WO2019124267A1 - Test method for diagnosis of niemann-pick disease type c - Google Patents

Test method for diagnosis of niemann-pick disease type c Download PDF

Info

Publication number
WO2019124267A1
WO2019124267A1 PCT/JP2018/046159 JP2018046159W WO2019124267A1 WO 2019124267 A1 WO2019124267 A1 WO 2019124267A1 JP 2018046159 W JP2018046159 W JP 2018046159W WO 2019124267 A1 WO2019124267 A1 WO 2019124267A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomarker
amount
niemann
test method
pick disease
Prior art date
Application number
PCT/JP2018/046159
Other languages
French (fr)
Japanese (ja)
Inventor
隆一 真嶋
Original Assignee
国立研究開発法人国立成育医療研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人国立成育医療研究センター filed Critical 国立研究開発法人国立成育医療研究センター
Publication of WO2019124267A1 publication Critical patent/WO2019124267A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors

Definitions

  • the present invention relates to an inspection method and the like for diagnosis of Niemann-Pick disease type C.
  • NPC Niemann-Pick disease type C
  • NPC1 OMIM 607623
  • NPC2 OMIM 601015) gene
  • Such lipids include oxysterols such as cholestane-3 ⁇ , 5 ⁇ , 6 ⁇ -triol and 7-ketocholesterol (Non-patent documents 4 to 9), bile acids (Non-patent documents 10 to 14), and glycosylated cholesterol ( Various cholesterol metabolites such as Non-Patent Document 15) can be mentioned.
  • the NPC1 protein is a membrane protein within the lysosome and facilitates transport of cholesterol from the lysosome to the plasma membrane.
  • NPC2 is a soluble protein in lysosomes and binds stoichiometrically with cholesterol.
  • Non-patent Document 2 Based on these biochemical properties of NPC1 and NPC2, the mechanism of NPC is believed to be due, at least in part, to a defect in proper lipid migration in cells (Non-patent Document 2). This possibility has been demonstrated in several established murine NPC models as treatment with cyclodextrin (a cyclic oligosaccharide that promotes cholesterol transport across the plasma membrane) has shown positive therapeutic results. (Non-Patent Documents 16 to 18). In recent years, 380 or more pathogenic mutations have been registered in the database (Non-patent Document 19). Moreover, in recent years, the morbidity rate of classical NPC has been shown to be about 1 / 10,000, but the incidence rate of late-onset NPC is not sufficiently predicted (Non-Patent Document 19) ).
  • Non-patent documents 2 to 3 biosynthesis of sphingomyelin originates from serine and palmitoyl CoA in the endoplasmic reticulum and is subjected to an enzymatic reaction by serine: palmitoyl CoA transferase (EC 2.3.1. 50) (Non-patent Document 20). Sphingomyelin is a major sphingolipid that exists outside the cell membrane.
  • lysosphingomyelin also known as sphingosyl phosphorylcholine (SPC)
  • SPC sphingosyl phosphorylcholine
  • Non-patent literature 5 In recent years, it has been reported that SPC is elevated in patients with acid sphingomyelinase deficiency as well as NPC patients, suggesting that plasma components may not affect the metabolism of SPC.
  • Non-Patent Document 21 In this study, selective accumulation of SPC in NPC can only be detected in plasma, not in dried filter paper samples, and SPC in red blood cells may not be affected by NPC-mediated metabolism. Have also been found (Non-Patent Document 21).
  • lysosphingomyelin-509 is known as a novel biomarker whose chemical property accumulated in the plasma of NPC patients has not been determined (Non-patent documents 21 and 23 and Patent documents 1 and 2) .
  • Polo et al. Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS / MS Clin Chem Lab Med 55 (2017) 403-414.
  • A. K. Giese et al. A novel, highly sensitive and specific biomarker for Niemann-Pick type C1 disease, Orphanet J. Rare Dis. 10 (2015) 78. T.
  • Cholesterol oxidation products such as cholestane-3 ⁇ , 5 ⁇ , 6 ⁇ -triol and 7-ketocholesterol are to be used as target samples of the plasma to avoid the effects of artificial oxidation reactions that may occur before quantitative analysis
  • the supernatant should be centrifuged immediately after freezing, and the supernatant should be cryopreserved under cryogenic temperature and transported to the laboratory while being kept frozen.
  • preparation, storage and transport of such samples should be conducted according to a predetermined procedure, there is a problem in that cost and labor are generally required for arranging refrigerants such as dry ice and means for transporting in frozen state. There is.
  • refrigerants such as dry ice and means for transporting in frozen state.
  • an accident may occur during transportation of the sample, for example, a frozen sample may be melted because all the dry ice is vaporized.
  • cholestane-3 ⁇ , 5 ⁇ , 6 ⁇ -triol and 7-ketocholesterol are oxidation products of cholesterol, and therefore, in addition to the endogenous accumulation to be quantified as a biomarker, artificially generated oxidation products during analytical procedures When the accumulation amount of the substance is significantly large, there is a problem that the normal control sample also exhibits a high level as recognized in the disease group.
  • the concentrations of compounds present in the plasma such as cholestane-3 ⁇ , 5 ⁇ , 6 ⁇ -triol and 7-ketocholesterol, and SPC also fluctuate to some extent under physiological conditions due to metabolic reduction and concentration by perspiration.
  • compounds present in the plasma such as cholestane-3 ⁇ , 5 ⁇ , 6 ⁇ -triol and 7-ketocholesterol, and SPC also fluctuate to some extent under physiological conditions due to metabolic reduction and concentration by perspiration.
  • biomarkers even in the case of a plurality of biomarkers, all of them have been measured to a single sample. Therefore, if the measured biomarkers rise or fall uniformly, there is no means to correct this.
  • One aspect of the present invention aims to realize a test method that improves diagnostic accuracy for Niemann-Pick disease type C in the case of using a biomarker alone and in comparison with the conventional method described above.
  • a test method for diagnosis of Niemann-Pick disease type C comprises an amount of a first biomarker in a blood-derived sample collected from a living body And measuring the amount of the second biomarker in a sample derived from urine collected from the living body.
  • One embodiment of the present invention is also directed to an internal standard substance used for measuring the amount of the first biomarker in a blood-derived sample collected from a living body, and a sample derived from urine collected from the living body.
  • a test kit for diagnosis of Niemann-Pick disease type C or evaluation of the therapeutic effect of Niemann-Pick disease type C comprising an internal standard substance to be used in measuring the amount of the biomarker of No. 2 is provided.
  • diagnostic accuracy may be improved for Niemann-Pick disease type C, as compared to the single use of a biomarker and the conventional method described above.
  • A is D-erythro-sphingosyl phosphoryl choline (synthetic, SPC).
  • B is sphingosyl phosphoryl choline (C17 base, IS SPC ).
  • C is 3 ⁇ -sulfooxy-7 ⁇ -N-acetylglucosaminyl-5-coren-24-noic acid (SNAG- ⁇ 5 -CA).
  • D is 3 ⁇ -sulfooxy-7 ⁇ -hydroxy-23-nor-5- cholic acid (IS bile acid ). It is a figure which shows the calibration curve of IS SPC and SPC which used LC-MS / MS.
  • FIG. 7 shows selective accumulation of distinct SPCs in PBS (top) and plasma (bottom). Note that the amount of IS SPC was nearly constant during the assay.
  • FIG. 1 shows representative chromatograms for SPC and IS SPC from NPC patients and controls (healthy people).
  • FIG. 6 shows the elevation of plasma SPC and lysosphingomyelin-509 and urinary SNAG- ⁇ 5 -CA in NPC patients.
  • FIG. 5 shows the correlation of plasma and urine biomarker concentrations in NPC patients.
  • FIG. 5 shows the correlation of plasma and urine biomarker concentrations in NPC patients.
  • FIG. 6A shows the correlation between plasma SPC concentration and urinary bile acid metabolite SNAG- ⁇ 5 -CA concentration.
  • FIG. 6B shows the correlation between plasma lysosphingomyelin-509 concentration and urine SNAG- ⁇ 5 -CA concentration.
  • the concentration of SNAG- ⁇ 5 -CA was quantified using LC-MS / MS according to Non-Patent Document 11. 3 ⁇ -sulfooxy-7 ⁇ -hydroxy-23-nor-5-cholic acid was used as an internal standard.
  • An inspection method for diagnosis of Niemann-Pick disease type C is Measuring the amount of a first biomarker in a sample derived from blood collected from a living body (hereinafter referred to as "first step”); Measuring the amount of a second biomarker in a sample derived from urine collected from the living body (hereinafter referred to as “second step”); including.
  • first step may be performed before the second step, or the second step may be performed before the first step.
  • the first step and the second step may be performed in parallel.
  • biomarkers The first and second biomarkers and other biomarkers whose amounts can be measured in this embodiment are collectively referred to hereinafter simply as "biomarkers”.
  • examples of the living body include humans and animals other than humans (for example, mammals), and examples of mammals include mice, rats, rabbits, guinea pigs, primates excluding humans, and the like. Experimental animals; companion animals such as dogs and cats (pets); domestic animals such as cows, horses and pigs; humans.
  • the living body (subject) may be a newborn.
  • the inspection method according to the present embodiment may be performed as one of the items of the newborn screening test.
  • to measure the amount of biomarker is intended to measure the amount or concentration of the biomarker in a biological sample or a sample obtained by purifying the same.
  • the “amount of biomarker” may be an absolute amount (absolute mass or absolute concentration) or a relative amount (relative mass or relative concentration). In addition, for example, it may be a peak area in mass spectrometry, an emission intensity in luminescence measurement, or the like, or a value indicating how many times a predetermined standard is.
  • Niemann-Pick disease type C refers to having the etiology of Niemann-Pick disease type C, including when it has not yet developed typical clinical symptoms at this time It is a concept to gain.
  • the pathogenesis of Niemann-Pick disease type C includes genetic factors, and more specifically, a gene encoding NPC1 protein or NPC2 protein with reduced function (ie mutation of NPC1 gene or mutation of NPC2 gene) Include, but are not limited to, other known and unknown etiologies may also be included.
  • the "sample” used in the first step is a sample derived from blood collected from a living body (subject).
  • blood-derived samples include whole blood, serum, plasma and the like. Among the samples derived from blood, serum and plasma are preferable, and plasma is more preferable.
  • a blood collection site for example, a ovary fossa vein, a caudal cutaneous vein, and an ulnar cutaneous vein may be mentioned.
  • the first biomarker is the amount of the above-mentioned blood-derived sample (such as whole blood, serum, or plasma) in individuals having Niemann-Pick disease type C and individuals not suffering from Niemann-Pick disease type C It is a biomarker that has a statistically significant difference.
  • the first biomarker includes sphingophospholipids, cholestane-3 ⁇ , 5 ⁇ , 6 ⁇ -triol, 7-ketocholesterol, bile acid A and the like.
  • sphingophospholipids include sphingosyl phosphoryl choline (SPC), sphingosyl phosphoryl choline modified form, sphingomyelin, sphingomyelin modified form and the like.
  • the first biomarker is lysosphingomyelin-509.
  • the compound is compound 509 described in Patent Documents 1 and 2.
  • Lyso sphingomyelin -509 (Compound 509) is, C 24 H 50 O 7 N 2 P 509.3 having the empirical formula of the compound 509 (quasi-molecular M + H ions), more specifically 509.265 (m / z A substance having a pseudomolecular ion mass (as a monoisotopic pseudomolecular M + H ion).
  • a plasma sample derived from a subject from 509 m / z It may be a compound detected as MRM transition in ESI positive mode at 184 m / z (MRM transition).
  • the structural formula of compound 509 as [M + H] + is as follows, and preferably, the molecular weight of the compound of the following formula is 509.265 as monoisotopic pseudomolecular M + H ion (m / z).
  • Lysosphingomyelin-509 (compound 509) is also referred to as ⁇ -carboxy-sphingosyl phosphoryl choline.
  • the amount of the biomarker present can be quantitatively or semi-quantitatively
  • the method is not particularly limited as long as it can be determined, for example, mass spectrometry, a method using an immunological method using an antibody that recognizes a biomarker to be measured, a chemiluminescence method, an electrochemical detection method, ultraviolet light A detection method, a differential refraction method, or the like can be used.
  • Mass spectrometry may be performed using a known mass spectrometer. Mass spectrometry using a mass spectrometer is excellent in sensitivity and accuracy, so accurate determination can be performed. Furthermore, it is also possible to measure, for example, the amount of two or more biomarkers at once by using a multichannel mass spectrometer capable of multicomponent simultaneous analysis. Furthermore, biomarkers for other diseases than Niemann-Pick disease type C can also be measured at the same time, and detection of various diseases can be attempted at one time. Moreover, in order to perform detection more accurately, it is preferable to use a tandem mass spectrometer (MS / MS). The mass spectrometer used in the detection method of the present invention is not particularly limited as long as it can be quantified.
  • LC-MS liquid chromatography / mass spectrometry
  • Examples of methods using antibodies include ELISA, quantitative western blotting, radioimmunoassay, immunochromatography, and immunoprecipitation.
  • the type of ELISA method is not particularly limited, but is a so-called antigen measurement system (measurement of the amount of antigen contained in a biological sample), ELISA by direct adsorption method, ELISA by competition method, ELISA by sandwich method, and microflow An ELISA or the like specialized for measurement of a small amount of sample using a road type or microbeads can be mentioned.
  • the sample to be used for measurement of the amount of biomarker preferably contains an internal standard of known amount.
  • the amount of biomarker can be calculated more accurately.
  • variations between measurements can be suppressed, and diagnosis with high accuracy is possible.
  • data comparison among multiple facilities becomes easy.
  • by accumulating data at multiple facilities the accuracy of the reference value can be further improved.
  • analogues of biomarkers for example, isomers, homologues, compounds having different numbers of atoms in the main chain, compounds having different functional groups, or compounds whose chemical properties are similar to those of the biomarker and stable Compounds that can be quantified
  • stable isotope labeled compounds of biomarkers and the like.
  • the sample to be subjected to measurement of the amount of biomarker may be pretreated.
  • pretreatment include solvent extraction, solid phase extraction, HPLC (such as online HPLC), and derivatization.
  • solvent extraction method By performing pretreatment using a solvent extraction method, there is an advantage that the extraction operation including the compound to be measured can be easily achieved.
  • HPLC on-line HPLC or the like
  • Pretreatment using an HPLC (on-line HPLC or the like) method has an advantage that higher separation and purification with various kinds and precise fillers can be easily achieved as pretreatment.
  • turbidity fine particles
  • extract purified product
  • the sample may be filtered or centrifuged, for example, when fine particles are generated in the For example, it may be obtained from a blood plasma sample which is collected several hours after a particularly high lipid diet, a subject with suspected or confirmed dyslipidemia (eg familial hypercholesterolemia etc.) Samples and samples with high salt concentration or high protein concentration for some reason, etc. have a high possibility of generation of microparticles in the above (a) and (b).
  • SPC sphingosyl phosphoryl choline
  • blood is collected from a subject by a known method, and plasma is prepared by a known method.
  • an organic solvent containing an internal standard of known amount is added to plasma to make a sample solution.
  • Suitable internal standard substances for SPC include SPC-C17 (B in FIG. 1), SPC labeled with stable isotope, and the like.
  • the sample solution is applied to a solid phase extraction column. Elute the SPC and internal standard and dry under a stream of nitrogen. It is then resuspended in a solvent suitable for mass spectrometry and mass spectrometry is performed.
  • the concentration of SPC is calculated by comparing the peak area obtained with the peak area of the internal standard of known concentration.
  • sample used in the second step is a sample derived from urine collected from a living body (subject).
  • the living body (subject) in the first step and the living body (subject) in the second step are the same individual.
  • the second biomarker has a statistically significant difference in the amount of the above urine-derived sample between an individual suffering from Niemann-Pick disease type C and an individual not suffering from Niemann-Pick disease type C It is a biomarker.
  • the second biomarker includes bile acid metabolites and the like.
  • the bile acid metabolites, 3.beta .- Surufookishi -7 ⁇ -N- acetylglucosaminyltransferase-5-cholenic-24-Noikku acid (SNAG- ⁇ 5 -CA), 3 ⁇ - Surufookishi -7 ⁇ -N- acetylglucosaminyl - 5-cholenic-24-Noikku acid glycine conjugates (SNAG- ⁇ 5 -CG), 3 ⁇ - Surufookishi -7 ⁇ -N- acetylglucosaminyltransferase-5-cholenic-24-Noikku acid taurine conjugate (SNAG- ⁇ 5 - CT) etc.
  • the first biomarker and the second biomarker may be different from each other.
  • SNAG- ⁇ 5 -CA An example of a more specific method of the second step is described using SNAG- ⁇ 5 -CA as an example (see also the examples described later).
  • urine is collected from a subject by a known method.
  • an aqueous solution containing a known amount of internal standard substance is added to the urine to make a sample solution.
  • Preferred internal standards for SNAG- ⁇ 5 -CA include 3 ⁇ -sulfooxy-7 ⁇ -hydroxy-23-nor-5-cholic acid (D in FIG. 1) or stable isotope labeled SNAG- ⁇ 5- CA etc. are mentioned.
  • the sample solution is injected into a pre-equilibrated trapping column, washed with a solvent and eluted. Then, mass spectrometry is performed.
  • the concentration of SNAG- ⁇ 5 -CA is calculated by comparing the peak area obtained with the peak area of the internal standard of known concentration.
  • the amount of the first biomarker in the sample from the subject measured in the first step, and the amount of the second biomarker in the sample from the subject measured in the second step Based on, Niemann-Pick disease type C is determined.
  • the test method according to the present embodiment may include the step of comparing the amount of the first biomarker in the sample derived from the subject with the reference value of the first biomarker.
  • the inspection method according to the present embodiment may include the step of comparing the amount of the second biomarker in the sample derived from the subject with the reference value of the second biomarker.
  • data may be provided regarding the amount of the first biomarker in a sample derived from blood collected from a control subject.
  • data may be provided regarding the amount of the second biomarker in a sample derived from urine collected from a control subject.
  • the data may be measured in advance, or may be measured during a series of operations of the inspection method according to the present embodiment.
  • the control subject may be only an individual not suffering from Niemann-Pick disease type C, or only an individual suffering from Niemann-Pick disease type C, or both of them.
  • a control subject may be one individual, it is preferable that there are two or more individuals, and the more the number, the more preferable because the accuracy is improved.
  • a reference value derived from such data may be prepared.
  • the reference value takes into account statistical variation in, for example, the lower limit value in a control subject consisting of an individual suffering from Niemann-Pick disease type C, and the average value of a control subject consisting of an individual not suffering from Niemann-Pick disease type C These values, values in the literature, or any of these may be considered in combination.
  • Whether the subject suffers from Niemann-Pick disease type C if at least one of the amount of the first biomarker and the amount of the second biomarker in the sample derived from the subject is greater than or equal to the reference value in the biomarker It can be determined that the patient is likely to suffer from Niemann-Pick disease type C.
  • the amount of the first biomarker and the amount of the second biomarker are two-dimensionally plotted, and at least one of them is a reference value or more, you are suffering from Niemann-Pick disease type C, or Niemann-Pick disease type C It can be determined that there is a high possibility of suffering from Alternatively, the subject suffers from Niemann-Pick disease type C if both the amount of the first biomarker and the amount of the second biomarker in the sample from the subject are greater than or equal to the reference value in the biomarker. It can be determined that there is a high possibility of having or suffering from Niemann-Pick disease type C.
  • the amount of the biomarker in the sample derived from the subject is compared with a reference value, and the difference is determined by, for example, a statistical method such as t test, F test, chi-square test, or Mann-Whitney's U test.
  • the probability of suffering from Niemann-Pick disease type C may be calculated according to
  • the amount of the first biomarker and the amount of the second biomarker may be converted into one parameter (value) and used.
  • the amount of the first biomarker and the amount of the second biomarker are used to calculate a logistic regression score.
  • the calculation method may be, for example, the method described in the literature: Pepe, MS, Cai, T., and Longton, G. (2006), Biometrics 62, 221-229.
  • the reference value can also be calculated as one parameter (value) in the same manner. For this logistic regression score, if the subject is higher than the standard value, determine that the subject is likely to suffer from Niemann-Pick disease type C or is likely to suffer from Niemann-Pick disease type C. Can.
  • the logistic regression score in the sample derived from the subject is compared with the reference value, and the significant difference thereof is determined by a statistical method such as t test, F test, chi-square test, or Mann-Whitney's U test.
  • the probability of suffering from Niemann-Pick disease type C may be calculated.
  • test method according to the present embodiment utilizes two biomarkers respectively derived from different samples from the same subject, diagnostic accuracy is improved when using one biomarker alone and in comparison with the conventional method. Can improve.
  • One embodiment of the present invention is based on the amount of the first biomarker and the amount of the second biomarker in the sample from the subject measured in the above-mentioned test method, and the subject suffers from Niemann-Pick disease type C.
  • the present invention provides a diagnostic method for Niemann-Pick disease type C, which includes the step of determining whether or not the patient is likely to suffer from Niemann-Pick disease type C.
  • a diagnostic method for Niemann-Pick disease type C which includes the step of determining whether or not the patient is likely to suffer from Niemann-Pick disease type C.
  • when at least one of the amount of the first biomarker and the amount of the second biomarker in the sample derived from the subject measured in the above test method is equal to or greater than a reference value in the biomarker, It is determined that the subject has Niemann-Pick disease type C or is likely to suffer from Niemann-Pick disease type C.
  • both the amount of the first biomarker and the amount of the second biomarker in the sample derived from the subject measured in the above-mentioned test method are equal to or higher than the reference value in the biomarker, Determining that the body suffers from Niemann-Pick disease type C or is likely to suffer from Niemann-Pick disease type C.
  • the test method according to the present embodiment may include the step of measuring the amount of additional biomarkers other than the first biomarker and the second biomarker.
  • test method according to the present embodiment includes “a step of measuring the amount of the first biomarker in the sample derived from blood and the amount of the second biomarker in the sample derived from urine. It can also be referred to as “test method for diagnosis of disease type C”.
  • test method according to the present embodiment includes “a step of testing using a first biomarker in a sample derived from blood and a second biomarker in a sample derived from urine. It can also be referred to as “test method for diagnosis of type”.
  • the present invention further provides a test method for evaluating the therapeutic effect of Niemann-Pick disease type C, which comprises the above-mentioned first step and the above-mentioned second step.
  • the test method includes the amount of the first biomarker in the sample from the subject at the first time point and the amount of the first biomarker in the sample from the subject at the second time point A step of comparing may be included.
  • the amount of the second biomarker in the sample derived from the subject at the first time point and the amount of the second biomarker in the sample derived from the subject at the second time point A step of comparing may be included.
  • the first time point may be at some time before or after the start of treatment for Niemann-Pick disease type C (including after the end of treatment).
  • the second time point may be later than the first time point and at a certain time point after the start of the treatment (including after the end of the treatment).
  • the amount of biomarker in the sample from the subject at the second time point is reduced compared to the amount of biomarker in the sample from the subject at the first time point, then there is a therapeutic effect It can be evaluated.
  • the amount of biomarker in the sample from the subject at the second time point is reduced compared to the amount of biomarker in the sample from the subject at the first time point, then there is a therapeutic effect It can be evaluated.
  • the first biomarker or the second biomarker may be evaluated as having a therapeutic effect, or only if both have a therapeutic effect. May be Alternatively, the amount of the first biomarker and the amount of the second biomarker may be converted into one parameter (value) and compared as described above.
  • the test method according to the present embodiment may include the step of measuring the amount of additional biomarkers other than the first biomarker and the second biomarker.
  • test method according to the present embodiment includes “a step of measuring the amount of the first biomarker in the sample derived from blood and the amount of the second biomarker in the sample derived from urine. It can also be referred to as “test method for evaluating the treatment effect of disease type C”.
  • test method according to the present embodiment includes “a step of testing using a first biomarker in a sample derived from blood and a second biomarker in a sample derived from urine. It can also be referred to as “test method for evaluating the therapeutic effect of type”.
  • Test methods for evaluating the therapeutic effect of Niemann-Pick disease type C may be used for screening of therapeutic agents. That is, a candidate compound of a therapeutic agent can be administered to a subject, evaluation of the therapeutic effect of Niemann-Pick disease type C can be performed as described above, and it can be determined that a candidate compound having a therapeutic effect can be used as a therapeutic agent. .
  • the present invention further provides a test kit for diagnosing Niemann-Pick disease type C or for evaluating the therapeutic effect of Niemann-Pick disease type C.
  • the said test kit can be suitably used for implementation of the test method for a diagnosis of Niemann-Pick disease type C mentioned above, or the test method for evaluation of the therapeutic effect of Niemann-Pick disease type C.
  • the test kit includes an internal standard substance used when measuring the amount of the first biomarker in a sample derived from blood collected from a living body, and a sample derived from urine collected from the living body And an internal standard used to measure the amount of the second biomarker.
  • the internal standard is described above [1. Test method for diagnosis of Niemann-Pick disease type C] is as described in the section.
  • the internal standard may be included in the form of a solution, in the form of a solid, etc.
  • the test kit according to the present embodiment further includes a solid phase extraction tube, a solid phase extraction plate, a dilution liquid, a washing liquid, an elution liquid, and a container for the first biomarker.
  • the test kit according to the present embodiment may include any combination of these.
  • the test kit may include either a solid phase extraction tube or a solid phase extraction plate.
  • the test kit may include a diluent, a washing solution and an eluent in combination.
  • the test kit may be a kit suitable for pretreatment by solid phase extraction.
  • the solid phase extraction tube is a solid phase extraction tube for purifying a biomarker.
  • a solid phase extraction tube a syringe type solid phase extraction tube is mentioned, for example.
  • the solid phase extraction tube is more suitable when the number of samples to be processed at one time is relatively small (for example, but not limited to, about 1 to 20).
  • the solid phase extraction plate is a solid phase extraction plate for purifying a biomarker.
  • a solid phase extraction plate in 96 well format can be mentioned.
  • the solid phase extraction plate is more suitable when the number of samples to be processed at one time is relatively large (but not limited to, for example, 20).
  • the diluent is, for example, a liquid for diluting a sample containing a biomarker.
  • the diluent used to dilute the blood-derived sample may be appropriately selected by those skilled in the art depending on the type of biomarker, but it may be, for example, water, a solid phase containing an organic solvent to sufficiently dissolve the biomarker, and conditioned. Examples include an aqueous solution in which the biomarker is sufficiently retained on the solid phase when added to an extraction tube, and Solution 1 (75% water + 25% methanol + 0.1% H 3 PO 4 ) described later.
  • the diluent used to dilute the urine-derived sample may be appropriately selected by those skilled in the art depending on the type of biomarker, but it may be, for example, water, a solid phase containing an organic solvent to sufficiently dissolve the biomarker and conditioned.
  • the washing solution is, for example, a liquid for washing the solid phase extraction tube or the solid phase extraction plate in which the biomarker is held.
  • a liquid for washing the solid phase extraction tube or the solid phase extraction plate in which the biomarker is held.
  • Such a liquid can be appropriately selected by those skilled in the art depending on the type of biomarker, and examples include Solution 1 and Solution 2 described in the examples below.
  • the washing solution may be contained in the kit may be one type or two or more types.
  • the eluate is, for example, a liquid for eluting the biomarker from the solid phase extraction tube or the solid phase extraction plate in which the biomarker is retained.
  • a liquid for eluting the biomarker from the solid phase extraction tube or the solid phase extraction plate in which the biomarker is retained.
  • Such a liquid can be appropriately selected by those skilled in the art depending on the type of biomarker, and examples thereof include Solution 3 described in the examples below.
  • the container is, for example, a container for mixing the sample containing the biomarker and the internal standard substance, or a container for collecting the eluate containing the biomarker and the internal standard substance.
  • the container is, for example, a tube or a plate.
  • the volume of the container may be, for example, about 1.5 mL to 2.0 mL. Examples of the material of the container include plastic, glass and the like.
  • Test method for diagnosis of Niemann-Pick disease type C The contents of the test method for diagnosis of Niemann-Pick disease type C according to the present invention described in the section of the present invention, and / or the above [2. Test Method for Evaluating Therapeutic Effect of Niemann-Pick Disease Type C According to the Present Invention Described in the section of 2. The contents of the examination method for evaluating the treatment effect of Niemann-Pick disease type C are recorded.
  • the test kit according to the present embodiment is a control sample used in measurement, a first biomarker in a sample derived from blood collected from a control subject used when analyzing measurement results.
  • Data on the amount, data on the amount of the second biomarker in the sample derived from urine collected from the control subject used when analyzing the measurement results, a reference value derived from at least one of these data (The reference value for the first biomarker, the reference value for the second biomarker, and / or the amount of the first biomarker and the amount of the second biomarker are converted into one parameter (value)
  • a medium in which at least one of the data of the reference value of the case, etc.) is described or recorded may be included.
  • test kit according to the present embodiment can be used, for example, in combination with any one or more of the following. These may be prepared by the user. Alternatively, in another embodiment, any one or more of these may be included as a component of the test kit.
  • Vials for autosamplers etc. eg (a) vials made of glass or plastic compatible with LC-MS autosampler sample table used and vial caps with Teflon (R) seal, or (b) deep bottom 96 Well plate and organic solvent resistant dedicated seal for LC-MS analysis for the purpose of preventing solvent evaporation, dedicated mat for preventing solvent evaporation, or aluminum foil etc.
  • Equipment for solvent removal for example, (a) a dedicated instrument for solvent removal which has a nitrogen generator, nitrogen cylinder, etc., and a head compatible with 1.5 mL tubes and 96 wells, (b) centrifugal Concentrator, etc.), Solid phase extraction apparatus (for example, pressure type of syringe type, pressure reduction type using vacuum pump or water flow pump, etc.), Devices used for sample filtration or centrifugation (for both filtration and centrifugation, single (directly connected to a syringe)) and devices corresponding to 96 wells, etc.
  • Equipment for solvent removal for example
  • Centrifugal filter tubes The column may be packed with a solid phase extraction carrier, and may be in the form of solid phase extraction by centrifugation using a tube).
  • Analytical columns required for LC-MS, mobile phase solvents, etc. water, organic solvents, and additives such as ionizing agents), In addition, reagents (methanol for LC-MS, acetonitrile, MilliQ water, etc.) and equipment generally used for LC-MS as needed.
  • the invention further provides a test system for measuring the amount of the first biomarker and the amount of the second biomarker.
  • the test system may include, as a component, software (a program) for measuring the amount of the first biomarker and / or the amount of the second biomarker.
  • the program may be stored in a computer-readable recording medium, and as such a recording medium, "non-temporary tangible medium", for example, ROM (Read Only Memory), etc. Examples include tapes, disks, cards, semiconductor memories, and programmable logic circuits.
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • Test Method for Diagnosis of Niemann-Pick Disease Type C The result obtained by performing the test method described in the section can be used as one of diagnostic data when a doctor makes a diagnosis. Moreover, the above [1. Test method for diagnosis of Niemann-Pick disease type C]] By performing the test method described in the section, there is a need for a subject for which the result that there is a possibility of suffering from Niemann-Pick disease type C is obtained Depending on the result of the definite diagnosis by the doctor, the treatment can be performed. In particular, in the examination method according to the present embodiment, since Niemann-Pick disease type C can be detected with high accuracy, early diagnosis and early treatment can be realized.
  • a definite diagnosis can be performed in consideration of family history and the like. Based on this, a treatment plan is made.
  • a test method for diagnosis of Niemann-Pick disease type C comprises an amount of a first biomarker in a blood-derived sample collected from a living body And measuring the amount of the second biomarker in a sample derived from urine collected from the living body.
  • the first biomarker is preferably a sphingophospholipid.
  • the sphingophospholipid is more preferably sphingosyl phosphoryl choline.
  • the sphingophospholipid is more preferably lysosphingomyelin-509.
  • the second biomarker is preferably a bile acid metabolite.
  • the bile acid metabolite is 3 ⁇ -sulfoxy-7 ⁇ -N-acetylglucosaminyl-5-colene-24-noic acid (SNAG- ⁇ 5 -CA) Is more preferred.
  • test method it is preferable to use an internal standard substance in measurement of the amount of the first biomarker.
  • test method it is preferable to use an internal standard substance in measurement of the amount of the second biomarker.
  • the test method it is preferable to measure the amount of the first biomarker and the amount of the second biomarker by LC-MS.
  • One embodiment of the present invention is also directed to an internal standard substance used for measuring the amount of the first biomarker in a blood-derived sample collected from a living body, and a sample derived from urine collected from the living body.
  • a test kit for diagnosis of Niemann-Pick disease type C or evaluation of the therapeutic effect of Niemann-Pick disease type C comprising an internal standard substance to be used in measuring the amount of the biomarker of No. 2 is provided.
  • D-erythro-sphingosyl phosphoryl choline (synthetic SPC) was purchased from Toronto Research Chemicals.
  • Deionized water was obtained from Milli-Q water system (Millipore).
  • Ammonium acetate and formic acid were purchased from Kanto Chemical Co., Ltd.
  • the Oasis HLB 96-well plate was purchased from Waters.
  • 3 ⁇ -sulfooxy-7 ⁇ -hydroxy-23-nor-5-cholenic acid was synthesized as described in 11 and 24 and was used as an internal standard substance (IS bile acid ) for SNAG- ⁇ 5- CA Using.
  • the other reagents used in this study were the highest grade commercially available.
  • the chemical structures of the compounds used in this study are shown in FIG.
  • the mean rise in plasma SPC concentration in NPC patients was 2.6 times that of controls (Table 9).
  • FIG. 6A shows a summary of the correlation between plasma SPC and urinary bile acid metabolite SNAG- ⁇ 5 -CA.
  • all NPC patients evaluated in this study showed higher concentrations in either SPC or SNAG- ⁇ 5 -CA.
  • the present invention can be used for a clinical test kit for diagnosis of Niemann-Pick disease type C, an analysis method package including software, and the like.

Abstract

In order to realize a test method that has an improved accuracy of diagnosis of Niemann-Pick disease type C over that for the use of a single biomarker and that for conventional methods, the test method according to the present invention for the diagnosis of Niemann-Pick disease type C comprises: a step for measuring the amount of a first biomarker in a sample originating from blood collected from a living body and a step for measuring the amount of a second biomarker in a sample originating from urine collected from the living body.

Description

ニーマンピック病C型の診断のための検査方法Test method for diagnosis of Niemann-Pick disease type C
 本発明は、ニーマンピック病C型の診断のための検査方法等に関する。 The present invention relates to an inspection method and the like for diagnosis of Niemann-Pick disease type C.
 ニーマンピック病C型(NPC)は、NPC1(OMIM 607623)またはNPC2(OMIM 601015)遺伝子の変異によって引き起こされる内臓神経疾患である(非特許文献1および
2)。後期エンドソーム/リソソーム区画からのコレステロールの排出異常が、NPCの病因に関連するメカニズムとして示唆されてきた。初期の証拠では一貫して、NPCがヒトにおいてコレステロールを含む種々の脂質の蓄積に関連することを示した(非特許文献3)。このような脂質としては、コレスタン-3β、5α、6β-トリオールおよび7-ケトコレステロール(非特許文献4~9)などのオキシステロール、胆汁酸(非特許文献10~14)、ならびにグリコシル化コレステロール(非特許文献15)などの種々のコレステロール代謝物が挙げられる。NPC1タンパク質は、リソソーム内の膜タンパク質であり、コレステロールをリソソームから原形質膜まで輸送するのを促進する。NPC2は、リソソーム内の可溶性タンパク質であり、コレステロールと化学量論的に結合する。NPC1およびNPC2のこれら生化学的特性に基づくと、NPCのメカニズムは、少なくとも部分的には、細胞における適切な脂質の移動の欠陥に起因すると考えられる(非特許文献2)。この可能性は、いくつかの確立されたネズミNPCモデルにおいて、シクロデキストリン(原形質膜を横切るコレステロール輸送を促進する環状オリゴ糖)を用いた治療がポジティブな治療結果を示したことにより、証明されている(非特許文献16~18)。近年では、380以上の病因性の変異がデータベースに登録されている
 (非特許文献19)。また、近年では、古典的なNPCの罹患率は約10万分の1であることが示されているが、遅発性のNPCの発生率は、十分には予測されていない(非特許文献19)。
Niemann-Pick disease type C (NPC) is a visceral neurological disease caused by mutations in the NPC1 (OMIM 607623) or NPC2 (OMIM 601015) gene (Non-patent Documents 1 and 2). Abnormal cholesterol efflux from the late endosomal / lysosomal compartment has been suggested as a mechanism associated with the pathogenesis of NPC. Early evidence has consistently shown that NPCs are associated with the accumulation of various lipids, including cholesterol, in humans (3). Such lipids include oxysterols such as cholestane-3β, 5α, 6β-triol and 7-ketocholesterol (Non-patent documents 4 to 9), bile acids (Non-patent documents 10 to 14), and glycosylated cholesterol ( Various cholesterol metabolites such as Non-Patent Document 15) can be mentioned. The NPC1 protein is a membrane protein within the lysosome and facilitates transport of cholesterol from the lysosome to the plasma membrane. NPC2 is a soluble protein in lysosomes and binds stoichiometrically with cholesterol. Based on these biochemical properties of NPC1 and NPC2, the mechanism of NPC is believed to be due, at least in part, to a defect in proper lipid migration in cells (Non-patent Document 2). This possibility has been demonstrated in several established murine NPC models as treatment with cyclodextrin (a cyclic oligosaccharide that promotes cholesterol transport across the plasma membrane) has shown positive therapeutic results. (Non-Patent Documents 16 to 18). In recent years, 380 or more pathogenic mutations have been registered in the database (Non-patent Document 19). Moreover, in recent years, the morbidity rate of classical NPC has been shown to be about 1 / 10,000, but the incidence rate of late-onset NPC is not sufficiently predicted (Non-Patent Document 19) ).
 NPC1およびNPC2タンパク質は何れも酵素活性を有していないため、臨床的検査学的に有用な単一のバイオマーカーは知られていない。古典的には、コレステロールの蓄積に相関すると考えられている抗生物質フィリピンによる染色が用いられてきた。 Since both NPC1 and NPC2 proteins have no enzymatic activity, no single clinically useful biomarker is known. Classically, staining with the antibiotic Filipin has been used, which is believed to correlate with the accumulation of cholesterol.
 臨床的証拠および実験的証拠のいずれもが、NPCではスフィンゴミエリンのレベルが肝臓および脾臓において増加していることを示してきた(非特許文献2~3)。哺乳動物において、スフィンゴミエリンの生合成は、小胞体においてセリンおよびパルミトイルCoAから始まり、セリン:パルミトイルCoAトランスフェラーゼ(EC 2.3.1.50)による酵素反応を受ける(非特許文献20)。スフィンゴミエリンは、細胞膜外に存在する主
要なスフィンゴ脂質である。スフィンゴミエリンはNPC患者において蓄積しているため、血漿中のリゾスフィンゴミエリン(スフィンゴシルホスフォリルコリン(SPC)としても知られている)の濃度がNPCを選別するバイオマーカーとして提唱されてきた(非特許文献5、21~22)。
Both clinical and experimental evidence has shown that in NPC, sphingomyelin levels are increased in the liver and spleen (Non-patent documents 2 to 3). In mammals, biosynthesis of sphingomyelin originates from serine and palmitoyl CoA in the endoplasmic reticulum and is subjected to an enzymatic reaction by serine: palmitoyl CoA transferase (EC 2.3.1. 50) (Non-patent Document 20). Sphingomyelin is a major sphingolipid that exists outside the cell membrane. Because sphingomyelin is accumulated in NPC patients, the concentration of lysosphingomyelin (also known as sphingosyl phosphorylcholine (SPC)) in plasma has been proposed as a biomarker to screen NPCs (non- Patent Documents 5, 21 to 22).
 初期の研究では、血漿SPC濃度が、血漿中のコレスタン-3β、5α、6β-トリオールおよび7-ケトコレステロールの濃度と相関することが示されており、いずれもNPCの診断のため測定基準として広く受け入れられている(非特許文献5)。近年では、SPCが、NPC患者と同様に、酸性スフィンゴミエリナーゼ欠損症患者においても上昇していることが報告されており、このことは、血漿成分はSPCの代謝に影響しない可能性を示唆している(非特許文献21)。興味深いことに、この研究では、NPCにおけるSPCの選択的蓄積が血漿においてだけ検出でき、乾燥濾紙血検体においては検出できず、赤血球におけるSPCはNPCが介在する代謝によって影響を受けないかもしれないことも発見している(非特許文献21)。さらにまた、リゾスフィンゴミエリン-509は、NPC患者の血漿中に蓄積される化学的性質が決定されていない新規のバイオマーカーとして知られている(非特許文献21および23ならびに特許文献1および2)。 Initial studies have shown that plasma SPC concentrations correlate with plasma concentrations of cholestane-3β, 5α, 6β-triol and 7-ketocholesterol, all of which are widely used as metrics for the diagnosis of NPC. It is accepted (nonpatent literature 5). In recent years, it has been reported that SPC is elevated in patients with acid sphingomyelinase deficiency as well as NPC patients, suggesting that plasma components may not affect the metabolism of SPC. (Non-Patent Document 21). Interestingly, in this study, selective accumulation of SPC in NPC can only be detected in plasma, not in dried filter paper samples, and SPC in red blood cells may not be affected by NPC-mediated metabolism. Have also been found (Non-Patent Document 21). Furthermore, lysosphingomyelin-509 is known as a novel biomarker whose chemical property accumulated in the plasma of NPC patients has not been determined (Non-patent documents 21 and 23 and Patent documents 1 and 2) .
日本国公開特許公報「特表2014-533367号(2014年12月11日公開)」Japanese Patent Publication "Tokukai 2014-533367 (Dec. 11, 2014)" 国際公開公報「WO2016-078762号(2016年5月26日公開)」International Publication Gazette "WO 2016-078762 (May 26, 2016)"
 抗生物質フィリピンによる染色は、再現性および定量性に乏しいという問題がある。 Staining with the antibiotic Filipin has the problem of poor reproducibility and quantification.
 コレスタン-3β、5α、6β-トリオールおよび7-ケトコレステロールのようなコレステロール酸化生成物は、その測定対象試料となる血漿は定量分析前に生じる可能性がある人為的な酸化反応の影響を避けるために、採血後速やかに遠心分離され、その上清は極低温下で冷凍保存され、かつ検査施設まで凍結状態を維持したまま輸送される必要がある。こうした試料の調製、保存および輸送は事前に定められた手順書に従って行われるべきものであるが、一般にドライアイス等の冷媒や冷凍状態で輸送する手段の手配などにコストや手間暇がかかるという問題がある。さらに、夏季の輸送中においては、ドライアイスが全て気化したために凍結状態であった試料が融解してしまうなど、試料輸送中に事故が発生することもある。 Cholesterol oxidation products such as cholestane-3β, 5α, 6β-triol and 7-ketocholesterol are to be used as target samples of the plasma to avoid the effects of artificial oxidation reactions that may occur before quantitative analysis After blood collection, the supernatant should be centrifuged immediately after freezing, and the supernatant should be cryopreserved under cryogenic temperature and transported to the laboratory while being kept frozen. Although preparation, storage and transport of such samples should be conducted according to a predetermined procedure, there is a problem in that cost and labor are generally required for arranging refrigerants such as dry ice and means for transporting in frozen state. There is. Furthermore, during transportation in summer, an accident may occur during transportation of the sample, for example, a frozen sample may be melted because all the dry ice is vaporized.
 また、試料に含まれる上記2つのバイオマーカーを定量分析に供するためには、分析操作中に溶媒を除去し、濃縮乾固することが必要である。この前処理の際に人為的な酸化反応が生じる可能性があるが、この一連の操作については、より詳細な標準手順書を作成しても、常温常圧で前処理作業を行う以上、人為的な酸化反応が起こらない、または全ての試料で一定であることを保証することは難しい。換言すると、コレスタン-3β,5α,6β-トリオールおよび7-ケトコレステロールはコレステロールの酸化生成物であるため、バイオマーカーとして定量したい内因性の蓄積量に加え、分析操作時に人為的に発生した酸化生成物の蓄積量が有意に多い場合には正常コントロール試料においても疾患群で認められる程度の高値を示すという問題がある。 In addition, in order to use the above-mentioned two biomarkers contained in the sample for quantitative analysis, it is necessary to remove the solvent during the analysis operation and concentrate to dryness. There is a possibility that an artificial oxidation reaction may occur during this pretreatment, but even with this series of operations, even if a more detailed standard procedure is prepared, it is more difficult to carry out manual processing than the pretreatment operation at normal temperature and pressure. Oxidation reactions do not occur, or it is difficult to ensure that all samples are constant. In other words, cholestane-3β, 5α, 6β-triol and 7-ketocholesterol are oxidation products of cholesterol, and therefore, in addition to the endogenous accumulation to be quantified as a biomarker, artificially generated oxidation products during analytical procedures When the accumulation amount of the substance is significantly large, there is a problem that the normal control sample also exhibits a high level as recognized in the disease group.
 コレスタン-3β,5α,6β-トリオールおよび7-ケトコレステロール、ならびにSPCのような血漿中に存在する化合物の濃度は、代謝による減少や発汗による濃縮によって、生理条件下においてもある程度変動する。しかしながら、これまでの先行研究では、複数のバイオマーカーであっても何れも単一の試料の測定に終始している。したがって、測定したバイオマーカーが一様に上昇または降下した場合においては、これを補正する手段がない。 The concentrations of compounds present in the plasma, such as cholestane-3β, 5α, 6β-triol and 7-ketocholesterol, and SPC also fluctuate to some extent under physiological conditions due to metabolic reduction and concentration by perspiration. However, in the previous researches, even in the case of a plurality of biomarkers, all of them have been measured to a single sample. Therefore, if the measured biomarkers rise or fall uniformly, there is no means to correct this.
 本発明の一態様は、ニーマンピック病C型について、バイオマーカーの単独使用の場合および上述の従来法と比較して診断精度が向上する検査方法を実現することを目的とする。 One aspect of the present invention aims to realize a test method that improves diagnostic accuracy for Niemann-Pick disease type C in the case of using a biomarker alone and in comparison with the conventional method described above.
 上記の課題を解決するために、本発明の一態様に係るニーマンピック病C型の診断のための検査方法は、生体から採取された血液に由来する試料において、第1のバイオマーカーの量を測定する工程と、上記生体から採取された尿に由来する試料において、第2のバイオマーカーの量を測定する工程とを含む。 In order to solve the above problems, a test method for diagnosis of Niemann-Pick disease type C according to one aspect of the present invention comprises an amount of a first biomarker in a blood-derived sample collected from a living body And measuring the amount of the second biomarker in a sample derived from urine collected from the living body.
 本発明の一態様はまた、生体から採取された血液に由来する試料において、第1のバイオマーカーの量を測定する工程と、上記生体から採取された尿に由来する試料において、第2のバイオマーカーの量を測定する工程とを含む、ニーマンピック病C型の治療効果を評価するための検査方法を提供する。 In one embodiment of the present invention, there is also provided a method of measuring the amount of a first biomarker in a sample derived from blood collected from a living being, and a second biologic in a sample derived from urine collected from the living being And determining the amount of the marker, and providing a test method for evaluating the therapeutic effect of Niemann-Pick disease type C.
 本発明の一態様はまた、生体から採取された血液に由来する試料において第1のバイオマーカーの量を測定する際に用いる内部標準物質と、上記生体から採取された尿に由来する試料において第2のバイオマーカーの量を測定する際に用いる内部標準物質とを含む、ニーマンピック病C型の診断またはニーマンピック病C型の治療効果の評価のための検査キットを提供する。 One embodiment of the present invention is also directed to an internal standard substance used for measuring the amount of the first biomarker in a blood-derived sample collected from a living body, and a sample derived from urine collected from the living body. A test kit for diagnosis of Niemann-Pick disease type C or evaluation of the therapeutic effect of Niemann-Pick disease type C comprising an internal standard substance to be used in measuring the amount of the biomarker of No. 2 is provided.
 本発明の一態様によれば、ニーマンピック病C型について、バイオマーカーの単独使用の場合および上述の従来法と比較して診断精度が向上し得る。 According to one aspect of the present invention, diagnostic accuracy may be improved for Niemann-Pick disease type C, as compared to the single use of a biomarker and the conventional method described above.
本研究で用いた化合物の化学構造を示す図である。Aは、D-エリスロ-スフィンゴシルホスフォリルコリン(合成,SPC)である。Bは、スフィンゴシルホスフォリルコリン(C17ベース,ISSPC)である。Cは、3β-スルフォオキシ-7β-N-アセチルグルコサミニル-5-コレン-24-ノイック酸(SNAG-Δ-CA)である。Dは、3β-スルフォオキシ-7β-ヒドロキシ-23-ノル-5-コレン酸(IS胆汁酸)である。It is a figure which shows the chemical structure of the compound used by this research. A is D-erythro-sphingosyl phosphoryl choline (synthetic, SPC). B is sphingosyl phosphoryl choline (C17 base, IS SPC ). C is 3β-sulfooxy-7β-N-acetylglucosaminyl-5-coren-24-noic acid (SNAG-Δ 5 -CA). D is 3β-sulfooxy-7β-hydroxy-23-nor-5- cholic acid (IS bile acid ). LC-MS/MSを用いたISSPCおよびSPCの検量線を示す図である。SPCおよびISSPCのピーク領域は、後述の実験手順で記載のとおり、LC-MS/MSを用いてMRMモード(SPC,465.55>183.95;ISSPC,451.4>183.90)で定量した。SPCおよびISSPCはいずれもESIポジティブモードを用いて[M+H]+イオンとして検出した。It is a figure which shows the calibration curve of IS SPC and SPC which used LC-MS / MS. SPC and IS SPC peak areas were quantified in MRM mode (SPC, 465.55>183.95; IS SPC , 451.4> 183.90) using LC-MS / MS as described in the experimental procedures described below. Both SPC and IS SPC were detected as [M + H] + ions using ESI positive mode. PBS(上)および血漿(下)におけるはっきりしたSPCの選択的蓄積を示す図である。なお、ISSPCの量はアッセイの間ほぼ一定であった。FIG. 7 shows selective accumulation of distinct SPCs in PBS (top) and plasma (bottom). Note that the amount of IS SPC was nearly constant during the assay. NPC患者およびコントロール(健常人)に由来するSPCおよびISSPCについての代表的なクロマトグラムを示す図である。SPCおよびISSPCの濃度は、後述の実験手順に記載のとおり、LC-MS/MSを用いてMRMモード(SPC,465.55>183.95;ISSPC,451.4>183.90)で定量した。SPCおよびISSPCはいずれもESIポジティブモードを用いて[M+H]+イオンとして検出した。は非特異ピークを表す。FIG. 1 shows representative chromatograms for SPC and IS SPC from NPC patients and controls (healthy people). SPC and IS SPC concentrations were quantified in MRM mode (SPC, 465.55>183.95; IS SPC , 451.4> 183.90) using LC-MS / MS as described in the experimental procedures described below. Both SPC and IS SPC were detected as [M + H] + ions using ESI positive mode. * Represents a nonspecific peak. NPC患者における血漿SPCおよびリゾスフィンゴミエリン-509ならびに尿中SNAG-Δ-CAの上昇を示す図である。図5のAにおいて、NPC患者(n=5)およびコントロール(n=7)における血漿SPC濃度は、内部標準物質としてスフィンゴシルホスフォリルコリン(C17ベース)を用いて、LC-MS/MSを用いて定量した。図5のBにおいて、NPC患者(n=5)およびコントロール(n=7)における血漿リゾスフィンゴミエリン-509を定量した。図5のCにおいて、NPC患者(n=5)およびコントロール(n=7)における尿中SNAG-Δ-CAの濃度を定量した(p<0.05)。FIG. 6 shows the elevation of plasma SPC and lysosphingomyelin-509 and urinary SNAG-Δ 5 -CA in NPC patients. In FIG. 5A, plasma SPC concentrations in NPC patients (n = 5) and controls (n = 7) were determined using LC-MS / MS using sphingosyl phosphoryl choline (C17 base) as internal standard substance. It quantified. In FIG. 5B, plasma lysosphingomyelin-509 in NPC patients (n = 5) and controls (n = 7) was quantified. In FIG. 5C, the concentration of urinary SNAG-Δ 5 -CA in NPC patients (n = 5) and controls (n = 7) was quantified (p <0.05). NPC患者における血漿中および尿中のバイオマーカー濃度の相関を示す図である。図6のAは、血漿SPC濃度と尿中胆汁酸代謝物SNAG-Δ-CA濃度との間の相関を示す。図6のBは、血漿リゾスフィンゴミエリン-509濃度と尿中SNAG-Δ-CA濃度との間の相関を示す。SNAG-Δ-CA濃度は非特許文献11に従ってLC-MS/MSを用いて定量した。3β-スルフォオキシ-7β-ヒドロキシ-23-ノル-5-コレン酸を内部標準物質として用いた。FIG. 5 shows the correlation of plasma and urine biomarker concentrations in NPC patients. FIG. 6A shows the correlation between plasma SPC concentration and urinary bile acid metabolite SNAG-Δ 5 -CA concentration. FIG. 6B shows the correlation between plasma lysosphingomyelin-509 concentration and urine SNAG-Δ 5 -CA concentration. The concentration of SNAG-Δ 5 -CA was quantified using LC-MS / MS according to Non-Patent Document 11. 3β-sulfooxy-7β-hydroxy-23-nor-5-cholic acid was used as an internal standard.
 〔1.ニーマンピック病C型の診断のための検査方法〕
 本実施形態に係るニーマンピック病C型の診断のための検査方法は、
 生体から採取された血液に由来する試料において、第1のバイオマーカーの量を測定する工程(以下「第1の工程」と称する)と、
 上記生体から採取された尿に由来する試料において、第2のバイオマーカーの量を測定する工程(以下「第2の工程」と称する)と、
を含む。
[1. Test method for diagnosis of Niemann-Pick disease type C]
An inspection method for diagnosis of Niemann-Pick disease type C according to the present embodiment is
Measuring the amount of a first biomarker in a sample derived from blood collected from a living body (hereinafter referred to as "first step");
Measuring the amount of a second biomarker in a sample derived from urine collected from the living body (hereinafter referred to as “second step”);
including.
 第1の工程と第2の工程とは行う順序に制限はなく、第1の工程を第2の工程よりも前に行ってもよいし、第2の工程を第1の工程よりも前に行ってもよいし、第1の工程と第2の工程とを並行して行ってもよい。 There is no restriction on the order of performing the first step and the second step, and the first step may be performed before the second step, or the second step may be performed before the first step. The first step and the second step may be performed in parallel.
 第1のバイオマーカーおよび第2のバイオマーカーならびに本実施形態において量が測定され得る他のバイオマーカーをまとめて、以下、単に「バイオマーカー」と称する。 The first and second biomarkers and other biomarkers whose amounts can be measured in this embodiment are collectively referred to hereinafter simply as "biomarkers".
 本実施形態において、生体(被検体)としては、ヒトまたはヒト以外の動物(例えば、哺乳動物)が挙げられ、哺乳動物としては、例えば、マウス、ラット、ウサギ、モルモット、ヒトを除く霊長類等の実験動物;イヌ、ネコ等の愛玩動物(ペット);ウシ、ウマ、ブタ等の家畜;ヒトが挙げられる。また、生体(被検体)は、新生児であってもよい。本実施形態に係る検査方法は、新生児スクリーニング検査の項目の1つとして行われてもよい。 In the present embodiment, examples of the living body (subject) include humans and animals other than humans (for example, mammals), and examples of mammals include mice, rats, rabbits, guinea pigs, primates excluding humans, and the like. Experimental animals; companion animals such as dogs and cats (pets); domestic animals such as cows, horses and pigs; humans. The living body (subject) may be a newborn. The inspection method according to the present embodiment may be performed as one of the items of the newborn screening test.
 本明細書において、「バイオマーカーの量を測定する」とは、生体試料またはこれを精製して得られる試料におけるバイオマーカーの存在量または濃度を測定することを意図している。「バイオマーカーの量」は、絶対量(絶対質量または絶対濃度)あってもよいし、相対量(相対質量または相対濃度)であってもよい。また、例えば、質量分析におけるピーク面積、または発光測定における発光強度などでもあってもよいし、所定の基準に対して何倍であるかを示す値であってもよい。 As used herein, "to measure the amount of biomarker" is intended to measure the amount or concentration of the biomarker in a biological sample or a sample obtained by purifying the same. The "amount of biomarker" may be an absolute amount (absolute mass or absolute concentration) or a relative amount (relative mass or relative concentration). In addition, for example, it may be a peak area in mass spectrometry, an emission intensity in luminescence measurement, or the like, or a value indicating how many times a predetermined standard is.
 本明細書において、「ニーマンピック病C型を患っている」とは、ニーマンピック病C型の病因を有していることを指し、現時点で典型的な臨床症状を発症していない場合も含み得る概念である。ニーマンピック病C型の病因としては、遺伝的因子が挙げられ、より具体的には、機能低下しているNPC1タンパク質またはNPC2タンパク質をコードする遺伝子(すなわち、NPC1遺伝子の変異またはNPC2遺伝子の変異)が挙げられるが、これらに限定されず、他の既知および未知の病因も含まれ得る。 As used herein, "having Niemann-Pick disease type C" refers to having the etiology of Niemann-Pick disease type C, including when it has not yet developed typical clinical symptoms at this time It is a concept to gain. The pathogenesis of Niemann-Pick disease type C includes genetic factors, and more specifically, a gene encoding NPC1 protein or NPC2 protein with reduced function (ie mutation of NPC1 gene or mutation of NPC2 gene) Include, but are not limited to, other known and unknown etiologies may also be included.
 (第1の工程)
 第1の工程において用いる「試料」は、生体(被検体)から採取された血液に由来する試料である。血液に由来する試料としては、例えば、全血液、血清、血漿などが挙げられる。血液に由来する試料としては、中でも、血清および血漿が好ましく、血漿がより好ましい。採血部位としては、例えば、肘窩皮静脈、橈側皮静脈、および尺側皮静脈などが挙げられる。
(First step)
The "sample" used in the first step is a sample derived from blood collected from a living body (subject). Examples of blood-derived samples include whole blood, serum, plasma and the like. Among the samples derived from blood, serum and plasma are preferable, and plasma is more preferable. As a blood collection site, for example, a ovary fossa vein, a caudal cutaneous vein, and an ulnar cutaneous vein may be mentioned.
 第1のバイオマーカーは、上記血液に由来する試料(全血液、血清、または血漿など)における量が、ニーマンピック病C型を患っている個体とニーマンピック病C型を患っていない個体とで統計学的に有意な差がみられるバイオマーカーである。第1のバイオマーカーとしては、スフィンゴリン脂質、コレスタン-3β、5α、6β-トリオール、7-ケトコレステロール、胆汁酸A等が挙げられる。スフィンゴリン脂質としては、スフィンゴシルホスフォリルコリン(SPC)、スフィンゴシルホスフォリルコリン修飾体、スフィンゴミエリン、スフィンゴミエリン修飾体等が挙げられる。 The first biomarker is the amount of the above-mentioned blood-derived sample (such as whole blood, serum, or plasma) in individuals having Niemann-Pick disease type C and individuals not suffering from Niemann-Pick disease type C It is a biomarker that has a statistically significant difference. The first biomarker includes sphingophospholipids, cholestane-3β, 5α, 6β-triol, 7-ketocholesterol, bile acid A and the like. Examples of sphingophospholipids include sphingosyl phosphoryl choline (SPC), sphingosyl phosphoryl choline modified form, sphingomyelin, sphingomyelin modified form and the like.
 一実施形態において、第1のバイオマーカーは、リゾスフィンゴミエリン-509である。当該化合物は、特許文献1および2に記載の化合物509である。リゾスフィンゴミエリン-509(化合物509)は、C2450P(擬分子M+Hイオン)の化合物509の実験式を有する509.3、より具体的には509.265(m/z)(モノアイソトピック擬分子M+Hイオンとして)の擬分子イオン質量を有する物質である。これは、好ましくは、本発明の方法に従って、より具体的には、特許文献2の明細書に記載の実施例1および実施例2の方法に従って、対象に由来する血漿試料中で509m/zから184m/zのESIポジティブモードでのMRMトランジション(MRM transition)として検出される化合物であり得る。
[M+H]+としての化合物509の構造式は以下の通りであり、好ましくは、下記式の化合物の分子量は、モノアイソトピック擬分子M+Hイオン(m/z)として509.265である。リゾスフィンゴミエリン-509(化合物509)は、ω-カルボキシ-スフィンゴシルホスフォリルコリンとも称される。
In one embodiment, the first biomarker is lysosphingomyelin-509. The compound is compound 509 described in Patent Documents 1 and 2. Lyso sphingomyelin -509 (Compound 509) is, C 24 H 50 O 7 N 2 P 509.3 having the empirical formula of the compound 509 (quasi-molecular M + H ions), more specifically 509.265 (m / z A substance having a pseudomolecular ion mass (as a monoisotopic pseudomolecular M + H ion). This is preferably according to the method of the present invention, more particularly according to the method of Example 1 and Example 2 as described in the specification of Patent Document 2, in a plasma sample derived from a subject from 509 m / z It may be a compound detected as MRM transition in ESI positive mode at 184 m / z (MRM transition).
The structural formula of compound 509 as [M + H] + is as follows, and preferably, the molecular weight of the compound of the following formula is 509.265 as monoisotopic pseudomolecular M + H ion (m / z). Lysosphingomyelin-509 (compound 509) is also referred to as ω-carboxy-sphingosyl phosphoryl choline.
Figure JPOXMLDOC01-appb-C000001
 本実施形態において、バイオマーカー(第1のバイオマーカー、第2のバイオマーカー、および任意で他のバイオ―マーカー)の量を測定する方法としては、バイオマーカーの存在量を定量的もしくは半定量的に決定できる限り、特に限定されるものではなく、例えば、質量分析法、測定対象のバイオマーカーを認識する抗体を用いた免疫学的手法を用いた方法、化学発光法、電気化学検出法、紫外検出法、または示差屈折法などを用いることができる。
Figure JPOXMLDOC01-appb-C000001
In the present embodiment, as a method of measuring the amount of the biomarker (the first biomarker, the second biomarker, and optionally other biomarkers), the amount of the biomarker present can be quantitatively or semi-quantitatively The method is not particularly limited as long as it can be determined, for example, mass spectrometry, a method using an immunological method using an antibody that recognizes a biomarker to be measured, a chemiluminescence method, an electrochemical detection method, ultraviolet light A detection method, a differential refraction method, or the like can be used.
 質量分析は、公知の質量分析装置を用いて行えばよい。質量分析装置を用いた質量分析は、感度および精度に優れているため、正確な判定を行うことができる。さらに、多成分同時分析が可能なマルチチャネル型の質量分析装置を用いることにより、例えば、2つ以上のバイオマーカーの量を一度に測定することも可能となる。さらには、ニーマンピック病C型以外の他の疾患に関するバイオマーカーも同時に測定することも可能となり、一度に様々な疾患についての検出を試みることが可能となる。また、より精度良く検出を行うためには、タンデム質量分析装置(MS/MS)を用いることが好ましい。本発明の検出方法において用いられる質量分析装置としては定量可能であれば特に限定されず、例えば、四重極型および飛行時間型など従来公知の型の質量分析装置を用いることが可能である。一態様において、液体クロマトグラフィー/質量分析法(LC-MS)を用いることが好ましく、なかでもLC-MS/MSを用いることがより好ましい。 Mass spectrometry may be performed using a known mass spectrometer. Mass spectrometry using a mass spectrometer is excellent in sensitivity and accuracy, so accurate determination can be performed. Furthermore, it is also possible to measure, for example, the amount of two or more biomarkers at once by using a multichannel mass spectrometer capable of multicomponent simultaneous analysis. Furthermore, biomarkers for other diseases than Niemann-Pick disease type C can also be measured at the same time, and detection of various diseases can be attempted at one time. Moreover, in order to perform detection more accurately, it is preferable to use a tandem mass spectrometer (MS / MS). The mass spectrometer used in the detection method of the present invention is not particularly limited as long as it can be quantified. For example, it is possible to use conventionally known types of mass spectrometers such as quadrupole type and time of flight type. In one embodiment, liquid chromatography / mass spectrometry (LC-MS) is preferably used, and more preferably LC-MS / MS.
 抗体を用いた方法としては、例えば、ELISA法、定量ウェスタンブロッティング法、ラジオイムノアッセイ法、イムノクロマトグラフィー法、および免疫沈降法などが挙げられる。ELISA法の種類としては、特に限定されないが、いわゆる抗原測定系(生物試料中に含まれる抗原量の測定)である、直接吸着法によるELISA、競合法によるELISA、サンドイッチ法によるELISA、およびマイクロ流路式またはマイクロビーズなどを利用した、微量試料の測定に特化したELISAなどが挙げられる。 Examples of methods using antibodies include ELISA, quantitative western blotting, radioimmunoassay, immunochromatography, and immunoprecipitation. The type of ELISA method is not particularly limited, but is a so-called antigen measurement system (measurement of the amount of antigen contained in a biological sample), ELISA by direct adsorption method, ELISA by competition method, ELISA by sandwich method, and microflow An ELISA or the like specialized for measurement of a small amount of sample using a road type or microbeads can be mentioned.
 バイオマーカーの量の測定に供する試料は、量が既知の内部標準物質を含んでいることが好ましい。より正確にバイオマーカーの量を算出することができる。また、測定間のばらつきを抑えることができ、高精度での診断が可能となる。さらには、複数施設間でのデータ比較も容易となる。また、複数施設におけるデータを蓄積することによって、基準値の精度をより高めることもできる。内部標準物質としては、バイオマーカーの類縁化合物(例えば、異性体、同族体、主鎖の原子数が異なる化合物、官能基が異なる化合物、または化合物の化学的性質がバイオマーカーと類似であり、安定に定量可能である化合物等)、バイオマーカーの安定同位体標識化合物等が挙げられる。 The sample to be used for measurement of the amount of biomarker preferably contains an internal standard of known amount. The amount of biomarker can be calculated more accurately. In addition, variations between measurements can be suppressed, and diagnosis with high accuracy is possible. Furthermore, data comparison among multiple facilities becomes easy. In addition, by accumulating data at multiple facilities, the accuracy of the reference value can be further improved. As internal standard substances, analogues of biomarkers (for example, isomers, homologues, compounds having different numbers of atoms in the main chain, compounds having different functional groups, or compounds whose chemical properties are similar to those of the biomarker and stable Compounds that can be quantified), stable isotope labeled compounds of biomarkers, and the like.
 バイオマーカーの量の測定に供する試料は、前処理が施されていてもよい。前処理としては、例えば、溶媒抽出法、固相抽出法、HPLC(オンラインHPLCなど)法、誘導体化法等が挙げられる。溶媒抽出法を用いた前処理が施されることによって、簡便に測定対象化合物を含めた抽出操作が達成できるという利点がある。固相抽出法を用いた前処理が施されることによって、より少ない有機溶媒で簡便に測定対象化合物を含めた抽出操作が達成できるという利点がある。HPLC(オンラインHPLCなど)法を用いた前処理が施されることによって、多種類かつ精密な充填剤によるより高度な分離精製が前処理として簡便に達成できるという利点がある。誘導体化法を用いた前処理が施されることによって、化合物内に存在する特定の官能基が選択的に化学修飾され、溶媒抽出法、固相抽出法およびHPLC(オンラインHPLCなど)法による前処理の際に、夾雑物に対する目的物の精製度が飛躍的に向上する利点がある。このことに加え、特に定量分析において感度向上に寄与する誘導化試薬を用いることにより、高感度分析も達成できるという利点もある。 The sample to be subjected to measurement of the amount of biomarker may be pretreated. Examples of pretreatment include solvent extraction, solid phase extraction, HPLC (such as online HPLC), and derivatization. By performing pretreatment using a solvent extraction method, there is an advantage that the extraction operation including the compound to be measured can be easily achieved. The pretreatment using the solid phase extraction method has an advantage that the extraction operation including the compound to be measured can be easily achieved with less organic solvent. Pretreatment using an HPLC (on-line HPLC or the like) method has an advantage that higher separation and purification with various kinds and precise fillers can be easily achieved as pretreatment. By performing pretreatment using derivatization, specific functional groups present in the compound are selectively chemically modified, and are pretreated by solvent extraction, solid phase extraction and HPLC (such as online HPLC). At the time of processing, there is an advantage that the degree of purification of the desired substance with respect to impurities is dramatically improved. In addition to this, there is also an advantage that high sensitivity analysis can be achieved by using a derivatization reagent that contributes to sensitivity improvement particularly in quantitative analysis.
 また、前処理として、例えば、(a)生体試料を内部標準物質と混合して希釈液で希釈した際に濁り(微粒子)が発生した場合、および/または、(b)抽出物(精製物)に微粒子が発生している場合等に、試料を濾過または遠心してもよい。例えば、血漿であって特に高脂質性の食事をとって数時間後に採血された試料、脂質代謝異常症(例えば、家族性高コレステロール血症など)が疑われるもしくは確認されている被験者から得られた試料、および何らかの理由で高塩濃度もしくは高タンパク質濃度である試料等は、上記(a)および(b)において微粒子が発生する可能性が高まる。また、室温で調製した場合であっても、サンプル安定性の点から低温(例えば、4℃、10℃もしくはその周辺温度)に維持されているオートサンプラー上に移動し、オートサンプラー上で冷却された場合には、注入操作前に析出する可能性もある。 In addition, as pretreatment, for example, (a) when a biological sample is mixed with an internal standard substance and diluted with dilution liquid, turbidity (fine particles) is generated, and / or (b) extract (purified product) The sample may be filtered or centrifuged, for example, when fine particles are generated in the For example, it may be obtained from a blood plasma sample which is collected several hours after a particularly high lipid diet, a subject with suspected or confirmed dyslipidemia (eg familial hypercholesterolemia etc.) Samples and samples with high salt concentration or high protein concentration for some reason, etc. have a high possibility of generation of microparticles in the above (a) and (b). Also, even when prepared at room temperature, it is transferred onto an autosampler maintained at a low temperature (eg, 4 ° C., 10 ° C. or its ambient temperature) from the point of sample stability, and cooled on the autosampler In some cases, precipitation may occur before the injection operation.
 第1の工程のより具体的な方法の一例を、スフィンゴシルホスフォリルコリン(SPC)を例に説明する(後述の実施例も参照)。まず、公知の手法で被験体から血液を採取し、公知の手法で血漿を調製する。次いで、血漿に量が既知の内部標準物質を含む有機溶媒を添加し、試料溶液とする。SPCに対する好適な内部標準物質としては、SPC-C17(図1のB)、または安定同位体標識されたSPC等が挙げられる。試料溶液を固相抽出カラムに供する。SPCおよび内部標準物質を溶出させ、窒素気流下で乾固する。次いで、質量分析に適した溶媒で再懸濁し、質量分析を行う。SPCの濃度は、得られたピーク面積を既知濃度の内部標準物質のピーク面積と比較することによって算出する。 An example of a more specific method of the first step is described using sphingosyl phosphoryl choline (SPC) as an example (see also the examples described later). First, blood is collected from a subject by a known method, and plasma is prepared by a known method. Next, an organic solvent containing an internal standard of known amount is added to plasma to make a sample solution. Suitable internal standard substances for SPC include SPC-C17 (B in FIG. 1), SPC labeled with stable isotope, and the like. The sample solution is applied to a solid phase extraction column. Elute the SPC and internal standard and dry under a stream of nitrogen. It is then resuspended in a solvent suitable for mass spectrometry and mass spectrometry is performed. The concentration of SPC is calculated by comparing the peak area obtained with the peak area of the internal standard of known concentration.
 (第2の工程)
 第2の工程において用いる「試料」は、生体(被検体)から採取された尿に由来する試料である。第1の工程における生体(被検体)と第2の工程における生体(被検体)とは、同一の個体である。
(Second step)
The "sample" used in the second step is a sample derived from urine collected from a living body (subject). The living body (subject) in the first step and the living body (subject) in the second step are the same individual.
 第2のバイオマーカーは、上記尿に由来する試料における量が、ニーマンピック病C型を患っている個体とニーマンピック病C型を患っていない個体とで統計学的に有意な差がみられるバイオマーカーである。第2のバイオマーカーとしては、胆汁酸代謝物等が挙げられる。胆汁酸代謝物としては、3β-スルフォオキシ-7β-N-アセチルグルコサミニル-5-コレン-24-ノイック酸(SNAG-Δ-CA)、3β-スルフォオキシ-7β-N-アセチルグルコサミニル-5-コレン-24-ノイック酸グリシン抱合体(SNAG-Δ-CG)、3β-スルフォオキシ-7β-N-アセチルグルコサミニル-5-コレン-24-ノイック酸タウリン抱合体(SNAG-Δ-CT)等が挙げられる。第1のバイオマーカーと第2のバイオマーカーとは、互いに異なる物質であり得る。 The second biomarker has a statistically significant difference in the amount of the above urine-derived sample between an individual suffering from Niemann-Pick disease type C and an individual not suffering from Niemann-Pick disease type C It is a biomarker. The second biomarker includes bile acid metabolites and the like. The bile acid metabolites, 3.beta .- Surufookishi -7β-N- acetylglucosaminyltransferase-5-cholenic-24-Noikku acid (SNAG-Δ 5 -CA), 3β- Surufookishi -7β-N- acetylglucosaminyl - 5-cholenic-24-Noikku acid glycine conjugates (SNAG-Δ 5 -CG), 3β- Surufookishi -7β-N- acetylglucosaminyltransferase-5-cholenic-24-Noikku acid taurine conjugate (SNAG-Δ 5 - CT) etc. The first biomarker and the second biomarker may be different from each other.
 第2の工程のより具体的な方法の一例を、SNAG-Δ-CAを例に説明する(後述の実施例も参照)。まず、公知の手法で被験体から尿を採取する。次いで、尿に量が既知の内部標準物質を含む水溶液を添加し、試料溶液とする。SNAG-Δ-CAに対する好適な内部標準物質としては、3β-スルフォオキシ-7β-ヒドロキシ-23-ノル-5-コレン酸(図1のD)、または安定同位体標識されたSNAG-Δ-CA等が挙げられる。試料溶液を予め平衡化したトラッピングカラムに注入し、溶媒で洗浄した後、溶出させる。次いで、質量分析を行う。SNAG-Δ-CAの濃度は、得られたピーク面積を既知濃度の内部標準物質のピーク面積と比較することによって算出する。 An example of a more specific method of the second step is described using SNAG-Δ 5 -CA as an example (see also the examples described later). First, urine is collected from a subject by a known method. Next, an aqueous solution containing a known amount of internal standard substance is added to the urine to make a sample solution. Preferred internal standards for SNAG-Δ 5 -CA include 3β-sulfooxy-7β-hydroxy-23-nor-5-cholic acid (D in FIG. 1) or stable isotope labeled SNAG-Δ 5- CA etc. are mentioned. The sample solution is injected into a pre-equilibrated trapping column, washed with a solvent and eluted. Then, mass spectrometry is performed. The concentration of SNAG-Δ 5 -CA is calculated by comparing the peak area obtained with the peak area of the internal standard of known concentration.
 (ニーマンピック病C型の判定)
 本実施形態では、第1の工程で測定された被験体由来の試料における第1のバイオマーカーの量、および、第2の工程で測定された被験体由来の試料における第2のバイオマーカーの量に基づき、ニーマンピック病C型を判定する。
(Determination of Niemann-Pick disease type C)
In this embodiment, the amount of the first biomarker in the sample from the subject measured in the first step, and the amount of the second biomarker in the sample from the subject measured in the second step Based on, Niemann-Pick disease type C is determined.
 一態様において、被験体由来の試料における第1のバイオマーカーの量と基準値とを比較した結果、および、被験体由来の試料における第2のバイオマーカーの量と基準値とを比較した結果に基づき、ニーマンピック病C型を判定する。したがって、本実施形態に係る検査方法は、被験体由来の試料における第1のバイオマーカーの量と第1のバイオマーカーの基準値とを比較する工程を含んでいてもよい。また、本実施形態に係る検査方法は、被験体由来の試料における第2のバイオマーカーの量と第2のバイオマーカーの基準値とを比較する工程を含んでいてもよい。 In one embodiment, the result of comparing the amount of the first biomarker in a sample derived from a subject with a reference value, and the result comparing the amount of a second biomarker in a sample derived from a subject with the reference value Based on the Niemann-Pick disease type C is determined. Therefore, the test method according to the present embodiment may include the step of comparing the amount of the first biomarker in the sample derived from the subject with the reference value of the first biomarker. The inspection method according to the present embodiment may include the step of comparing the amount of the second biomarker in the sample derived from the subject with the reference value of the second biomarker.
 本実施形態において、対照被験体から採取された血液に由来する試料における第1のバイオマーカーの量に関するデータを用意してもよい。本実施形態において、対照被験体から採取された尿に由来する試料における第2のバイオマーカーの量に関するデータを用意してもよい。当該データとして、予め測定されたものを用いてもよいし、本実施形態に係る検査方法の一連の作業中に測定してもよい。対照被験体は、ニーマンピック病C型を患っていない個体のみでもよいし、ニーマンピック病C型を患っている個体のみでもよいし、その両方であってもよい。また、対照被験体は、1個体であってもよいが、複数個体であることが好ましく、数が多いほど精度が上がるためより好ましい。あるいは、そのようなデータから導かれた基準値を用意してもよい。基準値は、例えば、ニーマンピック病C型を患っている個体からなる対照被験体における下限値、ニーマンピック病C型を患っていない個体からなる対照被験体の平均値に統計的なばらつきを考慮した値、文献における値、またはこれらのうちの任意のものを複合的に考慮した値とすることができる。 In this embodiment, data may be provided regarding the amount of the first biomarker in a sample derived from blood collected from a control subject. In this embodiment, data may be provided regarding the amount of the second biomarker in a sample derived from urine collected from a control subject. The data may be measured in advance, or may be measured during a series of operations of the inspection method according to the present embodiment. The control subject may be only an individual not suffering from Niemann-Pick disease type C, or only an individual suffering from Niemann-Pick disease type C, or both of them. Moreover, although a control subject may be one individual, it is preferable that there are two or more individuals, and the more the number, the more preferable because the accuracy is improved. Alternatively, a reference value derived from such data may be prepared. The reference value takes into account statistical variation in, for example, the lower limit value in a control subject consisting of an individual suffering from Niemann-Pick disease type C, and the average value of a control subject consisting of an individual not suffering from Niemann-Pick disease type C These values, values in the literature, or any of these may be considered in combination.
 被験体由来の試料における第1のバイオマーカーの量および第2のバイオマーカーの量の少なくとも一方が当該バイオマーカーにおける基準値以上である場合に、この被験体がニーマンピック病C型を患っているか、またはニーマンピック病C型を患っている可能性が高いと判定することができる。例えば、第1のバイオマーカーの量および第2のバイオマーカーの量を2次元プロットし、少なくとも一方が基準値以上である場合に、ニーマンピック病C型を患っているか、またはニーマンピック病C型を患っている可能性が高いと判定することができる。あるいは、被験体由来の試料における第1のバイオマーカーの量および第2のバイオマーカーの量の両方が当該バイオマーカーにおける基準値以上である場合に、この被験体がニーマンピック病C型を患っているか、またはニーマンピック病C型を患っている可能性が高いと判定することができる。 Whether the subject suffers from Niemann-Pick disease type C if at least one of the amount of the first biomarker and the amount of the second biomarker in the sample derived from the subject is greater than or equal to the reference value in the biomarker It can be determined that the patient is likely to suffer from Niemann-Pick disease type C. For example, if the amount of the first biomarker and the amount of the second biomarker are two-dimensionally plotted, and at least one of them is a reference value or more, you are suffering from Niemann-Pick disease type C, or Niemann-Pick disease type C It can be determined that there is a high possibility of suffering from Alternatively, the subject suffers from Niemann-Pick disease type C if both the amount of the first biomarker and the amount of the second biomarker in the sample from the subject are greater than or equal to the reference value in the biomarker. It can be determined that there is a high possibility of having or suffering from Niemann-Pick disease type C.
 あるいは、被験体由来の試料におけるバイオマーカーの量と基準値とを比較して、その有意差を、例えば、t検定、F検定、カイ二乗検定、またはMann-Whitney's U testなどの統計学的手法によって算出し、ニーマンピック病C型を患っている確率を算出してもよ
い。
Alternatively, the amount of the biomarker in the sample derived from the subject is compared with a reference value, and the difference is determined by, for example, a statistical method such as t test, F test, chi-square test, or Mann-Whitney's U test. The probability of suffering from Niemann-Pick disease type C may be calculated according to
 別の一態様において、第1のバイオマーカーの量と第2のバイオマーカーの量とを1つのパラメータ(値)に変換して用いてもよい。この場合、例えば、第1のバイオマーカーの量および第2のバイオマーカーの量を用いて、ロジスティック回帰スコアを算出する。算出方法は、例えば、文献:Pepe, M. S., Cai, T., and Longton, G. (2006), Biometrics 62, 221-229.に記載の方法を用いればよい。基準値も同様の方法で1つのパラメータ(値)として算出することができる。このロジスティック回帰スコアについて、被験体が
基準値よりも高い場合には、この被験体がニーマンピック病C型を患っているか、またはニーマンピック病C型を患っている可能性が高いと判定することができる。
In another embodiment, the amount of the first biomarker and the amount of the second biomarker may be converted into one parameter (value) and used. In this case, for example, the amount of the first biomarker and the amount of the second biomarker are used to calculate a logistic regression score. The calculation method may be, for example, the method described in the literature: Pepe, MS, Cai, T., and Longton, G. (2006), Biometrics 62, 221-229. The reference value can also be calculated as one parameter (value) in the same manner. For this logistic regression score, if the subject is higher than the standard value, determine that the subject is likely to suffer from Niemann-Pick disease type C or is likely to suffer from Niemann-Pick disease type C. Can.
 あるいは、被験体由来の試料におけるロジスティック回帰スコアと基準値とを比較して、その有意差を、例えば、t検定、F検定、カイ二乗検定、またはMann-Whitney's U testなどの統計学的手法によって算出し、ニーマンピック病C型を患っている確率を算出してもよい。 Alternatively, the logistic regression score in the sample derived from the subject is compared with the reference value, and the significant difference thereof is determined by a statistical method such as t test, F test, chi-square test, or Mann-Whitney's U test. The probability of suffering from Niemann-Pick disease type C may be calculated.
 本実施形態に係る検査方法は、同一の被験体由来の別個の試料にそれぞれ由来する2つのバイオマーカーを利用するため、1つのバイオマーカーを単独で用いる場合および従来法と比較して、診断精度が向上し得る。 Since the test method according to the present embodiment utilizes two biomarkers respectively derived from different samples from the same subject, diagnostic accuracy is improved when using one biomarker alone and in comparison with the conventional method. Can improve.
 本発明の一実施形態は、上記検査方法において測定された被験体由来の試料における第1のバイオマーカーの量および第2のバイオマーカーの量に基づき、この被験体がニーマンピック病C型を患っているか否か、またはニーマンピック病C型を患っている可能性が高いか否かと判定する工程を含む、ニーマンピック病C型の診断方法を提供する。一実施形態において、上記検査方法において測定された被験体由来の試料における第1のバイオマーカーの量および第2のバイオマーカーの量の少なくとも一方が当該バイオマーカーにおける基準値以上である場合に、この被験体がニーマンピック病C型を患っているか、またはニーマンピック病C型を患っている可能性が高いと判定する。一実施形態において、上記検査方法において測定された被験体由来の試料における第1のバイオマーカーの量および第2のバイオマーカーの量の両方が当該バイオマーカーにおける基準値以上である場合に、この被験体がニーマンピック病C型を患っているか、またはニーマンピック病C型を患っている可能性が高いと判定する工程を含む。 One embodiment of the present invention is based on the amount of the first biomarker and the amount of the second biomarker in the sample from the subject measured in the above-mentioned test method, and the subject suffers from Niemann-Pick disease type C. The present invention provides a diagnostic method for Niemann-Pick disease type C, which includes the step of determining whether or not the patient is likely to suffer from Niemann-Pick disease type C. In one embodiment, when at least one of the amount of the first biomarker and the amount of the second biomarker in the sample derived from the subject measured in the above test method is equal to or greater than a reference value in the biomarker, It is determined that the subject has Niemann-Pick disease type C or is likely to suffer from Niemann-Pick disease type C. In one embodiment, when both the amount of the first biomarker and the amount of the second biomarker in the sample derived from the subject measured in the above-mentioned test method are equal to or higher than the reference value in the biomarker, Determining that the body suffers from Niemann-Pick disease type C or is likely to suffer from Niemann-Pick disease type C.
 本実施形態に係る検査方法は、第1のバイオマーカーおよび第2のバイオマーカーとは別のさらなるバイオマーカーの量を測定する工程を含んでもよい。 The test method according to the present embodiment may include the step of measuring the amount of additional biomarkers other than the first biomarker and the second biomarker.
 なお、本実施形態に係る検査方法は、「血液に由来する試料における第1のバイオマーカーの量と、尿に由来する試料における第2のバイオマーカーの量とを測定する工程を含む、ニーマンピック病C型の診断のための検査方法」とも換言し得る。また、本実施形態に係る検査方法は、「血液に由来する試料における第1のバイオマーカーと、尿に由来する試料における第2のバイオマーカーとを用いて検査する工程を含む、ニーマンピック病C型の診断のための検査方法」とも換言し得る。 Note that the test method according to the present embodiment includes “a step of measuring the amount of the first biomarker in the sample derived from blood and the amount of the second biomarker in the sample derived from urine. It can also be referred to as “test method for diagnosis of disease type C”. In addition, the test method according to the present embodiment includes “a step of testing using a first biomarker in a sample derived from blood and a second biomarker in a sample derived from urine. It can also be referred to as “test method for diagnosis of type”.
 〔2.ニーマンピック病C型の治療効果を評価するための検査方法〕
 本発明はさらに、上述の第1の工程と、上述の第2の工程とを含む、ニーマンピック病C型の治療効果を評価するための検査方法を提供する。
[2. Test method for evaluating the therapeutic effect of Niemann-Pick disease type C]
The present invention further provides a test method for evaluating the therapeutic effect of Niemann-Pick disease type C, which comprises the above-mentioned first step and the above-mentioned second step.
 (第1の工程および第2の工程)
 一実施形態において、各工程の説明は、〔1.ニーマンピック病C型の診断のための検査方法〕の欄で説明したとおりである。
(First step and second step)
In one embodiment, the description of each process is [1. Test method for diagnosis of Niemann-Pick disease type C] is as described in the section.
 (ニーマンピック病C型の治療効果の評価)
 本実施形態では、第1の工程で測定された被験体由来の試料における第1のバイオマーカーの量、および、第2の工程で測定された被験体由来の試料における第2のバイオマーカーの量に基づき、ニーマンピック病C型の治療効果を評価する。
(Evaluation of therapeutic effect of Niemann-Pick disease type C)
In this embodiment, the amount of the first biomarker in the sample from the subject measured in the first step, and the amount of the second biomarker in the sample from the subject measured in the second step To assess the therapeutic effect of Niemann-Pick disease type C.
 一態様において、第1の時点における被験体由来の試料における第1のバイオマーカーの量と第2の時点における被験体由来の試料における第1のバイオマーカーの量とを比較した結果、および、第1の時点における被験体由来の試料における第2のバイオマーカーの量と第2の時点における被験体由来の試料における第2のバイオマーカーの量とを比較した結果に基づき、ニーマンピック病C型の治療効果を評価する。したがって、本実施形態に係る検査方法は、第1の時点における被験体由来の試料における第1のバイオマーカーの量と第2の時点における被験体由来の試料における第1のバイオマーカーの量とを比較する工程を含んでいてもよい。また、本実施形態に係る検査方法は、第1の時点における被験体由来の試料における第2のバイオマーカーの量と第2の時点における被験体由来の試料における第2のバイオマーカーの量とを比較する工程を含んでいてもよい。 In one embodiment, the result of comparing the amount of the first biomarker in the sample from the subject at the first time point with the amount of the first biomarker in the sample from the subject at the second time point; Based on the result of comparing the amount of the second biomarker in the sample from the subject at 1 time point with the amount of the second biomarker in the sample from the subject at the second time point, Evaluate the treatment effect. Therefore, the test method according to the present embodiment includes the amount of the first biomarker in the sample from the subject at the first time point and the amount of the first biomarker in the sample from the subject at the second time point A step of comparing may be included. In the test method according to the present embodiment, the amount of the second biomarker in the sample derived from the subject at the first time point and the amount of the second biomarker in the sample derived from the subject at the second time point A step of comparing may be included.
 第1の時点は、ニーマンピック病C型の治療開始前または治療開始後(治療終了後も含む)のある時点であり得る。第2の時点は、第1の時点よりも後であって、治療開始後(治療終了後も含む)のある時点であり得る。一態様において、第2の時点における被験体由来の試料におけるバイオマーカーの量が第1の時点における被験体由来の試料におけるバイオマーカーの量と比較して減少していれば、治療効果があると評価することができる。一態様において、第2の時点における被験体由来の試料におけるバイオマーカーの量が第1の時点における被験体由来の試料におけるバイオマーカーの量と比較して減少していれば、治療効果があると評価することができる。第1のバイオマーカーと第2のバイオマーカーとのうち、一方でも減少していれば、治療効果があると評価してもよいし、両方減少している場合にのみ治療効果があると評価してもよい。あるいは、上述のように第1のバイオマーカーの量と第2のバイオマーカーの量とを1つのパラメータ(値)に変換して比較してもよい。 The first time point may be at some time before or after the start of treatment for Niemann-Pick disease type C (including after the end of treatment). The second time point may be later than the first time point and at a certain time point after the start of the treatment (including after the end of the treatment). In one aspect, if the amount of biomarker in the sample from the subject at the second time point is reduced compared to the amount of biomarker in the sample from the subject at the first time point, then there is a therapeutic effect It can be evaluated. In one aspect, if the amount of biomarker in the sample from the subject at the second time point is reduced compared to the amount of biomarker in the sample from the subject at the first time point, then there is a therapeutic effect It can be evaluated. If either the first biomarker or the second biomarker is decreased, it may be evaluated as having a therapeutic effect, or only if both have a therapeutic effect. May be Alternatively, the amount of the first biomarker and the amount of the second biomarker may be converted into one parameter (value) and compared as described above.
 本実施形態に係る検査方法は、第1のバイオマーカーおよび第2のバイオマーカーとは別のさらなるバイオマーカーの量を測定する工程を含んでもよい。 The test method according to the present embodiment may include the step of measuring the amount of additional biomarkers other than the first biomarker and the second biomarker.
 なお、本実施形態に係る検査方法は、「血液に由来する試料における第1のバイオマーカーの量と、尿に由来する試料における第2のバイオマーカーの量とを測定する工程を含む、ニーマンピック病C型の治療効果を評価するための検査方法」とも換言し得る。また、本実施形態に係る検査方法は、「血液に由来する試料における第1のバイオマーカーと、尿に由来する試料における第2のバイオマーカーとを用いて検査する工程を含む、ニーマンピック病C型の治療効果を評価するための検査方法」とも換言し得る。 Note that the test method according to the present embodiment includes “a step of measuring the amount of the first biomarker in the sample derived from blood and the amount of the second biomarker in the sample derived from urine. It can also be referred to as “test method for evaluating the treatment effect of disease type C”. In addition, the test method according to the present embodiment includes “a step of testing using a first biomarker in a sample derived from blood and a second biomarker in a sample derived from urine. It can also be referred to as “test method for evaluating the therapeutic effect of type”.
 (治療薬のスクリーニングへの応用)
 ニーマンピック病C型の治療効果を評価するための検査方法を、治療薬のスクリーニングに用いてもよい。すなわち、治療薬の候補化合物を被検体に投与し、ニーマンピック病C型の治療効果の評価を上述のように行って、治療効果を有する候補化合物を治療薬に利用できると判断することができる。
(Application to screening of therapeutic agents)
Test methods for evaluating the therapeutic effect of Niemann-Pick disease type C may be used for screening of therapeutic agents. That is, a candidate compound of a therapeutic agent can be administered to a subject, evaluation of the therapeutic effect of Niemann-Pick disease type C can be performed as described above, and it can be determined that a candidate compound having a therapeutic effect can be used as a therapeutic agent. .
 〔3.ニーマンピック病C型の診断またはニーマンピック病C型の治療効果の評価のための検査キット〕
 本発明はさらに、ニーマンピック病C型の診断またはニーマンピック病C型の治療効果の評価のための検査キットを提供する。当該検査キットは、上述したニーマンピック病C型の診断のための検査方法またはニーマンピック病C型の治療効果の評価のための検査方法の実施に好適に使用され得る。
[3. Test kit for diagnosis of Niemann-Pick disease type C or evaluation of treatment effect of Niemann-Pick disease type C]
The present invention further provides a test kit for diagnosing Niemann-Pick disease type C or for evaluating the therapeutic effect of Niemann-Pick disease type C. The said test kit can be suitably used for implementation of the test method for a diagnosis of Niemann-Pick disease type C mentioned above, or the test method for evaluation of the therapeutic effect of Niemann-Pick disease type C.
 一実施形態に係る検査キットは、生体から採取された血液に由来する試料において第1のバイオマーカーの量を測定する際に用いる内部標準物質と、当該生体から採取された尿に由来する試料において第2のバイオマーカーの量を測定する際に用いる内部標準物質とを含む。 The test kit according to one embodiment includes an internal standard substance used when measuring the amount of the first biomarker in a sample derived from blood collected from a living body, and a sample derived from urine collected from the living body And an internal standard used to measure the amount of the second biomarker.
 内部標準物質の説明は、上記〔1.ニーマンピック病C型の診断のための検査方法〕の欄で説明したとおりである。検査キットにおいて、内部標準物質は、溶液の形態、固体の形態等として含まれ得る。 The description of the internal standard is described above [1. Test method for diagnosis of Niemann-Pick disease type C] is as described in the section. In the test kit, the internal standard may be included in the form of a solution, in the form of a solid, etc.
 本実施形態に係る検査キットは、さらに、第1のバイオマーカーのための、固相抽出チューブ、固相抽出プレート、希釈液、洗浄液、溶出液、および容器等、第2のバイオマーカーのための、固相抽出チューブ、固相抽出プレート、希釈液、洗浄液、溶出液、および容器等、ならびに、使用説明書、等のうちの少なくとも1つを含んでいてもよい。本実施形態に係る検査キットは、これらの任意の組み合わせを含み得る。一例において、検査キットは、固相抽出チューブおよび固相抽出プレートの何れか一方を含んでいてもよい。一例において、検査キットは、希釈液、洗浄液および溶出液をセットで含んでいてもよい。一例において、検査キットは、固層抽出法による前処理に好適なキットであり得る。 The test kit according to the present embodiment further includes a solid phase extraction tube, a solid phase extraction plate, a dilution liquid, a washing liquid, an elution liquid, and a container for the first biomarker. , Solid-phase extraction tube, solid-phase extraction plate, diluent, washing solution, eluate, container and the like, and at least one of instruction manual and the like. The test kit according to the present embodiment may include any combination of these. In one example, the test kit may include either a solid phase extraction tube or a solid phase extraction plate. In one example, the test kit may include a diluent, a washing solution and an eluent in combination. In one example, the test kit may be a kit suitable for pretreatment by solid phase extraction.
 固相抽出チューブは、バイオマーカーを精製するための固相抽出チューブである。固相抽出チューブとしては、例えば、シリンジタイプの固相抽出チューブが挙げられる。固相抽出チューブは、一度に処理したい試料の数が比較的少ない場合(これに限定されないが、例えば1~20個程度)に、より適している。 The solid phase extraction tube is a solid phase extraction tube for purifying a biomarker. As a solid phase extraction tube, a syringe type solid phase extraction tube is mentioned, for example. The solid phase extraction tube is more suitable when the number of samples to be processed at one time is relatively small (for example, but not limited to, about 1 to 20).
 固相抽出プレートは、バイオマーカーを精製するための固相抽出プレートである。固相抽出プレートとしては、例えば、96ウェルフォーマットの固相抽出プレートが挙げられる。固相抽出プレートは、一度に処理したい試料の数が比較的多い場合(これに限定されないが、例えば20個~)に、より適している。 The solid phase extraction plate is a solid phase extraction plate for purifying a biomarker. As the solid phase extraction plate, for example, a solid phase extraction plate in 96 well format can be mentioned. The solid phase extraction plate is more suitable when the number of samples to be processed at one time is relatively large (but not limited to, for example, 20).
 希釈液は、例えば、バイオマーカーを含む試料を希釈するための液体である。血液に由来する試料を希釈する希釈液としては、バイオマーカーの種類によって当業者に適宜選択され得るが、例えば、水、バイオマーカーを十分溶解する程度に有機溶媒を含み、かつコンディショニングされた固相抽出チューブに添加した際にバイオマーカーが固相に十分保持される水溶液、および後述のSolution 1(75%水+25%メタノール+0.1%HPO)等が挙げられる。尿に由来する試料を希釈する希釈液としては、バイオマーカーの種類によって当業者に適宜選択され得るが、例えば、水、バイオマーカーを十分溶解する程度に有機溶媒を含み、かつコンディショニングされた固相抽出チューブに添加した際にバイオマーカーが固相に十分保持される水溶液、および後述の移動相A(5mM酢酸アンモニウム含有のメタノール/水=5/95)等が挙げられる。 The diluent is, for example, a liquid for diluting a sample containing a biomarker. The diluent used to dilute the blood-derived sample may be appropriately selected by those skilled in the art depending on the type of biomarker, but it may be, for example, water, a solid phase containing an organic solvent to sufficiently dissolve the biomarker, and conditioned. Examples include an aqueous solution in which the biomarker is sufficiently retained on the solid phase when added to an extraction tube, and Solution 1 (75% water + 25% methanol + 0.1% H 3 PO 4 ) described later. The diluent used to dilute the urine-derived sample may be appropriately selected by those skilled in the art depending on the type of biomarker, but it may be, for example, water, a solid phase containing an organic solvent to sufficiently dissolve the biomarker and conditioned. An aqueous solution in which the biomarker is sufficiently retained on the solid phase when added to the extraction tube, mobile phase A described later (methanol / water = 5/95 containing 5 mM ammonium acetate) and the like can be mentioned.
 洗浄液は、例えば、バイオマーカーが保持された固相抽出チューブまたは固相抽出プレートを洗浄するための液体である。そのような液体としては、バイオマーカーの種類によって当業者に適宜選択され得るが、例えば、後述の実施例に記載されているSolution 1およびSolution 2等が挙げられる。キットに含まれ得る洗浄液は、1種類であってもよいし、2種類以上であってもよい。 The washing solution is, for example, a liquid for washing the solid phase extraction tube or the solid phase extraction plate in which the biomarker is held. Such a liquid can be appropriately selected by those skilled in the art depending on the type of biomarker, and examples include Solution 1 and Solution 2 described in the examples below. The washing solution may be contained in the kit may be one type or two or more types.
 溶出液は、例えば、バイオマーカーが保持された固相抽出チューブまたは固相抽出プレートから当該バイオマーカーを溶出するための液体である。そのような液体としては、バイオマーカーの種類によって当業者に適宜選択され得るが、例えば、後述の実施例に記載されているSolution 3等が挙げられる。 The eluate is, for example, a liquid for eluting the biomarker from the solid phase extraction tube or the solid phase extraction plate in which the biomarker is retained. Such a liquid can be appropriately selected by those skilled in the art depending on the type of biomarker, and examples thereof include Solution 3 described in the examples below.
 容器は、例えば、バイオマーカーを含む試料と内部標準物質とを混合するための容器、または、バイオマーカーおよび内部標準物質を含む溶出物を回収するための容器等である。容器は、例えば、チューブまたはプレート等である。容器の容量は、例えば、1.5mL~2.0mL程度であり得る。容器の材質としては、例えば、プラスチック、ガラス等が挙げられる。 The container is, for example, a container for mixing the sample containing the biomarker and the internal standard substance, or a container for collecting the eluate containing the biomarker and the internal standard substance. The container is, for example, a tube or a plate. The volume of the container may be, for example, about 1.5 mL to 2.0 mL. Examples of the material of the container include plastic, glass and the like.
 使用説明書は、上記〔1.ニーマンピック病C型の診断のための検査方法〕の欄で説明した、本発明に係るニーマンピック病C型の診断のための検査方法の内容、および/または、上記〔2.ニーマンピック病C型の治療効果を評価するための検査方法〕の欄で説明した、本発明に係る2.ニーマンピック病C型の治療効果を評価するための検査方法の内容が記録されている。 The instruction manual is described above [1. Test method for diagnosis of Niemann-Pick disease type C] The contents of the test method for diagnosis of Niemann-Pick disease type C according to the present invention described in the section of the present invention, and / or the above [2. Test Method for Evaluating Therapeutic Effect of Niemann-Pick Disease Type C According to the Present Invention Described in the section of 2. The contents of the examination method for evaluating the treatment effect of Niemann-Pick disease type C are recorded.
 また、本実施形態に係る検査キットは、測定の際に用いられる対照用の試料、測定結果を解析するときに用いられる対照被験体から採取された血液に由来する試料における第1のバイオマーカーの量に関するデータ、測定結果を解析するときに用いられる対照被験体から採取された尿に由来する試料における第2のバイオマーカーの量に関するデータ、これらのうちの少なくとも1つのデータから導かれた基準値(第1のバイオマーカーについての基準値、第2のバイオマーカーについての基準値、および/または第1のバイオマーカーの量と第2のバイオマーカーの量とを1つのパラメータ(値)に変換した場合の基準値など)のデータ等のうちの少なくとも1つを記載または記録した媒体を含んでいてもよい。 In addition, the test kit according to the present embodiment is a control sample used in measurement, a first biomarker in a sample derived from blood collected from a control subject used when analyzing measurement results. Data on the amount, data on the amount of the second biomarker in the sample derived from urine collected from the control subject used when analyzing the measurement results, a reference value derived from at least one of these data (The reference value for the first biomarker, the reference value for the second biomarker, and / or the amount of the first biomarker and the amount of the second biomarker are converted into one parameter (value) A medium in which at least one of the data of the reference value of the case, etc.) is described or recorded may be included.
 本実施形態に係る検査キットは、例えば、以下のうちの任意の1つ以上と組み合わせて使用され得る。これらは、使用者が用意すればよい。あるいは、別の実施形態において、これらのうちの任意の1つ以上も検査キットの構成要素として含まれていてもよい。 The test kit according to the present embodiment can be used, for example, in combination with any one or more of the following. These may be prepared by the user. Alternatively, in another embodiment, any one or more of these may be included as a component of the test kit.
 オートサンプラー用バイアル等(例えば、(a)使用するLC-MSのオートサンプラー用サンプルテーブルに適合するガラスまたはプラスチック製のバイアルおよびテフロン(登録商標)シール付属のバイアルキャップ、または(b)深底96ウェルプレートおよび溶媒蒸発防止を目的とした有機溶媒耐性のLC-MS分析用専用シール、溶媒蒸発防止用専用マット、またはアルミニウムホイル等)、
 溶媒除去用装置(例えば、(a)溶媒除去の専用器具であって窒素発生装置や窒素ボンベなどを有し、1.5mLチューブ用および96ウェル用に適合するヘッドを有するもの、(b)遠心濃縮装置等)、
 固層抽出用装置(例えば、シリンジタイプの加圧式、真空ポンプまたは水流ポンプを用いた減圧式等)、
 サンプル濾過または遠心用装置(濾過および遠心のいずれについても、シングル(シリンジに直接結合させて使用するもの)で用いる装置および96ウェル用に対応した装置等が挙げられる。遠心型の濾過チューブ(スピンカラム)や、さらにこれに固相抽出の担体を詰めて、チューブを用いて遠心操作で固相抽出する形態のものであってもよい。)、
 LC-MSに必要な分析カラム、移動相溶媒等(水や有機溶媒、およびイオン化剤等の添加剤)、
 その他、必要に応じて一般的にLC-MSに用いられる試薬(LC-MS用メタノール、アセトニトリル、MilliQ水、など)および備品等。
Vials for autosamplers etc. (eg (a) vials made of glass or plastic compatible with LC-MS autosampler sample table used and vial caps with Teflon (R) seal, or (b) deep bottom 96 Well plate and organic solvent resistant dedicated seal for LC-MS analysis for the purpose of preventing solvent evaporation, dedicated mat for preventing solvent evaporation, or aluminum foil etc.),
Equipment for solvent removal (for example, (a) a dedicated instrument for solvent removal which has a nitrogen generator, nitrogen cylinder, etc., and a head compatible with 1.5 mL tubes and 96 wells, (b) centrifugal Concentrator, etc.),
Solid phase extraction apparatus (for example, pressure type of syringe type, pressure reduction type using vacuum pump or water flow pump, etc.),
Devices used for sample filtration or centrifugation (for both filtration and centrifugation, single (directly connected to a syringe)) and devices corresponding to 96 wells, etc. Centrifugal filter tubes (spins) The column may be packed with a solid phase extraction carrier, and may be in the form of solid phase extraction by centrifugation using a tube).
Analytical columns required for LC-MS, mobile phase solvents, etc. (water, organic solvents, and additives such as ionizing agents),
In addition, reagents (methanol for LC-MS, acetonitrile, MilliQ water, etc.) and equipment generally used for LC-MS as needed.
 なお、上記で説明されている各操作は、適宜、上述の検査方法において実施され得る。 In addition, each operation described above may be appropriately implemented in the above-described inspection method.
 〔4.ニーマンピック病C型の診断のための検査システム〕
 本発明はさらに、第1のバイオマーカーの量および第2のバイオマーカーの量を測定するための検査システムを提供する。当該検査システムは、第1のバイオマーカーの量および/または第2のバイオマーカーの量を測定するためのソフトウェア(プログラム)を構成要素として含んでいてもよい。当該プログラムは、コンピュータ読み取り可能な記録媒体に記憶されたものであってもよく、そのような記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、およびプログラマブルな論理回路などが挙げられる。また、上記プログラムは、当該プログラムを伝送可能な任意の伝送媒体(通信ネットワークまたは放送波等)を介してコンピュータに供給されてもよい。
[4. Inspection system for diagnosis of Niemann-Pick disease type C]
The invention further provides a test system for measuring the amount of the first biomarker and the amount of the second biomarker. The test system may include, as a component, software (a program) for measuring the amount of the first biomarker and / or the amount of the second biomarker. The program may be stored in a computer-readable recording medium, and as such a recording medium, "non-temporary tangible medium", for example, ROM (Read Only Memory), etc. Examples include tapes, disks, cards, semiconductor memories, and programmable logic circuits. Also, the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
 〔5.その他〕
 上記〔1.ニーマンピック病C型の診断のための検査方法〕の欄で説明した検査方法を行うことによって得られた結果は、医師による診断を行う際の診断資料の1つとして利用することができる。また、上記〔1.ニーマンピック病C型の診断のための検査方法〕の欄で説明した検査方法を行うことによって、ニーマンピック病C型を患っている可能性ありという結果が得られた被験体については、必要に応じて医師による確定診断の結果を伴った上で、治療を行うことができる。特に、本実施形態に係る検査方法では、高精度でニーマンピック病C型を検出し得るため、早期診断および早期治療を実現し得る。
[5. Other]
Above [1. Test Method for Diagnosis of Niemann-Pick Disease Type C] The result obtained by performing the test method described in the section can be used as one of diagnostic data when a doctor makes a diagnosis. Moreover, the above [1. Test method for diagnosis of Niemann-Pick disease type C]] By performing the test method described in the section, there is a need for a subject for which the result that there is a possibility of suffering from Niemann-Pick disease type C is obtained Depending on the result of the definite diagnosis by the doctor, the treatment can be performed. In particular, in the examination method according to the present embodiment, since Niemann-Pick disease type C can be detected with high accuracy, early diagnosis and early treatment can be realized.
 より具体的には、例えば、本実施形態に係る検査方法を行うことによって得られた結果に基づき医師が「ニーマンピック病C型を患っている可能性あり」と判断した場合には、他の検査方法(骨髄検査、原因遺伝子のNPC1もしくはNPC2の変異の同定、またはフィリピン染色など)による結果、家族歴なども考慮した上で、確定診断を行うことができる。これに基づき、治療方針が立てられる。 More specifically, for example, based on the result obtained by performing the test method according to the present embodiment, when the doctor judges that "it may suffer from Niemann-Pick disease type C", As a result of a test method (such as bone marrow test, identification of mutation of NPC1 or NPC2 of the causative gene, or filipin staining), a definite diagnosis can be performed in consideration of family history and the like. Based on this, a treatment plan is made.
 〔6.本発明に係る具体的な態様の例示〕
 上記の課題を解決するために、本発明の一態様に係るニーマンピック病C型の診断のための検査方法は、生体から採取された血液に由来する試料において、第1のバイオマーカーの量を測定する工程と、上記生体から採取された尿に由来する試料において、第2のバイオマーカーの量を測定する工程とを含む。
[6. Examples of specific embodiments according to the present invention]
In order to solve the above problems, a test method for diagnosis of Niemann-Pick disease type C according to one aspect of the present invention comprises an amount of a first biomarker in a blood-derived sample collected from a living body And measuring the amount of the second biomarker in a sample derived from urine collected from the living body.
 本発明の一態様に係る検査方法では、上記第1のバイオマーカーは、スフィンゴリン脂質であることが好ましい。 In the test method according to one aspect of the present invention, the first biomarker is preferably a sphingophospholipid.
 本発明の一態様に係る検査方法では、上記スフィンゴリン脂質は、スフィンゴシルホスフォリルコリンであることがより好ましい。 In the test method according to one aspect of the present invention, the sphingophospholipid is more preferably sphingosyl phosphoryl choline.
 本発明の一態様に係る検査方法では、上記スフィンゴリン脂質は、リゾスフィンゴミエリン-509であることがより好ましい。 In the test method according to one aspect of the present invention, the sphingophospholipid is more preferably lysosphingomyelin-509.
 本発明の一態様に係る検査方法では、上記第2のバイオマーカーは、胆汁酸代謝物であることが好ましい。 In the test method according to one aspect of the present invention, the second biomarker is preferably a bile acid metabolite.
 本発明の一態様に係る検査方法では、上記胆汁酸代謝物は、3β-スルフォオキシ-7β-N-アセチルグルコサミニル-5-コレン-24-ノイック酸(SNAG-Δ-CA)であることがより好ましい。 In the test method according to one aspect of the present invention, the bile acid metabolite is 3β-sulfoxy-7β-N-acetylglucosaminyl-5-colene-24-noic acid (SNAG-Δ 5 -CA) Is more preferred.
 本発明の一態様に係る検査方法では、第1のバイオマーカーの量の測定において、内部標準物質を用いることが好ましい。 In the test method according to one aspect of the present invention, it is preferable to use an internal standard substance in measurement of the amount of the first biomarker.
 本発明の一態様に係る検査方法では、第2のバイオマーカーの量の測定において、内部標準物質を用いることが好ましい。 In the test method according to one aspect of the present invention, it is preferable to use an internal standard substance in measurement of the amount of the second biomarker.
 本発明の一態様に係る検査方法では、LC-MSによって、上記第1のバイオマーカーの量および上記第2のバイオマーカーの量を測定することが好ましい。 In the test method according to one aspect of the present invention, it is preferable to measure the amount of the first biomarker and the amount of the second biomarker by LC-MS.
 本発明の一態様はまた、生体から採取された血液に由来する試料において、第1のバイオマーカーの量を測定する工程と、上記生体から採取された尿に由来する試料において、第2のバイオマーカーの量を測定する工程とを含む、ニーマンピック病C型の治療効果を評価するための検査方法を提供する。 In one embodiment of the present invention, there is also provided a method of measuring the amount of a first biomarker in a sample derived from blood collected from a living being, and a second biologic in a sample derived from urine collected from the living being And determining the amount of the marker, and providing a test method for evaluating the therapeutic effect of Niemann-Pick disease type C.
 本発明の一態様はまた、生体から採取された血液に由来する試料において第1のバイオマーカーの量を測定する際に用いる内部標準物質と、上記生体から採取された尿に由来する試料において第2のバイオマーカーの量を測定する際に用いる内部標準物質とを含む、ニーマンピック病C型の診断またはニーマンピック病C型の治療効果の評価のための検査キットを提供する。 One embodiment of the present invention is also directed to an internal standard substance used for measuring the amount of the first biomarker in a blood-derived sample collected from a living body, and a sample derived from urine collected from the living body. A test kit for diagnosis of Niemann-Pick disease type C or evaluation of the therapeutic effect of Niemann-Pick disease type C comprising an internal standard substance to be used in measuring the amount of the biomarker of No. 2 is provided.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples will be shown below, and the embodiment of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it is needless to say that various aspects are possible as to details. Furthermore, the present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the disclosed technical means are also included. It is included in the technical scope of the invention. Also, all of the documents described in the present specification are incorporated by reference.
 (関連出願の相互参照)
 本出願は、2017年12月18日に出願された日本国特許出願:特願2017-242131に対して優先権の利益を主張するものであり、それを参照することにより、その内容の全てが本書に含まれる。また当該関連出願において引用された特許および特許出願明細書を含む全ての刊行物に記載された内容についても、その全てが参照によって本明細書に援用される。
(Cross-reference to related applications)
This application claims the benefit of priority to Japanese Patent Application No. 2017-242131 filed on Dec. 18, 2017, the entire contents of which are hereby incorporated by reference. Included in this book. Also, the contents described in all the publications including the patent and patent application cited in the related application are all incorporated herein by reference.
 〔実験手順〕
 (試薬)
 D-エリスロ-スフィンゴシルホスフォリルコリン(合成SPC)は、Toronto Research Chemicals社から購入した。スフィンゴシルホスフォリルコリン(C17ベース、ISSPC)は、Avanti Polar Lipids社から購入した。アセトニトリルおよびメタノールは、Fischer Scientific社から購入した。脱イオン水は、Milli-Q water system(Millipore社)から得た。酢酸アンモニウムおよびギ酸は、関東化学(株)から購入した。Oasis HLB 96-well plateは、Waters社から購入した。3β-スルフォオキシ-7β-ヒドロキシ-23-ノル-5-コレン酸は、非特許文献11および24に記載のように合成し、SNAG-Δ-CAのための内部標準物質(IS胆汁酸)として用いた。本研究で用いた他の試薬は、市販で入手可能なもののうちで最高のグレードのものであった。本研究で用いた化合物の化学構造は、図1に示されている。
[Experimental procedure]
(reagent)
D-erythro-sphingosyl phosphoryl choline (synthetic SPC) was purchased from Toronto Research Chemicals. Sphingosyl phosphoryl choline (C17 based, IS SPC ) was purchased from Avanti Polar Lipids. Acetonitrile and methanol were purchased from Fischer Scientific. Deionized water was obtained from Milli-Q water system (Millipore). Ammonium acetate and formic acid were purchased from Kanto Chemical Co., Ltd. The Oasis HLB 96-well plate was purchased from Waters. 3β-sulfooxy-7β-hydroxy-23-nor-5-cholenic acid was synthesized as described in 11 and 24 and was used as an internal standard substance (IS bile acid ) for SNAG-Δ 5- CA Using. The other reagents used in this study were the highest grade commercially available. The chemical structures of the compounds used in this study are shown in FIG.
 (倫理審査委員会による承認)
 本研究は、国立成育医療研究センターの倫理審査委員会によって承認された。
(Approved by the Ethics Review Board)
This study was approved by the Ethics Review Board of the National Center for Child Health Research.
 (患者検体)
 すべてのNPC患者は従来確立された方法によって診断された(非特許文献11および14)。
(Patient sample)
All NPC patients were diagnosed by conventionally established methods (11 and 14).
 (固相抽出)
 少し変更を加えたLC-MS/MSアッセイによる血漿サンプルの調製および分析は、非特許文献5に記載されたとおりである。簡単に述べると、血漿の一部(100μL)を、2.169pmolのISSPCを含むSolution 1(900μL,75%水+25%メタノール+0.1%HPO)と混合した。次いで、予めヘキサン(1mL)およびメタ
ノール(1mL)で洗浄し、続いてSolution 1で平衡化した(1mL×2)Oasis HLB 96-well plate(30μm、30mg、ウォーターズ社製)に、上記懸濁液を入れた。次いで、カラムをSolution 1(1mL)およびSolution 2(75%水+25%メタノール,1
mL)で洗浄した。その後、Solution 3(0.01% NH含有メタノール,0.4mLにて3回)で溶出した。最後に、乾燥ガス発生装置(日本精機(株))を用いてN下で
溶媒を除去した後、残渣物をSolution 4(90%メタノール+10%水+0.1%ギ酸,60μL)に再懸濁した。
(Solid phase extraction)
The preparation and analysis of plasma samples by a slightly modified LC-MS / MS assay is as described in [5]. Briefly, a portion of plasma (100 μL) was mixed with Solution 1 (900 μL, 75% water + 25% methanol + 0.1% H 3 PO 4 ) containing 2.169 pmol of IS SPC . Then, the above suspension was previously washed with hexane (1 mL) and methanol (1 mL), followed by equilibration with Solution 1 (1 mL × 2) Oasis HLB 96-well plate (30 μm, 30 mg, manufactured by Waters) as described above. Put. The column was then filled with Solution 1 (1 mL) and Solution 2 (75% water + 25% methanol, 1
Washed with mL). After that, it was eluted with Solution 3 (3 times with 0.01% NH 3 -containing methanol, 0.4 mL). Finally, after removing the solvent under N 2 using a dry gas generator (Nippon Seiki Co., Ltd.), the residue is resuspended in Solution 4 (90% methanol + 10% water + 0.1% formic acid, 60 μL). It became cloudy.
 (血漿SPCおよびリゾスフィンゴミエリン-509の定量)
 一部(1μL)をLCMS8030plus質量分析計((株)島津製作所)と連結したNexara UPLC systemにインジェクトした。SPC、リゾスフィンゴミエリン-509およびISSPCを、移動相A(5mM酢酸アンモニウム含有のメタノール/水=5/95)および移動相B(0.1%ギ酸含有メタノール)を用いて、InertSustainSwift C18カラム(2.1×30mm,3μm,ジーエルサイエンス(株))によって分離した(3分間、流速0.5mL/分)。分析カラムの温度は、カラムオーブンCTO-10(島津製作所(株))を用いて50℃に保った。カラムは、最初の0.5分は60%の移動相Bで維持し、続く0.5~1.5分は60~100%の移動相Bで線形の勾配をつけた。次いで1.5~2.0分は、100%の移動相Bを用いてカラムを洗浄し、続く2.0~3.0分は、60%の移動相Bを用いて平衡化した。多重反応モニタリング(MRM)およびエレクトロスプレー(ESI)ポジティブモードによってデータを取得した。クロマトグラフィーのデータを、ソフトウェアLabSolutions(島津製作所(株))を用いて収集した。装置の詳細を表1~3に記載している。
(Quantification of plasma SPC and lyso sphingomyelin-509)
A portion (1 μL) was injected into a Nexara UPLC system connected to an LCMS 8030 plus mass spectrometer (Shimadzu Corporation). InertSustainSwift C18 column (SPC, lyso sphingomyelin-509 and IS SPC) using mobile phase A (methanol / water = 5/95 containing 5 mM ammonium acetate) and mobile phase B (methanol containing 0.1% formic acid) 2.1 × 30 mm, 3 μm, separated by GL Science Inc. (3 minutes, flow rate 0.5 mL / minute). The temperature of the analysis column was kept at 50 ° C. using a column oven CTO-10 (Shimadzu Corporation). The column was maintained with 60% mobile phase B for the first 0.5 minutes, followed by a linear gradient with 60-100% mobile phase B for 0.5-1.5 minutes. The column was then washed with 100% mobile phase B for 1.5-2.0 minutes, followed by equilibration with 60% mobile phase B for 2.0-3.0 minutes. Data were acquired by multiple reaction monitoring (MRM) and electrospray (ESI) positive mode. Chromatographic data were collected using the software LabSolutions (Shimadzu Corporation). The details of the device are described in Tables 1 to 3.
 (尿中胆汁酸代謝物SNAG-Δ-CAの定量)
 SNAG-Δ-CAの濃度は、非特許文献11に記載のように、オンラインでのサンプル精製を備える自動LC-MS/MSシステムを用いて定量した。簡単に述べると、内部標準物質を含む希釈尿サンプル(100μLの尿+100μLの2μM IS胆汁酸含有の水)の一部(50μL)を、20mM酢酸アンモニウム水溶液(pH5.5)および
メタノール(9/1,v/v)を含む2液系移動相を用いて、流速1.0mL/分で、トラッピングカラム(Shim-pack MAYI-C8,5μm,4.6×10mm,島津製作所(株))にインジェクトした。3分後、SNAG-Δ-CAを、20mM酢酸アンモニウム水溶
液(pH5.5)およびメタノール(5/5,v/v)を用いて、流速0.2mL/分で、YMC-Pack Pro C18(5μm,2.0×150mm,YMC)に移送した。カラムの温度は40℃に保った。
(Determination of urinary bile acid metabolite SNAG-Δ 5- CA)
The concentration of SNAG-Δ 5 -CA was quantified using an automated LC-MS / MS system with on-line sample purification as described in [11]. Briefly, a portion (50 μL) of a diluted urine sample (100 μL of urine + 100 μL of 2 μM IS bile acid water) containing an internal standard, 20 mM aqueous ammonium acetate (pH 5.5) and methanol (9/1) In a trapping column (Shim-pack MAYI-C8, 5 μm, 4.6 × 10 mm, Shimadzu Corp.) at a flow rate of 1.0 mL / min using a two-component mobile phase containing Project. After 3 minutes, YAG-Pack Pro C18 (with a flow rate of 0.2 mL / min) using SNAG-Δ 5- CA with 20 mM aqueous ammonium acetate (pH 5.5) and methanol (5/5, v / v) It was transferred to 5 μm, 2.0 × 150 mm, YMC). The temperature of the column was kept at 40 ° C.
 SNAG-Δ-CAの検出には、API 5000質量分析器(AB Sciex社)を用いた。選択した反応モニタリングモードに関しては、Q1にm/z 672.3、Q3にm/z 97.0の組み合わせを選んだ。滞留時間は250ms、衝突エネルギーは-70Vに設定した。データはAnalyst 1.4.1ソフトウェア(AB Sciex社)を用いて解析した。装置の詳細を表4~6に記載している。 An API 5000 mass spectrometer (AB Sciex) was used to detect SNAG-Δ 5 -CA. For the selected reaction monitoring mode, the combination of m / z 672.3 for Q1 and m / z 97.0 for Q3 was chosen. The residence time was set to 250 ms, and the collision energy was set to -70V. Data were analyzed using Analyst 1.4.1 software (AB Sciex). The details of the device are described in Tables 4 to 6.
 (統計解析)
 データを平均±標準偏差として表示した。2つの群の平均値をスチューデントのt検定を用いて比較した。p<0.05をもって差異は統計学的に有意とみなした。
(Statistical analysis)
Data were expressed as mean ± standard deviation. The mean values of the two groups were compared using Student's t-test. Differences were considered statistically significant with p <0.05.
 〔結果〕
 (アッセイの妥当性)
 可能性な限り最高の感度および精度で血漿SPC濃度およびリゾスフィンゴミエリン-509濃度を定量するために、MS/MSに基づく検出を伴う逆相クロマトグラフィーを用いて、リゾスフィンゴミエリン-509の代替バイオマーカーとしてSPCを採用した。本研究のアッセイ条件下、SPCおよびISSPCは何れも、1~200fmolの範囲において直線的な応答を示した(図2)。これらの分析条件の場合、日内誤差CV(%)は、216nMが7%、108nMが6%、21.6nMが6%であった(n=5)。生物学的サンプル中のSPCの回収率を評価するために、まずブランクのマトリクスとしてPBSにおけるSPCの回収率を調べた。既知量のSPC(11nM)を添加した場合、119%の回収率でPBSにおいて検出された(図3および表7)。同様に、既知量のSPC(11nM)を血漿に添加した場合の回収率は、このアッセイ条件下で120%であった。既知量のSPCを血漿に添加した際の日間誤差CV(%)は、108nM SPCにおいて19%、11nM SPCにおいて6%、1nM SPCにおいて11%であった(表8)。
〔result〕
(Validity of the assay)
Alternative biopsies of lysosphingomyelin-509 using reverse-phase chromatography with MS / MS-based detection to quantify plasma SPC and lysosphingomyelin-509 concentrations with the highest possible sensitivity and accuracy SPC was adopted as a marker. Under the assay conditions of this study, both SPC and IS SPC showed linear responses in the range of 1 to 200 fmol (FIG. 2). Under these analysis conditions, the intra-day error CV (%) was 7% at 216 nM, 6% at 108 nM, and 6% at 21.6 nM (n = 5). In order to assess the recovery of SPC in biological samples, we first examined the recovery of SPC in PBS as a blank matrix. When a known amount of SPC (11 nM) was added, it was detected in PBS with 119% recovery (Figure 3 and Table 7). Similarly, recovery when known amounts of SPC (11 nM) were added to the plasma was 120% under this assay condition. The daily error CV (%) when adding known amounts of SPC to plasma was 19% at 108 nM SPC, 6% at 11 nM SPC, and 11% at 1 nM SPC (Table 8).
 (NPC患者における血漿SPC濃度およびリゾスフィンゴミエリン-509濃度)
 この妥当性研究の結果に基づき、まず、NPC患者における血漿SPC濃度を評価した。図4に示されるとおり、SPCのピーク(1.5分において溶出した)は、全てのNPC患者においてコントロール(健常人)と比較して高くなった(図4の上段)が、ISSPCの量は変わらなかった(図4の下段)。本研究において、NPC患者における血漿SPC濃度
の平均は8.2±2.8nM(中央値7.0nM;最大値11.7nM;最小値5.1nM;n=5)であり、コントロールにおける血漿SPC濃度の平均は3.1±1.4nM(中央値2.9nM;最大値4.8nM;最小値1.5nM;n=7)であった(図5のA)。このように、NPC患者における血漿SPC濃度の平均の上昇は、コントロールの2.6倍であった(表9)。
(Plasma SPC concentration and lysosphingomyelin-509 concentration in NPC patients)
Based on the results of this validation study, plasma SPC concentrations in NPC patients were first assessed. As shown in FIG. 4, the SPC peak (eluted at 1.5 minutes) was higher in all NPC patients compared to the control (healthy) (upper part in FIG. 4) but the amount of IS SPC Did not change (the lower part of FIG. 4). In this study, the mean plasma SPC concentration in NPC patients is 8.2 ± 2.8 nM (median 7.0 nM; maximum 11.7 nM; minimum 5.1 nM; n = 5), and plasma SPC in controls The mean concentration was 3.1 ± 1.4 nM (median 2.9 nM; maximum 4.8 nM; minimum 1.5 nM; n = 7) (FIG. 5A). Thus, the mean rise in plasma SPC concentration in NPC patients was 2.6 times that of controls (Table 9).
 同様に、NPC患者における血漿リゾスフィンゴミエリン-509の複数の中央値の平均値は65.2倍であった(最大73.2;分、26.7;n=5)(図5のB)。これら2つバイオマーカーの蓄積が、すでに性質決定されているNPCのバイオマーカーと一致することをさらに確証するために、尿中のNPCのための確立されたバイオマーカーであるSNAG-Δ-CAが、NPC患者において上昇しているか否かを決定することを試みた。そこで、同一の個体から採取されたサンプルにおける尿中SNAG-Δ-CA濃度を、IS胆汁酸として3β-スルフォオキシ-7β-ヒドロキシ-23-ノル-5-コレン酸を用いて定量した。LC-MS/MSアッセイによって、NPC患者のサンプルにおける尿中SNAG-Δ-CA濃度は2477±2968ng/mL(中央値1332ng/mL;最大値7731ng/mL;最小値449ng/mL;n=5)であり、コントロールでは39±73ng/mL(中央値18ng/mL;最大値204ng/mL;最小値0ng/mL;n=7)であることが判明した(図5のC)。 Similarly, the mean of multiple medians of plasma lysosphingomyelin-509 in NPC patients was 65.2 times (maximum 73.2; min, 26.7; n = 5) (FIG. 5B) . To further confirm that the accumulation of these two biomarkers is consistent with the already characterized biomarkers of NPC, SNAG-Δ 5 -CA, an established biomarker for NPC in urine Tried to determine if it was rising in NPC patients. Therefore, the urinary SNAG-Δ 5- CA concentration in samples collected from the same individual was quantified using 3β-sulfooxy-7β-hydroxy-23-nor-5- cholic acid as IS bile acid . According to LC-MS / MS assay, urinary SNAG-Δ 5 -CA concentration in samples of NPC patients is 2477 ± 2968 ng / mL (median 1332 ng / mL; maximum 7731 ng / mL; minimum 449 ng / mL; n = 5 And 39 ± 73 ng / mL (median 18 ng / mL; maximum 204 ng / mL; minimum 0 ng / mL; n = 7) for the control (FIG. 5C).
 (血漿SPCと、血漿リゾスフィンゴミエリン-509と、尿中胆汁酸代謝物SNAG-Δ-CAとの相関)
 図6のAは、血漿SPCと尿中胆汁酸代謝物SNAG-Δ-CAとの相関の概要を示す。図6のAに示されているように、本研究で評価した全てのNPC患者が、SPCとSNAG-Δ-CAとの何れかにおいてより高い濃度を示した。これらの結果は、LC-MS/MSを用いた血漿SPCおよび尿中胆汁酸代謝物SNAG-Δ-CAの組み合わせ定量が、単一バイオマーカーよりも、NPCに対する確実な診断基準を提供することを証明している。同様に、血漿リゾスフィンゴミエリン-509と、尿中胆汁酸代謝物SNAG-Δ-CA濃度との相関が明確に示された(図6のB)。本実験において、血漿バイオマーカーと尿代謝物の組み合わせ、すなわちSPC濃度とSNAG-Δ-CA濃度もしくはリゾスフィンゴミエリン-509濃度とSNAG-Δ-CA濃度の組み合わせによる、NPC患者の感度は100%であり、また、特異性も100%であった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
(Correlation between plasma SPC, plasma lyso sphingomyelin-509 and urinary bile acid metabolite SNAG-Δ 5- CA)
FIG. 6A shows a summary of the correlation between plasma SPC and urinary bile acid metabolite SNAG-Δ 5 -CA. As shown in FIG. 6A, all NPC patients evaluated in this study showed higher concentrations in either SPC or SNAG-Δ 5 -CA. These results indicate that combined quantification of plasma SPC and urinary bile acid metabolite SNAG-Δ 5 -CA using LC-MS / MS provides a more reliable diagnostic criterion for NPC than a single biomarker Prove it. Similarly, a correlation between plasma lysosphingomyelin-509 and urinary bile acid metabolite SNAG-Δ 5- CA concentration was clearly shown (FIG. 6B). In this experiment, the sensitivity of NPC patients is 100 by the combination of plasma biomarkers and urine metabolites, ie the combination of SPC concentration and SNAG-Δ 5 -CA concentration or lyso sphingomyelin-509 concentration and SNAG-Δ 5 -CA concentration. % And the specificity was 100%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 本発明は、ニーマンピック病C型の診断のための臨床検査キットや、ソフトウェアを含む分析メソッドパッケージ等に利用することができる。 The present invention can be used for a clinical test kit for diagnosis of Niemann-Pick disease type C, an analysis method package including software, and the like.

Claims (11)

  1.  生体から採取された血液に由来する試料において、第1のバイオマーカーの量を測定する工程と、
     上記生体から採取された尿に由来する試料において、第2のバイオマーカーの量を測定する工程とを含む、ニーマンピック病C型の診断のための検査方法。
    Measuring the amount of the first biomarker in a blood-derived sample collected from a living body;
    Measuring the amount of the second biomarker in a sample derived from urine collected from the living body, a test method for diagnosing Niemann-Pick disease type C.
  2.  上記第1のバイオマーカーは、スフィンゴリン脂質である、請求項1に記載の検査方法。 The test method according to claim 1, wherein the first biomarker is a sphingophospholipid.
  3.  上記スフィンゴリン脂質は、スフィンゴシルホスフォリルコリンである、請求項2に記載の検査方法。 The test method according to claim 2, wherein the sphingophospholipid is sphingosyl phosphoryl choline.
  4.  上記スフィンゴリン脂質は、リゾスフィンゴミエリン-509である、請求項2に記載の検査方法。 The test method according to claim 2, wherein the sphingophospholipid is lyso sphingomyelin-509.
  5.  上記第2のバイオマーカーは、胆汁酸代謝物である、請求項1~4の何れか一項に記載の検査方法。 The test method according to any one of claims 1 to 4, wherein the second biomarker is a bile acid metabolite.
  6.  上記胆汁酸代謝物は、3β-スルフォオキシ-7β-N-アセチルグルコサミニル-5-コレン-24-ノイック酸(SNAG-Δ-CA)である、請求項5に記載の検査方法。 The test method according to claim 5, wherein the bile acid metabolite is 3β-sulfooxy-7β-N-acetylglucosaminyl-5-coren-24-noic acid (SNAG-Δ 5- CA).
  7.  第1のバイオマーカーの量の測定において、内部標準物質を用いる、請求項1~6の何れか一項に記載の検査方法。 The test method according to any one of claims 1 to 6, wherein an internal standard substance is used in the measurement of the amount of the first biomarker.
  8.  第2のバイオマーカーの量の測定において、内部標準物質を用いる、請求項1~7の何れか一項に記載の検査方法。 The test method according to any one of claims 1 to 7, wherein an internal standard substance is used in the measurement of the amount of the second biomarker.
  9.  LC-MSによって、上記第1のバイオマーカーの量および上記第2のバイオマーカーの量を測定する、請求項1~8の何れか一項に記載の検査方法。 The test method according to any one of claims 1 to 8, wherein the amount of the first biomarker and the amount of the second biomarker are measured by LC-MS.
  10.  生体から採取された血液に由来する試料において、第1のバイオマーカーの量を測定する工程と、
     上記生体から採取された尿に由来する試料において、第2のバイオマーカーの量を測定する工程とを含む、ニーマンピック病C型の治療効果を評価するための検査方法。
    Measuring the amount of the first biomarker in a blood-derived sample collected from a living body;
    Measuring the amount of the second biomarker in a sample derived from urine collected from the living body, and a test method for evaluating the therapeutic effect of Niemann-Pick disease type C.
  11.  生体から採取された血液に由来する試料において第1のバイオマーカーの量を測定する際に用いる内部標準物質と、
     上記生体から採取された尿に由来する試料において第2のバイオマーカーの量を測定する際に用いる内部標準物質とを含む、ニーマンピック病C型の診断またはニーマンピック病C型の治療効果の評価のための検査キット。
    An internal standard substance used to measure the amount of the first biomarker in a blood-derived sample collected from a living body;
    Diagnosis of Niemann-Pick disease type C or evaluation of the therapeutic effect of Niemann-Pick disease type C, including an internal standard substance used to measure the amount of the second biomarker in a sample derived from urine collected from the living body Test kit for
PCT/JP2018/046159 2017-12-18 2018-12-14 Test method for diagnosis of niemann-pick disease type c WO2019124267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017242131A JP2021036201A (en) 2017-12-18 2017-12-18 Test method for diagnosing niemann-pick disease type c
JP2017-242131 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019124267A1 true WO2019124267A1 (en) 2019-06-27

Family

ID=66992972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046159 WO2019124267A1 (en) 2017-12-18 2018-12-14 Test method for diagnosis of niemann-pick disease type c

Country Status (2)

Country Link
JP (1) JP2021036201A (en)
WO (1) WO2019124267A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521694A (en) * 2007-03-21 2010-06-24 バイオポルト・ダイアグノスティクス・アクティーゼルスカブ Diagnostic tests for kidney injury
WO2011136228A1 (en) * 2010-04-27 2011-11-03 シスメックス株式会社 Diagnostic marker for kidney diseases and use thereof
WO2016078762A1 (en) * 2014-11-19 2016-05-26 Centogene Ag Method for the diagnosis of niemann-pick disease using a biomarker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521694A (en) * 2007-03-21 2010-06-24 バイオポルト・ダイアグノスティクス・アクティーゼルスカブ Diagnostic tests for kidney injury
WO2011136228A1 (en) * 2010-04-27 2011-11-03 シスメックス株式会社 Diagnostic marker for kidney diseases and use thereof
WO2016078762A1 (en) * 2014-11-19 2016-05-26 Centogene Ag Method for the diagnosis of niemann-pick disease using a biomarker

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAEKAWA MASAMITSU ET AL.: "LC/ESI-MS/MS analysis of urinary 3 beta -sulfooxy-7 beta -N-acetylglucosaminyl-5-cholen-24-oic acid and its amides: New biomarkers for the detection of Niemann-Pick type C disease", STEROIDS, vol. 78, 2013, pages 967 - 972, XP055135046, doi:10.1016/j.steroids.2013.05.017 *
MASHIMA RYUITI ET AL.: "Elevation of plasma lysosphingomyelin-509 and urinary bile acid metabolite in Niemann-Pick disease type C-affected individuals", MOLECULAR GENETICS AND METABOLISM REPORTS, vol. 15, 10 March 2018 (2018-03-10), pages 90 - 95, XP055620061, ISSN: 2214-4269, DOI: 10.1016/j.ymgmr.2018.03.005 *

Also Published As

Publication number Publication date
JP2021036201A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
Lista et al. Blood and plasma-based proteomic biomarker research in Alzheimer's disease
Adaway et al. Liquid chromatography tandem mass spectrometry in the clinical laboratory
Möller et al. Development and validation of a mass spectrometric detection method of peginesatide in dried blood spots for sports drug testing
EP3511973B1 (en) Quantitation of insulin by mass spectrometry
JP2018511812A (en) Method for quantification of insulin levels by mass spectrometry
Beasley-Green Urine proteomics in the era of mass spectrometry
ES2384288T3 (en) Succinylacetone Detection
US10983108B2 (en) Methods for quantitation of insulin and C-peptide
Gilquin et al. Multiplex and accurate quantification of acute kidney injury biomarker candidates in urine using Protein Standard Absolute Quantification (PSAQ) and targeted proteomics
Iadarola et al. Recent applications of CE‐and HPLC‐MS in the analysis of human fluids
Chen et al. Elevated levels of oxidative nucleic acid modification markers in urine from gastric cancer patients: quantitative analysis by ultra performance liquid chromatography-tandem mass spectrometry
WO2011036117A1 (en) Method for the diagnosis of non-alcoholic steatohepatitis based on a metabolomic profile
US20210048445A1 (en) Methods and Systems for Measuring Serotonin in a Sample
WO2018231415A1 (en) Methods for extracting and measuring concentrations of biomolecules in complex matrices without the need for immunocapture
US20150011423A1 (en) Means and methods for assessing kidney toxicity
Sidhu et al. A HILIC‐MS/MS method for simultaneous quantification of the lysosomal disease markers galactosylsphingosine and glucosylsphingosine in mouse serum
Chen et al. Targeted protein quantitation in human body fluids by mass spectrometry
Nauwelaerts et al. Development of a multiplex mass spectrometry method for simultaneous quantification of urinary proteins related to respiratory health
Lassman et al. The clinical utility of mass spectrometry based protein assays
Rezeli et al. MRM assay for quantitation of complement components in human blood plasma—a feasibility study on multiple sclerosis
Bąchor et al. Identyfication of tryptic podocin peptide in the feline urine sediments using LC-MS/MRM method
EP2932274A1 (en) Method for the diagnosis of metachromatic leukodystrophy
US11929243B2 (en) Apolipoprotein E isotype detection by mass spectrometry
Gu et al. Simultaneous quantification of GM1 and GM2 gangliosides by isotope dilution tandem mass spectrometry
WO2019124267A1 (en) Test method for diagnosis of niemann-pick disease type c

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP