WO2019124141A1 - Power conversion device and power supply device - Google Patents

Power conversion device and power supply device Download PDF

Info

Publication number
WO2019124141A1
WO2019124141A1 PCT/JP2018/045295 JP2018045295W WO2019124141A1 WO 2019124141 A1 WO2019124141 A1 WO 2019124141A1 JP 2018045295 W JP2018045295 W JP 2018045295W WO 2019124141 A1 WO2019124141 A1 WO 2019124141A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
input
unit
power
output
Prior art date
Application number
PCT/JP2018/045295
Other languages
French (fr)
Japanese (ja)
Inventor
丹沢 徹
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2019560983A priority Critical patent/JP7165997B2/en
Publication of WO2019124141A1 publication Critical patent/WO2019124141A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Definitions

  • the present disclosure describes a power converter and a power supply.
  • Patent Document 1 discloses a semiconductor integrated circuit device having a high voltage generation circuit. This circuit device adopts a charge pump system as a high voltage generation circuit. And, the circuit device has an oscillator and a charge pump.
  • Non-Patent Document 1 discloses an AC-DC conversion circuit.
  • the conversion circuit converts an input voltage into a DC voltage. Also, the conversion circuit boosts the DC voltage to a predetermined voltage.
  • the conversion circuit receives, for example, an input voltage having a frequency of several hundred megahertz or more and several gigahertz or less. Such a frequency band is applied to, for example, an RFID (Radio Frequency IDentifier).
  • RFID Radio Frequency IDentifier
  • Toru TANZAWA "An Analytical Model of AC-DC Charge Pump Voltage Multipliers", (Analytical Model-DC Charge Pump Booster Analysis Model), IEICE Transactions on Electronics, Japan, The Institute of Electronics, Information and Communication Engineers, 2016, vol. E99-C , No. 1, pp. 108-118.
  • the switching converter circuit uses an inductor.
  • the booster circuit can be implemented in an integrated circuit with an appropriate size.
  • Non-Patent Document 1 when power of a high frequency AC voltage is input to the booster circuit, the conversion efficiency of the power is good. However, when low frequency AC power is input to the booster circuit, the power conversion efficiency is reduced due to the operation principle of the booster circuit.
  • the present disclosure describes a power conversion device and a power supply device that can improve power conversion efficiency.
  • a power conversion device receives a first voltage having a first frequency, and generates a second voltage on which a pulse wave having a second frequency higher than the first frequency with respect to the first voltage is superimposed. And a boosting unit that receives the second voltage from the frequency modulation unit and generates an output voltage higher than the second voltage by charge pump operation, and the boosting unit is charged by the second voltage. According to the pulse wave included in the second voltage, the first operation having the capacitor and storing the charge in the capacitor and the second operation that the voltage based on the charge and the second voltage are superimposed and output are output .
  • the boosting unit includes a first operation of charging the capacitor with the first voltage to accumulate charge in the capacitor, and a second operation of overlapping the voltage based on the accumulated charge and the first voltage and outputting the superimposed voltage.
  • the output power output from the booster is defined by the output voltage and the output current.
  • the maximum value of the output voltage is determined by the peak voltage value of the first voltage and the number of capacitors connected in series with each other.
  • the magnitude of the output current is proportional to the number of repetitions of the charging operation and the output operation. That is, as the number of repeating the charging operation and the output operation increases, more charge transfer is performed. As a result, the output current increases.
  • the power conversion device generates a second voltage by superimposing a pulse wave having a second frequency higher than the first frequency on a first voltage having a first frequency in the frequency modulation unit. Then, the booster switches between the charging operation and the output operation based on the pulse wave. Therefore, the number of repetitions of the charging operation and the output operation is larger than that in the configuration in which the first voltage is directly input to the booster. That is, much charge transfer is performed. As a result, the output current output from the booster is increased according to the frequency of the pulse wave. Therefore, the average output power output from the booster is increased. As a result, the power converter can improve the power conversion efficiency.
  • the above power converter further includes a rectifying unit that receives an input voltage having a first frequency from the power source, rectifies the input voltage to generate a first voltage, and provides the first voltage to a frequency modulation unit. Good. According to this configuration, the number of times of charge transfer in the booster increases. As a result, the output current is further increased. Therefore, the power converter can further enhance the power conversion efficiency.
  • the above power converter receives an input voltage from a power source, generates an input control signal based on a magnitude relation between an absolute value of the input voltage and an input threshold value, and provides an input voltage detection unit for providing the input control signal to a rectifying unit. You may provide further.
  • the rectifying unit may rectify the input voltage based on the input control signal to generate a first voltage. According to this configuration, the input voltage can be reliably rectified.
  • the above power converter may further include an internal voltage generation unit that receives an input voltage from the power source, generates a drive voltage for driving the input voltage detection unit, and provides the input voltage detection unit with the drive voltage. .
  • the drive voltage required to drive the input voltage detection unit is generated from the input voltage. That is, the power conversion device does not have to include a battery for supplying a voltage for driving the input voltage detection unit. Furthermore, the power converter does not need to replace the battery. Therefore, the power converter is easy to maintain.
  • the power conversion device described above receives an input control signal from an input voltage detection unit, generates an oscillation control signal for controlling start and stop of an oscillation operation for generating a pulse wave in a frequency modulation unit based on the input control signal.
  • the apparatus may further include an oscillation control unit that provides the control signal to the frequency modulation unit. According to this configuration, it is possible to control the start and stop of the oscillation operation based on the absolute value of the input voltage. As a result, when the absolute value of the input voltage is smaller than the threshold value, the oscillation operation can be stopped. Therefore, the magnitude of the input voltage provided for power conversion is limited to the threshold or more. As a result, the power converter can output an output voltage of a desired magnitude.
  • the above power conversion device receives an output voltage from the booster, generates an output control signal based on a magnitude relation between an absolute value of the output voltage and an output threshold, and provides an output control signal to the oscillation control unit.
  • the oscillation control unit may generate an oscillation control signal based on the input control signal and the output control signal, and the frequency modulation unit may control the start and stop of the oscillation operation based on the oscillation control signal. . According to this configuration, it is possible to stop the oscillation operation when the output voltage becomes larger than the threshold. Therefore, the power converter can place a limit on the magnitude of the output voltage.
  • the above power converter may further include a limiter unit that receives the output voltage from the booster and defines the maximum value of the output voltage. According to this configuration, an upper limit can be provided to the voltage output from the power conversion device.
  • the first rectifier as the rectifier, the first frequency modulator as the frequency modulator, and the first booster as the booster generate the first output voltage as the output voltage.
  • the power conversion unit is configured, and a second rectification unit different from the first rectification unit, a second frequency modulation unit different from the first frequency modulation unit, and a second booster unit different from the first booster unit , And the second power conversion unit connected in parallel to the first power conversion unit, and the second rectification unit receives the input voltage and generates the third voltage from which the input voltage is rectified.
  • the second frequency modulation unit receives the third voltage, and superimposes a pulse wave having a fourth frequency higher than the third frequency of the third voltage with respect to the third voltage.
  • the operation of generating four voltages is started based on the third voltage, and the second booster performs the second frequency modulation.
  • Receiving a fourth voltage from may generate high second output voltage than the fourth voltage by a charge pump operation. According to this configuration, the stability of the operation at the time of startup of the power conversion device can be enhanced.
  • a power supply device includes: a power source generating power of an input voltage having a first frequency; and the power source connected to the power source to convert power of the input voltage into power of a DC voltage. And a power converter.
  • This power supply device has the above-described power conversion circuit. Therefore, good power conversion efficiency can be obtained. As a result, the power supply device can supply desired power.
  • the conversion efficiency can be improved.
  • FIG. 1 is a view showing the configuration of a sensor device provided with a power supply device according to the first embodiment.
  • FIG. 2 is a block diagram showing the configuration of the power supply device according to the first embodiment.
  • Part (a) of FIG. 3 is an example of the circuit configuration in the rectifying unit.
  • Part (b) of FIG. 3 is an example of a circuit configuration in the frequency modulation unit.
  • Part (c) of FIG. 3 is an example of the circuit configuration in the booster.
  • Part (a) of FIG. 4 is an example of the circuit configuration in the input voltage detection unit.
  • the part (b) of FIG. 4 is an example of the circuit structure in an output voltage detection part.
  • Part (a) of FIG. 5 is an example of a circuit configuration in the oscillation control unit. Part (b) of FIG.
  • Part (a) of FIG. 6 is an illustration of the input voltage.
  • Part (b) of FIG. 6 is an example of the control signal input to the frequency modulation unit.
  • Part (c) of FIG. 6 is an example of the voltage output from the rectifying unit.
  • Part (d) of FIG. 6 is an example of the clock voltage.
  • Part (e) of FIG. 6 is an example of the current output from the booster.
  • Part (a) of FIG. 7 is a diagram conceptually showing the energy balance in the power supply apparatus according to the comparative example.
  • Part (b) of FIG. 7 is a diagram conceptually showing the energy balance in the power supply device according to the embodiment.
  • FIG. 8 is a graph showing experimental results by a computer.
  • Part (a) of FIG. 10 is an example of the circuit configuration of the frequency modulation unit provided in the power supply device according to the second embodiment.
  • Part (b) of FIG. 10 is an example of the circuit configuration of the limiter provided in the power supply device according to the second embodiment.
  • Part (c) of FIG. 10 is a graph showing the characteristics of the limiter.
  • FIG. 11 is a block diagram showing the configuration of the power supply device according to the third embodiment.
  • Part (a) of FIG. 12 is an example of the circuit configuration of the rectifying unit provided in the power supply device according to the third embodiment.
  • Part (b) of FIG. 12 and part (c) of FIG. 12 are circuit diagrams for explaining the operation of the rectifying unit.
  • FIG. 13 is a block diagram showing the configuration of the power supply device according to the fourth embodiment.
  • FIG. 14 is a block diagram showing the configuration of the power supply apparatus according to the first modification.
  • Part (a) of FIG. 15 is an example of the circuit configuration of the frequency modulation unit provided in the power supply device according to the first modification.
  • Part (b) of FIG. 15 is an example of the circuit configuration of the booster provided in the power supply apparatus according to the first modification.
  • FIG. 16 is a block diagram showing the configuration of the power supply device according to the second modification.
  • FIG. 17 is a block diagram showing a configuration of a power supply device according to the third modification.
  • FIG. 18 is an example of a circuit configuration of a booster provided in a power supply device according to the fourth modification.
  • FIG. 19 is a block diagram showing a configuration of a power supply device according to a comparative example.
  • IoT Internet of Things
  • the IoT autonomously collects information by mounting a sensor and an information communication circuit in every device.
  • the IoT autonomously acquires measurement data, which is an environmental variable such as temperature, pressure, vibration, chemical substance, and traffic, indoors and outdoors, using a sensor.
  • IoT transfers those measurement data to the cloud server via the Internet.
  • the transferred data is analyzed as big data. As a result of analysis, when an abnormality is detected or a state in which a response is necessary is made, feedback is returned to the device to be monitored.
  • the measuring terminal measures environmental variables and sends the information to the Internet.
  • Integrated circuit system for IoT is an important element in this terminal.
  • the measurement terminal autonomously exerts the function as an IoT terminal even in a place where power is not supplied. Therefore, a so-called energy harvesting technology is being considered that uses environmental energy as power for integrated circuit systems.
  • energy harvesting technology research on individual circuit systems for extracting electric power from sunlight, heat, vibration, radio waves, etc. is active.
  • the power supply device 1A is used for the sensor device 2.
  • the sensor device 2 is a terminal device configuring an IoT.
  • the sensor device 2 is connected to the Internet 100 via the antenna 3.
  • the sensor device 2 transmits the collected data to another system such as the cloud server 101 via the Internet 100.
  • the sensor device 2 also receives various data such as a measurement program via the Internet 100.
  • the sensor device 2 includes a power supply device 1A and a measurement device 4.
  • the measuring device 4 collects various data such as the temperature, humidity or vibration frequency of the object 102.
  • the measuring device 4 transmits the data.
  • the measuring device 4 also receives data from the outside.
  • the measuring device 4 includes a sensor 4a, a digital circuit 4b, a memory circuit 4c, and a communication circuit 4d.
  • the power supply device 1A supplies power for driving the measuring device 4. That is, the power supply device 1A supplies the power required for the operation of the sensor 4a, the digital circuit 4b, the memory circuit 4c, and the communication circuit 4d that constitute the measuring device 4.
  • the power supply device 1A converts energy (for example, vibration energy) supplied from the outside to obtain power. That is, the power supply device 1A does not require the provision of power from a device such as a so-called battery that has stored power in advance. Therefore, when vibration energy is received from the object 102, the power supply device 1A continues the power supply to the measuring device 4.
  • the vibration used as the energy source may be sine wave vibration or random vibration. That is, the type of vibration used as the energy source is not limited.
  • the object 102 includes an object 102a and an object 102b independent of the object 102a.
  • the object 102 a may supply energy to the vibration power generation element 6.
  • the object 102b may be measured from the sensor 4a.
  • the power supply device 1A includes a vibration power generation element 6 (power source) and a power conversion circuit 7A (power conversion device).
  • the vibration power generation element 6 converts vibration energy of the object 102 into electric power. This power is alternating current.
  • the power conversion circuit 7A converts the alternating current into a direct current usable for driving the measuring device 4.
  • the vibration power generation element 6 receives the vibration of the object 102 and generates AC power.
  • the vibration power generation element 6 utilizes a piezoelectric phenomenon.
  • the vibration power generation element 6 has a vibrator such as a cantilever.
  • the resonance frequency of the vibrator is adjusted to the vibration frequency of the object 102.
  • the vibration power generation element 6 generates AC power according to the frequency at which the vibrator actually vibrates. Therefore, the AC power output from the vibration power generation element 6 corresponds to the frequency of the vibrating vibrator.
  • the frequency of the AC power output from the vibration power generation element 6 corresponds to the vibration frequency of the object 102.
  • the frequency of AC power is several hundred hertz or more and several megahertz or less.
  • Power conversion circuit 7A is electrically connected to vibration generating element 6. Further, the power conversion circuit 7A is electrically connected to the measuring device 4. As described above, the power conversion circuit 7A converts the AC power output from the vibration power generation element 6 into DC power according to the specification of the measuring device 4. That is, the power conversion circuit 7A outputs a DC voltage.
  • the power conversion circuit 7A will be described in detail below.
  • the power conversion circuit 7A functionally includes an input voltage detection unit 11, a frequency modulation unit 12A, and a boosting unit 13A.
  • the input voltage detection unit 11 detects the magnitude of the input voltage.
  • the frequency modulation unit 12A converts the frequency of the alternating current from a low value to a high value.
  • the booster 13A provides DC power to the measuring device 4 which is an integrated circuit.
  • the power conversion circuit 7A drives a booster circuit using a signal obtained by frequency-modulating input AC power. According to this configuration, charge transfer is performed a plurality of times in one cycle of AC power output from the vibration power generation element. Thus, the average output power is increased. Furthermore, reactive power is reduced.
  • the power conversion circuit 7A has inputs 7a and 7b and an output 7c.
  • the input 7 a is connected to the vibration power generation element 6.
  • the input 7a receives a voltage Vdd (input voltage, see part (a) of FIG. 6).
  • the input 7 b is connected to the vibration power generation element 6.
  • the input 7b receives the voltage Vss.
  • the output 7 c is connected to the measuring device 4.
  • the output 7c provides a voltage Vout (first output voltage).
  • the power conversion circuit 7A includes a power conversion unit 14A and a control unit 16A.
  • Power conversion unit 14 ⁇ / b> A receives AC power from vibration power generation element 6.
  • the power conversion unit 14A converts alternating current power into direct current power.
  • the power conversion unit 14A outputs DC power to the measuring device 4.
  • Control unit 16A controls the operation of power conversion unit 14A using AC power received by power conversion unit 14A and DC power output from power conversion unit 14A.
  • the power converter 14A has inputs 14a and 14b and an output 14c.
  • the input 14a is connected to the input 7a of the power conversion circuit 7A.
  • the input 14a receives a voltage Vdd.
  • the input 14b is connected to the input 7b of the power conversion circuit 7A.
  • the input 14b receives the voltage Vss.
  • the output 14c is connected to the output 7c of the power conversion circuit 7A.
  • the output 14c provides a voltage Vout.
  • the power converter 14A has inputs 14d and 14e.
  • the inputs 14d and 14e receive an input control signal ⁇ 1 generated by the control unit 16A, an input control signal ⁇ 2 and an oscillation control signal EN. Although the details will be described later, the input 14d receives an input control signal ⁇ 1 and an input control signal ⁇ 2.
  • the input 14e receives an oscillation control signal EN.
  • the power conversion unit 14A includes a rectification unit 17A (first rectification unit), a frequency modulation unit 12A (first frequency modulation unit), and a boosting unit 13A (first boosting unit).
  • the rectifying unit 17A rectifies the voltage Vdd.
  • the frequency modulation unit 12A generates a voltage CLK on which the clock signal is superimposed, based on the voltages VH and VL output from the rectification unit 17A.
  • the boosting unit 13A boosts the voltage CLK on which the clock signal is superimposed.
  • the rectifying unit 17A has inputs 17a, 17b and 17c, and outputs 17d and 17e.
  • the input 17a is connected to the input 14a of the power conversion unit 14A.
  • the input 17a receives the voltage Vdd.
  • the input 17b is connected to the input 14b of the power conversion unit 14A.
  • the input 17b receives the voltage Vss.
  • the input 17c is connected to the input 14d of the power conversion unit 14A.
  • the input 17c receives input control signals ⁇ 1 and ⁇ 2.
  • the output 17d is connected to the frequency modulation unit 12A.
  • the output 17 d outputs a voltage VH.
  • the output 17e is connected to the frequency modulation unit 12A.
  • the output 17e outputs a voltage VL.
  • the rectifying unit 17A includes switches S1, S2, S3, and S4, and a capacitor C1.
  • the switches S1, S2, S3 and S4 are, for example, MOSFETs (metal-oxide-semiconductor field-effect transistors).
  • the input 17a is connected to the switches S1 and S2, respectively.
  • the input 17b is connected to the switches S3 and S4, respectively.
  • the switch S1 is connected in series to the switch S3.
  • the switch S2 is connected in series to the switch S4.
  • one end of the capacitor C1 is connected between the switches S1 and S3.
  • the other end of the capacitor C1 is connected between the switches S2 and S4.
  • the input control signal ⁇ 1 is OFF (0).
  • the input control signal ⁇ 2 is ON (1).
  • the rectifying unit 17A connects the input 17b to the output 17d.
  • the rectifying unit 17A connects the input 17a to the output 17e.
  • the frequency modulation unit 12A has inputs 12a, 12b, 12c and an output 12d.
  • the input 12a is connected to the output 17d of the rectifying unit 17A.
  • Input 12a receives voltage VH.
  • the input 12b is connected to the output 17e of the rectifying unit 17A.
  • Input 12 b receives voltage VL.
  • the input 12c is connected to the input 14e of the power conversion unit 14A.
  • the input 12c receives an oscillation control signal EN.
  • the output 12d is connected to the booster 13A.
  • the output 12 d outputs a voltage CLK.
  • the voltage CLK has a waveform in which a clock waveform is superimposed (see part (d) of FIG. 6).
  • the clock waveform repeats ON-OFF with the voltage VH as an envelope.
  • Part (b) of FIG. 3 shows a circuit configuration of the frequency modulation unit 12A. That is, the frequency modulation unit 12A has a circuit configuration called a so-called ring oscillator.
  • the frequency modulation unit 12A includes one NAND circuit G1 and an even number of inverter circuits G2 and G3.
  • the inverter circuit G2 is connected in series to the inverter circuit G3.
  • the NAND circuit G1 is connected to the inverter circuit G2 of the first stage.
  • the NAND circuit G1 controls the start of the oscillation operation and the stop of the oscillation operation based on the oscillation control signal EN. For example, when the oscillation control signal EN is ON (1), the frequency modulation unit 12A starts the oscillation operation.
  • the frequency modulation unit 12A stops the oscillation operation.
  • the number of inverter circuits G2 and G3 is determined based on the desired clock frequency (second frequency).
  • the clock frequency may be, for example, several megahertz or more.
  • the clock frequency may be greater than several gigahertz. In other words, the clock frequency may be larger than the frequency of the voltage Vdd output from the vibration generating element 6.
  • the voltage VH received by the input 12a and the voltage VL received by the input 12b are input to the respective inverter circuits G2 and G3 as drive voltages.
  • the first voltage in the present embodiment means a voltage received by the frequency modulation unit 12A.
  • the first voltage is a voltage used to generate the voltage CLK.
  • the frequency modulation unit 12A shown in part (b) of FIG. 3 receives the voltages VH and VL.
  • the frequency modulation unit 12A inputs the voltages VH and VL to the inverter circuits G2 and G3.
  • the voltages VH and VL are drive voltages of the inverter circuits G2 and G3.
  • the clock voltage is superimposed on the drive voltage. Therefore, in the present embodiment, the first voltage is a voltage (VH ⁇ VL).
  • the aspect of the first voltage is not limited to the voltage (VH-VL).
  • the aspect of the first voltage can take various aspects depending on the voltage input to the inverter circuits G2 and G3.
  • the voltage VH may be input to the input 12a, and the voltage Vss (GND) may be input to the input 12b.
  • the first voltage is the voltage VH.
  • the voltage VL may be input to the input 12a, and the voltage Vss (GND) may be input to the input 12b.
  • the first voltage is the voltage VL.
  • the power conversion unit 14A does not include the rectifying unit 17A
  • the voltage Vdd may be input to the input 12a and the voltage Vss may be input to the input 12b.
  • the first voltage is a voltage (Vdd-Vss).
  • the first frequency and the third frequency in the present embodiment may be defined as the frequency of the voltage Vdd output from the vibration power generation element 6. Further, as described above, the frequency of the voltage Vdd is the frequency of the vibrating vibrator, and the frequency of the vibrator is the frequency of the vibration generated by the object 102. Therefore, the first frequency may be the frequency of the vibration provided from the object 102.
  • the frequency of mechanical vibration is approximately several hertz or more and several kilohertz or less.
  • the range of the first frequency is also approximately several hertz or more and several kilohertz or less.
  • the second frequency and the fourth frequency in the present embodiment are the frequency of the clock signal generated by the ring oscillator circuit.
  • the second frequency may be greater than the first frequency. For example, if the range of the first frequency is approximately several hertz or more and several kilohertz or less, the second frequency may be greater than several megahertz. Also, the second frequency may be greater than several gigahertz.
  • the booster 13A has an input 13a and an output 13b.
  • the input 13a is connected to the output 12d of the frequency modulation unit 12A.
  • Input 13a receives voltage CLK.
  • the output 13 b is connected to the measuring device 4.
  • the output 13 b outputs a voltage Vout.
  • Part (c) of FIG. 3 shows the circuit configuration of the booster 13A.
  • the booster 13A includes a plurality of diodes D1, D2, and D3 and a plurality of capacitors C2, C3, and C4.
  • the boosting unit 13A performs an operation of charging the capacitors C2 and C3, an operation of superimposing a voltage derived from the charged charge on the voltage CLK to be input, and an operation of outputting the superimposed voltage CLK. repeat. This repetition is controlled based on the clock frequency included in voltage CLK. That is, the higher the frequency of the voltage CLK, the more the operation of charging, the operation of overlapping, and the operation of outputting are repeated. As a result, a large amount of charge is transferred.
  • the booster 13A generates power proportional to the clock frequency. Specifically, the current value increases according to the number of times of charge transfer. As a result, power is increased. Then, the voltage (second voltage, see part (d) in FIG. 6) output from the diode D3 is stabilized by the capacitor C4. As a result, the voltage Vout is output as a substantial DC voltage.
  • the second voltage in the present embodiment is a voltage output from the diode D3 as described above.
  • the second voltage may be substantially an alternating voltage.
  • the second voltage is a voltage stabilized by the capacitor C4.
  • the second voltage may be a substantially direct voltage.
  • the on / off control of the switches S1, S2, S3 and S4 in the rectifying unit 17A is based on the input control signals ⁇ 1 and ⁇ 2. Further, on / off control of the oscillation operation in the frequency modulation unit 12A is based on the oscillation control signal EN.
  • the control unit 16A has inputs 16a, 16b and 16c, and outputs 16d and 16e.
  • the input 16a is connected to the input 7a of the power conversion circuit 7A.
  • Input 16a receives voltage Vdd.
  • the input 16b is connected to the output 14c of the power conversion unit 14A.
  • the input 16b receives the voltage Vout.
  • the input 16c is connected to the internal voltage generation unit 22 (described later).
  • the input 16c receives the voltages + Vp and -Vp.
  • the output 16d is connected to the input 14d of the power conversion unit 14A.
  • the output 16d outputs input control signals ⁇ 1 and ⁇ 2.
  • the output 16e is connected to the input 14e of the power conversion unit 14A.
  • the output 16e outputs an oscillation control signal EN.
  • the control unit 16A includes a reference voltage generation unit 18, an input voltage detection unit 11, an output voltage detection unit 19, and an oscillation control unit 21.
  • the reference voltage generator 18 provides a reference voltage to the input voltage detector 11 and the output voltage detector 19. Specifically, the reference voltage generation unit 18 provides the input voltage detection unit 11 with the reference voltages + Vref and -Vref via the output 18a. Further, the reference voltage generation unit 18 provides the output voltage detection unit 19 with the reference voltage + Vmax via the output 18 b.
  • the input voltage detection unit 11 controls the on / off operation of the switches S1, S2, S3, and S4 of the rectification unit 17A based on the voltage Vdd.
  • the input voltage detection unit 11 starts the oscillation operation of the frequency modulation unit 12A when the voltage Vdd becomes larger than the threshold (the reference voltage (+ Vref) and the reference voltage ( ⁇ Vref)).
  • the reference voltage (+ Vref) and the reference voltage (-Vref) are input threshold values in the present embodiment.
  • the input threshold may be set based on, for example, the voltage Vout (or power) required of the power conversion circuit 7A. That is, when the amplitude of the voltage Vdd is small, the converted voltage Vout (or power) may not satisfy the required value. Therefore, the minimum value of the voltage Vdd in which the converted voltage Vout (or power) satisfies the required value may be used as the input threshold.
  • the input voltage detection unit 11 has inputs 11a, 11b and 11c, and outputs 11d and 11e.
  • the input 11a is connected to the input 16a of the control unit 16A.
  • the input 11a receives the voltage Vdd.
  • the input 11b is connected to the ground GND.
  • the input 11 c is connected to the output 18 a of the reference voltage generator 18.
  • Input 11 c receives reference voltages + Vref and ⁇ Vref.
  • the output 11d is connected to the output 16d of the control unit 16A.
  • the output 11 d outputs input control signals ⁇ 1 and ⁇ 2.
  • the output 11 e is connected to the oscillation control unit 21.
  • the output 11e outputs input control signals ⁇ 1 and ⁇ 2.
  • Part (a) of FIG. 4 shows a circuit configuration of the input voltage detection unit 11.
  • the input voltage detection unit 11 has two operational amplifiers G4 and G5.
  • the reference voltage + Vref is provided to the inverting input of the operational amplifier G4.
  • the voltage Vdd is provided to the non-inverting input of the operational amplifier G4.
  • the voltage Vdd is provided to the inverting input of the operational amplifier G5.
  • a reference voltage -Vref is provided to the non-inverting input of the operational amplifier G5.
  • the output voltage detection unit 19 stops the oscillating operation of the frequency modulation unit 12A when the voltage value of the voltage Vout becomes larger than the threshold value (reference voltage (+ Vmax)).
  • the output voltage detector 19 has inputs 19a, 19b, 19c and an output 19d.
  • the input 19c is connected to the input 16b of the control unit 16A.
  • the input 19c receives the voltage Vout.
  • the input 19b is connected to the ground GND.
  • the input 19 a is connected to the output 18 b of the reference voltage generator 18.
  • the input 19a receives a reference voltage (+ Vmax).
  • the output 19 d is connected to the oscillation control unit 21.
  • the output 19d outputs an output control signal ⁇ 3.
  • the reference voltage (+ Vmax) is an output threshold in the embodiment.
  • the output threshold is set based on the maximum value of the voltage Vout required of the power conversion circuit 7A.
  • Part (b) of FIG. 4 shows a circuit configuration of the output voltage detection unit 19.
  • the output voltage detection unit 19 has one operational amplifier G6.
  • the reference voltage + Vmax is provided to the non-inverting input of the operational amplifier G6.
  • the voltage Vout is provided to the inverting input of the operational amplifier G6.
  • the oscillation control unit 21 has inputs 21 a and 21 b and an output 21 c.
  • the input 21 a is connected to the output 11 e of the input voltage detection unit 11.
  • the input 21a receives input control signals ⁇ 1 and ⁇ 2.
  • the input 21 b is connected to the output 19 d of the output voltage detection unit 19.
  • the input 21b receives an output control signal ⁇ 3.
  • the output 21c is connected to the output 16e of the control unit 16A.
  • the output 21 c outputs an oscillation control signal EN.
  • Part (a) of FIG. 5 shows a circuit configuration of the oscillation control unit 21.
  • the oscillation control unit 21 includes an OR circuit G7 and an AND circuit G8.
  • OR circuit G7 receives input control signals ⁇ 1 and ⁇ 2.
  • OR circuit G7 outputs control signal ⁇ 4.
  • AND circuit G8 receives output control signal ⁇ 3 and control signal ⁇ 4.
  • the AND circuit G8 outputs an oscillation control signal EN.
  • the oscillation control unit 21 operates as follows.
  • the reference voltage generation unit 18, the input voltage detection unit 11, the output voltage detection unit 19, and the oscillation control unit 21 that constitute the control unit 16A require power for driving the respective circuits.
  • the power supply device 1A has an internal voltage generation unit 22 (see FIG. 2), and the internal voltage generation unit 22 supplies necessary power to the control unit 16A.
  • the internal voltage generation unit 22 generates a voltage used for the operation of the control unit 16A. That is, the internal voltage generation unit 22 receives the voltage Vdd and outputs the voltages + Vp and -Vp.
  • the internal voltage generator 22 has an input 22a and an output 22b.
  • the input 22a is connected to the input 7a of the power conversion circuit 7A.
  • the input 22a receives the voltage Vdd.
  • the output 22b is connected to the input 16c of the control unit 16A.
  • the output 22b outputs voltages + Vp and -Vp.
  • the internal voltage generation unit 22 includes a gate G9 which is a pMOSFET and a gate G10 which is an nMOSFET.
  • the internal voltage generation unit 22 provides the voltage Vdd to each of the gates G9 and G10. Then, gate G9 outputs voltage + Vp. On the other hand, gate G10 outputs voltage -Vp.
  • the reference voltage generation unit 18, the input voltage detection unit 11, the output voltage detection unit 19, and the oscillation control unit 21 operate using these voltages + Vp and -Vp.
  • the power conversion circuit 7A includes a frequency modulation unit 12A and a boosting unit 13A.
  • Frequency modulation unit 12A receives voltage VH having a first frequency f1.
  • the frequency modulation unit 12A generates a voltage CLK.
  • the voltage CLK is obtained by superimposing a pulse wave having a second frequency f2 higher than the first frequency f1 with respect to the voltage VH.
  • Booster 13A receives voltage CLK from frequency modulator 12A.
  • the frequency modulation unit 12A generates a voltage Vout higher than the voltage CLK by charge pump operation.
  • the booster 13A has capacitors C2 and C3. Capacitors C2 and C3 are charged by voltage CLK.
  • the boosting unit 13A performs a first operation of accumulating charges in the capacitors C2 and C3 and a second operation of superposing and outputting a voltage based on the charges and the voltage CLK.
  • the switching between the first operation and the second operation is based on a pulse wave included in the voltage CLK.
  • the boosting unit 13A charges the capacitors C2 and C3 with the voltage VH and stores the charges in the capacitors C2 and C3 and an operation of superposing the voltage Vc based on the stored charges and the voltage VH and outputting the result.
  • the output power output from the booster 13A is defined by the voltage Vout and the output current.
  • the maximum value of the voltage Vout is determined by the peak voltage value of the voltage VH and the number of capacitors C2 and C3 connected in series.
  • the magnitude of the output current is proportional to the number of repetitions of the charging operation and the output operation. That is, as the number of repeating the charging operation and the output operation increases, more charge transfer is performed. As a result, the magnitude of the output current is increased.
  • the power conversion circuit 7A superimposes a pulse wave having a second frequency f2 higher than the first frequency f1 on the voltage VH having the first frequency f1 in the frequency modulation unit 12A. As a result, voltage CLK is generated. Then, the booster 13A switches between the charging operation and the output operation based on the pulse wave. Therefore, the number of repetitions of the charging operation and the output operation is larger than in the configuration in which the voltage VH is directly input to the booster 13A. That is, much charge transfer is performed. As a result, when the frequency of the pulse wave increases, the output current output from the booster 13A increases. Therefore, the average output power output from the booster 13A is increased. As a result, the power conversion efficiency can be enhanced.
  • the power conversion circuit 7A further includes a rectifying unit 17A.
  • the rectifying unit 17A receives the voltage Vdd having the first frequency f1 from the vibration power generation element 6, generates a voltage VH in which the voltage Vdd is full-wave rectified, and outputs the voltage VH to the frequency modulation unit 12A. According to this configuration, the number of times of charge transfer in the booster 13A increases. As a result, the output current is further increased. Therefore, the power conversion efficiency can be further enhanced.
  • the power conversion circuit 7A further includes an input voltage detection unit 11.
  • Input voltage detection unit 11 receives voltage Vdd from vibration generating element 6, generates input control signals ⁇ 1 and ⁇ 2 based on the magnitude relation between the absolute value of voltage Vdd and the input threshold, and rectifies input control signals ⁇ 1 and ⁇ 2 Output to 17A.
  • the rectifying unit 17A rectifies the voltage Vdd into voltages VH and VL based on the input control signals ⁇ 1 and ⁇ 2. According to this configuration, the voltage Vdd can be reliably full-wave rectified.
  • the power conversion circuit 7A further includes an oscillation control unit 21.
  • the oscillation control unit 21 receives the input control signals ⁇ 1 and ⁇ 2 from the input voltage detection unit 11, and controls the start and stop of the oscillation operation for generating a pulse wave in the frequency modulation unit 12A based on the input control signals ⁇ 1 and ⁇ 2.
  • the control signal EN is generated, and the oscillation control signal EN is output to the frequency modulation unit 12A.
  • the absolute value of the voltage Vdd is smaller than the threshold value, the oscillation operation can be stopped. Therefore, since it is possible to limit the magnitude of the voltage Vdd provided for power conversion to a value larger than the threshold value, the power conversion circuit 7A can output the voltage Vout of a desired magnitude.
  • the power conversion circuit 7A further includes an output voltage detection unit 19.
  • Output voltage detection unit 19 receives voltage Vout from boosting unit 13A, generates output control signal ⁇ 3 based on the magnitude relationship between the absolute value of voltage Vout and the output threshold, and outputs output control signal ⁇ 3 to oscillation control unit 21.
  • the oscillation control unit 21 generates an oscillation control signal EN that controls the start and stop of the oscillation operation based on the input control signals ⁇ 1 and ⁇ 2 and the output control signal ⁇ 3. According to this configuration, it is possible to stop the oscillation operation when the voltage Vout becomes larger than the threshold. Therefore, a limitation can be placed on the magnitude of the voltage Vout.
  • Power conversion circuit 7A further includes an internal voltage generation unit 22.
  • Internal voltage generation unit 22 receives voltage Vdd from vibration power generation element 6.
  • the internal voltage generation unit 22 generates power for driving the input voltage detection unit 11, the output voltage detection unit 19, and the oscillation control unit 21.
  • the internal voltage generation unit 22 outputs power to the input voltage detection unit 11, the output voltage detection unit 19, and the oscillation control unit 21. According to this configuration, the voltage required for the operation of each part is generated from the voltage Vdd. Therefore, the power conversion circuit 7A does not have to prepare a battery for supplying a voltage for operating each part. Furthermore, there is no need to replace the battery. Therefore, the power conversion circuit 7A is easy to maintain and manage.
  • the power supply device 1A includes a vibration power generation element 6 and a power conversion circuit 7A.
  • the vibration power generation element 6 generates the power of the voltage Vdd having the first frequency f1.
  • the power conversion circuit 7A is connected to the vibration power generation element 6, and converts the power of the voltage Vdd into the power of the DC voltage.
  • the power supply device 1A includes the power conversion circuit 7A described above. Therefore, good power conversion efficiency can be obtained. As a result, the power supply device 1A can supply desired power.
  • the power conversion circuit 7A converts alternating current power into direct current power.
  • the power conversion circuit 7A is a booster circuit.
  • the power conversion circuit 7A converts the AC voltage into a DC voltage having a high voltage value by increasing the voltage amplitude of the AC.
  • the power conversion circuit 7A inputs the AC power input to the modulation circuit that modulates the frequency.
  • the power conversion circuit 7A inputs the frequency-increased signal from the modulation circuit to the booster circuit.
  • This configuration can be referred to as a frequency modulation type AC-DC boost system. According to this method, for example, it is assumed that AC power having a frequency of 1 kilohertz generated by vibrational power generation is converted to power of 10 megahertz by a frequency modulation circuit.
  • the output voltage of the power conversion circuit 7A is approximately 3000 times the output voltage of the power conversion circuit of the comparative example described later.
  • This output power corresponds to the output power of the booster circuit used in the RFID.
  • RFID is a system that uses radio waves to read and write data of an RF tag contactlessly.
  • the power conversion circuit 7A has a practical size. Therefore, the power conversion circuit 7A can be integrated in the IoT integrated circuit for vibration power generation. As a result, the power conversion circuit 7A contributes to the miniaturization of the IoT terminal.
  • switching converter using a switching inductor in the power conversion circuit.
  • Another circuit is a booster circuit having a capacitor and a switch.
  • Switching converter inductors can not be implemented in realistic sizes on integrated circuits. Thus, the switching converter inductor is externally attached.
  • the booster circuit can reduce the size (capacitance) of the capacitor to such an extent that integration is possible by increasing the frequency. Therefore, it is possible to miniaturize the IoT terminal.
  • input AC power is high frequency.
  • an integrated boost circuit can be easily applied.
  • the power conversion circuit according to the comparative example directly inputs alternating current power (AC) from direct current power (DC) by directly inputting alternating current power (AC) from vibration generating element 206 to boosting unit 203. Convert to).
  • the power conversion circuit according to the comparative example provides direct current power (DC) to the measuring device 204.
  • the power supply device 200 applied to the RFID directly inputs the output of the vibration power generation element 206 to the booster 203.
  • the booster 203 generates power proportional to the frequency of the input signal. This is because the output charge is transferred only once in one cycle.
  • the output voltage is smoothed by the stabilization capacitor.
  • the alternating current output from the vibration power generation element has a low frequency. Therefore, it was necessary to use the required switching converter of the external inductor.
  • the output voltage of the vibration power generating element is, for example, about several hundred micro W / cm 3 . Then, assume that the integrated circuit requires a voltage of around 1 volt. When trying to generate a voltage of 1 volt using a voltage of several hundreds of micro W / cm 3, if the power frequency of vibration power generation is 1 kilohertz, the output power of the booster circuit is several nanowatts . That is, most of the power is reactive power.
  • the IoT terminal includes the vibration power generation element 6 that generates low frequency AC power.
  • the power conversion circuit 7A is a booster circuit control means that can be integrated. Therefore, the IoT terminal provided with the power conversion circuit 7A can be miniaturized.
  • Part (a) of FIG. 7 conceptually shows the energy balance of the power supply device 200 according to the comparative example.
  • Part (b) of FIG. 7 conceptually shows the energy balance of the power supply device 1A according to the embodiment.
  • the powers P1 and P2 generated by the vibration power generation elements 6 and 206 are divided into powers P1a and P2a, power consumptions P1b and P2b, and reactive powers P1c and P2c.
  • the powers P1a and P2a are powers to be effectively converted.
  • the power consumptions P1b and P2b are powers consumed by the power conversion circuit.
  • the reactive powers P1c and P2c are power that only reciprocates between the vibration generating elements 6, 206 and the conversion circuit and is not consumed.
  • the power supply device 1A reduces reactive power P2c. Then, the power supply device 1A increases the power P2a to be effectively converted.
  • the power supply device 1A even if the power consumption P2b in the control unit 16A or the like is present, the power P2a to be effectively converted increases. As a result, the power supply device 1A can increase the conversion efficiency.
  • FIG. 8 compares the output power when the booster circuit performs the conventional AC-DC operation with the output power when the booster circuit performs the AC-DC operation according to the embodiment.
  • the horizontal axis of FIG. 8 indicates the frequency of the AC power input to the booster circuit.
  • the vertical axis represents DC power output from the booster circuit.
  • the output voltage of the booster circuit was 1 volt.
  • the input AC power is 1 kilohertz.
  • the output power is a few nanowatts (see symbol A1). That is, it was found that in the AC-DC operation according to the comparative example, most of the power becomes reactive power.
  • the frequency is increased to 10 MHz.
  • the output power was found to be several tens of microwatts (see symbol A2). That is, the size of the power conversion circuit 7A can be made equal to that of the booster circuit required for high frequency input such as RFID. Therefore, it has been confirmed that the power conversion circuit 7A can realize the integration of the AC-DC booster circuit system for vibration power generation.
  • a power supply device 1B includes a vibration power generation element 6 and a power conversion circuit 7B.
  • the power conversion circuit 7B includes a power conversion unit 14B, a control unit 16B, and an internal voltage generation unit 22.
  • the power conversion unit 14B includes a rectification unit 17A, a frequency modulation unit 12B (second frequency modulation unit), and a boosting unit 13A.
  • the frequency modulation unit 12B is different from the frequency modulation unit 12A in that the oscillation control signal EN from the control unit 16B is not required.
  • control unit 16B is different from the control unit 16A in that the control unit 16B does not have the oscillation control unit 21 and the output voltage detection unit 19 for generating the oscillation control signal EN.
  • the control unit 16B is different from the control unit 16A in that the control unit 16B includes a limiter 31 (a limiter unit).
  • the frequency modulation unit 12B is an LC oscillation circuit.
  • the frequency modulation unit 12B is not a ring oscillator.
  • the frequency modulation unit 12B includes coils L1 and L2, capacitors C5 and C6, and field effect transistors M1 and M2 (FETs).
  • the coil L1, the capacitor C5 and the transistor M1 generate a voltage CLK at the output 12d.
  • the coil L2, the capacitor C6 and the transistor M2 generate the voltage CLKb at the output 12e.
  • the LC oscillation circuit performs the oscillation operation autonomously. Therefore, the oscillation control signal EN can be omitted. That is, when the voltage Vdd increases to some extent, the frequency modulation unit 12B automatically starts oscillation. For example, the frequency modulation unit 12B starts oscillation when the transconductance of the transistors M1 and M2 becomes higher than the loss of the LC resonator.
  • the resonant frequency of this LC resonant circuit is set sufficiently higher than the frequency of the voltage Vdd.
  • the frequency of the voltage Vdd is f_AC and the oscillation frequency is f_clk.
  • the coils L1 and L2 and the capacitors C5 and C6 are set to satisfy f_AC ⁇ f_clk.
  • the booster 13A does not use the voltage CLKb. Therefore, the output 12d of the frequency modulation unit 12B shown in part (a) of FIG. 10 is connected to the input 13a of the booster 13A. Further, the output 12e may not be connected to the input 13c.
  • the control unit 16B includes an input voltage detection unit 11, a reference voltage generation unit 18, and a limiter 31.
  • the frequency modulation unit 12B autonomously starts oscillation. Therefore, the oscillation control signal EN is unnecessary. Therefore, the control unit 16B does not include the oscillation control unit 21.
  • the limiter 31 suppresses the voltage Vout from becoming excessively large when the amplitude of the voltage Vdd exceeds a predetermined value. Therefore, the voltage Vout is controlled to a predetermined voltage value.
  • the limiter 31 is a limiter circuit utilizing the rectifying action of the diode D4.
  • the limiter 31 is connected to the diode D4 so that the voltage Vout is a reverse voltage. According to this connection configuration, the diode D4 is turned on at the target voltage Vpp (see part (c) of FIG. 10). Therefore, the voltage Vout can be suppressed from becoming excessively large.
  • the power supply device 1C includes a vibration power generation element 6 and a power conversion circuit 7C.
  • the power conversion circuit 7C has a power conversion unit 14C and a control unit 16C.
  • the power conversion unit 14C includes a rectification unit 17B (second rectification unit), a frequency modulation unit 12B, and a boosting unit 13A.
  • the rectifying unit 17B does not require the input control signals ⁇ 1 and ⁇ 2.
  • the rectifying unit 17B does not require the input control signals ⁇ 1 and ⁇ 2. Therefore, the control unit 16C does not have a configuration for generating the input control signals ⁇ 1 and ⁇ 2.
  • the input 16b of the control unit 16C is connected to the output 14c of the power conversion unit 14C.
  • the control unit 16C has a limiter 31.
  • the limiter 31 receives the voltage Vout from the input 16 b.
  • the rectifying unit 17B is an autonomous switch circuit.
  • the rectifying unit 17B automatically switches the voltage to be output based on the magnitude relationship between the voltage Vdd and the voltage Vss.
  • the rectifying unit 17B includes a pair of switch circuits S5 and S6.
  • the switch circuit S5 includes a pair of p-type transistors QP1 and QP2.
  • the switch circuit S6 includes a pair of n-type transistors QN1 and QN2.
  • the capacitor C7 is provided between the output 17d and the output 17e.
  • the voltage Vdd and the voltage Vss are input to the switch circuit S5.
  • the voltage Vss and the voltage Vss are also input to the switch circuit S6.
  • the switch circuit S5 is connected to the output 17d.
  • the switch circuit S5 provides one of the voltage Vdd and the voltage Vss as the voltage VH to the output 17d.
  • the switch circuit S6 is connected to the output 17e.
  • the switch circuit S6 provides one of the voltage Vdd and the voltage Vss as the voltage VL to the output 17d.
  • the provided voltage is determined based on the magnitude relationship between the voltage Vdd and the voltage Vss.
  • the rectifying unit 17B switches the voltage to be provided to the outputs 17d and 17e based on the magnitude relationship between the voltage Vdd and the voltage Vss. Then, the frequency modulation unit 12B autonomously starts the oscillation operation when the voltage amplitudes of the voltages VH and VL supplied from the outputs 17d and 17e become equal to or higher than the voltage that can be oscillated. Then, the boosting unit 13A receives the voltage CLK provided from the frequency modulation unit 12B and performs a boosting operation.
  • the power conversion unit 14C of the power supply device 1C according to the third embodiment does not require the input control signals ⁇ 1 and ⁇ 2 and the oscillation control signal EN. That is, the power conversion unit 14C can start the operation autonomously based on the voltages Vdd and Vss. Therefore, the configuration of the power conversion circuit 7C can be simplified.
  • a power supply device 1D includes a vibration power generation element 6 and a power conversion circuit 7D.
  • the power conversion circuit 7D includes a power conversion unit 14A (first power conversion unit), a power conversion unit 14C (second power conversion unit), a control unit 16A, and an internal voltage generation unit 22.
  • the power conversion circuit 7D includes a power conversion circuit 7A and a power conversion unit 14C.
  • the power conversion unit 14C is connected in parallel to the power conversion unit 14A.
  • the input 14a of the power conversion unit 14C is connected to the input 7a of the power conversion circuit 7A.
  • the input 14b of the power conversion unit 14C is connected to the input 7b of the power conversion circuit 7A.
  • the output 14c of the power conversion unit 14C is connected to the output 7c of the power conversion unit 14C.
  • the power conversion unit 14C autonomously starts the power conversion operation based on the voltage Vdd and the voltage Vss.
  • the rectifying unit 17B receives the voltages Vdd and Vss.
  • the rectifying unit 17B outputs the voltages VH2 and VL2.
  • the frequency modulation unit 12B receives the voltages VH2 and VL2, and then the frequency modulation unit 12B generates a voltage CLK2 (fourth voltage) using the voltage (VH2-VL2) as a third voltage.
  • the booster 13B (second booster) receives the voltage CLK2.
  • the booster 13B provides the voltage Vout2 (second output voltage) to the output 14c.
  • the operation is switched from the power conversion unit 14C to the operation of the power conversion unit 14A. That is, the input control signals ⁇ 1 and ⁇ 2 and the oscillation control signal EN are provided from the control unit 16A to the power conversion unit 14A. Then, after the conditions for stable operation of the control unit 16A are satisfied, the control unit 16A and the power conversion unit 14A can be operated. Therefore, the stability immediately after the start of the operation in the power supply device 1D can be improved.
  • the power conversion circuit and the power supply device of the present disclosure have been described. However, the power conversion circuit and the power supply device of the present disclosure are not limited to the above aspect.
  • the power supply device 1E may include the power conversion circuit 7E.
  • the power conversion circuit 7E includes a power conversion unit 14D, a control unit 16A, and an internal voltage generation unit 22.
  • the power conversion unit 14D includes a rectification unit 17A, a frequency modulation unit 12C, and a boosting unit 13B.
  • the frequency modulation unit 12C has a configuration for extracting the voltage CLKb.
  • the frequency modulation unit 12A does not have a configuration for extracting the voltage CLKb. That is, the frequency modulation unit 12C includes an output line connected between the inverter circuit G2 and the inverter circuit G3.
  • the output line is connected to the output 12e of the frequency modulation unit 12C.
  • the booster 13B has a first circuit CR1 and a second circuit CR2.
  • the first circuit CR1 and the second circuit CR2 are connected in parallel with each other.
  • the voltage CLK is input to the first circuit CR1.
  • the voltage CLKb is input to the second circuit CR2. According to this configuration, the output power can be further increased.
  • the frequency modulation unit 12C and the boosting unit 13B according to the first modification may be applied to the power conversion circuits 7A, 7B, 7C, 7D according to the first, second, third and fourth embodiments.
  • the power supply device 1F according to the second modification may include the auxiliary power supply 32.
  • the auxiliary power supply 32 assists the function of the internal voltage generation unit 22. That is, the auxiliary power supply 32, which is a battery, provides a part of the voltage necessary to drive the control unit 16A. According to this configuration, the power supply device 1F can reliably provide the necessary voltage to the control unit 16A by the auxiliary power supply 32 and the internal voltage generation unit 22. In addition, since the voltage provided by the auxiliary power supply 32 is small, the replacement cycle of the auxiliary power supply 32 can be made extremely long.
  • the auxiliary power supply 32 according to the second modification may be applied to the power conversion circuits 7A, 7B, 7C, 7D according to the first, second, third and fourth embodiments.
  • a power supply device 1G according to the third modification is a modification of the power supply device 1D according to the fourth embodiment.
  • the power supply device 1G omits the internal voltage generation unit 22 of the power supply device 1D. That is, the power supply device 1G may not have the internal voltage generation unit 22.
  • the power supply device 1G uses the voltage Vdd_int output from the power conversion unit 14C to drive the control unit 16A. Specifically, the output 14c of the power conversion unit 14C is connected to the input 16c of the control unit 16A. With this connection configuration, the power conversion unit 14C can provide the voltage Vdd_int required to drive the control unit 16A.
  • the limiter 33 is connected to the output 14c of the power conversion unit 14C.
  • the limiter 33 has a configuration similar to that of the limiter 31. According to this limiter 33, it is possible to set a limit on the voltage Vdd_int provided to the control unit 16A. Therefore, input of an excessive voltage to the control unit 16A can be suppressed. Furthermore, according to this configuration, the operation stability at the time of startup of the power supply device 1G is enhanced. Moreover, according to this configuration, the circuit configuration of the power supply device 1G can be simplified.
  • the booster is not limited to the circuit configuration shown in the embodiment.
  • FIG. 18 shows a circuit configuration of the booster 13H.
  • the booster 13H has diodes D1, D2, D3 and capacitors C2, C3, C4. The connection configuration of these is the same as that of the booster 13A.
  • the booster 13H uses the voltage CLKb to control charge transfer in the capacitors C2 and C3.
  • inverter circuits G11, G12, and G13 are connected to the capacitors C2 and C3 in order to mutually invert the phase of the voltage CLKb input to the capacitor C2 and the phase of the voltage CLKb input to the capacitor C3.
  • the inverter circuit G11 is connected to the capacitor C2.
  • Inverter circuits G12 and G13 are connected to the capacitor C3.
  • the vibration power generation element is illustrated as the power source of the AC power of the power supply device 1A.
  • the power source of alternating current power is not limited to the vibration power generation element.
  • any element capable of generating alternating current power having a frequency lower than the frequency of the frequency modulation unit 12A may be applied.
  • the power supply device 1A can be effectively applied to a low frequency also as a wireless power reception circuit.
  • Control Unit 17A, 17B Rectification unit
  • 18 Reference voltage generation unit
  • 19 Output voltage detection unit
  • 22 Internal voltage generation unit
  • 21 Oscillation control unit
  • 31, 33 Limiter
  • 32 Auxiliary power supply
  • 100 Internet Reference numeral 101: Cloud server
  • 102 target object
  • Vdd voltage (input voltage)
  • CLK voltage
  • Vout output voltage
  • ⁇ 1, ⁇ 2 input control signal
  • ⁇ 3 output control signal
  • ⁇ ... control signal EN ... oscillation control signal.

Abstract

A power conversion circuit 7A comprises a frequency modulation unit 12A that generates a voltage CLK in which pulse waves are superimposed on a voltage (VH-VL), and a booster unit 13A that receives the voltage CLK from the frequency modulation unit 12A and generates a voltage Vout that is higher than the voltage CLK using a charge pump operation. The booster unit 13A has capacitors C2, C3 that are charged by the voltage CLK, and, on the basis of the pulse waves included in the voltage CLK, switches between a first operation in which a charge is stored in the capacitors C2, C3 and a second operation in which a voltage based on the charge and the voltage CLK are superimposed for output.

Description

電力変換装置及び電源装置Power converter and power supply
 本開示は、電力変換装置及び電源装置を説明する。 The present disclosure describes a power converter and a power supply.
 特許文献1は、高電圧発生回路を有する半導体集積回路装置を開示する。この回路装置は、高電圧発生回路としてチャージポンプ方式を採用する。そして、回路装置は、発振器とチャージポンプとを有する。 Patent Document 1 discloses a semiconductor integrated circuit device having a high voltage generation circuit. This circuit device adopts a charge pump system as a high voltage generation circuit. And, the circuit device has an oscillator and a charge pump.
 非特許文献1は、AC-DC変換回路を開示する。この変換回路は、入力電圧を直流電圧に変換する。また、変換回路は、直流電圧を所定の電圧まで昇圧する。変換回路は、例えば、数百メガヘルツ以上数ギガヘルツ以下の周波数を有する入力電圧を受ける。このような周波帯は、例えばRFID(Radio Frequency IDentifier)に適用される。 Non-Patent Document 1 discloses an AC-DC conversion circuit. The conversion circuit converts an input voltage into a DC voltage. Also, the conversion circuit boosts the DC voltage to a predetermined voltage. The conversion circuit receives, for example, an input voltage having a frequency of several hundred megahertz or more and several gigahertz or less. Such a frequency band is applied to, for example, an RFID (Radio Frequency IDentifier).
国際公開第2004/030191号WO 2004/030191
 電力変換装置として、スイッチング・コンバータ回路を利用するものと、昇圧回路を利用するものと、が挙げられる。スイッチング・コンバータ回路は、インダクタを用いる。しかし、当該インダクタを集積回路に適当な大きさで実装することは困難である。その一方、昇圧回路は集積回路に適当な大きさで実装することが可能である。 As a power converter, what utilizes a switching converter circuit, and what utilizes a booster circuit are mentioned. The switching converter circuit uses an inductor. However, it is difficult to mount the inductor in an integrated circuit in an appropriate size. On the other hand, the booster circuit can be implemented in an integrated circuit with an appropriate size.
 非特許文献1に開示された回路のように、高周波の交流電圧の電力が昇圧回路に入力された場合、電力の変換効率は、良好である。しかし、低周波の交流電圧の電力が昇圧回路に入力された場合には、昇圧回路の動作原理に起因して、電力変換効率が低下してしまう。 As in the circuit disclosed in Non-Patent Document 1, when power of a high frequency AC voltage is input to the booster circuit, the conversion efficiency of the power is good. However, when low frequency AC power is input to the booster circuit, the power conversion efficiency is reduced due to the operation principle of the booster circuit.
 そこで、本開示は、電力変換効率を向上させ得る電力変換装置及び電源装置を説明する。 Thus, the present disclosure describes a power conversion device and a power supply device that can improve power conversion efficiency.
 本開示の一形態に係る電力変換装置は、第1周波数を有する第1電圧を受け、第1電圧に対して第1周波数よりも高い第2周波数を有するパルス波が重畳された第2電圧を生成する周波数変調部と、周波数変調部から第2電圧を受け、チャージポンプ動作によって第2電圧よりも高い出力電圧を生成する昇圧部と、を備え、昇圧部は、第2電圧によって充電されるキャパシタを有すると共に、キャパシタに電荷を蓄積する第1動作と、電荷に基づく電圧と第2電圧とを重畳して出力する第2動作と、を第2電圧に含まれたパルス波に基づいて切り替える。 A power conversion device according to an embodiment of the present disclosure receives a first voltage having a first frequency, and generates a second voltage on which a pulse wave having a second frequency higher than the first frequency with respect to the first voltage is superimposed. And a boosting unit that receives the second voltage from the frequency modulation unit and generates an output voltage higher than the second voltage by charge pump operation, and the boosting unit is charged by the second voltage. According to the pulse wave included in the second voltage, the first operation having the capacitor and storing the charge in the capacitor and the second operation that the voltage based on the charge and the second voltage are superimposed and output are output .
 昇圧部は、第1電圧によってキャパシタを充電して電荷をキャパシタに蓄積する第1動作と、蓄積された電荷に基づく電圧と第1電圧とを重畳させて出力する第2動作と、を含む。ここで、昇圧部から出力される出力電力は、出力電圧と出力電流とにより規定される。まず、出力電圧の最大値は、第1電圧のピーク電圧値と互いに直列に接続されたキャパシタの数により決定される。次に、出力電流の大きさは、充電動作と出力動作との繰り返し数に比例する。つまり、充電動作及び出力動作を繰り返す数が多くなるほど、多くの電荷の転送が行われる。その結果、出力電流が増大する。この電力変換装置は、周波数変調部において第1周波数を有する第1電圧に対して、第1周波数よりも高い第2周波数を有するパルス波を重畳することによって、第2電圧を生成する。そして、昇圧部は、当該パルス波に基づいて、充電動作と出力動作とを切り替える。従って、第1電圧を直接に昇圧部に入力する構成よりも、充電動作及び出力動作の繰り返し数が多い。つまり、多くの電荷の転送が行われる。その結果、パルス波の周波数に応じて昇圧部から出力される出力電流は、大きくなる。従って、昇圧部から出力される平均的な出力電力が大きくなる。その結果、電力変換装置は、電力変換効率を高めることができる。 The boosting unit includes a first operation of charging the capacitor with the first voltage to accumulate charge in the capacitor, and a second operation of overlapping the voltage based on the accumulated charge and the first voltage and outputting the superimposed voltage. Here, the output power output from the booster is defined by the output voltage and the output current. First, the maximum value of the output voltage is determined by the peak voltage value of the first voltage and the number of capacitors connected in series with each other. Next, the magnitude of the output current is proportional to the number of repetitions of the charging operation and the output operation. That is, as the number of repeating the charging operation and the output operation increases, more charge transfer is performed. As a result, the output current increases. The power conversion device generates a second voltage by superimposing a pulse wave having a second frequency higher than the first frequency on a first voltage having a first frequency in the frequency modulation unit. Then, the booster switches between the charging operation and the output operation based on the pulse wave. Therefore, the number of repetitions of the charging operation and the output operation is larger than that in the configuration in which the first voltage is directly input to the booster. That is, much charge transfer is performed. As a result, the output current output from the booster is increased according to the frequency of the pulse wave. Therefore, the average output power output from the booster is increased. As a result, the power converter can improve the power conversion efficiency.
 上記の電力変換装置は、電力源から第1周波数を有する入力電圧を受け、入力電圧を整流して第1電圧を生成し、第1電圧を周波数変調部に提供する整流部をさらに備えてもよい。この構成によれば、昇圧部における電荷の転送の回数が増える。その結果、出力電流がさらに大きくなる。従って、電力変換装置は、電力変換効率をさらに高めることができる。 The above power converter further includes a rectifying unit that receives an input voltage having a first frequency from the power source, rectifies the input voltage to generate a first voltage, and provides the first voltage to a frequency modulation unit. Good. According to this configuration, the number of times of charge transfer in the booster increases. As a result, the output current is further increased. Therefore, the power converter can further enhance the power conversion efficiency.
 上記の電力変換装置は、電力源から入力電圧を受け、入力電圧の絶対値と入力閾値との大小関係に基づく入力制御信号を生成し、入力制御信号を整流部に提供する入力電圧検出部をさらに備えてもよい。整流部は、入力制御信号に基づいて入力電圧を整流して第1電圧を生成してもよい。この構成によれば、入力電圧を確実に整流することができる。 The above power converter receives an input voltage from a power source, generates an input control signal based on a magnitude relation between an absolute value of the input voltage and an input threshold value, and provides an input voltage detection unit for providing the input control signal to a rectifying unit. You may provide further. The rectifying unit may rectify the input voltage based on the input control signal to generate a first voltage. According to this configuration, the input voltage can be reliably rectified.
 上記の電力変換装置は、電力源から入力電圧を受け、入力電圧検出部を駆動するための駆動電圧を生成し、入力電圧検出部に駆動電圧を提供する内部電圧生成部をさらに備えてもよい。この構成によれば、入力電圧検出部の駆動に要する駆動電圧は、入力電圧から生成される。つまり、電力変換装置は、入力電圧検出部を駆動させるための電圧を供給するバッテリを備える必要がない。さらに、電力変換装置は、バッテリを交換する必要もない。従って、電力変換装置は、維持管理が容易である。 The above power converter may further include an internal voltage generation unit that receives an input voltage from the power source, generates a drive voltage for driving the input voltage detection unit, and provides the input voltage detection unit with the drive voltage. . According to this configuration, the drive voltage required to drive the input voltage detection unit is generated from the input voltage. That is, the power conversion device does not have to include a battery for supplying a voltage for driving the input voltage detection unit. Furthermore, the power converter does not need to replace the battery. Therefore, the power converter is easy to maintain.
 上記の電力変換装置は、入力電圧検出部から入力制御信号を受け、入力制御信号に基づいて周波数変調部におけるパルス波を生じさせる発振動作の開始及び停止を制御する発振制御信号を生成し、発振制御信号を周波数変調部に提供する発振制御部をさらに備えてもよい。この構成によれば、入力電圧の絶対値に基づいて発振動作の開始及び停止を制御することが可能になる。その結果、入力電圧の絶対値が閾値より小さい場合には、発振動作を停止することができる。従って、電力変換に提供する入力電圧の大きさは、閾値以上に限定される。その結果、電力変換装置は、所望の大きさの出力電圧を出力することができる。 The power conversion device described above receives an input control signal from an input voltage detection unit, generates an oscillation control signal for controlling start and stop of an oscillation operation for generating a pulse wave in a frequency modulation unit based on the input control signal. The apparatus may further include an oscillation control unit that provides the control signal to the frequency modulation unit. According to this configuration, it is possible to control the start and stop of the oscillation operation based on the absolute value of the input voltage. As a result, when the absolute value of the input voltage is smaller than the threshold value, the oscillation operation can be stopped. Therefore, the magnitude of the input voltage provided for power conversion is limited to the threshold or more. As a result, the power converter can output an output voltage of a desired magnitude.
 上記の電力変換装置は、昇圧部から出力電圧を受け、出力電圧の絶対値と出力閾値との大小関係に基づく出力制御信号を生成し、出力制御信号を発振制御部に提供する出力電圧検出部をさらに備え、発振制御部は、入力制御信号及び出力制御信号に基づいて、発振制御信号を生成し、周波数変調部は、発振制御信号に基づいて発振動作の開始及び停止を制御してもよい。この構成によれば、出力電圧が閾値よりも大きくなった場合に、発振動作を停止させることが可能になる。従って、電力変換装置は、出力電圧の大きさに制限を設けることができる。 The above power conversion device receives an output voltage from the booster, generates an output control signal based on a magnitude relation between an absolute value of the output voltage and an output threshold, and provides an output control signal to the oscillation control unit. The oscillation control unit may generate an oscillation control signal based on the input control signal and the output control signal, and the frequency modulation unit may control the start and stop of the oscillation operation based on the oscillation control signal. . According to this configuration, it is possible to stop the oscillation operation when the output voltage becomes larger than the threshold. Therefore, the power converter can place a limit on the magnitude of the output voltage.
 上記の電力変換装置は、昇圧部から出力電圧を受け、出力電圧の最大値を規定するリミッタ部をさらに備えてもよい。この構成によれば、電力変換装置から出力される電圧に上限を設けることができる。 The above power converter may further include a limiter unit that receives the output voltage from the booster and defines the maximum value of the output voltage. According to this configuration, an upper limit can be provided to the voltage output from the power conversion device.
 上記の電力変換装置は、整流部としての第1整流部、周波数変調部としての第1周波数変調部及び昇圧部としての第1昇圧部は、出力電圧としての第1出力電圧を生成する第1電力変換部を構成し、第1整流部とは別の第2整流部と、第1周波数変調部とは別の第2周波数変調部と、第1昇圧部とは別の第2昇圧部と、を含み第1電力変換部に対して並列に接続された第2電力変換部をさらに備え、第2整流部は、入力電圧を受け、入力電圧が整流された第3電圧を生成する動作を、入力電圧に基づいて開始し、第2周波数変調部は、第3電圧を受け、3電圧に対して第3電圧が有する第3周波数よりも高い第4周波数を有するパルス波が重畳された第4電圧を生成する動作を、第3電圧に基づいて開始し、第2昇圧部は、第2周波数変調部から第4電圧を受け、チャージポンプ動作によって第4電圧よりも高い第2出力電圧を生成してもよい。この構成によれば、電力変換装置の起動時における動作の安定性を高めることができる。 In the power converter, the first rectifier as the rectifier, the first frequency modulator as the frequency modulator, and the first booster as the booster generate the first output voltage as the output voltage. The power conversion unit is configured, and a second rectification unit different from the first rectification unit, a second frequency modulation unit different from the first frequency modulation unit, and a second booster unit different from the first booster unit , And the second power conversion unit connected in parallel to the first power conversion unit, and the second rectification unit receives the input voltage and generates the third voltage from which the input voltage is rectified. Starting based on the input voltage, the second frequency modulation unit receives the third voltage, and superimposes a pulse wave having a fourth frequency higher than the third frequency of the third voltage with respect to the third voltage. The operation of generating four voltages is started based on the third voltage, and the second booster performs the second frequency modulation. Receiving a fourth voltage from may generate high second output voltage than the fourth voltage by a charge pump operation. According to this configuration, the stability of the operation at the time of startup of the power conversion device can be enhanced.
 本開示の別の形態に係る電源装置は、第1周波数を有する入力電圧の電力を発生する電力源と、電力源に接続されて、入力電圧の電力を、直流電圧の電力に変換する上記の電力変換装置と、を備える。この電源装置は、上記の電力変換回路を有する。従って、良好な電力変換効率が得られる。その結果、電源装置は、所望の電力を供給することができる。 A power supply device according to another aspect of the present disclosure includes: a power source generating power of an input voltage having a first frequency; and the power source connected to the power source to convert power of the input voltage into power of a DC voltage. And a power converter. This power supply device has the above-described power conversion circuit. Therefore, good power conversion efficiency can be obtained. As a result, the power supply device can supply desired power.
 本開示の電力変換装置及び電源装置によれば、変換効率を向上させることができる。 According to the power conversion device and the power supply device of the present disclosure, the conversion efficiency can be improved.
図1は、第1実施形態に係る電源装置を備えたセンサ装置の構成を示す図である。FIG. 1 is a view showing the configuration of a sensor device provided with a power supply device according to the first embodiment. 図2は、第1実施形態に係る電源装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the power supply device according to the first embodiment. 図3の(a)部は整流部における回路構成の例示である。図3の(b)部は周波数変調部における回路構成の例示である。図3の(c)部は昇圧部における回路構成の例示である。Part (a) of FIG. 3 is an example of the circuit configuration in the rectifying unit. Part (b) of FIG. 3 is an example of a circuit configuration in the frequency modulation unit. Part (c) of FIG. 3 is an example of the circuit configuration in the booster. 図4の(a)部は入力電圧検出部における回路構成の例示である。図4の(b)部は出力電圧検出部における回路構成の例示である。Part (a) of FIG. 4 is an example of the circuit configuration in the input voltage detection unit. The part (b) of FIG. 4 is an example of the circuit structure in an output voltage detection part. 図5の(a)部は発振制御部における回路構成の例示である。図5の(b)部は内部電圧生成部における回路構成の例示である。Part (a) of FIG. 5 is an example of a circuit configuration in the oscillation control unit. Part (b) of FIG. 5 is an example of a circuit configuration in the internal voltage generation unit. 図6の(a)部は入力電圧の例示である。図6の(b)部は周波数変調部に入力される制御信号の例示である。図6の(c)部は整流部から出力される電圧の例示である。図6の(d)部はクロック電圧の例示である。図6の(e)部は昇圧部から出力される電流の例示である。Part (a) of FIG. 6 is an illustration of the input voltage. Part (b) of FIG. 6 is an example of the control signal input to the frequency modulation unit. Part (c) of FIG. 6 is an example of the voltage output from the rectifying unit. Part (d) of FIG. 6 is an example of the clock voltage. Part (e) of FIG. 6 is an example of the current output from the booster. 図7の(a)部は比較例に係る電源装置におけるエネルギ収支を概念的に示す図である。図7の(b)部は実施形態に係る電源装置におけるエネルギ収支を概念的に示す図である。Part (a) of FIG. 7 is a diagram conceptually showing the energy balance in the power supply apparatus according to the comparative example. Part (b) of FIG. 7 is a diagram conceptually showing the energy balance in the power supply device according to the embodiment. 図8は、計算機による実験結果を示すグラフである。FIG. 8 is a graph showing experimental results by a computer. 図9は、第2実施形態に係る電源装置の構成を示すブロック図である。FIG. 9 is a block diagram showing the configuration of the power supply device according to the second embodiment. 図10の(a)部は、第2実施形態に係る電源装置が備える周波数変調部の回路構成の例示である。図10の(b)部は第2実施形態に係る電源装置が備えるリミッタの回路構成の例示である。図10の(c)部はリミッタの特性を示すグラフである。Part (a) of FIG. 10 is an example of the circuit configuration of the frequency modulation unit provided in the power supply device according to the second embodiment. Part (b) of FIG. 10 is an example of the circuit configuration of the limiter provided in the power supply device according to the second embodiment. Part (c) of FIG. 10 is a graph showing the characteristics of the limiter. 図11は第3実施形態に係る電源装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of the power supply device according to the third embodiment. 図12の(a)部は、第3実施形態に係る電源装置が備える整流部の回路構成の例示である。図12の(b)部及び図12の(c)部は整流部の動作を説明するための回路図である。Part (a) of FIG. 12 is an example of the circuit configuration of the rectifying unit provided in the power supply device according to the third embodiment. Part (b) of FIG. 12 and part (c) of FIG. 12 are circuit diagrams for explaining the operation of the rectifying unit. 図13は第4実施形態に係る電源装置の構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of the power supply device according to the fourth embodiment. 図14は変形例1に係る電源装置の構成を示すブロック図である。FIG. 14 is a block diagram showing the configuration of the power supply apparatus according to the first modification. 図15の(a)部は変形例1に係る電源装置が備える周波数変調部の回路構成の例示である。図15の(b)部は変形例1に係る電源装置が備える昇圧部の回路構成の例示である。Part (a) of FIG. 15 is an example of the circuit configuration of the frequency modulation unit provided in the power supply device according to the first modification. Part (b) of FIG. 15 is an example of the circuit configuration of the booster provided in the power supply apparatus according to the first modification. 図16は変形例2に係る電源装置の構成を示すブロック図である。FIG. 16 is a block diagram showing the configuration of the power supply device according to the second modification. 図17は変形例3に係る電源装置の構成を示すブロック図である。FIG. 17 is a block diagram showing a configuration of a power supply device according to the third modification. 図18は変形例4に係る電源装置が備える昇圧部の回路構成の例示である。FIG. 18 is an example of a circuit configuration of a booster provided in a power supply device according to the fourth modification. 図19は比較例に係る電源装置の構成を示すブロック図である。FIG. 19 is a block diagram showing a configuration of a power supply device according to a comparative example.
 以下、添付図面を参照しながら本開示の電力変換装置及び電源装置を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, the power conversion device and the power supply device of the present disclosure will be described in detail with reference to the attached drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
<第1実施形態>
 農業、工業、商業のさらなる効率化、高齢化及び人口減少などの社会の変動に対応するために、IoT(Internet of Things)に注目が集まっている。IoTは、あらゆる装置にセンサと情報通信回路とを搭載し自律的に情報収集を行う技術である。IoTは、室内及び室外を問わず、温度、圧力、振動、化学物質、交通量などの環境変数である測定データを自律的にセンサで取得する。そして、IoTは、それらの測定データをインターネットを介してクラウドサーバに転送する。転送されたデータは、ビッグデータとして解析がなされる。解析の結果、異常が検出された場合、或いは、対応が必要な状態となった場合に、監視対象である装置にフィードバックを返す。このように、IoTでは、装置同士が基本的には人間を介さずに情報収集と、情報伝達と、フィードバックと、を行う。測定端末は、環境変数を測定し、情報をインターネットに送信する。IoT用の集積回路システムは、この端末における重要な要素である。測定端末は、電力が供給されない場所でも自律的にIoT端末としての機能を発揮する。従って、環境エネルギを集積回路システムの電力として利用する、いわゆるエネルギハーベスティング技術が検討されている。特に、エネルギハーベスティング技術では、太陽光、熱、振動、電波などから電力を取り出す個別の回路システムの研究が盛んである。
First Embodiment
Attention is focused on the Internet of Things (IoT) to cope with social changes such as further efficiency of agriculture, industry, and commerce, aging, and population decline. IoT is a technology that autonomously collects information by mounting a sensor and an information communication circuit in every device. The IoT autonomously acquires measurement data, which is an environmental variable such as temperature, pressure, vibration, chemical substance, and traffic, indoors and outdoors, using a sensor. And IoT transfers those measurement data to the cloud server via the Internet. The transferred data is analyzed as big data. As a result of analysis, when an abnormality is detected or a state in which a response is necessary is made, feedback is returned to the device to be monitored. Thus, in the IoT, devices basically perform information collection, information transmission, and feedback without human intervention. The measuring terminal measures environmental variables and sends the information to the Internet. Integrated circuit system for IoT is an important element in this terminal. The measurement terminal autonomously exerts the function as an IoT terminal even in a place where power is not supplied. Therefore, a so-called energy harvesting technology is being considered that uses environmental energy as power for integrated circuit systems. In particular, in energy harvesting technology, research on individual circuit systems for extracting electric power from sunlight, heat, vibration, radio waves, etc. is active.
 図1に示されるように、電源装置1Aは、センサ装置2に用いられる。センサ装置2は、IoTを構成する端末装置である。 As shown in FIG. 1, the power supply device 1A is used for the sensor device 2. The sensor device 2 is a terminal device configuring an IoT.
 センサ装置2は、アンテナ3を介してインターネット100と接続されている。センサ装置2は、インターネット100を介してクラウドサーバ101といった別のシステムへ収集したデータを送信する。また、センサ装置2は、インターネット100を介して計測用プログラムといった種々のデータを受信する。 The sensor device 2 is connected to the Internet 100 via the antenna 3. The sensor device 2 transmits the collected data to another system such as the cloud server 101 via the Internet 100. The sensor device 2 also receives various data such as a measurement program via the Internet 100.
 センサ装置2は、電源装置1Aと、測定装置4と、を有する。測定装置4は、対象物102の温度、湿度或いは振動周波数といった種々のデータを収集する。測定装置4は、当該データを送信する。また、測定装置4は、外部からデータを受信する。例えば、測定装置4は、センサ4aと、デジタル回路4bと、メモリ回路4cと、通信回路4dと、を有する。 The sensor device 2 includes a power supply device 1A and a measurement device 4. The measuring device 4 collects various data such as the temperature, humidity or vibration frequency of the object 102. The measuring device 4 transmits the data. The measuring device 4 also receives data from the outside. For example, the measuring device 4 includes a sensor 4a, a digital circuit 4b, a memory circuit 4c, and a communication circuit 4d.
 電源装置1Aは、測定装置4を駆動するための電力を供給する。つまり、電源装置1Aは、測定装置4を構成するセンサ4a、デジタル回路4b、メモリ回路4c及び通信回路4dの動作に要する電力を供給する。ここで、電源装置1Aは、外部から供給されるエネルギ(例えば振動エネルギ)を変換して電力を得る。つまり、電源装置1Aは、いわゆるバッテリといった予め電力を蓄えた装置から電力の提供を必要としない。従って、対象物102から振動エネルギを受けるとき、電源装置1Aは、測定装置4への電力供給を継続する。エネルギ源とする振動は、正弦波振動でもよいし、ランダム振動でもよい。つまり、エネルギ源とする振動の種別は問われない。従って、センサ装置2は、対象物102に設置した後、対象物102の振動エネルギを利用して駆動し続ける。すなわち、センサ装置2は、バッテリ交換を行う必要がない。なお、対象物102は、対象物102aと、対象物102aから独立した対象物102bと、を備えている。対象物102aは振動発電素子6にエネルギを供給してもよい。対象物102bは、センサ4aから計測されてもよい。 The power supply device 1A supplies power for driving the measuring device 4. That is, the power supply device 1A supplies the power required for the operation of the sensor 4a, the digital circuit 4b, the memory circuit 4c, and the communication circuit 4d that constitute the measuring device 4. Here, the power supply device 1A converts energy (for example, vibration energy) supplied from the outside to obtain power. That is, the power supply device 1A does not require the provision of power from a device such as a so-called battery that has stored power in advance. Therefore, when vibration energy is received from the object 102, the power supply device 1A continues the power supply to the measuring device 4. The vibration used as the energy source may be sine wave vibration or random vibration. That is, the type of vibration used as the energy source is not limited. Therefore, after being installed on the object 102, the sensor device 2 continues to drive using the vibration energy of the object 102. That is, the sensor device 2 does not have to perform battery replacement. The object 102 includes an object 102a and an object 102b independent of the object 102a. The object 102 a may supply energy to the vibration power generation element 6. The object 102b may be measured from the sensor 4a.
 電源装置1Aは、振動発電素子6(電力源)と、電力変換回路7A(電力変換装置)と、を有する。振動発電素子6は、対象物102の振動エネルギを電力に変換する。この電力は、交流である。そして、電力変換回路7Aは、交流電流を測定装置4の駆動に利用可能な直流電流に変換する。 The power supply device 1A includes a vibration power generation element 6 (power source) and a power conversion circuit 7A (power conversion device). The vibration power generation element 6 converts vibration energy of the object 102 into electric power. This power is alternating current. Then, the power conversion circuit 7A converts the alternating current into a direct current usable for driving the measuring device 4.
 振動発電素子6は、対象物102の振動を受け入れて、交流電力を発生させる。例えば、振動発電素子6は、圧電現象を利用する。振動発電素子6は、片持ち梁といった振動子を有する。当該振動子の共振周波数は、対象物102の振動周波数に調整されている。そして、振動発電素子6は、振動子が実際に振動する周波数に応じた交流電力を発生する。従って、振動発電素子6から出力される交流電力は、振動している振動子の周波数に応じる。また、振動発電素子6から出力される交流電力の周波数は、対象物102の振動周波数に対応する。例えば、交流電力の周波数は、数百ヘルツ以上数メガヘルツ以下である。 The vibration power generation element 6 receives the vibration of the object 102 and generates AC power. For example, the vibration power generation element 6 utilizes a piezoelectric phenomenon. The vibration power generation element 6 has a vibrator such as a cantilever. The resonance frequency of the vibrator is adjusted to the vibration frequency of the object 102. Then, the vibration power generation element 6 generates AC power according to the frequency at which the vibrator actually vibrates. Therefore, the AC power output from the vibration power generation element 6 corresponds to the frequency of the vibrating vibrator. Further, the frequency of the AC power output from the vibration power generation element 6 corresponds to the vibration frequency of the object 102. For example, the frequency of AC power is several hundred hertz or more and several megahertz or less.
 電力変換回路7Aは、振動発電素子6に対して電気的に接続される。また、電力変換回路7Aは、測定装置4に対して電気的に接続される。電力変換回路7Aは、上述したように、振動発電素子6から出力される交流電力を、測定装置4の仕様に応じた直流電力に変換する。つまり、電力変換回路7Aは、直流電圧を出力する。 Power conversion circuit 7A is electrically connected to vibration generating element 6. Further, the power conversion circuit 7A is electrically connected to the measuring device 4. As described above, the power conversion circuit 7A converts the AC power output from the vibration power generation element 6 into DC power according to the specification of the measuring device 4. That is, the power conversion circuit 7A outputs a DC voltage.
 以下、電力変換回路7Aについて詳細に説明する。 The power conversion circuit 7A will be described in detail below.
 電力変換回路7Aは、機能的には、入力電圧検出部11と、周波数変調部12Aと、昇圧部13Aと、を有する。入力電圧検出部11は、入力電圧の大きさを検出する。周波数変調部12Aは、交流電流の周波数を低い値から高い値へ変換する。昇圧部13Aは、集積回路である測定装置4に直流電力を提供する。電力変換回路7Aは、入力交流電力を周波数変調して得られた信号を用いて、昇圧回路を駆動する。この構成によれば、振動発電素子が出力する交流電力の一周期において、複数回の電荷転送が行われる。従って、平均出力電力が増加する。さらに、無効電力が低減する。 The power conversion circuit 7A functionally includes an input voltage detection unit 11, a frequency modulation unit 12A, and a boosting unit 13A. The input voltage detection unit 11 detects the magnitude of the input voltage. The frequency modulation unit 12A converts the frequency of the alternating current from a low value to a high value. The booster 13A provides DC power to the measuring device 4 which is an integrated circuit. The power conversion circuit 7A drives a booster circuit using a signal obtained by frequency-modulating input AC power. According to this configuration, charge transfer is performed a plurality of times in one cycle of AC power output from the vibration power generation element. Thus, the average output power is increased. Furthermore, reactive power is reduced.
 図2に示されるように、電力変換回路7Aは、入力7a、7bと、出力7cと、を有する。入力7aは、振動発電素子6に接続されている。入力7aは、電圧Vdd(入力電圧、図6の(a)部参照)を受ける。入力7bは、振動発電素子6に接続されている。入力7bは、電圧Vssを受ける。出力7cは、測定装置4に接続されている。出力7cは、電圧Vout(第1出力電圧)を提供する。 As shown in FIG. 2, the power conversion circuit 7A has inputs 7a and 7b and an output 7c. The input 7 a is connected to the vibration power generation element 6. The input 7a receives a voltage Vdd (input voltage, see part (a) of FIG. 6). The input 7 b is connected to the vibration power generation element 6. The input 7b receives the voltage Vss. The output 7 c is connected to the measuring device 4. The output 7c provides a voltage Vout (first output voltage).
 電力変換回路7Aは、電力変換部14Aと、制御部16Aと、を有する。電力変換部14Aは、振動発電素子6から交流電力を受け入れる。電力変換部14Aは、交流電力を直流電力に変換する。電力変換部14Aは、測定装置4へ直流電力を出力する。制御部16Aは、電力変換部14Aが受け入れる交流電力と、電力変換部14Aが出力する直流電力と、を利用して、電力変換部14Aの動作を制御する。 The power conversion circuit 7A includes a power conversion unit 14A and a control unit 16A. Power conversion unit 14 </ b> A receives AC power from vibration power generation element 6. The power conversion unit 14A converts alternating current power into direct current power. The power conversion unit 14A outputs DC power to the measuring device 4. Control unit 16A controls the operation of power conversion unit 14A using AC power received by power conversion unit 14A and DC power output from power conversion unit 14A.
 電力変換部14Aは、入力14a、14bと、出力14cと、を有する。入力14aは、電力変換回路7Aの入力7aに接続されている。入力14aは、電圧Vddを受ける。入力14bは、電力変換回路7Aの入力7bに接続されている。入力14bは、電圧Vssを受ける。出力14cは、電力変換回路7Aの出力7cに接続されている。出力14cは、電圧Voutを提供する。 The power converter 14A has inputs 14a and 14b and an output 14c. The input 14a is connected to the input 7a of the power conversion circuit 7A. The input 14a receives a voltage Vdd. The input 14b is connected to the input 7b of the power conversion circuit 7A. The input 14b receives the voltage Vss. The output 14c is connected to the output 7c of the power conversion circuit 7A. The output 14c provides a voltage Vout.
 電力変換部14Aは、入力14d、14eを有する。入力14d、14eは、制御部16Aが発生する入力制御信号φ1、入力制御信号φ2及び発振制御信号ENを受ける。詳細は後述するが、入力14dは、入力制御信号φ1及び入力制御信号φ2を受ける。入力14eは、発振制御信号ENを受ける。 The power converter 14A has inputs 14d and 14e. The inputs 14d and 14e receive an input control signal φ1 generated by the control unit 16A, an input control signal φ2 and an oscillation control signal EN. Although the details will be described later, the input 14d receives an input control signal φ1 and an input control signal φ2. The input 14e receives an oscillation control signal EN.
 電力変換部14Aは、整流部17A(第1整流部)と、周波数変調部12A(第1周波数変調部)と、昇圧部13A(第1昇圧部)と、を有する。整流部17Aは、電圧Vddを整流する。周波数変調部12Aは、整流部17Aから出力された電圧VH、VLに基づいて、クロック信号が重畳された電圧CLKを生成する。昇圧部13Aは、クロック信号が重畳された電圧CLKを昇圧する。 The power conversion unit 14A includes a rectification unit 17A (first rectification unit), a frequency modulation unit 12A (first frequency modulation unit), and a boosting unit 13A (first boosting unit). The rectifying unit 17A rectifies the voltage Vdd. The frequency modulation unit 12A generates a voltage CLK on which the clock signal is superimposed, based on the voltages VH and VL output from the rectification unit 17A. The boosting unit 13A boosts the voltage CLK on which the clock signal is superimposed.
 整流部17Aは、入力17a、17b、17cと、出力17d、17eと、を有する。入力17aは、電力変換部14Aの入力14aに接続される。入力17aは、電圧Vddを受ける。入力17bは、電力変換部14Aの入力14bに接続される。入力17bは、電圧Vssを受ける。入力17cは、電力変換部14Aの入力14dに接続される。入力17cは、入力制御信号φ1、φ2を受ける。出力17dは、周波数変調部12Aに接続される。出力17dは、電圧VHを出力する。出力17eは、周波数変調部12Aに接続される。出力17eは、電圧VLを出力する。 The rectifying unit 17A has inputs 17a, 17b and 17c, and outputs 17d and 17e. The input 17a is connected to the input 14a of the power conversion unit 14A. The input 17a receives the voltage Vdd. The input 17b is connected to the input 14b of the power conversion unit 14A. The input 17b receives the voltage Vss. The input 17c is connected to the input 14d of the power conversion unit 14A. The input 17c receives input control signals φ1 and φ2. The output 17d is connected to the frequency modulation unit 12A. The output 17 d outputs a voltage VH. The output 17e is connected to the frequency modulation unit 12A. The output 17e outputs a voltage VL.
 図3の(a)部は、整流部17Aの回路構成を示す。整流部17Aは、スイッチS1、S2、S3、S4と、キャパシタC1と、を有する。スイッチS1、S2、S3、S4は、例えば、MOSFET(metal-oxide-semiconductor field-effect transistor)である。入力17aは、スイッチS1、S2にそれぞれ接続される。入力17bは、スイッチS3、S4にそれぞれ接続される。スイッチS1は、スイッチS3に直列に接続される。スイッチS2は、スイッチS4に直列に接続される。そして、キャパシタC1の一端は、スイッチS1、S3の間に接続される。キャパシタC1の他端はスイッチS2、S4との間に接続される。 Part (a) of FIG. 3 shows a circuit configuration of the rectifying unit 17A. The rectifying unit 17A includes switches S1, S2, S3, and S4, and a capacitor C1. The switches S1, S2, S3 and S4 are, for example, MOSFETs (metal-oxide-semiconductor field-effect transistors). The input 17a is connected to the switches S1 and S2, respectively. The input 17b is connected to the switches S3 and S4, respectively. The switch S1 is connected in series to the switch S3. The switch S2 is connected in series to the switch S4. And one end of the capacitor C1 is connected between the switches S1 and S3. The other end of the capacitor C1 is connected between the switches S2 and S4.
 例えば、電圧Vddが正であるとき、入力制御信号φ1はON(1)である。また、入力制御信号φ2はOFF(0)である。この場合、整流部17Aは、出力17dに入力17aを接続する。整流部17Aは、出力17eに入力17bを接続する。図6の(c)部に示されるように、出力17dには電圧Vddが提供される(Vdd=VH)。出力17eには電圧Vssが提供される(Vss=VL)。 For example, when the voltage Vdd is positive, the input control signal φ1 is ON (1). Further, the input control signal φ2 is OFF (0). In this case, the rectifying unit 17A connects the input 17a to the output 17d. The rectifying unit 17A connects the input 17b to the output 17e. As shown in part (c) of FIG. 6, a voltage Vdd is provided at the output 17d (Vdd = VH). The voltage Vss is provided to the output 17e (Vss = VL).
 逆に、電圧Vddが負であるとき、入力制御信号φ1はOFF(0)である。入力制御信号φ2はON(1)である。この場合、整流部17Aは、出力17dに入力17bを接続する。整流部17Aは、出力17eに入力17aを接続する。図6の(c)部に示されるように、出力17dには電圧Vssが提供される(Vss=VH)。出力17eには電圧Vddが提供される(Vdd=VL)。 Conversely, when the voltage Vdd is negative, the input control signal φ1 is OFF (0). The input control signal φ2 is ON (1). In this case, the rectifying unit 17A connects the input 17b to the output 17d. The rectifying unit 17A connects the input 17a to the output 17e. As shown in part (c) of FIG. 6, the voltage Vss is provided to the output 17d (Vss = VH). The output Vdd is provided at the output 17e (Vdd = VL).
 図2に示されるように、周波数変調部12Aは、入力12a、12b、12cと、出力12dと、を有する。入力12aは、整流部17Aの出力17dに接続される。入力12aは、電圧VHを受ける。入力12bは、整流部17Aの出力17eに接続される。入力12bは、電圧VLを受ける。入力12cは、電力変換部14Aの入力14eに接続される。入力12cは、発振制御信号ENを受ける。出力12dは、昇圧部13Aに接続される。出力12dは、電圧CLKを出力する。電圧CLKは、クロック波形が重畳された波形を有する(図6の(d)部参照)。クロック波形は、電圧VHを包絡線として、ON-OFFを繰り返す。 As shown in FIG. 2, the frequency modulation unit 12A has inputs 12a, 12b, 12c and an output 12d. The input 12a is connected to the output 17d of the rectifying unit 17A. Input 12a receives voltage VH. The input 12b is connected to the output 17e of the rectifying unit 17A. Input 12 b receives voltage VL. The input 12c is connected to the input 14e of the power conversion unit 14A. The input 12c receives an oscillation control signal EN. The output 12d is connected to the booster 13A. The output 12 d outputs a voltage CLK. The voltage CLK has a waveform in which a clock waveform is superimposed (see part (d) of FIG. 6). The clock waveform repeats ON-OFF with the voltage VH as an envelope.
 図3の(b)部は、周波数変調部12Aの回路構成を示す。つまり、周波数変調部12Aは、いわゆるリングオシレータと呼ばれる回路構成を有する。周波数変調部12Aは、1個のNAND回路G1と、偶数個のインバータ回路G2、G3と、を有する。インバータ回路G2は、インバータ回路G3に直列に接続される。NAND回路G1は、初段のインバータ回路G2に接続される。NAND回路G1は、発振制御信号ENに基づいて、発振動作の開始と発振動作の停止とを制御する。例えば、発振制御信号ENがON(1)であるとき、周波数変調部12Aは、発振動作を開始する。逆に、発振制御信号ENがOFF(0)であるとき、周波数変調部12Aは、発振動作を停止する。インバータ回路G2、G3の数は、所望のクロック周波数(第2周波数)に基づいて決定される。クロック周波数は、例えば、数メガヘルツ以上であってもよい。クロック周波数は、数ギガヘルツより大きくてもよい。換言すると、クロック周波数は、振動発電素子6が出力する電圧Vddの周波数より大きければよい。それぞれのインバータ回路G2、G3には、駆動電圧として、入力12aが受けた電圧VHと、入力12bが受けた電圧VLとが入力される。 Part (b) of FIG. 3 shows a circuit configuration of the frequency modulation unit 12A. That is, the frequency modulation unit 12A has a circuit configuration called a so-called ring oscillator. The frequency modulation unit 12A includes one NAND circuit G1 and an even number of inverter circuits G2 and G3. The inverter circuit G2 is connected in series to the inverter circuit G3. The NAND circuit G1 is connected to the inverter circuit G2 of the first stage. The NAND circuit G1 controls the start of the oscillation operation and the stop of the oscillation operation based on the oscillation control signal EN. For example, when the oscillation control signal EN is ON (1), the frequency modulation unit 12A starts the oscillation operation. Conversely, when the oscillation control signal EN is OFF (0), the frequency modulation unit 12A stops the oscillation operation. The number of inverter circuits G2 and G3 is determined based on the desired clock frequency (second frequency). The clock frequency may be, for example, several megahertz or more. The clock frequency may be greater than several gigahertz. In other words, the clock frequency may be larger than the frequency of the voltage Vdd output from the vibration generating element 6. The voltage VH received by the input 12a and the voltage VL received by the input 12b are input to the respective inverter circuits G2 and G3 as drive voltages.
 ここで、本実施形態でいう第1電圧とは、周波数変調部12Aが受け入れる電圧をいう。また、第1電圧とは、電圧CLKの生成に用いられる電圧である。例えば、図3の(b)部に示される周波数変調部12Aは、電圧VH、VLを受け入れる。周波数変調部12Aは、インバータ回路G2、G3に電圧VH、VLを入力する。そして、電圧VH、VLは、インバータ回路G2、G3の駆動電圧である。当該駆動電圧にはクロック電圧が重畳される。従って、本実施形態においては、第1電圧とは、電圧(VH-VL)である。 Here, the first voltage in the present embodiment means a voltage received by the frequency modulation unit 12A. The first voltage is a voltage used to generate the voltage CLK. For example, the frequency modulation unit 12A shown in part (b) of FIG. 3 receives the voltages VH and VL. The frequency modulation unit 12A inputs the voltages VH and VL to the inverter circuits G2 and G3. The voltages VH and VL are drive voltages of the inverter circuits G2 and G3. The clock voltage is superimposed on the drive voltage. Therefore, in the present embodiment, the first voltage is a voltage (VH−VL).
 なお、第1電圧の態様は、電圧(VH-VL)に限定されない。第1電圧の態様は、インバータ回路G2、G3に入力される電圧によって種々の態様を取り得る。例えば、入力12aに電圧VHが入力されると共に、入力12bに電圧Vss(GND)が入力されてもよい。この場合には、第1電圧は、電圧VHである。また、入力12aに電圧VLが入力されると共に、入力12bに電圧Vss(GND)が入力されてもよい。この場合には、第1電圧は、電圧VLである。さらに、電力変換部14Aが整流部17Aを備えない場合には、入力12aに電圧Vddが入力されると共に、入力12bに電圧Vssが入力されてもよい。この場合には、第1電圧は、電圧(Vdd-Vss)である。 Note that the aspect of the first voltage is not limited to the voltage (VH-VL). The aspect of the first voltage can take various aspects depending on the voltage input to the inverter circuits G2 and G3. For example, the voltage VH may be input to the input 12a, and the voltage Vss (GND) may be input to the input 12b. In this case, the first voltage is the voltage VH. Also, the voltage VL may be input to the input 12a, and the voltage Vss (GND) may be input to the input 12b. In this case, the first voltage is the voltage VL. Furthermore, when the power conversion unit 14A does not include the rectifying unit 17A, the voltage Vdd may be input to the input 12a and the voltage Vss may be input to the input 12b. In this case, the first voltage is a voltage (Vdd-Vss).
 本実施形態でいう第1周波数及び第3周波数は、振動発電素子6から出力される電圧Vddの周波数と定義してもよい。また、上述したように電圧Vddの周波数は、振動している振動子の周波数であり、振動子の周波数は、対象物102が発生させる振動の周波数である。従って、第1周波数は、対象物102から提供される振動の周波数としてもよい。例えば、機械的な振動の周波数は、概ね数ヘルツ以上数キロヘルツ以下である。その結果、第1周波数の範囲も概ね数ヘルツ以上数キロヘルツ以下である。 The first frequency and the third frequency in the present embodiment may be defined as the frequency of the voltage Vdd output from the vibration power generation element 6. Further, as described above, the frequency of the voltage Vdd is the frequency of the vibrating vibrator, and the frequency of the vibrator is the frequency of the vibration generated by the object 102. Therefore, the first frequency may be the frequency of the vibration provided from the object 102. For example, the frequency of mechanical vibration is approximately several hertz or more and several kilohertz or less. As a result, the range of the first frequency is also approximately several hertz or more and several kilohertz or less.
 本実施形態でいう第2周波数及び第4周波数は、リングオシレータ回路が発生させるクロック信号の周波数である。この第2周波数は、第1周波数よりも大きければよい。例えば、第1周波数の範囲が概ね数ヘルツ以上数キロヘルツ以下である場合には、第2周波数は、数メガヘルツより大きくてもよい。また、第2周波数は、数ギガヘルツよりも大きくてもよい。 The second frequency and the fourth frequency in the present embodiment are the frequency of the clock signal generated by the ring oscillator circuit. The second frequency may be greater than the first frequency. For example, if the range of the first frequency is approximately several hertz or more and several kilohertz or less, the second frequency may be greater than several megahertz. Also, the second frequency may be greater than several gigahertz.
 図2に示されるように、昇圧部13Aは、入力13aと、出力13bと、を有する。入力13aは、周波数変調部12Aの出力12dに接続される。入力13aは、電圧CLKを受ける。出力13bは、測定装置4に接続される。出力13bは、電圧Voutを出力する。 As shown in FIG. 2, the booster 13A has an input 13a and an output 13b. The input 13a is connected to the output 12d of the frequency modulation unit 12A. Input 13a receives voltage CLK. The output 13 b is connected to the measuring device 4. The output 13 b outputs a voltage Vout.
 図3の(c)部は、昇圧部13Aの回路構成を示す。昇圧部13Aは、複数のダイオードD1、D2、D3と、複数のキャパシタC2、C3、C4と、を有する。昇圧部13Aは、キャパシタC2、C3に電荷をチャージする動作と、チャージされた電荷に起因する電圧を入力される電圧CLKに対して重畳する動作と、重畳された電圧CLKを出力する動作と、を繰り返す。この繰り返しは、電圧CLKが含むクロック周波数に基づいて制御される。つまり、電圧CLKの周波数が高いほど、チャージする動作と、重畳する動作と、出力する動作と、が多く繰り返される。その結果、多くの電荷が転送される。換言すると、昇圧部13Aは、クロック周波数に比例した電力を発生する。具体的には、電荷の転送回数に応じて、電流値が増加する。その結果、電力が増加する。そして、ダイオードD3から出力される電圧(第2電圧、図6の(d)部参照)は、キャパシタC4によって安定化される。その結果、実質的な直流電圧として電圧Voutが出力される。 Part (c) of FIG. 3 shows the circuit configuration of the booster 13A. The booster 13A includes a plurality of diodes D1, D2, and D3 and a plurality of capacitors C2, C3, and C4. The boosting unit 13A performs an operation of charging the capacitors C2 and C3, an operation of superimposing a voltage derived from the charged charge on the voltage CLK to be input, and an operation of outputting the superimposed voltage CLK. repeat. This repetition is controlled based on the clock frequency included in voltage CLK. That is, the higher the frequency of the voltage CLK, the more the operation of charging, the operation of overlapping, and the operation of outputting are repeated. As a result, a large amount of charge is transferred. In other words, the booster 13A generates power proportional to the clock frequency. Specifically, the current value increases according to the number of times of charge transfer. As a result, power is increased. Then, the voltage (second voltage, see part (d) in FIG. 6) output from the diode D3 is stabilized by the capacitor C4. As a result, the voltage Vout is output as a substantial DC voltage.
 ここで、本実施形態でいう第2電圧は、上記のようにダイオードD3から出力された電圧である。そして、第2電圧は、実質的に交流の電圧であってもよい。また、第2電圧は、キャパシタC4によって安定化された電圧である。第2電圧は、実質的に直流の電圧であってもよい。 Here, the second voltage in the present embodiment is a voltage output from the diode D3 as described above. The second voltage may be substantially an alternating voltage. The second voltage is a voltage stabilized by the capacitor C4. The second voltage may be a substantially direct voltage.
 上述したとおり、整流部17AにおけるスイッチS1、S2、S3、S4のオンオフ制御は、入力制御信号φ1、φ2に基づく。また、周波数変調部12Aにおける発振動作のオンオフ制御は、発振制御信号ENに基づく。 As described above, the on / off control of the switches S1, S2, S3 and S4 in the rectifying unit 17A is based on the input control signals φ1 and φ2. Further, on / off control of the oscillation operation in the frequency modulation unit 12A is based on the oscillation control signal EN.
 図2に示されるように、制御部16Aは、入力16a、16b、16cと、出力16d、16eと、を有する。入力16aは、電力変換回路7Aの入力7aに接続される。入力16aは、電圧Vddを受ける。入力16bは、電力変換部14Aの出力14cに接続される。入力16bは、電圧Voutを受ける。入力16cは、内部電圧生成部22(後述)に接続される。入力16cは、電圧+Vp、-Vpを受ける。出力16dは、電力変換部14Aの入力14dに接続される。出力16dは、入力制御信号φ1、φ2を出力する。出力16eは、電力変換部14Aの入力14eに接続される。出力16eは、発振制御信号ENを出力する。 As shown in FIG. 2, the control unit 16A has inputs 16a, 16b and 16c, and outputs 16d and 16e. The input 16a is connected to the input 7a of the power conversion circuit 7A. Input 16a receives voltage Vdd. The input 16b is connected to the output 14c of the power conversion unit 14A. The input 16b receives the voltage Vout. The input 16c is connected to the internal voltage generation unit 22 (described later). The input 16c receives the voltages + Vp and -Vp. The output 16d is connected to the input 14d of the power conversion unit 14A. The output 16d outputs input control signals φ1 and φ2. The output 16e is connected to the input 14e of the power conversion unit 14A. The output 16e outputs an oscillation control signal EN.
 制御部16Aは、参照電圧発生部18と、入力電圧検出部11と、出力電圧検出部19と、発振制御部21と、を有する。 The control unit 16A includes a reference voltage generation unit 18, an input voltage detection unit 11, an output voltage detection unit 19, and an oscillation control unit 21.
 参照電圧発生部18は、入力電圧検出部11及び出力電圧検出部19に参照電圧を提供する。具体的には、参照電圧発生部18は、出力18aを介して入力電圧検出部11に参照電圧+Vref、-Vrefを提供する。また、参照電圧発生部18は、出力18bを介して出力電圧検出部19に参照電圧+Vmaxを提供する。 The reference voltage generator 18 provides a reference voltage to the input voltage detector 11 and the output voltage detector 19. Specifically, the reference voltage generation unit 18 provides the input voltage detection unit 11 with the reference voltages + Vref and -Vref via the output 18a. Further, the reference voltage generation unit 18 provides the output voltage detection unit 19 with the reference voltage + Vmax via the output 18 b.
 入力電圧検出部11は、電圧Vddに基づいて整流部17AのスイッチS1、S2、S3、S4のオンオフ動作を制御する。入力電圧検出部11は、電圧Vddが閾値(参照電圧(+Vref)及び参照電圧(-Vref))より大きくなったときに、周波数変調部12Aの発振動作を開始させる。参照電圧(+Vref)及び参照電圧(-Vref)は、本実施形態でいう入力閾値である。入力閾値は、例えば、電力変換回路7Aに要求される電圧Vout(或いは電力)に基づいて設定してよい。つまり、電圧Vddの振幅が小さい場合には、変換後の電圧Vout(或いは電力)が要求値を満たさないことがあり得る。従って、変換後の電圧Vout(或いは電力)が要求値を満たす電圧Vddの最小値を入力閾値としてよい。 The input voltage detection unit 11 controls the on / off operation of the switches S1, S2, S3, and S4 of the rectification unit 17A based on the voltage Vdd. The input voltage detection unit 11 starts the oscillation operation of the frequency modulation unit 12A when the voltage Vdd becomes larger than the threshold (the reference voltage (+ Vref) and the reference voltage (−Vref)). The reference voltage (+ Vref) and the reference voltage (-Vref) are input threshold values in the present embodiment. The input threshold may be set based on, for example, the voltage Vout (or power) required of the power conversion circuit 7A. That is, when the amplitude of the voltage Vdd is small, the converted voltage Vout (or power) may not satisfy the required value. Therefore, the minimum value of the voltage Vdd in which the converted voltage Vout (or power) satisfies the required value may be used as the input threshold.
 入力電圧検出部11は、入力11a、11b、11cと、出力11d、11eと、を有する。入力11aは、制御部16Aの入力16aに接続される。入力11aは、電圧Vddを受ける。入力11bは、接地GNDに接続される。入力11cは、参照電圧発生部18の出力18aに接続される。入力11cは、参照電圧+Vref、-Vrefを受ける。出力11dは、制御部16Aの出力16dに接続される。出力11dは、入力制御信号φ1、φ2を出力する。出力11eは、発振制御部21に接続される。出力11eは、入力制御信号φ1、φ2を出力する。 The input voltage detection unit 11 has inputs 11a, 11b and 11c, and outputs 11d and 11e. The input 11a is connected to the input 16a of the control unit 16A. The input 11a receives the voltage Vdd. The input 11b is connected to the ground GND. The input 11 c is connected to the output 18 a of the reference voltage generator 18. Input 11 c receives reference voltages + Vref and −Vref. The output 11d is connected to the output 16d of the control unit 16A. The output 11 d outputs input control signals φ1 and φ2. The output 11 e is connected to the oscillation control unit 21. The output 11e outputs input control signals φ1 and φ2.
 図4の(a)部は、入力電圧検出部11の回路構成を示す。入力電圧検出部11は、2個のオペアンプG4、G5を有する。オペアンプG4の反転入力には、基準電圧+Vrefが提供される。オペアンプG4の非反転入力には電圧Vddが提供される。オペアンプG5の反転入力には、電圧Vddが提供される。オペアンプG5の非反転入力には基準電圧-Vrefが提供される。 Part (a) of FIG. 4 shows a circuit configuration of the input voltage detection unit 11. The input voltage detection unit 11 has two operational amplifiers G4 and G5. The reference voltage + Vref is provided to the inverting input of the operational amplifier G4. The voltage Vdd is provided to the non-inverting input of the operational amplifier G4. The voltage Vdd is provided to the inverting input of the operational amplifier G5. A reference voltage -Vref is provided to the non-inverting input of the operational amplifier G5.
 入力電圧検出部11は、電圧Vddの大きさに応じた入力制御信号φ1、φ2を発生する。具体的には、入力電圧検出部11は、以下のように動作する(図6の(a)部及び図6の(b)部参照)。
  電圧Vdd≧参照電圧(+Vref)であるとき、入力制御信号φ1=1。
  電圧Vdd<参照電圧(+Vref)であるとき、入力制御信号φ1=0。
  電圧Vdd≧参照電圧(-Vref)であるとき、入力制御信号φ2=0。
  電圧Vdd<参照電圧(-Vref)であるとき、入力制御信号φ2=1。
The input voltage detection unit 11 generates input control signals φ1 and φ2 according to the magnitude of the voltage Vdd. Specifically, the input voltage detection unit 11 operates as follows (see (a) of FIG. 6 and (b) of FIG. 6).
When voltage Vdd ≧ reference voltage (+ Vref), input control signal φ1 = 1.
When voltage Vdd <reference voltage (+ Vref), input control signal φ1 = 0.
When voltage Vdd ≧ reference voltage (−Vref), input control signal φ2 = 0.
When voltage Vdd <reference voltage (−Vref), input control signal φ2 = 1.
 出力電圧検出部19は、電圧Voutの電圧値が閾値(参照電圧(+Vmax))より大きくなったときに、周波数変調部12Aの発振動作を停止させる。図2に示されるように、出力電圧検出部19は、入力19a、19b、19cと、出力19dと、を有する。入力19cは、制御部16Aの入力16bに接続される。入力19cは、電圧Voutを受ける。入力19bは、接地GNDに接続される。入力19aは、参照電圧発生部18の出力18bに接続される。入力19aは、参照電圧(+Vmax)を受ける。出力19dは、発振制御部21に接続される。出力19dは、出力制御信号φ3を出力する。参照電圧(+Vmax)は、実施形態における出力閾値である。出力閾値は、電力変換回路7Aに要求される電圧Voutの最大値に基づいて設定される。 The output voltage detection unit 19 stops the oscillating operation of the frequency modulation unit 12A when the voltage value of the voltage Vout becomes larger than the threshold value (reference voltage (+ Vmax)). As shown in FIG. 2, the output voltage detector 19 has inputs 19a, 19b, 19c and an output 19d. The input 19c is connected to the input 16b of the control unit 16A. The input 19c receives the voltage Vout. The input 19b is connected to the ground GND. The input 19 a is connected to the output 18 b of the reference voltage generator 18. The input 19a receives a reference voltage (+ Vmax). The output 19 d is connected to the oscillation control unit 21. The output 19d outputs an output control signal φ3. The reference voltage (+ Vmax) is an output threshold in the embodiment. The output threshold is set based on the maximum value of the voltage Vout required of the power conversion circuit 7A.
 図4の(b)部は、出力電圧検出部19の回路構成を示す。出力電圧検出部19は、1個のオペアンプG6を有する。オペアンプG6の非反転入力には、基準電圧+Vmaxが提供される。オペアンプG6の反転入力には電圧Voutが提供される。 Part (b) of FIG. 4 shows a circuit configuration of the output voltage detection unit 19. The output voltage detection unit 19 has one operational amplifier G6. The reference voltage + Vmax is provided to the non-inverting input of the operational amplifier G6. The voltage Vout is provided to the inverting input of the operational amplifier G6.
 出力電圧検出部19は、電圧Voutの大きさに応じた出力制御信号φ3を発生する。具体的には、出力電圧検出部19は、以下のように動作する。
  電圧Vout≧参照電圧(+Vmax)であるとき、出力制御信号φ3=0。
  電圧Vout<参照電圧(+Vmax)であるとき、出力制御信号φ3=1。
The output voltage detection unit 19 generates an output control signal φ3 according to the magnitude of the voltage Vout. Specifically, the output voltage detection unit 19 operates as follows.
When voltage Vout ≧ reference voltage (+ Vmax), output control signal φ3 = 0.
When voltage Vout <reference voltage (+ Vmax), output control signal φ3 = 1.
 図2に示されるように、発振制御部21は、入力21a、21bと、出力21cと、を有する。入力21aは、入力電圧検出部11の出力11eに接続される。入力21aは、入力制御信号φ1、φ2を受ける。入力21bは、出力電圧検出部19の出力19dに接続される。入力21bは、出力制御信号φ3を受ける。出力21cは、制御部16Aの出力16eに接続される。出力21cは、発振制御信号ENを出力する。 As shown in FIG. 2, the oscillation control unit 21 has inputs 21 a and 21 b and an output 21 c. The input 21 a is connected to the output 11 e of the input voltage detection unit 11. The input 21a receives input control signals φ1 and φ2. The input 21 b is connected to the output 19 d of the output voltage detection unit 19. The input 21b receives an output control signal φ3. The output 21c is connected to the output 16e of the control unit 16A. The output 21 c outputs an oscillation control signal EN.
 図5の(a)部は、発振制御部21の回路構成を示す。発振制御部21は、OR回路G7と、AND回路G8と、を有する。OR回路G7は、入力制御信号φ1、φ2を受け入れる。OR回路G7は、制御信号φ4を出力する。AND回路G8は、出力制御信号φ3及び制御信号φ4を受け入れる。AND回路G8は、発振制御信号ENを出力する。発振制御部21は、具体的には、以下のように動作する。 Part (a) of FIG. 5 shows a circuit configuration of the oscillation control unit 21. The oscillation control unit 21 includes an OR circuit G7 and an AND circuit G8. OR circuit G7 receives input control signals φ1 and φ2. OR circuit G7 outputs control signal φ4. AND circuit G8 receives output control signal φ3 and control signal φ4. The AND circuit G8 outputs an oscillation control signal EN. Specifically, the oscillation control unit 21 operates as follows.
  φ1(0)、φ2(0)、φ3(0)であるとき、EN=0。
  φ1(1)、φ2(0)、φ3(0)であるとき、EN=0。
  φ1(0)、φ2(1)、φ3(0)であるとき、EN=0。
  φ1(0)、φ2(0)、φ3(1)であるとき、EN=0。
  φ1(1)、φ2(0)、φ3(1)であるとき、EN=1。
  φ1(0)、φ2(1)、φ3(1)であるとき、EN=1。
When 11 (0), 22 (0), 33 (0), EN = 0.
When 11 (1), 22 (0) and 33 (0), EN = 0.
When 11 (0), 22 (1), 33 (0), EN = 0.
When 11 (0), 22 (0), 33 (1), EN = 0.
When φ1 (1), φ2 (0) and φ3 (1), EN = 1.
When φ1 (0), φ2 (1) and φ3 (1), EN = 1.
 発振制御部21は、電圧Vddが基準電圧+Vref以上であり、且つ、電圧Voutが基準電圧Vmax以下であるときに、発振制御信号EN=1を出力する。また、電圧Vddが基準電圧-Vref以下であり、且つ、電圧Voutが基準電圧Vmax以下であるときに、発振制御信号EN=1を出力する。発振制御信号EN=1が周波数変調部12Aに入力されると、周波数変調部12Aは発振動作を開始する。逆に、発振制御部21は、電圧Vddが基準電圧+Vref以下であるとき、発振制御信号EN=0を出力する。また、発振制御部21は、電圧Vddが基準電圧-Vref以上であるとき、発振制御信号EN=0を出力する。さらに、発振制御部21は、電圧Voutが基準電圧Vmax以上であるときに、発振制御信号EN=0を出力する。発振制御信号EN=0が周波数変調部12Aに入力されると、周波数変調部12Aは発振動作を停止する。 The oscillation control unit 21 outputs the oscillation control signal EN = 1 when the voltage Vdd is equal to or higher than the reference voltage + Vref and the voltage Vout is equal to or lower than the reference voltage Vmax. Further, when the voltage Vdd is lower than the reference voltage -Vref and the voltage Vout is lower than the reference voltage Vmax, the oscillation control signal EN = 1 is output. When the oscillation control signal EN = 1 is input to the frequency modulation unit 12A, the frequency modulation unit 12A starts the oscillation operation. Conversely, the oscillation control unit 21 outputs the oscillation control signal EN = 0 when the voltage Vdd is less than or equal to the reference voltage + Vref. The oscillation control unit 21 outputs the oscillation control signal EN = 0 when the voltage Vdd is equal to or higher than the reference voltage -Vref. Furthermore, the oscillation control unit 21 outputs the oscillation control signal EN = 0 when the voltage Vout is equal to or higher than the reference voltage Vmax. When the oscillation control signal EN = 0 is input to the frequency modulation unit 12A, the frequency modulation unit 12A stops the oscillation operation.
 制御部16Aを構成する参照電圧発生部18、入力電圧検出部11、出力電圧検出部19及び発振制御部21は、それぞれの回路を駆動するための電力を要する。電源装置1Aは、内部電圧生成部22(図2参照)を有し、この内部電圧生成部22が制御部16Aに対して必要な電力を供給する。 The reference voltage generation unit 18, the input voltage detection unit 11, the output voltage detection unit 19, and the oscillation control unit 21 that constitute the control unit 16A require power for driving the respective circuits. The power supply device 1A has an internal voltage generation unit 22 (see FIG. 2), and the internal voltage generation unit 22 supplies necessary power to the control unit 16A.
 図2に示されるように、内部電圧生成部22は、制御部16Aの動作に用いられる電圧を発生させる。つまり、内部電圧生成部22は、電圧Vddを受けて、電圧+Vp、-Vpを出力する。内部電圧生成部22は、入力22aと、出力22bと、を有する。入力22aは、電力変換回路7Aの入力7aに接続される。入力22aは、電圧Vddを受ける。出力22bは、制御部16Aの入力16cに接続される。出力22bは、電圧+Vp、-Vpを出力する。内部電圧生成部22は、例えば、図5の(b)部に示されるように、pMOSFETであるゲートG9と、nMOSFETであるゲートG10とを含む。そして、内部電圧生成部22は、それぞれのゲートG9、G10に対して電圧Vddを提供する。そうすると、ゲートG9は、電圧+Vpを出力する。一方、ゲートG10は、電圧-Vpを出力する。参照電圧発生部18、入力電圧検出部11、出力電圧検出部19及び発振制御部21は、これらの電圧+Vp、-Vpを用いて動作を行う。 As shown in FIG. 2, the internal voltage generation unit 22 generates a voltage used for the operation of the control unit 16A. That is, the internal voltage generation unit 22 receives the voltage Vdd and outputs the voltages + Vp and -Vp. The internal voltage generator 22 has an input 22a and an output 22b. The input 22a is connected to the input 7a of the power conversion circuit 7A. The input 22a receives the voltage Vdd. The output 22b is connected to the input 16c of the control unit 16A. The output 22b outputs voltages + Vp and -Vp. For example, as shown in part (b) of FIG. 5, the internal voltage generation unit 22 includes a gate G9 which is a pMOSFET and a gate G10 which is an nMOSFET. Then, the internal voltage generation unit 22 provides the voltage Vdd to each of the gates G9 and G10. Then, gate G9 outputs voltage + Vp. On the other hand, gate G10 outputs voltage -Vp. The reference voltage generation unit 18, the input voltage detection unit 11, the output voltage detection unit 19, and the oscillation control unit 21 operate using these voltages + Vp and -Vp.
 電力変換回路7Aは、周波数変調部12Aと、昇圧部13Aと、を備える。周波数変調部12Aは、第1周波数f1を有する電圧VHを受ける。周波数変調部12Aは、電圧CLKを生成する。電圧CLKは、電圧VHに対して第1周波数f1よりも高い第2周波数f2を有するパルス波が重畳されたものである。昇圧部13Aは、周波数変調部12Aから電圧CLKを受ける。周波数変調部12Aは、チャージポンプ動作によって電圧CLKよりも高い電圧Voutを生成する。昇圧部13Aは、キャパシタC2、C3を有する。キャパシタC2、C3は、電圧CLKによって充電される。昇圧部13Aは、キャパシタC2、C3に電荷を蓄積する第1動作と、電荷に基づく電圧と電圧CLKとを重畳して出力する第2動作と、を行う。第1動作と第2動作との切り替えは、電圧CLKに含まれたパルス波に基づく。 The power conversion circuit 7A includes a frequency modulation unit 12A and a boosting unit 13A. Frequency modulation unit 12A receives voltage VH having a first frequency f1. The frequency modulation unit 12A generates a voltage CLK. The voltage CLK is obtained by superimposing a pulse wave having a second frequency f2 higher than the first frequency f1 with respect to the voltage VH. Booster 13A receives voltage CLK from frequency modulator 12A. The frequency modulation unit 12A generates a voltage Vout higher than the voltage CLK by charge pump operation. The booster 13A has capacitors C2 and C3. Capacitors C2 and C3 are charged by voltage CLK. The boosting unit 13A performs a first operation of accumulating charges in the capacitors C2 and C3 and a second operation of superposing and outputting a voltage based on the charges and the voltage CLK. The switching between the first operation and the second operation is based on a pulse wave included in the voltage CLK.
 昇圧部13Aは、電圧VHによってキャパシタC2、C3を充電して電荷をキャパシタC2、C3に蓄積する動作と、蓄積された電荷に基づく電圧Vcと電圧VHとを重畳させて出力する動作と、を含む。ここで、昇圧部13Aから出力される出力電力は、電圧Voutと出力電流とにより規定される。まず、電圧Voutの最大値は、電圧VHのピーク電圧値と、直列接続されたキャパシタC2、C3の数と、により決定される。次に、出力電流の大きさは、充電動作と出力動作との繰り返し数に比例する。つまり、充電動作及び出力動作を繰り返す数が多くなるほど、多くの電荷の転送が行われる。その結果、出力電流の大きさが増大する。この電力変換回路7Aは、周波数変調部12Aにおいて第1周波数f1を有する電圧VHに対して、第1周波数f1よりも高い第2周波数f2を有するパルス波を重畳する。その結果、電圧CLKが生成される。そして、昇圧部13Aは、当該パルス波に基づいて、充電動作と出力動作とを切り替える。従って、電圧VHを直接に昇圧部13Aに入力する構成よりも、充電動作及び出力動作の繰り返し数が多い。つまり、多くの電荷の転送が行われる。その結果、パルス波の周波数が高くなると、昇圧部13Aから出力される出力電流が大きくなる。従って、昇圧部13Aから出力される平均的な出力電力が大きくなる。その結果、電力変換効率を高めることができる。 The boosting unit 13A charges the capacitors C2 and C3 with the voltage VH and stores the charges in the capacitors C2 and C3 and an operation of superposing the voltage Vc based on the stored charges and the voltage VH and outputting the result. Including. Here, the output power output from the booster 13A is defined by the voltage Vout and the output current. First, the maximum value of the voltage Vout is determined by the peak voltage value of the voltage VH and the number of capacitors C2 and C3 connected in series. Next, the magnitude of the output current is proportional to the number of repetitions of the charging operation and the output operation. That is, as the number of repeating the charging operation and the output operation increases, more charge transfer is performed. As a result, the magnitude of the output current is increased. The power conversion circuit 7A superimposes a pulse wave having a second frequency f2 higher than the first frequency f1 on the voltage VH having the first frequency f1 in the frequency modulation unit 12A. As a result, voltage CLK is generated. Then, the booster 13A switches between the charging operation and the output operation based on the pulse wave. Therefore, the number of repetitions of the charging operation and the output operation is larger than in the configuration in which the voltage VH is directly input to the booster 13A. That is, much charge transfer is performed. As a result, when the frequency of the pulse wave increases, the output current output from the booster 13A increases. Therefore, the average output power output from the booster 13A is increased. As a result, the power conversion efficiency can be enhanced.
 電力変換回路7Aは、整流部17Aをさらに備える。整流部17Aは、振動発電素子6から第1周波数f1を有する電圧Vddを受け、電圧Vddが全波整流された電圧VHを生成し、電圧VHを周波数変調部12Aに出力する。この構成によれば、昇圧部13Aにおける電荷の転送の回数が増える。その結果、出力電流がさらに大きくなる。従って、電力変換効率をさらに高めることができる。 The power conversion circuit 7A further includes a rectifying unit 17A. The rectifying unit 17A receives the voltage Vdd having the first frequency f1 from the vibration power generation element 6, generates a voltage VH in which the voltage Vdd is full-wave rectified, and outputs the voltage VH to the frequency modulation unit 12A. According to this configuration, the number of times of charge transfer in the booster 13A increases. As a result, the output current is further increased. Therefore, the power conversion efficiency can be further enhanced.
 電力変換回路7Aは、入力電圧検出部11をさらに備える。入力電圧検出部11は、振動発電素子6から電圧Vddを受け、電圧Vddの絶対値と入力閾値との大小関係に基づく入力制御信号φ1、φ2を生成し、入力制御信号φ1、φ2を整流部17Aに出力する。整流部17Aは、入力制御信号φ1、φ2に基づいて電圧Vddを電圧VH、VLに整流する。この構成によれば、電圧Vddを確実に全波整流することができる。 The power conversion circuit 7A further includes an input voltage detection unit 11. Input voltage detection unit 11 receives voltage Vdd from vibration generating element 6, generates input control signals φ1 and φ2 based on the magnitude relation between the absolute value of voltage Vdd and the input threshold, and rectifies input control signals φ1 and φ2 Output to 17A. The rectifying unit 17A rectifies the voltage Vdd into voltages VH and VL based on the input control signals φ1 and φ2. According to this configuration, the voltage Vdd can be reliably full-wave rectified.
 電力変換回路7Aは、発振制御部21をさらに備える。発振制御部21は、入力電圧検出部11から入力制御信号φ1、φ2を受け、入力制御信号φ1、φ2に基づいて周波数変調部12Aにおけるパルス波を生じさせる発振動作の開始及び停止を制御する発振制御信号ENを生成し、発振制御信号ENを周波数変調部12Aに出力する。この構成によれば、電圧Vddの絶対値に基づいて発振動作の開始及び停止を制御することが可能になる。その結果、電圧Vddの絶対値が閾値より小さい場合には、発振動作を停止することができる。従って、電力変換に提供する電圧Vddの大きさを閾値よりも大きい値に限定することが可能になるので、電力変換回路7Aは、所望の大きさの電圧Voutを出力することができる。 The power conversion circuit 7A further includes an oscillation control unit 21. The oscillation control unit 21 receives the input control signals φ1 and φ2 from the input voltage detection unit 11, and controls the start and stop of the oscillation operation for generating a pulse wave in the frequency modulation unit 12A based on the input control signals φ1 and φ2. The control signal EN is generated, and the oscillation control signal EN is output to the frequency modulation unit 12A. According to this configuration, it is possible to control the start and stop of the oscillation operation based on the absolute value of voltage Vdd. As a result, when the absolute value of the voltage Vdd is smaller than the threshold value, the oscillation operation can be stopped. Therefore, since it is possible to limit the magnitude of the voltage Vdd provided for power conversion to a value larger than the threshold value, the power conversion circuit 7A can output the voltage Vout of a desired magnitude.
 上記の電力変換回路7Aは、出力電圧検出部19をさらに備える。出力電圧検出部19は、昇圧部13Aから電圧Voutを受け、電圧Voutの絶対値と出力閾値との大小関係に基づく出力制御信号φ3を生成し、出力制御信号φ3を発振制御部21に出力する。発振制御部21は、入力制御信号φ1、φ2及び出力制御信号φ3に基づいて、発振動作の開始及び停止を制御する発振制御信号ENを生成する。この構成によれば、電圧Voutが閾値よりも大きくなった場合に、発振動作を停止させることが可能になる。従って、電圧Voutの大きさに制限を設けることができる。 The power conversion circuit 7A further includes an output voltage detection unit 19. Output voltage detection unit 19 receives voltage Vout from boosting unit 13A, generates output control signal φ3 based on the magnitude relationship between the absolute value of voltage Vout and the output threshold, and outputs output control signal φ3 to oscillation control unit 21. . The oscillation control unit 21 generates an oscillation control signal EN that controls the start and stop of the oscillation operation based on the input control signals φ1 and φ2 and the output control signal φ3. According to this configuration, it is possible to stop the oscillation operation when the voltage Vout becomes larger than the threshold. Therefore, a limitation can be placed on the magnitude of the voltage Vout.
 電力変換回路7Aは、内部電圧生成部22をさらに備える。内部電圧生成部22は、振動発電素子6から電圧Vddを受ける。内部電圧生成部22は、入力電圧検出部11、出力電圧検出部19、及び、発振制御部21を駆動するための電力を生成する。内部電圧生成部22は、入力電圧検出部11、出力電圧検出部19、及び、発振制御部21に電力を出力する。この構成によれば、各部の動作に要する電圧を電圧Vddから生成する。従って、電力変換回路7Aは、各部を動作させるための電圧を供給するバッテリを準備する必要がない。さらに、バッテリを交換する作業も要しない。従って、電力変換回路7Aは、維持管理が容易である。 Power conversion circuit 7A further includes an internal voltage generation unit 22. Internal voltage generation unit 22 receives voltage Vdd from vibration power generation element 6. The internal voltage generation unit 22 generates power for driving the input voltage detection unit 11, the output voltage detection unit 19, and the oscillation control unit 21. The internal voltage generation unit 22 outputs power to the input voltage detection unit 11, the output voltage detection unit 19, and the oscillation control unit 21. According to this configuration, the voltage required for the operation of each part is generated from the voltage Vdd. Therefore, the power conversion circuit 7A does not have to prepare a battery for supplying a voltage for operating each part. Furthermore, there is no need to replace the battery. Therefore, the power conversion circuit 7A is easy to maintain and manage.
 電源装置1Aは、振動発電素子6と、電力変換回路7Aと、を備える。振動発電素子6は、第1周波数f1を有する電圧Vddの電力を発生する。電力変換回路7Aは、振動発電素子6に接続されて、電圧Vddの電力を、直流電圧の電力に変換する。この電源装置1Aは、上記の電力変換回路7Aを有する。従って、良好な電力変換効率が得られる。その結果、電源装置1Aは所望の電力を供給することができる。 The power supply device 1A includes a vibration power generation element 6 and a power conversion circuit 7A. The vibration power generation element 6 generates the power of the voltage Vdd having the first frequency f1. The power conversion circuit 7A is connected to the vibration power generation element 6, and converts the power of the voltage Vdd into the power of the DC voltage. The power supply device 1A includes the power conversion circuit 7A described above. Therefore, good power conversion efficiency can be obtained. As a result, the power supply device 1A can supply desired power.
 電力変換回路7Aは、交流電力を直流電力に変換する。電力変換回路7Aは、昇圧回路である。電力変換回路7Aは、交流の電圧振幅を高めることによって、交流電圧を高い電圧値を有する直流電圧に変換する。電力変換回路7Aは、周波数を変調する変調回路に入力された交流電力を入力する。次に、電力変換回路7Aは、変調回路からの高周波数化された信号を昇圧回路に入力する。この構成は、周波数変調型のAC―DC昇圧方式と称することができる。この方式によれば、例えば、振動発電によって発生した1キロヘルツの周波数を有する交流電力を周波数変調回路によって10メガヘルツの電力に変換する場合を仮定する。この変換において電力変換回路7Aの出力電圧は、後述する比較例の電力変換回路の出力電圧の3000倍程度である。この出力電力は、RFIDで用いられている昇圧回路の出力電力に相当する。RFIDは、電波を用いてRFタグのデータを非接触で読み書きするシステムである。結果として、電力変換回路7Aは、実用的な大きさである。従って、電力変換回路7Aは、振動発電用IoT集積回路に集積することが可能である。その結果、電力変換回路7Aは、IoT端末の小型化に寄与する。 The power conversion circuit 7A converts alternating current power into direct current power. The power conversion circuit 7A is a booster circuit. The power conversion circuit 7A converts the AC voltage into a DC voltage having a high voltage value by increasing the voltage amplitude of the AC. The power conversion circuit 7A inputs the AC power input to the modulation circuit that modulates the frequency. Next, the power conversion circuit 7A inputs the frequency-increased signal from the modulation circuit to the booster circuit. This configuration can be referred to as a frequency modulation type AC-DC boost system. According to this method, for example, it is assumed that AC power having a frequency of 1 kilohertz generated by vibrational power generation is converted to power of 10 megahertz by a frequency modulation circuit. In this conversion, the output voltage of the power conversion circuit 7A is approximately 3000 times the output voltage of the power conversion circuit of the comparative example described later. This output power corresponds to the output power of the booster circuit used in the RFID. RFID is a system that uses radio waves to read and write data of an RF tag contactlessly. As a result, the power conversion circuit 7A has a practical size. Therefore, the power conversion circuit 7A can be integrated in the IoT integrated circuit for vibration power generation. As a result, the power conversion circuit 7A contributes to the miniaturization of the IoT terminal.
 ところで、電力変換回路には、スイッチング・インダクタを用いたスイッチング・コンバータがある。また、別の回路として、キャパシタとスイッチとを有する昇圧回路がある。スイッチング・コンバータ用インダクタは、集積回路には現実的な大きさでは実装できない。従って、スイッチング・コンバータ用インダクタは、外付けされる。 By the way, there is a switching converter using a switching inductor in the power conversion circuit. Another circuit is a booster circuit having a capacitor and a switch. Switching converter inductors can not be implemented in realistic sizes on integrated circuits. Thus, the switching converter inductor is externally attached.
 一方、昇圧回路は、高周波化によってキャパシタの大きさ(容量)を集積化可能な程度まで小さくすることができる。従って、IoT端末を小型化することが可能である。RFIDでは、入力される交流電力が高周波である。従って、集積化昇圧回路を容易に適用することができる。図19に示されるように、比較例に係る電力変換回路は、振動発電素子206からの交流電力(AC)を直接に昇圧部203に入力することにより、交流電力(AC)を直流電力(DC)に変換する。そして、比較例に係る電力変換回路は、直流電力(DC)を測定装置204に提供する。例えば、RFIDに適用される電源装置200は、振動発電素子206の出力を昇圧部203に対して直接に入力する。昇圧部203は、入力信号の周波数に比例した電力を発生する。これは、出力される電荷が一周期に一度しか転送されないためである。出力電圧は、安定化キャパシタによって平滑化される。 On the other hand, the booster circuit can reduce the size (capacitance) of the capacitor to such an extent that integration is possible by increasing the frequency. Therefore, it is possible to miniaturize the IoT terminal. In RFID, input AC power is high frequency. Thus, an integrated boost circuit can be easily applied. As shown in FIG. 19, the power conversion circuit according to the comparative example directly inputs alternating current power (AC) from direct current power (DC) by directly inputting alternating current power (AC) from vibration generating element 206 to boosting unit 203. Convert to). Then, the power conversion circuit according to the comparative example provides direct current power (DC) to the measuring device 204. For example, the power supply device 200 applied to the RFID directly inputs the output of the vibration power generation element 206 to the booster 203. The booster 203 generates power proportional to the frequency of the input signal. This is because the output charge is transferred only once in one cycle. The output voltage is smoothed by the stabilization capacitor.
 一方、従来、振動発電素子が出力する交流電流は、周波数が低い。従って、外付けインダクタの必要なスイッチング・コンバータを用いる必要があった。振動発電素子の出力電圧は、例えば数百マイクロW/cm程度である。そして、集積回路が1ボルト程度の電圧を要求すると仮定する。数百マイクロW/cm程度の電圧を利用して1ボルトの電圧を発生させようとする場合、振動発電の電力周波数が1キロヘルツであるとすれば、昇圧回路の出力電力は数ナノワットである。すなわち、ほとんどの電力は無効電力である。一方、IoT端末は、低周波交流電力を発生させる振動発電素子6を備えている。電力変換回路7Aは、集積化が可能な昇圧回路制御手段である。従って、電力変換回路7Aを備えたIoT端末は、小型化することができる。 On the other hand, conventionally, the alternating current output from the vibration power generation element has a low frequency. Therefore, it was necessary to use the required switching converter of the external inductor. The output voltage of the vibration power generating element is, for example, about several hundred micro W / cm 3 . Then, assume that the integrated circuit requires a voltage of around 1 volt. When trying to generate a voltage of 1 volt using a voltage of several hundreds of micro W / cm 3, if the power frequency of vibration power generation is 1 kilohertz, the output power of the booster circuit is several nanowatts . That is, most of the power is reactive power. On the other hand, the IoT terminal includes the vibration power generation element 6 that generates low frequency AC power. The power conversion circuit 7A is a booster circuit control means that can be integrated. Therefore, the IoT terminal provided with the power conversion circuit 7A can be miniaturized.
 図7の(a)部は比較例に係る電源装置200のエネルギ収支を概念的に示す。図7の(b)部は実施形態に係る電源装置1Aのエネルギ収支を概念的に示す。振動発電素子6、206が発生させる電力P1、P2は、電力P1a、P2aと、消費電力P1b、P2bと、無効電力P1c、P2cと、に振り分けられる。電力P1a、P2aは、有効に変換される電力である。消費電力P1b、P2bは、電力変換回路が消費する電力である。無効電力P1c、P2cは、振動発電素子6、206と変換回路との間で往復するだけであって消費されることのない電力である。 Part (a) of FIG. 7 conceptually shows the energy balance of the power supply device 200 according to the comparative example. Part (b) of FIG. 7 conceptually shows the energy balance of the power supply device 1A according to the embodiment. The powers P1 and P2 generated by the vibration power generation elements 6 and 206 are divided into powers P1a and P2a, power consumptions P1b and P2b, and reactive powers P1c and P2c. The powers P1a and P2a are powers to be effectively converted. The power consumptions P1b and P2b are powers consumed by the power conversion circuit. The reactive powers P1c and P2c are power that only reciprocates between the vibration generating elements 6, 206 and the conversion circuit and is not consumed.
 図7の(a)部に示されるように、比較例に係る電源装置200では、振動発電素子206が発生する電力P1の大部分が無効電力P1cである。電源装置200において、有効に変換される電力P1aはわずかである。なぜならば、上述したように、昇圧部203に対して振動発電素子206の出力が直接に提供されると、昇圧部203で振動発電素子206の出力周波数に応じて電荷の転送が行われる。つまり、電荷の転送回数が少ないので、取り出せる電流はわずかである。 As shown in part (a) of FIG. 7, in the power supply device 200 according to the comparative example, most of the power P1 generated by the vibration power generation element 206 is reactive power P1c. In power supply apparatus 200, power P1a to be effectively converted is small. This is because, as described above, when the output of the vibration power generation element 206 is directly provided to the booster 203, charge transfer is performed according to the output frequency of the vibration power generation element 206 in the booster 203. That is, since the number of times of charge transfer is small, only a small amount of current can be extracted.
 一方、図7の(b)部に示されるように、電源装置1Aは、無効電力P2cを低減する。そして電源装置1Aは、有効に変換される電力P2aを増加する。ここで、電源装置1Aでは、制御部16A等における消費電力P2bが存在するとしても、有効に変換される電力P2aが増加する。その結果、電源装置1Aは、変換効率を高めることができる。 On the other hand, as shown in part (b) of FIG. 7, the power supply device 1A reduces reactive power P2c. Then, the power supply device 1A increases the power P2a to be effectively converted. Here, in the power supply device 1A, even if the power consumption P2b in the control unit 16A or the like is present, the power P2a to be effectively converted increases. As a result, the power supply device 1A can increase the conversion efficiency.
<計算機による実験例>
 図8は、昇圧回路が従来のAC-DC動作を行った場合の出力電力と、昇圧回路が実施形態に係るAC-DC動作を行った場合の出力電力と、を比較する。図8の横軸は、昇圧回路に入力される交流電力の周波数を示す。縦軸は、昇圧回路から出力される直流電力を示す。なお、昇圧回路の出力電圧は1ボルトとした。比較例に係るAC-DC動作によれば、入力される交流電力が1キロヘルツである。そして、出力電力は、数ナノワットである(符号A1参照)。つまり、比較例に係るAC-DC動作では、ほとんどの電力が無効電力となることがわかった。一方、実施形態に係るAC-DC動作によれば、例えば、周波数を10メガヘルツに高める。その場合、出力電力は数十マイクロワット(符号A2参照)であることがわかった。つまり、電力変換回路7Aの大きさは、RFIDのような高周波入力の場合に必要な昇圧回路と同等にすることが可能である。従って、電力変換回路7Aは、振動発電用のAC-DC昇圧回路システムの集積化を実現できることが確認できた。
<Example of experiment by computer>
FIG. 8 compares the output power when the booster circuit performs the conventional AC-DC operation with the output power when the booster circuit performs the AC-DC operation according to the embodiment. The horizontal axis of FIG. 8 indicates the frequency of the AC power input to the booster circuit. The vertical axis represents DC power output from the booster circuit. The output voltage of the booster circuit was 1 volt. According to the AC-DC operation according to the comparative example, the input AC power is 1 kilohertz. The output power is a few nanowatts (see symbol A1). That is, it was found that in the AC-DC operation according to the comparative example, most of the power becomes reactive power. On the other hand, according to the AC-DC operation according to the embodiment, for example, the frequency is increased to 10 MHz. In that case, the output power was found to be several tens of microwatts (see symbol A2). That is, the size of the power conversion circuit 7A can be made equal to that of the booster circuit required for high frequency input such as RFID. Therefore, it has been confirmed that the power conversion circuit 7A can realize the integration of the AC-DC booster circuit system for vibration power generation.
<第2実施形態>
 図9に示されるように、第2実施形態に係る電源装置1Bは、振動発電素子6と、電力変換回路7Bと、を有する。電力変換回路7Bは、電力変換部14Bと、制御部16Bと、内部電圧生成部22と、を有する。電力変換部14Bは、整流部17Aと、周波数変調部12B(第2周波数変調部)と、昇圧部13Aと、を有する。ここで、周波数変調部12Bは、制御部16Bからの発振制御信号ENを要しない点で、周波数変調部12Aに対して相違する。さらに、制御部16Bは、発振制御信号ENを生成するための発振制御部21及び出力電圧検出部19を有しない点で制御部16Aと相違する。制御部16Bは、リミッタ31(リミッタ部)を有する点で制御部16Aと相違する。
Second Embodiment
As shown in FIG. 9, a power supply device 1B according to the second embodiment includes a vibration power generation element 6 and a power conversion circuit 7B. The power conversion circuit 7B includes a power conversion unit 14B, a control unit 16B, and an internal voltage generation unit 22. The power conversion unit 14B includes a rectification unit 17A, a frequency modulation unit 12B (second frequency modulation unit), and a boosting unit 13A. Here, the frequency modulation unit 12B is different from the frequency modulation unit 12A in that the oscillation control signal EN from the control unit 16B is not required. Furthermore, the control unit 16B is different from the control unit 16A in that the control unit 16B does not have the oscillation control unit 21 and the output voltage detection unit 19 for generating the oscillation control signal EN. The control unit 16B is different from the control unit 16A in that the control unit 16B includes a limiter 31 (a limiter unit).
 図10の(a)部に示されるように、周波数変調部12Bは、LC発振回路である。周波数変調部12Bは、リングオシレータではない。周波数変調部12Bは、コイルL1、L2と、キャパシタC5、C6と、電界効果型のトランジスタM1、M2(FET)と、を有する。コイルL1、キャパシタC5及びトランジスタM1は、電圧CLKを出力12dに生成する。コイルL2、キャパシタC6及びトランジスタM2は、電圧CLKbを出力12eに生成する。この構成によれば、LC発振回路は自律的に発振動作を行う。従って、発振制御信号ENを省略することができる。つまり、電圧Vddがある程度大きくなると、周波数変調部12Bは、自動的に発振を開始する。例えば、周波数変調部12Bは、トランジスタM1、M2のトランスコンダクタンスがLC共振器のロスより高くなると、発振を開始する。 As shown in part (a) of FIG. 10, the frequency modulation unit 12B is an LC oscillation circuit. The frequency modulation unit 12B is not a ring oscillator. The frequency modulation unit 12B includes coils L1 and L2, capacitors C5 and C6, and field effect transistors M1 and M2 (FETs). The coil L1, the capacitor C5 and the transistor M1 generate a voltage CLK at the output 12d. The coil L2, the capacitor C6 and the transistor M2 generate the voltage CLKb at the output 12e. According to this configuration, the LC oscillation circuit performs the oscillation operation autonomously. Therefore, the oscillation control signal EN can be omitted. That is, when the voltage Vdd increases to some extent, the frequency modulation unit 12B automatically starts oscillation. For example, the frequency modulation unit 12B starts oscillation when the transconductance of the transistors M1 and M2 becomes higher than the loss of the LC resonator.
 このLC共振回路の共振周波数は、電圧Vddの周波数よりも充分に高く設定する。例えば、電圧Vddの周波数がf_ACであり、発振周波数がf_clkであるとする。この発振周波数は、f_clk=1/2π√(LC)である。そして、f_AC<<f_clkを満たすように、コイルL1、L2及びキャパシタC5、C6を設定する。 The resonant frequency of this LC resonant circuit is set sufficiently higher than the frequency of the voltage Vdd. For example, it is assumed that the frequency of the voltage Vdd is f_AC and the oscillation frequency is f_clk. The oscillation frequency is f_clk = 1 / 2π√ (LC). Then, the coils L1 and L2 and the capacitors C5 and C6 are set to satisfy f_AC << f_clk.
 なお、昇圧部13Aは電圧CLKbを利用しない。従って、図10の(a)部で示される周波数変調部12Bの出力12dを昇圧部13Aの入力13aに接続する。また、出力12eを入力13cと接続しない構成としてよい。 The booster 13A does not use the voltage CLKb. Therefore, the output 12d of the frequency modulation unit 12B shown in part (a) of FIG. 10 is connected to the input 13a of the booster 13A. Further, the output 12e may not be connected to the input 13c.
 制御部16Bは、入力電圧検出部11と、参照電圧発生部18と、リミッタ31と、を有する。周波数変調部12Bは、自律的に発振を開始する。従って、発振制御信号ENは不要である。従って、制御部16Bは、発振制御部21を備えない。 The control unit 16B includes an input voltage detection unit 11, a reference voltage generation unit 18, and a limiter 31. The frequency modulation unit 12B autonomously starts oscillation. Therefore, the oscillation control signal EN is unnecessary. Therefore, the control unit 16B does not include the oscillation control unit 21.
 リミッタ31は、電圧Vddの振幅が所定値を超えたときに、電圧Voutが過剰に大きくなることを抑制する。従って、電圧Voutは、所定の電圧値に制御される。図10の(b)部に示されるように、リミッタ31は、ダイオードD4の整流作用を利用したリミッタ回路である。リミッタ31は、ダイオードD4に対して電圧Voutが逆方向電圧となるように接続されている。この接続構成によれば、ダイオードD4は、ターゲット電圧Vpp(図10の(c)部参照)において、ターンオンする。従って、電圧Voutが過剰に大きくなることを抑制できる。 The limiter 31 suppresses the voltage Vout from becoming excessively large when the amplitude of the voltage Vdd exceeds a predetermined value. Therefore, the voltage Vout is controlled to a predetermined voltage value. As shown in part (b) of FIG. 10, the limiter 31 is a limiter circuit utilizing the rectifying action of the diode D4. The limiter 31 is connected to the diode D4 so that the voltage Vout is a reverse voltage. According to this connection configuration, the diode D4 is turned on at the target voltage Vpp (see part (c) of FIG. 10). Therefore, the voltage Vout can be suppressed from becoming excessively large.
<第3実施形態>
 図11に示されるように、第3実施形態に係る電源装置1Cは、振動発電素子6と、電力変換回路7Cと、を有する。電力変換回路7Cは、電力変換部14Cと、制御部16Cと、を有する。電力変換部14Cは、整流部17B(第2整流部)と、周波数変調部12Bと、昇圧部13Aと、を有する。ここで整流部17Bは、入力制御信号φ1、φ2を必要としない。整流部17Bは、入力制御信号φ1、φ2を必要としない。従って、制御部16Cは、入力制御信号φ1、φ2を発生させる構成を有しない。制御部16Cの入力16bは、電力変換部14Cの出力14cに接続される。制御部16Cは、リミッタ31を有する。リミッタ31は、入力16bから電圧Voutを受ける。
Third Embodiment
As shown in FIG. 11, the power supply device 1C according to the third embodiment includes a vibration power generation element 6 and a power conversion circuit 7C. The power conversion circuit 7C has a power conversion unit 14C and a control unit 16C. The power conversion unit 14C includes a rectification unit 17B (second rectification unit), a frequency modulation unit 12B, and a boosting unit 13A. Here, the rectifying unit 17B does not require the input control signals φ1 and φ2. The rectifying unit 17B does not require the input control signals φ1 and φ2. Therefore, the control unit 16C does not have a configuration for generating the input control signals φ1 and φ2. The input 16b of the control unit 16C is connected to the output 14c of the power conversion unit 14C. The control unit 16C has a limiter 31. The limiter 31 receives the voltage Vout from the input 16 b.
 図12の(a)部に示されるように、整流部17Bは、自律的なスイッチ回路である。整流部17Bは、電圧Vdd及び電圧Vssの大小関係に基づいて自動的に出力すべき電圧を切り替える。整流部17Bは、一対のスイッチ回路S5、S6を有する。スイッチ回路S5は、一対のp型のトランジスタQP1、QP2を有する。スイッチ回路S6は、一対のn型のトランジスタQN1、QN2を有する。キャパシタC7は、出力17dと出力17eとの間に設けられる。 As shown in part (a) of FIG. 12, the rectifying unit 17B is an autonomous switch circuit. The rectifying unit 17B automatically switches the voltage to be output based on the magnitude relationship between the voltage Vdd and the voltage Vss. The rectifying unit 17B includes a pair of switch circuits S5 and S6. The switch circuit S5 includes a pair of p-type transistors QP1 and QP2. The switch circuit S6 includes a pair of n-type transistors QN1 and QN2. The capacitor C7 is provided between the output 17d and the output 17e.
 スイッチ回路S5には、電圧Vdd、電圧Vssが入力される。スイッチ回路S6にも、電圧Vss、電圧Vssが入力される。スイッチ回路S5は、出力17dに接続される。スイッチ回路S5は、電圧Vdd及び電圧Vssの何れか一方を電圧VHとして出力17dに提供する。スイッチ回路S6は、出力17eに接続される。スイッチ回路S6は、電圧Vdd及び電圧Vssの何れか一方を電圧VLとして出力17dに提供する。提供される電圧は、電圧Vdd及び電圧Vssの大小関係に基づいて決定される。 The voltage Vdd and the voltage Vss are input to the switch circuit S5. The voltage Vss and the voltage Vss are also input to the switch circuit S6. The switch circuit S5 is connected to the output 17d. The switch circuit S5 provides one of the voltage Vdd and the voltage Vss as the voltage VH to the output 17d. The switch circuit S6 is connected to the output 17e. The switch circuit S6 provides one of the voltage Vdd and the voltage Vss as the voltage VL to the output 17d. The provided voltage is determined based on the magnitude relationship between the voltage Vdd and the voltage Vss.
 例えば、図12の(b)部に示されるように、電圧Vddが電圧Vssより大きいとき(Vdd>Vss)、スイッチ回路S5は、出力17dに電圧Vdd(VH=Vdd)を提供する。また、スイッチ回路S6は、出力17eに電圧Vssを提供する(VL=Vss)。一方、図12の(c)部に示されるように、電圧Vddが電圧Vssより小さいとき(Vdd<Vss)、スイッチ回路S5は、出力17dに電圧Vssを提供する(VH=Vss)。また、スイッチ回路S6は、出力17eに電圧Vddを提供する(VL=Vdd)。 For example, as shown in part (b) of FIG. 12, when the voltage Vdd is larger than the voltage Vss (Vdd> Vss), the switch circuit S5 provides the voltage Vdd (VH = Vdd) at the output 17d. Further, the switch circuit S6 provides the voltage Vss to the output 17e (VL = Vss). On the other hand, as shown in part (c) of FIG. 12, when the voltage Vdd is smaller than the voltage Vss (Vdd <Vss), the switch circuit S5 provides the voltage Vss at the output 17d (VH = Vss). The switch circuit S6 also provides the voltage Vdd at the output 17e (VL = Vdd).
 この構成によれば、整流部17Bは、電圧Vdd及び電圧Vssの大小関係に基づいて、出力17d、17eに提供する電圧を切り替える。そして、周波数変調部12Bは、出力17d、17eから供給された電圧VH、VLの電圧振幅が発振可能な電圧以上になると、自律的に発振動作を開始する。そして、昇圧部13Aは、周波数変調部12Bから提供される電圧CLKを受けて、昇圧動作を行う。このように、第3実施形態に係る電源装置1Cの電力変換部14Cは、入力制御信号φ1、φ2及び発振制御信号ENを必要としない。つまり、電力変換部14Cは、電圧Vdd、Vssに基づいて自律的に動作を開始することができる。従って、電力変換回路7Cの構成を簡易にすることができる。 According to this configuration, the rectifying unit 17B switches the voltage to be provided to the outputs 17d and 17e based on the magnitude relationship between the voltage Vdd and the voltage Vss. Then, the frequency modulation unit 12B autonomously starts the oscillation operation when the voltage amplitudes of the voltages VH and VL supplied from the outputs 17d and 17e become equal to or higher than the voltage that can be oscillated. Then, the boosting unit 13A receives the voltage CLK provided from the frequency modulation unit 12B and performs a boosting operation. Thus, the power conversion unit 14C of the power supply device 1C according to the third embodiment does not require the input control signals φ1 and φ2 and the oscillation control signal EN. That is, the power conversion unit 14C can start the operation autonomously based on the voltages Vdd and Vss. Therefore, the configuration of the power conversion circuit 7C can be simplified.
<第4実施形態>
 図13に示されるように、第4実施形態に係る電源装置1Dは、振動発電素子6と、電力変換回路7Dと、を有する。電力変換回路7Dは、電力変換部14A(第1電力変換部)と、電力変換部14C(第2電力変換部)と、制御部16Aと、内部電圧生成部22と、を有する。電力変換回路7Dは、電力変換回路7Aと、電力変換部14Cとを有する。電力変換部14Cは、電力変換部14Aに対して並列に接続される。電力変換部14Cの入力14aは、電力変換回路7Aの入力7aに接続される。電力変換部14Cの入力14bは、電力変換回路7Aの入力7bに接続される。電力変換部14Cの出力14cは、電力変換部14Cの出力7cに接続される。
Fourth Embodiment
As shown in FIG. 13, a power supply device 1D according to the fourth embodiment includes a vibration power generation element 6 and a power conversion circuit 7D. The power conversion circuit 7D includes a power conversion unit 14A (first power conversion unit), a power conversion unit 14C (second power conversion unit), a control unit 16A, and an internal voltage generation unit 22. The power conversion circuit 7D includes a power conversion circuit 7A and a power conversion unit 14C. The power conversion unit 14C is connected in parallel to the power conversion unit 14A. The input 14a of the power conversion unit 14C is connected to the input 7a of the power conversion circuit 7A. The input 14b of the power conversion unit 14C is connected to the input 7b of the power conversion circuit 7A. The output 14c of the power conversion unit 14C is connected to the output 7c of the power conversion unit 14C.
 この構成によれば、振動発電素子6からの電圧Vddの供給が開始されると、電圧Vdd及び電圧Vssに基づいて、まず、電力変換部14Cが自律的に電力変換動作を開始する。具体的には、整流部17B(第2整流部)は、電圧Vdd、Vssを受ける。そして整流部17Bは、電圧VH2、VL2を出力する。周波数変調部12B(第2周波数変調部)は、電圧VH2、VL2を受ける、次に周波数変調部12Bは、電圧(VH2-VL2)を第3電圧として電圧CLK2(第4電圧)を生成する。そして、昇圧部13B(第2昇圧部)は、電圧CLK2を受ける。そして、昇圧部13Bは、出力14cに電圧Vout2(第2出力電圧)を提供する。そして、この電圧Vout2が所定の電圧値に達したとき、電力変換部14Cから電力変換部14Aの動作へ切り替わる。つまり、入力制御信号φ1、φ2及び発振制御信号ENを制御部16Aから電力変換部14Aに提供する。そうすると、制御部16Aが安定して動作する条件が整った後に、制御部16A及び電力変換部14Aを動作させることが可能になる。従って、電源装置1Dにおける動作開始直後の安定性を向上させることができる。 According to this configuration, when the supply of the voltage Vdd from the vibration power generation element 6 is started, first, the power conversion unit 14C autonomously starts the power conversion operation based on the voltage Vdd and the voltage Vss. Specifically, the rectifying unit 17B (second rectifying unit) receives the voltages Vdd and Vss. The rectifying unit 17B outputs the voltages VH2 and VL2. The frequency modulation unit 12B (second frequency modulation unit) receives the voltages VH2 and VL2, and then the frequency modulation unit 12B generates a voltage CLK2 (fourth voltage) using the voltage (VH2-VL2) as a third voltage. Then, the booster 13B (second booster) receives the voltage CLK2. Then, the booster 13B provides the voltage Vout2 (second output voltage) to the output 14c. Then, when the voltage Vout2 reaches a predetermined voltage value, the operation is switched from the power conversion unit 14C to the operation of the power conversion unit 14A. That is, the input control signals φ1 and φ2 and the oscillation control signal EN are provided from the control unit 16A to the power conversion unit 14A. Then, after the conditions for stable operation of the control unit 16A are satisfied, the control unit 16A and the power conversion unit 14A can be operated. Therefore, the stability immediately after the start of the operation in the power supply device 1D can be improved.
 本開示の電力変換回路及び電源装置について説明した。しかし、本開示の電力変換回路及び電源装置は上記の態様に限られない。 The power conversion circuit and the power supply device of the present disclosure have been described. However, the power conversion circuit and the power supply device of the present disclosure are not limited to the above aspect.
<変形例1>
 例えば、図14に示されるように、変形例1に係る電源装置1Eは、電力変換回路7Eを有してもよい。電力変換回路7Eは、電力変換部14Dと、制御部16Aと、内部電圧生成部22と、を有する。電力変換部14Dは、整流部17Aと、周波数変調部12Cと、昇圧部13Bと、を有する。図15の(a)部に示されるように、周波数変調部12Cは、電圧CLKbを取り出す構成を有する。なお、周波数変調部12Aは、電圧CLKbを取り出す構成を有しない。つまり、周波数変調部12Cは、インバータ回路G2とインバータ回路G3との間に接続された出力線を備える。出力線は、周波数変調部12Cの出力12eに接続される。図15の(b)部に示されるように、昇圧部13Bは、第1の回路CR1と、第2の回路CR2と、を有する。第1の回路CR1と、第2の回路CR2とは、互いに並列に接続される。そして、第1の回路CR1には、電圧CLKが入力される。第2の回路CR2には、電圧CLKbが入力される。この構成によれば、さらに出力電力を増加させることができる。なお、変形例1に係る周波数変調部12C及び昇圧部13Bは、第1、第2、第3及び第4実施形態に係る電力変換回路7A、7B、7C、7Dに適用してもよい。
<Modification 1>
For example, as illustrated in FIG. 14, the power supply device 1E according to the modification 1 may include the power conversion circuit 7E. The power conversion circuit 7E includes a power conversion unit 14D, a control unit 16A, and an internal voltage generation unit 22. The power conversion unit 14D includes a rectification unit 17A, a frequency modulation unit 12C, and a boosting unit 13B. As shown in part (a) of FIG. 15, the frequency modulation unit 12C has a configuration for extracting the voltage CLKb. The frequency modulation unit 12A does not have a configuration for extracting the voltage CLKb. That is, the frequency modulation unit 12C includes an output line connected between the inverter circuit G2 and the inverter circuit G3. The output line is connected to the output 12e of the frequency modulation unit 12C. As shown in part (b) of FIG. 15, the booster 13B has a first circuit CR1 and a second circuit CR2. The first circuit CR1 and the second circuit CR2 are connected in parallel with each other. Then, the voltage CLK is input to the first circuit CR1. The voltage CLKb is input to the second circuit CR2. According to this configuration, the output power can be further increased. The frequency modulation unit 12C and the boosting unit 13B according to the first modification may be applied to the power conversion circuits 7A, 7B, 7C, 7D according to the first, second, third and fourth embodiments.
<変形例2>
 例えば、図16に示されるように、変形例2に係る電源装置1Fは、補助電源32を備えてもよい。この補助電源32は、内部電圧生成部22の機能を補助する。つまり、バッテリである補助電源32は、制御部16Aを駆動するために必要な電圧の一部を提供する。この構成によれば、電源装置1Fは、補助電源32と、内部電圧生成部22と、により制御部16Aに対して必要な電圧を確実に提供することができる。また、補助電源32が提供する電圧はわずかであるので、補助電源32の交換周期を極めて長くすることができる。なお、変形例2に係る補助電源32は、第1、第2、第3及び第4実施形態に係る電力変換回路7A、7B、7C、7Dに適用してもよい。
<Modification 2>
For example, as shown in FIG. 16, the power supply device 1F according to the second modification may include the auxiliary power supply 32. The auxiliary power supply 32 assists the function of the internal voltage generation unit 22. That is, the auxiliary power supply 32, which is a battery, provides a part of the voltage necessary to drive the control unit 16A. According to this configuration, the power supply device 1F can reliably provide the necessary voltage to the control unit 16A by the auxiliary power supply 32 and the internal voltage generation unit 22. In addition, since the voltage provided by the auxiliary power supply 32 is small, the replacement cycle of the auxiliary power supply 32 can be made extremely long. The auxiliary power supply 32 according to the second modification may be applied to the power conversion circuits 7A, 7B, 7C, 7D according to the first, second, third and fourth embodiments.
<変形例3>
 例えば、図17に示されるように、変形例3に係る電源装置1Gは、第4実施形態に係る電源装置1Dの変形例である。電源装置1Gは、電源装置1Dが有する内部電圧生成部22を省略したものである。つまり、電源装置1Gは、内部電圧生成部22を有していなくてもよい。電源装置1Gは、電力変換部14Cから出力される電圧Vdd_intを制御部16Aの駆動に利用する。具体的には、電力変換部14Cの出力14cは、制御部16Aの入力16cに接続される。この接続構成により、電力変換部14Cは、制御部16Aを駆動するために必要な電圧Vdd_intを提供できる。さらに、電力変換部14Cの出力14cには、リミッタ33が接続される。リミッタ33は、リミッタ31と同様の構成を有する。このリミッタ33によれば、制御部16Aに提供される電圧Vdd_intに制限を設けることが可能になる。従って、制御部16Aに過大な電圧が入力されることを抑制できる。さらに、この構成によれば、電源装置1Gの起動時における動作安定性が高まる。また、この構成によれば、電源装置1Gの回路構成を簡易化することができる。
<Modification 3>
For example, as shown in FIG. 17, a power supply device 1G according to the third modification is a modification of the power supply device 1D according to the fourth embodiment. The power supply device 1G omits the internal voltage generation unit 22 of the power supply device 1D. That is, the power supply device 1G may not have the internal voltage generation unit 22. The power supply device 1G uses the voltage Vdd_int output from the power conversion unit 14C to drive the control unit 16A. Specifically, the output 14c of the power conversion unit 14C is connected to the input 16c of the control unit 16A. With this connection configuration, the power conversion unit 14C can provide the voltage Vdd_int required to drive the control unit 16A. Furthermore, the limiter 33 is connected to the output 14c of the power conversion unit 14C. The limiter 33 has a configuration similar to that of the limiter 31. According to this limiter 33, it is possible to set a limit on the voltage Vdd_int provided to the control unit 16A. Therefore, input of an excessive voltage to the control unit 16A can be suppressed. Furthermore, according to this configuration, the operation stability at the time of startup of the power supply device 1G is enhanced. Moreover, according to this configuration, the circuit configuration of the power supply device 1G can be simplified.
<変形例4>
 例えば、昇圧部は、実施形態に示された回路構成に限定されない。図18は、昇圧部13Hの回路構成を示す。昇圧部13Hは、ダイオードD1、D2、D3と、キャパシタC2、C3、C4とを有する。これらの接続構成は、昇圧部13Aと同様である。一方、昇圧部13Hは、キャパシタC2、C3における電荷転送の制御に、電圧CLKbを利用する。そして、キャパシタC2に入力される電圧CLKbの位相と、キャパシタC3に入力される電圧CLKbの位相と、を互いに反転させるために、キャパシタC2、C3にインバータ回路G11、G12、G13が接続される。具体的には、キャパシタC2にはインバータ回路G11が接続される。キャパシタC3にはインバータ回路G12、G13が接続される。
<Modification 4>
For example, the booster is not limited to the circuit configuration shown in the embodiment. FIG. 18 shows a circuit configuration of the booster 13H. The booster 13H has diodes D1, D2, D3 and capacitors C2, C3, C4. The connection configuration of these is the same as that of the booster 13A. On the other hand, the booster 13H uses the voltage CLKb to control charge transfer in the capacitors C2 and C3. Then, inverter circuits G11, G12, and G13 are connected to the capacitors C2 and C3 in order to mutually invert the phase of the voltage CLKb input to the capacitor C2 and the phase of the voltage CLKb input to the capacitor C3. Specifically, the inverter circuit G11 is connected to the capacitor C2. Inverter circuits G12 and G13 are connected to the capacitor C3.
<変形例5>
 例えば、上記実施形態では、電源装置1Aの交流電力の電力源として振動発電素子を例示した。しかし、交流電力の電力源は、振動発電素子に限定されない。交流電力の電力源としては、周波数変調部12Aの周波数よりも低い周波数を有する交流電力を発生可能なあらゆる素子を適用してよい。例えば、電源装置1Aは、無線電力受信回路としても低周波時に有効に適用できる。
<Modification 5>
For example, in the above embodiment, the vibration power generation element is illustrated as the power source of the AC power of the power supply device 1A. However, the power source of alternating current power is not limited to the vibration power generation element. As a power source of alternating current power, any element capable of generating alternating current power having a frequency lower than the frequency of the frequency modulation unit 12A may be applied. For example, the power supply device 1A can be effectively applied to a low frequency also as a wireless power reception circuit.
1A,1B,1C,1D,1E,1F,1G,200…電源装置、2…センサ装置、3…アンテナ、4…測定装置、6,206…振動発電素子、7A,7B,7C,7D,7E…電力変換回路、11…入力電圧検出部、12A,12B,12C…周波数変調部、13A,13B,13H,203…昇圧部、14A,14B,14C…電力変換部、16A,16B,16C…制御部、17A,17B…整流部、18…参照電圧発生部、19…出力電圧検出部、22…内部電圧生成部、21…発振制御部、31,33…リミッタ、32…補助電源、100…インターネット、101…クラウドサーバ、102…対象物、Vdd…電圧(入力電圧)、CLK…電圧、Vout…電圧(出力電圧)、φ1,φ2…入力制御信号、φ3…出力制御信号、φ4…制御信号、EN…発振制御信号。 DESCRIPTION OF SYMBOLS 1A, 1B, 1C, 1D, 1E, 1G, 200 ... Power supply device, 2 ... Sensor apparatus, 3 ... Antenna, 4 ... Measurement apparatus, 6, 206 ... Vibration generator element, 7A, 7B, 7C, 7D, 7E ... Power conversion circuit, 11 ... Input voltage detection unit, 12A, 12B, 12C ... Frequency modulation unit, 13A, 13B, 13H, 203 ... Boosting unit, 14A, 14B, 14C ... Power conversion unit, 16A, 16B, 16C ... Control Unit 17A, 17B: Rectification unit, 18: Reference voltage generation unit, 19: Output voltage detection unit, 22: Internal voltage generation unit, 21: Oscillation control unit, 31, 33: Limiter, 32: Auxiliary power supply, 100: Internet Reference numeral 101: Cloud server, 102: target object, Vdd: voltage (input voltage), CLK: voltage, Vout: output voltage, φ1, φ2: input control signal, φ3: output control signal, φ ... control signal, EN ... oscillation control signal.

Claims (9)

  1.  第1周波数を有する第1電圧を受け、前記第1電圧に対して前記第1周波数よりも高い第2周波数を有するパルス波が重畳された第2電圧を生成する周波数変調部と、
     前記周波数変調部から前記第2電圧を受け、チャージポンプ動作によって前記第2電圧よりも高い出力電圧を生成する昇圧部と、を備え、
     前記昇圧部は、前記第2電圧によって充電されるキャパシタを有すると共に、前記キャパシタに電荷を蓄積する第1動作と、前記電荷に基づく電圧と前記第2電圧とを重畳して出力する第2動作と、を前記第2電圧に含まれた前記パルス波に基づいて切り替える、電力変換装置。
    A frequency modulation unit receiving a first voltage having a first frequency and generating a second voltage on which a pulse wave having a second frequency higher than the first frequency with respect to the first voltage is superimposed;
    And a booster configured to receive the second voltage from the frequency modulation unit and generate an output voltage higher than the second voltage by charge pump operation.
    The boosting unit includes a capacitor charged by the second voltage, and a first operation of accumulating charge in the capacitor, and a second operation of overlapping a voltage based on the charge and the second voltage. The power converter according to any one of the above, wherein the pulse wave is included in the second voltage.
  2.  電力源から前記第1周波数を有する入力電圧を受け、前記入力電圧を整流して前記第1電圧を生成し、前記第1電圧を前記周波数変調部に提供する整流部をさらに備える、請求項1に記載の電力変換装置。 The power supply device may further include a rectifying unit receiving an input voltage having the first frequency from a power source, rectifying the input voltage to generate the first voltage, and providing the first voltage to the frequency modulation unit. Power converter according to claim 1.
  3.  前記電力源から前記入力電圧を受け、前記入力電圧の絶対値と入力閾値との大小関係に基づく入力制御信号を生成し、前記入力制御信号を前記整流部に提供する入力電圧検出部をさらに備え、
     前記整流部は、前記入力制御信号に基づいて前記入力電圧を整流して前記第1電圧を生成する、請求項2に記載の電力変換装置。
    It further comprises an input voltage detection unit that receives the input voltage from the power source, generates an input control signal based on a magnitude relationship between an absolute value of the input voltage and an input threshold, and provides the input control signal to the rectification unit. ,
    The power conversion device according to claim 2, wherein the rectifying unit rectifies the input voltage based on the input control signal to generate the first voltage.
  4.  前記電力源から前記入力電圧を受け、前記入力電圧検出部を駆動するための駆動電圧を生成し、前記入力電圧検出部に前記駆動電圧を提供する内部電圧生成部をさらに備える、請求項3に記載の電力変換装置。 4. The system according to claim 3, further comprising an internal voltage generation unit that receives the input voltage from the power source, generates a drive voltage for driving the input voltage detection unit, and provides the drive voltage to the input voltage detection unit. Power converter as described.
  5.  前記入力電圧検出部から前記入力制御信号を受け、前記入力制御信号に基づいて前記周波数変調部における前記パルス波を生じさせる発振動作の開始及び停止を制御する発振制御信号を生成し、前記発振制御信号を前記周波数変調部に提供する発振制御部をさらに備える、請求項3又は4に記載の電力変換装置。 Receiving an input control signal from the input voltage detection unit; generating an oscillation control signal for controlling start and stop of an oscillation operation for generating the pulse wave in the frequency modulation unit based on the input control signal; The power conversion device according to claim 3, further comprising an oscillation control unit that provides a signal to the frequency modulation unit.
  6.  前記昇圧部から前記出力電圧を受け、前記出力電圧の絶対値と出力閾値との大小関係に基づく出力制御信号を生成し、前記出力制御信号を前記発振制御部に提供する出力電圧検出部をさらに備え、
     前記発振制御部は、前記入力制御信号及び前記出力制御信号に基づいて、前記発振制御信号を生成し、
     前記周波数変調部は、前記発振制御信号に基づいて前記発振動作の開始及び停止を制御する、請求項5に記載の電力変換装置。
    The output voltage detection unit further receives an output voltage from the boosting unit, generates an output control signal based on a magnitude relation between an absolute value of the output voltage and an output threshold, and provides the output control signal to the oscillation control unit. Equipped
    The oscillation control unit generates the oscillation control signal based on the input control signal and the output control signal.
    The power conversion device according to claim 5, wherein the frequency modulation unit controls start and stop of the oscillation operation based on the oscillation control signal.
  7.  前記昇圧部から前記出力電圧を受け、前記出力電圧の最大値を規定するリミッタ部をさらに備える、請求項1~5の何れか一項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 5, further comprising a limiter unit which receives the output voltage from the booster and defines a maximum value of the output voltage.
  8.  前記整流部としての第1整流部、前記周波数変調部としての第1周波数変調部及び前記昇圧部としての第1昇圧部は、前記出力電圧としての第1出力電圧を生成する第1電力変換部を構成し、
     前記第1整流部とは別の第2整流部と、前記第1周波数変調部とは別の第2周波数変調部と、前記第1昇圧部とは別の第2昇圧部と、を含み前記第1電力変換部に対して並列に接続された第2電力変換部をさらに備え、
     前記第2整流部は、前記入力電圧を受け、前記入力電圧が整流された第3電圧を生成する動作を、前記入力電圧に基づいて開始し、
     前記第2周波数変調部は、前記第3電圧を受け、前記3電圧に対して前記第3電圧が有する第3周波数よりも高い第4周波数を有するパルス波が重畳された第4電圧を生成する動作を、前記第3電圧に基づいて開始し、
     前記第2昇圧部は、前記第2周波数変調部から前記第4電圧を受け、チャージポンプ動作によって前記第4電圧よりも高い第2出力電圧を生成する、請求項2~6の何れか一項に記載の電力変換装置。
    A first power converter configured to generate a first output voltage as the output voltage, a first rectifier as the rectifier, a first frequency modulator as the frequency modulator, and a first booster as the booster. Configure
    It includes the second rectifier different from the first rectifier, the second frequency modulator different from the first frequency modulator, and the second booster different from the first booster. And a second power converter connected in parallel to the first power converter,
    The second rectifying unit starts an operation of receiving the input voltage and generating a third voltage obtained by rectifying the input voltage based on the input voltage.
    The second frequency modulation unit receives the third voltage and generates a fourth voltage on which a pulse wave having a fourth frequency higher than the third frequency of the third voltage is superimposed on the third voltage. Starting operation based on the third voltage,
    The second booster according to any one of claims 2 to 6, wherein the second booster receives the fourth voltage from the second frequency modulation unit and generates a second output voltage higher than the fourth voltage by charge pump operation. Power converter according to claim 1.
  9.  第1周波数を有する入力電圧の電力を発生する電力源と、
     前記電力源に接続されて、前記入力電圧の電力を、直流電圧の電力に変換する請求項1~8の何れか一項に記載の電力変換装置と、を備える、電源装置。
    A power source generating power of an input voltage having a first frequency;
    9. A power supply device comprising: the power conversion device according to any one of claims 1 to 8, which is connected to the power source and converts power of the input voltage into power of a direct current voltage.
PCT/JP2018/045295 2017-12-22 2018-12-10 Power conversion device and power supply device WO2019124141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019560983A JP7165997B2 (en) 2017-12-22 2018-12-10 Power converter and power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-246692 2017-12-22
JP2017246692 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019124141A1 true WO2019124141A1 (en) 2019-06-27

Family

ID=66992637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045295 WO2019124141A1 (en) 2017-12-22 2018-12-10 Power conversion device and power supply device

Country Status (2)

Country Link
JP (1) JP7165997B2 (en)
WO (1) WO2019124141A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526825A (en) * 2010-05-20 2013-06-24 シーメンス アクチエンゲゼルシヤフト Improved electrical energy output coupling from a repolarizable piezoelectric energy transducer
JP2016054856A (en) * 2014-09-08 2016-04-21 株式会社三共 Game machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242441B2 (en) * 1992-04-06 2001-12-25 沖電気工業株式会社 Charge pump circuit
US20090033293A1 (en) 2007-08-01 2009-02-05 Intersil Americas Inc. Voltage converter with combined capacitive voltage divider, buck converter and battery charger
JP6416033B2 (en) 2015-03-31 2018-10-31 株式会社東芝 Thermoelectric generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526825A (en) * 2010-05-20 2013-06-24 シーメンス アクチエンゲゼルシヤフト Improved electrical energy output coupling from a repolarizable piezoelectric energy transducer
JP2016054856A (en) * 2014-09-08 2016-04-21 株式会社三共 Game machine

Also Published As

Publication number Publication date
JP7165997B2 (en) 2022-11-07
JPWO2019124141A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
Du et al. A fully integrated split-electrode SSHC rectifier for piezoelectric energy harvesting
Dell'Anna et al. State-of-the-art power management circuits for piezoelectric energy harvesters
Romani et al. Micropower design of a fully autonomous energy harvesting circuit for arrays of piezoelectric transducers
Rahimi et al. Fully self-powered electromagnetic energy harvesting system with highly efficient dual rail output
Chamanian et al. Power-efficient hybrid energy harvesting system for harnessing ambient vibrations
Liu et al. An intermittent self-powered energy harvesting system from low-frequency hand shaking
US9054585B2 (en) Low drop diode equivalent circuit
Uluşan et al. A fully integrated and battery-free interface for low-voltage electromagnetic energy harvesters
Fang et al. Exploring piezoelectric for sound wave as energy harvester
Lallart et al. Transient performance of energy harvesting strategies under constant force magnitude excitation
Uluşan et al. Highly Integrated 3 V Supply Electronics for Electromagnetic Energy Harvesters With Minimum 0.4 V $ _ {\mathbf {peak}} $ Input
WO2019230916A1 (en) Power supply circuit and vibration power generation device
Jabbar et al. Sustainable micro-power circuit for piezoelectric energy harvesting tile
McCullagh An active diode full-wave charge pump for low acceleration infrastructure-based non-periodic vibration energy harvesting
Raghavendran et al. Supercapacitor charging from piezoelectric energy harvesters using multi‐input buck–boost converter
Savarimuthu et al. Analysis and design of power conditioning circuit for piezoelectric vibration energy harvester
Nechibvute et al. Piezoelectric energy harvesting using synchronized switching techniques
JP7165997B2 (en) Power converter and power supply
US11121648B2 (en) Piezoelectric generator
Javvaji et al. Multi-step bias-flip rectification for piezoelectric energy harvesting
Edla et al. Self-powered boost-converter for power optimisation and piezo garden lights
Edla et al. A self-powered H-Bridge joule theory circuit for piezoelectric energy harvesting systems
Wang et al. A review of start-up circuits for low voltage self-powered DC-type energy harvesters
Flores-Quintero et al. A parallel auto-adaptive topology for integrated energy harvesting system
US11658633B2 (en) Impedance adjustment circuit, power conversion element, and power supply element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891173

Country of ref document: EP

Kind code of ref document: A1