WO2019124076A1 - Medical signal processing device - Google Patents

Medical signal processing device Download PDF

Info

Publication number
WO2019124076A1
WO2019124076A1 PCT/JP2018/044729 JP2018044729W WO2019124076A1 WO 2019124076 A1 WO2019124076 A1 WO 2019124076A1 JP 2018044729 W JP2018044729 W JP 2018044729W WO 2019124076 A1 WO2019124076 A1 WO 2019124076A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic resonance
artifact
image
signal
pattern
Prior art date
Application number
PCT/JP2018/044729
Other languages
French (fr)
Japanese (ja)
Inventor
修平 新田
竹島 秀則
Original Assignee
キヤノンメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018227295A external-priority patent/JP7246903B2/en
Application filed by キヤノンメディカルシステムズ株式会社 filed Critical キヤノンメディカルシステムズ株式会社
Priority to US16/429,771 priority Critical patent/US20190287674A1/en
Publication of WO2019124076A1 publication Critical patent/WO2019124076A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • Embodiments of the present invention relate to a medical signal processing apparatus.
  • artifacts due to various factors can occur in an image after Fourier transform or inverse Fourier transform.
  • aliasing may occur in the image.
  • EPI Echo Planar Imaging
  • N / 2 artifact may be generated in the image.
  • CNN convolutional neural network
  • the conventional CNN framework does not improve the accuracy of artifact reduction.
  • the problem to be solved by the present invention is to reduce the output error due to the learned model.
  • the medical signal processing device has a processing unit.
  • the processing unit includes: a correction signal corrected to reduce the pattern with respect to a medical signal having a pattern appearing at a position shifted by a known shift amount along a known direction; pattern related information related to the pattern;
  • the medical signal is input to a learned model that is functioned to output any one of disease information related to the medical signal, and the correction signal is input using the direction and the shift amount And / or one of the pattern related information and the disease information.
  • FIG. 1 is a view showing an example of the arrangement of an image processing apparatus and a magnetic resonance imaging apparatus according to the embodiment.
  • FIG. 2 is a diagram for explaining the forward propagation function by the processing circuit according to the present embodiment.
  • FIG. 3 is a diagram for explaining the forward propagation function by the processing circuit according to the application example of the present embodiment.
  • FIG. 4 is a diagram showing an example of a detailed configuration regarding the magnetic resonance imaging apparatus in the present embodiment.
  • FIG. 5 is a flowchart showing an example of the processing procedure in the image generation processing in the present embodiment.
  • FIG. 6 is a diagram showing an example of a temporary image, the number of channels of a first convolution result for the temporary image, and the number of channels of a second convolution result for the first convolution result in the present embodiment.
  • FIG. 1 is a view showing an example of the arrangement of an image processing apparatus and a magnetic resonance imaging apparatus according to the embodiment.
  • FIG. 2 is a diagram for explaining the forward propagation function by the processing circuit according to the
  • FIG. 7 is a diagram showing an example of generation of a magnetic resonance image using the Nth convolution result by the Nth convolution layer in the present embodiment.
  • FIG. 8 shows, in the application example of this embodiment, a 2-channel image obtained by dividing the temporary image into two, the number of channels resulting from the first convolution of 2-channel with respect to the 2-channel image, and 2 for the first convolution result obtained with 2-channel. It is a figure which shows an example with the channel number of the 2nd convolution result of a channel.
  • FIG. 8 shows, in the application example of this embodiment, a 2-channel image obtained by dividing the temporary image into two, the number of channels resulting from the first convolution of 2-channel with respect to the 2-channel image, and 2 for the first convolution result obtained with 2-channel. It is a figure which shows an example with the channel number of the 2nd convolution result of a channel.
  • FIG. 9 shows, in an application example of the present embodiment, generation of a two-channel magnetic resonance image using a two-channel N-th convolution result by the N-th convolutional layer and a magnetic resonance obtained by combining the two-channel magnetic resonance image
  • FIG. 10 is a diagram showing an example of the configuration of a medical signal processing apparatus in an application example of the present embodiment.
  • FIG. 11 is a flowchart illustrating an example of the procedure of the artifact reduction process in the first application example of the present embodiment.
  • FIG. 12 is a diagram showing an example of cyclic shift processing for a magnetic resonance image having a reduction factor corresponding to 2 and having aliasing artifacts along the phase encoding direction in the first application example of the present embodiment.
  • FIG. 13 is a diagram showing an example of cyclic shift processing for a magnetic resonance image having a reduction factor corresponding to 3 and having aliasing artifacts along the phase encoding direction in the first application example of the present embodiment.
  • FIG. 14 is a flowchart illustrating an example of the procedure of the information generation process in the second application example of the present embodiment.
  • FIG. 15 is a diagram showing an example of an electrocardiogram waveform as a biological signal in the third application example of the present embodiment.
  • FIG. 16 is a diagram showing an example of a medical signal processing apparatus in a fourth application example of the present embodiment.
  • FIG. 17 is a flowchart illustrating an example of the procedure of the information generation process in the fourth application example of the present embodiment.
  • FIG. 14 is a flowchart illustrating an example of the procedure of the information generation process in the second application example of the present embodiment.
  • FIG. 15 is a diagram showing an example of an electrocardiogram waveform as a biological signal in the third application example of the present embodiment
  • FIG. 18 is a diagram showing an example of aliasing preprocessing in the fourth application example of the present embodiment.
  • FIG. 19 is a view showing an example of a medical signal processing apparatus in a fifth application example of the present embodiment.
  • FIG. 20 is a flowchart illustrating an example of a procedure of combined image generation processing in the fifth application example of the present embodiment.
  • FIG. 21 is a diagram showing an example of the post-aliasing process in the fifth application example of the present embodiment.
  • FIG. 1 is a view showing an example of the arrangement of an image processing apparatus and a magnetic resonance imaging apparatus according to the embodiment.
  • the magnetic resonance imaging apparatus 100 includes an image processing apparatus 150 in addition to components such as a static magnetic field magnet, a gradient magnetic field coil, and a high frequency coil, which are not shown. .
  • the image processing device 150 generates a magnetic resonance image.
  • the image processing apparatus 150 is, for example, a dedicated apparatus for generating a magnetic resonance image, or an apparatus used in combination with other functions.
  • the image processing apparatus 150 is described as a component of the magnetic resonance imaging apparatus 100, but the embodiment is not limited thereto.
  • the function executed in the image processing apparatus 150 is It may be another device communicably connected to the magnetic resonance imaging apparatus 100. In this case, another device as the image processing device 150 may be installed at another site outside the hospital.
  • the image processing apparatus 150 further includes a processing circuit 151, a memory 152, and an input / output interface 153.
  • the processing circuit 151 is, for example, a central processing unit (CPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), a programmable logic device (for example, a simple programmable logic device (Simple Programmable logic device). Logic Device (SPLD), Complex Programmable Logic Device (CPLD), Field Programmable Gate Array (FPGA), and the like.
  • the processing circuit 151 realizes a function by reading and executing a program stored in the memory 152.
  • the program may be directly incorporated into the processing circuit 151 instead of storing the program in the memory 152.
  • the processing circuit 151 realizes a function by reading and executing a program incorporated in the own circuit.
  • a function corresponding to the program may be realized by a combination of logic circuits. Note that the processing circuit 151 of the present embodiment is not limited to the case where each processing circuit 151 is configured as a single circuit, and a plurality of independent circuits are combined to form one processing circuit 151 to realize its function. You may do it.
  • the processing circuit 151 generates a magnetic resonance image using deep learning, which is one of machine learning.
  • General deep learning is a deeper layer of "neural network", which is an algorithm modeled on neurons in the brain of an organism.
  • the processing circuit according to the present embodiment generates a magnetic resonance image using a method called CNN (Convolution Neural Network) even in deep learning.
  • CNN Convolution Neural Network
  • the general CNN method local features of an image are extracted by performing image filter processing on nodes located in the vicinity of the pixel of interest in the previous layer in the intermediate layer.
  • the processing circuit 151 focuses on the occurrence of artifacts called aliasing and virtual images in the magnetic resonance image, and performs image filtering on nodes located in the vicinity of the pixel of interest.
  • the filtering process is performed on nodes that are located in a distant area away from the pixel of interest, which is different from the neighboring area.
  • FIG. 2 is a diagram for explaining the forward propagation function by the processing circuit 151 according to the present embodiment.
  • the processing circuit 151 when applying the learned model to the magnetic resonance image in which aliasing or a virtual image is generated, the processing circuit 151 sets nodes positioned in a plurality of regions (for example, the above-described near region and separated regions). Filter the object.
  • the positions of the plurality of regions are determined according to the imaging conditions.
  • the imaging conditions include, for example, a reduction factor (the number of thinning steps) indicating the degree of line thinning of k space in PI (Parallel Imaging), an imaging parameter of a pulse sequence of FOV (Field Of View), EPI method, etc. .
  • the processing circuit 151 calculates aliasing, a virtual image, a shift due to a chemical shift, and the like in the magnetic resonance image according to the imaging condition, and derives a plurality of regions in which the same pixel may exist in the magnetic resonance image.
  • the region includes one or more pixels.
  • the processing circuit 151 applies a filtering process to nodes located in the plurality of derived regions. That is, the processing circuit 151 is connected to one of the first nodes in the intermediate layer of the previous stage connected to the input side to each of the plurality of intermediate layers for each of the plurality of intermediate layers of the convolutional neural network corresponding to the learned model. And the output from the second node determined by the imaging condition in the intermediate layer of the previous stage are processed to be input together.
  • the magnetic resonance image output from the learned model corresponds to an artifact reduced image with reduced artifacts.
  • the processing circuit 151 may be designed in the spatial direction as shown in FIG. 2 when the target of the filtering process is derived so as to include both the pixels in the vicinity region of the target pixel and the pixels in the separation region. And may be designed in the channel direction as shown in FIG.
  • FIG. 3 is a diagram for explaining the forward propagation function by the processing circuit according to the application example of the present embodiment.
  • the magnetic resonance imaging apparatus 100 acquires magnetic resonance signals to obtain k-space data by executing pulses in accordance with predetermined imaging conditions. Further, the image processing device 150 performs Fourier transform or inverse Fourier transform on the obtained k-space data to generate a magnetic resonance image. Next, the image processing apparatus 150 reads the learned model stored in the memory 152, performs forward propagation processing on the generated magnetic resonance image, and displays the magnetic resonance image whose image quality is improved compared to the input image. Output to the output interface of the device etc.
  • the learned model used by the image processing apparatus 150 at the time of the forward propagation process is one in which the position of the area to be subjected to the filtering process is specified according to the imaging condition at the time of collecting the input image.
  • the image processing apparatus 150 stores a plurality of learned models corresponding to the imaging condition in the memory 152, and during the forward propagation process, the learned model matching the imaging condition is selected from among the plurality of learned models. select.
  • FIG. 4 is a diagram showing an example of a detailed configuration of the magnetic resonance imaging apparatus 100 in the present embodiment.
  • the magnetic resonance imaging apparatus 100 includes a static magnetic field magnet 101, a gradient magnetic field coil 103, a gradient magnetic field power supply 105, a bed 107, a bed control circuit (system control unit) 109, and a transmission circuit ( Transmission unit) 113, transmission coil 115, reception coil 117, reception circuit (reception unit) 119, imaging control circuit (collection unit) 121, system control circuit (system control unit) 123, storage device 125 , And an image processing apparatus 150.
  • the subject P is not included in the magnetic resonance imaging apparatus 100.
  • the static magnetic field magnet 101 is a hollow substantially cylindrical magnet.
  • the static magnetic field magnet 101 generates a substantially uniform static magnetic field in the internal space.
  • a superconducting magnet or the like is used as the static magnetic field magnet 101.
  • the gradient magnetic field coil 103 is a hollow and substantially cylindrical coil.
  • the gradient magnetic field coil 103 is disposed inside the static magnetic field magnet 101.
  • the gradient coil 103 is formed by combining three coils corresponding to X, Y, and Z axes orthogonal to one another.
  • the Z-axis direction is assumed to be the same as the direction of the static magnetic field.
  • the Y-axis direction is a vertical direction
  • the X-axis direction is a direction perpendicular to the Z-axis and the Y-axis.
  • the three coils in the gradient magnetic field coil 103 are individually supplied with current from the gradient magnetic field power supply 105 to generate gradient magnetic fields whose magnetic field strengths change along the X, Y, and Z axes.
  • the gradient magnetic fields of the X, Y, and Z axes generated by the gradient magnetic field coil 103 form, for example, a gradient magnetic field for slice selection, a gradient magnetic field for phase encoding, and a gradient magnetic field for frequency encoding (also referred to as readout gradient magnetic field).
  • the slice selection gradient magnetic field is used to arbitrarily determine the imaging cross section.
  • the phase encoding gradient magnetic field is used to change the phase of the magnetic resonance signal according to the spatial position.
  • the frequency encoding gradient magnetic field is used to change the frequency of the magnetic resonance signal according to the spatial position.
  • the gradient magnetic fields of the X, Y, and Z axes generated by the gradient magnetic field coil 103 make the direction of the gradient magnetic field twice in order to refocus the phase of the spin on the XY plane in the gradient echo method. It is used as an inverted refocusing pulse.
  • the gradient magnetic fields of the X, Y, and Z axes generated by the gradient coil 103 are used as an offset of the primary shimming of the static magnetic field.
  • the gradient magnetic field power supply 105 is a power supply device that supplies a current to the gradient magnetic field coil 103 under the control of the imaging control circuit 121.
  • the bed 107 is a device provided with a top plate 1071 on which the subject P is placed.
  • the bed 107 inserts the top plate 1071 on which the subject P is placed into the bore 111 under the control of the bed control circuit 109.
  • the bed 107 is installed, for example, in the examination room such that the longitudinal direction is parallel to the central axis of the static magnetic field magnet 101.
  • the bed control circuit 109 is a circuit that controls the bed 107.
  • the bed control circuit 109 drives the bed 107 in accordance with an instruction from the operator via the input / output interface 153, thereby moving the top plate 1071 in the longitudinal direction, the up-down direction, and in some cases, the left-right direction.
  • the transmission circuit 113 supplies a high frequency pulse modulated at the Larmor frequency to the transmission coil 115 under the control of the imaging control circuit 121.
  • the transmission coil 115 is an RF coil disposed inside the gradient coil 103.
  • the transmission coil 115 generates an RF (Radio Frequency) pulse corresponding to a high frequency magnetic field in response to the output from the transmission circuit 113.
  • the transmission coil 115 is, for example, a whole-body coil (hereinafter referred to as a WB (Whole Body) coil) having a plurality of coil elements.
  • the WB coil may be used as a transmit and receive coil.
  • the transmission coil 115 may be a WB coil formed by one coil.
  • the receiving coil 117 is an RF coil disposed inside the gradient coil 103.
  • the receiving coil 117 receives the magnetic resonance signal emitted from the subject P by the high frequency magnetic field.
  • the receiving coil 117 outputs the received magnetic resonance signal to the receiving circuit 119.
  • the receiving coil 117 is, for example, a coil array having one or more, typically a plurality of coil elements.
  • the transmission coil 115 and the reception coil 117 are described as separate RF coils in FIG. 1, the transmission coil 115 and the reception coil 117 may be implemented as an integrated transmission / reception coil.
  • the transmission / reception coil corresponds to the imaging region of the subject P, and is, for example, a local transmission / reception RF coil such as a head coil.
  • the receiving circuit 119 generates digital magnetic resonance signals (hereinafter, referred to as magnetic resonance data) based on the magnetic resonance signals output from the receiving coil 117 under the control of the imaging control circuit 121. Specifically, the receiving circuit 119 performs various signal processing on the magnetic resonance signal output from the receiving coil 117, and then performs analog / digital (A / D ( Perform Analog to Digital) conversion. The receiving circuit 119 samples (samples) A / D converted data. Thereby, the receiving circuit 119 generates magnetic resonance data. The receiving circuit 119 outputs the generated magnetic resonance data to the imaging control circuit 121.
  • magnetic resonance data digital magnetic resonance signals
  • the imaging control circuit 121 controls the gradient magnetic field power source 105, the transmitting circuit 113, the receiving circuit 119, and the like in accordance with the imaging protocol output from the processing circuit 151, and performs imaging on the subject P.
  • the imaging protocol has various pulse sequences depending on the examination. In the imaging protocol, the magnitude of the current supplied to the gradient coil 103 by the gradient power supply 105, the timing when the current is supplied to the gradient coil 103 by the gradient power supply 105, and the transmission coil 113 are supplied by the transmission circuit 113.
  • the timing and width of the high frequency pulse, the timing when the transmission circuit 113 supplies the high frequency pulse to the transmission coil 115, the timing when the magnetic resonance signal is received by the reception coil 117, etc. are defined.
  • the system control circuit 123 has a processor (not shown) as a hardware resource, a memory such as a ROM (Read-Only Memory) and a RAM (Random Access Memory), etc., and controls the magnetic resonance imaging apparatus 100 by a system control function. . Specifically, the system control circuit 123 reads out the system control program stored in the storage device 125, expands it on the memory, and controls each circuit of the magnetic resonance imaging apparatus 100 according to the expanded system control program. For example, the system control circuit 123 reads out the imaging protocol from the storage device 125 based on the imaging condition input by the operator via the input / output interface 153. The system control circuit 123 may generate an imaging protocol based on the imaging conditions.
  • the system control circuit 123 transmits an imaging protocol to the imaging control circuit 121 and controls imaging of the subject P.
  • the system control circuit 123 may be incorporated in the processing circuit 151.
  • the system control function is executed by the processing circuit 151, and the processing circuit 151 functions as a substitute for the system control circuit 123.
  • the storage device 125 stores various programs executed by the system control circuit 123, various imaging protocols, imaging conditions including a plurality of imaging parameters defining the imaging protocol, and the like.
  • the storage device 125 is, for example, a RAM, a semiconductor memory element such as a flash memory, a hard disk drive (Hard Disk Drive), a solid state drive, an optical disk or the like.
  • the storage device 125 may be a drive device or the like that reads and writes various information from and to a portable storage medium such as a CD-ROM drive, a DVD drive, or a flash memory.
  • the image processing apparatus 150 is mounted on the magnetic resonance imaging apparatus 100, data stored in the storage device 125 may be stored in the memory 152. At this time, the memory 152 functions as a substitute for the storage device 125.
  • the image processing apparatus 150 includes a processing circuit 151, a memory 152, and an input / output interface 153.
  • the processing circuit 151 has a reconstruction function 1511, a selection function 1513, and an image generation function 1515.
  • Various functions performed by the reconstruction function 1511, the selection function 1513, and the image generation function 1515 are stored in the memory 152 in the form of a program that can be executed by a computer.
  • the processing circuit 151 is a processor that reads programs corresponding to these various functions from the memory 152 and executes the read programs to realize the functions corresponding to the respective programs.
  • the processing circuit 151 in the state where each program is read has a plurality of functions and the like shown in the processing circuit 151 of FIG.
  • the reconstruction function 1511, the selection function 1513, and the image generation function 1515 will be described in detail later.
  • FIG. 1 has been described that these various functions are realized by a single processing circuit 151, a plurality of independent processors are combined to form the processing circuit 151, and each processor executes a program.
  • the function may be realized by In other words, each function described above may be configured as a program, and one processing circuit may execute each program, or a specific function may be implemented in a dedicated independent program execution circuit. May be
  • the reconstruction function 1511, the selection function 1513, and the image generation function 1515 included in the processing circuit 151 are an example of a reconstruction unit, a selection unit, and an image generation unit.
  • processor means, for example, a circuit such as a CPU, a GPU or an ASIC, a programmable logic device (SPLD, CPLD, and FPGA).
  • the bed control circuit 109, the transmission circuit 113, the reception circuit 119, the imaging control circuit 121, the system control circuit 123, and the like are similarly configured by electronic circuits such as the processor.
  • the processing circuit 151 fills the magnetic resonance data along the readout direction of the k space by the reconstruction function 1511 according to the strength of the readout gradient magnetic field.
  • the processing circuit 151 generates a magnetic resonance image by performing Fourier transform or inverse Fourier transform on the magnetic resonance data filled in the k space.
  • the processing circuit 151 outputs the magnetic resonance image to the memory 152 and the input / output interface 153.
  • the memory 152 stores magnetic resonance data filled in the k space through the reconstruction function 1511, image data generated by the image generation function 1515, and the like.
  • the memory 152 stores programs corresponding to various functions executed by the processing circuit 151.
  • the memory 152 is, for example, a semiconductor memory device.
  • the input / output interface 153 has an input interface and an output interface.
  • the input interface includes, for example, a pointing device such as a mouse or a circuit related to the input device such as a keyboard, an input terminal from a network, and the like.
  • the circuits included in the input interface are not limited to circuits related to physical operation parts such as a mouse and a keyboard.
  • the input interface receives an electrical signal corresponding to an input operation from an external input device provided separately from the magnetic resonance imaging apparatus 100, and outputs the received electrical signal to various circuits.
  • the processing circuit of The output interface is, for example, a display, an output terminal to a network, or the like.
  • the display displays various magnetic resonance images reconstructed by the reconstruction function 1511, various magnetic resonance images generated by the image generation function 1515, and various information related to imaging and image processing under the control of the system control function.
  • the display is, for example, a display device such as a CRT display, a liquid crystal display, an organic EL display, an LED display, a plasma display, or any other display, monitor or the like known in the art.
  • the above is the description of the overall configuration of the magnetic resonance imaging apparatus 100 according to the present embodiment.
  • the image generation processing implemented by the reconstruction function 1511, the selection function 1513, and the image generation function 1515 in the present embodiment will be described below.
  • the image generation process in the present embodiment applies a learned model corresponding to the imaging condition when the magnetic resonance image input to the image processing apparatus 150 is acquired by magnetic resonance imaging to the input magnetic resonance image.
  • the present invention is to output a magnetic resonance image with improved image quality by performing forward propagation processing to improve the image quality.
  • the memory 152 stores a plurality of learned models learned by a model learning device (not shown) in association with a plurality of imaging conditions as a program.
  • the plurality of imaging conditions include, as described above, a reduction factor indicating a thinning rate in the thinning-out acquisition at equal intervals in k space, an imaging parameter of a pulse sequence of FOV, EPI method, and the like.
  • the learned model will be described.
  • the learned model is generated by a model learning device (not shown). Specifically, the model learning device generates a learned model by causing the model before machine learning to perform machine learning according to the model learning program, based on the learning data stored in the learning data storage device (not shown). Do.
  • the model learning device is a computer such as a workstation having a processor such as a CPU and a GPU.
  • the model learning device and the learning data storage device may be communicably connected via a cable or a communication network, or the learning data storage device may be mounted on the model learning device. In this case, learning data is supplied from the learning data storage device to the model learning device via a cable or a communication network. Also, the model learning device and the learning data storage device may not be communicably connected. In this case, learning data is supplied from the learning data storage device to the model learning device via the portable storage medium in which the learning data is stored.
  • the learned model according to the present embodiment is a CNN that outputs a magnetic resonance image from which an artifact in the magnetic resonance image has been removed by using a magnetic resonance image whose occurrence position of the artifact is known according to imaging conditions. At this time, the total number of filters in CNN is preset.
  • the learning data includes data of a magnetic resonance image whose occurrence position of an artifact is known according to imaging conditions, data indicating a near region and a distant region to be subjected to filter processing in the CNN, that is, convolution processing, and an artifact in the magnetic resonance image Is the data of the removed magnetic resonance image.
  • the near area and the distant area are preset based on the occurrence position of the artifact according to the imaging condition. For example, when the artifact is aliasing according to the reduction factor, the near region and the distant region correspond to a region centered at the position where the pixels overlap due to aliasing. Further, when the artifact is N half artifact in the EPI method, the near region and the distant region correspond to a region centered on the position at which the pixel folded back in the N half artifact overlaps. In addition, when the artifact is a chemical shift, the near region and the distant region correspond to a region centered at the position where the pixels shifted by the chemical shift overlap.
  • the adjacent area and the separated area correspond to a plurality of convolution positions according to the occurrence position of the artifact due to the same physical position in the CNN. For this reason, the model learning device can determine the convolution layer in the CNN so as to include both the vicinity region of the pixel of interest and the remote region including the far pixel superimposed on the pixel of interest.
  • the learned model generated by the model learning device is, for example, a neural network having a convolutional layer whose convolutional position is changed according to equally spaced decimation rates in decimated acquisition in Cartesian, N half artefact occurrence positions in EPI
  • a neural network with a convolutional layer whose convolutional position is changed according to the neural network a neural network with a convolutional layer whose convolutional position is changed according to a chemical shift, a decimation ratio in decimated collection and occurrence position of N half artifact in EPI and chemical
  • It is a program that causes the processing circuit 151 to execute a neural network or the like having a convolutional layer whose convolutional position is changed according to the shift.
  • These neural networks are stored in the memory 152 as a program in association with the imaging conditions.
  • FIG. 5 is a flowchart showing an example of the processing procedure in the image generation processing.
  • the artifact related to the explanation in this flowchart is described as being a aliasing artifact according to the reduction factor.
  • the artifact applicable as the present embodiment is not limited to the aliasing artifact, and may be, for example, an N half artifact in the EPI method, an artifact due to a chemical shift, or the like.
  • Step Sa1 The imaging conditions are input by the instruction of the operator via the input / output interface 153.
  • the imaging condition has a reduction factor of 2.
  • the processing circuit 151 uses the selection function 1513 to select a learned model corresponding to the imaging condition using the input imaging condition.
  • the selection of the learned model may be performed after step Sa3 described later.
  • Step Sa2 The imaging control circuit 121 collects magnetic resonance data by executing a pulse sequence in accordance with the input imaging conditions.
  • the imaging control circuit 121 outputs the acquired magnetic resonance data to the processing circuit 151.
  • the processing circuit 151 arranges the magnetic resonance data on the memory 152 in a data space indicating k space.
  • Step Sa3 The processing circuit 151 reconstructs a temporary image by performing Fourier transform or inverse Fourier transform on the magnetic resonance data arranged in the data space, that is, k-space data, by the reconstruction function 1511.
  • the temporary image an artifact according to the imaging condition appears. For example, when a pulse sequence is executed under an imaging condition in which the reduction factor is 2, the temporary image has aliasing at a half position of the FOV in the phase encoding direction with respect to the FOV in the case where the reduction factor is 1. It becomes an image.
  • Step Sa4 The processing circuit 151 reads the program corresponding to the selected learned model from the memory 152 by the image generation function 1515.
  • the processing circuit 151 executes a program corresponding to the read learned model. Specifically, the processing circuit 151 applies the read learned model to the temporary image to execute forward propagation processing.
  • the processing circuit 151 generates a magnetic resonance image from which an artifact has been removed as a result of forward propagation processing.
  • a reduction factor is input as an imaging condition in step Sa1
  • the magnetic resonance image generated in this step is an image from which aliasing has been removed.
  • the forward propagation function for executing the forward propagation process in this step will be described below with reference to FIGS. 6 and 7.
  • FIG. 6 and 7 are diagrams showing FIG. 2 in detail.
  • FIG. 6 is a diagram showing an example of a temporary image TempI, a channel number 1ConvR of a first convolution result for the temporary image TempI, and a channel number 2ConvR of a second convolution result for the first convolution result.
  • the pixel value of the target pixel NP is the sum of the pixel value due to aliasing and the original pixel value not due to aliasing.
  • the convolution position of the target pixel NP includes the vicinity area AR including the target pixel NP and the separation area SR around the position of the pixel folded back to the target pixel NP.
  • the processing circuit 151 causes the image generation function 1515 to perform a filter operation corresponding to a convolution operation on a plurality of pixel values included in the near area AR and the distant area SR in the temporary image TempI in the first convolutional layer in the learned model. Execute the process Specifically, processing circuit 151 uses a plurality of filter coefficients in each of a plurality of filters used in the first convolutional layer in the selected learned model as weighting coefficients, and is included in neighboring region AR and remote region SR. A product-sum operation, ie, a convolution operation, is performed on the plurality of pixel values to be processed.
  • the processing circuit 151 associates the product-sum value, which is the result of the convolution operation, in the first convolution result with the position NP1 corresponding to the target pixel NP.
  • the processing circuit 151 executes filtering in the first convolutional layer in parallel over the total number of filters in the learned model. By these processes, the processing circuit 151 calculates a first convolution result. For example, when the total number of filters is 64, the channel number 1ConvR of the first convolution result corresponds to 64 maps.
  • the processing circuit 151 inputs the first convolution result to the second convolution layer in the selected learned model by the image generation function 1515. Specifically, the processing circuit 151 uses the plurality of filter coefficients in each of the plurality of filters used in the second convolutional layer as weighting coefficients to cope with the channel number 1ConvR of the first convolution result, that is, the total number of filters.
  • a convolution operation is performed on the plurality of product-sum values included in the neighborhood area AR and the separation area SR in the plurality of maps.
  • the convolution coefficient of the near area AR and the distant area SR may be learned using another coefficient or may be the same coefficient.
  • the range of convolution (kernel size) need not be a square, and may be, for example, a shape according to the aspect ratio of the image, or, for example, a shape with a long readout direction may be used as the range of convolution.
  • the processing circuit 151 associates the product-sum value, which is the result of the convolution operation by the second convolution layer, in the second convolution result with the position NP2 corresponding to the target pixel NP.
  • the processing circuit 151 executes filtering in the second convolutional layer in parallel over the total number of filters in the learned model. By these processes, the processing circuit 151 calculates a second convolution result.
  • the processing circuit 151 repeats, in the forward propagation processing FFP, the operation by the filter processing over the total number N of convolutional layers in the learned model.
  • a pooling layer, an activation layer, a contrast normalization layer, a shortcut (ResNet), a connection with previous data (DenseNet), and the like may be provided as appropriate between two adjacent convolutional layers.
  • FIG. 7 is a diagram showing an example of generation of a magnetic resonance image ReI using the Nth convolution result by the Nth convolution layer.
  • the processing circuit 151 generates a magnetic resonance image ReI by applying an all coupling layer to the channel numbers NconvR of the plurality of N-th convolution results by the image generation function 1515.
  • the processing circuit 151 outputs the generated magnetic resonance image ReI to the input / output interface 153.
  • the display at the input / output interface 153 displays the generated magnetic resonance image ReI.
  • the magnetic resonance imaging apparatus 100 in the present embodiment a learned model corresponding to an imaging condition at the time when the input magnetic resonance image is acquired by magnetic resonance imaging is applied to the input magnetic resonance image.
  • forward propagation processing for improving the image quality can be performed to output a magnetic resonance image.
  • magnetic resonance data is collected by thinning collection at equal intervals in k space, and a temporary image is reconstructed by Fourier transform on the magnetic resonance data, and the same physical position is obtained.
  • a magnetic resonance image can be generated by selecting a trained model to be applied to the temporary image and applying the selected learned model to the temporary image.
  • a neural network having a convolutional layer whose convolutional position is changed according to a thinning rate in thinning collection as at least one of a plurality of learned models, N in echo planar imaging A known position according to imaging conditions using a neural network having a convolutional layer in which the convolutional position is changed according to the occurrence position of the half artifact and a neural network having a convolutional layer in which the convolutional position is changed according to the chemical shift. It is possible to generate a magnetic resonance image from which artifacts occurring in the
  • the convolution position according to the known folding position according to the imaging condition that is, the near area AR and the separation area SR
  • the convolution layer is designed by learning the used non-linear mapping, and a trained model having the designed convolution layer can be used to generate a magnetic resonance image from which an artifact is removed.
  • the image quality of the reconstructed magnetic resonance image can be improved.
  • the learned model according to this application example is a CNN that outputs a magnetic resonance image from which an artifact in a temporary image is removed by using a 2-channel image obtained by dividing the temporary image in which the generation position of the artifact is known according to imaging conditions into two. It is.
  • the learning data is data obtained by dividing a magnetic resonance image in which an occurrence position of an artifact is known according to an imaging condition into two, data indicating a near region and a distant region, and data of a magnetic resonance image from which the artifact in the magnetic resonance image is removed. is there.
  • the image input to the CNN is doubled from one channel to two channels as compared to the present embodiment.
  • the model learning device generates a learned model for the present application example by learning CNN using the learning data.
  • the generated learned model is stored as a program in the memory 152 together with the corresponding imaging conditions.
  • the processing circuit 151 causes the image generation function 1515 to divide the temporary image into two in step Sa3.
  • the processing circuit 151 generates a two-channel image, for example, by dividing the temporary image into two along an axis where no aliasing occurs in the temporary image.
  • the axis which divides a temporary image into 2 is not limited to the said axis
  • the processing circuit 151 applies the selected learned model to the two-channel image and performs forward propagation processing to generate a magnetic resonance image from which an artifact has been removed.
  • an artifact related to the description in the present application example will be described as a aliasing artifact according to the reduction factor.
  • the artifact applicable as the present application is not limited to the aliasing artifact, and may be, for example, an N half artifact in the EPI method, an artifact due to a chemical shift, or the like.
  • FIG. 8 shows a 2-channel image 2cTempI obtained by dividing the temporary image TempI into two, a channel number 1ConvR2ch of the first convolution result of the 2-channel for the 2-channel image 2cTempI, and a second of the 2 channels for the first convolution result of the 2-channel.
  • the pixel value of the target pixel NP2c is the sum of the pixel value due to aliasing and the original pixel value that is not due to aliasing.
  • the convolution position of the target pixel NP2c in the first image 2cI1 of the two-channel image 2cTempI is the second image of the two-channel image 2cTempI and the neighboring area AR including the target pixel NP2 in the first image 2cI1.
  • This is a separation area SR centered on the position of the pixel which is folded back to the target pixel NP2 at 2cI2.
  • the processing circuit 151 causes the image generation function 1515 to set a plurality of pixel values included in the neighboring area AR in the first image 2cI1 and a separation area SR in the second image 2cI2 in the first convolutional layer in the learned model.
  • a filtering process corresponding to a convolution operation is performed on a plurality of included pixel values.
  • processing circuit 151 uses a plurality of filter coefficients in each of a plurality of filters used in the first convolutional layer in the selected learned model as weighting coefficients, and is included in neighboring region AR and remote region SR.
  • a product-sum operation ie, a convolution operation, is performed on the plurality of pixel values to be processed.
  • the processing circuit 151 associates the product-sum value, which is the result of the convolution operation, in the first convolution result of the two channels with the position NP2c1 corresponding to the target pixel NP2c.
  • the processing circuit 151 executes filtering in parallel over the total number of filters in the learned model. Through these processes, the processing circuit 151 calculates the first convolution result of the two channels. For example, when the total number of filters is 128, the channel number 1ConvR2ch of the first convolution result of 2 channels corresponds to 128 maps.
  • the processing circuit 151 inputs the first convolution result by the image generation function 1515 to the second convolution layer in the selected learned model. Specifically, the processing circuit 151 uses the plurality of filter coefficients in each of the plurality of filters used in the second convolutional layer as weighting coefficients to correspond to the number of channels of the first convolution result 1ConvR2ch, that is, the total number of filters.
  • a convolution operation is performed on the plurality of product-sum values included in the area ConvR centered on the position NP2c1 in the plurality of maps.
  • the processing circuit 151 associates the product-sum value, which is the result of the convolution operation by the second convolution layer, in the second convolution result of the two channels with the position NP2c2 corresponding to the target pixel NP.
  • the processing circuit 151 executes filtering in the second convolutional layer in parallel over the total number of filters in the learned model. Through these processes, the processing circuit 151 calculates the second convolution result of the two channels.
  • the processing circuit 151 repeats, in the forward propagation processing FFP, the operation by the filter processing over the total number N of convolutional layers in the learned model.
  • a pooling layer, a local contrast normalization layer or the like may be provided as appropriate between two adjacent convolutional layers.
  • FIG. 9 shows an example of generation of a two-channel magnetic resonance image 2cReI using the two-channel N-th convolution result by the N-th convolutional layer and a magnetic resonance image ReI combining the two-channel magnetic resonance image 2cReI FIG.
  • the processing circuit 151 generates a two-channel magnetic resonance image 2cReI by applying all coupling layers to the number of channels NconvRch of the plurality of N-th convolution results by the image generation function 1515. Do.
  • the processing circuit 151 generates a magnetic resonance image ReI from which an artifact is removed by synthesizing the generated two-channel magnetic resonance image 2cReI.
  • the difference between the present embodiment and the present modification is that a complex image is used as a temporary image and a complex operation is used as a convolution operation in the convolution layer. That is, in the present modification, the calculation of CNN is executed as a complex operation in the complex space.
  • the learned model according to the present modification is a CNN that executes a complex operation with a complex image whose occurrence position of an artifact is known according to an imaging condition as input, and outputs a complex image from which the artifact in the complex image is removed.
  • the learning data is data of a complex image whose occurrence position of an artifact is known according to imaging conditions, data indicating a near region and a distant region, and data of a complex image from which an artifact in the complex image is removed.
  • the model learning device generates a learned model for the present application example by learning CNN using the learning data.
  • the generated learned model is stored as a program in the memory 152 together with the corresponding imaging conditions.
  • the processing circuit 151 generates complex magnetic resonance data by performing quadrature detection on the collected magnetic resonance signals by the reconstruction function 1511.
  • the processing circuit 151 generates a complex image by performing Fourier transform or inverse Fourier transform on complex magnetic resonance data.
  • the processing circuit 151 applies the selected learned model to a complex image by the image generation function 1515 to perform forward propagation processing, thereby generating a complex image from which an artifact has been removed.
  • the processing circuit 151 generates a magnetic resonance image using a complex image generated by forward propagation processing.
  • the difference between the application and the present modification is that a real part image and an imaginary part image in a complex image are used as the two-channel image described in the application.
  • the learned model according to the present modification receives as input the real part image and the imaginary part image whose occurrence position of the artifact is known according to the imaging condition, and removes the artefact in the real part image and the imaginary part image. It is a CNN that outputs a partial image and an imaginary part image.
  • the model learning device In the learning data, data of a real part image and an imaginary part image in which the occurrence position of an artifact is known according to imaging conditions, data indicating a near area and a distant area, and an artifact in the real part image and the imaginary part image are respectively removed Data of the real part image and the imaginary part image.
  • the model learning device generates a learned model for the present application example by learning CNN using the learning data.
  • the generated learned model is stored as a program in the memory 152 together with the corresponding imaging conditions.
  • the processing circuit 151 generates complex magnetic resonance data by performing quadrature detection on the collected magnetic resonance signals by the reconstruction function 1511.
  • the processing circuit 151 generates a real part image by performing Fourier transform or inverse Fourier transform on real part data in complex magnetic resonance data.
  • the processing circuit 151 generates an imaginary part image by performing Fourier transform or inverse Fourier transform on imaginary part data in complex magnetic resonance data.
  • the processing circuit 151 applies the selected learned model to the real part image and the imaginary part image by the image generation function 1515 to execute forward propagation processing, thereby removing the real part image and the imaginary part image from which the artifact is removed.
  • Generate The processing circuit 151 generates a magnetic resonance image using the real part image and the imaginary part image generated by the forward propagation processing.
  • a server on the Internet includes, for example, the processing circuit 151 and the memory 152 in FIGS. It becomes.
  • the reconstruction function 1511, the selection function 1513, the image generation function 1515 and the like are realized by installing an image processing program for executing the function in the processing circuit 151 of the server and expanding them on the memory.
  • the server can execute an image generation process and the like.
  • the image quality of the magnetic resonance image can be improved.
  • FIG. 10 is a diagram showing an example of the configuration of the medical signal processing apparatus 200 in the present application example.
  • the medical signal processing apparatus 200 includes an input interface 201, a memory 203, a processing circuit 205, and a display 207.
  • the medical signal processing apparatus 200 may be mounted on the magnetic resonance imaging apparatus 100. Since the input interface 201 and the display 207 correspond to the input / output interface 153 in the embodiment, the description will be omitted.
  • the input interface 201 may function as a communication interface for acquiring imaging conditions and medical images from, for example, a medical image diagnostic apparatus such as a magnetic resonance imaging apparatus.
  • the hardware configuration of the memory 203 and the processing circuit 205 is the same as that of the embodiment, and thus the description thereof is omitted.
  • the processing circuit 205 may have an acquisition function of acquiring imaging conditions and a medical image from a modality (not shown).
  • the processing circuit 205 that realizes the acquisition function functions as an acquisition unit.
  • the memory 203 stores the learned model 231, the imaging condition 2031, and the medical signal 2033.
  • the learned model 231 includes a correction signal corrected to reduce the pattern with respect to the medical signal 2033 having a pattern appearing at a position shifted by a known shift amount along a known direction, and pattern related information on the pattern.
  • a function is provided to output any one of disease information related to the medical signal 2033.
  • the medical signal 2033 is, for example, a magnetic resonance image generated by magnetic resonance imaging on the subject P, and corresponds to the above-described temporary image.
  • the medical signal 2033 is described as a magnetic resonance image in order to make the description specific.
  • the pattern is, for example, an artifact generated in the magnetic resonance image in accordance with the imaging condition 2031 of the magnetic resonance imaging.
  • the artifacts are, for example, at least one of folding artifacts, N half artifacts, chemical shift artifacts, and motion artifacts.
  • the learned model 231 in the present application example will be described as outputting a correction signal.
  • the case where the learned model 231 outputs pattern related information or disease information will be described in the second application example described later. Further, the case where the pattern is a non-artifact and the medical signal 2033 is a non-two-dimensional medical signal (for example, a non-image) will be described in the third application example.
  • the processing relating to the present application example is suitable for denoising and the like with respect to medical signals, but is not limited to denoising and may be used as applications other than denoising as shown in the second and third application examples.
  • the known direction is a direction regarding the occurrence of an artifact, and is defined by the pulse sequence in the imaging condition 2031.
  • the artifact is an aliasing artifact caused by parallel imaging
  • the known direction corresponds to the direction to be folded back in the magnetic resonance image.
  • the direction to be folded back is not limited to the phase encode direction, and may be a direction defined by both the phase encode direction and the frequency encode direction, such as multi-slice caipirinha and two-dimensional caipirinha.
  • the artifact is an N half artifact caused by execution of the EPI pulse sequence
  • the known direction corresponds to, for example, the phase encoding direction in the magnetic resonance image.
  • the known direction corresponds, for example, to the frequency encoding direction in the magnetic resonance image.
  • the known direction corresponds to, for example, the direction of body movement or the pulsatile flow direction of the object P in the magnetic resonance image.
  • the known shift amount is a cyclic translation amount of the magnetic resonance image based on the occurrence position of the artifact, and is defined by the pulse sequence in the imaging condition 2031. For example, if the artifact is a aliasing artifact, the known shift amount corresponds to the Reduction factor in the pulse sequence. Also, when the artifact is N half artifact, the known shift amount corresponds to, for example, the position of the ghost appearing in the phase encoding direction in the magnetic resonance image. When the artifact is a chemical artifact, the known shift amount depends on, for example, the difference between the resonance frequency of water and fat and the strength of the static magnetic field.
  • the known shift amount corresponds, for example, to the position of the ghost appearing in the phase encoding direction in the magnetic resonance image.
  • the folding position with respect to the known direction and the known shift amount is defined or estimated as an occurrence place of an artifact by the imaging condition 2031.
  • the correction signal corresponds to a magnetic resonance image (hereinafter referred to as an artifact reduced image) in which an artifact in the magnetic resonance image is reduced.
  • an artifact reduced image a magnetic resonance image in which an artifact in the magnetic resonance image is reduced.
  • the artifact reduction image is an image corresponding to the magnetic resonance image ReI in FIGS. 7 and 9.
  • the learned model 231 outputs a correction signal to the input magnetic resonance image using the known direction and the known shift amount.
  • the learned model 231 includes a circulation shift layer (Circulation shift layer) 2311 and a CNN 2313 as an example of a deep neural network (hereinafter referred to as DNN).
  • DNN deep neural network
  • the learned model 231 is stored in the memory 203 in association with the imaging condition 2031. That is, the memory 203 stores a plurality of learned models according to the known direction and the known shift amount.
  • the cyclic shift layer 2311 is preset according to the known direction and the known shift amount associated with the occurrence location of the artifact according to the imaging condition 2031.
  • the cyclic shift layer 2311 is a model that is not machine-learned.
  • CNN 2313 is a model generated by machine learning.
  • a learned model 231 in which a cyclic shift layer 2311 not subjected to machine learning and a CNN 2313 generated by machine learning are combined is generated by machine learning.
  • the cyclic shift layer 2311 generates a shift signal by shifting the magnetic resonance image cyclically by a known shift amount along a known direction.
  • the shift signal corresponds to an image (hereinafter referred to as a shift image) in which the magnetic resonance image is shifted by a known shift amount cyclically along a known direction.
  • the cyclical shifting corresponds to circulating the medical signal, assuming that both ends of the medical signal are connected with respect to a known direction.
  • the processing content executed by the cyclic shift layer 2311 may be realized by deep learning. That is, the cyclic shift layer 2311 may be realized as a DNN that outputs a shift image with a magnetic resonance image having a substantially periodicity as an input. The processing content executed by the cyclic shift layer 2311 will be described later.
  • the CNN 2313 is a neural network that is functioned to output a correction signal using a magnetic resonance image and a shift image.
  • a neural network having Locally Connect may be used instead of CNN 2313.
  • the learned model 231 includes a cyclic shift layer 2311 and a CNN 2313.
  • DNN as a full connect may be appropriately used according to the application of the output data output from the learned model 231.
  • ResNet Residual Network
  • Dense Net Dense Net
  • U-Net etc.
  • a combination of cyclic shift layer 2311 and CNN 2313 may be repeatedly executed as appropriate.
  • the processing circuit 205 has a determination function 2511 and an output function 2513.
  • the processing circuit 205 uses the determination function 2511 to determine the known direction and the known shift amount based on the imaging condition 2031 for the subject P.
  • the processing circuit 205 determines a learned model based on the determined direction and the determined shift amount.
  • the processing circuit 205 inputs a magnetic resonance image to the determined learned model by the output function 2513, and outputs a correction signal using a known direction and a known shift amount.
  • the processing circuit 205 corresponds to a processing unit, and is configured by an electronic circuit such as the processor described above.
  • FIG. 11 is a flowchart illustrating an example of the procedure of the artifact reduction process.
  • Step Sb1 The processing circuit 205 determines the learned model to which the magnetic resonance image is input using the imaging condition 2031 by the determination function 2511. Specifically, based on the imaging condition 2031 used for acquiring the magnetic resonance image, the processing circuit 205 determines a direction in which a pattern such as an artifact appears (corresponding to a known direction, hereinafter referred to as an artifact occurrence direction). The amount of shift by which the pattern shifts in a known direction (hereinafter referred to as a shift amount of shift) is determined.
  • the processing circuit 205 collates the imaging parameter associated with the magnetic resonance image with the correspondence table between the direction for the imaging parameter of the pulse sequence and the shift amount (hereinafter referred to as a direction shift amount correspondence table). .
  • the processing circuit 205 determines the artifact occurrence direction and the shift amount by the collation using the direction shift amount correspondence table.
  • the direction shift amount correspondence table is stored in advance in the memory 203, and is read from the memory 203 to the processing circuit 205 by the determination function 2511.
  • the processing circuit 205 uses the determination function 2511 to collate the artifact occurrence direction and the shift amount with the correspondence table of the learned model for the direction and the shift amount (hereinafter referred to as a model correspondence table).
  • the processing circuit 205 determines a learned model by collation using a model correspondence table.
  • the model correspondence table is stored in advance in the memory 203.
  • the processing circuit 205 reads the determined learned model from the memory 203 to the processing circuit 205.
  • the processing circuit 205 that implements the determination function 2511 corresponds to a determination unit.
  • Step Sb2 The processing circuit 205 causes the output function 2513 to generate a shift image via the cyclic shift layer 2311 in the learned model 231. Specifically, the processing circuit 205 inputs a magnetic resonance image to the cyclic shift layer 2311. The cyclic shift layer 2311 generates a shifted image, which is shifted cyclically by the shift shift amount along the artifact occurrence direction, with respect to the input magnetic resonance image.
  • FIG. 12 is a diagram showing an example of cyclic shift processing for the magnetic resonance image MA1 having a reduction factor corresponding to 2 and having aliasing artifacts along the phase encoding direction.
  • the artifact generation direction is the phase encoding direction (y direction)
  • the shift amount is half (FOVy / 2) of FOVy in the vertical direction.
  • the cyclic shift processing 2315 generates the shift image SI1 by cyclically translating the magnetic resonance image MA1 by FOVy / 2 along the y direction.
  • FIG. 13 is a diagram showing an example of cyclic shift processing on a magnetic resonance image MA2 having a reduction factor corresponding to 3 and having aliasing artifacts along the phase encoding direction.
  • the artifact generation direction is the phase encoding direction (y direction)
  • the shift amount is half the FOVy in the vertical direction (FOVy / 3).
  • the first cyclic shift processing 2317 circularly translates the magnetic resonance image MA2 by FOVy / 3 along the y direction to generate a first shifted image SI2.
  • the second cyclic shift processing 2319 generates a second shift image SI3 by cyclically translating the magnetic resonance image MA2 by 2 ⁇ FOVy / 3 along the y direction.
  • the known shift amount to be cyclically shifted is not limited to those shown in FIGS. 12 and 13, and the step size may be increased according to the type of artifact, the status of the artifact, and the like.
  • Step Sb3 The processing circuit 205 inputs the magnetic resonance image to the CNN 2313 together with the shift image by the output function 2513.
  • the processing circuit 205 inputs the generated shift image SI1 to the CNN 2313 together with the magnetic resonance image MA1.
  • the processing circuit 205 inputs the first shift image SI2 and the second shift image SI3 to the CNN 2313 together with the magnetic resonance image MA1.
  • Step Sb4 The processing circuit 205 outputs the artifact reduced image ReI as a correction signal from the CNN 2313 to which the shift image and the magnetic resonance image output from the cyclic shift layer 2311 are input by the output function 2513.
  • the processing circuit 205 outputs the artifact reduced image ReI to the memory 203 and the display 207.
  • the display 207 displays the artifact reduced image ReI.
  • the artifact reduced image ReI is a magnetic resonance image in which aliasing artifacts are reduced as shown in FIGS. 12 and 13.
  • the processing circuit 205 may output the artifact reduced image ReI to an external device such as a medical image storage device via a network (not shown).
  • the correction signal corrected to reduce the pattern with respect to the medical signal 2033 having the pattern appearing at the position shifted by the known shift amount along the known direction is used.
  • a medical signal 2033 can be input to a learned model that has been functioned to output, and a correction signal can be output using a known direction and a known shift amount.
  • the learned model in the medical signal processing apparatus 200 includes a cyclic shift layer 2311 which generates a shift signal in which the medical signal 2033 is shifted cyclically by a known shift amount along a known direction, a medical signal 2033 And a neural network 2313 that is adapted to output a correction signal using the shift signal.
  • the medical signal 2033 is a magnetic resonance image generated by magnetic resonance imaging on the subject P, and the pattern corresponds to the imaging condition 2031 of the magnetic resonance imaging Artifacts generated in the magnetic resonance image, the correction signal is an artifact reduced image with reduced artifacts, and the learned model 231 is a convolutional neural network having a plurality of intermediate layers, and a plurality of intermediate layers. For each layer, the output from any first node in the intermediate layer of the previous stage connected to the input side to each of the plurality of intermediate layers and the second node determined by the imaging condition 2031 in the intermediate layer of the previous stage Can be processed to be input together with the output of.
  • the medical signal 2033 is a magnetic resonance image generated by magnetic resonance imaging for the subject P, and the pattern is a magnetic resonance image according to the imaging condition 2031 of the magnetic resonance imaging.
  • the generated artifact, the correction signal is an artifact reduced artifact reduction image ReI
  • the neural network is a neural network having local linear combination in each of the plurality of intermediate layers, and the known direction is
  • a known shift amount is a translation amount based on the occurrence position of an artifact, which is a direction regarding the occurrence of an artifact.
  • the artifact is at least one artifact among the aliasing artifact, the N half artifact, the chemical shift artifact, and the motion artifact.
  • the medical signal processing apparatus 200 based on the imaging condition 2031, a magnetic resonance image in which an artifact appearing at a position shifted by a known shift amount along a known direction is reduced is generated. Therefore, the image quality of the magnetic resonance image can be improved, and the diagnostic efficiency for the subject P can be improved.
  • the learned model 231 outputs pattern related information or disease information.
  • DNN may be used instead of CNN 2313.
  • ResNet, DenseNet, U-Net, or the like a 1 ⁇ 2 max pool layer may be appropriately incorporated after the CNN 2313 (or DNN). At this time, by providing DNN as a full connect at the final stage in the learned model 231, the learned model 231 outputs pattern related information or disease information.
  • the pattern related information is, for example, at least one physical parameter used to correct a magnetic resonance image, or data indicating the presence or absence (detection result) of the artifact.
  • the physical parameter corresponds to the estimated value of the physical quantity indicating the delay amount of the generation of the gradient magnetic field.
  • the data indicating the presence or absence of an artifact is, for example, a binary (0 or 1) indicating the presence or absence of each of a plurality of artifacts in a magnetic resonance image.
  • the disease information is data indicating the recognition result of each of a plurality of diseases in the magnetic resonance image.
  • the disease information corresponds to an index value indicating the degree of each of a plurality of diseases in the magnetic resonance image. That is, the disease information has an index value indicating the likelihood of each of a plurality of diseases.
  • the index value may be a value (0 or 1) indicating the presence or absence of a disease in the medical signal.
  • the index value and data indicating the presence or absence of an artifact may be output as a percentage by incorporating a sigmoid function or the like into the learned model 231.
  • FIG. 14 is a flowchart illustrating an example of the procedure of the information generation process in the present application example.
  • the processing of step Sc1 to step Sc3 is the same as the processing of step Sb1 to step Sb3, and thus the description thereof is omitted.
  • Step Sc4 The processing circuit 205 outputs pattern related information or disease information from the CNN 2313 to which the shift image and the magnetic resonance image output from the cyclic shift layer 2311 are input by the output function 2513.
  • the processing circuit 205 outputs pattern related information or disease information to the memory 203 and the display 207.
  • Step Sc5 The display 207 displays the pattern related information or the disease information output in the process of step Sc4.
  • the processing circuit 205 may output pattern related information or disease information to an external apparatus such as a medical image storage apparatus via a network (not shown).
  • the disease information may be stored in the memory 203, an external storage device, or the like in association with the magnetic resonance image input to the learned model 231.
  • the processing circuit 205 may correct the magnetic resonance image using the physical parameter by an image correction function (not shown) in the subsequent processing following this step.
  • the pattern related information is data indicating the presence or absence of an artifact
  • the processing circuit 205 determines that an artifact is present in the magnetic resonance image input to the learned model 231 (hereinafter referred to as artifact presence determination)
  • the processing circuit 205 outputs, to the magnetic resonance imaging apparatus 100, an instruction to execute the magnetic resonance imaging again on the subject P (hereinafter referred to as a reimaging instruction).
  • the processing circuit 205 outputs a re-imaging instruction to the imaging control circuit 121 in response to the artifact presence determination.
  • the imaging control circuit 121 performs magnetic resonance imaging on the subject P again.
  • the medical signal 2033 is a magnetic resonance image generated by magnetic resonance imaging on the subject P, and the pattern is a magnetic resonance image according to the imaging condition 2031 of the magnetic resonance imaging.
  • the pattern related information is a physical parameter used to correct the magnetic resonance image
  • the known direction is a direction regarding the occurrence of the artifact
  • the known shift amount is based on the location of the occurrence of the artifact It is a translational amount.
  • the medical signal 2033 is a magnetic resonance image generated by magnetic resonance imaging for the subject P
  • the pattern is a magnetic resonance image according to the imaging condition 2031 of the magnetic resonance imaging.
  • the generated artifact, the pattern related information is data indicating the presence or absence of the occurrence of the artifact, the known direction is the direction regarding the occurrence of the artifact, and the known shift amount is a translation amount based on the occurrence position of the artifact is there.
  • the medical signal 2033 is a magnetic resonance image generated by magnetic resonance imaging for the subject P
  • the pattern is a magnetic resonance image according to the imaging condition 2031 of the magnetic resonance imaging.
  • the generated artifact is information indicating the recognition result of each of a plurality of diseases in the magnetic resonance image
  • the known direction is the direction regarding the occurrence of the artifact
  • the known shift amount is the occurrence of the artifact It is a translation amount based on position.
  • a magnetic resonance image having an artifact appearing at a position shifted by a known shift amount along a known direction is used to correct the magnetic resonance image.
  • Pattern related information such as data indicating the presence or absence of at least one physical parameter or an artifact, or disease information such as data indicating a recognition result of each of a plurality of diseases in the magnetic resonance image can be obtained.
  • the diagnostic efficiency and the like for the subject P can be improved.
  • the difference between the first application example and the second application example and this application example resides in using the biological signal of the subject P as the medical signal 2033.
  • the biological signal is, for example, a one-dimensional signal such as an electrocardiogram waveform, a pulse waveform, or a respiration waveform.
  • a pattern appearing at a position shifted by a known shift amount along a known direction corresponds to the waveform of a biological signal.
  • the known direction is the time direction for the acquisition of the biological signal.
  • the known shift amount is a period between predetermined time phases in the biological signal, and is, for example, a period of the biological signal.
  • the medical signal processing apparatus 200 may be mounted on a biological signal measuring apparatus that measures a biological signal.
  • the biological signal is described as an electrocardiogram.
  • the medical signal processing apparatus 200 may be mounted on, for example, an electrocardiograph.
  • the medical signal processing device 200 may have a speaker (not shown).
  • the learned model 231 in this application example will be described as outputting disease information.
  • FIG. 15 is a diagram showing an example of an electrocardiogram waveform ECGW as a biological signal in the present application example.
  • a portion of the electrocardiogram waveform ECGW (hereinafter referred to as the first waveform) included in R11 and a portion of the electrocardiogram waveform ECGW (hereinafter referred to as the second waveform) included in R22 are learned. Is input to the pre-processed model.
  • the processing circuit 205 determines the amount of shift by the determination function 2511. Specifically, the processing circuit 205 determines the amount of shift based on the interval between two adjacent R waves in the electrocardiogram waveform. In the present application, since the known direction is a time direction, it is not necessary to determine the known direction.
  • the cyclic shift layer 2311 cyclically shifts, for example, the first waveform and the second waveform according to the shift amount along the time direction.
  • the shift signal is a waveform shown in the order of the second waveform and the first waveform along the time direction.
  • the processing circuit 205 outputs disease information from the CNN 2313 to which the shift signal and the biological signal are input by the output function 2513.
  • the k-th (k is a natural number) output y k in each of the plurality of intermediate layers in CNN 2313 is the value of the i-th (i is a natural number) in the intermediate layer or input layer of the previous stage x i Is given by, for example, the following equation.
  • the processing circuit 205 when the electrocardiogram waveform is as shown in FIG. 15, the processing circuit 205 outputs, as the disease information, an index value indicating the disease likeness of the extrasystole.
  • the processing circuit 205 causes the display 207 to display a warning when the index value is equal to or greater than a predetermined value. At this time, the processing circuit 205 may output a warning sound from the speaker.
  • the medical signal 2033 is a biological signal of the subject P
  • the pattern is a waveform of the biological signal
  • the disease information is a recognition result of each of a plurality of diseases in the biological signal.
  • the known direction is a time direction related to the acquisition of a biological signal
  • the known shift amount is a period between predetermined time phases in the biological signal.
  • a medical signal having a pattern appearing at a position shifted by a known shift amount along a known direction is based on a known direction and a known shift amount.
  • the correction signal, the pattern related information, and the disease information a plurality of partial signals are generated by dividing and generating the plurality of partial signals, and the plurality of partial signals are input to the learned model having DNN without the cyclic shift layer.
  • One is to output one.
  • FIG. 16 is a diagram showing an example of a medical signal processing apparatus 300 in the present application example.
  • the medical signal processing apparatus 300 includes an input interface 201, a memory 303, a partial signal generation circuit (partial signal generation unit) 304, a processing circuit 305, and a display 207.
  • the partial signal generation circuit 304 also referred to as aliasing preprocessor AP, executes preprocessing related to aliasing (hereinafter referred to as aliasing preprocessing).
  • the partial signal generation circuit 304 divides the medical signal as the aliasing preprocessing based on the known direction determined by the determination function 3051 and the known shift amount as the aliasing preprocessing. Specifically, the partial signal generation circuit 304 is divided by dividing the medical signal by a division width (hereinafter referred to as a window) according to a known shift amount along a known direction. And generating a plurality of partial signals corresponding to the medical signal. The partial signal generation circuit 304 outputs a plurality of partial signals to the processing circuit 305. Specific aliasing preprocessing will be described later. The aliasing preprocessing performed by the partial signal generation circuit 304 may be performed in the processing circuit 305 as an aliasing preprocessing function.
  • the partial signal generation circuit 304 is configured by an electronic circuit such as the processor described above.
  • each of the plurality of partial signals has a region overlapping with another partial signal (hereinafter referred to as an overlapping region).
  • the partial signal generation circuit 304 may generate a plurality of partial signals by regarding that both ends of the medical signal are cyclically connected with respect to a known direction. .
  • the memory 303 stores the learned model 331, the imaging condition 2031, and the medical signal 2033. More specifically, the memory 303 stores a plurality of learned models associated with the total number of windows according to the imaging conditions.
  • the learned model 331 has a DNN 331.
  • the DNN 331 may be realized by ResNet, DenseNet, U-Net or the like.
  • the processing relating to this application example is suitable for detection, recognition, estimation of physical parameters, and the like for medical signals, but is not limited to these and may be used for the purpose of denoising as shown in the first application example.
  • various layers are incorporated in the subsequent stage of the DNN 331. Thereby, the learned model 331 can output the correction signal.
  • the processing circuit 305 determines the DNN 3331 to which the partial signal is input based on the imaging condition 2031 by the determination function 3051. Specifically, the processing circuit 305 determines the DNN 3331 corresponding to the total number of windows according to the total number of windows according to the known shift amount based on the imaging condition.
  • the processing circuit 305 inputs the plurality of partial signals to the plurality of different channels in the DNN 3331 determined by the determination function 3051 by the output function 3053.
  • the processing circuit 305 inputs a plurality of partial signals to the determined learned model, and outputs any one of the correction signal, the pattern related information, and the disease information.
  • the medical signal is a magnetic resonance image
  • the pattern is an artifact
  • the partial signal is an image of the magnetic resonance image (hereinafter referred to as a partial image).
  • the output from the learned model 331 is pattern related information or disease information.
  • FIGS. 17 and 18 A procedure of executing information generation processing for generating pattern related information or disease information using the learned model 331 in the present application example will be described using FIGS. 17 and 18.
  • FIG. 17 is a flowchart showing an example of the procedure of the information generation process in this application example.
  • the process of step Sd5 is the same as the process of step Sc5 shown in FIG. 14, description is abbreviate
  • Step Sd1 Information generation process
  • the processing circuit 305 uses the determination function 3051 to determine the artifact occurrence direction and the shift amount using the direction shift amount correspondence table based on the imaging condition 2031.
  • the processing circuit 305 determines the DNN 3331 corresponding to the total number of windows according to the total number of windows according to the shift amount.
  • Step Sd2 The partial signal generation circuit 304 generates a plurality of partial images by dividing the magnetic resonance image based on the known direction and the known shift amount. Specifically, the partial signal generation circuit 304 divides the magnetic resonance image by a window corresponding to the amount of shift along the artifact occurrence direction.
  • the aliasing preprocessing for dividing the magnetic resonance image will be described with reference to FIG.
  • FIG. 18 is a diagram showing an example of aliasing preprocessing in this application example.
  • the magnetic resonance image MAA input to the partial signal generation circuit 304 has a reduction factor of 2 and has aliasing artifacts along the phase encoding direction.
  • the total number of windows used for dividing the magnetic resonance image MAA is two, that is, the first window W1 and the second window W2.
  • the partial signal generation circuit 304 divides the magnetic resonance image MAA at a position (hereinafter referred to as a division position) DP that is half the FOVy (FOVy / 2) in the phase encoding direction in the magnetic resonance image MAA.
  • the partial signal generation circuit 304 generates the first partial image PI1 and the second partial image PI2 respectively corresponding to the first window W1 and the second window W2 by dividing the magnetic resonance image MAA at the division position DP. .
  • the partial signal generation circuit 304 outputs the first partial image PI1 and the second partial image PI2 to the processing circuit 305.
  • the first window W1 and the second window W2 may be set across the division position DP with respect to the magnetic resonance image MAA. For example, when FOVy in the magnetic resonance image MAA is divided into 10 equal parts, an area of 1/10 to 8/10 is set as the first window W1 along the phase encode direction y, and an area of 6/10 to 10/10 is obtained. It may be set as the second window W2.
  • Step Sd3 The processing circuit 305 inputs a plurality of partial images to the DNN 3331 determined by the output function 3053. For example, the processing circuit 305 inputs a plurality of partial images to a plurality of different channels in the DNN 3331, respectively.
  • Step Sd4 The processing circuit 305 outputs pattern related information or disease information from the DNN 3331 to which a plurality of partial images are input by the output function 3053.
  • the processing circuit 305 outputs pattern related information or disease information to the memory 203 and the display 207.
  • a medical signal having a pattern appearing at a position shifted by a known shift amount along a known direction is divided based on the known direction and the known shift amount.
  • a plurality of partial signals are generated, and one of a correction signal corrected to reduce a pattern to a medical signal, pattern related information on a pattern, and disease information on a medical signal is output.
  • any one of the correction signal, the pattern related information, and the disease information can be output.
  • FIG. 19 is a diagram showing an example of a medical signal processing apparatus 400 in the present application example.
  • the medical signal processing apparatus 400 includes an input interface 201, a memory 303, a partial signal generation circuit 304, a combined signal generation circuit 306, a processing circuit 305, and a display 207.
  • the aliasing pre-processor AP in the fourth application example generates a plurality of partial images by dividing the magnetic resonance image based on the known direction and the known shift amount.
  • the post-folding post-processor APost in this application example combines the divided magnetic resonance images output from the DNN 3333 based on the known direction and the known shift amount.
  • the aliasing post-processor APost combines the three output images.
  • an image before combining that is, a divided image is used for learning of the DNN 3333 as learning data.
  • aliasing when reconstruction is performed on a small FOV, only an image in which aliasing occurs may be obtained.
  • it may be regarded as an image having a double size in the aliasing direction, and may be configured to use only aliasing post-processing without aliasing pre-processing. .
  • the memory 303 stores the learned model 331, the imaging condition 2031, and the medical signal 2033. More specifically, the memory 303 stores a plurality of learned models associated with the total number of windows according to the imaging conditions.
  • the learned model 331 has a DNN 3333.
  • the DNN 3333 may be realized by ResNet, DenseNet, U-Net or the like.
  • the DNN 3333 outputs a plurality of partial correction signals respectively corresponding to the plurality of partial signals input to itself.
  • the plurality of partial correction signals correspond to, for example, the above-described correction signal in which the partial signal is subjected to denoising.
  • the resolution of the medical signal input to the DNN 3333 and the resolution of the signal output from the DNN 3333 correspond to the resolution obtained by dividing the resolution of 2033 of the medical signal by the total number of windows.
  • the DNN 3333 in this application example is learned using, as learning data, a plurality of partial signals according to the total number of windows and a partial correction signal as correct data.
  • the processing circuit 305 inputs a plurality of partial signals to the learned model 331 by the output function 3055, and outputs a plurality of partial correction signals respectively corresponding to the plurality of partial signals as a correction signal. Specifically, the processing circuit 305 inputs a plurality of partial signals to a plurality of different channels in the DNN 3331 determined by the determination function 3051. The processing circuit 305 inputs a plurality of partial signals to the determined learned model, and outputs a plurality of partial correction signals to the combined signal generation circuit 306.
  • the combined signal generation circuit 306 combines the plurality of partial correction signals output from the DNN 3333 based on the known direction determined by the determination function 3051 and the known shift amount as aliasing post-processing. Generate The partial signal generation circuit 306 outputs the combined signal to the memory 303 or the display 207.
  • the combined signal generation circuit 306 is configured by an electronic circuit such as the processor described above. A specific post-aliasing process will be described later.
  • the aliasing post-processing performed by the combined signal generation circuit 306 may be performed in the processing circuit 305 as an aliasing post-processing function. At this time, a program for executing the aliasing post-processing function is stored in the memory 303, an ASIC in the processing circuit 305, or the like.
  • the medical signal is a magnetic resonance image
  • the pattern is an artifact
  • the partial signal is a partial image
  • a plurality of partial correction signals output from the learned model 331 are
  • the combined signal is a plurality of corrected images (hereinafter referred to as a partially corrected image) respectively corresponding to the partial images of (1)
  • the combined signal is an image obtained by combining a plurality of partially corrected images (hereinafter referred to as a combined image).
  • the combined image corresponds to the above-described artifact reduced image.
  • FIG. 20 is a flowchart illustrating an example of a procedure of combined image generation processing in the present application example.
  • the processes of steps Se1 to Se3 are the same as the processes of steps Sd1 to Sd3 shown in FIG. 17, and thus the description thereof is omitted.
  • the process of step Se6 is the same as the process of step Sb5 in FIG.
  • the processing circuit 305 causes the output function 3055 to output a plurality of partially corrected images from the DNN 3333 to which a plurality of partial images have been input.
  • the plurality of partial correction images correspond to partial images with reduced artifacts (hereinafter referred to as artifact reduced partial images). That is, the processing circuit 305 outputs a plurality of artifact reduced partial images respectively corresponding to the plurality of partial images from the DNN 3333.
  • the processing circuit 305 inputs the plurality of partial images to the DNN 3333, and outputs the plurality of artifact reduced partial images output from the DNN 3333 to the combined signal generation circuit 306.
  • the combined signal generation circuit 306 combines the plurality of partially corrected images based on the known direction (artifact occurrence direction) determined by the determination function 3051 and the known shift amount. By the processing, the combined signal generation circuit 306 generates a combined image. That is, the combined signal generation circuit 306 generates an artifact reduced image by combining a plurality of artifact reduced partial images based on the artifact occurrence direction and the shift amount. The combined signal generation circuit 306 outputs the artifact reduced image to the memory 303 and the display 207.
  • FIG. 21 is a diagram showing an example of post-aliasing processing in the present application example.
  • the processing circuit 305 causes the output function 3055 to input the first partial image PI1 and the second partial image PI2 to the DNN 3333 in the learned model 305, thereby reducing the first artifact reduced partial image RePI1 corresponding to the first partial image PI1.
  • a second artifact reduced partial image RePI2 corresponding to the second partial image PI2.
  • the combined signal generation circuit 306 specifies the combined position of the first artifact reduction partial image RePI1 and the second artifact reduction partial image RePI2 using the artifact occurrence direction and the shift amount.
  • the bonding position corresponds to, for example, the division position DP.
  • the combined signal generation circuit 306 generates an artifact reduced image by combining the first artifact reduced partial image RePI1 and the second artifact reduced partial image RePI2 at the combined position.
  • a range indicated by AS in FIG. 21 indicates a process performed at half the resolution of the magnetic resonance image (hereinafter referred to as full resolution) before the aliasing preprocessing is performed. In general, when the magnetic resonance image is divided into N by aliasing preprocessing, the processing in the range indicated by AS in FIG. 21 is performed at a resolution of 1 / N of full resolution.
  • a medical signal having a pattern appearing at a position shifted by a known shift amount along a known direction is divided based on the known direction and the known shift amount.
  • a trained model operable to generate a plurality of partial signals, respectively correspond to the plurality of partial signals, and to output a plurality of partial correction signals corrected to reduce a pattern to a medical signal.
  • a plurality of partial correction signals are output as a correction signal, and by combining a plurality of partial correction signals based on a known direction and a known shift amount, A combined signal can be generated.
  • the server on the Internet may be, for example, the processing circuit 205 and the memory 203 in FIG. It will be possessed.
  • the server on the Internet is, for example, the partial signal generation circuit 304 in FIG. It becomes what has 305 and the memory 303.
  • the server on the Internet is, for example, the partial signal generation circuit 304 in FIG.
  • a combined signal generation circuit 306 and a memory 303 are provided.
  • the determination function 2511, the determination function 3051, the output function 2513, the output function 3053, the output function 3055, etc. install a program for executing the function in the processing circuit of the server and expand them on the memory. To be realized.
  • the output error due to the learned model can be reduced.
  • the medical signal processing apparatus 200 even for a medical signal having a pattern (artifact) that appears at a position shifted by a known shift amount along a known direction, the medical signal may not be a learned model 231 Can be used to output any one of a correction signal with improved noise reduction due to an artifact and pattern related information and disease information with improved recognition rate. it can.
  • the medical signal having a pattern (artifact) appearing at a position shifted by a known shift amount along a known direction is subjected to aliasing preprocessing and then processed.
  • the medical signal processing apparatus 400 the medical signal having a pattern (artifact) appearing at a position shifted by a known shift amount along a known direction is subjected to aliasing preprocessing and then processed.
  • the image resolution is converted using resolution conversion processing such as up-sampling, down-sampling, pooling, etc., in pre-processing, post-processing, DNN, or a combination thereof, thereby outputting an image having a resolution different from that of the input. You may.
  • the apparatus which implements this invention when making an imaging method be selected, you may be shown to a user whether the learned model exists. Specifically, for example, when there is a learned model, the function of the present invention can be selected, and when it does not exist, the function of the present invention can not be selected. Alternatively, for example, when the function of the present invention is selected, only the condition in which the learned model exists may be selectable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

A medical signal processing device according to an embodiment has a processing unit. The processing unit inputs a medical signal, which has a pattern of appearing at a position shifted by a known shift amount in a known direction, into a learned model having the function of outputting at least any one of a correction signal in which the medical signal is corrected to reduce the pattern, pattern-related information relating to the pattern, and disease information relating to the medical signal. Using the direction and the shift amount, the processing unit outputs any one of the correction signal, the pattern-related information, and the disease information.

Description

医用信号処理装置Medical signal processing device
 本発明の実施形態は、医用信号処理装置に関する。 Embodiments of the present invention relate to a medical signal processing apparatus.
 従来、磁気共鳴イメージングにおいては、フーリエ変換又は逆フーリエ変換後の画像に、様々な要因によるアーチファクトが生じ得る。例えば、k空間のラインを間引いて収集するアンダーサンプリングを行った場合、画像に折り返りが発生することがある。また、例えば、EPI(Echo Planar Imaging)法による収集を行った場合、画像にN/2アーチファクトと呼ばれる虚像が発生することがある。 Conventionally, in magnetic resonance imaging, artifacts due to various factors can occur in an image after Fourier transform or inverse Fourier transform. For example, when undersampling is performed to thin and collect lines in k space, aliasing may occur in the image. Also, for example, when acquisition is performed by EPI (Echo Planar Imaging), a virtual image called an N / 2 artifact may be generated in the image.
 これらのアーチファクトを低減させるように学習されたコンボリューションニューラルネットワーク(Convolutional Neural Network:以下、CNNと呼ぶ)などを当該画像に用いる場合、従来のCNNの枠組みでは、アーチファクトの低減の精度が上がらないような入力対象がある。すなわち、CNNへの入力対象として、例えば、N/2アーチファクトなどのエイリアシングを有する磁気共鳴画像が用いられる場合、エイリアシングを低減させる精度が上がらないことがある。 If a convolutional neural network (hereinafter referred to as CNN) or the like trained to reduce these artifacts is used for the image, the conventional CNN framework does not improve the accuracy of artifact reduction. There is an input target. That is, when a magnetic resonance image having aliasing such as N / 2 artifact is used as an input target to CNN, for example, the accuracy for reducing the aliasing may not be improved.
 本発明が解決しようとする課題は、学習済みモデルによる出力誤差を低減させることである。 The problem to be solved by the present invention is to reduce the output error due to the learned model.
 実施形態に係る医用信号処理装置は、処理部を有する。前記処理部は、既知の方向に沿って既知のシフト量でずれた位置に現れるパターンを有する医用信号に対して前記パターンを低減するように補正された補正信号と、前記パターンに関するパターン関連情報と、前記医用信号に関する疾患情報とのうちいずれか一つを出力するように機能付られた学習済みモデルに対して前記医用信号を入力し、前記方向と前記シフト量とを用いて、前記補正信号と前記パターン関連情報と前記疾患情報とのうちいずれか一つを出力する。 The medical signal processing device according to the embodiment has a processing unit. The processing unit includes: a correction signal corrected to reduce the pattern with respect to a medical signal having a pattern appearing at a position shifted by a known shift amount along a known direction; pattern related information related to the pattern; The medical signal is input to a learned model that is functioned to output any one of disease information related to the medical signal, and the correction signal is input using the direction and the shift amount And / or one of the pattern related information and the disease information.
図1は、実施形態に係る画像処理装置及び磁気共鳴イメージング装置の構成例を示す図。FIG. 1 is a view showing an example of the arrangement of an image processing apparatus and a magnetic resonance imaging apparatus according to the embodiment. 図2は、本実施形態に係る処理回路による順伝播機能を説明する図である。FIG. 2 is a diagram for explaining the forward propagation function by the processing circuit according to the present embodiment. 図3は、本実施形態の応用例に係る処理回路による順伝播機能を説明する図である。FIG. 3 is a diagram for explaining the forward propagation function by the processing circuit according to the application example of the present embodiment. 図4は、本実施形態における磁気共鳴イメージング装置に関する詳細な構成の一例を示す図である。FIG. 4 is a diagram showing an example of a detailed configuration regarding the magnetic resonance imaging apparatus in the present embodiment. 図5は、本実施形態において、画像生成処理における処理手順の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the processing procedure in the image generation processing in the present embodiment. 図6は、本実施形態において、仮画像と、仮画像に対する第1の畳み込み結果のチャネル数と、第1の畳み込み結果に対する第2の畳み込み結果のチャネル数との一例を示す図である。FIG. 6 is a diagram showing an example of a temporary image, the number of channels of a first convolution result for the temporary image, and the number of channels of a second convolution result for the first convolution result in the present embodiment. 図7は、本実施形態において、第Nの畳み込み層による第Nの畳み込み結果を用いた磁気共鳴画像の生成の一例を示す図である。FIG. 7 is a diagram showing an example of generation of a magnetic resonance image using the Nth convolution result by the Nth convolution layer in the present embodiment. 図8は、本実施形態の応用例において、仮画像を2分割した2チャネル画像と、2チャネル画像に対する2チャネルの第1の畳み込み結果のチャネル数と、2チャネルの第1の畳み込み結果に対する2チャネルの第2の畳み込み結果のチャネル数との一例を示す図である。FIG. 8 shows, in the application example of this embodiment, a 2-channel image obtained by dividing the temporary image into two, the number of channels resulting from the first convolution of 2-channel with respect to the 2-channel image, and 2 for the first convolution result obtained with 2-channel. It is a figure which shows an example with the channel number of the 2nd convolution result of a channel. 図9は、本実施形態の応用例において、第Nの畳み込み層による2チャネルの第Nの畳み込み結果を用いた2チャネルの磁気共鳴画像の生成と、2チャネルの磁気共鳴画像を合成した磁気共鳴画像との一例を示す図である。FIG. 9 shows, in an application example of the present embodiment, generation of a two-channel magnetic resonance image using a two-channel N-th convolution result by the N-th convolutional layer and a magnetic resonance obtained by combining the two-channel magnetic resonance image It is a figure which shows an example with an image. 図10は、本実施形態の適用例における医用信号処理装置の構成の一例を示す図である。FIG. 10 is a diagram showing an example of the configuration of a medical signal processing apparatus in an application example of the present embodiment. 図11は、本実施形態の第1適用例におけるアーチファクト低減処理の手順の一例を示すフローチャートである。FIG. 11 is a flowchart illustrating an example of the procedure of the artifact reduction process in the first application example of the present embodiment. 図12は、本実施形態の第1適用例において、Reduction factorが2に対応し、位相エンコード方向に沿った折り返しアーチファクトを有する磁気共鳴画像に対する循環シフト処理の一例を示す図である。FIG. 12 is a diagram showing an example of cyclic shift processing for a magnetic resonance image having a reduction factor corresponding to 2 and having aliasing artifacts along the phase encoding direction in the first application example of the present embodiment. 図13は、本実施形態の第1適用例において、Reduction factorが3に対応し、位相エンコード方向に沿った折り返しアーチファクトを有する磁気共鳴画像に対する循環シフト処理の一例を示す図である。FIG. 13 is a diagram showing an example of cyclic shift processing for a magnetic resonance image having a reduction factor corresponding to 3 and having aliasing artifacts along the phase encoding direction in the first application example of the present embodiment. 図14は、本実施形態の第2適用例における情報生成処理の手順の一例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of the procedure of the information generation process in the second application example of the present embodiment. 図15は、本実施形態の第3適用例において、生体信号としての心電波形の一例を示す図である。FIG. 15 is a diagram showing an example of an electrocardiogram waveform as a biological signal in the third application example of the present embodiment. 図16は、本実施形態の第4適用例における医用信号処理装置の一例を示す図である。FIG. 16 is a diagram showing an example of a medical signal processing apparatus in a fourth application example of the present embodiment. 図17は、本実施形態の第4適用例における情報生成処理の手順の一例を示すフローチャートである。FIG. 17 is a flowchart illustrating an example of the procedure of the information generation process in the fourth application example of the present embodiment. 図18は、本実施形態の第4適用例におけるエイリアシング前処理の一例を示す図である。FIG. 18 is a diagram showing an example of aliasing preprocessing in the fourth application example of the present embodiment. 図19は、本実施形態の第5適用例における医用信号処理装置の一例を示す図である。FIG. 19 is a view showing an example of a medical signal processing apparatus in a fifth application example of the present embodiment. 図20は、本実施形態の第5適用例における結合画像生成処理の手順の一例を示すフローチャートである。FIG. 20 is a flowchart illustrating an example of a procedure of combined image generation processing in the fifth application example of the present embodiment. 図21は、本実施形態の第5適用例におけるエイリアシング後処理の一例を示す図である。FIG. 21 is a diagram showing an example of the post-aliasing process in the fifth application example of the present embodiment.
 以下、図面を参照しながら、画像処理装置及び磁気共鳴イメージング装置の実施形態について詳細に説明する。 Hereinafter, embodiments of an image processing apparatus and a magnetic resonance imaging apparatus will be described in detail with reference to the drawings.
 図1は、実施形態に係る画像処理装置及び磁気共鳴イメージング装置の構成例を示す図である。例えば、図1に示すように、本実施形態に係る磁気共鳴イメージング装置100は、図示を省略する、静磁場磁石、傾斜磁場コイル、高周波コイル等の構成要素の他に、画像処理装置150を備える。本実施形態においては、画像処理装置150が、磁気共鳴画像を生成する。なお、画像処理装置150は、例えば、磁気共鳴画像を生成するための専用の装置であり、又は、他の機能と兼用される装置である。また、本実施形態においては、画像処理装置150は磁気共鳴イメージング装置100の構成要素として説明するが、実施形態はこれに限られるものではなく、画像処理装置150において実行される機能が、例えば、磁気共鳴イメージング装置100と通信可能に接続された他の装置であってもよい。この場合、画像処理装置150としての他の装置は、病院外の他の拠点に設置されてもよい。 FIG. 1 is a view showing an example of the arrangement of an image processing apparatus and a magnetic resonance imaging apparatus according to the embodiment. For example, as shown in FIG. 1, the magnetic resonance imaging apparatus 100 according to this embodiment includes an image processing apparatus 150 in addition to components such as a static magnetic field magnet, a gradient magnetic field coil, and a high frequency coil, which are not shown. . In the present embodiment, the image processing device 150 generates a magnetic resonance image. The image processing apparatus 150 is, for example, a dedicated apparatus for generating a magnetic resonance image, or an apparatus used in combination with other functions. Further, in the present embodiment, the image processing apparatus 150 is described as a component of the magnetic resonance imaging apparatus 100, but the embodiment is not limited thereto. For example, the function executed in the image processing apparatus 150 is It may be another device communicably connected to the magnetic resonance imaging apparatus 100. In this case, another device as the image processing device 150 may be installed at another site outside the hospital.
 また、画像処理装置150は、処理回路151と、メモリ152と、入出力インタフェース153とを備える。処理回路151は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等である。 The image processing apparatus 150 further includes a processing circuit 151, a memory 152, and an input / output interface 153. The processing circuit 151 is, for example, a central processing unit (CPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), a programmable logic device (for example, a simple programmable logic device (Simple Programmable logic device). Logic Device (SPLD), Complex Programmable Logic Device (CPLD), Field Programmable Gate Array (FPGA), and the like.
 処理回路151は、メモリ152に保存されたプログラムを読み出し実行することで機能を実現する。なお、メモリ152にプログラムを保存する代わりに、処理回路151内にプログラムを直接組み込むよう構成してもよい。この場合、処理回路151は、自回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。また、プログラムを読み出して実行するのではなく、論理回路の組合せにより当該プログラムに対応する機能を実現してもよい。なお、本実施形態の処理回路151は、処理回路151ごとに単一の回路として構成される場合に限らず、複数の独立した回路を組み合わせて1つの処理回路151として構成し、その機能を実現するようにしてもよい。 The processing circuit 151 realizes a function by reading and executing a program stored in the memory 152. The program may be directly incorporated into the processing circuit 151 instead of storing the program in the memory 152. In this case, the processing circuit 151 realizes a function by reading and executing a program incorporated in the own circuit. Further, instead of reading and executing a program, a function corresponding to the program may be realized by a combination of logic circuits. Note that the processing circuit 151 of the present embodiment is not limited to the case where each processing circuit 151 is configured as a single circuit, and a plurality of independent circuits are combined to form one processing circuit 151 to realize its function. You may do it.
 本実施形態に係る処理回路151は、機械学習のひとつである深層学習を用いて磁気共鳴画像を生成する。一般的な深層学習とは、生物の脳の神経細胞をモデルとしたアルゴリズムである「ニューラルネットワーク」の階層を深めたものである。また、本実施形態に係る処理回路は、深層学習のなかでもCNN(Convolution Neural Network)と呼ばれる手法を用いて磁気共鳴画像を生成する。一般的なCNNの手法では、中間層において、前段の層で注目画素の近傍領域に位置付けられるノードを対象に画像のフィルタ処理を施すことにより、画像の局所的な特徴を抽出する。 The processing circuit 151 according to the present embodiment generates a magnetic resonance image using deep learning, which is one of machine learning. General deep learning is a deeper layer of "neural network", which is an algorithm modeled on neurons in the brain of an organism. Further, the processing circuit according to the present embodiment generates a magnetic resonance image using a method called CNN (Convolution Neural Network) even in deep learning. In the general CNN method, local features of an image are extracted by performing image filter processing on nodes located in the vicinity of the pixel of interest in the previous layer in the intermediate layer.
 これに対し、本実施形態に係る処理回路151は、磁気共鳴画像においては折り返りや虚像と呼ばれるアーチファクトが発生することに着目し、注目画素の近傍領域に位置付けられるノードを対象に画像のフィルタ処理を施すだけでなく、近傍領域とは異なる、注目画素から離れた離隔領域に位置付けられるノードをもフィルタ処理の対象とする。 On the other hand, the processing circuit 151 according to the present embodiment focuses on the occurrence of artifacts called aliasing and virtual images in the magnetic resonance image, and performs image filtering on nodes located in the vicinity of the pixel of interest. In addition to the above, the filtering process is performed on nodes that are located in a distant area away from the pixel of interest, which is different from the neighboring area.
 図2は、本実施形態に係る処理回路151による順伝播機能を説明する図である。図2において、処理回路151は、折り返りや虚像が発生した磁気共鳴画像に対して学習済みモデルを適用する際に、複数の領域(例えば、上述した近傍領域及び離隔領域)に位置付けられるノードを対象にフィルタ処理を施す。複数の領域の位置は、撮像条件に応じて定まる。撮像条件とは、例えば、PI(Parallel Imaging)においてk空間のラインの間引きの程度を示すreduction factor(間引きステップ数)や、FOV(Field Of View)、EPI法のパルスシーケンスの撮像パラメータ等を有する。処理回路151は、かかる撮像条件に応じて、磁気共鳴画像における折り返りや虚像、ケミカルシフトによるシフト等を算出し、磁気共鳴画像内で同一の画素が存在し得る複数の領域を導出する。なお、領域には、ひとつ以上の画素が含まれる。そして、処理回路151は、導出された複数の領域に位置付けられるノードを対象にフィルタ処理を施す。すなわち、処理回路151は、学習済みモデルに相当するコンボリューションニューラルネットワーク複数の中間層各々に対して、複数の中間層各々への入力側に接続される前段の中間層におけるいずれかの第1ノードからの出力と、前段の中間層のうち撮像条件により定まる第2ノードからの出力とを合わせて入力するように処理する。学習済みモデルから出力された磁気共鳴画像は、アーチファクトが低減されたアーチファクト低減画像に相当する。 FIG. 2 is a diagram for explaining the forward propagation function by the processing circuit 151 according to the present embodiment. In FIG. 2, when applying the learned model to the magnetic resonance image in which aliasing or a virtual image is generated, the processing circuit 151 sets nodes positioned in a plurality of regions (for example, the above-described near region and separated regions). Filter the object. The positions of the plurality of regions are determined according to the imaging conditions. The imaging conditions include, for example, a reduction factor (the number of thinning steps) indicating the degree of line thinning of k space in PI (Parallel Imaging), an imaging parameter of a pulse sequence of FOV (Field Of View), EPI method, etc. . The processing circuit 151 calculates aliasing, a virtual image, a shift due to a chemical shift, and the like in the magnetic resonance image according to the imaging condition, and derives a plurality of regions in which the same pixel may exist in the magnetic resonance image. The region includes one or more pixels. Then, the processing circuit 151 applies a filtering process to nodes located in the plurality of derived regions. That is, the processing circuit 151 is connected to one of the first nodes in the intermediate layer of the previous stage connected to the input side to each of the plurality of intermediate layers for each of the plurality of intermediate layers of the convolutional neural network corresponding to the learned model. And the output from the second node determined by the imaging condition in the intermediate layer of the previous stage are processed to be input together. The magnetic resonance image output from the learned model corresponds to an artifact reduced image with reduced artifacts.
 なお、処理回路151は、注目画素の近傍領域の画素と離隔領域の画素との両方を含むようにフィルタ処理の対象を導出する際に、図2に示すように空間方向に設計してもよいし、図3に示すようにチャネル方向で設計してもよい。図3は、本実施形態の応用例に係る処理回路による順伝播機能を説明する図である。 The processing circuit 151 may be designed in the spatial direction as shown in FIG. 2 when the target of the filtering process is derived so as to include both the pixels in the vicinity region of the target pixel and the pixels in the separation region. And may be designed in the channel direction as shown in FIG. FIG. 3 is a diagram for explaining the forward propagation function by the processing circuit according to the application example of the present embodiment.
 本実施形態に係る磁気共鳴イメージング装置100による処理の流れの一例を説明する。まず、磁気共鳴イメージング装置100は、所定の撮像条件に従いパルスを実行することにより、磁気共鳴信号を収集し、k空間データを得る。また、画像処理装置150は、得られたk空間データに対してフーリエ変換又は逆フーリエ変換を施し、磁気共鳴画像を生成する。次に、画像処理装置150は、メモリ152に格納された学習済みモデルを読み出し、生成した磁気共鳴画像に対して順伝播処理を施し、入力画像に比較して画質が向上した磁気共鳴画像を表示装置等の出力インタフェースに出力する。この順伝播処理に際して画像処理装置150が用いる学習済みモデルは、入力画像を収集した際の撮像条件に応じてフィルタ処理の対象とする領域の位置を特定されたものである。例えば、画像処理装置150は、撮像条件に応じた複数の学習済みモデルをメモリ152に格納しておき、順伝播処理に際して、複数の学習済みモデルのなかから、撮像条件に合致する学習済みモデルを選択する。 An example of the flow of processing by the magnetic resonance imaging apparatus 100 according to the present embodiment will be described. First, the magnetic resonance imaging apparatus 100 acquires magnetic resonance signals to obtain k-space data by executing pulses in accordance with predetermined imaging conditions. Further, the image processing device 150 performs Fourier transform or inverse Fourier transform on the obtained k-space data to generate a magnetic resonance image. Next, the image processing apparatus 150 reads the learned model stored in the memory 152, performs forward propagation processing on the generated magnetic resonance image, and displays the magnetic resonance image whose image quality is improved compared to the input image. Output to the output interface of the device etc. The learned model used by the image processing apparatus 150 at the time of the forward propagation process is one in which the position of the area to be subjected to the filtering process is specified according to the imaging condition at the time of collecting the input image. For example, the image processing apparatus 150 stores a plurality of learned models corresponding to the imaging condition in the memory 152, and during the forward propagation process, the learned model matching the imaging condition is selected from among the plurality of learned models. select.
 以下、図面を参照しながら、磁気共鳴イメージング装置および画像処理装置の実施形態について詳細に説明する。以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。 Hereinafter, embodiments of a magnetic resonance imaging apparatus and an image processing apparatus will be described in detail with reference to the drawings. In the following description, components having substantially the same function and configuration are given the same reference numerals, and repeated description will be made only when necessary.
 (実施形態) 
 図1および図4を参考にして、本実施形態における磁気共鳴イメージング装置100の全体構成について説明する。図4は、本実施形態における磁気共鳴イメージング装置100に関する詳細な構成の一例を示す図である。図4に示すように、磁気共鳴イメージング装置100は、静磁場磁石101と、傾斜磁場コイル103と、傾斜磁場電源105と、寝台107と、寝台制御回路(システム制御部)109と、送信回路(送信部)113と、送信コイル115と、受信コイル117と、受信回路(受信部)119と、撮像制御回路(収集部)121と、システム制御回路(システム制御部)123と、記憶装置125と、画像処理装置150とを備える。なお、被検体Pは、磁気共鳴イメージング装置100に含まれない。
(Embodiment)
The entire configuration of the magnetic resonance imaging apparatus 100 according to the present embodiment will be described with reference to FIGS. 1 and 4. FIG. 4 is a diagram showing an example of a detailed configuration of the magnetic resonance imaging apparatus 100 in the present embodiment. As shown in FIG. 4, the magnetic resonance imaging apparatus 100 includes a static magnetic field magnet 101, a gradient magnetic field coil 103, a gradient magnetic field power supply 105, a bed 107, a bed control circuit (system control unit) 109, and a transmission circuit ( Transmission unit) 113, transmission coil 115, reception coil 117, reception circuit (reception unit) 119, imaging control circuit (collection unit) 121, system control circuit (system control unit) 123, storage device 125 , And an image processing apparatus 150. The subject P is not included in the magnetic resonance imaging apparatus 100.
 静磁場磁石101は、中空の略円筒状に形成された磁石である。静磁場磁石101は、内部の空間に略一様な静磁場を発生する。静磁場磁石101としては、例えば、超伝導磁石等が使用される。 The static magnetic field magnet 101 is a hollow substantially cylindrical magnet. The static magnetic field magnet 101 generates a substantially uniform static magnetic field in the internal space. For example, a superconducting magnet or the like is used as the static magnetic field magnet 101.
 傾斜磁場コイル103は、中空の略円筒状に形成されたコイルである。傾斜磁場コイル103は、静磁場磁石101の内側に配置される。傾斜磁場コイル103は、互いに直交するX、Y、Zの各軸に対応する3つのコイルが組み合わされて形成される。Z軸方向は、静磁場の方向と同方向であるとする。また、Y軸方向は、鉛直方向とし、X軸方向は、Z軸及びY軸に垂直な方向とする。傾斜磁場コイル103における3つのコイルは、傾斜磁場電源105から個別に電流供給を受けて、X、Y、Zの各軸に沿って磁場強度が変化する傾斜磁場を発生させる。 The gradient magnetic field coil 103 is a hollow and substantially cylindrical coil. The gradient magnetic field coil 103 is disposed inside the static magnetic field magnet 101. The gradient coil 103 is formed by combining three coils corresponding to X, Y, and Z axes orthogonal to one another. The Z-axis direction is assumed to be the same as the direction of the static magnetic field. The Y-axis direction is a vertical direction, and the X-axis direction is a direction perpendicular to the Z-axis and the Y-axis. The three coils in the gradient magnetic field coil 103 are individually supplied with current from the gradient magnetic field power supply 105 to generate gradient magnetic fields whose magnetic field strengths change along the X, Y, and Z axes.
 傾斜磁場コイル103によって発生されるX、Y、Z各軸の傾斜磁場は、例えば、スライス選択用傾斜磁場、位相エンコード用傾斜磁場および周波数エンコード用傾斜磁場(リードアウト傾斜磁場ともいう)を形成する。スライス選択用傾斜磁場は、任意に撮像断面を決めるために利用される。位相エンコード用傾斜磁場は、空間的位置に応じて磁気共鳴信号の位相を変化させるために利用される。周波数エンコード用傾斜磁場は、空間的位置に応じて磁気共鳴信号の周波数を変化させるために利用される。また、傾斜磁場コイル103によって発生されるX、Y、Z各軸の傾斜磁場は、グラジエントエコー法において、X-Y平面上のスピンの位相を再収束させるために、傾斜磁場の方向を2回反転させた再収束パルスとして用いられる。加えて、傾斜磁場コイル103によって発生されるX、Y、Z各軸の傾斜磁場は、静磁場の1次シミングのオフセットとして用いられる。 The gradient magnetic fields of the X, Y, and Z axes generated by the gradient magnetic field coil 103 form, for example, a gradient magnetic field for slice selection, a gradient magnetic field for phase encoding, and a gradient magnetic field for frequency encoding (also referred to as readout gradient magnetic field). . The slice selection gradient magnetic field is used to arbitrarily determine the imaging cross section. The phase encoding gradient magnetic field is used to change the phase of the magnetic resonance signal according to the spatial position. The frequency encoding gradient magnetic field is used to change the frequency of the magnetic resonance signal according to the spatial position. In addition, the gradient magnetic fields of the X, Y, and Z axes generated by the gradient magnetic field coil 103 make the direction of the gradient magnetic field twice in order to refocus the phase of the spin on the XY plane in the gradient echo method. It is used as an inverted refocusing pulse. In addition, the gradient magnetic fields of the X, Y, and Z axes generated by the gradient coil 103 are used as an offset of the primary shimming of the static magnetic field.
 傾斜磁場電源105は、撮像制御回路121の制御により、傾斜磁場コイル103に電流を供給する電源装置である。 The gradient magnetic field power supply 105 is a power supply device that supplies a current to the gradient magnetic field coil 103 under the control of the imaging control circuit 121.
 寝台107は、被検体Pが載置される天板1071を備えた装置である。寝台107は、寝台制御回路109による制御のもと、被検体Pが載置された天板1071を、ボア111内へ挿入する。寝台107は、例えば、長手方向が静磁場磁石101の中心軸と平行になるように、検査室内に設置される。 The bed 107 is a device provided with a top plate 1071 on which the subject P is placed. The bed 107 inserts the top plate 1071 on which the subject P is placed into the bore 111 under the control of the bed control circuit 109. The bed 107 is installed, for example, in the examination room such that the longitudinal direction is parallel to the central axis of the static magnetic field magnet 101.
 寝台制御回路109は、寝台107を制御する回路である。寝台制御回路109は、入出力インタフェース153を介した操作者の指示により寝台107を駆動することで、天板1071を長手方向および上下方向、場合によっては左右方向へ移動させる。 The bed control circuit 109 is a circuit that controls the bed 107. The bed control circuit 109 drives the bed 107 in accordance with an instruction from the operator via the input / output interface 153, thereby moving the top plate 1071 in the longitudinal direction, the up-down direction, and in some cases, the left-right direction.
 送信回路113は、撮像制御回路121の制御により、ラーモア周波数で変調された高周波パルスを送信コイル115に供給する。 The transmission circuit 113 supplies a high frequency pulse modulated at the Larmor frequency to the transmission coil 115 under the control of the imaging control circuit 121.
 送信コイル115は、傾斜磁場コイル103の内側に配置されたRFコイルである。送信コイル115は、送信回路113からの出力に応じて、高周波磁場に相当するRF(Radio Frequency)パルスを発生する。送信コイル115は、例えば、複数のコイルエレメントを有する全身用コイル(以下、WB(Whole Body)コイルと呼ぶ)である。WBコイルは、送受信コイルとして使用されてもよい。また、送信コイル115は、1つのコイルにより形成されるWBコイルであってもよい。 The transmission coil 115 is an RF coil disposed inside the gradient coil 103. The transmission coil 115 generates an RF (Radio Frequency) pulse corresponding to a high frequency magnetic field in response to the output from the transmission circuit 113. The transmission coil 115 is, for example, a whole-body coil (hereinafter referred to as a WB (Whole Body) coil) having a plurality of coil elements. The WB coil may be used as a transmit and receive coil. In addition, the transmission coil 115 may be a WB coil formed by one coil.
 受信コイル117は、傾斜磁場コイル103の内側に配置されたRFコイルである。受信コイル117は、高周波磁場によって被検体Pから放射される磁気共鳴信号を受信する。受信コイル117は、受信された磁気共鳴信号を受信回路119へ出力する。受信コイル117は、例えば、1以上、典型的には複数のコイルエレメントを有するコイルアレイである。なお、図1において送信コイル115と受信コイル117とは別個のRFコイルとして記載されているが、送信コイル115と受信コイル117とは、一体化された送受信コイルとして実施されてもよい。送受信コイルは、被検体Pの撮像部位に対応し、例えば、頭部コイルのような局所的な送受信RFコイルである。 The receiving coil 117 is an RF coil disposed inside the gradient coil 103. The receiving coil 117 receives the magnetic resonance signal emitted from the subject P by the high frequency magnetic field. The receiving coil 117 outputs the received magnetic resonance signal to the receiving circuit 119. The receiving coil 117 is, for example, a coil array having one or more, typically a plurality of coil elements. Although the transmission coil 115 and the reception coil 117 are described as separate RF coils in FIG. 1, the transmission coil 115 and the reception coil 117 may be implemented as an integrated transmission / reception coil. The transmission / reception coil corresponds to the imaging region of the subject P, and is, for example, a local transmission / reception RF coil such as a head coil.
 受信回路119は、撮像制御回路121の制御により、受信コイル117から出力された磁気共鳴信号に基づいて、デジタルの磁気共鳴信号(以下、磁気共鳴データと呼ぶ)を生成する。具体的には、受信回路119は、受信コイル117から出力された磁気共鳴信号に対して各種信号処理を施した後、各種信号処理が施されたデータに対してアナログ/デジタル(A/D(Analog to Digital))変換を実行する。受信回路119は、A/D変換されたデータを標本化(サンプリング)する。これにより、受信回路119は、磁気共鳴データを生成する。受信回路119は、生成された磁気共鳴データを、撮像制御回路121に出力する。 The receiving circuit 119 generates digital magnetic resonance signals (hereinafter, referred to as magnetic resonance data) based on the magnetic resonance signals output from the receiving coil 117 under the control of the imaging control circuit 121. Specifically, the receiving circuit 119 performs various signal processing on the magnetic resonance signal output from the receiving coil 117, and then performs analog / digital (A / D ( Perform Analog to Digital) conversion. The receiving circuit 119 samples (samples) A / D converted data. Thereby, the receiving circuit 119 generates magnetic resonance data. The receiving circuit 119 outputs the generated magnetic resonance data to the imaging control circuit 121.
 撮像制御回路121は、処理回路151から出力された撮像プロトコルに従って、傾斜磁場電源105、送信回路113及び受信回路119等を制御し、被検体Pに対する撮像を行う。撮像プロトコルは、検査に応じた各種パルスシーケンスを有する。撮像プロトコルには、傾斜磁場電源105により傾斜磁場コイル103に供給される電流の大きさ、傾斜磁場電源105により電流が傾斜磁場コイル103に供給されるタイミング、送信回路113により送信コイル115に供給される高周波パルスの大きさや時間幅、送信回路113により送信コイル115に高周波パルスが供給されるタイミング、受信コイル117により磁気共鳴信号が受信されるタイミング等が定義されている。 The imaging control circuit 121 controls the gradient magnetic field power source 105, the transmitting circuit 113, the receiving circuit 119, and the like in accordance with the imaging protocol output from the processing circuit 151, and performs imaging on the subject P. The imaging protocol has various pulse sequences depending on the examination. In the imaging protocol, the magnitude of the current supplied to the gradient coil 103 by the gradient power supply 105, the timing when the current is supplied to the gradient coil 103 by the gradient power supply 105, and the transmission coil 113 are supplied by the transmission circuit 113. The timing and width of the high frequency pulse, the timing when the transmission circuit 113 supplies the high frequency pulse to the transmission coil 115, the timing when the magnetic resonance signal is received by the reception coil 117, etc. are defined.
 システム制御回路123は、ハードウェア資源として図示していないプロセッサ、ROM(Read-Only Memory)やRAM(Random Access Memory)等のメモリ等を有し、システム制御機能により磁気共鳴イメージング装置100を制御する。具体的には、システム制御回路123は、記憶装置125に記憶されたシステム制御プログラムを読み出してメモリ上に展開し、展開されたシステム制御プログラムに従って本磁気共鳴イメージング装置100の各回路を制御する。例えば、システム制御回路123は、入出力インタフェース153を介して操作者から入力された撮像条件に基づいて、撮像プロトコルを記憶装置125から読み出す。なお、システム制御回路123は、撮像条件に基づいて、撮像プロトコルを生成してもよい。システム制御回路123は、撮像プロトコルを撮像制御回路121に送信し、被検体Pに対する撮像を制御する。なお、画像処理装置150が磁気共鳴イメージング装置100に搭載された場合、システム制御回路123は、処理回路151に組み込まれてもよい。このとき、システム制御機能は処理回路151により実行され、処理回路151は、システム制御回路123の代替として機能する。 The system control circuit 123 has a processor (not shown) as a hardware resource, a memory such as a ROM (Read-Only Memory) and a RAM (Random Access Memory), etc., and controls the magnetic resonance imaging apparatus 100 by a system control function. . Specifically, the system control circuit 123 reads out the system control program stored in the storage device 125, expands it on the memory, and controls each circuit of the magnetic resonance imaging apparatus 100 according to the expanded system control program. For example, the system control circuit 123 reads out the imaging protocol from the storage device 125 based on the imaging condition input by the operator via the input / output interface 153. The system control circuit 123 may generate an imaging protocol based on the imaging conditions. The system control circuit 123 transmits an imaging protocol to the imaging control circuit 121 and controls imaging of the subject P. When the image processing apparatus 150 is mounted on the magnetic resonance imaging apparatus 100, the system control circuit 123 may be incorporated in the processing circuit 151. At this time, the system control function is executed by the processing circuit 151, and the processing circuit 151 functions as a substitute for the system control circuit 123.
 記憶装置125は、システム制御回路123において実行される各種プログラム、各種撮像プロトコル、撮像プロトコルを規定する複数の撮像パラメータを含む撮像条件等を記憶する。記憶装置125は、例えば、RAM、フラッシュメモリ等の半導体メモリ素子、ハードディスクドライブ(Hard Disk Drive)、ソリッドステートドライブ(Solid State Drive)、光ディスク等である。また、記憶装置125は、CD-ROMドライブやDVDドライブ、フラッシュメモリ等の可搬型記憶媒体との間で種々の情報を読み書きする駆動装置等であってもよい。なお、画像処理装置150が磁気共鳴イメージング装置100に搭載された場合、記憶装置125に記憶されるデータは、メモリ152に記憶されてもよい。このとき、メモリ152は、記憶装置125の代替として機能する。 The storage device 125 stores various programs executed by the system control circuit 123, various imaging protocols, imaging conditions including a plurality of imaging parameters defining the imaging protocol, and the like. The storage device 125 is, for example, a RAM, a semiconductor memory element such as a flash memory, a hard disk drive (Hard Disk Drive), a solid state drive, an optical disk or the like. In addition, the storage device 125 may be a drive device or the like that reads and writes various information from and to a portable storage medium such as a CD-ROM drive, a DVD drive, or a flash memory. When the image processing apparatus 150 is mounted on the magnetic resonance imaging apparatus 100, data stored in the storage device 125 may be stored in the memory 152. At this time, the memory 152 functions as a substitute for the storage device 125.
 画像処理装置150は、処理回路151とメモリ152と入出力インタフェース153とを有する。処理回路151は、再構成機能1511、選択機能1513、画像生成機能1515を有する。再構成機能1511、選択機能1513、画像生成機能1515にて行われる各種機能は、コンピュータによって実行可能なプログラムの形態でメモリ152に記憶されている。処理回路151は、これら各種機能に対応するプログラムをメモリ152から読み出し、読み出したプログラムを実行することで各プログラムに対応する機能を実現するプロセッサである。換言すると、各プログラムを読みだした状態の処理回路151は、図4の処理回路151内に示された複数の機能等を有する。再構成機能1511、選択機能1513、画像生成機能1515については、後程詳述する。 The image processing apparatus 150 includes a processing circuit 151, a memory 152, and an input / output interface 153. The processing circuit 151 has a reconstruction function 1511, a selection function 1513, and an image generation function 1515. Various functions performed by the reconstruction function 1511, the selection function 1513, and the image generation function 1515 are stored in the memory 152 in the form of a program that can be executed by a computer. The processing circuit 151 is a processor that reads programs corresponding to these various functions from the memory 152 and executes the read programs to realize the functions corresponding to the respective programs. In other words, the processing circuit 151 in the state where each program is read has a plurality of functions and the like shown in the processing circuit 151 of FIG. The reconstruction function 1511, the selection function 1513, and the image generation function 1515 will be described in detail later.
 なお、図1においては単一の処理回路151にてこれら各種機能が実現されるものとして説明したが、複数の独立したプロセッサを組み合わせて処理回路151を構成し、各プロセッサがプログラムを実行することにより機能を実現するものとしても構わない。換言すると、上述のそれぞれの機能がプログラムとして構成され、1つの処理回路が各プログラムを実行する場合であってもよいし、特定の機能が専用の独立したプログラム実行回路に実装される場合であってもよい。なお、処理回路151が有する再構成機能1511、選択機能1513、画像生成機能1515は、それぞれ再構成部、選択部、画像生成部の一例である。上記説明において用いた「プロセッサ」という文言は、例えば、CPU、GPU或いは、ASIC、プログラマブル論理デバイス(SPLD、CPLD、及びFPGA)等の回路を意味する。なお、寝台制御回路109、送信回路113、受信回路119、撮像制御回路121、システム制御回路123等も同様に、上記プロセッサなどの電子回路により構成される。 Although FIG. 1 has been described that these various functions are realized by a single processing circuit 151, a plurality of independent processors are combined to form the processing circuit 151, and each processor executes a program. The function may be realized by In other words, each function described above may be configured as a program, and one processing circuit may execute each program, or a specific function may be implemented in a dedicated independent program execution circuit. May be The reconstruction function 1511, the selection function 1513, and the image generation function 1515 included in the processing circuit 151 are an example of a reconstruction unit, a selection unit, and an image generation unit. The term "processor" used in the above description means, for example, a circuit such as a CPU, a GPU or an ASIC, a programmable logic device (SPLD, CPLD, and FPGA). The bed control circuit 109, the transmission circuit 113, the reception circuit 119, the imaging control circuit 121, the system control circuit 123, and the like are similarly configured by electronic circuits such as the processor.
 処理回路151は、再構成機能1511により、リードアウト傾斜磁場の強度に従って、k空間のリードアウト方向に沿って磁気共鳴データを充填する。処理回路151は、k空間に充填された磁気共鳴データに対してフーリエ変換又は逆フーリエ変換を行うことにより、磁気共鳴画像を生成する。処理回路151は、磁気共鳴画像を、メモリ152や入出力インタフェース153に出力する。 The processing circuit 151 fills the magnetic resonance data along the readout direction of the k space by the reconstruction function 1511 according to the strength of the readout gradient magnetic field. The processing circuit 151 generates a magnetic resonance image by performing Fourier transform or inverse Fourier transform on the magnetic resonance data filled in the k space. The processing circuit 151 outputs the magnetic resonance image to the memory 152 and the input / output interface 153.
 メモリ152は、再構成機能1511を介してk空間に充填された磁気共鳴データ、画像生成機能1515により生成された画像データ等を記憶する。メモリ152は、処理回路151で実行される各種機能に対応するプログラムを記憶する。メモリ152は、例えば、半導体メモリ素子である。 The memory 152 stores magnetic resonance data filled in the k space through the reconstruction function 1511, image data generated by the image generation function 1515, and the like. The memory 152 stores programs corresponding to various functions executed by the processing circuit 151. The memory 152 is, for example, a semiconductor memory device.
 入出力インタフェース153は、入力インタフェースと出力インタフェースとを有する。入力インタフェースは、例えば、マウス等のポインティングデバイス、あるいはキーボード等の入力デバイスに関する回路、ネットワークからの入力端子等を有する。なお、入力インタフェースが有する回路は、マウス、キーボードなどの物理的な操作部品に関する回路に限定されない。例えば、入力インタフェースは、本磁気共鳴イメージング装置100とは別体に設けられた外部の入力機器から入力操作に対応する電気信号を受け取り、受け取った電気信号を種々の回路へ出力するような電気信号の処理回路を有していてもよい。出力インタフェースは、例えば、ディスプレイ、ネットワークへの出力端子等である。ディスプレイは、システム制御機能による制御のもとで、再構成機能1511により再構成された各種磁気共鳴画像、画像生成機能1515により生成された各種磁気共鳴画像、撮像および画像処理に関する各種情報などを表示する。ディスプレイは、例えば、CRTディスプレイや液晶ディスプレイ、有機ELディスプレイ、LEDディスプレイ、プラズマディスプレイ、又は当技術分野で知られている他の任意のディスプレイ、モニタ等の表示デバイスである。 The input / output interface 153 has an input interface and an output interface. The input interface includes, for example, a pointing device such as a mouse or a circuit related to the input device such as a keyboard, an input terminal from a network, and the like. Note that the circuits included in the input interface are not limited to circuits related to physical operation parts such as a mouse and a keyboard. For example, the input interface receives an electrical signal corresponding to an input operation from an external input device provided separately from the magnetic resonance imaging apparatus 100, and outputs the received electrical signal to various circuits. And the processing circuit of The output interface is, for example, a display, an output terminal to a network, or the like. The display displays various magnetic resonance images reconstructed by the reconstruction function 1511, various magnetic resonance images generated by the image generation function 1515, and various information related to imaging and image processing under the control of the system control function. Do. The display is, for example, a display device such as a CRT display, a liquid crystal display, an organic EL display, an LED display, a plasma display, or any other display, monitor or the like known in the art.
 以上が本実施形態に係る磁気共鳴イメージング装置100の全体構成についての説明である。以下、本実施形態における再構成機能1511、選択機能1513、画像生成機能1515により実現される画像生成処理について説明する。本実施形態における画像生成処理は、画像処理装置150に入力された磁気共鳴画像が磁気共鳴イメージングにより収集される際の撮像条件に対応する学習済みモデルを、入力された磁気共鳴画像に適用して、画質を向上させるための順伝播処理を行い、画質を向上させた磁気共鳴画像を出力することにある。 The above is the description of the overall configuration of the magnetic resonance imaging apparatus 100 according to the present embodiment. The image generation processing implemented by the reconstruction function 1511, the selection function 1513, and the image generation function 1515 in the present embodiment will be described below. The image generation process in the present embodiment applies a learned model corresponding to the imaging condition when the magnetic resonance image input to the image processing apparatus 150 is acquired by magnetic resonance imaging to the input magnetic resonance image. The present invention is to output a magnetic resonance image with improved image quality by performing forward propagation processing to improve the image quality.
 メモリ152は、不図示のモデル学習装置により学習された複数の学習済みモデルを、複数の撮像条件にそれぞれ対応付けてプログラムとして記憶する。複数の撮像条件とは、上述したように、k空間における等間隔での間引き収集における間引き率を示すReduction factor、FOV、EPI法のパルスシーケンスの撮像パラメータ等を有する。以下、画像生成処理の説明に先立って、学習済みモデルについて説明する。 The memory 152 stores a plurality of learned models learned by a model learning device (not shown) in association with a plurality of imaging conditions as a program. The plurality of imaging conditions include, as described above, a reduction factor indicating a thinning rate in the thinning-out acquisition at equal intervals in k space, an imaging parameter of a pulse sequence of FOV, EPI method, and the like. Hereinafter, prior to the description of the image generation processing, the learned model will be described.
 学習済みモデルは、不図示のモデル学習装置により生成される。具体的には、モデル学習装置は、不図示の学習データ保管装置に記憶された学習データに基づいて、モデル学習プログラムに従い機械学習前のモデルに機械学習を行わせることにより、学習済みモデルを生成する。モデル学習装置は、CPU及びGPU等のプロセッサを有するワークステーション等のコンピュータである。モデル学習装置と学習データ保管装置とはケーブル又は通信ネットワークを介して通信可能に接続されても良いし、学習データ保管装置がモデル学習装置に搭載されてもよい。この場合、ケーブル又は通信ネットワーク等を介して、学習データ保管装置からモデル学習装置に学習データが供給される。また、モデル学習装置と学習データ保管装置とは通信可能に接続されてなくてもよい。この場合、学習データが記憶された可搬型記憶媒体を介して、学習データ保管装置からモデル学習装置に、学習データが供給される。 The learned model is generated by a model learning device (not shown). Specifically, the model learning device generates a learned model by causing the model before machine learning to perform machine learning according to the model learning program, based on the learning data stored in the learning data storage device (not shown). Do. The model learning device is a computer such as a workstation having a processor such as a CPU and a GPU. The model learning device and the learning data storage device may be communicably connected via a cable or a communication network, or the learning data storage device may be mounted on the model learning device. In this case, learning data is supplied from the learning data storage device to the model learning device via a cable or a communication network. Also, the model learning device and the learning data storage device may not be communicably connected. In this case, learning data is supplied from the learning data storage device to the model learning device via the portable storage medium in which the learning data is stored.
 本実施形態に係る学習済みモデルは、撮像条件によりアーチファクトの発生位置が既知である磁気共鳴画像を入力として、当該磁気共鳴画像におけるアーチファクトが除去された磁気共鳴画像を出力するCNNである。このとき、CNNにおけるフィルタの総数は、予め設定される。また、学習データは、撮像条件によりアーチファクトの発生位置が既知である磁気共鳴画像のデータ、CNNにおけるフィルタ処理すなわち畳み込み処理の対象となる近傍領域および離隔領域を示すデータ、および当該磁気共鳴画像におけるアーチファクトが除去された磁気共鳴画像のデータである。 The learned model according to the present embodiment is a CNN that outputs a magnetic resonance image from which an artifact in the magnetic resonance image has been removed by using a magnetic resonance image whose occurrence position of the artifact is known according to imaging conditions. At this time, the total number of filters in CNN is preset. The learning data includes data of a magnetic resonance image whose occurrence position of an artifact is known according to imaging conditions, data indicating a near region and a distant region to be subjected to filter processing in the CNN, that is, convolution processing, and an artifact in the magnetic resonance image Is the data of the removed magnetic resonance image.
 近傍領域と離隔領域とは、当該撮像条件に応じたアーチファクトの発生位置に基づいて、予め設定される。例えば、アーチファクトがReduction factorに応じた折り返しである場合、近傍領域と離隔領域とは、折り返しにより画素が重複する位置を中心とする領域に相当する。また、アーチファクトがEPI法におけるNハーフアーチファクトである場合、近傍領域と離隔領域とは、Nハーフアーチファクトにおいて折り返された画素が重複する位置を中心とする領域に相当する。また、アーチファクトがケミカルシフトである場合、近傍領域と離隔領域とは、ケミカルシフトによりシフトされた画素が重複する位置を中心とする領域に相当する。 The near area and the distant area are preset based on the occurrence position of the artifact according to the imaging condition. For example, when the artifact is aliasing according to the reduction factor, the near region and the distant region correspond to a region centered at the position where the pixels overlap due to aliasing. Further, when the artifact is N half artifact in the EPI method, the near region and the distant region correspond to a region centered on the position at which the pixel folded back in the N half artifact overlaps. In addition, when the artifact is a chemical shift, the near region and the distant region correspond to a region centered at the position where the pixels shifted by the chemical shift overlap.
 近傍領域と離隔領域とは、CNNにおいて、同一の物理位置によるアーチファクトの発生位置に応じた複数の畳み込み位置に相当する。このため、モデル学習装置は、注目画素の近傍領域と、注目画素に重畳される遠方画素を含む離隔領域との両者を含むように、CNNにおける畳み込み層を決定することができる。 The adjacent area and the separated area correspond to a plurality of convolution positions according to the occurrence position of the artifact due to the same physical position in the CNN. For this reason, the model learning device can determine the convolution layer in the CNN so as to include both the vicinity region of the pixel of interest and the remote region including the far pixel superimposed on the pixel of interest.
 モデル学習装置により生成された学習済みモデルは、例えば、カーテシアンでの間引き収集における等間隔での間引き率に応じて畳み込み位置を変化させた畳み込み層を有するニューラルネットワーク、EPIにおけるNハーフアーチファクトの発生位置に応じて畳み込み位置を変化させた畳み込み層を有するニューラルネットワーク、ケミカルシフトに応じて畳み込み位置を変化させた畳み込み層を有するニューラルネットワーク、間引き収集における間引き率とEPIにおけるNハーフアーチファクトの発生位置とケミカルシフトとに応じて畳み込み位置を変化させた畳み込み層を有するニューラルネットワークなどを処理回路151に実行させるプログラムである。これらのニューラルネットワークは、撮像条件と対応付けられて、メモリ152にプログラムとして記憶される。 The learned model generated by the model learning device is, for example, a neural network having a convolutional layer whose convolutional position is changed according to equally spaced decimation rates in decimated acquisition in Cartesian, N half artefact occurrence positions in EPI A neural network with a convolutional layer whose convolutional position is changed according to the neural network, a neural network with a convolutional layer whose convolutional position is changed according to a chemical shift, a decimation ratio in decimated collection and occurrence position of N half artifact in EPI and chemical It is a program that causes the processing circuit 151 to execute a neural network or the like having a convolutional layer whose convolutional position is changed according to the shift. These neural networks are stored in the memory 152 as a program in association with the imaging conditions.
 以下、学習済みモデルを用いた画像生成処理の処理手順について説明する。図5は、画像生成処理における処理手順の一例を示すフローチャートである。本フローチャートにおける説明に関するアーチファクトは、Reduction factorに応じた折り返しアーチファクトであるものとして説明する。なお、本実施形態として適用可能なアーチファクトは、折り返しアーチファクトに限定されず、例えば、EPI法におけるNハーフアーチファクト、ケミカルシフトによるアーチファクトなどであってもよい。 The processing procedure of the image generation processing using the learned model will be described below. FIG. 5 is a flowchart showing an example of the processing procedure in the image generation processing. The artifact related to the explanation in this flowchart is described as being a aliasing artifact according to the reduction factor. The artifact applicable as the present embodiment is not limited to the aliasing artifact, and may be, for example, an N half artifact in the EPI method, an artifact due to a chemical shift, or the like.
 (画像生成処理) 
 (ステップSa1) 
 入出力インタフェース153を介した操作者の指示により、撮像条件が入力される。以下、説明を具体的にするために、撮像条件は、Reduction factorが2であるものとする。処理回路151は、選択機能1513により、入力された撮像条件を用いて、当該撮像条件に対応する学習済みモデルを選択する。なお、学習済みモデルの選択は、後述のステップSa3の後に実行されてもよい。
(Image generation process)
(Step Sa1)
The imaging conditions are input by the instruction of the operator via the input / output interface 153. Hereinafter, in order to make the description specific, it is assumed that the imaging condition has a reduction factor of 2. The processing circuit 151 uses the selection function 1513 to select a learned model corresponding to the imaging condition using the input imaging condition. The selection of the learned model may be performed after step Sa3 described later.
 (ステップSa2) 
 撮像制御回路121は、入力された撮像条件に従ってパルスシーケンスを実行することにより、磁気共鳴データを収集する。撮像制御回路121は、収集された磁気共鳴データを、処理回路151に出力する。処理回路151は、磁気共鳴データを、メモリ152上において、k空間を示すデータ空間に配列する。
(Step Sa2)
The imaging control circuit 121 collects magnetic resonance data by executing a pulse sequence in accordance with the input imaging conditions. The imaging control circuit 121 outputs the acquired magnetic resonance data to the processing circuit 151. The processing circuit 151 arranges the magnetic resonance data on the memory 152 in a data space indicating k space.
 (ステップSa3) 
 処理回路151は、再構成機能1511により、データ空間に配列された磁気共鳴データ、すなわちk空間データに対してフーリエ変換または逆フーリエ変換を施すことにより、仮画像を再構成する。仮画像には、撮像条件に応じたアーチファクトが現れる。例えば、Reduction factorが2である撮像条件でパルスシーケンスが実行された場合、仮画像は、Reduction factorが1である場合のFOVに対して、位相エンコード方向のFOVの半分の位置で折り返しが発生した画像となる。
(Step Sa3)
The processing circuit 151 reconstructs a temporary image by performing Fourier transform or inverse Fourier transform on the magnetic resonance data arranged in the data space, that is, k-space data, by the reconstruction function 1511. In the temporary image, an artifact according to the imaging condition appears. For example, when a pulse sequence is executed under an imaging condition in which the reduction factor is 2, the temporary image has aliasing at a half position of the FOV in the phase encoding direction with respect to the FOV in the case where the reduction factor is 1. It becomes an image.
 (ステップSa4) 
 処理回路151は、画像生成機能1515により、選択された学習済みモデルに対応するプログラムをメモリ152から読み出す。処理回路151は、読み出された学習済みモデルに対応するプログラムを実行する。具体的には、処理回路151は、読み出された学習済みモデルを仮画像に適用して、順伝播処理を実行する。処理回路151は、順伝播処理の結果として、アーチファクトが除去された磁気共鳴画像を生成する。ステップSa1において撮像条件としてReduction factorが入力された場合、本ステップで生成される磁気共鳴画像は、折り返しが除去された画像となる。以下、本ステップにおける順伝播処理を実行する順伝播機能について、図6および図7を用いて説明する。
(Step Sa4)
The processing circuit 151 reads the program corresponding to the selected learned model from the memory 152 by the image generation function 1515. The processing circuit 151 executes a program corresponding to the read learned model. Specifically, the processing circuit 151 applies the read learned model to the temporary image to execute forward propagation processing. The processing circuit 151 generates a magnetic resonance image from which an artifact has been removed as a result of forward propagation processing. When a reduction factor is input as an imaging condition in step Sa1, the magnetic resonance image generated in this step is an image from which aliasing has been removed. The forward propagation function for executing the forward propagation process in this step will be described below with reference to FIGS. 6 and 7.
 図6および図7は、図2を詳細に示した図である。図6は、仮画像TempIと、仮画像TempIに対する第1の畳み込み結果のチャネル数1ConvRと、第1の畳み込み結果に対する第2の畳み込み結果のチャネル数2ConvRとの一例を示す図である。説明を簡単にするために、図6における仮画像TempIにおける注目画素NPに着目する。注目画素NPの画素値は、折り返しによる画素値と、折り返しによらない本来の画素値との和となる。このため、学習済みモデルにおける複数の畳み込み層各々において、注目画素NPに関する畳み込み位置は、注目画素NPを包含する近傍領域ARと、注目画素NPに折り返る画素の位置を中心とした離隔領域SRとなる。 6 and 7 are diagrams showing FIG. 2 in detail. FIG. 6 is a diagram showing an example of a temporary image TempI, a channel number 1ConvR of a first convolution result for the temporary image TempI, and a channel number 2ConvR of a second convolution result for the first convolution result. In order to simplify the description, attention is focused on the target pixel NP in the temporary image TempI in FIG. The pixel value of the target pixel NP is the sum of the pixel value due to aliasing and the original pixel value not due to aliasing. For this reason, in each of the plurality of convolution layers in the learned model, the convolution position of the target pixel NP includes the vicinity area AR including the target pixel NP and the separation area SR around the position of the pixel folded back to the target pixel NP. Become.
 処理回路151は、画像生成機能1515により、学習済みモデルにおける第1の畳み込み層において、仮画像TempIにおいて近傍領域ARおよび離隔領域SRに含まれる複数の画素値に対して、畳み込み演算に相当するフィルタ処理を実行する。具体的には、処理回路151は、選択された学習済みモデルにおける第1の畳み込み層に用いられる複数のフィルタ各々における複数のフィルタ係数を重み付け係数として用いて、近傍領域ARおよび離隔領域SRに含まれる複数の画素値に対して積和演算、すなわち畳み込み演算を実行する。処理回路151は、第1の畳み込み結果において、上記畳み込み演算の結果である積和値を、注目画素NPに対応する位置NP1に関連付ける。処理回路151は、第1の畳み込み層におけるフィルタ処理を、学習済みモデルにおけるフィルタの総数に亘って並列的に実行する。これらの処理により、処理回路151は、第1の畳み込み結果を算出する。例えば、フィルタの総数が64である場合、第1の畳み込み結果のチャネル数1ConvRは、64枚のマップに相当する。 The processing circuit 151 causes the image generation function 1515 to perform a filter operation corresponding to a convolution operation on a plurality of pixel values included in the near area AR and the distant area SR in the temporary image TempI in the first convolutional layer in the learned model. Execute the process Specifically, processing circuit 151 uses a plurality of filter coefficients in each of a plurality of filters used in the first convolutional layer in the selected learned model as weighting coefficients, and is included in neighboring region AR and remote region SR. A product-sum operation, ie, a convolution operation, is performed on the plurality of pixel values to be processed. The processing circuit 151 associates the product-sum value, which is the result of the convolution operation, in the first convolution result with the position NP1 corresponding to the target pixel NP. The processing circuit 151 executes filtering in the first convolutional layer in parallel over the total number of filters in the learned model. By these processes, the processing circuit 151 calculates a first convolution result. For example, when the total number of filters is 64, the channel number 1ConvR of the first convolution result corresponds to 64 maps.
 処理回路151は、画像生成機能1515により、第1の畳み込み結果を、選択された学習済みモデルにおける第2の畳み込み層へ入力する。具体的には、処理回路151は、第2の畳み込み層に用いられる複数のフィルタ各々における複数のフィルタ係数を重み付け係数として用いて、第1の畳み込み結果のチャネル数1ConvR、すなわちフィルタの総数に対応する複数のマップにおける近傍領域ARおよび離隔領域SRに含まれる複数の積和値に対して畳み込み演算を実行する。近傍領域ARと離隔領域SRの畳み込み係数は別の係数を用いた学習を行っても良いし、同一の係数を用いても良い。また、畳み込みの範囲(カーネルサイズ)は正方形である必要はなく、例えば、画像のアスペクト比にあわせた形状としても良いし、例えば、畳み込みの範囲としてリードアウト方向が長い形状を用いても良い。処理回路151は、第2の畳み込み結果において、第2の畳み込み層による上記畳み込み演算の結果である積和値を、注目画素NPに対応する位置NP2に関連付ける。処理回路151は、第2の畳み込み層におけるフィルタ処理を、学習済みモデルにおけるフィルタの総数に亘って並列的に実行する。これらの処理により、処理回路151は、第2の畳み込み結果を算出する。以下、同様に、処理回路151は、学習済みモデルにおける畳み込み層の総数Nに亘って、フィルタ処理による演算を、順伝播処理FFPにおいて繰り返す。なお、隣接する2つの畳み込み層の間には、適宜、プーリング層、活性化層、コントラスト正規化層、ショートカット(ResNet)、前データとの結合(DenseNet)等が設けられてもよい。 The processing circuit 151 inputs the first convolution result to the second convolution layer in the selected learned model by the image generation function 1515. Specifically, the processing circuit 151 uses the plurality of filter coefficients in each of the plurality of filters used in the second convolutional layer as weighting coefficients to cope with the channel number 1ConvR of the first convolution result, that is, the total number of filters. A convolution operation is performed on the plurality of product-sum values included in the neighborhood area AR and the separation area SR in the plurality of maps. The convolution coefficient of the near area AR and the distant area SR may be learned using another coefficient or may be the same coefficient. The range of convolution (kernel size) need not be a square, and may be, for example, a shape according to the aspect ratio of the image, or, for example, a shape with a long readout direction may be used as the range of convolution. The processing circuit 151 associates the product-sum value, which is the result of the convolution operation by the second convolution layer, in the second convolution result with the position NP2 corresponding to the target pixel NP. The processing circuit 151 executes filtering in the second convolutional layer in parallel over the total number of filters in the learned model. By these processes, the processing circuit 151 calculates a second convolution result. Hereinafter, in the same manner, the processing circuit 151 repeats, in the forward propagation processing FFP, the operation by the filter processing over the total number N of convolutional layers in the learned model. A pooling layer, an activation layer, a contrast normalization layer, a shortcut (ResNet), a connection with previous data (DenseNet), and the like may be provided as appropriate between two adjacent convolutional layers.
 図7は、第Nの畳み込み層による第Nの畳み込み結果を用いた磁気共鳴画像ReIの生成の一例を示す図である。図7に示すように、処理回路151は、画像生成機能1515により、複数の第Nの畳み込み結果のチャネル数NconvRに対して全結合層を適用することにより、磁気共鳴画像ReIを生成する。処理回路151は、生成された磁気共鳴画像ReIを入出力インタフェース153に出力する。入出力インタフェース153におけるディスプレイは、生成された磁気共鳴画像ReIを表示する。 FIG. 7 is a diagram showing an example of generation of a magnetic resonance image ReI using the Nth convolution result by the Nth convolution layer. As shown in FIG. 7, the processing circuit 151 generates a magnetic resonance image ReI by applying an all coupling layer to the channel numbers NconvR of the plurality of N-th convolution results by the image generation function 1515. The processing circuit 151 outputs the generated magnetic resonance image ReI to the input / output interface 153. The display at the input / output interface 153 displays the generated magnetic resonance image ReI.
 以上に述べた構成によれば、以下に示す効果を得ることができる。 
 本実施形態における磁気共鳴イメージング装置100によれば、入力された磁気共鳴画像が磁気共鳴イメージングにより収集される際の撮像条件に対応する学習済みモデルを、入力された磁気共鳴画像に対して適用して、画質を向上させるための順伝播処理を行い、磁気共鳴画像を出力することができる。具体的には、本磁気共鳴イメージング装置100によれば、k空間における等間隔での間引き収集により磁気共鳴データを収集し、磁気共鳴データに対するフーリエ変換により仮画像を再構成し、同一の物理位置によるアーチファクトの発生位置に応じて設定された複数の畳み込み位置を用いて学習された畳み込み層を有し複数の撮像条件にそれぞれ対応する複数の学習済みモデルから、仮画像に関する撮像条件を用いて、仮画像に適用される学習済みモデルを選択し、選択された学習済みモデルを仮画像に適用することにより、磁気共鳴画像を生成することができる。
According to the configuration described above, the following effects can be obtained.
According to the magnetic resonance imaging apparatus 100 in the present embodiment, a learned model corresponding to an imaging condition at the time when the input magnetic resonance image is acquired by magnetic resonance imaging is applied to the input magnetic resonance image. Thus, forward propagation processing for improving the image quality can be performed to output a magnetic resonance image. Specifically, according to the present magnetic resonance imaging apparatus 100, magnetic resonance data is collected by thinning collection at equal intervals in k space, and a temporary image is reconstructed by Fourier transform on the magnetic resonance data, and the same physical position is obtained. From a plurality of learned models each having a convolution layer learned using a plurality of convolution positions set according to an occurrence position of an artifact caused by a plurality of learning conditions using an imaging condition regarding a temporary image, A magnetic resonance image can be generated by selecting a trained model to be applied to the temporary image and applying the selected learned model to the temporary image.
 また、本磁気共鳴イメージング装置100によれば、複数の学習済みモデルのうち少なくとも一つとして、間引き収集における間引き率に応じて畳み込み位置を変化させた畳み込み層を有するニューラルネットワーク、エコープラナーイメージングにおけるNハーフアーチファクトの発生位置に応じて畳み込み位置を変化させた畳み込み層を有するニューラルネットワーク、ケミカルシフトに応じて畳み込み位置を変化させた畳み込み層を有するニューラルネットワークを用いて、撮像条件に応じて既知の位置に発生するアーチファクトを除去した磁気共鳴画像を生成することができる。 Further, according to the present magnetic resonance imaging apparatus 100, a neural network having a convolutional layer whose convolutional position is changed according to a thinning rate in thinning collection as at least one of a plurality of learned models, N in echo planar imaging A known position according to imaging conditions using a neural network having a convolutional layer in which the convolutional position is changed according to the occurrence position of the half artifact and a neural network having a convolutional layer in which the convolutional position is changed according to the chemical shift. It is possible to generate a magnetic resonance image from which artifacts occurring in the
 以上のことから、本磁気共鳴イメージング装置100によれば、撮像条件に応じた既知の折り返し位置に応じた畳み込み位置、すなわち近傍領域ARおよび離隔領域SRを、効果的および効率的に必要な情報として用いた非線形写像の学習により畳み込み層を設計し、当該設計された畳み込み層を有する学習済みモデルを用いて、アーチファクトを除去した磁気共鳴画像を生成することができる。これにより、本磁気共鳴イメージング装置100によれば、再構成される磁気共鳴画像の画質を向上させることができる。 From the above, according to the present magnetic resonance imaging apparatus 100, the convolution position according to the known folding position according to the imaging condition, that is, the near area AR and the separation area SR, is effectively and efficiently necessary information. The convolution layer is designed by learning the used non-linear mapping, and a trained model having the designed convolution layer can be used to generate a magnetic resonance image from which an artifact is removed. Thus, according to the present magnetic resonance imaging apparatus 100, the image quality of the reconstructed magnetic resonance image can be improved.
 (応用例) 
 本応用例と実施形態との相違は、折り返しの位置などのアーチファクトの発生位置に応じて分割された2つの仮画像(以下、2チャネル画像と呼ぶ)をCNNへの2つのチャネルの入力として用いて、アーチファクトが除去された磁気共鳴画像を生成することにある。なお、CNNへの入力は上記2チャネル画像に限定されず、アーチファクトの発生位置に応じて多分割された多チャネル画像であってもよい。まず、本応用例における学習済みモデルについて説明し、次いで、本応用例における学習済みモデルを用いた磁気共鳴画像の生成について説明する。
(Application example)
The difference between this application example and the embodiment is that two temporary images (hereinafter referred to as a two-channel image) divided according to an occurrence position of an artifact such as a folding position are used as input of two channels to the CNN. To generate a magnetic resonance image from which an artifact has been removed. Note that the input to the CNN is not limited to the above two-channel image, and may be a multi-channel image divided in multiples according to the position where the artifact occurs. First, a learned model in the present application example will be described, and then generation of a magnetic resonance image using the learned model in the present application example will be described.
 本応用例に係る学習済みモデルは、アーチファクトの発生位置が撮像条件により既知である仮画像を2分割した2チャネル画像を入力として、当該仮画像におけるアーチファクトが除去された磁気共鳴画像を出力するCNNである。学習データは、撮像条件によりアーチファクトの発生位置が既知である磁気共鳴画像を2分割したデータ、近傍領域および離隔領域を示すデータ、および当該磁気共鳴画像におけるアーチファクトが除去された磁気共鳴画像のデータである。CNNに入力される画像は、本実施形態に比べて1チャネルから2チャネルに倍増する。モデル学習装置は、学習データを用いてCNNを学習することにより、本応用例に関する学習済みモデルを生成する。生成された学習済みモデルは、対応する撮像条件とともにメモリ152にプログラムとして記憶される。 The learned model according to this application example is a CNN that outputs a magnetic resonance image from which an artifact in a temporary image is removed by using a 2-channel image obtained by dividing the temporary image in which the generation position of the artifact is known according to imaging conditions into two. It is. The learning data is data obtained by dividing a magnetic resonance image in which an occurrence position of an artifact is known according to an imaging condition into two, data indicating a near region and a distant region, and data of a magnetic resonance image from which the artifact in the magnetic resonance image is removed. is there. The image input to the CNN is doubled from one channel to two channels as compared to the present embodiment. The model learning device generates a learned model for the present application example by learning CNN using the learning data. The generated learned model is stored as a program in the memory 152 together with the corresponding imaging conditions.
 処理回路151は、画像生成機能1515により、ステップSa3において、仮画像を2つに分割する。処理回路151は、例えば、仮画像において折り返しが発生していない軸に沿って仮画像を2つに分割することにより、2チャネル画像を生成する。なお、仮画像を2分割する軸は、上記軸に限定されず任意に設定可能である。処理回路151は、ステップSa4において、選択された学習済みモデルを、2チャネル画像に適用して順伝播処理を実行することにより、アーチファクトが除去された磁気共鳴画像を生成する。以下、説明を具体的にするために、本応用例における説明に関するアーチファクトは、Reduction factorに応じた折り返しアーチファクトであるものとして説明する。なお、本応用例として適用可能なアーチファクトは、折り返しアーチファクトに限定されず、例えば、EPI法におけるNハーフアーチファクト、ケミカルシフトによるアーチファクトなどであってもよい。 The processing circuit 151 causes the image generation function 1515 to divide the temporary image into two in step Sa3. The processing circuit 151 generates a two-channel image, for example, by dividing the temporary image into two along an axis where no aliasing occurs in the temporary image. In addition, the axis which divides a temporary image into 2 is not limited to the said axis | shaft, It can set arbitrarily. In step Sa4, the processing circuit 151 applies the selected learned model to the two-channel image and performs forward propagation processing to generate a magnetic resonance image from which an artifact has been removed. Hereinafter, in order to make the description specific, an artifact related to the description in the present application example will be described as a aliasing artifact according to the reduction factor. The artifact applicable as the present application is not limited to the aliasing artifact, and may be, for example, an N half artifact in the EPI method, an artifact due to a chemical shift, or the like.
 図8および図9は、図3を詳細に示した図である。図8は、仮画像TempIを2分割した2チャネル画像2cTempIと、2チャネル画像2cTempIに対する2チャネルの第1の畳み込み結果のチャネル数1ConvR2chと、2チャネルの第1の畳み込み結果に対する2チャネルの第2の畳み込み結果のチャネル数2ConvRch2との一例を示す図である。説明を簡単にするために、図8における2チャネル画像2cTempIにおける注目画素NP2cに着目する。注目画素NP2cの画素値は、折り返しによる画素値と、折り返しによらない本来の画素値との和となる。このため、2チャネル画像2cTempIのうち第1の画像2cI1において注目画素NP2cに関する畳み込み位置は、第1の画像2cI1において注目画素NP2を包含する近傍領域ARと、2チャネル画像2cTempIのうち第2の画像2cI2において注目画素NP2に折り返る画素の位置を中心とした離隔領域SRとなる。 8 and 9 are diagrams showing FIG. 3 in detail. FIG. 8 shows a 2-channel image 2cTempI obtained by dividing the temporary image TempI into two, a channel number 1ConvR2ch of the first convolution result of the 2-channel for the 2-channel image 2cTempI, and a second of the 2 channels for the first convolution result of the 2-channel. Is a diagram showing an example of the number of channels 2ConvRch2 of the convolution result of. In order to simplify the description, attention is focused on the target pixel NP2c in the two-channel image 2cTempI in FIG. The pixel value of the target pixel NP2c is the sum of the pixel value due to aliasing and the original pixel value that is not due to aliasing. For this reason, the convolution position of the target pixel NP2c in the first image 2cI1 of the two-channel image 2cTempI is the second image of the two-channel image 2cTempI and the neighboring area AR including the target pixel NP2 in the first image 2cI1. This is a separation area SR centered on the position of the pixel which is folded back to the target pixel NP2 at 2cI2.
 処理回路151は、画像生成機能1515により、学習済みモデルにおける第1の畳み込み層において、第1の画像2cI1における近傍領域ARに含まれる複数の画素値と、第2の画像2cI2における離隔領域SRに含まれる複数の画素値とに対して、畳み込み演算に相当するフィルタ処理を実行する。具体的には、処理回路151は、選択された学習済みモデルにおける第1の畳み込み層に用いられる複数のフィルタ各々における複数のフィルタ係数を重み付け係数として用いて、近傍領域ARおよび離隔領域SRに含まれる複数の画素値に対して積和演算、すなわち畳み込み演算を実行する。処理回路151は、2チャネルの第1の畳み込み結果において、上記畳み込み演算の結果である積和値を、注目画素NP2cに対応する位置NP2c1に関連付ける。処理回路151は、フィルタ処理を、学習済みモデルにおけるフィルタの総数に亘って並列的に実行する。これらの処理により、処理回路151は、2チャネルの第1の畳み込み結果を算出する。例えば、フィルタの総数が128である場合、2チャネルの第1の畳み込み結果のチャネル数1ConvR2chは、128枚のマップに相当する。 The processing circuit 151 causes the image generation function 1515 to set a plurality of pixel values included in the neighboring area AR in the first image 2cI1 and a separation area SR in the second image 2cI2 in the first convolutional layer in the learned model. A filtering process corresponding to a convolution operation is performed on a plurality of included pixel values. Specifically, processing circuit 151 uses a plurality of filter coefficients in each of a plurality of filters used in the first convolutional layer in the selected learned model as weighting coefficients, and is included in neighboring region AR and remote region SR. A product-sum operation, ie, a convolution operation, is performed on the plurality of pixel values to be processed. The processing circuit 151 associates the product-sum value, which is the result of the convolution operation, in the first convolution result of the two channels with the position NP2c1 corresponding to the target pixel NP2c. The processing circuit 151 executes filtering in parallel over the total number of filters in the learned model. Through these processes, the processing circuit 151 calculates the first convolution result of the two channels. For example, when the total number of filters is 128, the channel number 1ConvR2ch of the first convolution result of 2 channels corresponds to 128 maps.
 処理回路151は、画像生成機能1515により第1の畳み込み結果を、選択された学習済みモデルにおける第2の畳み込み層へ入力する。具体的には、処理回路151は、第2の畳み込み層に用いられる複数のフィルタ各々における複数のフィルタ係数を重み付け係数として用いて、第1の畳み込み結果のチャネル数1ConvR2ch、すなわちフィルタの総数に対応する複数のマップにおける位置NP2c1を中心とした領域ConvRに含まれる複数の積和値に対して畳み込み演算を実行する。処理回路151は、2チャネルの第2の畳み込み結果において、第2の畳み込み層による上記畳み込み演算の結果である積和値を、注目画素NPに対応する位置NP2c2に関連付ける。処理回路151は、第2の畳み込み層におけるフィルタ処理を、学習済みモデルにおけるフィルタの総数に亘って並列的に実行する。これらの処理により、処理回路151は、2チャネルの第2の畳み込み結果を算出する。以下、同様に、処理回路151は、学習済みモデルにおける畳み込み層の総数Nに亘って、フィルタ処理による演算を、順伝播処理FFPにおいて繰り返す。なお、隣接する2つの畳み込み層の間には、適宜、プーリング層、局所コントラスト正規化層等が設けられてもよい。 The processing circuit 151 inputs the first convolution result by the image generation function 1515 to the second convolution layer in the selected learned model. Specifically, the processing circuit 151 uses the plurality of filter coefficients in each of the plurality of filters used in the second convolutional layer as weighting coefficients to correspond to the number of channels of the first convolution result 1ConvR2ch, that is, the total number of filters. A convolution operation is performed on the plurality of product-sum values included in the area ConvR centered on the position NP2c1 in the plurality of maps. The processing circuit 151 associates the product-sum value, which is the result of the convolution operation by the second convolution layer, in the second convolution result of the two channels with the position NP2c2 corresponding to the target pixel NP. The processing circuit 151 executes filtering in the second convolutional layer in parallel over the total number of filters in the learned model. Through these processes, the processing circuit 151 calculates the second convolution result of the two channels. Hereinafter, in the same manner, the processing circuit 151 repeats, in the forward propagation processing FFP, the operation by the filter processing over the total number N of convolutional layers in the learned model. A pooling layer, a local contrast normalization layer or the like may be provided as appropriate between two adjacent convolutional layers.
 図9は、第Nの畳み込み層による2チャネルの第Nの畳み込み結果を用いた2チャネルの磁気共鳴画像2cReIの生成と、2チャネルの磁気共鳴画像2cReIを合成した磁気共鳴画像ReIとの一例を示す図である。図9に示すように、処理回路151は、画像生成機能1515により、複数の第Nの畳み込み結果のチャネル数NconvRchに対して全結合層を適用することにより、2チャネルの磁気共鳴画像2cReIを生成する。処理回路151は、生成された2チャネルの磁気共鳴画像2cReIを合成することにより、アーチファクトが除去された磁気共鳴画像ReIを生成する。 FIG. 9 shows an example of generation of a two-channel magnetic resonance image 2cReI using the two-channel N-th convolution result by the N-th convolutional layer and a magnetic resonance image ReI combining the two-channel magnetic resonance image 2cReI FIG. As shown in FIG. 9, the processing circuit 151 generates a two-channel magnetic resonance image 2cReI by applying all coupling layers to the number of channels NconvRch of the plurality of N-th convolution results by the image generation function 1515. Do. The processing circuit 151 generates a magnetic resonance image ReI from which an artifact is removed by synthesizing the generated two-channel magnetic resonance image 2cReI.
 (第1変形例) 
 本実施形態と本変形例との相違は、仮画像として複素数画像を用いることと、畳み込み層における畳み込み演算として複素演算を用いることとにある。すなわち、本変形例においてCNNの計算は、複素空間での複素演算として実行される。本変形例に係る学習済みモデルは、アーチファクトの発生位置が撮像条件により既知である複素数画像を入力として複素演算を実行し、当該複素数画像におけるアーチファクトが除去された複素数画像を出力するCNNである。学習データは、撮像条件によりアーチファクトの発生位置が既知である複素数画像のデータ、近傍領域および離隔領域を示すデータ、および当該複素数画像におけるアーチファクトが除去された複素数画像のデータである。モデル学習装置は、学習データを用いてCNNを学習することにより、本応用例に関する学習済みモデルを生成する。生成された学習済みモデルは、対応する撮像条件とともに、メモリ152にプログラムとして記憶される。
(First modification)
The difference between the present embodiment and the present modification is that a complex image is used as a temporary image and a complex operation is used as a convolution operation in the convolution layer. That is, in the present modification, the calculation of CNN is executed as a complex operation in the complex space. The learned model according to the present modification is a CNN that executes a complex operation with a complex image whose occurrence position of an artifact is known according to an imaging condition as input, and outputs a complex image from which the artifact in the complex image is removed. The learning data is data of a complex image whose occurrence position of an artifact is known according to imaging conditions, data indicating a near region and a distant region, and data of a complex image from which an artifact in the complex image is removed. The model learning device generates a learned model for the present application example by learning CNN using the learning data. The generated learned model is stored as a program in the memory 152 together with the corresponding imaging conditions.
 処理回路151は、再構成機能1511により、収集された磁気共鳴信号に対して直交位相検波を実行することにより、複素磁気共鳴データを生成する。処理回路151は、複素磁気共鳴データに対してフーリエ変換又は逆フーリエ変換を行うことにより、複素数画像を生成する。処理回路151は、画像生成機能1515により、選択された学習済みモデルを複素数画像に適用して順伝播処理を実行することにより、アーチファクトが除去された複素数画像を生成する。処理回路151は、順伝播処理により生成された複素数画像を用いて、磁気共鳴画像を生成する。 The processing circuit 151 generates complex magnetic resonance data by performing quadrature detection on the collected magnetic resonance signals by the reconstruction function 1511. The processing circuit 151 generates a complex image by performing Fourier transform or inverse Fourier transform on complex magnetic resonance data. The processing circuit 151 applies the selected learned model to a complex image by the image generation function 1515 to perform forward propagation processing, thereby generating a complex image from which an artifact has been removed. The processing circuit 151 generates a magnetic resonance image using a complex image generated by forward propagation processing.
 (第2の変形例) 
 応用例と本変形例との相違は、応用例に記載の2チャネル画像として、複素数画像における実部画像と虚部画像とを用いることにある。本変形例に係る学習済みモデルは、アーチファクトの発生位置が撮像条件により既知である実部画像と虚部画像とを入力として、当該実部画像および当該虚部画像におけるアーチファクトがそれぞれ除去された実部画像と虚部画像とを出力するCNNである。学習データは、撮像条件によりアーチファクトの発生位置が既知である実部画像および虚部画像のデータ、近傍領域および離隔領域を示すデータ、および当該実部画像および当該虚部画像におけるアーチファクトがそれぞれ除去された実部画像と虚部画像とのデータである。モデル学習装置は、学習データを用いてCNNを学習することにより、本応用例に関する学習済みモデルを生成する。生成された学習済みモデルは、対応する撮像条件とともに、メモリ152にプログラムとして記憶される。
(Second modification)
The difference between the application and the present modification is that a real part image and an imaginary part image in a complex image are used as the two-channel image described in the application. The learned model according to the present modification receives as input the real part image and the imaginary part image whose occurrence position of the artifact is known according to the imaging condition, and removes the artefact in the real part image and the imaginary part image. It is a CNN that outputs a partial image and an imaginary part image. In the learning data, data of a real part image and an imaginary part image in which the occurrence position of an artifact is known according to imaging conditions, data indicating a near area and a distant area, and an artifact in the real part image and the imaginary part image are respectively removed Data of the real part image and the imaginary part image. The model learning device generates a learned model for the present application example by learning CNN using the learning data. The generated learned model is stored as a program in the memory 152 together with the corresponding imaging conditions.
 処理回路151は、再構成機能1511により、収集された磁気共鳴信号に対して直交位相検波を実行することにより、複素磁気共鳴データを生成する。処理回路151は、複素磁気共鳴データにおける実部データに対してフーリエ変換又は逆フーリエ変換を行うことにより、実部画像を生成する。処理回路151は、複素磁気共鳴データにおける虚部データに対してフーリエ変換又は逆フーリエ変換を行うことにより、虚部画像を生成する。処理回路151は、画像生成機能1515により、選択された学習済みモデルを実部画像および虚部画像に適用して順伝播処理を実行することにより、アーチファクトが除去された実部画像および虚部画像を生成する。処理回路151は、順伝播処理により生成された実部画像と虚部画像とを用いて、磁気共鳴画像を生成する。 The processing circuit 151 generates complex magnetic resonance data by performing quadrature detection on the collected magnetic resonance signals by the reconstruction function 1511. The processing circuit 151 generates a real part image by performing Fourier transform or inverse Fourier transform on real part data in complex magnetic resonance data. The processing circuit 151 generates an imaginary part image by performing Fourier transform or inverse Fourier transform on imaginary part data in complex magnetic resonance data. The processing circuit 151 applies the selected learned model to the real part image and the imaginary part image by the image generation function 1515 to execute forward propagation processing, thereby removing the real part image and the imaginary part image from which the artifact is removed. Generate The processing circuit 151 generates a magnetic resonance image using the real part image and the imaginary part image generated by the forward propagation processing.
 本実施形態等の変形例として、本画像処理装置150の技術的思想をクラウド等で実現する場合には、インタネット上のサーバーは、例えば図1および図4における処理回路151およびメモリ152を有するものとなる。このとき、再構成機能1511、選択機能1513、画像生成機能1515等は、当該機能を実行する画像処理プログラムをサーバーの処理回路151にインストールし、これらをメモリ上で展開することによって実現される。例えば、サーバーは、画像生成処理等を実行することができる。 As a modification of the present embodiment and the like, when the technical idea of the present image processing apparatus 150 is realized by a cloud or the like, a server on the Internet includes, for example, the processing circuit 151 and the memory 152 in FIGS. It becomes. At this time, the reconstruction function 1511, the selection function 1513, the image generation function 1515 and the like are realized by installing an image processing program for executing the function in the processing circuit 151 of the server and expanding them on the memory. For example, the server can execute an image generation process and the like.
 以上説明した少なくとも1つの実施形態によれば、磁気共鳴画像の画質を向上することができる。 According to at least one embodiment described above, the image quality of the magnetic resonance image can be improved.
 (第1適用例) 
 以下、本実施形態の適用例について説明する。図10は、本適用例における医用信号処理装置200の構成の一例を示す図である。図10に示すように、医用信号処理装置200は、入力インタフェース201と、メモリ203と、処理回路205と、ディスプレイ207とを有する。医用信号処理装置200は、磁気共鳴イメージング装置100に搭載されてもよい。入力インタフェース201とディスプレイ207とは実施形態における入出力インタフェース153に対応するため、説明は省略する。なお、入力インタフェース201は、例えば磁気共鳴イメージング装置などの医用画像診断装置から、撮像条件および医用画像を取得する通信インターフェースとして機能してもよい。メモリ203および処理回路205に関するハードウェア構成は、実施形態と同様なため、説明は省略する。なお、処理回路205は、撮像条件および医用画像を不図示のモダリティから取得する取得機能を有していてもよい。取得機能を実現する処理回路205は、取得部として機能する。
(First application example)
Hereinafter, application examples of the present embodiment will be described. FIG. 10 is a diagram showing an example of the configuration of the medical signal processing apparatus 200 in the present application example. As shown in FIG. 10, the medical signal processing apparatus 200 includes an input interface 201, a memory 203, a processing circuit 205, and a display 207. The medical signal processing apparatus 200 may be mounted on the magnetic resonance imaging apparatus 100. Since the input interface 201 and the display 207 correspond to the input / output interface 153 in the embodiment, the description will be omitted. The input interface 201 may function as a communication interface for acquiring imaging conditions and medical images from, for example, a medical image diagnostic apparatus such as a magnetic resonance imaging apparatus. The hardware configuration of the memory 203 and the processing circuit 205 is the same as that of the embodiment, and thus the description thereof is omitted. The processing circuit 205 may have an acquisition function of acquiring imaging conditions and a medical image from a modality (not shown). The processing circuit 205 that realizes the acquisition function functions as an acquisition unit.
 メモリ203は、学習済みモデル231と撮像条件2031と医用信号2033とを記憶する。学習済みモデル231は、既知の方向に沿って既知のシフト量でずれた位置に現れるパターンを有する医用信号2033に対してパターンを低減するように補正された補正信号と、パターンに関するパターン関連情報と、医用信号2033に関する疾患情報とのうちいずれか一つを出力するように機能付られている。医用信号2033は、例えば、被検体Pに対する磁気共鳴撮像により生成された磁気共鳴画像であって、上述の仮画像に相当する。以下、説明を具体的にするために、医用信号2033は、磁気共鳴画像として説明する。パターンは、例えば、磁気共鳴撮像の撮像条件2031に応じて、磁気共鳴画像に発生したアーチファクトである。アーチファクトは、例えば、折り返しアーチファクトとNハーフアーチファクトとケミカルシフトアーチファクトとモーションアーチファクトとのうち少なくとも一つのアーチファクトである。 The memory 203 stores the learned model 231, the imaging condition 2031, and the medical signal 2033. The learned model 231 includes a correction signal corrected to reduce the pattern with respect to the medical signal 2033 having a pattern appearing at a position shifted by a known shift amount along a known direction, and pattern related information on the pattern. A function is provided to output any one of disease information related to the medical signal 2033. The medical signal 2033 is, for example, a magnetic resonance image generated by magnetic resonance imaging on the subject P, and corresponds to the above-described temporary image. Hereinafter, the medical signal 2033 is described as a magnetic resonance image in order to make the description specific. The pattern is, for example, an artifact generated in the magnetic resonance image in accordance with the imaging condition 2031 of the magnetic resonance imaging. The artifacts are, for example, at least one of folding artifacts, N half artifacts, chemical shift artifacts, and motion artifacts.
 以下、本適用例における学習済みモデル231は、補正信号を出力するものとして説明する。学習済みモデル231がパターン関連情報または疾患情報を出力する場合については、後述の第2適用例において説明する。また、パターンが非アーチファクトであって、医用信号2033が非2次元的な医用信号(例えば非画像)である場合については、第3適用例において説明する。本適用例に関する処理は、医用信号に対するデノイズ等に向いているが、デノイズに限定されず第2適用例および第3適用例に示すように、デノイズ以外の用途として用いられてもよい。 Hereinafter, the learned model 231 in the present application example will be described as outputting a correction signal. The case where the learned model 231 outputs pattern related information or disease information will be described in the second application example described later. Further, the case where the pattern is a non-artifact and the medical signal 2033 is a non-two-dimensional medical signal (for example, a non-image) will be described in the third application example. The processing relating to the present application example is suitable for denoising and the like with respect to medical signals, but is not limited to denoising and may be used as applications other than denoising as shown in the second and third application examples.
 既知の方向は、アーチファクトの発生に関する方向であって、撮像条件2031におけるパルスシーケンスにより規定される。例えば、アーチファクトがパラレルイメージングにより発生する折り返し(aliasing)アーチファクトである場合、既知の方向は、磁気共鳴画像において折り返される方向に対応する。折り返される方向は、位相エンコード方向に限定されず、例えば、マルチスライスカイピリーニャや2次元カイピリーニャなどのように位相エンコード方向と周波数エンコード方向との両者により規定される方向であってもよい。また、アーチファクトがEPI法のパルスシーケンスの実行により発生するNハーフアーチファクトである場合、既知の方向は、例えば、磁気共鳴画像における位相エンコード方向に対応する。アーチファクトがケミカルアーチファクトである場合、既知の方向は、例えば、磁気共鳴画像における周波数エンコード方向に対応する。また、アーチファクトがモーションアーチファクトである場合、既知の方向は、例えば、磁気共鳴画像における被検体Pの体動の方向や拍動流の方向に対応する。 The known direction is a direction regarding the occurrence of an artifact, and is defined by the pulse sequence in the imaging condition 2031. For example, if the artifact is an aliasing artifact caused by parallel imaging, the known direction corresponds to the direction to be folded back in the magnetic resonance image. The direction to be folded back is not limited to the phase encode direction, and may be a direction defined by both the phase encode direction and the frequency encode direction, such as multi-slice caipirinha and two-dimensional caipirinha. Also, if the artifact is an N half artifact caused by execution of the EPI pulse sequence, the known direction corresponds to, for example, the phase encoding direction in the magnetic resonance image. If the artifact is a chemical artifact, the known direction corresponds, for example, to the frequency encoding direction in the magnetic resonance image. In addition, when the artifact is a motion artifact, the known direction corresponds to, for example, the direction of body movement or the pulsatile flow direction of the object P in the magnetic resonance image.
 既知のシフト量は、アーチファクトの発生位置に基づく磁気共鳴画像の循環的な並進量であって、撮像条件2031におけるパルスシーケンスにより規定される。例えば、アーチファクトが折り返しアーチファクトである場合、既知のシフト量は、パルスシーケンスにおけるReduction factorに対応する。また、アーチファクトがNハーフアーチファクトである場合、既知のシフト量は、例えば、磁気共鳴画像において位相エンコード方向に表れたゴーストの位置に対応する。アーチファクトがケミカルアーチファクトである場合、既知のシフト量は、例えば、水と脂肪との共鳴周波数の差と静磁場の強度とに依存する。また、アーチファクトがモーションアーチファクトである場合、既知のシフト量は、例えば、磁気共鳴画像において位相エンコード方向に表れたゴーストの位置に対応する。既知の方向および既知のシフト量に関する折り返し位置は、撮像条件2031により、アーチファクトの発生場所として定義もしくは推定される。 The known shift amount is a cyclic translation amount of the magnetic resonance image based on the occurrence position of the artifact, and is defined by the pulse sequence in the imaging condition 2031. For example, if the artifact is a aliasing artifact, the known shift amount corresponds to the Reduction factor in the pulse sequence. Also, when the artifact is N half artifact, the known shift amount corresponds to, for example, the position of the ghost appearing in the phase encoding direction in the magnetic resonance image. When the artifact is a chemical artifact, the known shift amount depends on, for example, the difference between the resonance frequency of water and fat and the strength of the static magnetic field. Also, when the artifact is a motion artifact, the known shift amount corresponds, for example, to the position of the ghost appearing in the phase encoding direction in the magnetic resonance image. The folding position with respect to the known direction and the known shift amount is defined or estimated as an occurrence place of an artifact by the imaging condition 2031.
 補正信号は、磁気共鳴画像におけるアーチファクトが低減された磁気共鳴画像(以下、アーチファクト低減画像と呼ぶ)に対応する。例えば、パターンとしてのアーチファクトが折り返しアーチファクトである場合、補正信号は、折り返しアーチファクトが低減されたアーチファクト低減画像に対応する。アーチファクト低減画像は、図7および図9における磁気共鳴画像ReIに相当する画像である。 The correction signal corresponds to a magnetic resonance image (hereinafter referred to as an artifact reduced image) in which an artifact in the magnetic resonance image is reduced. For example, if the artifact as a pattern is a aliasing artifact, the correction signal corresponds to an artifact reduced image in which aliasing artifacts are reduced. The artifact reduction image is an image corresponding to the magnetic resonance image ReI in FIGS. 7 and 9.
 学習済みモデル231は、既知の方向と既知のシフト量とを用いて、入力された磁気共鳴画像に対して、補正信号を出力する。具体的には、学習済みモデル231は、図10に示すように、循環シフト層(Circulation shift layer)2311と、ディープニューラルネットワーク(Deep Neural Network:以下、DNNと呼ぶ)の一例としてのCNN2313とを有する。学習済みモデル231は、撮像条件2031に対応付けられて、メモリ203に記憶される。すなわち、メモリ203には、既知の方向と既知のシフト量とに応じた複数の学習済みモデルが記憶される。循環シフト層2311は、撮像条件2031に応じて、アーチファクトの発生場所に関連した既知の方向と既知のシフト量とに従って、予め設定される。すなわち、循環シフト層2311は、機械学習されないモデルである。一方、CNN2313は、機械学習により生成されるモデルである。機械学習されない循環シフト層2311と機械学習により生成されるCNN2313とを組み合わせた学習済みモデル231は、機械学習により生成される。 The learned model 231 outputs a correction signal to the input magnetic resonance image using the known direction and the known shift amount. Specifically, as shown in FIG. 10, the learned model 231 includes a circulation shift layer (Circulation shift layer) 2311 and a CNN 2313 as an example of a deep neural network (hereinafter referred to as DNN). Have. The learned model 231 is stored in the memory 203 in association with the imaging condition 2031. That is, the memory 203 stores a plurality of learned models according to the known direction and the known shift amount. The cyclic shift layer 2311 is preset according to the known direction and the known shift amount associated with the occurrence location of the artifact according to the imaging condition 2031. That is, the cyclic shift layer 2311 is a model that is not machine-learned. On the other hand, CNN 2313 is a model generated by machine learning. A learned model 231 in which a cyclic shift layer 2311 not subjected to machine learning and a CNN 2313 generated by machine learning are combined is generated by machine learning.
 循環シフト層2311は、既知の方向に沿って循環的に既知のシフト量だけ磁気共鳴画像をシフトさせることにより、シフト信号を生成する。シフト信号は、既知の方向に沿って循環的に既知のシフト量だけ磁気共鳴画像をシフトさせた画像(以下、シフト画像と呼ぶ)に相当する。循環的にシフトすることは、既知の方向に関して医用信号の両端部がそれぞれつながっているとみなして、医用信号を循環させることに対応する。なお、循環シフト層2311により実行される処理内容は、深層学習(Deep Learning)により実現されてもよい。すなわち、循環シフト層2311は、略周期性を有する磁気共鳴画像を入力として、シフト画像を出力するDNNとして実現されてもよい。循環シフト層2311により実行される処理内容については、後程説明する。 The cyclic shift layer 2311 generates a shift signal by shifting the magnetic resonance image cyclically by a known shift amount along a known direction. The shift signal corresponds to an image (hereinafter referred to as a shift image) in which the magnetic resonance image is shifted by a known shift amount cyclically along a known direction. The cyclical shifting corresponds to circulating the medical signal, assuming that both ends of the medical signal are connected with respect to a known direction. The processing content executed by the cyclic shift layer 2311 may be realized by deep learning. That is, the cyclic shift layer 2311 may be realized as a DNN that outputs a shift image with a magnetic resonance image having a substantially periodicity as an input. The processing content executed by the cyclic shift layer 2311 will be described later.
 CNN2313は、磁気共鳴画像とシフト画像とを用いて、補正信号を出力するように機能付けられているニューラルネットワークである。なお、CNN2313の代わりに、局所的な接続性(Locally connect)を有するニューラルネットワークが用いられてもよい。例えば、学習済みモデル231から出力されるデータがアーチファクト低減画像である場合、学習済みモデル231は、循環シフト層2311とCNN2313とを有する。また、CNN2313の代わりに、フルコネクトとしてのDNNが、学習済みモデル231から出力される出力データの用途に応じて適宜用いられてもよい。本実施形態および本適用例にかかるCNN2313またはDNNとして、ResNet(Residual Network)やDenseNet(Dense Convolutional Network)、U-Net等が利用可能である。また、ResNet、DenseNetまたはU-Net等において、循環シフト層2311とCNN2313との組み合わせが、適宜繰り返し実行されてもよい。 The CNN 2313 is a neural network that is functioned to output a correction signal using a magnetic resonance image and a shift image. A neural network having Locally Connect may be used instead of CNN 2313. For example, when the data output from the learned model 231 is an artifact reduction image, the learned model 231 includes a cyclic shift layer 2311 and a CNN 2313. Also, instead of CNN 2313, DNN as a full connect may be appropriately used according to the application of the output data output from the learned model 231. As CNN 2313 or DNN according to the present embodiment and the present application example, ResNet (Residual Network), Dense Net (Dense Convolutional Network), U-Net, etc. can be used. Also, in ResNet, DenseNet, U-Net, etc., a combination of cyclic shift layer 2311 and CNN 2313 may be repeatedly executed as appropriate.
 処理回路205は、決定機能2511と出力機能2513とを有する。処理回路205は、決定機能2511により、被検体Pに対する撮像条件2031に基づいて、既知の方向と既知のシフト量とを決定する。処理回路205は、決定された方向と決定されたシフト量とに基づいて、学習済みモデルを決定する。処理回路205は、出力機能2513により、決定された学習済みモデルに対して磁気共鳴画像を入力し、既知の方向と既知のシフト量とを用いて、補正信号を出力する。処理回路205は、処理部に相当し、上述のプロセッサなどの電子回路により構成される。 The processing circuit 205 has a determination function 2511 and an output function 2513. The processing circuit 205 uses the determination function 2511 to determine the known direction and the known shift amount based on the imaging condition 2031 for the subject P. The processing circuit 205 determines a learned model based on the determined direction and the determined shift amount. The processing circuit 205 inputs a magnetic resonance image to the determined learned model by the output function 2513, and outputs a correction signal using a known direction and a known shift amount. The processing circuit 205 corresponds to a processing unit, and is configured by an electronic circuit such as the processor described above.
 以下、本適用例における学習済みモデル231を用いて、補正信号としてのアーチファクト低減画像を生成する処理(以下、アーチファクト低減処理と呼ぶ)を実行する手順について、図11乃至図13を用いて説明する。図11は、アーチファクト低減処理の手順の一例を示すフローチャートである。 Hereinafter, a procedure for executing a process of generating an artifact reduction image as a correction signal (hereinafter, referred to as an artifact reduction process) using the learned model 231 in the application example will be described with reference to FIGS. 11 to 13. . FIG. 11 is a flowchart illustrating an example of the procedure of the artifact reduction process.
 (アーチファクト低減処理) 
  (ステップSb1) 
 処理回路205は、決定機能2511により、撮像条件2031を用いて、磁気共鳴画像が入力される学習済みモデルを決定する。具体的には、処理回路205は、磁気共鳴画像の取得に用いられた撮像条件2031に基づいて、アーチファクトなどのパターンが現れる方向(既知の方向に対応し、以下、アーチファクト発生方向と呼ぶ)とパターンが既知の方向にずれるシフト量(以下、ずれシフト量と呼ぶ)とを決定する。より詳細には、処理回路205は、磁気共鳴画像に対応付けられた撮像パラメータを、パルスシーケンスの撮像パラメータに対する方向とシフト量との対応表(以下、方向シフト量対応表と呼ぶ)と照合する。処理回路205は、方向シフト量対応表を用いた照合により、アーチファクト発生方向とずれシフト量とを決定する。方向シフト量対応表は、メモリ203に予め記憶され、決定機能2511によりメモリ203から処理回路205に読み出される。
(Artifact reduction processing)
(Step Sb1)
The processing circuit 205 determines the learned model to which the magnetic resonance image is input using the imaging condition 2031 by the determination function 2511. Specifically, based on the imaging condition 2031 used for acquiring the magnetic resonance image, the processing circuit 205 determines a direction in which a pattern such as an artifact appears (corresponding to a known direction, hereinafter referred to as an artifact occurrence direction). The amount of shift by which the pattern shifts in a known direction (hereinafter referred to as a shift amount of shift) is determined. More specifically, the processing circuit 205 collates the imaging parameter associated with the magnetic resonance image with the correspondence table between the direction for the imaging parameter of the pulse sequence and the shift amount (hereinafter referred to as a direction shift amount correspondence table). . The processing circuit 205 determines the artifact occurrence direction and the shift amount by the collation using the direction shift amount correspondence table. The direction shift amount correspondence table is stored in advance in the memory 203, and is read from the memory 203 to the processing circuit 205 by the determination function 2511.
 処理回路205は、決定機能2511により、アーチファクト発生方向とずれシフト量とを、方向とシフト量とに対する学習済みモデルの対応表(以下、モデル対応表と呼ぶ)と照合する。処理回路205は、モデル対応表を用いた照合により、学習済みモデルを決定する。モデル対応表は、予めメモリ203に記憶される。処理回路205は、決定された学習済みモデルを、メモリ203から処理回路205に読み出す。決定機能2511を実現する処理回路205は、決定部に相当する。 The processing circuit 205 uses the determination function 2511 to collate the artifact occurrence direction and the shift amount with the correspondence table of the learned model for the direction and the shift amount (hereinafter referred to as a model correspondence table). The processing circuit 205 determines a learned model by collation using a model correspondence table. The model correspondence table is stored in advance in the memory 203. The processing circuit 205 reads the determined learned model from the memory 203 to the processing circuit 205. The processing circuit 205 that implements the determination function 2511 corresponds to a determination unit.
  (ステップSb2) 
 処理回路205は、出力機能2513により、学習済みモデル231における循環シフト層2311を介して、シフト画像を生成する。具体的には、処理回路205は、磁気共鳴画像を循環シフト層2311に入力する。循環シフト層2311は、入力された磁気共鳴画像に対して、アーチファクト発生方向に沿って循環的にずれシフト量だけシフトさせたシフト画像を生成する。
(Step Sb2)
The processing circuit 205 causes the output function 2513 to generate a shift image via the cyclic shift layer 2311 in the learned model 231. Specifically, the processing circuit 205 inputs a magnetic resonance image to the cyclic shift layer 2311. The cyclic shift layer 2311 generates a shifted image, which is shifted cyclically by the shift shift amount along the artifact occurrence direction, with respect to the input magnetic resonance image.
 図12および図13を用いて、循環シフト層2311により磁気共鳴画像に対して実行される処理(以下、循環シフト処理と呼ぶ)について説明する。図12は、Reduction factorが2に対応し、位相エンコード方向に沿った折り返しアーチファクトを有する磁気共鳴画像MA1に対する循環シフト処理の一例を示す図である。図12に示す磁気共鳴画像MA1において、アーチファクト発生方向は位相エンコード方向(y方向)であって、シフト量は縦方向のFOVyの半分(FOVy/2)となる。このとき、循環シフト処理2315は、磁気共鳴画像MA1をy方向に沿ってFOVy/2だけ循環的に並進させることで、シフト画像SI1を生成する。 A process (hereinafter, referred to as a cyclic shift process) performed on the magnetic resonance image by the cyclic shift layer 2311 will be described using FIGS. 12 and 13. FIG. 12 is a diagram showing an example of cyclic shift processing for the magnetic resonance image MA1 having a reduction factor corresponding to 2 and having aliasing artifacts along the phase encoding direction. In the magnetic resonance image MA1 shown in FIG. 12, the artifact generation direction is the phase encoding direction (y direction), and the shift amount is half (FOVy / 2) of FOVy in the vertical direction. At this time, the cyclic shift processing 2315 generates the shift image SI1 by cyclically translating the magnetic resonance image MA1 by FOVy / 2 along the y direction.
 図13は、Reduction factorが3に対応し、位相エンコード方向に沿った折り返しアーチファクトを有する磁気共鳴画像MA2に対する循環シフト処理の一例を示す図である。図13に示す磁気共鳴画像MA2において、アーチファクト発生方向は位相エンコード方向(y方向)であって、シフト量は、縦方向のFOVyの半分(FOVy/3)となる。このとき、第1循環シフト処理2317は、磁気共鳴画像MA2をy方向に沿ってFOVy/3だけ循環的に並進させることで、第1シフト画像SI2を生成する。また、第2循環シフト処理2319は、磁気共鳴画像MA2をy方向に沿って2×FOVy/3だけ循環的に並進させることで、第2シフト画像SI3を生成する。なお、循環的にシフトさせる既知のシフト量は、図12および図13のようなものに限定されず、アーチファクトの種類、アーチファクトの状況などに応じて刻み幅を増やしてもよい。 FIG. 13 is a diagram showing an example of cyclic shift processing on a magnetic resonance image MA2 having a reduction factor corresponding to 3 and having aliasing artifacts along the phase encoding direction. In the magnetic resonance image MA2 shown in FIG. 13, the artifact generation direction is the phase encoding direction (y direction), and the shift amount is half the FOVy in the vertical direction (FOVy / 3). At this time, the first cyclic shift processing 2317 circularly translates the magnetic resonance image MA2 by FOVy / 3 along the y direction to generate a first shifted image SI2. The second cyclic shift processing 2319 generates a second shift image SI3 by cyclically translating the magnetic resonance image MA2 by 2 × FOVy / 3 along the y direction. The known shift amount to be cyclically shifted is not limited to those shown in FIGS. 12 and 13, and the step size may be increased according to the type of artifact, the status of the artifact, and the like.
  (ステップSb3) 
 処理回路205は、出力機能2513により、磁気共鳴画像を、シフト画像とともに、CNN2313に入力する。例えば、磁気共鳴画像MA1が図12に示すような場合、処理回路205は、生成されたシフト画像SI1を、磁気共鳴画像MA1とともに、CNN2313に入力する。また、磁気共鳴画像MA2が図13に示すような場合、処理回路205は、第1シフト画像SI2と第2シフト画像SI3とを、磁気共鳴画像MA1とともに、CNN2313に入力する。
(Step Sb3)
The processing circuit 205 inputs the magnetic resonance image to the CNN 2313 together with the shift image by the output function 2513. For example, when the magnetic resonance image MA1 is as shown in FIG. 12, the processing circuit 205 inputs the generated shift image SI1 to the CNN 2313 together with the magnetic resonance image MA1. When the magnetic resonance image MA2 is as shown in FIG. 13, the processing circuit 205 inputs the first shift image SI2 and the second shift image SI3 to the CNN 2313 together with the magnetic resonance image MA1.
  (ステップSb4) 
 処理回路205は、出力機能2513により、循環シフト層2311から出力されたシフト画像と磁気共鳴画像とが入力されたCNN2313から、アーチファクト低減画像ReIを、補正信号として出力する。処理回路205は、アーチファクト低減画像ReIを、メモリ203およびディスプレイ207に出力する。
(Step Sb4)
The processing circuit 205 outputs the artifact reduced image ReI as a correction signal from the CNN 2313 to which the shift image and the magnetic resonance image output from the cyclic shift layer 2311 are input by the output function 2513. The processing circuit 205 outputs the artifact reduced image ReI to the memory 203 and the display 207.
  (ステップSb5) 
 ディスプレイ207は、アーチファクト低減画像ReIを表示する。アーチファクト低減画像ReIは、図12および図13に示すように、折り返しアーチファクトが低減された磁気共鳴画像である。なお、処理回路205は、不図示のネットワークを介して、アーチファクト低減画像ReIを、医用画像保管装置等の外部装置に出力してもよい。
(Step Sb5)
The display 207 displays the artifact reduced image ReI. The artifact reduced image ReI is a magnetic resonance image in which aliasing artifacts are reduced as shown in FIGS. 12 and 13. The processing circuit 205 may output the artifact reduced image ReI to an external device such as a medical image storage device via a network (not shown).
 以上に述べた構成によれば、以下に示す効果を得ることができる。 
 本適用例における医用信号処理装置200によれば、既知の方向に沿って既知のシフト量でずれた位置に現れるパターンを有する医用信号2033に対してパターンを低減するように補正された補正信号を出力するように機能付られた学習済みモデルに対して医用信号2033を入力し、既知の方向と既知のシフト量とを用いて、補正信号を出力することができる。また、本医用信号処理装置200における学習済みモデルは、既知の方向に沿って循環的に既知のシフト量だけ医用信号2033をシフトさせたシフト信号を生成する循環シフト層2311と、医用信号2033とシフト信号とを用いて補正信号を出力するように機能付けられているニューラルネットワーク2313とを有する。
According to the configuration described above, the following effects can be obtained.
According to the medical signal processing apparatus 200 in this application example, the correction signal corrected to reduce the pattern with respect to the medical signal 2033 having the pattern appearing at the position shifted by the known shift amount along the known direction is used. A medical signal 2033 can be input to a learned model that has been functioned to output, and a correction signal can be output using a known direction and a known shift amount. Further, the learned model in the medical signal processing apparatus 200 includes a cyclic shift layer 2311 which generates a shift signal in which the medical signal 2033 is shifted cyclically by a known shift amount along a known direction, a medical signal 2033 And a neural network 2313 that is adapted to output a correction signal using the shift signal.
 本適用例および本実施形態に関する医用信号処理装置200によれば、医用信号2033は被検体Pに対する磁気共鳴撮像により生成された磁気共鳴画像であって、パターンは磁気共鳴撮像の撮像条件2031に応じて磁気共鳴画像に発生したアーチファクトであって、補正信号はアーチファクトが低減されたアーチファクト低減画像であって、学習済みモデル231は、複数の中間層を有するコンボリューションニューラルネットワークであって、複数の中間層各々に対して、複数の中間層各々への入力側に接続される前段の中間層におけるいずれかの第1ノードからの出力と、前段の中間層のうち撮像条件2031により定まる第2ノードからの出力とを合わせて入力するように処理することができる。 According to the medical signal processing apparatus 200 according to this application example and the present embodiment, the medical signal 2033 is a magnetic resonance image generated by magnetic resonance imaging on the subject P, and the pattern corresponds to the imaging condition 2031 of the magnetic resonance imaging Artifacts generated in the magnetic resonance image, the correction signal is an artifact reduced image with reduced artifacts, and the learned model 231 is a convolutional neural network having a plurality of intermediate layers, and a plurality of intermediate layers. For each layer, the output from any first node in the intermediate layer of the previous stage connected to the input side to each of the plurality of intermediate layers and the second node determined by the imaging condition 2031 in the intermediate layer of the previous stage Can be processed to be input together with the output of.
 また、本医用信号処理装置200によれば、医用信号2033は被検体Pに対する磁気共鳴撮像により生成された磁気共鳴画像であって、パターンは磁気共鳴撮像の撮像条件2031に応じて磁気共鳴画像に発生したアーチファクトであって、補正信号はアーチファクトが低減されたアーチファクト低減画像ReIであって、ニューラルネットワークは、複数の中間層各々において局所的な線形結合を有するニューラルネットワークであって、既知の方向はアーチファクトの発生に関する方向であって、既知のシフト量はアーチファクトの発生位置に基づく並進量である。また、本医用信号処理装置200によれば、アーチファクトは折り返しアーチファクトとNハーフアーチファクトとケミカルシフトアーチファクトとモーションアーチファクトとのうち少なくとも一つのアーチファクトである。 Further, according to the medical signal processing apparatus 200, the medical signal 2033 is a magnetic resonance image generated by magnetic resonance imaging for the subject P, and the pattern is a magnetic resonance image according to the imaging condition 2031 of the magnetic resonance imaging. The generated artifact, the correction signal is an artifact reduced artifact reduction image ReI, and the neural network is a neural network having local linear combination in each of the plurality of intermediate layers, and the known direction is A known shift amount is a translation amount based on the occurrence position of an artifact, which is a direction regarding the occurrence of an artifact. Further, according to the medical signal processing apparatus 200, the artifact is at least one artifact among the aliasing artifact, the N half artifact, the chemical shift artifact, and the motion artifact.
 これらのことから、本医用信号処理装置200によれば、撮像条件2031に基づいて、既知の方向に沿って既知のシフト量でずれた位置に現れるアーチファクトを低減させた磁気共鳴画像を生成することができるため、磁気共鳴画像の画質を向上させることができ、被検体Pに対する診断効率などを向上させることができる。 From these things, according to the medical signal processing apparatus 200, based on the imaging condition 2031, a magnetic resonance image in which an artifact appearing at a position shifted by a known shift amount along a known direction is reduced is generated. Therefore, the image quality of the magnetic resonance image can be improved, and the diagnostic efficiency for the subject P can be improved.
 (第2適用例) 
 本適用例と第1適用例との相違は、学習済みモデル231がパターン関連情報または疾患情報を出力することにある。本適用例における学習済みモデル231において、CNN2313の代わりにDNNが用いられてもよい。また、本適用例における学習済みモデル231において、ResNet、DenseNetまたはU-Net等において、CNN2313(またはDNN)の後段に適宜1/2max pool層が組み込まれてもよい。このとき、学習済みモデル231における最後段にフルコネクトとしてのDNNを設けることで、学習済みモデル231は、パターン関連情報または疾患情報を出力する。
(Second application example)
The difference between the present application example and the first application example is that the learned model 231 outputs pattern related information or disease information. In the learned model 231 in the present application example, DNN may be used instead of CNN 2313. Also, in the learned model 231 in this application example, in ResNet, DenseNet, U-Net, or the like, a 1⁄2 max pool layer may be appropriately incorporated after the CNN 2313 (or DNN). At this time, by providing DNN as a full connect at the final stage in the learned model 231, the learned model 231 outputs pattern related information or disease information.
 パターン関連情報は、パターンがアーチファクトである場合、例えば、磁気共鳴画像の補正に用いられる少なくとも一つの物理パラメータ、またはアーチファクトの有無(検出結果)を示すデータなどである。例えば、被検体Pに対してEPI法のパルスシーケンスを用いて磁気共鳴撮像を実行した場合、物理パラメータは、傾斜磁場の発生の遅延量を示す物理量の推定値に対応する。また、アーチファクトの有無を示すデータは、例えば、磁気共鳴画像において、複数のアーチファクト各々の有無を示す2値(0もしくは1)である。 When the pattern is an artifact, the pattern related information is, for example, at least one physical parameter used to correct a magnetic resonance image, or data indicating the presence or absence (detection result) of the artifact. For example, when magnetic resonance imaging is performed on the subject P using a pulse sequence of the EPI method, the physical parameter corresponds to the estimated value of the physical quantity indicating the delay amount of the generation of the gradient magnetic field. The data indicating the presence or absence of an artifact is, for example, a binary (0 or 1) indicating the presence or absence of each of a plurality of artifacts in a magnetic resonance image.
 疾患情報は、磁気共鳴画像における複数の疾患各々の認識結果を示すデータである。例えば、磁気共鳴画像が既知の方向に沿って既知のシフト量でずれた位置に現れるアーチファクトを有する場合、疾患情報は、磁気共鳴画像における複数の疾患各々の程度を示す指標値に対応する。すなわち、疾患情報は、複数の疾患各々の疾患らしさを示す指標値を有する。なお、指標値は、医用信号における疾患の有無を示す値(0もしくは1)であってもよい。なお、指標値およびアーチファクトの有無を示すデータは、学習済みモデル231にシグモイド関数などを組みこむことで、百分率として出力されてもよい。 The disease information is data indicating the recognition result of each of a plurality of diseases in the magnetic resonance image. For example, when the magnetic resonance image has an artifact appearing at a position shifted by a known shift amount along a known direction, the disease information corresponds to an index value indicating the degree of each of a plurality of diseases in the magnetic resonance image. That is, the disease information has an index value indicating the likelihood of each of a plurality of diseases. The index value may be a value (0 or 1) indicating the presence or absence of a disease in the medical signal. The index value and data indicating the presence or absence of an artifact may be output as a percentage by incorporating a sigmoid function or the like into the learned model 231.
 以下、本適用例における学習済みモデル231を用いて、パターン関連情報または疾患情報を生成する処理(以下、情報生成処理と呼ぶ)を実行する手順について、図14を用いて説明する。図14は、本適用例における情報生成処理の手順の一例を示すフローチャートである。図14における処理手順のうちステップSc1乃至ステップSc3の処理は、ステップSb1乃至ステップSb3の処理と同様なため、説明は省略する。 Hereinafter, a procedure for executing a process of generating pattern related information or disease information (hereinafter, referred to as information generation process) using the learned model 231 in the present application example will be described with reference to FIG. FIG. 14 is a flowchart illustrating an example of the procedure of the information generation process in the present application example. Among the processing procedures in FIG. 14, the processing of step Sc1 to step Sc3 is the same as the processing of step Sb1 to step Sb3, and thus the description thereof is omitted.
 (情報生成処理) 
  (ステップSc4) 
 処理回路205は、出力機能2513により、循環シフト層2311から出力されたシフト画像と磁気共鳴画像とが入力されたCNN2313から、パターン関連情報または疾患情報を出力する。処理回路205は、パターン関連情報または疾患情報を、メモリ203およびディスプレイ207に出力する。
(Information generation process)
(Step Sc4)
The processing circuit 205 outputs pattern related information or disease information from the CNN 2313 to which the shift image and the magnetic resonance image output from the cyclic shift layer 2311 are input by the output function 2513. The processing circuit 205 outputs pattern related information or disease information to the memory 203 and the display 207.
  (ステップSc5) 
 ディスプレイ207は、ステップSc4における処理で出力されたパターン関連情報または疾患情報を表示する。なお、処理回路205は、不図示のネットワークを介して、パターン関連情報または疾患情報を、医用画像保管装置等の外部装置に出力してもよい。なお、疾患情報は、学習済みモデル231に入力された磁気共鳴画像と関連づけられて、メモリ203や外部の記憶装置などに記憶されてもよい。また、パターン関連情報が物理パラメータである場合、本ステップに続く後段の処理において、処理回路205は、不図示の画像補正機能により、物理パラメータを用いて磁気共鳴画像を補正してもよい。
(Step Sc5)
The display 207 displays the pattern related information or the disease information output in the process of step Sc4. The processing circuit 205 may output pattern related information or disease information to an external apparatus such as a medical image storage apparatus via a network (not shown). The disease information may be stored in the memory 203, an external storage device, or the like in association with the magnetic resonance image input to the learned model 231. In addition, when the pattern related information is a physical parameter, the processing circuit 205 may correct the magnetic resonance image using the physical parameter by an image correction function (not shown) in the subsequent processing following this step.
 また、パターン関連情報がアーチファクトの有無を示すデータであって、学習済みモデル231に入力された磁気共鳴画像においてアーチファクトが存在すると処理回路205により判定された場合(以下、アーチファクト有判定と呼ぶ)、処理回路205は、被検体Pに対して磁気共鳴撮像を再度実行する指示(以下、再撮像指示と呼ぶ)を磁気共鳴イメージング装置100に出力する。具体的には、処理回路205は、アーチファクト有判定を契機として、再撮像指示を撮像制御回路121に出力する。再撮像指示の入力に応答して、撮像制御回路121は、被検体Pに対して、磁気共鳴撮像を再度実行する。 Further, the pattern related information is data indicating the presence or absence of an artifact, and the processing circuit 205 determines that an artifact is present in the magnetic resonance image input to the learned model 231 (hereinafter referred to as artifact presence determination), The processing circuit 205 outputs, to the magnetic resonance imaging apparatus 100, an instruction to execute the magnetic resonance imaging again on the subject P (hereinafter referred to as a reimaging instruction). Specifically, the processing circuit 205 outputs a re-imaging instruction to the imaging control circuit 121 in response to the artifact presence determination. In response to the input of the re-imaging instruction, the imaging control circuit 121 performs magnetic resonance imaging on the subject P again.
 以上に述べた構成によれば、以下に示す効果を得ることができる。 
 本適用例における医用信号処理装置200によれば、医用信号2033は被検体Pに対する磁気共鳴撮像により生成された磁気共鳴画像であって、パターンは磁気共鳴撮像の撮像条件2031に応じて磁気共鳴画像に発生したアーチファクトであって、パターン関連情報は磁気共鳴画像に対する補正に用いられる物理パラメータであって、既知の方向はアーチファクトの発生に関する方向であって、既知のシフト量はアーチファクトの発生位置に基づく並進量である。また、本医用信号処理装置200によれば、医用信号2033は被検体Pに対する磁気共鳴撮像により生成された磁気共鳴画像であって、パターンは磁気共鳴撮像の撮像条件2031に応じて磁気共鳴画像に発生したアーチファクトであって、パターン関連情報はアーチファクトの発生の有無を示すデータであって、既知の方向はアーチファクトの発生に関する方向であって、既知のシフト量はアーチファクトの発生位置に基づく並進量である。また、本医用信号処理装置200によれば、医用信号2033は被検体Pに対する磁気共鳴撮像により生成された磁気共鳴画像であって、パターンは磁気共鳴撮像の撮像条件2031に応じて磁気共鳴画像に発生したアーチファクトであって、疾患情報は磁気共鳴画像における複数の疾患各々の認識結果を示す情報であって、既知の方向は記アーチファクトの発生に関する方向であって、既知のシフト量はアーチファクトの発生位置に基づく並進量である。
According to the configuration described above, the following effects can be obtained.
According to the medical signal processing apparatus 200 in this application example, the medical signal 2033 is a magnetic resonance image generated by magnetic resonance imaging on the subject P, and the pattern is a magnetic resonance image according to the imaging condition 2031 of the magnetic resonance imaging. The pattern related information is a physical parameter used to correct the magnetic resonance image, the known direction is a direction regarding the occurrence of the artifact, and the known shift amount is based on the location of the occurrence of the artifact It is a translational amount. Further, according to the medical signal processing apparatus 200, the medical signal 2033 is a magnetic resonance image generated by magnetic resonance imaging for the subject P, and the pattern is a magnetic resonance image according to the imaging condition 2031 of the magnetic resonance imaging. The generated artifact, the pattern related information is data indicating the presence or absence of the occurrence of the artifact, the known direction is the direction regarding the occurrence of the artifact, and the known shift amount is a translation amount based on the occurrence position of the artifact is there. Further, according to the medical signal processing apparatus 200, the medical signal 2033 is a magnetic resonance image generated by magnetic resonance imaging for the subject P, and the pattern is a magnetic resonance image according to the imaging condition 2031 of the magnetic resonance imaging. The generated artifact, the disease information is information indicating the recognition result of each of a plurality of diseases in the magnetic resonance image, the known direction is the direction regarding the occurrence of the artifact, and the known shift amount is the occurrence of the artifact It is a translation amount based on position.
 これらのことから、本医用信号処理装置200によれば、既知の方向に沿って既知のシフト量でずれた位置に現れるアーチファクトを有する磁気共鳴画像に対して、当該磁気共鳴画像の補正に用いられる少なくとも一つの物理パラメータまたはアーチファクトの有無を示すデータなどのパターン関連情報、または当該磁気共鳴画像における複数の疾患各々の認識結果を示すデータなどの疾患情報を得ることができる。これにより、本医用信号処理装置200によれば、被検体Pに対する診断効率などを向上させることができる。 From these facts, according to the medical signal processing apparatus 200, a magnetic resonance image having an artifact appearing at a position shifted by a known shift amount along a known direction is used to correct the magnetic resonance image. Pattern related information such as data indicating the presence or absence of at least one physical parameter or an artifact, or disease information such as data indicating a recognition result of each of a plurality of diseases in the magnetic resonance image can be obtained. Thus, according to the medical signal processing apparatus 200, the diagnostic efficiency and the like for the subject P can be improved.
 (第3適用例) 
 第1適用例および第2適用例と本適用例との相違は、医用信号2033として、被検体Pの生体信号を用いることにある。生体信号は、例えば、心電波形、脈波形、呼吸波形などの1次元的な信号である。本適用例において、既知の方向に沿って既知のシフト量でずれた位置に現れるパターンは、生体信号の波形に相当する。また、既知の方向は、生体信号の取得に関する時間方向である。また、既知のシフト量は、生体信号における所定時相の間の期間であり、例えば、生体信号の周期などである。
(Third application example)
The difference between the first application example and the second application example and this application example resides in using the biological signal of the subject P as the medical signal 2033. The biological signal is, for example, a one-dimensional signal such as an electrocardiogram waveform, a pulse waveform, or a respiration waveform. In this application example, a pattern appearing at a position shifted by a known shift amount along a known direction corresponds to the waveform of a biological signal. Also, the known direction is the time direction for the acquisition of the biological signal. The known shift amount is a period between predetermined time phases in the biological signal, and is, for example, a period of the biological signal.
 本医用信号処理装置200は、生体信号を計測する生体信号計測装置に搭載されてもよい。以下、説明を具体的にするために、生体信号は心電波形として説明する。このとき、本医用信号処理装置200は、例えば、心電計に搭載されてもよい。加えて、医用信号処理装置200は、不図示のスピーカを有していてもよい。また、本適用例における学習済みモデル231は、疾患情報を出力するものとして説明する。 The medical signal processing apparatus 200 may be mounted on a biological signal measuring apparatus that measures a biological signal. Hereinafter, in order to specifically explain, the biological signal is described as an electrocardiogram. At this time, the medical signal processing apparatus 200 may be mounted on, for example, an electrocardiograph. In addition, the medical signal processing device 200 may have a speaker (not shown). In addition, the learned model 231 in this application example will be described as outputting disease information.
 図15は、本適用例における生体信号としての心電波形ECGWの一例を示す図である。
。図15に示すように、R11に含まれる心電波形ECGWの一部分(以下、第1波形と呼ぶ)とR22に含まれる心電波形ECGWの一部分(以下、第2波形と呼ぶ)とが、学習済みモデルに入力される。
FIG. 15 is a diagram showing an example of an electrocardiogram waveform ECGW as a biological signal in the present application example.
. As shown in FIG. 15, a portion of the electrocardiogram waveform ECGW (hereinafter referred to as the first waveform) included in R11 and a portion of the electrocardiogram waveform ECGW (hereinafter referred to as the second waveform) included in R22 are learned. Is input to the pre-processed model.
 処理回路205は、決定機能2511により、ずれシフト量を決定する。具体的には、処理回路205は、心電波形において隣接する2つのR波の間隔などに基づいて、ずれシフト量を決定する。本適用例においては、既知の方向は、時間方向であるため、既知の方向を決定することは不要となる。 The processing circuit 205 determines the amount of shift by the determination function 2511. Specifically, the processing circuit 205 determines the amount of shift based on the interval between two adjacent R waves in the electrocardiogram waveform. In the present application, since the known direction is a time direction, it is not necessary to determine the known direction.
 循環シフト層2311は、時間方向に沿ったずれシフト量に従って、例えば第1波形と第2波形とを、循環的にシフトさせる。このとき、シフト信号は、時間方向に沿って、第2波形、第1波形の順に示された波形となる。処理回路205は、出力機能2513により、シフト信号および生体信号が入力されたCNN2313から疾患情報を出力する。CNN2313における複数の中間層各々におけるk番目(kは自然数)の出力yは、前段の中間層または入力層におけるi番目(iは自然数)の値をx、Nを既知のシフト量、wを重みとして、例えば以下の式で表される。 The cyclic shift layer 2311 cyclically shifts, for example, the first waveform and the second waveform according to the shift amount along the time direction. At this time, the shift signal is a waveform shown in the order of the second waveform and the first waveform along the time direction. The processing circuit 205 outputs disease information from the CNN 2313 to which the shift signal and the biological signal are input by the output function 2513. The k-th (k is a natural number) output y k in each of the plurality of intermediate layers in CNN 2313 is the value of the i-th (i is a natural number) in the intermediate layer or input layer of the previous stage x i Is given by, for example, the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、心電波形が図15に示すような場合、処理回路205は、疾患情報として、心室期外収縮の疾患らしさを示す指標値を出力する。処理回路205は、指標値が所定の値以上である場合、警告をディスプレイ207に表示させる。このとき、処理回路205は、警告音をスピーカから出力させてもよい。 For example, when the electrocardiogram waveform is as shown in FIG. 15, the processing circuit 205 outputs, as the disease information, an index value indicating the disease likeness of the extrasystole. The processing circuit 205 causes the display 207 to display a warning when the index value is equal to or greater than a predetermined value. At this time, the processing circuit 205 may output a warning sound from the speaker.
 以上に述べた構成によれば、以下に示す効果を得ることができる。 
 本適用例における医用信号処理装置200によれば、医用信号2033は被検体Pの生体信号であって、パターンは生体信号の波形であって、疾患情報は生体信号における複数の疾患各々の認識結果を示すデータであって、既知の方向は生体信号の取得に関する時間方向であって、既知のシフト量は生体信号における所定時相の間の期間である。これにより、本医用信号処理装置200によれば、既知の方向に沿って既知のシフト量でずれた位置に現れるパターンを有する生体信号に対して、当該生体信号における複数の疾患各々の認識結果を示すデータなどの疾患情報を得ることができる。これにより、本医用信号処理装置200によれば、被検体Pからの生体信号の異常の検知することで、当該異常を報知することができる。
According to the configuration described above, the following effects can be obtained.
According to the medical signal processing apparatus 200 in this application example, the medical signal 2033 is a biological signal of the subject P, the pattern is a waveform of the biological signal, and the disease information is a recognition result of each of a plurality of diseases in the biological signal. The known direction is a time direction related to the acquisition of a biological signal, and the known shift amount is a period between predetermined time phases in the biological signal. Thereby, according to the medical signal processing apparatus 200, the recognition result of each of the plurality of diseases in the biological signal is detected for the biological signal having the pattern appearing at the position shifted by the known shift amount along the known direction. Disease information such as data shown can be obtained. Thus, according to the medical signal processing apparatus 200, by detecting an abnormality of the biological signal from the subject P, the abnormality can be notified.
 (第4適用例) 
 本適用例と第1乃至第3適用例との相違は、既知の方向に沿って既知のシフト量でずれた位置に現れるパターンを有する医用信号を、既知の方向と既知のシフト量とに基づいて分割することで複数の部分信号を生成し、循環シフト層を有さずにDNNを有する学習済みモデルに複数の部分信号を入力することで、補正信号とパターン関連情報と疾患情報とのうちいずれか一つを出力することにある。
Fourth application example
The difference between this application example and the first to third application examples is that a medical signal having a pattern appearing at a position shifted by a known shift amount along a known direction is based on a known direction and a known shift amount. Among the correction signal, the pattern related information, and the disease information, a plurality of partial signals are generated by dividing and generating the plurality of partial signals, and the plurality of partial signals are input to the learned model having DNN without the cyclic shift layer. One is to output one.
 図16は、本適用例における医用信号処理装置300の一例を示す図である。図16において、図10に示す医用信号処理装置200における構成要素と同一の機能等を有する構成要素については、同一の符号を割り当て、説明を省略する。医用信号処理装置300は、入力インタフェース201と、メモリ303と、部分信号生成回路(部分信号生成部)304と、処理回路305と、ディスプレイ207とを有する。部分信号生成回路304は、折り返し前処理器(Aliasing Preprocessor)APとも称され、エイリアシングに関する前処理(以下、エイリアシング前処理と呼ぶ)を実行する。 FIG. 16 is a diagram showing an example of a medical signal processing apparatus 300 in the present application example. In FIG. 16, the same reference numerals are assigned to components having the same functions and the like as the components of the medical signal processing apparatus 200 shown in FIG. The medical signal processing apparatus 300 includes an input interface 201, a memory 303, a partial signal generation circuit (partial signal generation unit) 304, a processing circuit 305, and a display 207. The partial signal generation circuit 304, also referred to as aliasing preprocessor AP, executes preprocessing related to aliasing (hereinafter referred to as aliasing preprocessing).
 部分信号生成回路304は、エイリアシング前処理として、決定機能3051により決定された既知の方向と既知のシフト量とに基づいて、エイリアシング前処理として、医用信号を分割する。具体的には、部分信号生成回路304は、既知の方向に沿って、既知のシフト量に応じた分割幅(以下、ウィンドウ(window)と呼ぶ)で、医用信号を分割することで、分割された医用信号に対応する複数の部分信号を生成する。部分信号生成回路304は、複数の部分信号を、処理回路305に出力する。具体的なエイリアシング前処理については、後ほど説明する。なお、部分信号生成回路304により実行されるエイリアシング前処理は、エイリアシング前処理機能として、処理回路305において実行されてもよい。部分信号生成回路304は、上述のプロセッサなどの電子回路により構成される。 The partial signal generation circuit 304 divides the medical signal as the aliasing preprocessing based on the known direction determined by the determination function 3051 and the known shift amount as the aliasing preprocessing. Specifically, the partial signal generation circuit 304 is divided by dividing the medical signal by a division width (hereinafter referred to as a window) according to a known shift amount along a known direction. And generating a plurality of partial signals corresponding to the medical signal. The partial signal generation circuit 304 outputs a plurality of partial signals to the processing circuit 305. Specific aliasing preprocessing will be described later. The aliasing preprocessing performed by the partial signal generation circuit 304 may be performed in the processing circuit 305 as an aliasing preprocessing function. The partial signal generation circuit 304 is configured by an electronic circuit such as the processor described above.
 なお、ウィンドウは、医用信号に対して重複していてもよい。このとき、複数の部分信号各々は、他の部分信号と重複する領域(以下、重複領域と呼ぶ)を有する。重複領域を有する複数の部分信号を学習済みモデル(DNN3331)に入力することは、補正信号とパターン関連情報と疾患情報とのうちいずれか一つを出力することの安定化に寄与する。また、部分信号生成回路304は、第1適用例で説明したように、既知の方向に関して医用信号の両端部がそれぞれ循環的につながっているとみなして、複数の部分信号を生成してもよい。 Note that the windows may overlap for the medical signal. At this time, each of the plurality of partial signals has a region overlapping with another partial signal (hereinafter referred to as an overlapping region). Inputting a plurality of partial signals having overlapping regions to the learned model (DNN 3331) contributes to stabilization of outputting any one of the correction signal, the pattern related information, and the disease information. In addition, as described in the first application example, the partial signal generation circuit 304 may generate a plurality of partial signals by regarding that both ends of the medical signal are cyclically connected with respect to a known direction. .
 メモリ303は、学習済みモデル331と撮像条件2031と医用信号2033とを記憶する。より詳細には、メモリ303は、撮像条件に応じたウィンドウの総数に対応付けられた複数の学習済みモデルを記憶する。学習済みモデル331は、DNN331を有する。DNN331は、ResNet、DenseNetまたはU-Net等で実現されてもよい。本適用例に関する処理は、医用信号に対する検出、認識、物理パラメータの推定等に向いているが、これらに限定されず第1適用例に示すように、デノイズを目的として用いられてもよい。このとき、学習済みモデル331は、DNN331の後段に各種レイヤーが組み込まれる。これにより、学習済みモデル331は、補正信号を出力することができる。 The memory 303 stores the learned model 331, the imaging condition 2031, and the medical signal 2033. More specifically, the memory 303 stores a plurality of learned models associated with the total number of windows according to the imaging conditions. The learned model 331 has a DNN 331. The DNN 331 may be realized by ResNet, DenseNet, U-Net or the like. The processing relating to this application example is suitable for detection, recognition, estimation of physical parameters, and the like for medical signals, but is not limited to these and may be used for the purpose of denoising as shown in the first application example. At this time, in the learned model 331, various layers are incorporated in the subsequent stage of the DNN 331. Thereby, the learned model 331 can output the correction signal.
 処理回路305は、決定機能3051により、撮像条件2031に基づいて、部分信号が入力されるDNN3331を決定する。具体的には、処理回路305は、撮像条件に基づく既知のシフト量に応じたウィンドウの総数に従って、当該ウィンドウの総数に対応するDNN3331を決定する。 The processing circuit 305 determines the DNN 3331 to which the partial signal is input based on the imaging condition 2031 by the determination function 3051. Specifically, the processing circuit 305 determines the DNN 3331 corresponding to the total number of windows according to the total number of windows according to the known shift amount based on the imaging condition.
 処理回路305は、出力機能3053により、決定機能3051により決定されたDNN3331における異なる複数のチャネルに、複数の部分信号をそれぞれ入力する。処理回路305は、決定された学習済みモデルに対して複数の部分信号を入力し、補正信号とパターン関連情報と疾患情報とのうちいずれか一つを出力する。 The processing circuit 305 inputs the plurality of partial signals to the plurality of different channels in the DNN 3331 determined by the determination function 3051 by the output function 3053. The processing circuit 305 inputs a plurality of partial signals to the determined learned model, and outputs any one of the correction signal, the pattern related information, and the disease information.
 以下、説明を具体的にするために、医用信号は磁気共鳴画像であって、パターンはアーチファクトであって、部分信号は磁気共鳴画像の一部の画像(以下、部分画像と呼ぶ)であって、学習済みモデル331による出力はパターン関連情報または疾患情報であるものとする。また、本適用例における学習済みモデル331を用いて、パターン関連情報または疾患情報を生成する情報生成処理を実行する手順について、図17および図18を用いて説明する。図17は、本適用例における情報生成処理の手順の一例を示すフローチャートである。なお、ステップSd5の処理は、図14に示すステップSc5の処理と同様なため、説明は省略する。 Hereinafter, for the sake of concrete description, the medical signal is a magnetic resonance image, the pattern is an artifact, and the partial signal is an image of the magnetic resonance image (hereinafter referred to as a partial image). The output from the learned model 331 is pattern related information or disease information. A procedure of executing information generation processing for generating pattern related information or disease information using the learned model 331 in the present application example will be described using FIGS. 17 and 18. FIG. 17 is a flowchart showing an example of the procedure of the information generation process in this application example. In addition, since the process of step Sd5 is the same as the process of step Sc5 shown in FIG. 14, description is abbreviate | omitted.
  (情報生成処理) 
 (ステップSd1) 
 処理回路305は、決定機能3051により、撮像条件2031に基づいて、方向シフト量対応表を用いて、アーチファクト発生方向とずれシフト量とを決定する。処理回路305は、ずれシフト量に応じたウィンドウの総数に従って、当該ウィンドウの総数に対応するDNN3331を決定する。
(Information generation process)
(Step Sd1)
The processing circuit 305 uses the determination function 3051 to determine the artifact occurrence direction and the shift amount using the direction shift amount correspondence table based on the imaging condition 2031. The processing circuit 305 determines the DNN 3331 corresponding to the total number of windows according to the total number of windows according to the shift amount.
 (ステップSd2) 
 部分信号生成回路304は、既知の方向と既知のシフト量とに基づいて、磁気共鳴画像を分割することにより、複数の部分画像を生成する。具体的には、部分信号生成回路304は、アーチファクト発生方向に沿って、ずれシフト量に応じたウィンドウで、磁気共鳴画像を分割する。図18を用いて磁気共鳴画像を分割するエイリアシング前処理について説明する。
(Step Sd2)
The partial signal generation circuit 304 generates a plurality of partial images by dividing the magnetic resonance image based on the known direction and the known shift amount. Specifically, the partial signal generation circuit 304 divides the magnetic resonance image by a window corresponding to the amount of shift along the artifact occurrence direction. The aliasing preprocessing for dividing the magnetic resonance image will be described with reference to FIG.
 図18は、本適用例におけるエイリアシング前処理の一例を示す図である。図18に示すように、部分信号生成回路304に入力される磁気共鳴画像MAAは、Reduction factorが2に対応し、位相エンコード方向に沿った折り返しアーチファクトを有する。このとき、磁気共鳴画像MAAの分割に用いられるウィンドウの総数は、第1ウィンドウW1と第2ウィンドウW2との2つである。部分信号生成回路304は、磁気共鳴画像MAAにおける位相エンコード方向のFOVyの半分(FOVy/2)の位置(以下、分割位置と呼ぶ)DPで、磁気共鳴画像MAAを分割する。部分信号生成回路304は、分割位置DPで磁気共鳴画像MAAを分割することにより、第1ウィンドウW1と第2ウィンドウW2とにそれぞれ対応する第1部分画像PI1と第2部分画像PI2とを生成する。部分信号生成回路304は、第1部分画像PI1と第2部分画像PI2とを処理回路305に出力する。 FIG. 18 is a diagram showing an example of aliasing preprocessing in this application example. As shown in FIG. 18, the magnetic resonance image MAA input to the partial signal generation circuit 304 has a reduction factor of 2 and has aliasing artifacts along the phase encoding direction. At this time, the total number of windows used for dividing the magnetic resonance image MAA is two, that is, the first window W1 and the second window W2. The partial signal generation circuit 304 divides the magnetic resonance image MAA at a position (hereinafter referred to as a division position) DP that is half the FOVy (FOVy / 2) in the phase encoding direction in the magnetic resonance image MAA. The partial signal generation circuit 304 generates the first partial image PI1 and the second partial image PI2 respectively corresponding to the first window W1 and the second window W2 by dividing the magnetic resonance image MAA at the division position DP. . The partial signal generation circuit 304 outputs the first partial image PI1 and the second partial image PI2 to the processing circuit 305.
 なお、第1ウィンドウW1と第2ウィンドウW2とは、磁気共鳴画像MAAに対して、分割位置DPをそれぞれ跨いで設定されてもよい。例えば、磁気共鳴画像MAAにおけるFOVyを10等分したとき、位相エンコード方向yに沿って1/10乃至8/10の領域が第1ウィンドウW1として設定され、6/10乃至10/10の領域が第2ウィンドウW2として設定されてもよい。 The first window W1 and the second window W2 may be set across the division position DP with respect to the magnetic resonance image MAA. For example, when FOVy in the magnetic resonance image MAA is divided into 10 equal parts, an area of 1/10 to 8/10 is set as the first window W1 along the phase encode direction y, and an area of 6/10 to 10/10 is obtained. It may be set as the second window W2.
 (ステップSd3) 
 処理回路305は、出力機能3053により、決定されたDNN3331に、複数の部分画像を入力する。例えば、処理回路305は、複数の部分画像を、DNN3331における異なる複数のチャネルにそれぞれ入力する。
(Step Sd3)
The processing circuit 305 inputs a plurality of partial images to the DNN 3331 determined by the output function 3053. For example, the processing circuit 305 inputs a plurality of partial images to a plurality of different channels in the DNN 3331, respectively.
 (ステップSd4) 
 処理回路305は、出力機能3053により、複数の部分画像が入力されたDNN3331から、パターン関連情報または疾患情報を出力する。処理回路305は、パターン関連情報または疾患情報を、メモリ203およびディスプレイ207に出力する。
(Step Sd4)
The processing circuit 305 outputs pattern related information or disease information from the DNN 3331 to which a plurality of partial images are input by the output function 3053. The processing circuit 305 outputs pattern related information or disease information to the memory 203 and the display 207.
 以上に述べた構成によれば、以下に示す効果を得ることができる。 
 本適用例における医用信号処理装置200によれば、既知の方向に沿って既知のシフト量でずれた位置に現れるパターンを有する医用信号を、既知の方向と既知のシフト量とに基づいて分割した複数の部分信号を生成し、医用信号に対してパターンを低減するように補正された補正信号と、パターンに関するパターン関連情報と、医用信号に関する疾患情報とのうちいずれか一つを出力するように機能付られた学習済みモデルに対して、複数の部分信号を入力することで、補正信号とパターン関連情報と疾患情報とのうちいずれか一つを出力することができる。
According to the configuration described above, the following effects can be obtained.
According to the medical signal processing apparatus 200 in this application example, a medical signal having a pattern appearing at a position shifted by a known shift amount along a known direction is divided based on the known direction and the known shift amount. A plurality of partial signals are generated, and one of a correction signal corrected to reduce a pattern to a medical signal, pattern related information on a pattern, and disease information on a medical signal is output. By inputting a plurality of partial signals to the function-added learned model, any one of the correction signal, the pattern related information, and the disease information can be output.
 (第5適用例) 
 本適用例と第1乃至第4適用例との相違は、エイリアシング前処理により生成された複数の部分信号が学習済みモデルとしてのDNNに入力され、DNNから出力された複数の部分補正信号を既知の方向と既知のシフト量とに基づいて結合することで結合信号を生成して、出力することにある。
(Fifth application example)
The difference between this application example and the first to fourth application examples is that a plurality of partial signals generated by aliasing preprocessing are input to DNN as a learned model, and a plurality of partial correction signals output from DNN are known. A combined signal is generated by combining based on the direction of and the known shift amount, and is output.
 図19は、本適用例における医用信号処理装置400の一例を示す図である。図19において、図16に示す医用信号処理装置300における構成要素と同一の機能等を有する構成要素については、同一の符号を割り当て、説明を省略する。医用信号処理装置400は、入力インタフェース201と、メモリ303と、部分信号生成回路304と、結合信号信号生成回路306と、処理回路305と、ディスプレイ207とを有する。結合信号生成回路306は、折り返し後処理器(Aliasing Postprocessor)APostとも称され、エイリアシングに関する後処理(以下、エイリアシング後処理と呼ぶ)を実行する。 FIG. 19 is a diagram showing an example of a medical signal processing apparatus 400 in the present application example. In FIG. 19, the same symbols are assigned to components having the same functions and the like as the components in the medical signal processing apparatus 300 shown in FIG. The medical signal processing apparatus 400 includes an input interface 201, a memory 303, a partial signal generation circuit 304, a combined signal generation circuit 306, a processing circuit 305, and a display 207. The combined signal generation circuit 306, also referred to as Aliasing Postprocessor APost, performs post-processing for aliasing (hereinafter referred to as aliasing post-processing).
 本適用例によれば、エイリアシング前処理を行った画像をDNN3333に適用する場合、エイリアシング後処理を行って元の空間分解能の画像を出力することが可能である。第4適用例における折り返し前処理器APでは、既知の方向と既知のシフト量とに基づいて、磁気共鳴画像を分割することにより、複数の部分画像を生成した。これに対し、本適用例における折り返し後処理器APostは、DNN3333から出力された分割済みの磁気共鳴画像を、既知の方向と既知のシフト量とに基づいて結合するものである。たとえば、折り返し前処理器APがx軸方向に均等に3分割するものであれば、折り返し後処理器APostは3つの出力画像を結合するものとなる。折り返し後処理器APostを用いる際には、学習データとして結合前の画像、つまり分割した画像をDNN3333の学習に用いる。 According to this application example, when the image subjected to the aliasing pre-processing is applied to the DNN 3333, it is possible to perform the aliasing post-processing and output the image of the original spatial resolution. The aliasing pre-processor AP in the fourth application example generates a plurality of partial images by dividing the magnetic resonance image based on the known direction and the known shift amount. On the other hand, the post-folding post-processor APost in this application example combines the divided magnetic resonance images output from the DNN 3333 based on the known direction and the known shift amount. For example, if the aliasing pre-processor AP divides the image evenly into three in the x-axis direction, the aliasing post-processor APost combines the three output images. When using the post-folding post-processor APost, an image before combining, that is, a divided image is used for learning of the DNN 3333 as learning data.
 なお、例えば、小さいFOVに対して再構成を行った場合には、エイリアシングが発生した画像のみが得られることがある。このような画像に対して後処理でエイリアシングを除去する用途では、例えば、エイリアシング方向について2倍サイズの画像であるとみなして、エイリアシング前処理なしに、エイリアシング後処理のみを用いた構成としても良い。 For example, when reconstruction is performed on a small FOV, only an image in which aliasing occurs may be obtained. In an application where aliasing is removed by post-processing on such an image, for example, it may be regarded as an image having a double size in the aliasing direction, and may be configured to use only aliasing post-processing without aliasing pre-processing. .
 メモリ303は、学習済みモデル331と撮像条件2031と医用信号2033とを記憶する。より詳細には、メモリ303は、撮像条件に応じたウィンドウの総数に対応付けられた複数の学習済みモデルを記憶する。学習済みモデル331は、DNN3333を有する。DNN3333は、ResNet、DenseNetまたはU-Net等で実現されてもよい。DNN3333は、自身に入力される複数の部分信号にそれぞれ対応する複数の部分補正信号を出力する。複数の部分補正信号は、例えば、部分信号に対してデノイズが施された上述の補正信号に相当する。DNN3333への入力される医用信号の解像度とDNN3333から出力される信号の解像度とは、医用信号の2033の解像度をウィンドウの総数で除算した解像度に対応する。本適用例におけるDNN3333は、医用信号処理装置400への実装に先立って、ウィンドウの総数に応じた複数の部分信号と正解データとしての部分補正信号とを学習用データとして用いて学習される。 The memory 303 stores the learned model 331, the imaging condition 2031, and the medical signal 2033. More specifically, the memory 303 stores a plurality of learned models associated with the total number of windows according to the imaging conditions. The learned model 331 has a DNN 3333. The DNN 3333 may be realized by ResNet, DenseNet, U-Net or the like. The DNN 3333 outputs a plurality of partial correction signals respectively corresponding to the plurality of partial signals input to itself. The plurality of partial correction signals correspond to, for example, the above-described correction signal in which the partial signal is subjected to denoising. The resolution of the medical signal input to the DNN 3333 and the resolution of the signal output from the DNN 3333 correspond to the resolution obtained by dividing the resolution of 2033 of the medical signal by the total number of windows. Prior to mounting on the medical signal processing apparatus 400, the DNN 3333 in this application example is learned using, as learning data, a plurality of partial signals according to the total number of windows and a partial correction signal as correct data.
 処理回路305は、出力機能3055により、学習済みモデル331に複数の部分信号を入力することで、複数の部分信号にそれぞれ対応する複数の部分補正信号を、補正信号として出力する。具体的には、処理回路305は、決定機能3051により決定されたDNN3331における異なる複数のチャネルに、複数の部分信号をそれぞれ入力する。処理回路305は、決定された学習済みモデルに対して複数の部分信号を入力し、複数の部分補正信号を、結合信号生成回路306に出力する。 The processing circuit 305 inputs a plurality of partial signals to the learned model 331 by the output function 3055, and outputs a plurality of partial correction signals respectively corresponding to the plurality of partial signals as a correction signal. Specifically, the processing circuit 305 inputs a plurality of partial signals to a plurality of different channels in the DNN 3331 determined by the determination function 3051. The processing circuit 305 inputs a plurality of partial signals to the determined learned model, and outputs a plurality of partial correction signals to the combined signal generation circuit 306.
 結合信号生成回路306は、エイリアシング後処理として、決定機能3051により決定された既知の方向と既知のシフト量とに基づいて、DNN3333から出力された複数の部分補正信号を結合することにより、結合信号を生成する。部分信号生成回路306は、結合信号を、メモリ303やディスプレイ207に出力する。結合信号生成回路306は、上述のプロセッサなどの電子回路により構成される。具体的なエイリアシング後処理については、後ほど説明する。なお、結合信号生成回路306により実行されるエイリアシング後処理は、エイリアシング後処理機能として、処理回路305において実行されてもよい。このとき、エイリアシング後処理機能を実行するプログラムは、メモリ303、処理回路305におけるASICなどに記憶される。 The combined signal generation circuit 306 combines the plurality of partial correction signals output from the DNN 3333 based on the known direction determined by the determination function 3051 and the known shift amount as aliasing post-processing. Generate The partial signal generation circuit 306 outputs the combined signal to the memory 303 or the display 207. The combined signal generation circuit 306 is configured by an electronic circuit such as the processor described above. A specific post-aliasing process will be described later. The aliasing post-processing performed by the combined signal generation circuit 306 may be performed in the processing circuit 305 as an aliasing post-processing function. At this time, a program for executing the aliasing post-processing function is stored in the memory 303, an ASIC in the processing circuit 305, or the like.
 以下、説明を具体的にするために、医用信号は磁気共鳴画像であって、パターンはアーチファクトであって、部分信号は部分画像であって、学習済みモデル331から出力された部分補正信号は複数の部分画像にそれぞれ対応する複数の補正画像(以下、部分補正画像とよぶ)であって、結合信号は複数の部分補正画像を結合した画像(以下、結合画像と呼ぶ)であるものとする。結合画像は、上述のアーチファクト低減画像に相当する。 Hereinafter, for the sake of concrete description, the medical signal is a magnetic resonance image, the pattern is an artifact, the partial signal is a partial image, and a plurality of partial correction signals output from the learned model 331 are The combined signal is a plurality of corrected images (hereinafter referred to as a partially corrected image) respectively corresponding to the partial images of (1), and the combined signal is an image obtained by combining a plurality of partially corrected images (hereinafter referred to as a combined image). The combined image corresponds to the above-described artifact reduced image.
 また、本適用例において補正信号に対応する結合画像を生成する結合画像生成処理を実行する手順について、図20および図21を用いて説明する。図20は、本適用例における結合画像生成処理の手順の一例を示すフローチャートである。なお、ステップSe1乃至ステップSe3の処理は、図17に示すステップSd1乃至ステップSd3の処理とそれぞれ同様なため、説明は省略する。加えて、ステップSe6の処理は、図11におけるステップSb5の処理と同様なため、説明は省略する。また、図21に示すように、折り返し前処理器APがy軸方向に均等に2分割するものとして説明する。 In addition, a procedure for executing combined image generation processing for generating a combined image corresponding to a correction signal in this application example will be described with reference to FIGS. 20 and 21. FIG. 20 is a flowchart illustrating an example of a procedure of combined image generation processing in the present application example. The processes of steps Se1 to Se3 are the same as the processes of steps Sd1 to Sd3 shown in FIG. 17, and thus the description thereof is omitted. In addition, the process of step Se6 is the same as the process of step Sb5 in FIG. Further, as shown in FIG. 21, it is assumed that the pre-folding processor AP equally divides into two in the y-axis direction.
  (結合画像生成処理) 
 (ステップSe4) 
 処理回路305は、出力機能3055により、複数の部分画像が入力されたDNN3333から複数の部分補正画像を出力する。複数の部分補正画像は、アーチファクトが低減された部分画像(以下、アーチファクト低減部分画像と呼ぶ)に相当する。すなわち、処理回路305は、複数の部分画像にそれぞれ対応する複数のアーチファクト低減部分画像を、DNN3333から出力する。処理回路305は、複数の部分画像をDNN3333に入力し、DNN3333から出力された複数のアーチファクト低減部分画像を結合信号生成回路306に出力する。
(Combined image generation process)
(Step Se4)
The processing circuit 305 causes the output function 3055 to output a plurality of partially corrected images from the DNN 3333 to which a plurality of partial images have been input. The plurality of partial correction images correspond to partial images with reduced artifacts (hereinafter referred to as artifact reduced partial images). That is, the processing circuit 305 outputs a plurality of artifact reduced partial images respectively corresponding to the plurality of partial images from the DNN 3333. The processing circuit 305 inputs the plurality of partial images to the DNN 3333, and outputs the plurality of artifact reduced partial images output from the DNN 3333 to the combined signal generation circuit 306.
 (ステップSe5) 
 結合信号生成回路306は、決定機能3051により決定された既知の方向(アーチファクト発生方向)と既知のシフト量とに基づいて、複数の部分補正画像を結合する。当該処理により、結合信号生成回路306は、結合画像を生成する。すなわち、結合信号生成回路306は、アーチファクト発生方向とシフト量とに基づいて複数のアーチファクト低減部分画像を結合することにより、アーチファクト低減画像を生成する。結合信号生成回路306は、アーチファクト低減画像をメモリ303とディスプレイ207とに出力する。
(Step Se5)
The combined signal generation circuit 306 combines the plurality of partially corrected images based on the known direction (artifact occurrence direction) determined by the determination function 3051 and the known shift amount. By the processing, the combined signal generation circuit 306 generates a combined image. That is, the combined signal generation circuit 306 generates an artifact reduced image by combining a plurality of artifact reduced partial images based on the artifact occurrence direction and the shift amount. The combined signal generation circuit 306 outputs the artifact reduced image to the memory 303 and the display 207.
 図21は、本適用例におけるエイリアシング後処理の一例を示す図である。図21において、エイリアシング前処理などについての説明は、図18と同様なため、説明は省略する。処理回路305は、出力機能3055により、学習済みモデル305におけるDNN3333に第1部分画像PI1と第2部分画像PI2とを入力することで、第1部分画像PI1に対応する第1アーチファクト低減部分画像RePI1と、第2部分画像PI2に対応する第2アーチファクト低減部分画像RePI2とを出力する。結合信号生成回路306は、アーチファクト発生方向とシフト量とを用いて、第1アーチファクト低減部分画像RePI1と、第2アーチファクト低減部分画像RePI2との結合位置を特定する。結合位置は、例えば、分割位置DPに対応する。次いで、結合信号生成回路306は、結合位置で、第1アーチファクト低減部分画像RePI1と、第2アーチファクト低減部分画像RePI2とを結合することにより、アーチファクト低減画像を生成する。図21におけるASで示した範囲は、エイリアシング前処理が実行される前の磁気共鳴画像の解像度(以下、フル解像度と呼ぶ)の半分で実行される処理を示している。一般的には、エイリアジング前処理により磁気共鳴画像がN分割される場合、図21におけるASで示した範囲における処理は、フル解像度のN分の1の解像度で実行される。 FIG. 21 is a diagram showing an example of post-aliasing processing in the present application example. In FIG. 21, the description of aliasing preprocessing and the like is the same as that of FIG. The processing circuit 305 causes the output function 3055 to input the first partial image PI1 and the second partial image PI2 to the DNN 3333 in the learned model 305, thereby reducing the first artifact reduced partial image RePI1 corresponding to the first partial image PI1. And a second artifact reduced partial image RePI2 corresponding to the second partial image PI2. The combined signal generation circuit 306 specifies the combined position of the first artifact reduction partial image RePI1 and the second artifact reduction partial image RePI2 using the artifact occurrence direction and the shift amount. The bonding position corresponds to, for example, the division position DP. Next, the combined signal generation circuit 306 generates an artifact reduced image by combining the first artifact reduced partial image RePI1 and the second artifact reduced partial image RePI2 at the combined position. A range indicated by AS in FIG. 21 indicates a process performed at half the resolution of the magnetic resonance image (hereinafter referred to as full resolution) before the aliasing preprocessing is performed. In general, when the magnetic resonance image is divided into N by aliasing preprocessing, the processing in the range indicated by AS in FIG. 21 is performed at a resolution of 1 / N of full resolution.
 以上に述べた構成によれば、以下に示す効果を得ることができる。 
 本適用例における医用信号処理装置400によれば、既知の方向に沿って既知のシフト量でずれた位置に現れるパターンを有する医用信号を、既知の方向と既知のシフト量とに基づいて分割した複数の部分信号を生成し、複数の部分信号にそれぞれ対応し、かつ医用信号に対してパターンを低減するように補正された複数の部分補正信号を出力するように機能付られた学習済みモデルに対して、複数の部分信号を入力することで、複数の部分補正信号を、補正信号として出力し、既知の方向と既知のシフト量とに基づいて、複数の部分補正信号を結合することにより、結合信号を生成することができる。
According to the configuration described above, the following effects can be obtained.
According to the medical signal processing apparatus 400 in this application example, a medical signal having a pattern appearing at a position shifted by a known shift amount along a known direction is divided based on the known direction and the known shift amount. A trained model operable to generate a plurality of partial signals, respectively correspond to the plurality of partial signals, and to output a plurality of partial correction signals corrected to reduce a pattern to a medical signal. In contrast, by inputting a plurality of partial signals, a plurality of partial correction signals are output as a correction signal, and by combining a plurality of partial correction signals based on a known direction and a known shift amount, A combined signal can be generated.
 第1乃至第3適用例等の変形例として、本医用信号処理装置200の技術的思想をクラウド等で実現する場合には、インタネット上のサーバーは、例えば図10における処理回路205およびメモリ203を有するものとなる。また、第4適用例等の変形例として、本医用信号処理装置300の技術的思想をクラウド等で実現する場合には、インタネット上のサーバーは、例えば図16における部分信号生成回路304、処理回路305およびメモリ303を有するものとなる。また、第5適用例等の変形例として、本医用信号処理装置400の技術的思想をクラウド等で実現する場合には、インタネット上のサーバーは、例えば図19における部分信号生成回路304、処理回路305、結合信号生成回路306およびメモリ303を有するものとなる。これらの場合、決定機能2511、決定機能3051、出力機能2513、出力機能3053、出力機能3055等は、当該機能を実行するプログラムをサーバーの処理回路にインストールし、これらをメモリ上で展開することによって実現される。 As a modified example of the first to third application examples and the like, when the technical idea of the medical signal processing apparatus 200 is realized by a cloud or the like, the server on the Internet may be, for example, the processing circuit 205 and the memory 203 in FIG. It will be possessed. Further, as a modification of the fourth application example and the like, when the technical idea of the medical signal processing apparatus 300 is realized by a cloud or the like, the server on the Internet is, for example, the partial signal generation circuit 304 in FIG. It becomes what has 305 and the memory 303. In addition, as a modification of the fifth application example and the like, when the technical idea of the medical signal processing apparatus 400 is realized by a cloud or the like, the server on the Internet is, for example, the partial signal generation circuit 304 in FIG. A combined signal generation circuit 306 and a memory 303 are provided. In these cases, the determination function 2511, the determination function 3051, the output function 2513, the output function 3053, the output function 3055, etc. install a program for executing the function in the processing circuit of the server and expand them on the memory. To be realized.
 以上説明した少なくとも1つの実施形態によれば、学習済みモデルによる出力誤差を低減させることができる。例えば、本医用信号処理装置200によれば、既知の方向に沿って既知のシフト量でずれた位置に現れるパターン(アーチファクト)を有する医用信号であっても、当該医用信号を本学習済みモデル231に入力することで、アーチファクトによるノイズの低減を向上させた補正信号と、認識率を向上させたパターン関連情報および疾患情報とのうちいずれかを出力させることができ、診断効率を向上させることができる。また、本医用信号処理装置300によれば、既知の方向に沿って既知のシフト量でずれた位置に現れるパターン(アーチファクト)を有する医用信号に対してエイリアシング前処理を施したうえで、名処理が当該医用信号を本学習済みモデル331に入力することで、アーチファクトによるノイズの低減を向上させた補正信号と、認識率を向上させたパターン関連情報および疾患情報とのうちいずれかを出力させることができ、診断効率を向上させることができる。また、本医用信号処理装置400によれば、既知の方向に沿って既知のシフト量でずれた位置に現れるパターン(アーチファクト)を有する医用信号に対してエイリアシング前処理を施したうえで、名処理が当該医用信号を本学習済みモデル331に入力することで、アーチファクトによるノイズの低減を向上させた複数の補正信号を出力させる、複数の補正信号を結合した結合信号を生成することができ、診断効率を向上させることができる。 According to at least one embodiment described above, the output error due to the learned model can be reduced. For example, according to the medical signal processing apparatus 200, even for a medical signal having a pattern (artifact) that appears at a position shifted by a known shift amount along a known direction, the medical signal may not be a learned model 231 Can be used to output any one of a correction signal with improved noise reduction due to an artifact and pattern related information and disease information with improved recognition rate. it can. Further, according to the medical signal processing apparatus 300, the medical signal having a pattern (artifact) appearing at a position shifted by a known shift amount along a known direction is subjected to aliasing preprocessing and then processed. Input the medical signal to the main learning model 331 to output any one of a correction signal in which noise reduction due to an artifact is improved and pattern related information and disease information in which the recognition rate is improved. Can improve the diagnostic efficiency. Further, according to the medical signal processing apparatus 400, the medical signal having a pattern (artifact) appearing at a position shifted by a known shift amount along a known direction is subjected to aliasing preprocessing and then processed. By inputting the medical signal to the main learning model 331, it is possible to generate a combined signal obtained by combining a plurality of correction signals, which outputs a plurality of correction signals in which noise reduction due to an artifact is improved. Efficiency can be improved.
 なお、前処理、後処理、DNN内部のいずれかあるいはその組み合わせにおいて、例えばアップサンプリング、ダウンサンプリング、プーリングといった解像度変換処理を用いて画像解像度を変換することで、入力とは異なる解像度の画像を出力しても良い。 The image resolution is converted using resolution conversion processing such as up-sampling, down-sampling, pooling, etc., in pre-processing, post-processing, DNN, or a combination thereof, thereby outputting an image having a resolution different from that of the input. You may.
 なお、本発明を実施する装置においては、撮像手法を選択させる際に、学習済みモデルが存在するかをユーザに提示しても良い。具体的には、例えば、学習済みモデルが存在する場合には本発明の機能を選択可能、存在しない場合には本発明の機能を選択不可能としても良い。あるいは、例えば、本発明の機能が選択された場合には、学習済みモデルが存在する条件のみを選択可能としても良い。 In addition, in the apparatus which implements this invention, when making an imaging method be selected, you may be shown to a user whether the learned model exists. Specifically, for example, when there is a learned model, the function of the present invention can be selected, and when it does not exist, the function of the present invention can not be selected. Alternatively, for example, when the function of the present invention is selected, only the condition in which the learned model exists may be selectable.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.

Claims (11)

  1.  既知の方向に沿って既知のシフト量でずれた位置に現れるパターンを有する医用信号に対して前記パターンを低減するように補正された補正信号と、前記パターンに関するパターン関連情報と、前記医用信号に関する疾患情報とのうちいずれか一つを出力するように機能付られた学習済みモデルに対して前記医用信号を入力し、前記方向と前記シフト量とを用いて、前記補正信号と前記パターン関連情報と前記疾患情報とのうちいずれか一つを出力する、処理部を具備する、医用信号処理装置。 A correction signal corrected to reduce the pattern with respect to a medical signal having a pattern appearing at a position shifted by a known shift amount along a known direction, pattern related information on the pattern, and the medical signal The medical signal is input to a learned model that is functioned to output any one of disease information, and the correction signal and the pattern related information are input using the direction and the shift amount. A medical signal processing apparatus, comprising: a processing unit that outputs any one of: and the disease information.
  2.  前記学習済みモデルは、
     前記方向に沿って循環的に前記シフト量だけ前記医用信号をシフトさせたシフト信号を生成する循環シフト層と、
     前記医用信号と前記シフト信号とを用いて、前記補正信号と前記パターン関連情報と前記疾患情報とのうちいずれか一つを出力するように機能付けられているニューラルネットワークとを有する、
     請求項1に記載の医用信号処理装置。
    The learned model is
    A cyclic shift layer generating a shift signal in which the medical signal is shifted by the shift amount cyclically along the direction;
    And a neural network configured to output any one of the correction signal, the pattern related information, and the disease information using the medical signal and the shift signal.
    The medical signal processing device according to claim 1.
  3.  前記医用信号は、被検体に対する磁気共鳴撮像により生成された磁気共鳴画像であって、
     前記パターンは、前記磁気共鳴撮像の撮像条件に応じて前記磁気共鳴画像に発生したアーチファクトであって、
     前記補正信号は、前記アーチファクトが低減されたアーチファクト低減画像であって、
     前記学習済みモデルは、複数の中間層を有するコンボリューションニューラルネットワークであって、
     前記処理部は、前記複数の中間層各々に対して、前記複数の中間層各々への入力側に接続される前段の中間層におけるいずれかの第1ノードからの出力と、前記前段の中間層のうち前記撮像条件により定まる第2ノードからの出力とを合わせて入力するように処理する、
     請求項1に記載の医用信号処理装置。
    The medical signal is a magnetic resonance image generated by magnetic resonance imaging of a subject,
    The pattern is an artifact generated in the magnetic resonance image according to an imaging condition of the magnetic resonance imaging,
    The correction signal is an artifact reduced image in which the artifact is reduced,
    The trained model is a convolutional neural network having a plurality of intermediate layers,
    The processing unit is configured to, for each of the plurality of intermediate layers, output from any one first node in the intermediate layer of the previous stage connected to the input side to each of the plurality of intermediate layers, and the intermediate layer of the previous stage Processing so as to be input together with the output from the second node determined by the imaging condition.
    The medical signal processing device according to claim 1.
  4.  前記医用信号は、被検体に対する磁気共鳴撮像により生成された磁気共鳴画像であって、
     前記パターンは、前記磁気共鳴撮像の撮像条件に応じて前記磁気共鳴画像に発生したアーチファクトであって、
     前記補正信号は、前記アーチファクトが低減されたアーチファクト低減画像であって、
     前記ニューラルネットワークは、複数の中間層各々において局所的な線形結合を有するニューラルネットワークであって、
     前記方向は、前記アーチファクトの発生に関する方向であって、
     前記シフト量は、前記アーチファクトの発生位置に基づく並進量である、
     請求項2に記載の医用信号処理装置。
    The medical signal is a magnetic resonance image generated by magnetic resonance imaging of a subject,
    The pattern is an artifact generated in the magnetic resonance image according to an imaging condition of the magnetic resonance imaging,
    The correction signal is an artifact reduced image in which the artifact is reduced,
    The neural network is a neural network having a local linear combination in each of a plurality of intermediate layers,
    The direction is with respect to the occurrence of the artifact,
    The shift amount is a translation amount based on the occurrence position of the artifact.
    The medical signal processing device according to claim 2.
  5.  前記医用信号は、被検体に対する磁気共鳴撮像により生成された磁気共鳴画像であって、
     前記パターンは、前記磁気共鳴撮像の撮像条件に応じて前記磁気共鳴画像に発生したアーチファクトであって、
     前記パターン関連情報は、前記磁気共鳴画像に対する補正に用いられる物理パラメータであって、
     前記方向は、前記アーチファクトの発生に関する方向であって、
     前記シフト量は、前記アーチファクトの発生位置に基づく並進量である、
     請求項2に記載の医用信号処理装置。
    The medical signal is a magnetic resonance image generated by magnetic resonance imaging of a subject,
    The pattern is an artifact generated in the magnetic resonance image according to an imaging condition of the magnetic resonance imaging,
    The pattern related information is a physical parameter used to correct the magnetic resonance image, and
    The direction is with respect to the occurrence of the artifact,
    The shift amount is a translation amount based on the occurrence position of the artifact.
    The medical signal processing device according to claim 2.
  6.  前記医用信号は、被検体に対する磁気共鳴撮像により生成された磁気共鳴画像であって、
     前記パターンは、前記磁気共鳴撮像の撮像条件に応じて前記磁気共鳴画像に発生したアーチファクトであって、
     前記パターン関連情報は、前記アーチファクトの発生の有無を示すデータであって、
     前記方向は、前記アーチファクトの発生に関する方向であって、
     前記シフト量は、前記アーチファクトの発生位置に基づく並進量である、
     請求項2に記載の医用信号処理装置。
    The medical signal is a magnetic resonance image generated by magnetic resonance imaging of a subject,
    The pattern is an artifact generated in the magnetic resonance image according to an imaging condition of the magnetic resonance imaging,
    The pattern related information is data indicating the presence or absence of the occurrence of the artifact,
    The direction is with respect to the occurrence of the artifact,
    The shift amount is a translation amount based on the occurrence position of the artifact.
    The medical signal processing device according to claim 2.
  7.  前記医用信号は、被検体に対する磁気共鳴撮像により生成された磁気共鳴画像であって、
     前記パターンは、前記磁気共鳴撮像の撮像条件に応じて前記磁気共鳴画像に発生したアーチファクトであって、
     前記疾患情報は、前記磁気共鳴画像における複数の疾患各々の認識結果を示すデータであって、
     前記方向は、前記アーチファクトの発生に関する方向であって、
     前記シフト量は、前記アーチファクトの発生位置に基づく並進量である、
     請求項2に記載の医用信号処理装置。
    The medical signal is a magnetic resonance image generated by magnetic resonance imaging of a subject,
    The pattern is an artifact generated in the magnetic resonance image according to an imaging condition of the magnetic resonance imaging,
    The disease information is data indicating a recognition result of each of a plurality of diseases in the magnetic resonance image,
    The direction is with respect to the occurrence of the artifact,
    The shift amount is a translation amount based on the occurrence position of the artifact.
    The medical signal processing device according to claim 2.
  8.  前記アーチファクトは、折り返しアーチファクトとNハーフアーチファクトとケミカルシフトアーチファクトとモーションアーチファクトとのうち少なくとも一つのアーチファクトである、
     請求項3乃至7のうちいずれか一項に記載の医用信号処理装置。
    The artifact is at least one of a folding artifact, an N half artifact, a chemical shift artifact, and a motion artifact.
    The medical signal processing device according to any one of claims 3 to 7.
  9.  前記医用信号は、被検体の生体信号であって、
     前記パターンは、前記生体信号の波形であって、
     前記疾患情報は、前記生体信号における複数の疾患各々の認識結果を示すデータであって、
     前記方向は、前記生体信号の取得に関する時間方向であって、
     前記シフト量は、前記生体信号における所定時相の間の期間である、
     請求項2に記載の医用信号処理装置。
    The medical signal is a biological signal of a subject, and
    The pattern is a waveform of the biological signal, and
    The disease information is data indicating a recognition result of each of a plurality of diseases in the biological signal,
    The direction is a time direction relating to the acquisition of the biological signal,
    The shift amount is a period between predetermined time phases in the biological signal.
    The medical signal processing device according to claim 2.
  10.  既知の方向に沿って既知のシフト量でずれた位置に現れるパターンを有する医用信号を、前記方向と前記シフト量とに基づいて分割した複数の部分信号を生成する部分信号生成部と、
     前記医用信号に対して前記パターンを低減するように補正された補正信号と、前記パターンに関するパターン関連情報と、前記医用信号に関する疾患情報とのうちいずれか一つを出力するように機能付られた学習済みモデルに対して、前記複数の部分信号を入力することで、前記補正信号と前記パターン関連情報と前記疾患情報とのうちいずれか一つを出力する処理部と、
     を具備する医用信号処理装置。
    A partial signal generation unit that generates a plurality of partial signals obtained by dividing a medical signal having a pattern that appears at a position shifted by a known shift amount along a known direction based on the direction and the shift amount;
    A function is provided to output one of a correction signal corrected to reduce the pattern with respect to the medical signal, pattern related information on the pattern, and disease information on the medical signal. A processing unit that outputs any one of the correction signal, the pattern related information, and the disease information by inputting the plurality of partial signals to a learned model;
    Medical signal processing apparatus equipped with
  11.  前記処理部は、前記学習済みモデルに前記複数の部分信号を入力することで、前記複数の部分信号にそれぞれ対応する複数の部分補正信号を、前記補正信号として出力し、
     前記方向と前記シフト量とに基づいて、前記複数の部分補正信号を結合することにより、結合信号を生成する結合信号生成部をさらに具備する、
     請求項10に記載の医用信号処理装置。
    The processing unit outputs the plurality of partial correction signals respectively corresponding to the plurality of partial signals as the correction signal by inputting the plurality of partial signals to the learned model.
    And a combined signal generation unit configured to generate a combined signal by combining the plurality of partial correction signals based on the direction and the shift amount.
    The medical signal processing device according to claim 10.
PCT/JP2018/044729 2017-12-20 2018-12-05 Medical signal processing device WO2019124076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/429,771 US20190287674A1 (en) 2017-12-20 2019-06-03 Medical signal processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017243941 2017-12-20
JP2017-243941 2017-12-20
JP2018-227295 2018-12-04
JP2018227295A JP7246903B2 (en) 2017-12-20 2018-12-04 medical signal processor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/429,771 Continuation US20190287674A1 (en) 2017-12-20 2019-06-03 Medical signal processing apparatus

Publications (1)

Publication Number Publication Date
WO2019124076A1 true WO2019124076A1 (en) 2019-06-27

Family

ID=66994807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044729 WO2019124076A1 (en) 2017-12-20 2018-12-05 Medical signal processing device

Country Status (1)

Country Link
WO (1) WO2019124076A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113925487A (en) * 2020-07-14 2022-01-14 和人人工知能科技有限公司 Cerebral microhemorrhage detection device and method by using magnetic resonance imaging
JP2023508456A (en) * 2020-01-07 2023-03-02 ▲蘇▼州瑞派▲寧▼科技有限公司 Image reconstruction method, apparatus, device, system and computer-readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224080A (en) * 2001-01-23 2002-08-13 Ge Medical Systems Global Technology Co Llc Multislice mr imaging method and mri device
JP2009201644A (en) * 2008-02-27 2009-09-10 Utsunomiya Univ Magnetic resonance imaging apparatus, magnetic resonance imaging method, magnetic resonance imaging program and information recording medium having the program recorded thereon
JP2013240537A (en) * 2012-05-23 2013-12-05 Ge Medical Systems Global Technology Co Llc Mri apparatus
JP2015047507A (en) * 2013-09-04 2015-03-16 株式会社東芝 Magnetic resonance imaging apparatus
US20180259608A1 (en) * 2015-11-29 2018-09-13 Arterys Inc. Automated cardiac volume segmentation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224080A (en) * 2001-01-23 2002-08-13 Ge Medical Systems Global Technology Co Llc Multislice mr imaging method and mri device
JP2009201644A (en) * 2008-02-27 2009-09-10 Utsunomiya Univ Magnetic resonance imaging apparatus, magnetic resonance imaging method, magnetic resonance imaging program and information recording medium having the program recorded thereon
JP2013240537A (en) * 2012-05-23 2013-12-05 Ge Medical Systems Global Technology Co Llc Mri apparatus
JP2015047507A (en) * 2013-09-04 2015-03-16 株式会社東芝 Magnetic resonance imaging apparatus
US20180259608A1 (en) * 2015-11-29 2018-09-13 Arterys Inc. Automated cardiac volume segmentation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE, DONG-WOOK ET AL.: "Deep artifact learning for compressed sensing and parallel MRI", ARXIV.ORG, 3 March 2017 (2017-03-03), XP080753990, Retrieved from the Internet <URL:https://arxiv.org/pdf/1730.01120.pdf> [retrieved on 20190214] *
LEE, JU-YOUNG ET AL.: "k-Space Deep Learning for Reference-free EPI Ghost Correction", ARXIV.ORG,, 10 June 2018 (2018-06-10), XP080885951, Retrieved from the Internet <URL:https://arxiv.org/pdf/1806.00153.pdf> [retrieved on 20190214] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023508456A (en) * 2020-01-07 2023-03-02 ▲蘇▼州瑞派▲寧▼科技有限公司 Image reconstruction method, apparatus, device, system and computer-readable storage medium
JP7340107B2 (en) 2020-01-07 2023-09-06 ▲蘇▼州瑞派▲寧▼科技有限公司 Image reconstruction method, apparatus, device, system and computer-readable storage medium
CN113925487A (en) * 2020-07-14 2022-01-14 和人人工知能科技有限公司 Cerebral microhemorrhage detection device and method by using magnetic resonance imaging
CN113925487B (en) * 2020-07-14 2022-10-14 和人人工知能科技有限公司 Cerebral microhemorrhage detection device and method by using magnetic resonance imaging

Similar Documents

Publication Publication Date Title
JP7246903B2 (en) medical signal processor
JP6073627B2 (en) Magnetic resonance imaging apparatus and image processing apparatus
US9482732B2 (en) MRI reconstruction with motion-dependent regularization
JP5248010B2 (en) Data correction apparatus, data correction method, magnetic resonance imaging apparatus, and X-ray CT apparatus
JP5349673B2 (en) Data correction device
JP6400375B2 (en) Image processing apparatus and magnetic resonance imaging apparatus
CN107209238A (en) Parallel many section MR imagings with the suppression to sideband artefact
US20170212198A1 (en) Magnetic resonance signal processing method, magnetic resonance signal processing apparatus and magnetic resonance apparatus, and program
US20230021786A1 (en) Medical information processing apparatus and medical information processing method
WO2019124076A1 (en) Medical signal processing device
JP7258540B2 (en) Data processing device, magnetic resonance imaging device, learning device and learning method
US20240138700A1 (en) Medical image processing apparatus, method of medical image processing, and nonvolatile computer readable storage medium storing therein medical image processing program
US20080212863A1 (en) Image processing apparatus, image processing method, and magnetic resonance imaging apparatus
JP7300811B2 (en) Medical information processing apparatus, medical information processing method, and program
WO2014157237A1 (en) Magnetic resonance imaging device
JP2017047027A (en) Magnetic resonance imaging apparatus and image processing apparatus
JP6647816B2 (en) Magnetic resonance imaging apparatus, image reconstruction method, and image reconstruction program
US20220076460A1 (en) System, method and computer-accessible medium for image reconstruction of non-cartesian magnetic resonance imaging information using deep learning
US10024933B2 (en) Method and control device for generating magnetic resonance images
JP7140551B2 (en) Magnetic resonance imaging apparatus, processing apparatus, and medical image processing method
JP5566587B2 (en) Magnetic resonance imaging apparatus and ringing reduction method
JP7355532B2 (en) Medical information processing device, method and program
US20220252683A1 (en) System and Method for MRI Coil Sensitivity Estimation and Reconstruction
JP2024037537A (en) Magnetic resonance imaging apparatus, mr image reconstruction apparatus and mr image reconstruction method
JPWO2006077936A1 (en) Magnetic resonance imaging method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890843

Country of ref document: EP

Kind code of ref document: A1