide derived from brown algae, and is excellent in biocompatibility and biodegradability and has been applied in various fields in biomedical applications. Ionotropic crosslinking occurs in the presence of divalent cations such as calcium (Ca 2+ ), magnesium (Mg 2+ ), or zinc (Zn 2+ ) ions in the alginate polymer main chain to form a three-dimensional hydrogel network In recent years, calcium carbonate (CaCO 3 ), calcium chloride (CaCl 2 ), zinc carbonate (ZnCO 3 ) and the like have been used as new crosslinking agents. It is known that calcium peroxide is decomposed into calcium hydroxide in the presence of water and generates hydrogen peroxide or oxygen, and is capable of releasing calcium ions. Taking advantage of these characteristics, calcium peroxide is widely used in various biomedical applications, but no alginate-based bioinjected oxygen-releasing hydrogel has been reported using calcium peroxide.
산소는 대사작용의 기질과 신호분자로서 작용하여 생체 내 항상성 유지와 상처 치료에 중요한 역할을 한다. 특히, 고농도 산소 (hyperbaric oxygen)는 세포 내 산소 분압을 일시적으로 높이고 활성산소를 증가시켜 세포의 증식을 촉진하며, 산소를 기질로 하는 라이실 옥시데이즈 (Lysyl oxidase)에 의한 콜라겐 합성 및 가공 촉진과 혈관 생성을 촉진한다. 또한 혈관생성을 촉진하는 성장인자를 분비하게 하거나 골수로부터 줄기세포가 이동하게 함으로써 혈관 생성 내지 상처 치료를 촉진한다. 이러한 맥락으로 최근 산소를 운반할 수 있는 여러기술들이 개발되고 있다.Oxygen acts as a metabolic substrate and a signal molecule, which plays an important role in homeostasis maintenance and wound healing. In particular, hyperbaric oxygen promotes cell proliferation by temporarily increasing oxygen partial pressure in the cell, increasing reactive oxygen species, and promoting collagen synthesis and processing by oxygen-based lysyl oxidase Promotes angiogenesis. It also promotes angiogenesis and wound healing by causing secretion of growth factors that promote angiogenesis or by allowing stem cells to migrate from the bone marrow. In this context, several technologies are recently being developed to transport oxygen.
예를 들어, 고농도 산소 치료(hyperbaric oxygen therapy; HBOT)를 이용하거나 헤모글로빈 기반의 산소운반체, 퍼플루오로카본(perfluorocarbon; PFC) 기술 등의 산소 운반체를 사용하는 것이 이에 속한다. 고농도 산소 치료는 기술적으로 간단하고 치료가 진행되는 동안에는 산소가 지속적으로 제공될 수 있으며, 산소 운반체는 주변을 둘러싼 산소 분압에 따라 산소를 방출할 수 있다는 장점이 있다.This includes, for example, the use of hyperbaric oxygen therapy (HBOT) or an oxygen carrier such as hemoglobin-based oxygen carrier, perfluorocarbon (PFC) technology. High-dose oxygen therapy is technically simple and oxygen can be provided continuously during treatment, and the oxygen carrier has the advantage that it can release oxygen according to the oxygen partial pressure surrounding it.
하지만, 전자는 치료를 받기 위한 전문시설이 필요하며 산소가 호흡에 의해서만 제공될 수 있고, 후자는 산소의 방출이 빠르게 일어난다는 제한점을 가진다.However, the former requires specialized facilities for treatment, oxygen can only be provided by respiration, and the latter has the limitation of rapid release of oxygen.
이를 해결하기 위해, 국부적인 산소 전달 및 서방형 산소 전달을 위해 in situ에서 산소를 생성하는 생체 재료에 관한 연구가 진행된 바 있다. 이러한 산소를 생성하는 물질로서는 과산화수소(hydrogen peroxide), 과탄산나트륨(sodium percarbonate) 및 과산화칼슘(calcium peroxide)이 대표적이다.To solve this problem, research has been conducted on biomaterials that produce oxygen in situ for local and sustained-release oxygen delivery. Hydrogen peroxide, sodium percarbonate, and calcium peroxide are representative examples of such oxygen-generating substances.
그러나 이러한 물질들은 초기에 빠른 산소 방출 거동이 보이고 장기간 산소 방출이 한계라는 제한점이 있다.However, these materials have limited early oxygen release behavior and limited long-term oxygen release.
이에, 고농도의 산소를 서방형으로 방출하면서도 생체안정성이 우수한 in situ 형성 하이드로젤을 개발할 필요성이 크게 부각되고 있다.Accordingly, there is a great need to develop an in situ formed hydrogel having excellent biostability while releasing a high concentration of oxygen in a sustained release form.
본 발명은 상기와 같은 종래의 요구를 충족시키며, 기존에 보고되지 않은 새로운 연구를 보고하는 것으로, 고농도의 산소를 방출하는 새로운 형태의 생체주입형 알지네이트 기반 하이드로젤, 이러한 하이드로젤의 물리/화학/생물학적 특성을 쉽게 제어할 수 있는 서방형 산소 방출형 주입형 하이드로젤의 제조방법, 및 이의 다양한 생의학적 용도를 제공함을 기술적 과제로 한다.The present invention meets the above-mentioned conventional demands and reports new researches that have not been reported so far. The new type of bioinjection-type alginate-based hydrogel that releases oxygen at a high concentration, the physical / chemical / The present invention provides a method for producing a sustained release oxygen-containing injection-type hydrogel which can easily control biological characteristics, and its various biomedical uses.
상기한 기술적 과제를 달성하고자, 본 발명은 화학적 개질을 하지 않은, 만뉴론산과 글루론산으로 구성된 천연 알지네이트 고분자를 수용액 상태에서 과산화칼슘의 분해로 인한 칼슘이온의 방출로 이온성 가교 형성 유도하여 in situ 가교형 알지네이트 기반 하이드로젤을 제조하고, 동시에 수용액에서의 과산화칼슘 분해에 의해 고농도의 산소를 방출하는 새로운 형태의 in situ 가교 고분자 하이드로젤을 제공한다.In order to achieve the above technical object, the present invention relates to a method for producing an ionic cross-linking agent, wherein the natural alginate polymer composed of mannuronic acid and glutaric acid, which is not chemically modified, Based cross-linked polymer hydrogel that produces a crosslinked alginate-based hydrogel and at the same time releases a high concentration of oxygen by decomposition of calcium peroxide in an aqueous solution.
본 발명에서, 알지네이트, 과산화칼슘 그리고 카탈레이즈의 조성 및 농도 조절에 따라 하이드로젤 기계적 강도, 과산화수소 방출, 산소 방출 거동 등과 같은 하이드로젤의 물리/화학/생물학적 특성을 쉽게 조절할 수 있는 생체주입형 산소 방출 하이드로젤의 제조방법을 제공한다.In the present invention, the bioinjection type oxygen release which can easily control the physical / chemical / biological properties of hydrogels such as hydrogel mechanical strength, hydrogen peroxide release, oxygen release behavior and the like by controlling composition and concentration of alginate, calcium peroxide and catalase A method for producing a hydrogel is provided.
또한, 본 발명은 알지네이트 기반 in situ 가교 산소 방출형 하이드로젤을 포함하는, 조직 재생 및 충진용 임플란트 소재를 제공한다.The present invention also provides an implant material for tissue regeneration and filling comprising an alginate-based in situ crosslinked oxygen releasing hydrogel.
또한, 본 발명은 알지네이트 기반 in situ 가교 산소 방출형 하이드로젤을 포함하는, 조직 접착 및 지혈용 소재를 제공한다.The present invention also provides a material for tissue adhesion and hemostasis comprising an alginate-based in situ crosslinked oxygen releasing hydrogel.
또한, 본 발명은 알지네이트 기반 in situ 가교 산소 방출형 하이드로젤을 포함하는, 생리활성 물질 또는 약물의 전달체용 담체를 제공한다.The present invention also provides a carrier for a physiologically active substance or drug carrier, which comprises an alginate-based in situ crosslinked oxygen releasing hydrogel.
본 발명에 따른 새로운 형태의 in situ 가교 하이드로젤은 과산화칼슘의 분해로 생성된 칼슘 이온에 의한 하이드로젤 형성과 함께 하이드로젤 내부에서 생성된 고농도 산소의 방출 거동을 조절할 수 있는 특징을 가지고 있다.The new type of in situ crosslinked hydrogel according to the present invention is characterized in that hydrogels formed by calcium ions generated by the decomposition of calcium peroxide and the release behavior of high concentration oxygen generated in the hydrogel can be controlled.
즉, 본 발명을 통해 기존 알지네이트를 이가양이온을 이용한 하이드로젤 제조 연구들에서 보고되지 않았던 과산화칼슘을 이용한 새로운 알지네이트 하이드로젤을 발명하였다는 신규성을 가지며, 산소 발생 하이드로젤이 가지고 있는 제한점을 극복할 수 있고 우수한 생체 적합성을 기반으로 다양한 생의학적 응용(예: 조직 재생, 인공조직체 제조, 상처 치유 소재, 조직 접착 소재, 약물 전달체 등)이 가능하다.In other words, the present invention has the novelty of inventing a new alginate hydrogel using calcium peroxide, which has not been reported in studies on the preparation of hydrogels using divalent cations, and can overcome the limitations of oxygen generating hydrogels Based on excellent biocompatibility, various biomedical applications (eg tissue regeneration, artificial tissue preparation, wound healing material, tissue adhesive material, drug delivery system, etc.) are possible.
도 1은 알지네이트를 기반으로 산소를 발생하는 하이드로젤의 형성 모식도이다.FIG. 1 is a schematic view showing the formation of a hydrogel for generating oxygen based on alginate.
도 2는 버퍼 용액에 따른 과산화칼슘의 분해와 이에 따른 하이드로젤 형성 이미지이다.FIG. 2 is an image of decomposition of calcium peroxide and formation of a hydrogel according to a buffer solution.
도 3은 과산화칼슘을 이용한 하이드로젤 형성과 알지네이트와 과산화칼슘의 농도에 따라 변하는 기계적 강도를 보여주는 그래프이다(A: 알지네이트, C: 과산화칼슘).FIG. 3 is a graph showing the hydrogel formation using calcium peroxide and the mechanical strength varying with the concentration of alginate and calcium peroxide (A: alginate, C: calcium peroxide).
도 4는 카탈레이즈를 이용한 과산화수소 분해 거동을 보여주는 그래프이다(A: 알지네이트, C: 과산화칼슘).4 is a graph showing hydrogen peroxide decomposition behavior using catalase (A: alginate, C: calcium peroxide).
도 5는 과산화칼슘 농도와 카탈레이즈의 첨가에 따른 산소 방출 거동을 보여주는 그래프이다(A: 알지네이트, C: 과산화칼슘).5 is a graph showing the oxygen release behavior with addition of calcium oxide concentration and catalase (A: alginate, C: calcium peroxide).
도 6은 하이드로젤의 세포적합성을 보여주는 도면이다(A: 알지네이트, C: 과산화칼슘).Fig. 6 is a diagram showing cell fitness of a hydrogel (A: alginate, C: calcium peroxide).
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명자들은 예의 연구를 거듭한 결과 과산화칼슘을 이용한 새로운 형태의 in situ 형성 하이드로젤을 제조함과 동시에, 이러한 하이드로젤 내에서 고농도의 산소(80% 이상)를 발생하며 높은 농도의 산소의 발생(25% 이상)이 48시간까지 지속되는 것을 확인하였다. 또한, 고분자의 화학적 개질 없이 간단한 방법으로 고농도의 산소를 방출할 수 있는 고분자 하이드로젤 소재를 제조함과 동시에, 물리/화학/생물학적 특성을 쉽게 제어할 수 있음을 밝혀내었다.As a result of intensive studies, the present inventors have found that a new type of in situ formed hydrogel using calcium peroxide is produced, and a high concentration of oxygen (more than 80%) is generated in such a hydrogel, 25% or more) continued for 48 hours. In addition, it has been found that a polymer hydrogel material capable of releasing oxygen at a high concentration in a simple manner without chemical modification of the polymer can be manufactured, and physical / chemical / biological properties can be easily controlled.
본 발명은 음이온을 띄는 천연/합성 고분자에 과산화칼슘을 적용하여 이온성 상호작용을 유도하고, 이를 통해 산소 방출형 in situ 하이드로젤을 제조한다.The present invention employs calcium peroxide for natural / synthetic polymers with anions to induce ionic interactions and thereby produce oxygen-releasing in situ hydrogels.
도 1을 참조하면, 음이온을 띄는 글루론산 단위체를 갖는 알지네이트는 화학적 개질을 하지 않은 천연 고분자이다.Referring to FIG. 1, alginate having a gluconic acid monomer unit having an anion is a natural polymer without chemical modification.
상기 고분자 주사슬은 검 아라빅(Arabic Gum), 타마린드검(Tamarind Gum), 카라야검(Karaya Gum), 구아검(Guar Gum), 로커스트빈 검(Locust Bean Gum), 퀸스시드 검(Quince seed Gum), 잔탄검(Xanthan Gum), 사이클로덱스트린(Cyclodextrin), 카제인(Casein), 타라검(Tara Gum), 트라가칸스검(Tragacanth Gum), 글루코만난(Glucomannan), 글루코사민(Glucosamine), 가티검(Gum Ghatti), 퍼셀레란(Furcelleran), 풀루란(Pullulan), 젤란검(Gellan Gum), 펙틴(Pectin), 한천(Agar), 알지네이트(Alginate), 카라기난(Carrageenan), 덱스트린(Dextrin), 폴리아크릴산나트륨(Sodium Polyacrylate), 알긴산프로필렌글리콜 (Propylene Glycol Alginate), 메틸셀룰로오스(Methyl Cellulose), 카르복시메틸셀룰로오스나트륨(Sodium Carboxymethylcellulose), 카르복시메틸셀룰로오스칼슘(Calcium Carboxymethylcellulose), 카르복시메틸스타치 나트륨(Sodium Carboxymethyl Starch), 알긴산나트륨(Sodium Alginate), 및 카제인나트륨(Sodium Caseinate)으로 이루어진 군에서 선택된 어느 하나일 수 있으나, 반드시 이에 한정되는 것은 아니다.The polymer main chain may be selected from the group consisting of Arabic Gum, Tamarind Gum, Karaya Gum, Guar Gum, Locust Bean Gum, Quince Seed Gum, Xanthan Gum, Cyclodextrin, Casein, Tara Gum, Tragacanth Gum, Glucomannan, Glucosamine, Gum Ghatti, Furcelleran, Pullulan, Gellan Gum, Pectin, Agar, Alginate, Carrageenan, Dextrin, Poly Sodium alginate, sodium polyacrylate, propylene glycol alginate, methyl cellulose, sodium carboxymethylcellulose, calcium carboxymethylcellulose, sodium carboxymethyl starch, ), Sodium alginate (Sodiu m Alginate, and sodium caseinate. However, the present invention is not limited thereto.
도 2를 참조하면, 상기 산소 방출형 하이드로젤은 음이온성의 글루론산 단위체를 갖는 다당류 주사슬을 과산화칼슘을 포함한 용액하에서 칼슘 이온의 방출에 의한 이온성 상호작용을 유도하여 in situ 가교 시켜 제조할 수 있다.2, the oxygen-releasing hydrogel can be produced by in situ crosslinking of a polysaccharide main chain having an anionic glucuronic acid unit by inducing ionic interaction by release of calcium ions in a solution containing calcium peroxide have.
본 발명의 산소 방출형 in situ 급속 가교 하이드로젤 제조방법은 과산화칼슘이 기존에 대중적으로 사용되는 버퍼용액인 DPBS에서는 칼슘이온화가 제한되어 하이드로젤을 형성하지 못하는 데에 반해, Tris-HCl buffer용액 내에서는 칼슘 이온을 방출시킨다는 점을 이용하여, 하이드로젤을 형성한다. 이러한 점은 물에서 낮은 용해도를 갖는 수산화칼슘에서도 적용되어 하이드로젤을 형성할 수 있었다.In the method of preparing the oxygen-releasing in situ fast-crosslinking hydrogel of the present invention, DPBS, which is a commonly used buffer solution, does not form a hydrogel because calcium ionization is limited, whereas in a Tris-HCl buffer solution , A hydrogel is formed by utilizing the fact that calcium ions are released. This was also applicable to calcium hydroxide with low solubility in water to form a hydrogel.
*또한, 본 발명은 산소 방출형 in situ 가교 하이드로젤을 포함하는, 조직 재생, 조직공학용 지지체 및 충진용 임플란트 소재를 제공한다.The present invention also provides a tissue regeneration, tissue engineering support and implant implant material comprising an oxygen-releasing in situ crosslinked hydrogel.
이러한 소재로는 연골 재생(cartilage regeneration), 골 재생(bone regeneration), 치조골 재생(alveolar regeneration), 피부 재생(skin regeneration), 심근 재생(cardiac tissue regeneration), 인공 수정체(artificial intraocular lens), 척수 신경 재생(spinal cord regeneration), 뇌신경 재생(cranial regeneration), 성대 재생 및 충진제(vocal regeneration and augmentation), 유착 방지막(adhesion barrier), 요실금 치료제(urinary incontinence treatment), 주름 제거(wrinkles removal)용 충진제, 화상 치료제(wound dressing), 조직 충진제(tissue augmentation) 및 척추 추간판 치료제(intervertebral disc treatment)로 이루어진 군에서 선택된 어느 하나에 적용되는 소재를 들 수 있으나, 반드시 이에 한정되는 것은 아니다.These materials include cartilage regeneration, bone regeneration, alveolar regeneration, skin regeneration, cardiac tissue regeneration, artificial intraocular lens, spinal nerve A regeneration and augmentation, a barrier for adhesion, a urinary incontinence treatment, a filler for wrinkle removal, a burn A wound dressing, a tissue augmentation, and an intervertebral disc treatment. However, the present invention is not limited thereto.
또한, 본 발명은 상기 산소 방출형 in situ 가교 하이드로젤을 포함하는, 조직 접착 및 지혈용 소재를 제공한다.The present invention also provides a material for tissue adhesion and hemostasis comprising the oxygen-releasing in situ crosslinked hydrogel.
상기 지혈용 소재는 혈관 외과 영역을 포함한 뇌신경 외과수술, 뼈의 접착을 포함한 정형외과 수술, 열상 환자의 지혈, 대퇴동맥의 봉합, 백내장 절개 봉합, 연골 치유, 피부 접합, 장기/분비선 절개면 지혈, 위장관 분합 및 힘줄/인대 치유로 이루어진 군에서 선택된 어느 하나에 적용될 수 있으나, 반드시 이에 한정되는 것은 아니다.The material for hemostasis includes at least one of neurosurgical surgery including a vascular surgery area, orthopedic surgery including adhesion of bone, hemostasis of a laceration patient, suture of a femoral artery, cataract incision suture, cartilage healing, skin joining, Gastrointestinal tract differentiation, and tendon / ligament healing. However, the present invention is not limited thereto.
또한, 본 발명은 상기 산소 방출형 in situ 가교 하이드로젤을 포함하는, 생리활성 물질 또는 약물 전달체용 담체를 제공한다.The present invention also provides a carrier for a physiologically active substance or a drug delivery carrier comprising the oxygen-releasing in situ crosslinked hydrogel.
상기 생리활성물질 또는 약물은 펩타이드 또는 단백질 의약품, 항균제, 항암제 및 항염증제로 이루어진 군에서 선택된 어느 하나 또는 둘 이상일 수 있으나, 반드시 이에 한정되는 것은 아니다.The physiologically active substance or drug may be any one or more selected from the group consisting of a peptide or protein drug, an antibacterial agent, an anti-cancer agent, and an anti-inflammatory agent, but is not limited thereto.
상기 펩타이드 또는 단백질 의약품은 섬유아세포 성장인자(fibroblast growth factor; FGF), 혈관내피세포 성장인자(vascular endothelial growth factor; VEGF), 전환 성장인자(transforming growth factor; TGF), 골형성 성장인자(bone morphogenetic protein; BMP), 인간성장 호르몬(human growth hormone; hGH), 돼지성장 호르몬(porcine growth hormone; pGH), 백혈구 성장인자(granulocyte colony-stimulating factor; G-CSF), 적혈구 성장인자(erythropoietin; EPO), 대식세포 성장인자(macrophage colony-stimulating factor; M-CSF), 종양 괴사 인자(tumor necrosis factor; TNF), 상피세포 성장인자(epidermal growth factor; EGF), 혈소판유도 성장인자(platelet-derived growth factor; PDGF), 인터페론-α,β,γ(interferon-α,β,γ), 인터루킨-2(interleukin-2; IL-2), 칼시토닌, 신경 성장인자(nerve growth factor; NGF), 성장호르몬 방출인자, 엔지오텐신, 황체형성 호르몬 방출 호르몬(luteinizing hormone-releasing hormone; LHRH), 황체 형성 호르몬 방출 호르몬 작동약(LHRH agonist), 인슐린, 갑상선 자극 호르몬 방출 호르몬(thyrotropin-releasing hormone; TRH), 엔지오스타틴, 엔도스타틴, 소마토스타틴, 글루카곤, 엔도르핀, 바시트라신, 머게인, 콜리스틴, 바시트라신, 단일 항체, 백신류 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있으나, 반드시 이에 한정되는 것은 아니다.The peptide or protein drug may be a fibroblast growth factor (FGF), a vascular endothelial growth factor (VEGF), a transforming growth factor (TGF), a bone morphogenetic factor protein, BMP), human growth hormone (hGH), porcine growth hormone (pGH), granulocyte colony-stimulating factor (G-CSF), erythropoietin (EPO) , Macrophage colony-stimulating factor (M-CSF), tumor necrosis factor (TNF), epidermal growth factor (EGF), platelet-derived growth factor , Interferon-α, β, γ, interleukin-2 (IL-2), calcitonin, nerve growth factor (NGF), growth hormone Factor, angiotensin, luteinizing hormone releasing hormone (luteinizin (LHRH agonist), insulin, thyrotropin-releasing hormone (TRH), angiostatin, endostatin, somatostatin, glucagon, endorphin, But are not limited to, any one selected from the group consisting of neuron, mergein, cholestin, bacitracin, monoclonal antibody, vaccine, and mixture thereof.
상기 항균제는 미노싸이클린, 테트라싸이클린, 오플록사신, 포스포마이신, 머게인, 프로플록사신, 암피실린, 페니실린, 독시싸이클린, 티에나마이신, 세팔로 스포린, 노르카디신, 겐타마이신, 네오마이신, 카나마이신, 파로모마이신, 미크로 노마이신, 아미카신, 토브라마이신, 디베카신, 세포탁심, 세파클러, 에리스로마이신, 싸이프로플록사신, 레보플록사신, 엔옥사신, 반코마이신, 이미페넴, 후시딕산 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있으나, 반드시 이에 한정되는 것은 아니다.Wherein said antimicrobial agent is selected from the group consisting of minocycline, tetracycline, oproxacin, phosphomycin, mergein, proproxacin, ampicillin, penicillin, doxycycline, thienamycin, cephalosporin, noradocin, gentamicin, neomycin, It may be advantageous to use a compound selected from the group consisting of paromomycin, micronomycin, amikacin, tobramycin, dibecasin, cytotoxic, sepracur, erythromycin, cyprofloxacin, levofloxacin, enoxasin, vancomycin, imipenem, foscidic acid and mixtures thereof , But the present invention is not limited thereto.
상기 항암제는 파클리탁셀, 텍소티어, 아드리아마이신, 엔도스타틴, 앤지오 스타틴, 미토마이신, 블레오마이신, 시스플레틴, 카보플레틴, 독소루비신, 다우노 루비신, 이다루비신, 5-플로로우라실, 메토트렉세이트, 엑티노마이신-D 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있으나, 반드시 이에 한정되는 것은 아니다.Wherein the anticancer agent is selected from the group consisting of paclitaxel, texothier, adriamycin, endostatin, angiostatin, mitomycin, bleomycin, cispletin, carboplatin, doxorubicin, daunorubicin, dirubicin, 5-fluorouracil, methotrexate, Actinomycin-D, and mixtures thereof, but is not limited thereto.
상기 항염증제는 아세토아민펜, 아스피린, 이부프로펜, 디크로페낙, 인도메 타신, 피록시캄, 페노프로펜, 플루비프로펜, 케토프로펜, 나프록센, 수프로펜, 록소프로펜, 시녹시캄, 테녹시캄 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있으나, 반드시 이에 한정되는 것은 아니다.Wherein the anti-inflammatory agent is selected from the group consisting of acetaminophen, aspirin, ibuprofen, diclofenac, indomethacin, piroxycam, fenoprofen, plubiprofen, ketoprofen, naproxen, Camphor, tenoxicam, and mixtures thereof, but is not limited thereto.
이하, 실시예 및 실험예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. It should be understood, however, that these examples are for illustrative purposes only and are not intended to limit the scope of the invention in any way.
<실시 예 1> 재료 준비Example 1 Preparation of Material
알지네이트(alginic acid sodium salt), 과산화칼슘(calcium peroxide; CaO2), 수산화칼슘(calcium hydroxide; Ca(OH)2) 및 카탈레이즈 (catalase)는 Sigma Aldrich(St. Louis, MO, USA)로부터 구입하였고, UltraPure™ 1M Tris-HCI(pH 8.0) buffer는 Invitrogen (Carlsbad, CA, USA)로부터 구매하였다.Alginic acid sodium salt, calcium peroxide (CaO 2 ), calcium hydroxide (Ca (OH) 2 ) and catalase were purchased from Sigma Aldrich (St. Louis, Mo., USA) , UltraPure ™ 1M Tris-HCI (pH 8.0) buffer was purchased from Invitrogen (Carlsbad, CA, USA).
DMEM 배지(Dulbecco's Modified Eagle's Medium; DMEM), 페니실린-스트렙토마이신(penicillin-streptomycin; P/S), 트립신/EDTA(trypsin/EDTA) 및 DPBS (Dulbecco's phosphate buffered saline; DPBS), 신생소태아혈청(Newborn Calf Serum; NBCS) 용액은 Gibco(Grand Island, NY, USA)로부터 구입하였다. 또한, Cell Proliferation reagent WST-1은 Roche Diagnostics로부터 구입하였고, Live/Dead Viability/Cytotoxicity Kit는 Life science로부터 구입하였다. (DMEM), penicillin-streptomycin (P / S), trypsin / EDTA and DPBS (Dibbecco's modified phosphate buffered saline (DPBS), newborn fetal serum Calf Serum (NBCS) solution was purchased from Gibco (Grand Island, NY, USA). Cell Proliferation reagent WST-1 was also purchased from Roche Diagnostics, and the Live / Dead Viability / Cytotoxicity Kit was purchased from Life science.
다른 화학 물질 및 용매들은 추가적인 정제 없이 사용하였다.Other chemicals and solvents were used without further purification.
<실시예 2> 하이드로젤 형성 (도 1)Example 2 Hydrogel Formation (Figure 1)
알지네이트 고분자를 37℃의 DPBS에 녹인 용액과 과산화칼슘(0~0.75 중량%)을 혼합하여 하이드로젤을 제조하였다.The hydrogel was prepared by mixing a solution of the alginate polymer dissolved in DPBS at 37 DEG C and calcium peroxide (0 to 0.75 wt%).
<실험예 1> 버퍼 용액에 따른 하이드로젤 형성 DPBS vs Tris-HCl (도 2)EXPERIMENTAL EXAMPLE 1 Formation of hydrogel according to buffer solution DPBS vs Tris-HCl (FIG. 2)
기존 과산화칼슘의 사용이 보고된 적이 없는 이유는 DPBS와 같은 보편적으로 사용되는 수용액 내에서는 과산화칼슘의 분해 및 칼슘 이온의 방출이 제한되기 때문이다. Tris-HCl buffer를 사용시 이러한 문제를 해결할 수 있다는 것을 보여주기 위해, 기존의 하이드로젤 제작 과정에서 buffer만 달리하여 바이알 틸팅 방법(vial tilting method)을 이용하여 평가하였다.The reason why the use of existing calcium peroxide has not been reported is because the decomposition of calcium peroxide and the release of calcium ions are limited in commonly used aqueous solutions such as DPBS. To demonstrate that this problem can be solved by using Tris-HCl buffer, the vial tilting method was used to evaluate different hydrogels in the conventional hydrogel manufacturing process.
Alginate(2 중량%), CaO2(0.75 중량%)의 일정한 조성 하에 solvent의 종류를 DPBS(250 ㎕) 또는 Tris-HCl(250 ㎕)로 달리하였다.The type of solvent was changed to DPBS (250 ㎕) or Tris-HCl (250 ㎕) under a constant composition of Alginate (2 wt%) and CaO 2 (0.75 wt%).
실험 결과, DPBS를 사용하였을 시 하이드로젤이 형성되지 않아 흘러내리는 반면, Tris-HCl를 사용하였을 경우, 하이드로젤을 형성하여 형태를 유지하는 것을 확인할 수 있었다. 이는 과산화칼슘이 DPBS 내에서 분해되지 않지만, Tris-HCl 내에서는 수산화칼슘으로 분해되면서, 이가양이온인 칼슘이온을 방출하고, 방출된 칼슘 이온이 알지네이트의 음이온을 띄는 카르복실산과 이온성 상호작용을 하여 하이드로젤을 형성한 것으로 설명할 수 있다. As a result of the experiment, it was confirmed that when using DPBS, the hydrogel was not formed and flowed down. On the other hand, when Tris-HCl was used, it was confirmed that the hydrogel was formed and maintained its shape. This is because calcium peroxide is not decomposed in DPBS but decomposes into calcium hydroxide in Tris-HCl, releasing calcium ions as bivalent ions and releasing the calcium ions to ionic interaction with carboxylic acids having anions of alginate, It can be explained that the gel is formed.
<실험예 2> 하이드로젤 제조 및 기계적 강도 (도 3)Experimental Example 2 Preparation of Hydrogel and Mechanical Strength (Fig. 3)
레오미터(rheometer)를 이용하여 알지네이트 하이드로젤의 기계적 강도를 측정하였으며, 알지네이트와 과산화칼슘의 농도를 조절하여 기계적 강도 변화에 대한 평가를 수행하였다.The mechanical strength of the alginate hydrogel was measured using a rheometer, and the change in mechanical strength was evaluated by adjusting the concentrations of alginate and calcium peroxide.
과산화칼슘의 농도(0.3 중량%)의 일정한 조성 하에 알지네이트의 농도를 0.5 중량%, 1.0 중량%, 1.5 중량%, 2.0 중량%, 2.5 중량%, 3.0 중량%로 변화시켰다.The concentration of alginate was varied to 0.5 wt%, 1.0 wt%, 1.5 wt%, 2.0 wt%, 2.5 wt%, and 3.0 wt% under a constant composition of the concentration of calcium peroxide (0.3 wt%).
알지네이트의 농도를 조절하여 하이드로젤의 기계적 강도 조절이 가능함을 확인하였으며, 그 범위는 4~1600 Pa이었다.It was confirmed that the mechanical strength of the hydrogel can be controlled by controlling the concentration of the alginate, and the range was 4 to 1600 Pa.
알지네이트의 농도(2.0 중량%)의 일정한 조성하에 과산화칼슘의 농도를 0 중량%, 0.15 중량%, 0.3 중량%, 0.45 중량%, 0.6 중량%, 0.75 중량%, 0.9 중량%로 변화시켰다. 과산화칼슘의 농도를 조절하여 하이드로젤의 기계적 강도 조절이 가능함을 확인하였으며, 그 범위는 200~4000Pa이었다. 한편, 과산화칼슘의 농도를 0 중량%로 한 것은 하이드로젤을 형성하지 못하였다. 이는 과산화칼슘이 부재로 칼슘이온과 글루론산의 카르복실레이트 기능기와의 이온결합 형성이 이루어지지 않았기 때문이다.The concentration of calcium peroxide was changed to 0 wt%, 0.15 wt%, 0.3 wt%, 0.45 wt%, 0.6 wt%, 0.75 wt%, and 0.9 wt% under a constant composition of alginate concentration (2.0 wt%). It was confirmed that the mechanical strength of the hydrogel was controllable by controlling the concentration of calcium peroxide, and the range was from 200 to 4000 Pa. On the other hand, when the concentration of calcium peroxide was set to 0 wt%, the hydrogel could not be formed. This is because there is no calcium peroxide and the formation of ionic bond between the calcium ion and the carboxylate functional group of glutaric acid is not achieved.
알지네이트의 농도(2.0 중량%)의 일정한 조성하에 과산화칼슘의 농도를 0 중량%, 0.15 중량%, 0.45 중량%, 0.75 중량%로 변화시킨 후 총 칼슘이온의 양을 일정하게 하기 위해 각각 수산화칼슘 0.75 중량%, 0.6 중량%, 0.3 중량%, 0 중량%을 추가하였다. 과산화칼슘의 농도 조절과 수산화칼슘의 보충으로 방출되는 칼슘이온의 양을 균일하게 하여 하이드로젤의 기계적 강도를 유사하게 조절할 수 있음을 확인하였으며, 그 범위는 1800~2100 Pa이었다. The concentration of calcium peroxide was changed to 0% by weight, 0.15% by weight, 0.45% by weight and 0.75% by weight under a constant composition of alginate (2.0% by weight) %, 0.6 wt%, 0.3 wt%, 0 wt%. It was confirmed that the mechanical strength of the hydrogel can be similarly controlled by adjusting the concentration of calcium peroxide and the amount of calcium ion released by the supplement of calcium hydroxide, and the range was from 1800 to 2100 Pa.
<실험예 3> 카탈레이즈를 이용한 과산화수소 분해 거동 분석 (도 4)Experimental Example 3 Analysis of decomposition of hydrogen peroxide using catalase (Fig. 4)
Cu(II)-neocuproine assay 이용하여 과산화칼슘 농도에 따른 하이드로젤 내부에 생성된 과산화수소의 농도와 카탈레이즈를 이용한 과산화수소 분해 거동을 확인하였다. The concentration of hydrogen peroxide generated in the hydrogel according to the concentration of calcium peroxide and the decomposition behavior of hydrogen peroxide using catalase were confirmed by Cu (II) -neocuproine assay.
과산화칼슘의 농도를 0 중량%, 0.15 중량%, 0.45 중량%, 0.75 중량%로 변화시킨 후 총 칼슘이온의 양을 일정하게 하기 위해 각각 수산화칼슘 0.75 중량%, 0.6 중량%, 0.3 중량%, 0 중량%을 추가하였다.0.75 wt.%, 0.3 wt.%, 0 wt.% Of calcium hydroxide, and 0.75 wt.% Of calcium hydroxide were added to adjust the concentration of calcium peroxide to 0 wt%, 0.15 wt%, 0.45 wt% and 0.75 wt% %.
카탈레이즈의 농도를 0 U/ml, 50 U/ml, 100 U/ml로 변화시켜 상기 하이드로젤 제조를 위한 고분자 용액을 만드는 과정에서 혼합하였다. The concentration of catalase was changed to 0 U / ml, 50 U / ml, and 100 U / ml to prepare a polymer solution for the hydrogel preparation.
상기 하이드로젤이 담긴 배지(media)의 과산화수소 농도를 측정하기 위해 하이드로젤(100㎕)을 균일한 mold를 사용하여 디스크를 제조하고 10분 뒤 1.5ml EP tube에 배지(600 ㎕)와 함께 넣어준 후 24시간 후의 과산화수소량을 측정하였다. To measure the concentration of hydrogen peroxide in the medium containing the hydrogel, hydrogel (100 μl) was prepared using a uniform mold, and 10 minutes later, it was placed in a 1.5 ml EP tube together with the medium (600 μl) The amount of hydrogen peroxide after 24 hours was measured.
실험 결과, 과산화칼슘의 농도를 조절하여 하이드로젤이 담긴 배지의 과산화수소량을 10~520μM까지 조절할 수 있었다. 과산화칼슘 농도가 증가함에 따라 하이드로젤이 담긴 배지의 과산화수소 농도가 증가하였으며, 이는 과산화수소 발생원인 과산화칼슘의 농도가 증가하여 더 많은 과산화수소를 하이드로젤 내부에 생성하였기 때문이다. As a result, the amount of hydrogen peroxide in the medium containing hydrogel could be controlled to 10 ~ 520μM by controlling the concentration of calcium peroxide. As the concentration of calcium peroxide increased, the concentration of hydrogen peroxide in the medium containing hydrogel increased, because the concentration of calcium peroxide, which is the cause of hydrogen peroxide, increased, and more hydrogen peroxide was generated inside the hydrogel.
50 U/ml, 100 U/ml의 카탈레이즈를 사용하여 만든 하이드로젤이 담긴 배지의 과산화수소량은 9~16μM까지 조절할 수 있었으며, 과산화칼슘 농도의 증가와 상관없이 그룹 간에 큰 차이가 나타나지 않았음을 확인하였다. 이는 과산화칼슘에 의해 생성된 과산화수소가 카탈레이즈에 의해 물과 산소로 분해되었기 때문이다. The amount of hydrogen peroxide in the hydrogel containing 50 U / ml and 100 U / ml catalase could be adjusted to 9 ~ 16 μM, and no significant difference was observed between the groups regardless of the increase in the concentration of calcium peroxide Respectively. This is because hydrogen peroxide produced by calcium peroxide is decomposed into water and oxygen by catalysis.
<실험예 4> 과산화칼슘 농도에 따른 산소 방출 거동 분석 (도 5)EXPERIMENTAL EXAMPLE 4 Analysis of oxygen release behavior according to calcium peroxide concentration (FIG. 5)
산소센서를 이용하여 과산화칼슘 농도에 따른 하이드로젤의 산소 방출 거동을 2일간 확인하였다. 추가로 과산화칼슘의 분해로 발생하는 과산화수소를 카탈레이즈를 사용하여 분해함으로써 산소 방출거동에 미치는 영향을 분석하였다. The oxygen release behavior of the hydrogel according to the concentration of calcium peroxide was confirmed for 2 days using an oxygen sensor. In addition, the effect of decomposition of hydrogen peroxide generated by the decomposition of calcium peroxide on the oxygen release behavior was analyzed by using catalysis.
과산화칼슘의 농도를 0 중량%, 0.15 중량%, 0.45 중량%, 0.75 중량%로 변화시킨 후 총 칼슘이온의 양을 일정하게 하기 위해 각각 수산화칼슘 0.75 중량%, 0.6 중량%, 0.3 중량%, 0 중량%을 추가하였다.0.75 wt.%, 0.3 wt.%, 0 wt.% Of calcium hydroxide, and 0.75 wt.% Of calcium hydroxide were added to adjust the concentration of calcium peroxide to 0 wt%, 0.15 wt%, 0.45 wt% and 0.75 wt% %.
카탈레이즈의 농도를 0 U/ml, 50 U/ml로 변화시켜 상기 하이드로젤 제조를 위한 고분자 용액을 만드는 과정에서 혼합하였다. The concentration of catalase was changed to 0 U / ml and 50 U / ml to prepare a polymer solution for the hydrogel preparation.
상기 하이드로젤이 담긴 배지(media)의 용존산소량을 측정하기 위해 하이드로젤(300㎕)을 제조하고 10분 뒤 배지(600㎕)를 넣어준 후 미디어의 용존산소량을 측정하였다.Hydrogel (300 μl) was prepared to measure the amount of dissolved oxygen in the media containing the hydrogel, and the medium (600 μl) was added 10 minutes later, and the amount of dissolved oxygen in the medium was measured.
실험 결과, 카탈레이즈 없이 과산화칼슘의 농도를 조절하여 하이드로젤이 담긴 배지의 최대 용존 산소량을 22.8~42.27%까지 조절할 수 있었다. 과산화칼슘 농도가 증가함에 따라 하이드로젤이 담긴 배지의 최대 용존산소량이 증가하였으며, 높은 산소환경이 9시간~24시간까지 유지되었다. 이는 산소발생원인 과산화칼슘의 농도가 증가하여 더 많은 산소를 하이드로젤 내부에 생성, 이후 방출되었기 때문이다. As a result of experiment, it was possible to control the maximum dissolved oxygen amount of the medium containing hydrogel to 22.8 ~ 42.27% by controlling the concentration of calcium peroxide without catalase. As the concentration of calcium peroxide increased, the maximum dissolved oxygen level of the medium containing hydrogel was increased, and the high oxygen environment was maintained for 9 to 24 hours. This is because the concentration of calcium peroxide, which is the cause of oxygen generation, is increased and more oxygen is generated in the hydrogel and then released.
50 U/ml의 카탈레이즈 사용하여 만든 하이드로젤이 담긴 배지의 최대 용존 산소량은 22.83~81.03%까지 조절할 수 있었으며, 과산화칼슘 농도가 증가함에 따라 하이드로젤이 담긴 배지의 최대 용존산소량이 증가하였고, 높은 산소환경이 24시간~48시간까지 유지되었다. 이는 산소발생원인 과산화칼슘의 농도가 증가하여 더 많은 산소를 생성하고, 카탈레이즈가 과산화칼슘에 의해 생성된 과산화수소를 물과 산소로 분해하면서 하이드로젤 내부에 산소 농도를 증가시켰기 때문이다. 하이드로젤 내부의 산소가 증가하면서 산소가 방출되는 시간이 길어져 오랫동안 높은 산소의 농도를 유지하는 것이다. The maximum dissolved oxygen level of the medium containing hydrogel prepared with 50 U / ml of catalase could be adjusted to 22.83 ~ 81.03%. As the concentration of calcium peroxide increased, the maximum dissolved oxygen amount of the medium containing hydrogel increased, The oxygen environment was maintained for 24 hours to 48 hours. This is because the concentration of calcium peroxide, which is the oxygen generating factor, increases, and the catalysis increases the oxygen concentration in the hydrogel while decomposing the hydrogen peroxide produced by the calcium peroxide into water and oxygen. As the oxygen inside the hydrogel increases, the oxygen release time is prolonged and the oxygen concentration is maintained for a long time.
<실험예 5> 하이드로젤의 세포 적합성 평가 (도 6)Experimental Example 5 Evaluation of Cell Suitability of Hydrogel (FIG. 6)
상기 하이드로젤의 세포적합성 평가를 위해, 96-웰 플레이트에 2차원으로 인간 피부 섬유아세포(human dermal fibroblast; hHDFs)를 배양하였고, 다른 96-웰플레이트에 하이드로젤과 배지를 주입하여 용출물을 형성하여 세포 적합성 평가를 수행하였다.To evaluate the cell fitness of the hydrogel, human dermal fibroblasts (hHDFs) were cultured in a two-dimensional manner on a 96-well plate, and a hydrogel and a medium were injected into another 96-well plate to form an eluate To perform cell fitness evaluation.
실험에 사용된 세포의 농도는 3.0 X 103 cells/wells이며, 37℃, 5% CO2 분위기 하에서 24시간 배양하였으며, 하이드로젤이 담지된 24시간 후의 용출물을 배지에 10배 희석하여 세포에 처리하여 24시간 후 WST-1 assay과 Live/Dead Viability/Cytotoxicity Kit을 이용하여 세포 생존능(cell viability)을 측정하였다.The concentration of the cells used in the experiment was 3.0 × 10 3 cells / well. The cells were cultured for 24 hours at 37 ° C. in 5% CO 2 atmosphere. After 24 hours of hydrogel-loaded eluate was diluted 10 times in the medium, After 24 hours, cell viability was measured using WST-1 assay and Live / Dead Viability / Cytotoxicity Kit.
하이드로젤 형성 과정에서 생성되는 과산화수소의 분해를 위해 카탈레이즈(catalase) 0~100 U/ml를 혼합하여 하이드로젤 디스크를 제조하였다. Hydrogel disks were prepared by mixing catalase (0 ~ 100 U / ml) for the decomposition of hydrogen peroxide produced during hydrogel formation.
Live/Dead 분석은 세포 독성으로 사멸된 세포는 붉은색으로, 살아있는 세포는 초록색으로 나타내어 세포 독성 유무를 평가하는 방법이다.Live / Dead analysis is a method of assessing the cytotoxicity by showing the cells killed by cytotoxicity as red and living cells as green.
실험 결과, 카탈레이즈 0 U/ml일때, 상기 하이드로젤은 과산화칼슘 농도가 증가할수록 세포 생존능이 감소하였으며, 대조군 대비 22.29%까지 감소하였다. 이러한 결과는 Live/Dead assay 결과에서도 관찰되는 세포의 비율이 유사하게 나타났다. 이는 과산화칼슘의 증가로 발생되는 과산화수소량이 증가하여 세포에 독성을 미쳤기 때문이다. As a result, the cell viability was decreased as the concentration of calcium peroxide was increased in the hydrogel at 0 U / ml of catalase, and decreased to 22.29% as compared with the control. These results were similar to those observed in Live / Dead assay results. This is because the amount of hydrogen peroxide generated by the increase of calcium peroxide has increased to toxicity to cells.
카탈레이즈 50 U/ml일때, 상기 하이드로젤은 과산화칼슘 농도와 상관없이 유사한 세포의 밀도를 보였으며, 대조군 대비 105% 이상의 세포 생존능을 보였다. 이러한 결과는 Live/Dead assay 결과에서도 살아있는 세포의 비율이 유사하게 나타났다.At 50 U / ml of catalase, the hydrogel showed similar cell densities regardless of calcium peroxide concentration, and showed cell viability above 105% of that of the control. These results show that the ratio of living cells is similar in Live / Dead assay results.
카탈레이즈 100 U/ml일때, 상기 하이드로젤은 과산화칼슘 농도와 상관없이 유사한 세포의 밀도를 보였으며, 대조군 대비 98% 이상의 세포 생존능을 보였다. 이러한 결과는 Live/Dead assay 결과에서도 살아있는 세포의 비율이 유사하게 나타났다.At 100 U / ml of catalase, the hydrogel showed similar cell densities regardless of calcium peroxide concentration, and showed cell viability of over 98% compared to the control. These results show that the ratio of living cells is similar in Live / Dead assay results.
이상과 같이, 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It will be understood that various modifications and variations can be made within the scope of equivalents of the claims.

Claims (16)

  1. 천연 또는 합성 고분자 및 과산화칼슘(CaO2)을 Tris-HCl 버퍼에서 혼합하는 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤의 제조방법.Wherein the natural or synthetic polymer and calcium peroxide (CaO 2 ) are mixed in a Tris-HCl buffer.
  2. 제1항에 있어서,The method according to claim 1,
    상기 고분자 혼합 용액에 카탈레이즈(catalase)를 더 포함하는 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤의 제조방법. Wherein the polymer mixture solution further comprises a catalase.
  3. 제1항에 있어서,The method according to claim 1,
    상기 과산화칼슘(CaO2)은 Tris-HCl 버퍼에서 수산화칼슘으로 분해되고, 상기 수산화칼슘으로부터 방출된 칼슘이온(Ca2+)이 고분자의 음이온과 이온성 상호작용을 하여 하이드로젤을 형성하는 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤의 제조방법.The calcium oxide (CaO 2 ) is decomposed into calcium hydroxide in a Tris-HCl buffer, and the calcium ion (Ca 2+ ) released from the calcium hydroxide forms an ionic interaction with the anion of the polymer to form a hydrogel (EN) METHOD FOR MANUFACTURING BIO - INHIBITED OXYGENED HYDROGEL.
  4. 제1항에 있어서, The method according to claim 1,
    상기 천연 또는 합성 고분자는 화학적 개질(chemical modification)을 하지 않은 음이온성 고분자인 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤의 제조방법.Wherein the natural or synthetic polymer is an anionic polymer that is not chemically modified. &Lt; RTI ID = 0.0 &gt; 21. &lt; / RTI &gt;
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 음이온성 고분자는 아라빅 검(Arabic Gum), 타마린드 검(Tamarind Gum), 카라야 검(Karaya Gum), 구아검(Guar Gum), 로커스트빈 검(Locust Bean Gum), 퀸스시드 검(Quince seed Gum), 잔탄검(Xanthan Gum), 사이클로덱스트린(Cyclodextrin), 카제인(Casein), 타라검(Tara Gum), 트라가칸스검(Tragacanth Gum), 글루코만난(Glucomannan), 글루코사민(Glucosamine), 가티검(Gum Ghatti), 퍼셀레란(Furcelleran), 풀루란(Pullulan), 젤란검(Gellan Gum), 펙틴(Pectin), 한천(Agar), 알지네이트(Alginate), 카라기난(Carrageenan), 덱스트린(Dextrin), 폴리아크릴산나트륨(Sodium Polyacrylate), 알긴산프로필렌글리콜 (Propylene Glycol Alginate), 메틸셀룰로오스(Methyl Cellulose), 카르복시메틸셀룰로오스나트륨(Sodium Carboxymethylcellulose), 카르복시메틸셀룰로오스칼슘(Calcium Carboxymethylcellulose), 카르복시메틸스타치 나트륨(Sodium Carboxymethyl Starch), 알긴산나트륨(Sodium Alginate), 및 카제인나트륨(Sodium Caseinate)으로 이루어진 군으로부터 선택되는 생체주입형 산소 방출 하이드로젤의 제조방법.The anionic polymer may be selected from the group consisting of Arabic Gum, Tamarind Gum, Karaya Gum, Guar Gum, Locust Bean Gum, Quince Sword, Seed Gum, Xanthan Gum, Cyclodextrin, Casein, Tara Gum, Tragacanth Gum, Glucomannan, Glucosamine, Gatineau, Such as Gum Ghatti, Furcelleran, Pullulan, Gellan Gum, Pectin, Agar, Alginate, Carrageenan, Dextrin, Sodium polyacrylate, propylene glycol alginate, methyl cellulose, sodium carboxymethylcellulose, calcium carboxymethylcellulose, sodium carboxymethyl cellulose, sodium carboxymethyl cellulose, Starch), sodium alginate ( Sodium alginate, and sodium caseinate. The present invention also provides a method for producing a bio-injectable oxygen-releasing hydrogel.
  6. 제1항에 있어서, The method according to claim 1,
    상기 고분자 또는 과산화 칼슘의 농도에 의하여 하이드로젤의 기계적 강도 조절이 가능한 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤의 제조방법.Wherein the mechanical strength of the hydrogel is adjustable by the concentration of the polymer or calcium peroxide.
  7. 제6항에 있어서,The method according to claim 6,
    상기 고분자 또는 과산화 칼슘의 농도가 증가할수록 기계적 강도가 증가하는 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤의 제조방법.Wherein the mechanical strength is increased with increasing concentration of the polymer or calcium peroxide.
  8. 제1항에 있어서,The method according to claim 1,
    상기 과산화 칼슘의 농도에 의하여 하이드로젤이 담긴 배지의 최대 용존 산소량의 조절이 가능한 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤의 제조방법.Wherein the maximum amount of dissolved oxygen in the medium containing the hydrogel is adjustable by the concentration of the calcium peroxide.
  9. 제8항에 있어서, 9. The method of claim 8,
    상기 과산화 칼슘의 농도가 증가할수록 하이드로젤이 담긴 배지의 최대 용존 산소량이 증가하는 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤의 제조방법.Wherein the maximum dissolved oxygen amount of the medium containing the hydrogel is increased as the concentration of the calcium peroxide is increased.
  10. 제9항에 있어서, 10. The method of claim 9,
    상기 최대 용존 산소량은 22.83 ~ 81.03%인 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤의 제조방법.Wherein the maximum dissolved oxygen amount is 22.83 to 81.03%.
  11. 제1항에 있어서, The method according to claim 1,
    상기 하이드로젤은 48시간 이상 산소를 방출시키는 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤의 제조방법.Wherein the hydrogel releases oxygen for at least 48 hours. &Lt; RTI ID = 0.0 &gt; 21. &lt; / RTI &gt;
  12. 제1항 내지 제11항 중 어느 한 항의 방법에 따라 제조된 생체주입형 산소 방출 하이드로젤.12. A bioinjected oxygen-releasing hydrogel prepared according to the method of any one of claims 1 to 11.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 하이드로젤은 생체 주입형 하이드로젤인 것을 특징으로 하는 생체주입형 산소 방출 하이드로젤.Wherein the hydrogel is a bio-injectable hydrogel.
  14. 제12항에 따른 생체주입형 산소 방출 하이드로젤을 포함하는 조직 재생, 조직공학용 지지체 또는 충진용 임플란트 소재.A tissue regeneration, tissue engineering support or filling implant material comprising the bio-injectable oxygen-releasing hydrogel according to claim 12.
  15. 제12항에 따른 생체주입형 산소 방출 하이드로젤을 포함하는 조직 접착, 상처 치유 또는 지혈용 소재.A tissue adherence, wound healing or hemostasis material comprising a bio-injectable oxygen-releasing hydrogel according to claim 12.
  16. 제12항에 따른 생체주입형 산소 방출 하이드로젤을 포함하는 생리활성 물질 또는 약물의 전달체용 담체.13. A carrier for a physiologically active substance or a drug delivery body comprising the bio-injectable oxygen-releasing hydrogel according to claim 12.
PCT/KR2018/006346 2017-12-19 2018-06-04 Production method of oxygen-releasing hydrogel for bioinjection and biomedical use thereof WO2019124653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0175152 2017-12-19
KR1020170175152A KR102066777B1 (en) 2017-12-19 2017-12-19 Preparation method of injectable and oxygen-generating hydrogel and biomedical use thereof

Publications (1)

Publication Number Publication Date
WO2019124653A1 true WO2019124653A1 (en) 2019-06-27

Family

ID=66994865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006346 WO2019124653A1 (en) 2017-12-19 2018-06-04 Production method of oxygen-releasing hydrogel for bioinjection and biomedical use thereof

Country Status (2)

Country Link
KR (1) KR102066777B1 (en)
WO (1) WO2019124653A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343352A (en) * 2019-07-24 2019-10-18 天津大学 Based on calper calcium peroxide/polymerization produce oxygen particle double cross-linked hydrogels and preparation method thereof
CN111603608A (en) * 2020-05-15 2020-09-01 南通大学 Pullulan-hyaluronic acid-microfiber spinal cord scaffold and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102385533B1 (en) * 2020-03-03 2022-04-11 인하대학교 산학협력단 Oxygen generating wound covering material and manufacturing method thereof
KR102386655B1 (en) * 2020-03-04 2022-04-15 부산대학교 산학협력단 Tissue-attached biodegradable microgels and preparation method thereof
WO2022197154A1 (en) * 2021-03-19 2022-09-22 한양대학교 산학협력단 Spontaneous respiratory biomaterial for tissue engineering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178389B1 (en) * 2009-11-23 2012-08-30 서울과학기술대학교 산학협력단 Porous Hydrogel and Method for Preparing the Same
KR20150024490A (en) * 2013-08-26 2015-03-09 삼성전자주식회사 Thermally healable and reshapable conductive hydrogel composite

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070038738A (en) * 2005-10-06 2007-04-11 (주) 차바이오텍 The use of growth factor containing hydrogel for tissue engineering and the using method for internal injecion substance thereby
KR101091028B1 (en) * 2009-07-02 2011-12-09 아주대학교산학협력단 In situ forming hydrogel and biomedical use thereof
KR101103423B1 (en) * 2009-09-04 2012-01-06 아주대학교산학협력단 In situ forming hydrogel for tissue adhesives and biomedical use thereof
KR101573571B1 (en) 2013-01-14 2015-12-04 가톨릭대학교 산학협력단 Controlled Release Hydrogel and the manufacturing method thereof
KR101361486B1 (en) * 2013-01-31 2014-02-13 포항공과대학교 산학협력단 Oxygen releasing alginate beads comprising metal oxide and the method of purification of infested soil or polluting substance of ground water using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178389B1 (en) * 2009-11-23 2012-08-30 서울과학기술대학교 산학협력단 Porous Hydrogel and Method for Preparing the Same
KR20150024490A (en) * 2013-08-26 2015-03-09 삼성전자주식회사 Thermally healable and reshapable conductive hydrogel composite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAMCI-UNAL, G. ET AL.: "Oxygen-releasing Biomaterials for Tissue Engineering", POLYMER INTERNATIONAL, vol. 62, no. 6, 2013, pages 843 - 848, XP055461623, DOI: 10.1002/pi.4502 *
JEON IL KAN AND KYUNG MIN PARK: "Abstract PO-19: Oxygen-generating alginate hydrogels via calcium peroxide-mediated crosslinking reaction", MEETING OF THE KOREAN SOCIETY FOR BIOMATERIALS, 18 October 2017 (2017-10-18), XP055620980, Retrieved from the Internet <URL:http://www.ksbm.or.kr/?f=07_m6> *
PARK, K. M. ET AL.: "Synthesis and Characterizations of in Situ Cross-linkable Gelatin and 4-arm-PPO-PEO Hybrid Hydrogels via Enzymatic Reaction for Tissue Regenerative Medicine", BIOMACROMOLECULES, vol. 13, no. 3, 2012, pages 604 - 611, XP055620986 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343352A (en) * 2019-07-24 2019-10-18 天津大学 Based on calper calcium peroxide/polymerization produce oxygen particle double cross-linked hydrogels and preparation method thereof
CN111603608A (en) * 2020-05-15 2020-09-01 南通大学 Pullulan-hyaluronic acid-microfiber spinal cord scaffold and preparation method thereof

Also Published As

Publication number Publication date
KR20190073911A (en) 2019-06-27
KR102066777B1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2019124653A1 (en) Production method of oxygen-releasing hydrogel for bioinjection and biomedical use thereof
Fakhri et al. Chitosan biomaterials application in dentistry
Liang et al. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin
JP6437552B2 (en) Method for adhering tissue surfaces and materials and its biomedical use
Lee et al. Alginate: properties and biomedical applications
US8163714B2 (en) Injectable crosslinked and uncrosslinked alginates and the use thereof in medicine and in cosmetic surgery
Kaczmarek-Pawelska Alginate-based hydrogels in regenerative medicine
WO2018026204A1 (en) Method for preparing sustained-release oxygen omission type in situ cross-linked hydrogel using calcium peroxide and biomedical use thereof
CN110448721B (en) Antibacterial adhesive conductive hemostatic and antioxidant injectable composite hydrogel and preparation method and application thereof
Chu et al. Recent advances in injectable dual crosslinking hydrogels for biomedical applications
US20080138416A1 (en) Method and systems for using biopolymer-based beads and hydrogels
Batista et al. Alginate: Pharmaceutical and medical applications
Kong et al. Applications of oxidized alginate in regenerative medicine
WO2010043106A1 (en) Injectable in-situ crosslinked hydrogel and the preparation method and use thereof
KR20100063744A (en) Delayed self-gelling alginate systems and uses thereof
CN108888798A (en) A kind of flexible foldable biomembrane and preparation method thereof
Onat et al. Multifunctional layer-by-layer modified chitosan/poly (ethylene glycol) hydrogels
Cai et al. The versatile applications of polydopamine in regenerative medicine: Progress and challenges
Makiishi et al. In vitro/in vivo evaluation of the efficacy of gatifloxacine-loaded PLGA and hydroxyapatite composite for treating osteomyelitis
Sharifi et al. Cell-loaded genipin cross-linked collagen/gelatin skin substitute adorned with zinc-doped bioactive glass-ceramic for cutaneous wound regeneration
WO2019203459A1 (en) Injectable thermosponge nanoparticle-based hydrogel and use thereof
Cassano et al. Polysaccharides and proteins-based hydrogels for tissue engineering applications
EP1096940B1 (en) Biocompatible and biodegradable compositions containing hyaluronic acid and the derivatives thereof for the treatment of ulcers in the digestive apparatus
CN109395171A (en) A kind of bone renovating material of carrying medicament and preparation method thereof
Cao et al. Repair of Infected Bone Defects with Hydrogel Materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890243

Country of ref document: EP

Kind code of ref document: A1