WO2019124509A1 - 抗hiv医薬組成物 - Google Patents
抗hiv医薬組成物 Download PDFInfo
- Publication number
- WO2019124509A1 WO2019124509A1 PCT/JP2018/047049 JP2018047049W WO2019124509A1 WO 2019124509 A1 WO2019124509 A1 WO 2019124509A1 JP 2018047049 W JP2018047049 W JP 2018047049W WO 2019124509 A1 WO2019124509 A1 WO 2019124509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- methyl
- hiv
- capsid
- represents hydrogen
- hydroxy
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/17—Amides, e.g. hydroxamic acids having the group >N—C(O)—N< or >N—C(S)—N<, e.g. urea, thiourea, carmustine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/15—Medicinal preparations ; Physical properties thereof, e.g. dissolubility
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
Definitions
- the present invention relates to a novel pharmaceutical composition for treating or preventing HIV, which comprises a compound having anti-HIV activity, and a method for treating HIV infection.
- the particles of HIV are spherical with a diameter of about 120 nm, an envelope consisting of a lipid bilayer membrane derived from a host cell in which the viral glycoprotein Env (gp120, gp41) has been implanted, a matrix which is one of viral protein groups Gag lining the envelope Inside the (MA) protein, there is a frustoconical core consisting of capsid (CA) protein which is also one of Gag. Inside the core is a viral genome of positive single stranded RNA which is doubled surrounding nucleocapsid protein (NC).
- HIV Autoimmune disease
- HIV-1 is a common type distributed worldwide, while HIV-2 causes AIDS mainly in West Africa.
- HIV is a retrovirus, and like many viruses, HIV is transmitted in the form of virions (virions) in the infection cycle.
- HIV-1 virions are spherical and contain a high electron density pyramidal core, which is encased in a lipid envelope from the host cell membrane.
- the viral core is (1) the major capsid protein p24 (CA), (2) nucleocapsid protein p7 / p9 (NC), (3) two copies of genomic RNA, and (4) three viral enzymes (protease (PR) , Reverse transcriptase (RT), and integrase).
- the viral core is encased in a matrix protein, so called p17, which is located under the viral envelope.
- the viral envelope carries two viral glycoproteins, gp120 and gp41.
- the genome of the HIV provirus contains the gag, pol and env genes, which encode various viral proteins.
- the products of the gag and pol genes are first translated into large precursor proteins, which are cleaved by viral proteases to produce mature proteins.
- CA is first synthesized as a region within the 55 kDa Gag precursor polyprotein. About 4,000 copies of Gag assemble at the plasma membrane and bud to form immature virus particles. After budding, cleavage of Gag by proteolysis releases CA, which triggers a conformational change, and this change promotes the assembly of capsid particles. Two copies of the viral genome and the enzymes essential for infectivity are contained within the pyramidal capsid at the center of the mature virion.
- the inhibition of the matrix protein that forms the membrane, the capsid protein that contains the HIV-1 gene in the virus, the nucleocapsid protein that works as a chaperone of the viral gene, etc.) is an attractive target for virology and pharmaceutics,
- the HIV-1 Gag protein inhibitor has not yet reached clinical application.
- Non-Patent Document 1 V. Novitsky, et al., J Virol, 2002, 76: 5435-51, HIV Sequence Compendium 2014, Los Alamos National Laboratory, USA.
- CA is of interest as a potential antiviral target.
- Bevirimat (PA-457) has been reported as a CA maturation inhibitor that inhibits the final cleavage by protease between CA and p2 (F. Li, et al. PNAS vol.
- the capsid assembly inhibitor (CAI) is a 12-mer peptide that binds to the C-terminal side of CA and has the effect of suppressing the emergence of virus from infected cells (Non-patent Document 3: Jana Sticht, et. Al. , Nat Struct Mol Biol, pp. 671-677, 2005).
- Non-patent Document 4 Chun Tang, et al., J Mol Biol, vol. 327, pp. 1013-1020, 2003.
- PF-3450074 has been reported to excessively promote CA multimer stabilization and inhibit normal CA function (Non-patent Document 5: Wada S. Blair, PLoS Pathog, vol. 6, 6, Issue 12, e1001220) , 2010).
- the present invention aims to provide a novel molecule having anti-HIV activity.
- the present invention also aims to provide a novel anti-HIV drug targeting HIV-1 capsid.
- the present inventors have made an amino acid insertion mutation (AA) of capsid (CA) found in clinical isolates from HIV-1 infected persons who became refractory after treatment with antiviral agents for a long time Attention was paid to the mutant having such AA, it was found that abnormal self-collapse (self-destruction) of CA which has not been reported up to now occurs. Then, as a result of exhaustively creating and examining mutant strains in which AA was introduced at various positions of CA, the self-disruption of CA having AA proceeds with time by leaving the mutant strain at 37 ° C. Proteolysis pathway on the cell / virus side was not involved, and it was confirmed that insertion mutation to CA inhibited formation of CA multimer and CA shell, and that the insertion mutant strain caused remarkable reduction of infection / replication ability.
- the present inventors have found a compound that induces or accelerates the decay of CA of HIV-1 and completes the present invention.
- the present invention includes the following aspects. [1] The following formula (I):
- X represents C or N
- R 1 represents halogen, hydroxy, nitro, methyl, ethyl, methoxy, halogenated methyl or amino (preferably halogen, hydroxy, nitro, Or methyl, more preferably halogen, hydroxy or methyl)
- R 2 represents hydrogen or phenyl
- R 3 represents hydrogen or methyl
- R 4 represents hydrogen or hydroxy.
- R 5 represents hydrogen, methyl halide or acetyl (preferably hydrogen)
- R 6 represents hydrogen or halogen (preferably halogen)
- R 7 is hydrogen or methyl
- R 8 represents a methyl halide (preferably hydrogen or methyl)
- R 8 represents hydrogen or fluorine when X is C
- n represents 1 or 2.
- R 1 is hydroxy
- R 4 is hydroxy.
- the pharmaceutical composition for the treatment or prevention of HIV which contains the compound represented by these, or its pharmaceutically acceptable salt as an active ingredient. [2] the following formula (II):
- R 1 represents halogen, hydroxy, nitro, methyl, ethyl, methoxy, methyl halide, or amino (preferably halogen, hydroxy, nitro or methyl, more preferably Halogen, hydroxy or methyl),
- R 2 represents hydrogen or phenyl
- R 4 represents hydrogen or hydroxy
- R 5 represents hydrogen, methyl halide or acetyl (preferably hydrogen
- R 6 represents hydrogen or halogen (preferably halogen)
- R 7 represents hydrogen or methyl halide (preferably hydrogen)
- R 8 represents hydrogen or fluorine.
- R 1 is hydroxy
- R 4 is hydroxy.
- the pharmaceutical composition as described in said [1] which contains the compound represented by these or its pharmaceutically acceptable salt as an active ingredient.
- R 1 represents halogen, hydroxy, nitro, methyl, ethyl, methoxy, methyl halide, or amino (preferably halogen, nitro or methyl), and R 3 represents R 6 represents halogen or R 7 represents hydrogen or methyl.
- R 1 represents halogen, hydroxy, nitro, methyl, ethyl, methoxy, methyl halide, or amino (preferably halogen, nitro or methyl)
- R 3 represents R 6 represents halogen or R 7 represents hydrogen or methyl.
- R 3 represents methyl and R 6 represents Br or I.
- composition as described in the above-mentioned [2], which comprises a compound selected from: or a pharmaceutically acceptable salt thereof as an active ingredient.
- a compound selected from: or a pharmaceutically acceptable salt thereof as an active ingredient.
- the above other anti-HIV drug is a chemotherapeutic agent, an antiretroviral inhibitor, a cytokine, a hydroxyurea, a monoclonal antibody that binds to Gag protein, or the other inhibitor of retroviral replication as described above [10] Or the pharmaceutical composition as described in [11]. [13] For a patient in need of treatment or prevention of HIV, a therapeutically effective amount of Formula (I):
- X represents C or N
- R 1 represents halogen, hydroxy, nitro, methyl, ethyl, methoxy, halogenated methyl or amino (preferably halogen, hydroxy, nitro, Or methyl, more preferably halogen, hydroxy or methyl)
- R 2 represents hydrogen or phenyl
- R 3 represents hydrogen or methyl
- R 4 represents hydrogen or hydroxy.
- R 5 represents hydrogen, methyl halide or acetyl (preferably hydrogen)
- R 6 represents hydrogen or halogen (preferably halogen)
- R 7 is hydrogen or methyl
- R 8 represents a methyl halide (preferably hydrogen or methyl)
- R 8 represents hydrogen or fluorine when X is C
- n represents 1 or 2.
- R 1 is hydroxy
- R 4 is hydroxy.
- a method for treating or preventing HIV comprising administering to a patient a compound represented by the formula: or a pharmaceutically acceptable salt thereof as an active ingredient.
- the aforementioned compound or a pharmacologically acceptable salt thereof has the following formula (II):
- R 1 represents halogen, hydroxy, nitro, methyl, ethyl, methoxy, methyl halide, or amino (preferably halogen, hydroxy, nitro or methyl, more preferably Halogen, hydroxy or methyl),
- R 2 represents hydrogen or phenyl
- R 4 represents hydrogen or hydroxy
- R 5 represents hydrogen, methyl halide or acetyl (preferably hydrogen
- R 6 represents hydrogen or halogen (preferably halogen)
- R 7 represents hydrogen or methyl halide (preferably hydrogen)
- R 8 represents hydrogen or fluorine.
- R 1 is hydroxy
- R 4 is hydroxy.
- R 1 represents halogen, hydroxy, nitro, methyl, ethyl, methoxy, methyl halide, or amino (preferably halogen, nitro or methyl), and R 3 represents R 6 represents halogen or R 7 represents hydrogen or methyl.
- a method of screening a substance having anti-HIV activity comprising the following steps: (A) incubating the candidate substance in buffer at a temperature of 37 ⁇ 2 ° C.
- the present invention provides a novel anti-HIV-1 drug based on a completely new mechanism of action and action target that induces the degradation of HIV-1 capsid.
- the schematic positions of mutations inserted into the Gag structural region and the capsid region of HIV-1 are shown.
- the position on the capsid surface of the identified cavity and the position in the capsid hexamer are shown.
- Cell lysates of HIV-1 capsid-expressing cells were incubated at 37 ° C., and the results show that temporal degradation of capsid in the presence of each evaluation compound was confirmed.
- the left figure shows the result of confirmation of intact capsid in cell lysate by ELISA using anti-capsid monoclonal antibody. The amount of capsid at 0 hours was taken as 100%.
- the right panel shows the results of electrophoresis and western blotting of cell lysates and confirmation with polyclonal antibodies against capsids.
- CA HIV-1 capsid
- HIV-1 capsid-disintegrating compound of the present invention is a compound represented by the following structural formula (I) or a pharmaceutically acceptable salt thereof.
- X is C or N.
- R 1 represents halogen, hydroxy, nitro, methyl, ethyl, methoxy, methyl halide or amino, preferably halogen, hydroxy, nitro or methyl, more preferably halogen, hydroxy or methyl is there.
- R 2 represents hydrogen or phenyl.
- R 3 represents hydrogen or methyl.
- R 4 represents hydrogen or hydroxy.
- R 5 represents hydrogen, methyl halide or acetyl, preferably hydrogen.
- R 6 represents hydrogen or halogen, preferably halogen.
- R 7 represents hydrogen, methyl or methyl halide, preferably hydrogen or methyl, more preferably hydrogen.
- R 8 represents hydrogen or fluorine when X is C.
- n 1 or 2; However, in the above formula, when R 1 is hydroxy, R 4 is hydroxy.
- the halogen in each of the above substituents may be the same or different, and includes, but is not limited to, for example, F, Br, Cl, or I.
- HIV-1 capsid decay inducing compounds of the present invention is the compounds represented by the following structural formula (II): or a pharmaceutically acceptable salt thereof.
- R 1 represents halogen, hydroxy, nitro, methyl, ethyl, methoxy, methyl halide or amino, preferably halogen, hydroxy, nitro or methyl, more preferably halogen , Hydroxy or methyl, more preferably hydroxy.
- R 2 represents hydrogen or phenyl, preferably hydrogen.
- R 4 represents hydrogen or hydroxy, preferably hydroxy. However, in the above formula, when R 1 is hydroxy, R 4 is hydroxy.
- the combination of R 1 , R 2 and R 4 is not particularly limited, but preferably R 1 is hydroxy, R 2 is hydrogen, R 4 is hydroxy, or R 1 is halogen, R 2 is hydrogen, R 4 Can raise hydrogen.
- R 5 represents hydrogen, methyl halide or acetyl, preferably hydrogen.
- R 6 represents hydrogen or halogen, preferably halogen.
- R 7 represents hydrogen or methyl halide, preferably hydrogen.
- R 8 represents hydrogen or fluorine, preferably fluorine. However, when R 5 and R 7 are hydrogen, any one of R 6 and R 8 is halogen or fluorine.
- R 5 , R 6 , R 7 and R 8 is not particularly limited, but preferably, R 5 is hydrogen, R 6 is halogen, R 7 is hydrogen, R 8 is fluorine, or R 5 is Acetyl, R 6 , R 7 and R 8 may be hydrogen, or R 6 and R 8 may be hydrogen and R 5 and R 7 may be methyl halide.
- the halogen in each of the above substituents may be the same or different, and is not limited thereto.
- F, Br, Cl, or I can be mentioned, and preferably F is preferable.
- a more preferable compound or a salt thereof in the compound represented by the above formula (II) or a salt thereof is at least one compound selected from the compounds represented by the following formula or a salt thereof.
- At least one compound selected from the compounds represented by the following chemical formula or a salt thereof is at least one compound selected from the compounds represented by the following chemical formula or a salt thereof.
- Another group of preferred HIV-1 capsid decay-inducing compounds of the present invention is a compound represented by the following structural formula (III) or a pharmaceutically acceptable salt thereof.
- R 1 represents halogen, hydroxy, nitro, methyl, ethyl, methoxy, methyl halide or amino, preferably halogen, nitro or methyl.
- R 3 represents hydrogen or methyl.
- R 6 represents a halogen.
- R 7 represents hydrogen or methyl.
- the combination of R 1 and R 3 is not particularly limited, but preferably, R 1 is nitro, R 3 is hydrogen, or R 1 is methyl, R 3 is methyl, or R 1 is halogen, R 3 is methyl, Particularly preferably, R 1 and R 3 are methyl.
- the halogen in each of the above substituents may be the same or different, and is not limited thereto.
- a more preferable compound or a salt thereof in the compound represented by the above formula (III) or a salt thereof is a compound selected from a compound represented by the following formula or a salt thereof.
- the compounds that can be used in the present invention can be synthesized with reference to known methods used in the technical field of small molecule compound synthesis, but some of them can be purchased. At the time of the present application, techniques known in the technical field of compound synthesis can be used without limitation in the present invention.
- composition for the treatment or prevention of HIV infection comprising a therapeutically effective amount of a compound represented by any of the above formulas (I) to (III) or a pharmaceutically acceptable salt thereof.
- a composition is provided.
- “Pharmaceutically acceptable salt thereof” refers to any non-toxic salt formed from the compound represented by any of the above formulas (I) to (III).
- suitable salts include, but are not limited to, hydrochlorides, hydrobromides, hydroiodides, phosphates, hydrogen phosphates, inorganic acid salts such as sulfates, acetates, tri salts Fluoroacetate, malate, succinate, tartrate, lactate, citrate, maleate, fumarate, sorbate, ascorbate, salicylate, phthalate, methanesulfonate, Organic acid salts such as trifluoromethyl sulfonate and benzene sulfonate, inorganic salts such as ammonium salt, alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, carboxylic acid Salts of acid groups such as salts, methylamines, ethylamines, lower alkyl
- the present invention also encompasses pharmaceutical compositions comprising solvates and hydrates formed from compounds represented by any of the above formulas (I) to (III).
- the compounds used in the present invention may be obtained in the form of their hydrates or may contain other solvents used for their crystallization.
- the compounds used in the present invention may form solvates with pharmaceutically acceptable solvents (including water) essentially or by design.
- the compounds used in the present invention encompass both solvated and unsolvated forms.
- solvate refers to a molecular complex of one or more solvent molecules and a compound described above (including its pharmaceutically acceptable salts). Such solvent molecules are commonly used in the pharmaceutical art and are known to be harmless to humans.
- hydrate refers to the complex where the solvent molecule is water.
- the compounds used in the present invention including salts, hydrates and solvates thereof, can form polymorphs. Solvates or hydrates may be useful in the formation of crystalline forms of the compounds represented by any of the above formulas (I) to (III).
- prodrugs include both "prodrug ester” and “prodrug ether”.
- prodrug ester refers to one or more hydroxyls of a compound represented by any of the above formulas (I) to (III), which are alkyl, using methods known to those skilled in the art. Reacting with either alkoxy or aryl substituted acylating or phosphorylating agents to form acetate, pivalate, methyl carbonate, benzoate, amino acid ester, phosphate, half acid ester (eg malonate, succinate or glutarate) etc.
- prodrug ethers include phosphate acetals and O-glycosides of compounds represented by any of the above formulas (I) to (III), which are produced using methods known to those skilled in the art. Both are included.
- Prodrugs refer to compounds that are readily converted in vivo, for example, by hydrolysis in blood, to the parent compound of any of formulas (I) to (III) above.
- the pharmaceutical composition of the present invention comprises, in addition to the compounds of any of the above formulas (I) to (III), one or more pharmaceutically acceptable carriers and, optionally, other HIV antiviral agents, Anti-infective agents, and immunomodulatory agents can be included.
- the term "pharmaceutically acceptable carrier” refers to any and all solvents, dispersion media, coatings, antioxidants, chelating agents, as known to the person skilled in the art. Preservatives (eg, antibacterial agents, antifungal agents), surfactants, buffers, osmotic regulators, absorption delaying agents, salts, drug stabilizers, excipients, diluents, binders, disintegrants, sweeteners , Fragrances, lubricants, dyes and the like, and combinations thereof. Except when any carrier is incompatible with the active ingredient of the present invention, it can be used in the therapeutic or pharmaceutical composition of the present invention.
- Preservatives eg, antibacterial agents, antifungal agents
- surfactants eg, buffers, osmotic regulators, absorption delaying agents, salts, drug stabilizers, excipients, diluents, binders, disintegrants, sweeteners , Fragrances, lubricants, dyes
- therapeutically effective amount when administered to a mammal in need of treatment, is an amount of the above formulas (I) to (III) sufficient to produce a therapeutic effect. It refers to a compound represented by either.
- the therapeutically effective amount will vary depending on the subject and the disease condition to be treated, the weight and age of the subject, the severity of the disease condition, the method of administration, etc, and can be readily determined by one skilled in the art.
- subject refers to an animal. Typically, the animal is a mammal. A subject also refers to, for example, primates (eg, humans), cows, sheep, goats, horses, dogs, cats, rabbits, rats, mice, fish, birds and the like. In certain embodiments, the subject is a primate, preferably a human.
- composition containing the compound represented by any of the above formulas (I) to (III) of the present invention can be formulated according to a known method for formulating a pharmaceutical composition.
- a representative pharmaceutical composition can include the pharmaceutically acceptable carrier described above. The use of these carriers is well known in the art. Also, methods for preparing pharmaceutical compositions containing the active ingredients are well known in the art.
- the pharmaceutical composition of the present invention can be formulated to be compatible with a particular administration route depending on the purpose of use.
- the route of administration is not limited thereto, for example, oral, parenteral, intravenous, intradermal, subcutaneous, transdermal, inhalation, topical, transmucosal or rectal administration.
- the pharmaceutical compositions of the invention may be formulated in solid or liquid form. Fixed forms include, but are not limited to, tablets, capsules, pills, granules, powders, or suppositories, for example.
- Liquid forms include, but are not limited to, solutions, suspensions, or emulsions, for example.
- the pharmaceutical composition of the present invention is preferably administered orally.
- the dose of the compound of the present invention is appropriately selected according to the type of disease, the condition to be administered, the age, the administration method and the like.
- 0.1 to 5000 mg, preferably 1 to 2000 mg, more preferably 5 to 100 mg may be administered once or several times a day. .
- the toxic and therapeutic effects of the compounds according to the invention can be determined, for example, according to standard methods using cell cultures or experimental animals exhibiting viral activity of HIV-1, for example LD50 (lethal dose to 50% of the population) and ED50 (The therapeutically effective dose can be determined in 50% of the population and estimated by determining the therapeutic index (ratio of LD50 / ED50).
- LD50 lethal dose to 50% of the population
- ED50 ED50
- the therapeutically effective dose can be determined in 50% of the population and estimated by determining the therapeutic index (ratio of LD50 / ED50).
- compounds are selected that exhibit large therapeutic coefficients.
- compounds that exhibit toxic side effects may also be used, in such cases it is also possible to design a delivery system that directs the compounds to the site of the infected tissue in order to minimize damage to non-infected cells and reduce side effects. is there.
- the dosage of compound is preferably within a range of circulating concentrations that include the ED50 with little or no toxicity.
- the dosage may vary within this range depending upon the route of administration utilized and the form of preparation utilized.
- the therapeutically effective dose can be estimated initially from cell culture assays. Doses are studied in animal models to achieve a circulating plasma concentration range that includes the IC50 (ie, the concentration of test compound that achieves half-maximal inhibition of symptoms) as measured in cell culture ⁇ Can be determined. Such information can be used to more accurately determine useful doses in humans. Plasma levels can be measured by methods known in the art, such as high performance liquid chromatography.
- the invention also includes a method for the treatment of HIV infection comprising administering to the patient a therapeutically effective amount of a compound represented by any of the above formulas (I) to (III).
- the invention also includes a method (combination) for the treatment of HIV infection and a combination of two or more pharmaceutically active ingredients (combination) comprising administering to a patient in combination with other known anti-HIV agents .
- Other anti-HIV agents include, but are not limited to, for example, chemotherapeutic agents, antiretroviral inhibitors, cytokines, hydroxyurea, monoclonal antibodies that bind to Gag proteins, or other inhibitors of retroviral replication be able to.
- antiretroviral inhibitors may include reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors (such as raltegravir), CCR5 inhibitors (maraviroc), and fusion inhibitors.
- the present invention also provides a method of inhibiting HIV-1 capsid assembly and / or viral replication, comprising the step of administering a therapeutically effective amount of the above-mentioned pharmaceutical composition to a subject.
- the method is further selected from the group consisting of antiretroviral inhibitors, cytokines, hydroxyurea, monoclonal antibodies that bind to Gag proteins, or other inhibitors of retroviral replication.
- antiretroviral inhibitors include reverse transcriptase inhibitors, protease inhibitors, and fusion inhibitors.
- Reverse transcriptase inhibitors include nucleoside / nucleotide reverse transcriptase inhibitors (NRTI) (hereinafter collectively referred to as nucleoside reverse transcriptase inhibitors) and non-nucleoside / nucleotide reverse transcriptase inhibitors (NNRTI) (below , Collectively referred to as non-nucleoside reverse transcriptase inhibitors).
- NRTI nucleoside / nucleotide reverse transcriptase inhibitors
- NRTI non-nucleoside / nucleotide reverse transcriptase inhibitors
- nucleoside reverse transcriptase inhibitors examples include, but are not limited to, zidovudine (ZDV, formerly known as azidothymidine (AZT)), didanosine (dideoxyinosine (ddl)), zalcitabine (dideoxycytidine (dideoxycytidine) ddC), lamivudine (3TC), stavudine (d4T), abacacavir (ABC), tenofovir (TDF).
- ZDV zidovudine
- ZDV zidovudine
- ddl didanosine
- zalcitabine dideoxycytidine
- dddC diocytidine
- lamivudine 3TC
- stavudine d4T
- abacacavir ABSC
- tenofovir TDF
- Protease inhibitors (PIs) of HIV include, but are not limited to, for example, amprenavir, saquinavir mesylate, ritonavir, indinavir sulfate, nelfinavir mesylate, lopinavir and ritonavir, atazanavir, fosamprenae. I can raise a building.
- Examples of fusion inhibitors for HIV include, but are not limited to, enfuvirtide, for example.
- the present invention also includes a method of screening a substance having anti-HIV activity.
- the method of the present invention is characterized in that HIV-1 capsid itself is used to screen for substances that induce capsid disruption.
- the capsid of HIV-1 may be a capsid obtained by introducing a plasmid containing the gene of HIV-1 capsid into cultured cells and expressing the capsid, or a capsid isolated or purified from HIV-1 virus. Preferably, however, HIV-1 capsid expressed in cells is used.
- an expression plasmid is prepared as follows. A wild type CA alone expression plasmid is generated using pCMV-Myc vector (# 631604, Takara Bio Inc.). The vector was linearized by deleting the region containing the Myc epitope with a restriction enzyme. The gene region encoding the capsid is amplified by PCR using HIV-1 NL4-3 as a template, and then introduced into the linearized vector prepared by the above method. Expression of CA Protein The prepared capsid expression plasmid is transfected into cells, and the cells express capsid proteins.
- the cells are not particularly limited, and, for example, COS-7 cells can be used.
- the expressed capsid protein can be used in the form of a cell lysate, in the state of crude purification, or in the state of purification. Crude purification and purification of the expressed capsid can be carried out with reference to known methods.
- the HIV-1 wild type capsid prepared as described above can be used to screen for compounds that induce capsid collapse.
- the lysate and a compound of interest may be used at a given temperature (eg 37 ° C.) for a predetermined time (eg several hours to several days)
- A) Incubate and check for induction of capsid disruption. Disruption of the capsid can be confirmed, for example, by measuring the antigen amount of the capsid by ELISA using, but not limited to, an antibody against the capsid.
- Example 1 Preparation of HIV-1 Capsid Mutant Strain A mutant strain in which an insertion mutation was introduced into the Gag structure (matrix (p17) region and capsid (p24) region) of HIV-1 was prepared as follows. The HIV-1 NL4-3 laboratory wild strain HIV-1 strains, Tn5 transposon system (EZ-Tn5 TM In-Frame Linker Insertion Kit, # EZI04KN, Epicentre Co.) 19 amino acid insertion in the Gag region by using a A mutation was introduced.
- Tn5 transposon system EZ-Tn5 TM In-Frame Linker Insertion Kit, # EZI04KN, Epicentre Co.
- a transposon sequence having a kanamycin resistance gene is inserted at a random position in the Gag region by the action of transposase, by kanamycin
- a Gag gene fragment having an insertion mutation was excised and incorporated into HIV-1 NL4-3 , and then the kanamycin resistance gene was removed by restriction enzyme treatment. The position of the insertion mutation in each obtained clone was confirmed by sequence analysis.
- the cell lysate of each mutant strain was electrophoresed as follows to confirm the autolysis of the capsid.
- the wild-type strain and one of the mutant strains were electrophoresed using virion lysates, and it was confirmed that there were no differences from the results in cell lysates.
- cell lysate and virion lysate were obtained.
- the virion lysate was collected from the virus supernatant after forced expression, passed through a filter with a pore size of 0.22 ⁇ m and subjected to ultracentrifugation, and after removing all the supernatant, it was prepared from virion pellet.
- Example 2 Single time of the expressed allowed insertion mutant capsid disintegration Then, wild-type capsid (pCA NL4-3 (WT)) and the N-terminal region of the four mutant capsids (capsids introducing insertional mutation C1 and C2 Using the cell lysate of a single expression of a mutant strain in which a mutation has been inserted, a mutant strain in which a mutation has been inserted in the C-terminal region C6 or C7), the temporal self-disruption of the capsid is as follows: I confirmed it.
- Example 3 Confirmation of Infectivity of HIV-1 Capsid Mutant Strain
- the infectivity of the HIV-1 capsid mutant obtained in Example 1 was confirmed as follows.
- the infectivity of wild HIV-1 (HIV-1 WT ) and the insertion mutant HIV-1 was evaluated using U373-Magi CD4 + CXCR4 + cells incorporating a fusion gene of HIV-1 LTR and E. coli lacZ gene, respectively.
- HIV-1 LTR incorporated in infected cells is promoted by Tat, a transcriptional regulator of HIV-1, and its downstream lacZ gene increases ⁇ -gal activity, resulting in X-gal.
- the number of blue-stained infected cells after reaction can be measured, and the infectivity can be evaluated.
- Example 4 Confirmation of Replication Ability of HIV-1 Capsid Mutant Strain
- the replication ability of the HIV-1 capsid mutant obtained in Example 1 was confirmed as follows. After infection of MT-4 cells with HIV-1 WT and insertion mutant HIV-1 forcibly expressed in COS-7 cells, the cells are washed with medium, and cell culture is continued with fresh medium, and supernatants are accumulated over time. The p24 concentration in the medium was measured. As a result, no virus growth was observed in a mutant strain having an insertion mutation in the capsid region and exhibiting capsid autolysis (a mutant strain having mutations in C1 to C8).
- Example 5 Identification of Hydrophobic Cavity on Capsid Surface
- a hydrophobic cavity having a size capable of binding a compound was identified as follows. Analysis of the surface structure of wild-type HIV-1 capsid monomer based on the crystal structure data of HIV-1 capsid registered in the Protein Data Bank enables the autolysis of the capsid by introducing insertion mutations. In the vicinity of the site where the infectivity and replication ability of the mutant strain are significantly impaired, a search was made for a hydrophobic cavity having a size capable of binding the compound. As a result, a cavity having a surface area of 738.9 ⁇ 2 and a volume of 252.8 ⁇ 3 was identified on the N-terminal side of the capsid. This cavity is in the middle of the capsid hexamer. The position of the cavity is shown in FIG.
- Example 6 Identification of compounds that bind to the capsid cavity
- the structural data of more than about 8 million compounds available for purchase are obtained from academic and commercial compound databases, and when they are actually administered to a living organism, the production of each compound is obtained. Taking into account the factors affecting ADME in the body, about 7 million compounds having molecular properties that could be drugs were extracted. For approximately 7 million compounds selected, three-dimensional structural transformation and energy minimization calculation are performed using MMFF94 (Merck Molecular Force Field 94), and after optimizing the structure of each compound in the solvent, virtual docking is performed. The binding score with the target cavity (cavity) on the capsid of each compound was calculated by the method of simulation (in silico docking simulation), and a compound having a good binding score was selected.
- MMFF94 Merck Molecular Force Field 94
- Example 7 Evaluation of anti-HIV-1 activity
- the self-disintegrating activity of HIV-1 capsid was evaluated for the compounds selected in Example 6.
- (1) Preparation of wild type capsid expression plasmid A wild type capsid expression plasmid was prepared as follows. Using pCMV-Myc vector (# 631604, Takara Bio Inc.), a plasmid for expressing wild type CA alone was prepared. The vector was linearized by deleting the region containing the Myc epitope with a restriction enzyme. The gene region encoding capsid was amplified by PCR using HIV-1 NL4-3 as a template, and then introduced into the above linearized vector.
- the prepared cell lysate was aliquoted into four tubes and allowed to incubate at 37 ° C. for different times (0 to 72 hours).
- the amount of capsid antigen in each cell lysate was measured by ELISA using a monoclonal antibody against the capsid (Catalog No. # 2503, purchased from Novus Biologicals), and the percentage of stable capsid was determined from the following equation. (P24 antigen amount of each sample / p24 antigen amount of non-incubated sample) X 100
- the following two compounds were used as evaluation compounds, and those to which only DMSO was added were used as controls.
- FIG. 3A The results of the ELISA are shown in FIG. 3A.
- each sample was electrophoresed and then Western blot was performed to detect a stable capsid using an anti-capsid polyclonal antibody.
- FIG. 3B Both compounds significantly induced capsid autolysis.
- the EC 50 of each compound was 0.2 ⁇ M of compound-A and 7.8 ⁇ M of compound-D.
- Example 8 Evaluation of Anti-HIV-1 Activity
- the compounds selected in Example 6 were evaluated for anti-HIV-1 activity by MTT assay as follows.
- MTT assay with MT-2 cells and HIV-1 LAI which is a laboratory wild strain was used.
- Each compound was serially diluted on a 96-well plate, and a mixed solution of virus and MT-2 cells at a concentration of 100 TCID 50 was added to the wells, and wells containing only MT-2 cells were prepared as a control for 7 days. After culture, MTT reagent was added to each well and cultured to perform a color reaction.
- MTT solubilization solution is added to each well to dissolve formazan crystals (synthesized in living cells), and then the absorbance of each well is measured, and compared with the absorbance in wells where only cells are cultured, anti-HIV-1 When there was activity, it was calculated as an EC 50 value which is a concentration that inhibits 50% of the cell injury caused by HIV-1 infection.
- EC 50 value is a concentration that inhibits 50% of the cell injury caused by HIV-1 infection.
- cell infected with HIV-1 wild-type strain HIV-1 LA1
- cell lysates are used in the same manner to inhibit the anti-HIV- of the above two compounds. 1 activity was evaluated. The results of the ELISA are shown in FIG. 4A.
- each sample was electrophoresed and then Western blot was performed to detect a stable capsid using an anti-capsid polyclonal antibody.
- the results are shown in FIG. 4B. Also in the experiment using HIV-1 expressing cells, all compounds induced remarkable self-disruption of capsid.
- FIG. Fig. 5A is an electron micrograph of a virus suspension cultured for 72 hours without adding a compound (all viruses in the figure are randomly selected), and Fig. 5B is a virus suspension cultured for 72 hours with adding Compound-A (figure All viruses are randomly selected) electron micrographs. It was confirmed that Compound-A induced a significant morphological change of mature HIV-1.
- Example 9 Screening of Other Compounds
- cell lysates of wild type capsid-expressing cells were used to measure the capsid autodisintegration-inducing activity of the other compounds selected in Example 6.
- remarkable capsid autodisintegration-inducing activity was observed in the compounds shown in Table 2 below.
- the structure and EC 50 of each compound are shown in the table. The above two compounds are also described in the table.
- the compounds of the present invention are useful as antiviral inhibitors because they exhibit anti-HIV activity by inducing the collapse of the capsid.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- AIDS & HIV (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Biophysics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本発明は、抗HIV活性を有する新規な低分子を提供することを目的とする。本発明はまた、HIV-1キャプシドをターゲットとした新規な抗HIV薬を提供することを目的とする。本発明により、下記式(I): [式(I)中、Xは、C又はNを表し、R1は、ハロゲン、ヒドロキシ、ニトロ、メチル、エチル、メトキシ、ハロゲン化メチル、又はアミノを表し、R2は、水素又はフェニルを表し、R3は、水素又はメチルを表し、R4は、水素又はヒドロキシを表し、R5は、水素、ハロゲン化メチル、又はアセチルを表し、R6は、水素又はハロゲンを表し、R7は、水素、メチル、又はハロゲン化メチルを表し、R8は、XがCの場合は、水素又はフッ素を表し、nは、1又は2を表す。但し、R1がヒドロキシの場合は、R4はヒドロキシである。]で表される新規な抗HIV活性を有する化合物が提供される。
Description
本発明は、抗HIV活性を有する化合物を含む新規なHIVの治療又は予防のための医薬組成物、並びに、HIV感染の治療方法に関する。
HIVの粒子は直径約120nmの球状で、ウイルス糖タンパク質Env(gp120,gp41)が植え付けられた宿主細胞由来の脂質二重膜からなるエンベロープ、エンベロープを裏打ちするウイルスタンパク群Gagの一つであるマトリックス(MA)タンパク質、その内側にやはりGagの一つであるキャプシド(CA)タンパクからなる円錐台状をしたコアが存在する。コアの内側にヌクレオキャプシドタンパク質(NC)に取り巻かれて二重体化しているポジティブ一本鎖RNAのウイルスゲノムが存在する。
自己免疫疾患(AIDS)はHIVによって生じる。遺伝学的に異なる2つの型のHIV、いわゆるHIV-1およびHIV-2がAIDS患者から単離されている。HIV-1は、世界的に分布している一般的なタイプであり、一方、HIV-2は主に西アフリカにおいてAIDSを引き起こしている。
HIVはレトロウイルスであり、多くのウイルスと同様、HIVも感染サイクルの中でウイルス粒子(ビリオン)の形になることで感染する。HIV-1ビリオンは球状であって、高電子密度の錐体形コアを含んでおり、それは宿主細胞膜由来の脂質エンベロープに包まれている。ウイルスコアは(1)主要なキャプシドタンパク質p24(CA)、(2)ヌクレオキャプシドタンパク質p7/p9(NC)、(3)2コピーのゲノムRNA、および(4)3つのウイルス酵素(プロテアーゼ(PR)、逆転写酵素(RT)、およびインテグラーゼ)を含有する。ウイルスコアはマトリックスタンパク質、いわゆるp17に包まれ、これはウイルスエンベロープの下側に位置している。ウイルスエンベロープには2つのウイルス糖タンパク質、gp120およびgp41が付いている。
HIVプロウイルスのゲノムはgag、pol、およびenv遺伝子を含有し、これらは種々のウイルスタンパク質をコードする。gagおよびpol遺伝子の産物はまず、大きな前駆体タンパク質に翻訳されるが、このタンパク質は、ウイルスのプロテアーゼによって切断され、成熟タンパク質を生成する。
CAはまず、55kDaのGag前駆体ポリタンパク質内の一領域として合成される。約4,000コピーのGagが原形質膜で集合し、出芽して未成熟なウイルス粒子を形成する。出芽後、タンパク質分解によってGagが切断されるとCAが遊離し、それが引き金となって立体構造が変化し、この変化によりキャプシド粒子の構築が促進される。2コピーのウイルスゲノム及び感染性に必須の酵素は、成熟ビリオンの中心の錐体形キャプシド内に内包される。
既存の抗HIV-1剤は、主にウイルス側の酵素である逆転写酵素、プロテアーゼ、インテグラーゼを標的として開発されているが、長期的な(生涯にわたる)加療に起因する薬剤耐性株の出現は最も危惧すべき問題となっている。そこで、現行の治療薬とは全く異なる機序でHIV-1の増殖を阻止する新たな治療法の開発が急務であり、HIV-1の骨格形成因子であるGagタンパク群(HIV-1最外層の膜を形成するマトリクスタンパク質、ウイルス内でHIV-1遺伝子を包むキャプシドタンパク質、ウイルス遺伝子のシャペロンとして働くヌクレオキャプシドタンパク質等)の阻害は、ウイルス学・創薬学的に魅力的なターゲットであるが、HIV-1 Gagタンパク阻害剤に関しては未だ臨床応用に至っていない。
最近のいくつかの研究では、適正なキャプシドの構築がウイルスの感染性に極めて重要であることが示されている。構築を阻害するCAの変異は致死であり、CAの安定性を変化させる変異は複製を著しく減弱させる。また、CAは非常に保存された領域である(非特許文献1:V. Novitsky, et al., J Virol, 2002, 76:5435-51, HIV Sequence Compendium 2014, Los Alamos National Laboratory, USA)。よって、CAは有望な抗ウイルス標的として関心を集めている。HIV-1 CA阻害剤として、いくつか報告がなされている。Bevirimat(PA-457)は、CAとp2間でのプロテアーゼによる最終的な開裂を阻害するCA成熟阻害剤として報告されている(非特許文献2:F. Li, et al. PNAS vol. 100, no. 23, pp.13555-13560, 2003)。キャプシドアセンブリー阻害剤(CAI)は、CAのC末端側に結合する12-merのペプチドであり、感染細胞からウイルスの出芽を抑制する作用を示す(非特許文献3:Jana Sticht, et. al., Nat Struct Mol Biol, pp. 671-677, 2005)。N-(3-chloro-4-methylphenyl)-N'-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}urea(CAP-1)は、CAのN末端に結合する化合物である(非特許文献4:Chun Tang, et al., J Mol Biol, vol. 327, pp. 1013-1020, 2003)。PF-3450074は、CA多量体安定化を過剰促進させ、正常なCAの機能を阻害すると報告されている(非特許文献5:Wada S. Blair, PLoS Pathog, vol., 6, Issue 12, e1001220, 2010)。
V. Novitsky, et al., J Virol, 2002, 76:5435-51, HIV Sequence Compendium 2014, Los Alamos National Laboratory, USA
F. Li, et al. PNAS vol. 100, no. 23, pp.13555-13560, 2003
Jana Sticht, et. al., Nat Struct Mol Biol, pp. 671-677, 2005
Chun Tang, et al., J Mol Biol, vol. 327, pp. 1013-1020, 2003
Wada S. Blair, PLoS Pathog, vol., 6, Issue 12, e1001220, 2010
本発明は、新規な抗HIV活性を有する分子を提供することを目的とする。本発明はまた、HIV-1キャプシドをターゲットとした新規な抗HIV薬を提供することを目的とする。
本発明者らは、長期間の抗ウイルス剤による治療を受けた後、治療不応性となったHIV-1感染者由来の臨床分離株に認められるキャプシド(CA)のアミノ酸挿入変異(AA)に注目し、このようなAAを有する変異株では、今まで報告の無いCAの異常な自己崩壊(自壊)がおこることを見出した。そして、CAの様々な位置にAAを導入した変異株を網羅的に作成し検討した結果、AAを有するCAの自己崩壊は、変異株を37℃で静置することで経時的に進行し、細胞/ウイルス側のタンパク分解経路は関与せず、CAへの挿入変異がCA多量体及びCA殻の形成を阻害する事、挿入変異株では著しい感染・複製能の低下が起こることを確認した。
そして、本発明者らは鋭意検討した結果、HIV-1のCAの崩壊を誘発又は促進する化合物を見いだし、本発明を完成させた。本発明は以下の態様を含むものである。
[1]下記式(I):
[1]下記式(I):
[2]下記式(II):
[3]上記式(II)において、R1及びR4はヒドロキシを表す、上記[2]に記載の医薬組成物。
[4]上記式(II)において、R6はハロゲン(好ましくは、フッ素)、R8はフッ素である、上記[3]に記載の医薬組成物。
[5]上記式(II)において、R1及びR6はハロゲンである、上記[2]に記載の医薬組成物。
[6]下記式(III):
[7]上記式(III)において、R3はメチルを表し、R6は、Br又はIを表す、上記[6]に記載の医薬組成物。
[8]以下の化合物:
[10]他の抗HIV薬と併用されることを特徴とする上記[1]から[9]のいずれか一つに記載の医薬組成物。
[11]有効成分として、さらに他の抗HIV薬を含む上記[1]から[9]のいずれか一つに記載の医薬組成物。
[12]前記他の抗HIV薬が、化学療法剤、抗レトロウイルス阻害剤、サイトカイン、ヒドロキシウレア、Gagタンパク質に結合するモノクローナル抗体、又は他のレトロウイルス複製の阻害剤である、上記[10]又は[11]に記載の医薬組成物。
[13]HIVの治療又は予防が必要とされている患者に、治療有効量の下記式(I):
[14]前記化合物又はその薬理学的に許容される塩が、下記式(II):
[15]前記化合物又はその薬理学的に許容される塩が、記式(III):
[16]さらに治療有効量の他の抗HIV薬を投与することを特徴とする上記[13]から[15]のいずれか一つに記載の方法。
[17]抗HIV活性を有する物質をスクリーニングする方法であって、以下の工程:
(a)HIV-1の野生型キャプシドを発現する細胞からの調製したキャプシドとともに候補物質を緩衝液中で37±2℃の温度にてインキュベートする工程、ここで、該細胞は、HIV-1の野生型キャプシドの発現プラスミドを用いて形質転換した細胞であり、キャプシド以外のHIV-1由来の成分を発現しない細胞である、及び
(b)キャプシドの崩壊を検出する工程、
を含むスクリーニング方法。
[18]前記工程(b)は、無傷の(intact)キャプシドの抗原量を、抗キャプシド抗体を用いて測定する工程である、上記[17]に記載のスクリーニング方法。
本発明は、HIV-1のキャプシドの崩壊を誘導するという全く新しい作用機序・作用標的に基づく新規な抗HIV-1薬を提供するものである。
以下、本発明を、例示的な実施態様を例として、本発明の実施において使用することができる好ましい方法および材料とともに説明する。なお、文中で特に断らない限り、本明細書で用いるすべての技術用語及び科学用語は、本発明が属する技術分野の当業者に一般に理解されるのと同じ意味をもつ。また、本明細書に記載されたものと同等または同様の任意の材料および方法は、本発明の実施において同様に使用することができる。また、本明細書に記載された発明に関連して本明細書中で引用されるすべての刊行物および特許は、例えば、本発明で使用できる方法や材料その他を示すものとして、本明細書の一部を構成するものである。
本明細書中で、「X~Y」という表現を用いた場合は、下限としてXを、上限としてYを含む意味で用いる。
本発明者らは、HIV-1のキャプシド(CA)の詳細な結晶構造解析を行った。特に、HIV-1の野生型キャプシド単量体の主にN末端側の表面構造を解析する事により、挿入変異が入る事により著しいCAの自己崩壊をもたらす特定のアミノ酸部位を同定した。そして、その特定のアミノ酸部位近傍に、低分子化合物が結合し得る充分な空間を有する疎水性空間(cavity)を同定した。
次いで、購入可能な800万個超の化合物の構造データを、学術・商用の化合物データベースより入手し、実際に生体に投与された場合に各化合物の生体内でのADMEに影響を及ぼす要素を考慮した上で 薬剤となりうる分子特性を有する化合物約700万個を抽出、各化合物データについてエネルギー極小化計算を行い、溶媒中における各化合物の構造を最適化した上で、in silico ドッキングシミュレーション の手法により各化合物のCA上の標的cavityとの結合スコアを計算し、スコアの良い化合物に関しては実際に購入し、MT2 細胞を用いたMTT assay により野生株であるHIV-1LAI に対する抗ウイルス活性を評価した。その結果、本発明の、HIV-1のCAの崩壊を誘導する化合物を同定した。
次いで、購入可能な800万個超の化合物の構造データを、学術・商用の化合物データベースより入手し、実際に生体に投与された場合に各化合物の生体内でのADMEに影響を及ぼす要素を考慮した上で 薬剤となりうる分子特性を有する化合物約700万個を抽出、各化合物データについてエネルギー極小化計算を行い、溶媒中における各化合物の構造を最適化した上で、in silico ドッキングシミュレーション の手法により各化合物のCA上の標的cavityとの結合スコアを計算し、スコアの良い化合物に関しては実際に購入し、MT2 細胞を用いたMTT assay により野生株であるHIV-1LAI に対する抗ウイルス活性を評価した。その結果、本発明の、HIV-1のCAの崩壊を誘導する化合物を同定した。
HIV-1キャプシドの崩壊誘導化合物
本発明のHIV-1キャプシド崩壊誘導化合物は、下記の構造式(I)により表される化合物又は薬学的に許容されるその塩である。
本発明のHIV-1キャプシド崩壊誘導化合物は、下記の構造式(I)により表される化合物又は薬学的に許容されるその塩である。
上記各置換基におけるハロゲンは、同じであっても異なってもよく、これに限定されないが、例えば、F,Br,Cl,又はIをあげることができる。
好ましい本発明のHIV-1キャプシド崩壊誘導化合物の一つのグループは、下記の構造式(II)により表される化合物又は薬学的に許容されるその塩である。
上記式中、R5は、水素、ハロゲン化メチル、又はアセチルを表し、好ましくは、水素である。R6は、水素又はハロゲンを表し、好ましくは、ハロゲンである。R7は、水素又はハロゲン化メチルを表し、好ましくは水素である。R8は、水素又はフッ素を表し、好ましくはフッ素である。但し、R5及びR7が水素の場合、R6,R8のいずれか一つはハロゲン又はフッ素である。R5、R6、R7、及びR8、の組合せは、特に限定されないが、好ましくは、R5が水素、R6がハロゲン、R7が水素、R8がフッ素、又は、R5がアセチル、R6、R7、R8が水素、又はR6、R8が水素、R5、R7がハロゲン化メチル、をあげることができる。
上記各置換基におけるハロゲンは、同じであっても異なってもよく、これに限定されないが、例えば、F,Br,Cl,又はIをあげることができ、好ましくはFである。
上記式(II)で表される化合物又はその塩においてより好ましい化合物又はその塩は、以下の式で表される化合物から選ばれる少なくとも一つの化合物又はその塩である。
よりさらに好ましいのは、以下の化学式で表される化合物から選ばれる少なくとも一つの化合物又はその塩である。
好ましい本発明のHIV-1キャプシド崩壊誘導化合物の別の一つのグループは、下記の構造式(III)により表される化合物又は薬学的に許容されるその塩である。
上記式(III)で表される化合物又はその塩においてより好ましい化合物又はその塩は、以下の式で表される化合物から選ばれる化合物又はその塩である。
よりさらに好ましいのは、以下の化学式で表される化合物又はその塩である。
本発明で用いることができる化合物は、低分子の化合物合成の技術分野において用いられている公知の方法を参照して合成することができるが、その一部は購入することも可能である。本出願時において化合物合成の技術分野において公知の技術は、本発明において制限なく用いることができる。
医薬組成物
本発明に従って、治療上有効量の上記式(I)~(III)のいずれかで表される化合物又は薬学的に許容されるその塩を含むHIV感染の治療又は予防のための医薬組成物が提供される。
本発明に従って、治療上有効量の上記式(I)~(III)のいずれかで表される化合物又は薬学的に許容されるその塩を含むHIV感染の治療又は予防のための医薬組成物が提供される。
「薬学的に許容されるその塩」とは、上記式(I)~(III)のいずれかで表される化合物から形成されるあらゆる非毒性の塩を示す。適切な塩としては、例えば、これに限定しないが、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、リン酸塩、リン酸水素塩、硫酸塩などの無機酸塩、酢酸塩、トリフルオロ酢酸塩、リンゴ酸塩、コハク酸塩、酒石酸塩、乳酸塩、クエン酸塩、マレイン酸塩、フマル酸塩、ソルビン酸塩、アスコルビン酸塩、サリチル酸塩、フタル酸塩、メタンスルホン酸塩、トリフルオロメチルスルホン酸塩、ベンゼンスルホン酸塩などの有機酸塩、アンモニウム塩などの無機塩、ナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩、マグネシウム塩などのアルカリ土類金属塩、カルボン酸塩などの酸性基の塩、メチルアミン、エチルアミン、シクロヘキシルアミンなどの低級アルキルアミン、ジエタノールアミン、トリエタノールアミンなどの置換低級アルキルアミンなどの有機塩基との塩、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩などのアミノ酸塩などをあげることができる。
本発明はまた、上記式(I)~(III)のいずれかで表される化合物から形成される溶媒和物及び水和物を含む医薬組成物を包含する。本発明で用いる化合物(それらの塩を含む)は、それらの水和物の形態で得られるか、またはそれらの結晶化のために用いられる他の溶媒を含み得る。本発明で用いる化合物は、本質的にまたは設計によって、薬学的に許容される溶媒(水を含む)との溶媒和物を形成してもよい。したがって、本発明で用いる化合物は、溶媒和および非溶媒和形態の両方を包含する。「溶媒和物」という用語は、1種以上の溶媒分子と上記の化合物(その薬学的に許容される塩を含む)の分子複合体を指す。このような溶媒分子は、医薬技術分野で一般的に用いられるものであり、ヒトに無害であると知られている。例えば、これに限定されないが、水、エタノールなどである。「水和物」という用語は、溶媒分子が水である複合体を指す。本発明で用いる化合物は、その塩、水和物および溶媒和物を含め、多形を形成し得る。溶媒和物または水和物は、前記式(I)~(III)のいずれかで表される化合物の結晶形態の生成において有用となることがある。
本発明で用いる化合物は「プロドラッグ」も含む。本明細書で用いる「プロドラッグ」は、「プロドラッグエステル」および「プロドラッグエーテル」の両方を包含する。本明細書で用いる「プロドラッグエステル」には、当業者に公知の方法を用いて、上記式(I)~(III)のいずれかで表される化合物の1つ以上のヒドロキシルを、アルキル、アルコキシ、もしくはアリール置換アシル化剤もしくはリン酸化剤のいずれかと反応させて、アセテート、ピバレート、メチルカーボネート、ベンゾエート、アミノ酸エステル、ホスフェート、ハーフ酸エステル(例えばマロネート、スクシネート、もしくはグルタレート)などを生成することにより形成される、エステルおよびカーボネートが含まれる。本明細書で用いる「プロドラッグエーテル」には、当業者に公知の方法を用いて製造される、上記式(I)~(III)のいずれかで表される化合物のホスフェートアセタールおよびO-グリコシドの両方が含まれる。
プロドラッグは、インビボで、例えば血中での加水分解により、上記式(I)~(III)のいずれかで表される親化合物に直ちに変換される化合物をいう。
プロドラッグは、インビボで、例えば血中での加水分解により、上記式(I)~(III)のいずれかで表される親化合物に直ちに変換される化合物をいう。
本発明の医薬組成物は、上記式(I)~(III)のいずれかで表される化合物に加え、1以上の薬学的に許容される担体、及び、適宜、他のHIV抗ウイルス薬、抗感染症薬、及び免疫調整薬を含むことができる。
本明細書で使用される「薬学的に許容される担体」という用語は、当業者に知られているように、任意およびすべての、溶媒、分散媒体、コーティング剤、酸化防止剤、キレート剤、保存剤(例えば、抗菌剤、抗真菌剤)、界面活性剤、緩衝剤、浸透圧調節剤、吸収遅延剤、塩、薬物安定剤、賦形剤、希釈剤、結合剤、崩壊剤、甘味剤、芳香剤、潤沢剤、染料など、及びそれらの組合せを含む。何れかの担体が本発明の活性成分と不適合である場合以外は、本発明の治療または医薬組成物において使用することができる。
本明細書で使用される「治療上有効量」という用語は、治療を必要とするほ乳類に投与される場合、治療効果を生じさせるのに十分な量の上記式(I)~(III)のいずれかで表される化合物をいう。治療上有効量は対象および治療する疾患症状、対象の体重および年齢、疾患症状の重症度、投与方法などに依存して異なり、当該技術分野における当業者により容易に決定されることができる。
本明細書で使用される「対象」という用語は、動物を指す。典型的には、動物は、哺乳動物である。対象は、例えば、霊長類(例えば、ヒト)、ウシ、ヒツジ、ヤギ、ウマ、イヌ、ネコ、ウサギ、ラット、マウス、魚類、鳥類なども指す。ある種の実施形態において、対象は霊長類、好ましくはヒトである。
本発明の上記式(I)~(III)のいずれかで表される化合物を含む医薬組成物は、医薬組成物の処方のための既知の方法に準じて処方することができる。代表的な医薬組成物には、上記した薬学的に許容される担体が含まれうる。これらの担体の使用は、当該技術分野においてよく知られている。また、活性成分を含む医薬組成物を調製するための方法は、当該技術分野においてよく知られている。
本発明の医薬組成物は、使用目的に応じた特定の投与経路に適合するように製剤化されうる。投与経路は、これに限定されないが、例えば、経口、非経口、静脈内、皮内、皮下、経皮、吸入、局所、経粘膜的、又は直腸投与がある。本発明の医薬組成物は、固体形態又は液体形態で製剤化されうる。固定形態は、これに限定されないが、例えば、錠剤、カプセル剤、丸剤、顆粒剤、散剤、又は坐剤を含む。液体形態は、これに限定されないが、例えば、溶液剤、懸濁剤、又は乳濁剤を含む。本発明の医薬組成物は、好ましくは経口により投与される。
本発明の化合物の投与量は、疾患の種類、投与対象の症状、年齢、投与方法等により適宜選択される。例えば、これに限定されないが、経口剤であれば、通常、1日当たり0.1~5000mg、好ましくは1~2000mg、より好ましくは5~100mgを、1回又は数回に分けて投与すればよい。
本発明の化合物の毒性および治療効果は、例えば、HIV-1のウイルス活性を表す細胞培養又は実験動物を用いた標準的な方法に従って、例えば、LD50(集団の50%に対する致死量)及びED50(集団の50%において治療的に有効な用量)を決定し、治療係数(LD50/ED50の比)を求めることにより推測することができる。好ましくは、大きい治療係数を示す化合物が選択される。中毒性副作用を示す化合物も使用されうるが、係る場合は、非感染細胞へのダメージを最小限にして、副作用を減少させるため、該化合物を感染組織の部位に導く送達システムの設計も可能である。
細胞培養アッセイ及び動物試験から得られたデータを、ヒトでの使用の投与量の範囲を決定する際に用いることができる。多くの場合、化合物の投与量は、ほとんど毒性を有さないかまたは全く毒性がないED50を含む循環濃度の範囲内が好ましい。投与量は、利用される投与経路及び利用される製剤形に依存してこの範囲内で変動しうる。本発明の化合物について、治療的に有効な用量が、細胞培養アッセイより最初に見積もられ得る。細胞培養中で測定されたようなIC50(すなわち、症状の半分最大阻害(half-maximal inhibition)を達成する試験化合物の濃度)を含む循環血漿濃度範囲を達成するために、用量は動物モデルで検討・決定されうる。このような情報はヒトにおいて有用な用量をより正確に決定するために使用することができる。血漿レベルは、当該分野における公知の方法、例えば、高速液体クロマトグラフィーによって測定され得る。
本発明はまた、治療有効量の上記式(I)から(III)のいずれかで表される化合物を、患者に投与することを含む、HIV感染の治療のための方法を含む。本発明はまた、他の既知の抗HIV薬と組み合わせて患者に投与することを含む、HIV感染の治療のための方法(併用)及び2つ以上の医薬有効成分の組合せ(配合剤)を含む。他の抗HIV薬としては、これに限定されないが、例えば、化学療法剤、抗レトロウイルス阻害剤、サイトカイン、ヒドロキシウレア、Gagタンパク質に結合するモノクローナル抗体、又は他のレトロウイルス複製の阻害剤をあげることができる。抗レトロウイルス阻害剤の例としては、逆転写酵素阻害剤、プロテアーゼ阻害剤、インテグラーゼ阻害剤(ラルテグラビル等)、CCR5阻害剤(マラビロク)、及び融合阻害剤をあげることができる。
本発明はまた、治療有効量の上記医薬組成物を対象に投与する工程を含む、HIV-1キャプシド構築及び/又はウイルス複製を阻害する方法を提供する。本発明の1つの態様において、該方法はさらに、抗レトロウイルス阻害剤、サイトカイン、ヒドロキシウレア、Gagタンパク質に結合するモノクローナル抗体、またはレトロウイルス複製の他の阻害剤からなる群から選択される抗ウイルスの治療と併用されることを含む。抗レトロウイルス阻害剤の例には、逆転写酵素阻害剤、プロテアーゼ阻害剤、及び融合阻害剤がある。
逆転写酵素阻害剤には、ヌクレオシド/ヌクレオチド系逆転写酵素阻害剤(NRTI)(以下、まとめてヌクレオシド系逆転写酵素阻害剤という)及び非ヌクレオシド/ヌクレオチド系逆転写酵素阻害剤(NNRTI)(以下、まとめて非ヌクレオシド系逆転写酵素阻害剤という)が含まれる。ヌクレオシド系逆転写酵素阻害剤として、これらに限定されるものではないが、例えば、ジドブジン(ZDV、以前はアジドチミジン(AZT)として知られる)、ジダノシン(ジデオキシイノシン(ddI))、ザルシタビン(ジデオキシシチジン(ddC))、ラミブジン(3TC)、スタブジン(d4T)、アバカビル(ABC)、テノホビル(TDF)をあげることができる。HIVの非ヌクレオシド系逆転写酵素阻害剤として、これらに限定されるものではないが、例えば、ネビラピン、メシル酸デラビルジン、エファビレンツをあげることができる。HIVのプロテアーゼ阻害剤(PI)としては、これらに限定されるものではないが、例えば、アンプレナビル、メシル酸サキナビル、リトナビル、インジナビル硫酸塩、メシル酸ネルフィナビル、ロピナビルおよびリトナビル、アタザナビル、ホスアンプレナビルをあげることができる。HIVの融合阻害剤としては、これに限定されるものではないが、例えば、エンフビルチドをあげることができる。
抗HIV物質のスクリーニング
本発明はまた、抗HIV活性を有する物質をスクリーニングする方法を含む。
本発明の方法においては、HIV-1のキャプシドそのものを用いて、キャプシドの崩壊を誘導する物質をスクリーニングすることを特徴とする。HIV-1のキャプシドは、培養細胞にHIV-1キャプシドの遺伝子を含むプラスミドを導入して発現させたキャプシドを用いても、HIV-1ウイルスからキャプシドを単離又は精製したものを用いてもよいが、好ましくは、細胞に発現させたHIV-1キャプシドが用いられる。
本発明はまた、抗HIV活性を有する物質をスクリーニングする方法を含む。
本発明の方法においては、HIV-1のキャプシドそのものを用いて、キャプシドの崩壊を誘導する物質をスクリーニングすることを特徴とする。HIV-1のキャプシドは、培養細胞にHIV-1キャプシドの遺伝子を含むプラスミドを導入して発現させたキャプシドを用いても、HIV-1ウイルスからキャプシドを単離又は精製したものを用いてもよいが、好ましくは、細胞に発現させたHIV-1キャプシドが用いられる。
HIV-1キャプシドを細胞に発現させる手段は、これに限定されないが、例えば以下のようにして行うことができる。
発現プラスミドの作成
これに限定されないが、例えば、以下のようにして発現プラスミドを作成する。
pCMV-Mycベクター(#631604,タカラバイオ社)を用いて野生型CA単独発現plasmidを作成する。制限酵素によりMycエピトープを含む領域を削除してベクターを線状化した。HIV-1NL4-3を鋳型としてPCRでキャプシドをコードする遺伝子領域を増幅した後、上記方法で作成した線状化ベクターに導入する。
CAタンパクの発現
作成したキャプシド発現プラスミドを細胞にトランスフェクトし、細胞にキャプシドタンパクを発現させる。細胞は、特に制限されないが、例えば、COS-7細胞を用いることができる。本発明のスクリーニング方法においては、発現させたキャプシドタンパクは、細胞溶解物の状態、粗精製の状態、精製した状態のいずれでも用いることができる。発現したキャプシドの粗精製、精製は、公知の方法を参考にして行うことができる。
発現プラスミドの作成
これに限定されないが、例えば、以下のようにして発現プラスミドを作成する。
pCMV-Mycベクター(#631604,タカラバイオ社)を用いて野生型CA単独発現plasmidを作成する。制限酵素によりMycエピトープを含む領域を削除してベクターを線状化した。HIV-1NL4-3を鋳型としてPCRでキャプシドをコードする遺伝子領域を増幅した後、上記方法で作成した線状化ベクターに導入する。
CAタンパクの発現
作成したキャプシド発現プラスミドを細胞にトランスフェクトし、細胞にキャプシドタンパクを発現させる。細胞は、特に制限されないが、例えば、COS-7細胞を用いることができる。本発明のスクリーニング方法においては、発現させたキャプシドタンパクは、細胞溶解物の状態、粗精製の状態、精製した状態のいずれでも用いることができる。発現したキャプシドの粗精製、精製は、公知の方法を参考にして行うことができる。
本発明のスクリーニング方法によれば、上記のようにして調製したHIV-1の野生型キャプシドを用いて、キャプシドの崩壊を誘導する化合物をスクリーニングすることができる。これに限定されないが、例えば、キャプシドを発現した細胞の細胞溶解物を用い、該溶解物を目的の化合物とともに、任意の温度(例えば37℃)にて所定の時間(例えば、数時間から数日)インキュベートし、キャプシド崩壊の誘導を確認する。キャプシドの崩壊は、これに限定されないが、例えば、キャプシドに対する抗体を用いて、キャプシドの抗原量をELISAにて測定することにより確認できる。
以下、実施例により、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
実施例1:HIV-1キャプシド変異株の取得
HIV-1のGag構造(マトリックス(p17)領域及びキャプシド(p24)領域)に挿入変異を導入した変異株を以下のようにして作成した。
実験室野生株HIV-1株であるHIV-1NL4-3に、Tn5トランスポゾン・システム(EZ-Tn5TM In-Frame Linker Insertion Kit, #EZI04KN, Epicentre社)を用いることでGag領域に19アミノ酸挿入変異を導入した。具体的には、野生型HIV-1の遺伝子を鋳型として増幅したGag遺伝子領域をベクターに導入後、カナマイシン耐性遺伝子を持ったトランスポゾン配列をトランスポザーゼの作用によりGag領域のランダムな位置に挿入、カナマイシンによりクローンを選択した後に挿入変異を有するGag遺伝子断片を切り出してHIV-1NL4-3に組み込んだ後、制限酵素処理によってカナマイシン耐性遺伝子を除去した。得られた各クローンにおける挿入変異の位置を塩基配列解析によって確認した。その結果、マトリックス領域に変異を有する変異株を5株、キャプシド領域に変異を有する変異株を8株(N末領域に変異を有するもの5株、C末領域に変異を有するもの3株)を取得した。変異を導入した箇所を図1に示す。M1~M5が、マトリックス領域に挿入された変異、C1~C8が、キャプシド領域に挿入された変異である。
HIV-1のGag構造(マトリックス(p17)領域及びキャプシド(p24)領域)に挿入変異を導入した変異株を以下のようにして作成した。
実験室野生株HIV-1株であるHIV-1NL4-3に、Tn5トランスポゾン・システム(EZ-Tn5TM In-Frame Linker Insertion Kit, #EZI04KN, Epicentre社)を用いることでGag領域に19アミノ酸挿入変異を導入した。具体的には、野生型HIV-1の遺伝子を鋳型として増幅したGag遺伝子領域をベクターに導入後、カナマイシン耐性遺伝子を持ったトランスポゾン配列をトランスポザーゼの作用によりGag領域のランダムな位置に挿入、カナマイシンによりクローンを選択した後に挿入変異を有するGag遺伝子断片を切り出してHIV-1NL4-3に組み込んだ後、制限酵素処理によってカナマイシン耐性遺伝子を除去した。得られた各クローンにおける挿入変異の位置を塩基配列解析によって確認した。その結果、マトリックス領域に変異を有する変異株を5株、キャプシド領域に変異を有する変異株を8株(N末領域に変異を有するもの5株、C末領域に変異を有するもの3株)を取得した。変異を導入した箇所を図1に示す。M1~M5が、マトリックス領域に挿入された変異、C1~C8が、キャプシド領域に挿入された変異である。
以下のようにして、それぞれの変異株の細胞溶解物の電気泳動を行い、キャプシドの自己崩壊を確認した。野生株及び変異株の一つについてビリオン溶解物(virion lysates)を用いて電気泳動を行い、細胞溶解物(cell lysates)における結果と相違がないことを確認した。
野生HIV-1プラスミドもしくは各挿入変異HIV-1プラスミドをCOS-7細胞に強制発現させた後、細胞溶解物及びビリオン溶解物を得た。ビリオン溶解物は、強制発現後のウイルス上清を回収し、孔径0.22μmのフィルターに通した後に超遠心を行い、上清を全て取り除いた後、virion pelletより作成した。得られた細胞溶解物及びビリオン溶解物を用いて HIV-1 p24(キャプシド)抗体による ウエスタンブロットを行った。その結果、キャプシド領域への挿入変異、特にN末端領域への変異導入により、顕著なキャプシドの自己崩壊が確認された。
野生HIV-1プラスミドもしくは各挿入変異HIV-1プラスミドをCOS-7細胞に強制発現させた後、細胞溶解物及びビリオン溶解物を得た。ビリオン溶解物は、強制発現後のウイルス上清を回収し、孔径0.22μmのフィルターに通した後に超遠心を行い、上清を全て取り除いた後、virion pelletより作成した。得られた細胞溶解物及びビリオン溶解物を用いて HIV-1 p24(キャプシド)抗体による ウエスタンブロットを行った。その結果、キャプシド領域への挿入変異、特にN末端領域への変異導入により、顕著なキャプシドの自己崩壊が確認された。
実施例2:単独発現させた挿入変異キャプシドの経時的崩壊
次いで、野生型キャプシド(pCANL4-3(WT))及び挿入変異を導入した4つの変異キャプシド(キャプシドのN末端領域であるC1およびC2に変異が挿入された変異株、C末端領域であるC6、C7に変異が挿入された変異株)を単独発現させた細胞の細胞溶解物を用いて、キャプシドの経時的自己崩壊を以下のようにして確認した。
野生型および挿入変異キャプシド単独発現プラスミドを細胞に強制発現させた後、得られた細胞溶解物を等量ずつ分注し、任意の時間37℃で定温静置後、HIV-1 p24(キャプシド)ポリクローナル抗体によるELISAおよびウエスタンブロットを行った。その結果、各変異キャプシドにおいて、挿入変異したキャプシドの自己崩壊が経時的に著しく進行していることが確認された。特にN末端領域(C1、C2)に挿入変異を有するキャプシドにおいて、顕著な自己崩壊現象およびその著しい経時的進行を認めた(37℃で定温静置を開始して24時間後には、挿入変異キャプシドは自己崩壊しほぼ完全に消失していた)。
次いで、野生型キャプシド(pCANL4-3(WT))及び挿入変異を導入した4つの変異キャプシド(キャプシドのN末端領域であるC1およびC2に変異が挿入された変異株、C末端領域であるC6、C7に変異が挿入された変異株)を単独発現させた細胞の細胞溶解物を用いて、キャプシドの経時的自己崩壊を以下のようにして確認した。
野生型および挿入変異キャプシド単独発現プラスミドを細胞に強制発現させた後、得られた細胞溶解物を等量ずつ分注し、任意の時間37℃で定温静置後、HIV-1 p24(キャプシド)ポリクローナル抗体によるELISAおよびウエスタンブロットを行った。その結果、各変異キャプシドにおいて、挿入変異したキャプシドの自己崩壊が経時的に著しく進行していることが確認された。特にN末端領域(C1、C2)に挿入変異を有するキャプシドにおいて、顕著な自己崩壊現象およびその著しい経時的進行を認めた(37℃で定温静置を開始して24時間後には、挿入変異キャプシドは自己崩壊しほぼ完全に消失していた)。
実施例3:HIV-1キャプシド変異株の感染性の確認
実施例1で取得したHIV-1キャプシド変異株の感染性を以下のようにして確認した。
HIV-1 LTR と大腸菌 lacZ 遺伝子の融合遺伝子を組み込んだ U373-MagiCD4+CXCR4+ 細胞を用いて、野生HIV-1(HIV-1WT)及び挿入変異HIV-1の感染性をそれぞれ評価した。この実験系においては、感染した細胞において組み込まれたHIV-1 LTRがHIV-1の転写調節因子であるTatにより促進され、その下流のlacZ遺伝子によりβ-gal活性が上昇する事でX-gal反応後の青染した感染細胞数を測定でき、感染性の評価が可能である。COS-7細胞にウイルスを強制発現させ、同量のp24抗原量を含むHIV-1WT及び挿入変異HIV-1のウイルス上清をU373-MagiCD4+CXCR4+ 細胞に感染させた上で、感染細胞数を顕微鏡下で測定しウイルスの感染性を評価した。その結果、キャプシド領域に挿入変異を有する変異株、特にキャプシドN末端側に挿入変異を有する変異株(C1~C5に変異を有する変異株)において顕著な感染性の低下を認めた。
実施例1で取得したHIV-1キャプシド変異株の感染性を以下のようにして確認した。
HIV-1 LTR と大腸菌 lacZ 遺伝子の融合遺伝子を組み込んだ U373-MagiCD4+CXCR4+ 細胞を用いて、野生HIV-1(HIV-1WT)及び挿入変異HIV-1の感染性をそれぞれ評価した。この実験系においては、感染した細胞において組み込まれたHIV-1 LTRがHIV-1の転写調節因子であるTatにより促進され、その下流のlacZ遺伝子によりβ-gal活性が上昇する事でX-gal反応後の青染した感染細胞数を測定でき、感染性の評価が可能である。COS-7細胞にウイルスを強制発現させ、同量のp24抗原量を含むHIV-1WT及び挿入変異HIV-1のウイルス上清をU373-MagiCD4+CXCR4+ 細胞に感染させた上で、感染細胞数を顕微鏡下で測定しウイルスの感染性を評価した。その結果、キャプシド領域に挿入変異を有する変異株、特にキャプシドN末端側に挿入変異を有する変異株(C1~C5に変異を有する変異株)において顕著な感染性の低下を認めた。
実施例4:HIV-1キャプシド変異株の複製能の確認
実施例1で取得したHIV-1キャプシド変異株の複製能を以下のようにして確認した。
COS-7細胞に強制発現させたHIV-1WT及び挿入変異HIV-1をMT-4細胞に感染させたのちに細胞を培地で洗浄し、新しい培地と共に細胞培養を続け、経時的に上清中のp24濃度を測定した。その結果、キャプシド領域に挿入変異を有しキャプシド自己崩壊を示す変異株(C1~C8に変異を有する変異株)では全くウイルスの増殖が認められなかった。
実施例1で取得したHIV-1キャプシド変異株の複製能を以下のようにして確認した。
COS-7細胞に強制発現させたHIV-1WT及び挿入変異HIV-1をMT-4細胞に感染させたのちに細胞を培地で洗浄し、新しい培地と共に細胞培養を続け、経時的に上清中のp24濃度を測定した。その結果、キャプシド領域に挿入変異を有しキャプシド自己崩壊を示す変異株(C1~C8に変異を有する変異株)では全くウイルスの増殖が認められなかった。
実施例5:キャプシド表面上の疎水性キャビティの同定
キャプシドの表面上の構造において、化合物が結合可能な大きさを有する疎水性キャビティ(cavity)を以下のようにして同定した。
プロテインデータバンクに登録された、HIV-1キャプシドの結晶構造データを基にした野生型HIV-1キャプシド単量体の表面構造を解析することにより、挿入変異が導入される事でキャプシドの自己崩壊を顕著に引き起こし、変異株の感染性や複製能が著しく障害される部位の近傍に対して、化合物が結合可能な大きさを有する疎水性キャビティの検索を行った。その結果、738.9Å2の表面積、及び、252.8Å3の容積を有するキャビティがキャプシドのN末端側に同定された。このキャビティは、キャプシド六量体の中央に存在する。キャビティの位置を図2に示す。
キャプシドの表面上の構造において、化合物が結合可能な大きさを有する疎水性キャビティ(cavity)を以下のようにして同定した。
プロテインデータバンクに登録された、HIV-1キャプシドの結晶構造データを基にした野生型HIV-1キャプシド単量体の表面構造を解析することにより、挿入変異が導入される事でキャプシドの自己崩壊を顕著に引き起こし、変異株の感染性や複製能が著しく障害される部位の近傍に対して、化合物が結合可能な大きさを有する疎水性キャビティの検索を行った。その結果、738.9Å2の表面積、及び、252.8Å3の容積を有するキャビティがキャプシドのN末端側に同定された。このキャビティは、キャプシド六量体の中央に存在する。キャビティの位置を図2に示す。
実施例6:キャプシドキャビティに結合する化合物の同定
購入可能な約800万個超の化合物の構造データを、学術・商用の化合物データベースより入手し、実際に生体に投与された場合に各化合物の生体内でのADMEに影響を及ぼす要素を考慮した上で、薬剤となりうる分子特性を有する化合物約700万個を抽出した。選択した約700万個の化合物について、MMFF94(Merck Molecular Force Field 94)を用いて、3次元構造変換及びエネルギー極小化計算を行い、溶媒中における各化合物の構造を最適化した上で、バーチャルドッキングシミュレーション(in silico ドッキングシミュレーション)の手法により各化合物のキャプシド上の標的キャビティ(cavity)との結合スコアを計算し、結合スコアのよい化合物を選定した。
購入可能な約800万個超の化合物の構造データを、学術・商用の化合物データベースより入手し、実際に生体に投与された場合に各化合物の生体内でのADMEに影響を及ぼす要素を考慮した上で、薬剤となりうる分子特性を有する化合物約700万個を抽出した。選択した約700万個の化合物について、MMFF94(Merck Molecular Force Field 94)を用いて、3次元構造変換及びエネルギー極小化計算を行い、溶媒中における各化合物の構造を最適化した上で、バーチャルドッキングシミュレーション(in silico ドッキングシミュレーション)の手法により各化合物のキャプシド上の標的キャビティ(cavity)との結合スコアを計算し、結合スコアのよい化合物を選定した。
実施例7:抗HIV-1活性評価
実施例6で選定した化合物について、HIV-1のキャプシドの自己崩壊誘導活性を評価した。
(1)野生型キャプシド発現プラスミドの作成
野生型キャプシド発現プラスミドを以下のようにして作成した。
pCMV-Mycベクター(#631604,タカラバイオ社)を用いて野生型CA単独発現plasmidを作成した。制限酵素によりMycエピトープを含む領域を削除してベクターを線状化した。HIV-1NL4-3を鋳型としてPCRでキャプシドをコードする遺伝子領域を増幅した後、上記の線状化ベクターに導入した。
(2)野生型キャプシド発現細胞を用いた崩壊誘導活性測定
上記のようにして作成した野生型キャプシド発現プラスミドを細胞(COS-7細胞)に、プラスミド 1 μg/well(12 well plate)の割合にて混合することにより、トランスフェクトさせ、48時間後に細胞を回収した。トランスフェクトの1日前の細胞数で細胞(5 × 104 cells/day-1)当たり、100μMの濃度となるように評価化合物を溶解した溶解液(M-PER Mammalian Protein Extraction Reagent (#78501, Thermo Fisher Scientific社))200μlを加えて、細胞を溶解して、細胞溶解物を作成した。
作成した細胞溶解物を等量ずつ4本のチューブに分注し、37℃で、異なった時間(0~72時間)、定温静置した。
各細胞溶解物中の、キャプシド抗原量を、キャプシドに対するモノクローナル抗体(カタログ番号#2503、Novus Biologicals社より購入)を用いて、ELISAにより測定し、安定したキャプシドの割合を以下の式から求めた。
(各サンプルのp24抗原量/インキュベートしていないサンプルのp24抗原量)X100
評価化合物として、以下の2つの化合物を用い、DMSOのみを添加したものを対照とした。
化合物-A:
実施例6で選定した化合物について、HIV-1のキャプシドの自己崩壊誘導活性を評価した。
(1)野生型キャプシド発現プラスミドの作成
野生型キャプシド発現プラスミドを以下のようにして作成した。
pCMV-Mycベクター(#631604,タカラバイオ社)を用いて野生型CA単独発現plasmidを作成した。制限酵素によりMycエピトープを含む領域を削除してベクターを線状化した。HIV-1NL4-3を鋳型としてPCRでキャプシドをコードする遺伝子領域を増幅した後、上記の線状化ベクターに導入した。
(2)野生型キャプシド発現細胞を用いた崩壊誘導活性測定
上記のようにして作成した野生型キャプシド発現プラスミドを細胞(COS-7細胞)に、プラスミド 1 μg/well(12 well plate)の割合にて混合することにより、トランスフェクトさせ、48時間後に細胞を回収した。トランスフェクトの1日前の細胞数で細胞(5 × 104 cells/day-1)当たり、100μMの濃度となるように評価化合物を溶解した溶解液(M-PER Mammalian Protein Extraction Reagent (#78501, Thermo Fisher Scientific社))200μlを加えて、細胞を溶解して、細胞溶解物を作成した。
作成した細胞溶解物を等量ずつ4本のチューブに分注し、37℃で、異なった時間(0~72時間)、定温静置した。
各細胞溶解物中の、キャプシド抗原量を、キャプシドに対するモノクローナル抗体(カタログ番号#2503、Novus Biologicals社より購入)を用いて、ELISAにより測定し、安定したキャプシドの割合を以下の式から求めた。
(各サンプルのp24抗原量/インキュベートしていないサンプルのp24抗原量)X100
評価化合物として、以下の2つの化合物を用い、DMSOのみを添加したものを対照とした。
化合物-A:
実施例8:抗HIV-1活性評価
実施例6で選定した化合物について、以下のようにしてMTTアッセイ法により抗HIV-1活性を評価した。
化合物の抗HIV-1活性の評価として、MT-2細胞と実験室野生株であるHIV-1LAI によるMTTアッセイを用いた。96 well plate 上で各化合物を段階希釈し、100 TCID50 の濃度となるウイルスとMT-2細胞の混和溶液をwellに加え、対照として、MT-2細胞のみを加えたwellを作成し7日間培養後、各wellに MTT試薬を加え培養し、呈色反応を行った。各wellにMTT可溶化溶液を加えホルマザン結晶(生細胞において合成される)を溶かした後、各wellの吸光度を測定、細胞のみを培養したwellでの吸光度と比較する事で、抗HIV-1活性があった場合には、HIV-1感染による細胞障害を50%阻害する濃度であるEC50 値として算定した。
野生型キャプシド発現細胞の代わりに、HIV-1(野生株であるHIV-1LA1)を感染させた細胞を用いて、同様にして、細胞溶解物を用いて、上記2つの化合物の抗HIV-1活性を評価した。ELISAの結果を図4Aに示す。また、各サンプルを電気泳動した後、ウエスタンブロットを行い、抗キャプシドポリクローナル抗体を用いて安定なキャプシドを検出した。結果を図4Bに示す。HIV-1発現細胞を用いた実験においても、いずれの化合物も顕著なキャプシドの自己崩壊を誘導した。
実施例6で選定した化合物について、以下のようにしてMTTアッセイ法により抗HIV-1活性を評価した。
化合物の抗HIV-1活性の評価として、MT-2細胞と実験室野生株であるHIV-1LAI によるMTTアッセイを用いた。96 well plate 上で各化合物を段階希釈し、100 TCID50 の濃度となるウイルスとMT-2細胞の混和溶液をwellに加え、対照として、MT-2細胞のみを加えたwellを作成し7日間培養後、各wellに MTT試薬を加え培養し、呈色反応を行った。各wellにMTT可溶化溶液を加えホルマザン結晶(生細胞において合成される)を溶かした後、各wellの吸光度を測定、細胞のみを培養したwellでの吸光度と比較する事で、抗HIV-1活性があった場合には、HIV-1感染による細胞障害を50%阻害する濃度であるEC50 値として算定した。
野生型キャプシド発現細胞の代わりに、HIV-1(野生株であるHIV-1LA1)を感染させた細胞を用いて、同様にして、細胞溶解物を用いて、上記2つの化合物の抗HIV-1活性を評価した。ELISAの結果を図4Aに示す。また、各サンプルを電気泳動した後、ウエスタンブロットを行い、抗キャプシドポリクローナル抗体を用いて安定なキャプシドを検出した。結果を図4Bに示す。HIV-1発現細胞を用いた実験においても、いずれの化合物も顕著なキャプシドの自己崩壊を誘導した。
電子顕微鏡を用いて、ウイルスの形態を評価した。結果を図5に示す。図5Aは、化合物を加えずに72時間培養したウイルス浮遊液(図全てのウイルスはランダムに選択)の電子顕微鏡写真、図5Bは、化合物-Aを加えて72時間培養したウイルス浮遊液(図全てのウイルスはランダムに選択)の電子顕微鏡写真である。化合物-Aにより、成熟HIV-1の著しい形態変化が誘導されたことが確認された。
実施例9:他の化合物のスクリーニング
実施例7と同様にして、野生型キャプシド発現細胞の細胞溶解物を用いて、実施例6で選定した他の化合物のキャプシド自己崩壊誘導活性を測定した。その結果、以下の表2に示す化合物において顕著なキャプシド自己崩壊誘導活性が認められた。それぞれの化合物の構造及びEC50を表に示す。なお、上記2つの化合物も表中に記載する。
実施例7と同様にして、野生型キャプシド発現細胞の細胞溶解物を用いて、実施例6で選定した他の化合物のキャプシド自己崩壊誘導活性を測定した。その結果、以下の表2に示す化合物において顕著なキャプシド自己崩壊誘導活性が認められた。それぞれの化合物の構造及びEC50を表に示す。なお、上記2つの化合物も表中に記載する。
上記の詳細な記載は、本発明の目的及び対象を単に説明するものであり、添付の特許請求の範囲を限定するものではない。添付の特許請求の範囲から離れることなしに、記載された実施態様に対しての、種々の変更及び置換は、本明細書に記載された教示より当業者にとって明らかである。
本発明の化合物は、キャプシドの崩壊を誘導することにより抗HIV活性を示すので、抗ウイルス阻害剤として有用である。
Claims (14)
- 下記式(I):
で表される化合物、又はその薬学的に許容されるその塩を有効成分として含むHIVの治療又は予防のための医薬組成物。 - 上記式(II)において、R1及びR4はヒドロキシを表す、請求項2に記載の医薬組成物。
- 上記式(II)において、R6はハロゲン、R8はフッ素である、請求項3に記載の化合物、又は薬学的に許容されるその塩。
- 上記式(II)において、R1及びR6はハロゲンである、請求項2に記載の医薬組成物。
- 上記式(III)において、R3はメチルを表し、R6は、Br又はIを表す、請求項6に記載の医薬組成物。
- 他の抗HIV薬と併用されることを特徴とする請求項1~9のいいずれか一つに記載の医薬組成物。
- 有効成分として、さらに他の抗HIV薬を含む請求項1~9のいずれか一つに記載の医薬組成物。
- 前記他の抗HIV薬が、化学療法剤、抗レトロウイルス阻害剤、サイトカイン、ヒドロキシウレア、Gagタンパク質に結合するモノクローナル抗体、又は他のレトロウイルス複製の阻害剤である、請求項10又は11に記載の医薬組成物。
- 抗HIV活性を有する物質をスクリーニングする方法であって、以下の工程:
(a)HIV-1の野生型キャプシドを発現する細胞からの調製したキャプシドとともに候補物質を緩衝液中で37±2℃の温度にてインキュベートする工程、ここで、該細胞は、HIV-1の野生型キャプシドの発現プラスミドを用いて形質転換した細胞であり、キャプシド以外のHIV-1由来の成分を発現しない細胞である、及び
(b)キャプシドの崩壊を検出する工程、
を含むスクリーニング方法。 - 前記工程(b)は、無傷の(intact)キャプシドの抗原量を、抗キャプシド抗体を用いて測定する工程である、請求項13に記載のスクリーニング方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019560569A JP7300177B2 (ja) | 2017-12-21 | 2018-12-20 | 抗hiv医薬組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017244763 | 2017-12-21 | ||
JP2017-244763 | 2017-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019124509A1 true WO2019124509A1 (ja) | 2019-06-27 |
Family
ID=66993452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/047049 WO2019124509A1 (ja) | 2017-12-21 | 2018-12-20 | 抗hiv医薬組成物 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7300177B2 (ja) |
WO (1) | WO2019124509A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090088420A1 (en) * | 2007-04-12 | 2009-04-02 | University Of Southern California | Compounds with hiv-1 integrase inhibitory activity and use thereof as anti-hiv/aids therapeutics |
JP2013530182A (ja) * | 2010-06-18 | 2013-07-25 | アヴィックスゲン インク. | 新規なチオウレア又はウレア誘導体、その製造方法、及びそれを有効成分として含有するエイズ(aids)予防又は治療用薬学組成物 |
WO2015171995A1 (en) * | 2014-05-08 | 2015-11-12 | Dana-Farber Cancer Institute, Inc. | Small molecule inhibitors of hiv-1 entry and methods of use thereof |
-
2018
- 2018-12-20 WO PCT/JP2018/047049 patent/WO2019124509A1/ja active Application Filing
- 2018-12-20 JP JP2019560569A patent/JP7300177B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090088420A1 (en) * | 2007-04-12 | 2009-04-02 | University Of Southern California | Compounds with hiv-1 integrase inhibitory activity and use thereof as anti-hiv/aids therapeutics |
JP2013530182A (ja) * | 2010-06-18 | 2013-07-25 | アヴィックスゲン インク. | 新規なチオウレア又はウレア誘導体、その製造方法、及びそれを有効成分として含有するエイズ(aids)予防又は治療用薬学組成物 |
WO2015171995A1 (en) * | 2014-05-08 | 2015-11-12 | Dana-Farber Cancer Institute, Inc. | Small molecule inhibitors of hiv-1 entry and methods of use thereof |
Non-Patent Citations (4)
Title |
---|
CHANDER, S. ET AL.: "Structure-based virtual screening and docking studies for the identification of novel inhibitors against wild and drug resistance strains HIV-1 RT", MEDICINAL CHEMISTRY RESEARCH, vol. 24, no. 5, 2015, pages 1869 - 1883, XP055619769 * |
IVETAC, A. ET AL.: "Discovery of novel inhibitors of HIV-1 reverse transcriptase through virtual screening of experimental and theoretical ensembles", CHEM BIOL DRUG DES, vol. 83, no. 5, May 2014 (2014-05-01), pages 521 - 531, XP055619788 * |
SAEED, A. ET AL.: "New substituted thiazol-2- ylidene-benzamides and their reaction with 1-aza- 2-azoniaallene salts. Synthesis and anti-HIV activity", Z NATURFORSCH, vol. 66, no. 5, May 2011 (2011-05-01), pages 512 - 520, XP055619797 * |
VINKERS, H. M. ET AL.: "SYNOPSIS, Synthesize and optimize system in silico", J MED CHEM, vol. 46, no. 13, 2003, pages 2765 - 2773, XP002259660, doi:10.1021/jm030809x * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019124509A1 (ja) | 2021-01-28 |
JP7300177B2 (ja) | 2023-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7083398B2 (ja) | ピリジン誘導体およびhiv感染を処置するためのその使用 | |
TWI687415B (zh) | Hiv蛋白質膜抑制劑之固體形式 | |
TWI664966B (zh) | 治療性化合物 | |
JP2009512716A (ja) | Hiv−1キャプシド構築の低分子阻害剤 | |
WO2007044565A2 (en) | Composition and synthesis of new reagents for inhibition of hiv replication | |
US20130096125A1 (en) | Novel rhodanine derivatives, method for preparing same, and pahrmaceutical composition for the prevention or treatment of aids containing the rhodanine derivatives as active ingredients | |
JP2008519862A (ja) | Hiv−1カプシド形成のインヒビター:置換アリール・アミノメチル・チアゾール尿素およびその類縁物質 | |
Xu et al. | Discovery of novel substituted N-(4-Amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues as potent human adenovirus inhibitors | |
EP1063888A1 (en) | Novel hiv integrase inhibitors and hiv therapy based on drug combinations including integrase inhibitors | |
KR20210137140A (ko) | 인플루엔자 및 합병증 위험 인자를 갖는 대상체에서 치환된 폴리사이클릭 피리돈 유도체 및 그의 전구약물을 사용한 인플루엔자 치료 | |
WO1991003242A1 (fr) | Medicament antiviral | |
WO2011139636A1 (en) | Small molecule inhibitors of functions of the hiv-1 matrix protein | |
WO2019124509A1 (ja) | 抗hiv医薬組成物 | |
US20040162298A1 (en) | Method of treating HIV infection by preventing interaction of CD4 and gp120 | |
CN113143924B (zh) | 硫代咪唑烷酮药物在治疗covid-19疾病中的用途 | |
WO2020241737A1 (ja) | 抗hiv医薬組成物 | |
TW546296B (en) | Heterocyclic compounds and their therapeutic use | |
JP2014532636A (ja) | ウイルス感染の処置のためのヌクレオシドアナログおよび該処置に対する感受性を評価するための方法 | |
US20050049242A1 (en) | Novel HIV integrase inhibitors and HIV therapy based on drug combinations including integrase inhibitors | |
US20060241150A1 (en) | P38 kinase inhibitor compositions and methods of using the same | |
US9447047B2 (en) | Inhibitors of protein phosphatase-1 and uses thereof | |
US20180179166A1 (en) | Small molecule inhibitors of gp120-mediated hiv infection and methods of use | |
US20050203150A1 (en) | Compounds, compositions and methods for inhibiting or treating HIV-1 | |
EP2062578A1 (en) | Novel use of chemical compounds for the treatment of AIDS | |
WO2017060524A1 (en) | (e)-n-(2-aminophenyl)-3-(1-((4-(1-methyl-1h-pyrazol-4-yl)phenyl)sulfonyl)-1h-pyrrol-3-yl)acrylamide for the treatment of latent viral infections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18892295 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2019560569 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18892295 Country of ref document: EP Kind code of ref document: A1 |