WO2019124581A1 - Liposome particles supporting functional material and having controllable particle size and manufacturing method therefor - Google Patents

Liposome particles supporting functional material and having controllable particle size and manufacturing method therefor Download PDF

Info

Publication number
WO2019124581A1
WO2019124581A1 PCT/KR2017/015153 KR2017015153W WO2019124581A1 WO 2019124581 A1 WO2019124581 A1 WO 2019124581A1 KR 2017015153 W KR2017015153 W KR 2017015153W WO 2019124581 A1 WO2019124581 A1 WO 2019124581A1
Authority
WO
WIPO (PCT)
Prior art keywords
liposome
silica
treated
liposome particles
particles
Prior art date
Application number
PCT/KR2017/015153
Other languages
French (fr)
Korean (ko)
Inventor
장정호
이혜선
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2019124581A1 publication Critical patent/WO2019124581A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/14Liposomes; Vesicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes

Definitions

  • the present invention relates to a liposome particle capable of supporting a functional substance and a method for producing the liposome particle. More particularly, the present invention relates to a liposome particle capable of supporting a functional material by surface- To a process for producing liposome particles.
  • silica SiO 2
  • zeolite zeolite
  • hydrogel hydrogel
  • Various materials such as silica (SiO 2 ), zeolite, and hydrogel are widely used as the material to be used as the functional material support, though they depend on the characteristics of the material to be supported .
  • Liposomes are used as mediators for transferring substances by moving various drugs and functional substances including anticancer drugs, antimicrobial drugs, antigens, antibodies, and proteins.
  • Liposome is a structure in which lecithin, similar to skin constituents, is wrapped around a layer of active ingredients.
  • lecithin When lecithin is dissolved in an aqueous solution at the same ratio as the composition of the cell membrane, a bilayer structure composed of two layers is formed. Liposome molecules are divided into two layers to minimize water surface area and remain stable by van der Waals force. Since the inside of the layer is hydrophobic, most of the water-soluble materials can not penetrate into the inside of the double-layer structure, so that the functional material can be selected and supported using these characteristics.
  • liposomes are apt to become structurally unstable due to physical impact. If the structure becomes unstable, the substances carried on the inside are released to the outside, so that there is a problem in liposome function as a carrier, which makes it difficult to stabilize the formulation.
  • liposomes are prepared as a carrier by controlling particle size, lipid component, charge permeation, etc. in order to control physically, chemically and microbiologically unstable factors.
  • the inventors of the present invention have made extensive efforts to overcome the problems of the prior art. As a result, when the surface of the inner and outer surfaces of the liposome is treated with silica, the stability of the liposome unstable due to physical stimulation can be increased. And thus it was confirmed that it was excellent as a carrier for carrying a functional material, and the present invention was completed.
  • a liposome particle for supporting a functional substance whose surface is treated with silica, as a carrier for supporting a functional substance, which is stable from changes in the external environment.
  • Another object of the present invention is to provide a method for producing liposome particles for supporting a functional material surface-treated with silica according to the present invention.
  • a liposome particle for supporting a functional material surface-treated with silica.
  • Liposomes have been used as mediators for the transfer of functional materials by their structural properties, but their stability to the external environment has been low, limiting their use as carriers. Thus, the present inventors confirmed that when the surface of the liposome particles is surface-treated with silica, stability from the external environment can be enhanced, and that the inside of the liposome is empty, so that it is easy to support the functional substance, thereby completing the present invention .
  • the liposome particle for supporting a functional substance of the present invention contains hollows therein, and the inner hollow surface is also surface-treated with silica.
  • the liposome particle according to the present invention has a structure including a hollow therein, and the silica is coated not only on the inner surface but also on the inner hollow surface.
  • the liposome particle for supporting a functional material of the present invention has a diameter of 0.5 to 5 ⁇ m.
  • the silica is characterized by coating 15 to 18% of the surface of the liposome.
  • the liposome particles for supporting functional material of the present invention are characterized in that mass reduction occurs in the range of 90 to 110 ° C and 300 to 400 ° C in TGA analysis.
  • the weight loss rate of lecithin and the remaining percentage of silica in the particles agitated for 4 hours were checked, and as a result, weight loss by moisture at 100 ⁇ was confirmed.
  • the weight loss by lecithin was confirmed in the range of 300 to 400 ° C
  • the weight loss by the unreacted silane group was confirmed in the range of 400 to 500 ° C. Based on this, it was confirmed that 15 to 18% of the surface of the silica size-controlled liposome particles was coated with silica (see FIG. 4).
  • the liposome particle for supporting a functional substance of the present invention is characterized in that a peak appears at 1000 to 1200 cm -1 under FT-IR analysis.
  • step B) mixing a silica precursor with a solution in which the liposome particles are dispersed in step A) and stirring the liposome surface to treat the liposome surface with silica;
  • step B) centrifuging the solution of step B) to separate the liposome surface-treated with silica
  • the present invention also provides a method for producing a liposome particle surface-treated with silica comprising
  • the silica precursor may be tetraethyl orthosilicate, tetramethyl orthosilicate, or a mixture thereof.
  • Tetraethyl orthosilicate was used.
  • the stirring in the step B) is performed for 4 to 24 hours.
  • the size of liposome particles produced according to the agitation time in the step B) can be controlled.
  • the size of the liposome particles surface-treated with silica can be adjusted to 0.5 to 5 ⁇ m according to the stirring time, and when the stirring time is 4 hours or less, When the stirring time is longer than 24 hours, there is a problem that the liposome particles are too small to support the functional material, and therefore, it is difficult to function as a carrier (see FIG. 2).
  • the liposome particle capable of supporting the functional material according to the present invention is excellent as a carrier of a functional substance because the liposome particle is empty and has a double membrane and is stable to the external environment by surface treatment of the inner and outer surfaces with silica.
  • Figure 1 shows a schematic diagram of the development of the silica size controlled liposome particle of the present invention.
  • Figure 2 shows SEM photographs of the silica size controlled liposome particles prepared according to the present invention.
  • Figure 3 shows the FT-IR measurement results of the silica size controlled liposome particles prepared according to the present invention.
  • Figure 4 shows the TGA results of the silica size controlled liposome particles prepared according to the present invention.
  • Lecithin was purchased from TCI for 1,2-diacyl-sn-glycero-3-phosphatidylcholine and Tetraethyl orthosilicate (TEOS) was purchased from Sigma Aldrich for use in the preparation of liposomes.
  • TEOS Tetraethyl orthosilicate
  • Lecithin is dissolved in ethanol at a ratio of 1: 0.018, then 1/2 of the volume of ethanol is added at room temperature, and the mixture is stirred for 20 minutes. After this, the solution was ultrasonically dispersed for 10 minutes, the temperature was raised to 60 ⁇ and stirred for 4 hours.
  • the liposome particles are uniformly produced at a size of about 1 to 2 ⁇ m, and that the inside of the silica particles forms hollow hollows .
  • the particle size is controlled as the size of the particles decreases with the agitation time when the agitation time is changed.
  • the liposome particles prepared by stirring in the above-mentioned example for 4 hours were confirmed by Fourier transform infrared spectroscopy (FT-IR).
  • the liposome particles for supporting functional materials according to the present invention are excellent in stability for supporting functional materials by surface-treating the inner and outer surfaces with silica.
  • the liposome particles of the present invention can produce liposome particles having a desired size by controlling the stirring speed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Birds (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to liposome particles surface-treated with silica and a manufacturing method therefor and, more specifically, to liposome particles surface-treated with silica and used for supporting a functional material, and to a manufacturing method for liposome particles surface-treated with silica, wherein the liposome particle size can be controlled according to the stirring rate. According to the present invention, the silica size-control type liposome particles by the present invention are manufactured such that a liposome surface is fixed by silica, and thus liposome particles having a double membrane having stability against an external environment can be provided. Particularly, the liposome particles manufactured according to the present invention are excellent as a support for a functional material since the liposome particles are hollow and stable against an external environment.

Description

기능성 물질의 담지 및 입자의 크기 제어가 가능한 리포좀 입자 및 이의 제조방법Liposome Particles Capable of Carrying Functional Substance and Controlling Size of Particles and Method for Manufacturing the Same
본 발명은 기능성 물질의 담지가 가능한 리포좀 입자 및 이의 제조방법에 관한 것으로서, 더욱 구체적으로 실리카로 표면 처리되어 기능성 물질의 담지가 가능한 리포좀 입자 및 교반 속도를 조절하여 생성되는 리포좀 입자 크기를 조절할 수 있는 리포좀 입자의 제조방법에 관한 것이다.The present invention relates to a liposome particle capable of supporting a functional substance and a method for producing the liposome particle. More particularly, the present invention relates to a liposome particle capable of supporting a functional material by surface- To a process for producing liposome particles.
기능성 물질의 담지체로 이용되는 물질로는 담지되는 물질의 특징에 따라 다르기는 하지만 크게 세라믹 소재인 실리카(silica, SiO2), 제올라이트(zeolite), 고분자 수화젤(hydrogel) 등 다양한 소재가 이용되고 있다. 항암제, 항균제, 항원, 항체, 단백질을 비롯한 다양한 약물, 기능성 물질들을 이동시켜 물질을 전달하는 매개체로 리포좀이 이용된다. Various materials such as silica (SiO 2 ), zeolite, and hydrogel are widely used as the material to be used as the functional material support, though they depend on the characteristics of the material to be supported . Liposomes are used as mediators for transferring substances by moving various drugs and functional substances including anticancer drugs, antimicrobial drugs, antigens, antibodies, and proteins.
리포좀(liposome)은 피부 구성 성분과 유사한 레시틴이 유효성분을 겹겹이 감싸고 있는 구조로, 세포막의 구성비와 같은 비율로 레시틴을 수용액에 풀어놓으면 두 층으로 이루어진 이중막 구조를 형성한다. 리포좀 분자들은 물과 닿는 표면적을 최소화 하기 위해 두 층으로 나뉘며 반데르발스 힘(van der Waals force)에 의해 안정하게 유지된다. 층의 안쪽은 소수성이므로 대부분의 수용성 물질들이 이중막 구조 내부로 침투할 수 없기 때문에 이러한 특성을 이용하여 기능성 물질을 선정, 담지가 가능한 것이다.Liposome is a structure in which lecithin, similar to skin constituents, is wrapped around a layer of active ingredients. When lecithin is dissolved in an aqueous solution at the same ratio as the composition of the cell membrane, a bilayer structure composed of two layers is formed. Liposome molecules are divided into two layers to minimize water surface area and remain stable by van der Waals force. Since the inside of the layer is hydrophobic, most of the water-soluble materials can not penetrate into the inside of the double-layer structure, so that the functional material can be selected and supported using these characteristics.
하지만, 이러한 리포좀은 물리적인 충격으로 인해 구조적으로 불안정해지기 쉽다. 만약 구조가 불안정하게 될 경우 내부에 담지된 물질들이 외부로 방출되게 되므로 담지체로서의 리포좀 기능에 문제가 발생하게 되어 제형 안정화가 어렵다는 문제점이 있다.However, these liposomes are apt to become structurally unstable due to physical impact. If the structure becomes unstable, the substances carried on the inside are released to the outside, so that there is a problem in liposome function as a carrier, which makes it difficult to stabilize the formulation.
이에 따라 리포좀은 물리적, 화학적, 미생물학적으로 불안정한 요인들을 제어하기 위해서 입자의 크기, 지질의 성분, 전하투과 등을 조절하여 담지체로 제조된다. Accordingly, liposomes are prepared as a carrier by controlling particle size, lipid component, charge permeation, etc. in order to control physically, chemically and microbiologically unstable factors.
본 발명자들은 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구노력한 결과, 리포좀 내부 및 외부 표면을 실리카로 표면 처리할 경우 물리적인 자극에 의해 불안정했던 리포좀의 안정성을 증가시킬 수 있으며, 리포좀의 내부가 비어 있어 기능성 물질을 담지하기 위한 담지체로서 우수한 것을 확인하고, 본 발명을 완성하게 되었다.The inventors of the present invention have made extensive efforts to overcome the problems of the prior art. As a result, when the surface of the inner and outer surfaces of the liposome is treated with silica, the stability of the liposome unstable due to physical stimulation can be increased. And thus it was confirmed that it was excellent as a carrier for carrying a functional material, and the present invention was completed.
따라서, 본 발명은 외부환경 변화로부터 안정하며 기능성 물질을 담지하기 위한 담지체로서 표면이 실리카로 처리된 기능성 물질 담지용 리포좀(liposome) 입자를 제공하는 것을 목적으로 한다.Accordingly, it is an object of the present invention to provide a liposome particle for supporting a functional substance, whose surface is treated with silica, as a carrier for supporting a functional substance, which is stable from changes in the external environment.
본 발명은 또한, 본 발명에 의한 실리카로 표면 처리된 기능성 물질 담지용 리포좀(liposome) 입자의 제조 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for producing liposome particles for supporting a functional material surface-treated with silica according to the present invention.
본 발명의 한 양태에 따르면, 본 발명은 실리카로 표면 처리된 기능성 물질 담지용 리포좀(liposome) 입자를 제공한다.According to one aspect of the present invention, there is provided a liposome particle for supporting a functional material surface-treated with silica.
리포좀(liposome)은 구조적 특성에 의해 기능성 물질을 이동시키기 위한 매개체로 이용되어 왔으나 외부 환경에 대한 안정성이 낮아 담지체로서의 이용되기에는 제한이 있었다. 이에, 본 발명자들은 리포좀 입자의 표면을 실리카로 표면 처리할 경우, 외부 환경으로부터의 안정성을 높일 수 있을 뿐만 아니라 리포좀 내부가 비어 있어 기능성 물질을 담지하는데 용이한 것을 확인하고, 본 발명을 완성하게 되었다.Liposomes have been used as mediators for the transfer of functional materials by their structural properties, but their stability to the external environment has been low, limiting their use as carriers. Thus, the present inventors confirmed that when the surface of the liposome particles is surface-treated with silica, stability from the external environment can be enhanced, and that the inside of the liposome is empty, so that it is easy to support the functional substance, thereby completing the present invention .
본 발명의 기능성 물질 담지용 리포좀 입자는 내부에 중공을 포함하며, 내부 중공 표면도 실리카로 표면 처리된 것을 특징으로 한다. 본 발명에 의한 리포좀 입자는 내부에 중공을 포함하는 구조이며, 실리카가 내부 표면뿐만 아니라 내부 중공을 이루는 표면도 코팅하는 것을 특징으로 한다. The liposome particle for supporting a functional substance of the present invention contains hollows therein, and the inner hollow surface is also surface-treated with silica. The liposome particle according to the present invention has a structure including a hollow therein, and the silica is coated not only on the inner surface but also on the inner hollow surface.
본 발명의 기능성 물질 담지용 리포좀 입자에 있어서, 상기 리포좀(liposome) 입자는 직경이 0.5 내지 5 um인 것을 특징으로 한다.In the liposome particle for supporting a functional material of the present invention, the liposome particle has a diameter of 0.5 to 5 μm.
본 발명의 기능성 물질 담지용 리포좀 입자에 있어서, 상기 실리카는 리포좀 표면의 15 내지 18% 를 코팅하는 것을 특징으로 한다. In the liposome particle for supporting a functional material of the present invention, the silica is characterized by coating 15 to 18% of the surface of the liposome.
본 발명의 기능성 물질 담지용 리포좀 입자는 TGA 분석시 90 내지 110℃, 300 내지 400 ℃ 구간에서 질량 감소가 나타나는 것을 특징으로 한다. The liposome particles for supporting functional material of the present invention are characterized in that mass reduction occurs in the range of 90 to 110 ° C and 300 to 400 ° C in TGA analysis.
본 발명의 일 실험예에 따르면, 4시간 동안 교반한 입자의 레시틴의 중량 감소율 및 실리카의 남은 잔여율을 확인한 결과, 100 ℃에서 수분에 의한 중량 감소를 확인하였다. 또한, 확인 결과 300 ~ 400 ℃ 구간에서 레시틴에 의한 중량감소를 확인하였으며, 400 ~ 500 ℃ 구간에서 미반응된 실란 그룹에 의한 중량 감소를 확인하였다. 이를 바탕으로 실리카 크기제어형 리포좀 입자는 표면의 15 내지 18% 가 실리카로 코팅된 것을 확인할 수 있었다(도 4 참조).According to one experimental example of the present invention, the weight loss rate of lecithin and the remaining percentage of silica in the particles agitated for 4 hours were checked, and as a result, weight loss by moisture at 100 캜 was confirmed. As a result, the weight loss by lecithin was confirmed in the range of 300 to 400 ° C, and the weight loss by the unreacted silane group was confirmed in the range of 400 to 500 ° C. Based on this, it was confirmed that 15 to 18% of the surface of the silica size-controlled liposome particles was coated with silica (see FIG. 4).
본 발명의 기능성 물질 담지용 리포좀 입자는 FT-IR 분석시 1000 내지 1200 cm-1에서 피크가 나타나는 것을 특징으로 한다.The liposome particle for supporting a functional substance of the present invention is characterized in that a peak appears at 1000 to 1200 cm -1 under FT-IR analysis.
본 발명의 다른 양태에 따르면, 본 발명은According to another aspect of the present invention,
A) 에탄올, 정제수 및 레시틴을 2 : 1 : 0.04의 비율로 혼합한 후, 교반하여 리포좀(liposome) 입자가 분산된 용액을 제조하는 단계; A) mixing ethanol, purified water and lecithin in a ratio of 2: 1: 0.04, and then stirring to prepare a solution in which liposome particles are dispersed;
B) 상기 A) 단계의 리포좀 입자가 분산된 용액에 실리카 전구체를 혼합하고 교반하여 리포좀 표면을 실리카로 처리하는 단계; 및B) mixing a silica precursor with a solution in which the liposome particles are dispersed in step A) and stirring the liposome surface to treat the liposome surface with silica; And
C) 상기 B) 단계의 용액을 원심분리하여 실리카로 표면 처리된 리포좀을 분리하는 단계; 및 C) centrifuging the solution of step B) to separate the liposome surface-treated with silica; And
D) 분리된 실리카로 표면 처리된 리포좀을 세척 및 건조하는 단계; 를 포함하는 실리카로 표면 처리된 리포좀 입자의 제조방법을 제공한다.D) washing and drying the liposome surface-treated with the separated silica; The present invention also provides a method for producing a liposome particle surface-treated with silica comprising
본 발명의 실리카로 표면 처리된 리포좀 입자의 제조방법에 있어서, 상기 실리카 전구체는 테트라에틸오르쏘 실리케이트(Tetraethyl orthosilicate), 테트라메틸오르쏘 실리케이트(Tetrmethyl orthosilicate) 또는 이들의 혼합물일 수 있으며, 본 발명에서는 테트라에틸오르쏘 실리케이트(Tetraethyl orthosilicate)를 이용하였다.In the method of the present invention, the silica precursor may be tetraethyl orthosilicate, tetramethyl orthosilicate, or a mixture thereof. In the present invention, Tetraethyl orthosilicate was used.
본 발명의 실리카로 표면 처리된 리포좀 입자의 제조방법에 있어서, 상기 B)단계에서의 교반은 4시간 내지 24시간 동안 하는 것을 특징으로 한다. In the method for producing liposome particles surface-treated with silica of the present invention, the stirring in the step B) is performed for 4 to 24 hours.
본 발명의 실리카로 표면 처리된 리포좀 입자의 제조방법에 있어서, 상기 B) 단계의 교반 시간에 따라 생성되는 리포좀(liposome) 입자의 크기를 조절할 수 있는 것을 특징으로 한다.In the method for producing a liposome particle surface-treated with silica according to the present invention, the size of liposome particles produced according to the agitation time in the step B) can be controlled.
본 발명의 일 실험예에 따르면, 상기 교반시간에 따라 실리카로 표면 처리된 리포좀 입자의 크기를 0.5 내지 5um로 조절할 수 있으며, 상기 교반 시간이 4시간 이하일 경우 리포좀 입자 표면에 실리카의 표면 처리가 제대로 이루어지지 않으며, 교반 시간이 24시간 이상일 경우, 리포좀 입자가 너무 작아 기능성 물질을 담지시킬 수 없기 때문에 담지체로서의 기능을 하기 어렵다는 문제점이 있다(도 2 참조).According to an experimental example of the present invention, the size of the liposome particles surface-treated with silica can be adjusted to 0.5 to 5 μm according to the stirring time, and when the stirring time is 4 hours or less, When the stirring time is longer than 24 hours, there is a problem that the liposome particles are too small to support the functional material, and therefore, it is difficult to function as a carrier (see FIG. 2).
본 발명에 의한 기능성 물질의 담지가 가능한 리포좀 입자는 내부가 비어있으며 이중막을 가지고, 내외부 표면을 실리카로 표면 처리함으로써 외부 환경에 안정하기 때문에 기능성 물질의 담지체로서 우수하다. 또한, 본 발명에 의한 기능성 물질의 담지가 가능한 리포좀 입자의 제조 방법은 교반 속도를 조절하여 원하는 크기의 입자를 제조할 수 있다. The liposome particle capable of supporting the functional material according to the present invention is excellent as a carrier of a functional substance because the liposome particle is empty and has a double membrane and is stable to the external environment by surface treatment of the inner and outer surfaces with silica. In addition, in the method of manufacturing the liposome particles capable of supporting the functional material according to the present invention, it is possible to produce particles of desired size by controlling the stirring speed.
도 1은 본 발명의 실리카 크기제어형 리포좀 입자 개발의 모식도를 나타낸다. Figure 1 shows a schematic diagram of the development of the silica size controlled liposome particle of the present invention.
도 2는 본 발명에 의하여 제조된 실리카 크기제어형 리포좀 입자의 SEM 사진을 나타낸다. Figure 2 shows SEM photographs of the silica size controlled liposome particles prepared according to the present invention.
도 3는 본 발명에 의하여 제조된 실리카 크기제어형 리포좀 입자의 FT-IR 측정 결과를 나타낸다. Figure 3 shows the FT-IR measurement results of the silica size controlled liposome particles prepared according to the present invention.
도 4는 본 발명에 의하여 제조된 실리카 크기제어형 리포좀 입자의 TGA 결과를 나타낸다.Figure 4 shows the TGA results of the silica size controlled liposome particles prepared according to the present invention.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for illustrating the present invention, and thus the scope of the present invention is not construed as being limited by these embodiments.
<실시예> 실리카 크기제어형 리포좀 입자 생성<Example> Production of silica size-controlled liposome particles
리포좀 제조를 위해 필요한 레시틴(Lecithin)은 1,2-diacyl-sn-glycero-3-phosphatidylcholine을 TCI 에서 구입하였으며, 실리카 전구체는 Tetraethyl orthosilicate(TEOS)를 시그마알드리치에서 구입하여 사용하였다. Lecithin was purchased from TCI for 1,2-diacyl-sn-glycero-3-phosphatidylcholine and Tetraethyl orthosilicate (TEOS) was purchased from Sigma Aldrich for use in the preparation of liposomes.
에탄올에 레시틴(Lecithin)을 1 : 0.018 비율로 녹인 후 증류수를 에탄올의 부피비로 1/2을 상온에서 첨가한 후 20분 동안 교반한다. 이 후 용액을 10분 동안 초음파분산 하고 60℃로 온도를 올려 4시간 교반한다. Lecithin is dissolved in ethanol at a ratio of 1: 0.018, then 1/2 of the volume of ethanol is added at room temperature, and the mixture is stirred for 20 minutes. After this, the solution was ultrasonically dispersed for 10 minutes, the temperature was raised to 60 캜 and stirred for 4 hours.
상기 레시틴 분산 용액의 온도를 낮춘 후 실리카 전구체를 레시틴:실리카 전구체=1:5.4의 부피비로 하여 용액를 천천히 떨어뜨려 반응시킨 뒤, 교반 시간을 4시간 내지 24시간까지 변화시키면서 교반하고 상온에 하루동안 유지시킨다. After the temperature of the lecithin dispersion solution was lowered, the silica precursor was adjusted to a volume ratio of lecithin: silica precursor = 1: 5.4, and the solution was slowly dropped to react. The mixture was stirred for 4 hours to 24 hours while being stirred at room temperature .
원심분리기로 생성된 입자와 미 반응된 레시틴, 실리카 입자를 분리한 후, 생성된 입자만을 물과 에탄올을 이용하여 세척하고 오븐에서 상온 건조해 입자를 제조하였다.After separating the particles produced by the centrifugal separator and unreacted lecithin and silica particles, only the generated particles were washed with water and ethanol and dried in an oven at room temperature to prepare particles.
<실험예> <Experimental Example>
실험예 1:SEM 측정Experimental Example 1: SEM measurement
상기 실시예에서 제조된 4시간 동안 교반하여 제조된 입자에 대해 SEM 사진을 측정하고 그 결과를 도 1 및 도 2에 나타내었다. SEM photographs of particles prepared by stirring for 4 hours prepared in the above example were measured and the results are shown in Figs. 1 and 2. Fig.
도 1 및 도 2에서 확인할 수 있듯이, 리포좀 입자가 약 1 ~ 2 μm 정도의 크기로 균일하게 제조된 것을 알 수 있으며, 실리카 레이어 안쪽으로 입자의 내부는 비어있는 중공을 형성하는 것을 확인 할 수 있다. As can be seen from FIGS. 1 and 2, it can be seen that the liposome particles are uniformly produced at a size of about 1 to 2 μm, and that the inside of the silica particles forms hollow hollows .
또한, 교반시간을 변화시키면서 제조하는 경우 입자의 크기가 교반 시간에 따라 작아지면서 크기가 제어되는 것을 확인할 수 있다. In addition, it can be confirmed that the particle size is controlled as the size of the particles decreases with the agitation time when the agitation time is changed.
실험예 2: FT-IR 측정Experimental Example 2: FT-IR measurement
상기 실시예에서 제조된 4시간 동안 교반하여 제조된 리포좀 입자를 FT-IR(Fourier Transform Infared spectroscopy)을 이용하여 그 성분을 확인하였다. The liposome particles prepared by stirring in the above-mentioned example for 4 hours were confirmed by Fourier transform infrared spectroscopy (FT-IR).
그 결과, 도 3에서 확인할 수 있듯이, 레시틴이 가지고 있는 C-H와 C=O 기능기를 2925 cm-1, 1750 cm-1, 실리카가 가지고 있는 Si-O-Si구조를 1100 cm-1에서 나타나는 피크를 통해 확인할 수 있었다.As a result, as shown in FIG. 3, the peaks at 2900 cm -1 and 1750 cm -1 of the CH and C═O functional groups of lecithin and at 1100 cm -1 of the Si-O-Si structure of silica .
실험예 3: TGA 측정Experimental Example 3: TGA measurement
상기 실시예에서 제조된 리포좀 입자의 열분해 특성을 TGA(Thermogravimetric analysis)를 이용하여 확인하였으며, 그 결과를 도 4에 나타내었다.The pyrolysis characteristics of the liposome particles prepared in the above Examples were confirmed by TGA (Thermogravimetric analysis), and the results are shown in FIG.
도 4에서 보는 바와 같이 상기 실시예에서 제조된 4시간 동안 교반하여 제조된 리포좀 입자에서 레시틴에 의한 중량 감소율 및 실리카에 의한 남은 잔여율을 확인한 결과, 100 ℃에서 수분에 의한 중량감소율을 확인하였고, 300 ~ 400 ℃ 구간에서 레시틴에 의한 중량감소를 확인할 수 있었다. 마지막으로 400 ~ 500 ℃ 구간에서 미반응된 실란 그룹에 의한 중량 감소를 알 수 있다. As shown in FIG. 4, when the liposome particles prepared by stirring for 4 hours were observed, the weight loss rate by lecithin and the residual ratio by silica were found to be 100% Weight loss by lecithin could be confirmed in the range of 300 to 400 ° C. Finally, weight loss due to unreacted silane groups in the range of 400 to 500 ° C can be seen.
이를 바탕으로 실리카 크기제어형 리포좀 입자의 실리카가 표면의 18.05% 를 코팅하고 있는 것을 확인하였다.Based on this, it was confirmed that the silica of the silica size control type liposome particles was coated with 18.05% of the surface.
전술한 바와 같이, 본 발명에 따른 기능성 물질 담지용 리포좀 입자는 내외부 표면을 실리카로 표면처리함으로써 기능성 물질을 담지하기 위한 안정성이 우수하다. 또한, 본 발명의 리포좀 입자는 교반속도를 조절함으로써 원하는 크기를 갖는 리포좀 입자를 제조할 수 있다. As described above, the liposome particles for supporting functional materials according to the present invention are excellent in stability for supporting functional materials by surface-treating the inner and outer surfaces with silica. In addition, the liposome particles of the present invention can produce liposome particles having a desired size by controlling the stirring speed.

Claims (10)

  1. 실리카로 표면 처리된 기능성 물질 담지용 리포좀 입자.Liposome particles for supporting functional materials surface-treated with silica.
  2. 제 1 항에 있어서, The method according to claim 1,
    상기 리포좀 입자는 실리카로 표면 처리된 내부 중공을 포함하는 것인 기능성 물질 담지용 리포좀 입자.Wherein the liposome particle comprises an inner hollow surface treated with silica.
  3. 제 1 항에 있어서, The method according to claim 1,
    상기 리포좀 입자는 직경이 0.5 내지 5 um인 것인Wherein the liposome particles have a diameter of 0.5 to 5 [mu] m
    기능성 물질 담지용 리포좀 입자.Liposome particles for supporting functional materials.
  4. 제 1 항에 있어서, The method according to claim 1,
    상기 리포좀 입자 표면의 15 내지 18% 가 실리카로 표면 처리되는 것인 Wherein 15 to 18% of the surface of the liposome particle surface is surface-treated with silica
    기능성 물질 담지용 리포좀 입자.Liposome particles for supporting functional materials.
  5. 제 1 항에 있어서The method of claim 1, wherein
    상기 리포좀 입자는 TGA 분석시 90 내지 110℃, 300 내지 400 ℃ 구간에서 질량 감소가 나타나는 것인 The liposome particles exhibit a mass reduction in the range of 90 to 110 DEG C and 300 to 400 DEG C in TGA analysis
    기능성 물질 담지용 리포좀 입자Liposome Particles for Supporting Functional Substance
  6. 제 1 항에 있어서The method of claim 1, wherein
    상기 리포좀 입자는 FT-IR 분석시 1000 내지 1200 cm-1에서 피크가 나타나는 것인 The liposome particles have peaks at 1000 to 1200 cm &lt; -1 &gt; at FT-IR analysis
    기능성 물질 담지용 리포좀 입자Liposome Particles for Supporting Functional Substance
  7. A) 에탄올, 정제수 및 레시틴을 2 : 1 : 0.04 비율로 혼합한 후, 교반하여 리포좀(liposome) 입자가 분산된 용액을 제조하는 단계; A) mixing ethanol, purified water and lecithin in a ratio of 2: 1: 0.04, and then stirring to prepare a solution in which liposome particles are dispersed;
    B) 상기 A) 단계의 리포좀 입자가 분산된 용액에 실리카 전구체를 혼합하고 교반하여 리포좀 표면을 실리카로 처리하는 단계; 및B) mixing a silica precursor with a solution in which the liposome particles are dispersed in step A) and stirring the liposome surface to treat the liposome surface with silica; And
    C) 상기 B) 단계의 용액을 원심분리하여 실리카로 표면 처리된 리포좀을 분리하는 단계; 및 C) centrifuging the solution of step B) to separate the liposome surface-treated with silica; And
    D) 분리된 실리카로 표면 처리된 리포좀을 세척 및 건조하는 단계; 를 포함하는 실리카로 표면 처리된 리포좀 입자의 제조방법.D) washing and drying the liposome surface-treated with the separated silica; &Lt; / RTI &gt; wherein the liposome particles are surface-treated with silica.
  8. 제 7 항에 있어서, 8. The method of claim 7,
    상기 실리카 전구체는 테트라에틸오르쏘 실리케이트(Tetraethyl orthosilicate), 테트라메틸오르쏘 실리케이트(Tetrmethyl orthosilicate) 또는 이들의 혼합물인 것인The silica precursor may be tetraethyl orthosilicate, tetramethyl orthosilicate, or a mixture thereof.
    실리카로 표면 처리된 리포좀 입자의 제조방법.A method for producing liposome particles surface-treated with silica.
  9. 제 7 항에 있어서, 8. The method of claim 7,
    상기 B) 단계의 교반 시간은 제조되는 입자 크기에 따라 조절하는 것인 The stirring time of the step B) is controlled according to the particle size to be produced.
    실리카로 표면 처리된 리포좀의 제조방법.A method for producing a liposome surface-treated with silica.
  10. 제 7 항에 있어서, 8. The method of claim 7,
    상기 B) 단계의 교반 시간은 4시간 내지 24시간 동안 교반 되는 것인Wherein the stirring in the step B) is carried out for 4 to 24 hours
    실리카로 표면 처리된 리포좀의 제조방법.A method for producing a liposome surface-treated with silica.
PCT/KR2017/015153 2017-12-20 2017-12-20 Liposome particles supporting functional material and having controllable particle size and manufacturing method therefor WO2019124581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0176363 2017-12-20
KR1020170176363A KR102126354B1 (en) 2017-12-20 2017-12-20 Liposome particle able to load functional material and control the particle size, And manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2019124581A1 true WO2019124581A1 (en) 2019-06-27

Family

ID=66993550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015153 WO2019124581A1 (en) 2017-12-20 2017-12-20 Liposome particles supporting functional material and having controllable particle size and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102126354B1 (en)
WO (1) WO2019124581A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113210012A (en) * 2021-04-23 2021-08-06 江苏科技大学 Artificial single cell structure material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080026960A (en) * 2006-09-22 2008-03-26 한국콜마 주식회사 Synthesis of silica impregnated with nanosized liposome emulsion comprising coenzyme q10 and cosmetic compositions using it
KR20110112951A (en) * 2010-04-08 2011-10-14 한국세라믹기술원 Magnetic silica-liposome nanospheres and preparation method thereof
KR20130081428A (en) * 2012-01-09 2013-07-17 한국세라믹기술원 Synthesis method of magnetic nanoparticles for targetable drug delivery system and drug delivery vector using the same
CN104739769A (en) * 2015-03-04 2015-07-01 王海龙 Preparation method of liposome and product prepared by preparation method of liposome

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080026960A (en) * 2006-09-22 2008-03-26 한국콜마 주식회사 Synthesis of silica impregnated with nanosized liposome emulsion comprising coenzyme q10 and cosmetic compositions using it
KR20110112951A (en) * 2010-04-08 2011-10-14 한국세라믹기술원 Magnetic silica-liposome nanospheres and preparation method thereof
KR20130081428A (en) * 2012-01-09 2013-07-17 한국세라믹기술원 Synthesis method of magnetic nanoparticles for targetable drug delivery system and drug delivery vector using the same
CN104739769A (en) * 2015-03-04 2015-07-01 王海龙 Preparation method of liposome and product prepared by preparation method of liposome

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALEXANDER, P.: "Silica coated liposomes for drug delivery towards breast cancer cells", RASAYAN JOURNAL OF CHEMISTRY, vol. 9, no. 3, 2016, pages 300 - 308, XP055620935 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113210012A (en) * 2021-04-23 2021-08-06 江苏科技大学 Artificial single cell structure material and preparation method and application thereof
CN113210012B (en) * 2021-04-23 2023-08-22 江苏科技大学 Artificial single-cell structural material and preparation method and application thereof

Also Published As

Publication number Publication date
KR102126354B1 (en) 2020-06-24
KR20190074771A (en) 2019-06-28

Similar Documents

Publication Publication Date Title
EP2753180A1 (en) Antimicrobial composite material
US7923030B2 (en) Agent-encapsulating micro- and nanoparticles, methods for preparation of same and products containing same
Wu et al. Effects of surface coating on the controlled release of vitamin B1 from mesoporous silica tablets
CN111991368B (en) Preparation method of tea polyphenol coated soy protein isolate-quaternary ammonium salt chitosan microcapsule
Ruysschaert et al. Liposome-based nanocapsules
CN102199312B (en) Mesoporous silica particle compound carrier with controlled-release function as well as preparation method and application thereof
KR20010042547A (en) Wettable microcapsules having hydrophobic polymer coated cores
WO2019124581A1 (en) Liposome particles supporting functional material and having controllable particle size and manufacturing method therefor
CN106924211A (en) A kind of enteric hollow capsule and preparation method thereof
CN105125580B (en) Fullerene-macromolecule composite and preparation method thereof
CN110200936A (en) A kind of bioadhesive porous sustained-release microsphere and preparation method thereof
KR20220136064A (en) Method for preparing antiviral antibacterial coating composition
Guo et al. Iron/dextran sulfate multilayered microcapsules for controlled release of 10-hydroxycamptothecin
WO2017090998A1 (en) Bi-continuous phase emulsion composition containing amphiphilic anisotropic powder
Liang et al. Bio-catalytic nanoparticles with urease immobilized in multilayer assembled through layer-by-layer technique
Grzeczkowicz et al. Polyelectrolyte membrane scaffold sustains growth of neuronal cells
WO2018043987A1 (en) Silica-siloxane nanohybrid coating material and production method therefor
WO2018044035A1 (en) Oil-in-water type cosmetic composition
Zhang et al. Controlled drug delivery system based on magnetic hollow spheres/polyelectrolyte multilayer core–shell structure
US9994714B2 (en) Silica protected pigments for use in artist media
CN106883360B (en) Functionalized stimulus-responsive polymer and preparation method thereof
Vasilieva et al. Polyelectrolyte micro-and nanocapsules with varied shell permeability controlling the rate of esters hydrolysis
CN113265062A (en) Reinforcing agent of moss-preventing coating and preparation method and application thereof
CN114917847A (en) Silicon dioxide microsphere and preparation method and application thereof
WO2015183040A1 (en) Amphiphilic anisotropic powder and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935332

Country of ref document: EP

Kind code of ref document: A1