WO2019123823A1 - Vehicle travel control device - Google Patents

Vehicle travel control device Download PDF

Info

Publication number
WO2019123823A1
WO2019123823A1 PCT/JP2018/039615 JP2018039615W WO2019123823A1 WO 2019123823 A1 WO2019123823 A1 WO 2019123823A1 JP 2018039615 W JP2018039615 W JP 2018039615W WO 2019123823 A1 WO2019123823 A1 WO 2019123823A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
traveling
travel
lane
steering control
Prior art date
Application number
PCT/JP2018/039615
Other languages
French (fr)
Japanese (ja)
Inventor
史彦 大澤
Original Assignee
ダイムラー・アクチェンゲゼルシャフト
三菱ふそうトラック・バス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイムラー・アクチェンゲゼルシャフト, 三菱ふそうトラック・バス株式会社 filed Critical ダイムラー・アクチェンゲゼルシャフト
Publication of WO2019123823A1 publication Critical patent/WO2019123823A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a vehicle travel control device that controls the traveling state of a vehicle, and more particularly to automatic steering control technology when the vehicle travels.
  • a lane departure prevention device has been developed that automatically recovers from the tendency of the vehicle to deviate from the lane where the vehicle is traveling, and prevents the lane departure in advance.
  • the lane departure prevention device for example, it is determined whether or not the vehicle may deviate from the running lane, and the steering actuator is controlled according to the lateral displacement amount of the vehicle in the running lane, It prevents the departure of the vehicle.
  • the lane departure prevention device described above when the host vehicle does not tend to depart and travels while maintaining a fixed position in the lane, the lane departure as described above is caused even if the overtaking vehicle approaches.
  • the prevention function never works. Under such circumstances where the lane departure prevention function does not work, there is a risk that the risk of contact with the overtaking vehicle may increase depending on the position of the own vehicle in the lane, and safety for the drivers of both the own vehicle and the overtaking vehicle There is a problem that can not be secured enough.
  • the present invention has been made to solve such a problem, and the object of the present invention is to reduce the risk of contact between the host vehicle and the surrounding vehicles, and to ensure safety and security for the driver of the vehicle.
  • the vehicle travel control device includes an information acquisition device that acquires travel information of the host vehicle and travel information of surrounding vehicles traveling around the host vehicle.
  • An own vehicle traveling state calculation unit that calculates a traveling state of the own vehicle based on traveling information of the own vehicle supplied from the information acquisition device, and traveling information of the surrounding vehicle supplied from the information acquisition device
  • a passing vehicle determination unit that predicts the overtaking operation by the surrounding vehicle from the traveling state of the own vehicle and the surrounding vehicle based on the surrounding vehicle running state calculating unit that calculates the traveling state of the surrounding vehicle;
  • the steering control is performed so as to cause the own vehicle to deviate and travel in the traveling lane of the own vehicle so as to be separated from the traveling lane of the overtaking vehicle It has a steering control unit.
  • the distance between the own vehicle and the nearby vehicle is greater even when the overtaking operation is performed because the own vehicle and the nearby vehicle are approaching due to the above configuration. It will be kept wide. As a result, even when the overtaking operation is performed by the surrounding vehicle, the contact risk between the own vehicle and the surrounding vehicle is reduced, and safety and security can be secured for the driver of the vehicle.
  • the vehicle travel control device is provided with a vehicle travel control provided in a vehicle that acquires travel information of the host vehicle and travel information of surrounding vehicles traveling around the host vehicle.
  • a host vehicle traveling state calculation unit for calculating a host state of the host vehicle based on traveling information of the host vehicle supplied from the information acquisition device; and the peripheral vehicle supplied from the information acquisition device
  • a surrounding vehicle traveling state calculation unit that calculates traveling states of the surrounding vehicles based on traveling information
  • a passing vehicle determination unit that predicts overtaking operation by the own vehicle from the traveling states of the own vehicle and the surrounding vehicles
  • the steering control is performed so that the host vehicle is deviated and traveled in the travel lane of the host vehicle so as to be separated from the travel lane of the passing vehicle when the overtaking operation is predicted. Having a steering control unit that performs.
  • the distance between the own vehicle and the nearby vehicle is greater even when the overtaking operation is performed because the own vehicle and the nearby vehicle are approaching due to the above configuration. It will be kept wide. As a result, even when the overtaking operation by the own vehicle is performed, the contact risk between the own vehicle and the surrounding vehicles is reduced, and safety and security can be secured for the driver of the vehicle.
  • the vehicle travel control device in the above (1) or (2), further includes a travel lane adjacent to the travel lane of the host vehicle.
  • the steering control may be performed so that the amount of deviation of the vehicle decreases.
  • Such steering control to reduce the amount of deviation can reduce the risk of contact with the overtaking vehicle or a vehicle other than the overtaking vehicle, and improve safety and security secured to the driver of the vehicle can do.
  • the steering control unit is adjacent to the side where the host vehicle is deviated with respect to the travel lane of the host vehicle
  • the steering control of the vehicle may be performed to travel the center of the traveling lane of the vehicle.
  • the vehicle travel control device is, in the above (1) or (2), an obstacle around the host vehicle based on the information around the host vehicle acquired by the information acquisition device.
  • the steering control unit detects the presence of the obstacle in the traveling lane adjacent to the side where the vehicle is displaced with respect to the traveling lane of the vehicle In this case, the steering control may be performed to reduce the amount of deviation of the host vehicle.
  • the steering control in consideration of such an obstacle, the contact risk between the own vehicle and the obstacle can also be reduced, and the safety and security secured for the driver of the vehicle can be further improved.
  • the steering control unit is a vehicle type of the overtaking vehicle or the overtaking vehicle Accordingly, the amount of deviation of the host vehicle may be adjusted. Such adjustment of the amount of deviation makes it possible to perform appropriate steering control according to the type of vehicle, and to further improve the safety and security secured for the driver of the vehicle.
  • the driver of the host vehicle when the steering control by the steering control unit is performed in any of the above (1) to (6), the driver of the host vehicle is You may have the alerting
  • FIG. 1 is a system configuration diagram of an automobile provided with a vehicle travel control device according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a control routine executed by the vehicle travel control device in the first embodiment of the present invention.
  • FIG. 3 is a schematic view showing a change in position of the vehicle when the host vehicle is overtaken by another vehicle.
  • FIG. 4 is a schematic diagram which shows the position change of the vehicle in case other vehicles are overtaken by own vehicle.
  • the vehicle 10 which is an automobile according to the present invention, has at least one of an engine and a motor (not shown) as a traveling drive source, and is any of a gasoline vehicle, a hybrid vehicle, or an EV vehicle. .
  • a large commercial vehicle such as a truck is assumed, but a general passenger car may be used.
  • the vehicle 10 naturally also has various main parts (drive wheels, drive shafts, ECUs, batteries) necessary for traveling, but are omitted in FIG. 1.
  • a host vehicle 10 as an automobile of the present invention includes a lane keeping assist ECU (LKA-ECU) 11 that functions as a vehicle travel control device.
  • the lane keeping assist ECU 11 is an ECU for preventing and controlling the lane departure of the host vehicle 10, and various kinds of devices for realizing the lane keeping assist based on various information supplied from the device for detecting the lane departure. It is a device that controls.
  • the lane keeping assist ECU 11 includes a host vehicle travel state calculation unit 11a, a surrounding vehicle travel state calculation unit 11b, an overtaking vehicle determination unit 11c, and a steering control unit 11d.
  • the vehicle 10 includes the front camera 12, the steering angle sensor 13, the display device 14, the acoustic device 15, the steering control motor 16, the radar sensor 17 on the left, the radar sensor 18 on the right, human machine interface (HMI) 19, speed A sensor 20, a GPS 21 and an inter-vehicle communication device 22 are provided.
  • the front camera 12, the steering angle sensor 13, the radar sensors 17 and 18, the speed sensor 20, the GPS 21, and the inter-vehicle communication device 22 function as an information acquisition device for acquiring travel information of the vehicle 10 and its surrounding vehicles.
  • the GPS 21 and the inter-vehicle communication device 22 are not essential elements, and may be used to further improve the accuracy of the information acquired by the radar sensors 17 and 18 or when the information can not be acquired by the radar sensors 17 and 18 It is assumed.
  • the host vehicle traveling state calculation unit 11a determines whether the host vehicle 10 deviates from the traveling lane by arithmetic processing. Then, when it is determined that the host vehicle 10 deviates from the lane by the determination of the arithmetic processing, the steering control unit 11 d supplies a control signal to the steering control motor 16, and the steering operation is supported by the steering control motor 16. . Thereby, deviation of the traveling lane of the vehicle 10 is prevented in advance.
  • the host vehicle traveling state calculation unit 11 a calculates a steering angle controlled by the steering control motor 16 based on the steering angle information supplied from the steering angle sensor 13. Furthermore, in accordance with the traveling speed of the host vehicle 10 supplied from the speed sensor 20, the host vehicle traveling state calculation unit 11a determines whether to perform lane keeping assistance. For example, the lane keeping assist may not be performed unless the traveling speed exceeds a predetermined speed. The host vehicle travel state calculation unit 11a can also calculate the current position of the host vehicle 10 based on the GPS information supplied from the GPS 21.
  • the lane keeping assist ECU 11 not only performs control for preventing the departure of the traveling lane of the host vehicle 10, but also when the host vehicle 10 is overtaken from other vehicles, or the host vehicle 10 controls other vehicles.
  • the steering control is further performed within the range in which the host vehicle 10 does not deviate from the traveling lane.
  • the lane keeping assist ECU 11 is provided with a surrounding vehicle traveling state calculating unit 11b and a passing vehicle judging unit 11c in addition to the host vehicle traveling state calculating unit 11a and the steering control unit 11d. .
  • the traveling condition calculation unit 11a is used as the traveling condition calculation unit 11a. Based on the above, the traveling state of the vehicle 10 is calculated.
  • the surrounding vehicle travel state calculation unit 11b detects the detection signal of the other vehicle located at the left and right rear of the vehicle supplied from the radar sensor (L) 17 and the radar sensor (R) 18 (that is, the distance,
  • the traveling state of the other vehicle is calculated on the basis of the traveling information of the other vehicle supplied by the inter-vehicle communication, in addition to the acceleration, if it can be detected, the type of the other vehicle) and / or the inter-vehicle communication device 22 is provided.
  • the travel information of the other vehicle may be acquired by the front camera 12 and supplied to the peripheral vehicle travel state calculation unit 11b.
  • the first surrounding vehicle 30 and the second surrounding vehicle 40 exist as another vehicle traveling around the host vehicle 10.
  • the first surrounding vehicle 30 has a GPS 31 and an inter-vehicle communication device 32
  • the second surrounding vehicle 40 has a GPS 41 and an inter-vehicle communication device 42.
  • own vehicle 10 and other vehicles can share mutually the position information obtained by each GPS via each communication device between vehicles.
  • GPS of the own vehicle 10 and the surrounding vehicles 30 and 40 and the communication apparatus between vehicles are not an essential structure. As described above, even when there is no information by inter-vehicle communication, the own vehicle 10 can calculate the traveling states of the other surrounding vehicles 30, 40 by the front camera 12 and / or the radar sensors 17, 18.
  • the overtaking vehicle determination unit 11c determines the own vehicle 10 and the relevant running condition based on the calculated running condition of the own vehicle 10 and the surrounding vehicle (the first nearby vehicle 30 and the second nearby vehicle 40) of the other vehicles. Predict the overtaking operation by surrounding vehicles.
  • the overtaking operation includes an operation in which the host vehicle 10 passes the surrounding vehicle and an operation in which the surrounding vehicle passes the host vehicle 10.
  • the steering control unit 11 d controls the steering control motor 16 with a control signal related to further steering control that is executed within the range in which the host vehicle 10 does not deviate from the traveling lane. Supply for As a result, the traveling position of the vehicle 10 in the traveling lane of the vehicle 10 is deviated.
  • the steering control unit 11 d travels a surrounding vehicle (that is, a passing vehicle) that passes the vehicle 10 when the vehicle 10 is a passing vehicle (that is, a passing vehicle).
  • the steering control is performed such that the host vehicle 10 travels in the traveling lane of the host vehicle 10 while being separated from the lane of the host vehicle 10 on the opposite side to the traveling lane of the passing vehicle.
  • the steering control unit 11 d is separated from the traveling lane of the surrounding vehicle (that is, the passing vehicle) to be passed by the host vehicle 10.
  • the steering control is performed such that the host vehicle 10 travels in the traveling lane of the host vehicle 10 while being deviated to the opposite side of the traveling lane of the target vehicle.
  • the shift amount of the host vehicle 10 described above that is, the offset amount from the center of the width of the host vehicle at the center of the width of the host vehicle, makes the distance from the lane to the tire of the host vehicle 10 about 20 cm. Good.
  • the offset amount is appropriately adjusted in accordance with the type of vehicle 10, the equipment and the like.
  • the steering control unit 11d separates from the surrounding vehicle to be the overtaking vehicle or the overtaking vehicle with respect to the host vehicle 10 while preventing the departure from the traveling lane. Control to run. Thereby, the contact risk between the own vehicle 10 and the surrounding vehicles can be reduced, and safety and security can be ensured for the driver of the vehicle.
  • the steering control unit 11 d is a traveling lane opposite to the traveling lane of the passing vehicle with respect to the traveling lane of the host vehicle 10
  • the steering control is performed so that the amount of deviation of the host vehicle 10 is reduced.
  • the steering control unit 11 d sets the running lane on the opposite side to the running lane of the passing vehicle to the running lane of the own vehicle 10.
  • steering control is also performed so that the amount of deviation of the host vehicle 10 is reduced.
  • the steering control unit 11 d is configured such that when the presence of another overtaking vehicle or another overtaking vehicle is predicted in the opposite traveling lane, the steering control unit 11 d moves the host vehicle 10 to the opposite traveling lane. It is also possible to perform steering control so that the host vehicle 10 travels in the center of the travel lane without shifting the distance (that is, setting the displacement amount to zero).
  • the steering control unit 11d prevents the departure from the traveling lane, but allows the presence of the peripheral vehicles traveling on the traveling lanes located on the left and right of the traveling lane of the own vehicle 10. Accordingly, an appropriate amount of deviation of the vehicle 10 will be determined. Thereby, even when surrounding vehicles exist in the right and left of self-vehicles 10, a contact risk with both surrounding vehicles can be reduced, and security can be secured to a driver of vehicles.
  • the overtaking vehicle determination unit 11c also determines the vehicle type of the surrounding vehicle from the traveling information of the surrounding vehicle supplied from the front camera 12, the radar sensors 17 and 18, and / or the inter-vehicle communication device 22. doing. Then, the steering control unit 11d adjusts the amount of deviation of the host vehicle 10 described above according to the type of the surrounding vehicle. For example, if the surrounding vehicle is a large truck, the amount of displacement may be reduced, and if it is a small passenger car, the amount of displacement may be increased. This makes it possible to secure the distance between the own vehicle 10 and the nearby vehicles according to the vehicle type of the nearby vehicles, further reducing the contact risk between the own vehicle 10 and the nearby vehicles, and securing safety and security for the driver of the vehicle. Can be strengthened. A uniform amount of deviation may be applied to the host vehicle without adjusting the amount of deviation according to the type of surrounding vehicle.
  • the steering control unit 11 d supplies a control signal for notifying the driver that the above-described steering control is being performed to the display device 14 and the acoustic device 15 via the HMI 19. That is, in the present embodiment, the steering control unit 11 d also functions as a notification control unit that controls the display device 14 and the sound device 15 which are an example of the notification means.
  • the driver of the own vehicle 10 can grasp that it is the steering control accompanying the overtaking operation of the own vehicle 10 or the surrounding vehicles even when the unintended steering is performed, and the steering There is no need to perform unnecessary steering operations that would invalidate the control, and the security of the driver of the vehicle can be further enhanced.
  • the notification control unit may be provided separately from the steering control unit 11d.
  • FIG. 2 is a flow chart showing a control routine executed by the lane keeping assist ECU 11 in the present embodiment.
  • FIG. 3 is a schematic view showing a change in position of a vehicle when the own vehicle 10 is overtaken by another vehicle (first nearby vehicle 30), and
  • FIG. 4 is a diagram showing the other vehicle (second nearby vehicle 40) It is a schematic diagram which shows the position change of the vehicle in the case of being overtaken by the vehicle.
  • travel information of the host vehicle 10 is acquired by the information acquisition device provided in the host vehicle 10, and the travel information is supplied to the lane keeping assist ECU 11 (step S111). Specifically, image information ahead of the vehicle 10 from the front camera 12, speed information on the vehicle 10 from the speed sensor 20, and position information on the vehicle 10 from the GPS 21 are supplied to the lane keeping assist ECU 11. In addition, in this step, it is also acquired as travel information of the host vehicle 10 whether or not the lane keeping assist (LKA state) control is being performed. Specifically, the determination is made based on whether or not the lane keeping assist ECU 11 supplies a control signal from the steering control unit 11 d to the steering control motor 16.
  • LKA state lane keeping assist
  • the host vehicle travel state calculation process is performed by the host vehicle travel state calculation unit 11a (step S112). Specifically, it is calculated how the vehicle 10 is traveling from the image information ahead of the vehicle 10, the speed information, and the position information if necessary.
  • the travel information of the surrounding vehicle is acquired by the information acquisition device provided in the own vehicle 10, and the travel information is supplied to the lane keeping assist ECU 11 (step S113). Specifically, the distance, speed, acceleration, and, if it can be acquired, vehicle type information of the surrounding vehicle traveling in front or left and right of the vehicle 10 from the front camera 12 or the radar sensors 17 and 18, vehicle type information and the surrounding vehicle
  • the inter-vehicle communication device 22 further supplies the lane keeping assist ECU 11 regarding the surrounding vehicles.
  • the surrounding vehicle traveling state calculation process is performed by the surrounding vehicle traveling state calculation unit 11b (step S114). Specifically, it calculates how the surrounding vehicle is traveling from the speed information and the position information of the surrounding vehicle.
  • the side vehicle overtaking determination is the overtaking vehicle determination unit, which is a determination as to whether or not there is an overtaking operation by the own vehicle 10 and the surrounding vehicles from the calculated traveling state of the own vehicle 10 and the traveling state of the surrounding vehicles. 11c (step S115). That is, the overtaking vehicle determination unit 11c determines whether the own vehicle 10 becomes an overtaking vehicle or an overtaking vehicle based on the calculated traveling state of the own vehicle 10 and the traveling state of the surrounding vehicles. It will be. That is, a target vehicle to be an overtaking vehicle or a passing vehicle is selected from the surrounding vehicles.
  • step S115 determines whether the host vehicle 10 is in the LKA state (step S116). The said determination is performed using the information regarding the LKA state obtained in step S111.
  • step S116 determines whether the target vehicle described above is a large vehicle (step S117).
  • step S117 determines whether the target vehicle described above is a large vehicle. Note that the determination of the vehicle type of the target vehicle in step S117 is performed when the determination of the vehicle type of the target vehicle can be made in the case where the control with higher accuracy is required. If high-accuracy control is not required, step S117 may be skipped, and if the result of S116 is Yes, the process may proceed to step 118. That is, regardless of whether the target vehicle is a large vehicle or not, control may be performed such that the host vehicle is offset in the traveling lane.
  • the determination of the vehicle type of the target vehicle is performed by using the vehicle type information of the surrounding vehicles when the vehicle type information of the surrounding vehicles is obtained in step S113.
  • large vehicles are assumed to be commercial vehicles such as trucks, trailers, and buses larger than general passenger cars, and emergency vehicles such as fire engines, but the size and criteria of large vehicles should be set appropriately. Can.
  • step S117 If it is determined in step S117 that the target vehicle is a large vehicle (step S117: Yes), another passing vehicle is on the travel lane opposite to the travel lane of the target vehicle with respect to the travel lane of the host vehicle 10. Alternatively, it is determined by the overtaking vehicle determination unit 11c whether or not there is another passing vehicle (step S117). The said determination is performed using the information of the surrounding vehicle obtained in step S113.
  • step S115 determines with traveling control accompanying overtaking operation
  • step S118 If it is determined in step S118 that there is no other overtaking vehicle or other overtaking vehicle in the traveling lane opposite to the traveling lane of the target vehicle (step S118: No), the traveling lane of the target vehicle
  • the steering control unit 11 d performs steering control to move the host vehicle 10 toward the traveling lane on the opposite side.
  • steering control traveling lane limit traveling control
  • step S119 since there is no other peripheral vehicle in the opposite traveling lane, steering control (traveling lane limit traveling control) is performed to the limit not to protrude into the opposite traveling lane (step S119). ).
  • the host vehicle 10 when the host vehicle 10 is a passing vehicle traveling in the central traveling lane and the first peripheral vehicle 30 is a passing vehicle traveling in the right traveling lane (FIG. 3A), the host vehicle 10 is 1) The steering control is performed so as to be separated from the right side traveling lane where the surrounding vehicle 30 travels (FIG. 3 (b)). Then, the vehicle 10 travels with a width that does not deviate from the central traveling lane and to a limit where it does not extend to the left traveling lane, and the first vehicle 30 and the first surrounding vehicle 30 have a wide interval. The surrounding vehicle 30 passes the host vehicle 10 (FIG. 3 (c)).
  • the own vehicle 10 is 2) The steering control is performed so as to be separated from the left traveling lane in which the surrounding vehicle 40 travels (FIG. 4 (b)). Then, the vehicle 10 travels with a width that does not deviate from the central traveling lane and to a limit where it does not extend to the right traveling lane, and in a state where the distance between the vehicle 10 and the second peripheral vehicle 40 is wide 10 will overtake the second surrounding vehicle 40 (FIG. 4 (c)).
  • step S118 when it is determined that another overtaking vehicle or another overtaking vehicle exists in the traveling lane on the opposite side to the traveling lane of the target vehicle (step S118: Yes), it is directed to the opposite traveling lane
  • the steering control for moving the host vehicle 10 is not performed, and control (lane center travel control) is performed so that the host vehicle 10 travels in the center of the travel lane.
  • the second surrounding vehicle 40 exists in the left traveling lane
  • steering control for moving the vehicle 10 toward the left traveling lane is not performed, and the own vehicle 10 travels in the center.
  • the first peripheral vehicle 30 passes the host vehicle 10.
  • the steering control for moving the own vehicle 10 toward the right traveling lane is not performed, and the own vehicle 10 travels in the center.
  • the own vehicle 10 passes the second surrounding vehicle 40.
  • step S119 When the traveling lane limit traveling control in step S119 or the lane center traveling control in step S120 is performed, the control routine ends.
  • the vehicle travels away from the host vehicle 10 away from the surrounding vehicle which becomes the passing vehicle or the passing vehicle while preventing the departure from the traveling lane.
  • Such control will be performed.
  • the contact risk between the own vehicle 10 and the surrounding vehicles can be reduced, and safety and security can be ensured for the driver of the vehicle.
  • LKA is a premise, and the steering control is not performed unless in the LKA state, but another control instead of LKA may be an essential condition.
  • LKA may be premised that a mechanism for notifying the driver of a lane departure by notification is functioning.
  • a mechanism for notifying the driver of a lane departure by notification is functioning.
  • the inter-vehicle distance holding function auto cruise it is possible to realize an overtaking operation that can secure safety and security for the driver while maintaining the inter-vehicle distance.
  • Second Embodiment In the first embodiment described above, only travel information of the surrounding vehicles is used as peripheral information of the host vehicle 10, and only overtaking by vehicles is detected.
  • pylons under construction, sound barriers of expressways Alternatively, information on the presence of an obstacle such as a tunnel wall may be included in the surrounding information, and steering control may be performed in consideration of the positional relationship between the vehicle 10 and the obstacle.
  • a mode in such a case will be described below as a second embodiment with reference to FIGS. 5 to 8.
  • FIG. 5 is a system configuration diagram of an automobile provided with a vehicle travel control apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a flow chart showing a control routine executed by the vehicle travel control system in the second embodiment of the present invention.
  • FIG. 7 is a schematic view showing a change in position of a vehicle when the host vehicle is overtaken by another vehicle.
  • FIG. 8 is a schematic diagram which shows the position change of the vehicle in case other vehicles are overtaken by own vehicle.
  • the lane keeping assist ECU 11 in the present embodiment can calculate the presence of the obstacle 50 and the positional relationship between the vehicle 10 and the obstacle 50 in place of the surrounding vehicle travel state calculation unit 11 b.
  • the surrounding vehicle traveling state / obstacle detection / calculation unit 11b ' is provided.
  • the surrounding vehicle travel state and obstacle detection calculation unit 11 b ′ calculates the presence or absence of the obstacle 50 based on the image information supplied from the front camera 12.
  • the front camera 12 functions as an obstacle detection unit that detects an obstacle 50 around the vehicle 10.
  • the steering control unit 11 d performs steering control in which the displacement amount of the host vehicle 10 is limited according to the presence or absence of the obstacle 50. Specifically, when the presence of the obstacle 50 is detected in the traveling lane opposite to the traveling lane of the overtaking vehicle or the passing vehicle with respect to the traveling lane of the own vehicle 10, the displacement amount of the own vehicle 10 Steering control so that The steering control will be described in detail along with the control routine with reference to FIGS. 6 to 8.
  • step S211 information acquisition of the host vehicle state
  • step S212 information acquisition of not only vehicles around the host vehicle 10 but also obstacles present around the host vehicle 10
  • step S213 information acquisition of the surrounding vehicle
  • step S214 state calculation processing of surrounding vehicles
  • step S215 the overtaking determination (step S215), the LKA state determination (step S216), the vehicle type determination of the target vehicle (step S217), and the vehicle presence determination of the determination lane (step S218) Is done. If it is determined No in steps S215 to S217, it is determined that traveling control associated with the overtaking operation is unnecessary, and the control routine ends. Note that the vehicle type determination of the target vehicle (step 217) is not performed as in the first embodiment, and in the case of Yes in step 216, it is also possible to proceed to S218. When it is determined in step S218 that another surrounding vehicle is present in the opposite lane (step S218: No), lane center traveling control is performed as in step S120 in the first embodiment (step S219). .
  • step S218 when it is determined that there is no other surrounding vehicle in the opposite lane (step S218: Yes), the steering control unit 11d determines whether an obstacle is present in the opposite lane (step S218). S220). If it is determined that an obstacle does not exist in the opposite lane (step S220: No), traveling lane limit traveling control is performed (step S221) as in step S119 in the first embodiment.
  • Step S220 when it is determined that an obstacle is present in the opposite lane (step S220: Yes), while preventing departure from the traveling lane, according to the type, size, and position of the obstacle, Steering control (travel lane limited travel control) is performed with the amount of deviation limited.
  • the limitation of the deviation amount for example, the vehicle 10 is moved as far as possible toward the traveling lane in which the obstacle exists in a range where the risk of the collision between the vehicle 10 and the obstacle does not increase. Is considered.
  • the obstacle 50 is present in the left traveling lane.
  • the steering control is performed so that the host vehicle 10 does not deviate from the central traveling lane and is separated from the right traveling lane.
  • the steering control is not performed so as to extend to the limit where the vehicle does not extend to the left side traveling lane, and the width adjustment is performed maintaining an appropriate distance that can avoid contact with the obstacle 50 (FIG. b). That is, compared to FIG.
  • the amount of deviation toward the left traveling lane is smaller, the distance between the vehicle 10 and the first surrounding vehicle 30, and the vehicle 10 and the obstacle 50. It is in the state where the interval with is secured. Then, in such a state, the first peripheral vehicle 30 overtakes the host vehicle 10, and the host vehicle 10 also passes the side of the obstacle (FIG. 7 (c)).
  • the steering control is performed so that the host vehicle 10 does not deviate from the central traveling lane and is separated from the left traveling lane.
  • the steering control is not performed so as to extend to the limit where the vehicle does not extend to the right-side traveling lane, and the width adjustment is performed maintaining an appropriate distance that can avoid contact with the obstacle 50 (see FIG. b). That is, as compared with FIG.
  • the amount of deviation toward the right-side traveling lane is smaller, the distance between the vehicle 10 and the second surrounding vehicle 40, and the vehicle 10 and the obstacle 50 It is in the state where the interval with is secured. Then, in such a state, the host vehicle 10 overtakes the first surrounding vehicle 30, and the host vehicle 10 passes the side of the obstacle (FIG. 8 (c)).
  • the steering control is performed in consideration of not only the surrounding vehicles of the own vehicle 10 but also the surrounding obstacles, so that the contact risk with the surrounding vehicles of the own vehicle 10 and the obstacles Can be reduced to secure further safety and security for the driver of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

[Problem] To provide a vehicle travel control device with which it is possible to reduce the risk of contact between a host vehicle and a peripheral vehicle, and to ensure safety and security for the drivers of the vehicles. [Solution] The present invention has: a host vehicle travel state calculation unit that calculates the travel state of the host vehicle on the basis of travel information for the host vehicle supplied from an information acquisition device; a peripheral vehicle travel state calculation unit that calculates the travel state of the peripheral vehicle on the basis of travel information for the peripheral vehicle supplied from the information acquisition device; a passing vehicle determination unit that predicts passing actions by the host vehicle and the peripheral vehicle from the travel states of the host vehicle and the peripheral vehicle; and a steering control unit that, when a passing action is predicted, performs a steering control so as to cause the host vehicle to deviate and travel in the travel lane of the host vehicle, so as to stay away from the travel lane of a passing vehicle or a vehicle to be passed.

Description

車両走行制御装置Vehicle travel control device
 本発明は、車両の走行状態を制御する車両走行制御装置に係り、詳しくは、車両の走行時における自動操舵制御技術に関する。 The present invention relates to a vehicle travel control device that controls the traveling state of a vehicle, and more particularly to automatic steering control technology when the vehicle travels.
 車両が走行している車線から逸脱しそうな場合に、その逸脱傾向から自動的に復帰して車線の逸脱を事前に防止する車線逸脱防止装置が開発されている。当該車線逸脱防止装置においては、例えば、車両が走行中の車線から逸脱する可能性があるか否かを判断し、当該走行中の車線における車両の横ずれ量に対応させて操舵アクチュエータを制御し、車両の逸脱を防止している。 A lane departure prevention device has been developed that automatically recovers from the tendency of the vehicle to deviate from the lane where the vehicle is traveling, and prevents the lane departure in advance. In the lane departure prevention device, for example, it is determined whether or not the vehicle may deviate from the running lane, and the steering actuator is controlled according to the lateral displacement amount of the vehicle in the running lane, It prevents the departure of the vehicle.
 また、このような車線逸脱防止装置において、追い越し車両が存在する場合に当該逸脱機能を高め、より大きくかつ素早く逸脱から戻ることを可能にする技術の開発もなされている。例えば、特許文献1には、自車両が車線逸脱傾向にある場合に、自車両の周辺の移動体の状態を検出し、当該移動体の将来の状態を予測し、予測された状態に応じて車線逸脱制御を補正することが開示されている。 In addition, in such a lane departure prevention device, a technique has been developed that enhances the departure function when an overtaking vehicle is present, and enables larger and quicker departure from the departure. For example, according to Patent Document 1, when the host vehicle deviates from the lane, the state of the mobile object in the vicinity of the host vehicle is detected, and the future state of the mobile object is predicted. It is disclosed to correct lane departure control.
特許第4124050号公報Patent No. 4124050
 しかしながら、上述した車線逸脱防止装置においては、自車両が逸脱傾向になく、車線内において一定の位置を保ちつつ走行している場合には、追い越し車両が接近してきても、上述したような車線逸脱防止機能が働くことはない。このような車線逸脱防止機能が働かない状況化では、自車両の車線内における位置によって、追い越し車両との接触の危険性が高まる虞があり、自車両及び追い越し車両の双方の運転者に安全安心を十分に担保できない問題がある。 However, in the lane departure prevention device described above, when the host vehicle does not tend to depart and travels while maintaining a fixed position in the lane, the lane departure as described above is caused even if the overtaking vehicle approaches. The prevention function never works. Under such circumstances where the lane departure prevention function does not work, there is a risk that the risk of contact with the overtaking vehicle may increase depending on the position of the own vehicle in the lane, and safety for the drivers of both the own vehicle and the overtaking vehicle There is a problem that can not be secured enough.
 本発明はこのような問題を解決するためになされたもので、その目的とするところは、自車両と周辺車両との接触リスクを低減させ、車両の運転者に対して安全安心を担保することができる車両走行制御装置を提供することにある。 The present invention has been made to solve such a problem, and the object of the present invention is to reduce the risk of contact between the host vehicle and the surrounding vehicles, and to ensure safety and security for the driver of the vehicle. Providing a vehicle travel control device capable of
 (1)本適用例に係る車両走行制御装置は、自車両の走行情報及び前記自車両の周辺を走行する周辺車両の走行情報を取得する情報取得装置を備える車両に設けられる車両走行制御装置において、前記情報取得装置から供給される前記自車両の走行情報に基づいて、前記自車両の走行状態を算出する自車両走行状態演算部と、前記情報取得装置から供給される前記周辺車両の走行情報に基づいて、前記周辺車両の走行状態を算出する周辺車両走行状態演算部と、前記自車両及び前記周辺車両の走行状態から前記周辺車両による追越動作を予測する追越車両判定部と、前記追越動作が予測された場合に、追越車両の走行レーンから離間するように、前記自車両の走行レーン内において前記自車両を偏位させて走行させるように操舵制御を行う操舵制御部と、を有する。 (1) In the vehicle travel control device provided in a vehicle, the vehicle travel control device according to the application example includes an information acquisition device that acquires travel information of the host vehicle and travel information of surrounding vehicles traveling around the host vehicle. An own vehicle traveling state calculation unit that calculates a traveling state of the own vehicle based on traveling information of the own vehicle supplied from the information acquisition device, and traveling information of the surrounding vehicle supplied from the information acquisition device And a passing vehicle determination unit that predicts the overtaking operation by the surrounding vehicle from the traveling state of the own vehicle and the surrounding vehicle based on the surrounding vehicle running state calculating unit that calculates the traveling state of the surrounding vehicle; When the overtaking operation is predicted, the steering control is performed so as to cause the own vehicle to deviate and travel in the traveling lane of the own vehicle so as to be separated from the traveling lane of the overtaking vehicle It has a steering control unit.
 上記適用例に係る車両走行制御装置においては、上記のような構成により、自車両と周辺車両とが近づいて追越動作が行われる場合であっても、自車両と周辺車両との間隔がより広く保たれることになる。これにより、周辺車両による追越動作が行われる際にも、自車両と周辺車両との接触リスクが低減することになり、車両の運転者に対して安全安心を担保することができる。 In the vehicle travel control device according to the application example described above, the distance between the own vehicle and the nearby vehicle is greater even when the overtaking operation is performed because the own vehicle and the nearby vehicle are approaching due to the above configuration. It will be kept wide. As a result, even when the overtaking operation is performed by the surrounding vehicle, the contact risk between the own vehicle and the surrounding vehicle is reduced, and safety and security can be secured for the driver of the vehicle.
 (2)また、本適用例に係る車両走行制御装置は、自車両の走行情報及び前記自車両の周辺を走行する周辺車両の走行情報を取得する情報取得装置を備える車両に設けられる車両走行制御装置において、前記情報取得装置から供給される前記自車両の走行情報に基づいて、前記自車両の走行状態を算出する自車両走行状態演算部と、前記情報取得装置から供給される前記周辺車両の走行情報に基づいて、前記周辺車両の走行状態を算出する周辺車両走行状態演算部と、前記自車両及び前記周辺車両の走行状態から前記自車両による追越動作を予測する追越車両判定部と、前記追越動作が予測された場合に、被追越車両の走行レーンから離間するように、前記自車両の走行レーン内において前記自車両を偏位させて走行させるように操舵制御を行う操舵制御部と、を有する。 (2) Further, the vehicle travel control device according to the application example is provided with a vehicle travel control provided in a vehicle that acquires travel information of the host vehicle and travel information of surrounding vehicles traveling around the host vehicle. Device, a host vehicle traveling state calculation unit for calculating a host state of the host vehicle based on traveling information of the host vehicle supplied from the information acquisition device; and the peripheral vehicle supplied from the information acquisition device A surrounding vehicle traveling state calculation unit that calculates traveling states of the surrounding vehicles based on traveling information; a passing vehicle determination unit that predicts overtaking operation by the own vehicle from the traveling states of the own vehicle and the surrounding vehicles; The steering control is performed so that the host vehicle is deviated and traveled in the travel lane of the host vehicle so as to be separated from the travel lane of the passing vehicle when the overtaking operation is predicted. Having a steering control unit that performs.
 上記適用例に係る車両走行制御装置においては、上記のような構成により、自車両と周辺車両とが近づいて追越動作が行われる場合であっても、自車両と周辺車両との間隔がより広く保たれることになる。これにより、自車両による追越動作が行われる際にも、自車両と周辺車両との接触リスクが低減することになり、車両の運転者に対して安全安心を担保することができる。 In the vehicle travel control device according to the application example described above, the distance between the own vehicle and the nearby vehicle is greater even when the overtaking operation is performed because the own vehicle and the nearby vehicle are approaching due to the above configuration. It will be kept wide. As a result, even when the overtaking operation by the own vehicle is performed, the contact risk between the own vehicle and the surrounding vehicles is reduced, and safety and security can be secured for the driver of the vehicle.
 (3)本適用例に係る車両走行制御装置は、上記(1)又は(2)において、前記自車両の走行レーンに対して前記自車両が偏位させられる側に隣接する走行レーンに他の車両の存在が予測される場合、前記自車両の偏位量が減少するように前記操舵制御を行ってもよい。このような偏位量を減少させる操舵制御により、前記追越車両又は前記被追越車両以外の車両との接触リスクを低減することができ、車両の運転者に対して担保する安全安心を向上することができる。 (3) In the vehicle travel control device according to the application example, in the above (1) or (2), the vehicle travel control device according to the present application further includes a travel lane adjacent to the travel lane of the host vehicle. When the presence of a vehicle is predicted, the steering control may be performed so that the amount of deviation of the vehicle decreases. Such steering control to reduce the amount of deviation can reduce the risk of contact with the overtaking vehicle or a vehicle other than the overtaking vehicle, and improve safety and security secured to the driver of the vehicle can do.
 (4)本適用例に係る車両走行制御装置は、上記(1)又は(2)において、前記操舵制御部は、前記自車両の走行レーンに対して前記自車両が偏位させられる側に隣接する走行レーンに他の車両の存在が予測される場合、前記自車両の走行レーンの中心を走行するように前記自車両の前記操舵制御を行ってもよい。このような反対側の走行レーンへの幅寄せを行わない操舵制御により、前記追越車両又は前記被追越車両以外の車両との接触リスクをより一層低減することができ、車両の運転者に対して担保する安全安心をより一層向上することができる。 (4) In the vehicle travel control device according to the application example, in the above (1) or (2), the steering control unit is adjacent to the side where the host vehicle is deviated with respect to the travel lane of the host vehicle When the presence of another vehicle is predicted in the traveling lane, the steering control of the vehicle may be performed to travel the center of the traveling lane of the vehicle. Such a steering control that does not shift the vehicle to the opposite driving lane can further reduce the risk of contact with the passing vehicle or a vehicle other than the passing vehicle, thereby allowing the driver of the vehicle to It is possible to further improve the security and security to be secured.
 (5)本適用例に係る車両走行制御装置は、上記(1)又は(2)において、前記情報取得装置が取得する前記自車両の周辺の情報に基づいて、前記自車両の周辺の障害物を検出する障害物検出部を有し、前記操舵制御部は、前記自車両の走行レーンに対して前記自車両が偏位させられる側に隣接する走行レーンに前記障害物の存在が検出される場合、前記自車両の偏位量が減少するように前記操舵制御を行ってもよい。このような障害物も考慮した操舵制御により、自車両と障害物との接触リスクも低減することができ、車両の運転者に対して担保する安全安心をより一層向上することができる。 (5) The vehicle travel control device according to the application example is, in the above (1) or (2), an obstacle around the host vehicle based on the information around the host vehicle acquired by the information acquisition device. The steering control unit detects the presence of the obstacle in the traveling lane adjacent to the side where the vehicle is displaced with respect to the traveling lane of the vehicle In this case, the steering control may be performed to reduce the amount of deviation of the host vehicle. By the steering control in consideration of such an obstacle, the contact risk between the own vehicle and the obstacle can also be reduced, and the safety and security secured for the driver of the vehicle can be further improved.
 (6)本適用例に係る車両走行制御装置は、上記(1)~(3)及び(5)のいずれかにおいて、前記操舵制御部は、前記追越車両又は前記被追越車両の車種に応じて、前記自車両の偏位量を調整してもよい。このような偏位量の調整により、車種に応じた適切な操舵制御が可能となり、車両の運転者に対して担保する安全安心をより一層向上することができる。 (6) In the vehicle travel control device according to this application example, in any one of the above (1) to (3) and (5), the steering control unit is a vehicle type of the overtaking vehicle or the overtaking vehicle Accordingly, the amount of deviation of the host vehicle may be adjusted. Such adjustment of the amount of deviation makes it possible to perform appropriate steering control according to the type of vehicle, and to further improve the safety and security secured for the driver of the vehicle.
 (7)本適用例に係る車両走行制御装置は、上記(1)乃至(6)のいずれかにおいて、前記操舵制御部による前記操舵制御が行われる際に、前記自車両の運転者に対して前記操舵制御の報知制御を行う報知制御部を有してもよい。このような報知制御により、自車両の運転者は、自らの意図しない操舵が行われている場合であっても、自車両又は周辺車両の追越動作に伴う操舵制御であることを把握できる。そして、当該操舵制御を無効にするような無用なステアリング操作が行われることがなくなり、車両の運転者に対する安全安心の担保をより強化することができる。 (7) In the vehicle travel control device according to the application example, when the steering control by the steering control unit is performed in any of the above (1) to (6), the driver of the host vehicle is You may have the alerting | reporting control part which performs alerting | reporting control of the said steering control. With such notification control, the driver of the host vehicle can grasp that the steering control is involved in the passing operation of the host vehicle or the surrounding vehicle even when the unintended steering is performed. Then, useless steering operation to invalidate the steering control is not performed, and the security of the driver of the vehicle can be further strengthened.
本発明の第一実施例における車両走行制御装置を備える自動車のシステム構成図である。It is a system configuration figure of a car provided with a vehicle travel control device in a first example of the present invention. 本発明の第一実施例における車両走行制御装置によって実行される制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine performed by the vehicle travel control apparatus in 1st Example of this invention. 自車両が他車両に追い越される場合の車両の位置変化を示す模式図である。It is a schematic diagram which shows the position change of the vehicle in case an own vehicle is overtaken by another vehicle. 他車両が自車両に追い越される場合の車両の位置変化を示す模式図である。It is a schematic diagram which shows the position change of the vehicle in case another vehicle is overtaken by self-vehicles. 本発明の第二実施例における車両走行制御装置を備える自動車のシステム構成図である。It is a system configuration | structure figure of a motor vehicle provided with the vehicle travel control apparatus in 2nd Example of this invention. 本発明の第二実施例における車両走行制御装置によって実行される制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine performed by the vehicle travel control apparatus in 2nd Example of this invention. 自車両が他車両に追い越される場合の車両の位置変化を示す模式図である。It is a schematic diagram which shows the position change of the vehicle in case an own vehicle is overtaken by another vehicle. 他車両が自車両に追い越される場合の車両の位置変化を示す模式図である。It is a schematic diagram which shows the position change of the vehicle in case another vehicle is overtaken by self-vehicles.
 以下、本発明の各実施例について、図面を参照しつつその構成及び制御ルーチンについて詳細に説明する。
<第一実施例>
Hereinafter, the configuration and control routine of each embodiment of the present invention will be described in detail with reference to the drawings.
First Embodiment
 図1は、本発明の第一実施例における車両走行制御装置を備える自動車のシステム構成図である。また、図2は、本発明の第一実施例における車両走行制御装置によって実行される制御ルーチンを示すフローチャートである。更に、図3は、自車両が他車両に追い越される場合の車両の位置変化を示す模式図である。そして、図4は、他車両が自車両に追い越される場合の車両の位置変化を示す模式図である。 FIG. 1 is a system configuration diagram of an automobile provided with a vehicle travel control device according to a first embodiment of the present invention. FIG. 2 is a flowchart showing a control routine executed by the vehicle travel control device in the first embodiment of the present invention. Furthermore, FIG. 3 is a schematic view showing a change in position of the vehicle when the host vehicle is overtaken by another vehicle. And FIG. 4 is a schematic diagram which shows the position change of the vehicle in case other vehicles are overtaken by own vehicle.
 本発明の自動車である自車両10は、走行駆動源としてエンジン、又はモータ(いずれも図示せず)の少なくともいずれかを有しており、ガソリン車両、ハイブリッド車両、又はEV車両のいずれかである。特に、本実施例においては、トラック等の大型商用車を想定しているが、一般的な乗用車であってもよい。また、自車両10は、走行に必要となる各種の主要部品(駆動輪、駆動軸、ECU、バッテリ)も当然に有しているが、図1においては省略されている。 The vehicle 10, which is an automobile according to the present invention, has at least one of an engine and a motor (not shown) as a traveling drive source, and is any of a gasoline vehicle, a hybrid vehicle, or an EV vehicle. . In particular, in the present embodiment, a large commercial vehicle such as a truck is assumed, but a general passenger car may be used. The vehicle 10 naturally also has various main parts (drive wheels, drive shafts, ECUs, batteries) necessary for traveling, but are omitted in FIG. 1.
 図1に示すように、本発明の自動車としての自車両10は、車両走行制御装置として機能する車線保持補助ECU(LKA-ECU:Lane Keeping Assist ECU)11を有して
いる。車線保持補助ECU11は、自車両10の車線逸脱を防止制御するためのECUであって、当該車線逸脱を検出する装置から供給される各種情報に基づき、車線保持補助を実現するための各種装置の制御を行う装置である。本実施例において、車線保持補助ECU11は、自車両走行状態演算部11a、周辺車両走行状態演算部11b、追越車両判定部11c、及び操舵制御部11dを備えている。
As shown in FIG. 1, a host vehicle 10 as an automobile of the present invention includes a lane keeping assist ECU (LKA-ECU) 11 that functions as a vehicle travel control device. The lane keeping assist ECU 11 is an ECU for preventing and controlling the lane departure of the host vehicle 10, and various kinds of devices for realizing the lane keeping assist based on various information supplied from the device for detecting the lane departure. It is a device that controls. In the present embodiment, the lane keeping assist ECU 11 includes a host vehicle travel state calculation unit 11a, a surrounding vehicle travel state calculation unit 11b, an overtaking vehicle determination unit 11c, and a steering control unit 11d.
 また、自車両10は、前方カメラ12、操舵角センサ13、表示装置14、音響装置15、操舵制御モータ16、左側のレーダセンサ17、右側のレーダセンサ18、ヒューマンマシンインターフェイス(HMI)19、速度センサ20、GPS21、及び車々間通信装置22を有している。ここで、前方カメラ12、操舵角センサ13、レーダセンサ17,18、速度センサ20、GPS21、及び車々間通信装置22が自車両10及びその周辺車両の走行情報を取得する情報取得装置として機能する。なお、GPS21と車々間通信装置22は必須の要素ではなく、レーダセンサ17,18で取得する情報の精度をより高めるため、或いはレーダセンサ17,18で情報が取得出来ない場合等に利用することを想定している。 In addition, the vehicle 10 includes the front camera 12, the steering angle sensor 13, the display device 14, the acoustic device 15, the steering control motor 16, the radar sensor 17 on the left, the radar sensor 18 on the right, human machine interface (HMI) 19, speed A sensor 20, a GPS 21 and an inter-vehicle communication device 22 are provided. Here, the front camera 12, the steering angle sensor 13, the radar sensors 17 and 18, the speed sensor 20, the GPS 21, and the inter-vehicle communication device 22 function as an information acquisition device for acquiring travel information of the vehicle 10 and its surrounding vehicles. Note that the GPS 21 and the inter-vehicle communication device 22 are not essential elements, and may be used to further improve the accuracy of the information acquired by the radar sensors 17 and 18 or when the information can not be acquired by the radar sensors 17 and 18 It is assumed.
 特に、自車両走行状態演算部11a及び操舵制御部11dによって車線保持補助の基本制御が行われることになる。具体的に、自車両走行状態演算部11aは、前方カメラ12から供給される車両前方の画像情報に基づいて、自車両10が走行車線を逸脱するが否かを演算処理によって判定する。そして、当該演算処理の判定によって自車両10が車線逸脱すると判断されると、操舵制御部11dは、操舵制御モータ16に対して制御信号を供給し、操舵制御モータ16によってステアリング操作が支援される。これにより、自車両10の走行車線の逸脱が事前に防止されることになる。 In particular, basic control of lane keeping assistance is performed by the host vehicle traveling state calculation unit 11a and the steering control unit 11d. Specifically, based on the image information in front of the vehicle supplied from the front camera 12, the host vehicle traveling state calculation unit 11a determines whether the host vehicle 10 deviates from the traveling lane by arithmetic processing. Then, when it is determined that the host vehicle 10 deviates from the lane by the determination of the arithmetic processing, the steering control unit 11 d supplies a control signal to the steering control motor 16, and the steering operation is supported by the steering control motor 16. . Thereby, deviation of the traveling lane of the vehicle 10 is prevented in advance.
 また、自車両走行状態演算部11aは、操舵角センサ13から供給される操舵角情報に基づいて、操舵制御モータ16によって制御する操舵角を算出する。更に、自車両走行状態演算部11aは、速度センサ20から供給される自車両10の走行速度に応じて、車線保持補助を行うかを決定している。例えば、走行速度が一定速度を超えなければ、車線保持補助を実行しないようにしてもよい。なお、自車両走行状態演算部11aは、GPS21から供給されるGPS情報に基づいて、自車両10の現在の位置を算出することもできる。 Further, the host vehicle traveling state calculation unit 11 a calculates a steering angle controlled by the steering control motor 16 based on the steering angle information supplied from the steering angle sensor 13. Furthermore, in accordance with the traveling speed of the host vehicle 10 supplied from the speed sensor 20, the host vehicle traveling state calculation unit 11a determines whether to perform lane keeping assistance. For example, the lane keeping assist may not be performed unless the traveling speed exceeds a predetermined speed. The host vehicle travel state calculation unit 11a can also calculate the current position of the host vehicle 10 based on the GPS information supplied from the GPS 21.
 本実施例において、車線保持補助ECU11は、自車両10の走行車線の逸脱を防止するための制御を行うだけでなく、自車両10が他車両から追い越される場合、又は自車両10が他車両を追い越す場合に、自車両10が走行車線を逸脱しない範囲内において、更なる操舵制御を行う。このような操舵制御を行うために、車線保持補助ECU11は、自車両走行状態演算部11a及び操舵制御部11dに加えて、周辺車両走行状態演算部11b及び追越車両判定部11cを備えている。 In the present embodiment, the lane keeping assist ECU 11 not only performs control for preventing the departure of the traveling lane of the host vehicle 10, but also when the host vehicle 10 is overtaken from other vehicles, or the host vehicle 10 controls other vehicles. When overtaking, the steering control is further performed within the range in which the host vehicle 10 does not deviate from the traveling lane. In order to perform such steering control, the lane keeping assist ECU 11 is provided with a surrounding vehicle traveling state calculating unit 11b and a passing vehicle judging unit 11c in addition to the host vehicle traveling state calculating unit 11a and the steering control unit 11d. .
 具体的に、自車両走行状態演算部11aは、上述した走行車線の逸脱判断のみならず、前方カメラ12、速度センサ20、及び必要な場合はGPS21から供給される自車両10に係る走行情報に基づいて、自車両10の走行状態を算出する。一方、周辺車両走行状態演算部11bは、レーダセンサ(L)17及びレーダセンサ(R)18から供給される車両左右後方に位置する他車両の検知信号(すなわち、走行情報である距離、速度、加速度に加え、検知出来る場合は他車両の種類)、及び/又は車々間通信装置22を備える場合は車々間通信により供給される他車両の走行情報に基づいて、当該他車両の走行状態を算出する。なお、他車両の走行情報は、前方カメラ12によって取得され、周辺車両走行状態演算部11bに供給されてもよい。 Specifically, not only the departure judgment of the traveling lane described above, but also the traveling information concerning the own vehicle 10 supplied from the front camera 12, the speed sensor 20, and the GPS 21 if necessary, is used as the traveling condition calculation unit 11a. Based on the above, the traveling state of the vehicle 10 is calculated. On the other hand, the surrounding vehicle travel state calculation unit 11b detects the detection signal of the other vehicle located at the left and right rear of the vehicle supplied from the radar sensor (L) 17 and the radar sensor (R) 18 (that is, the distance, The traveling state of the other vehicle is calculated on the basis of the traveling information of the other vehicle supplied by the inter-vehicle communication, in addition to the acceleration, if it can be detected, the type of the other vehicle) and / or the inter-vehicle communication device 22 is provided. The travel information of the other vehicle may be acquired by the front camera 12 and supplied to the peripheral vehicle travel state calculation unit 11b.
 ここで、本実施例においては、自車両10の周辺を走行する他車両として、第1周辺車両30及び第2周辺車両40が存在していると想定している。また、図1に示すように、ここでは、第1周辺車両30は、GPS31及び車々間通信装置32を有し、第2周辺車両40は、GPS41及び車々間通信装置42を有しているものとする。そして、自車両10と他車両(第1周辺車両30及び第2周辺車両40)とは、各GPSによって得られる位置情報を各車々間通信装置を介して互いに共有することができるようになっている。なお、自車両10及び周辺車両30、40のGPS及び車々間通信装置は必須の構成ではない。前述の通り、自車両10は車々間通信による情報がない場合も前方カメラ12及び/又はレーダセンサ17、18によって周辺の他車両30、40の走行状態を算出可能である。 Here, in the present embodiment, it is assumed that the first surrounding vehicle 30 and the second surrounding vehicle 40 exist as another vehicle traveling around the host vehicle 10. In addition, as shown in FIG. 1, here, the first surrounding vehicle 30 has a GPS 31 and an inter-vehicle communication device 32, and the second surrounding vehicle 40 has a GPS 41 and an inter-vehicle communication device 42. . And own vehicle 10 and other vehicles (the 1st circumference vehicle 30 and the 2nd circumference vehicle 40) can share mutually the position information obtained by each GPS via each communication device between vehicles. . In addition, GPS of the own vehicle 10 and the surrounding vehicles 30 and 40 and the communication apparatus between vehicles are not an essential structure. As described above, even when there is no information by inter-vehicle communication, the own vehicle 10 can calculate the traveling states of the other surrounding vehicles 30, 40 by the front camera 12 and / or the radar sensors 17, 18.
 また、追越車両判定部11cは、算出された自車両10の走行状態及び他車両のうちの周辺車両(第1周辺車両30及び第2周辺車両40)の走行状態から、自車両10及び当該周辺車両による追越動作を予測する。ここで、当該追越動作とは、自車両10が当該周辺車両を追い越す動作、及び当該周辺車両が自車両10を追い越す動作が含まれている。そして、当該追越動作があると予測された場合に、操舵制御部11dは、自車両10が走行車線を逸脱しない範囲内で実行される更なる操舵制御に係る制御信号を、操舵制御モータ16に対して供給する。これにより、自車両10の走行車線内における自車両10の走行位置が偏位することになる。 Further, the overtaking vehicle determination unit 11c determines the own vehicle 10 and the relevant running condition based on the calculated running condition of the own vehicle 10 and the surrounding vehicle (the first nearby vehicle 30 and the second nearby vehicle 40) of the other vehicles. Predict the overtaking operation by surrounding vehicles. Here, the overtaking operation includes an operation in which the host vehicle 10 passes the surrounding vehicle and an operation in which the surrounding vehicle passes the host vehicle 10. Then, when it is predicted that the overtaking operation is to be performed, the steering control unit 11 d controls the steering control motor 16 with a control signal related to further steering control that is executed within the range in which the host vehicle 10 does not deviate from the traveling lane. Supply for As a result, the traveling position of the vehicle 10 in the traveling lane of the vehicle 10 is deviated.
 より具体的な走行制御として、操舵制御部11dは、自車両10が追い越される車両(すなわち、被追越車両)である場合に、自車両10を追い越す周辺車両(すなわち、追越車両)の走行レーンから離間するように、自車両10の走行レーン内において自車両10を当該追越車両の走行レーンとは逆側に偏位させて走行させるような操舵制御を行う。一方、操舵制御部11dは、自車両10が追い越す車両(すなわち、追越車両)である場合に、自車両10に追い越される周辺車両(すなわち、被追越車両)の走行レーンから離間するように、自車両10の走行レーン内において自車両10を当該被追越車両の走行レーンとは逆側に偏位させて走行させるような操舵制御を行う。 As a more specific travel control, the steering control unit 11 d travels a surrounding vehicle (that is, a passing vehicle) that passes the vehicle 10 when the vehicle 10 is a passing vehicle (that is, a passing vehicle). The steering control is performed such that the host vehicle 10 travels in the traveling lane of the host vehicle 10 while being separated from the lane of the host vehicle 10 on the opposite side to the traveling lane of the passing vehicle. On the other hand, when the host vehicle 10 is a passing vehicle (that is, a passing vehicle), the steering control unit 11 d is separated from the traveling lane of the surrounding vehicle (that is, the passing vehicle) to be passed by the host vehicle 10. The steering control is performed such that the host vehicle 10 travels in the traveling lane of the host vehicle 10 while being deviated to the opposite side of the traveling lane of the target vehicle.
 例えば、上述した自車両10の寄せ量、即ち自車両の幅中心の自車線の幅の中心からの偏位量は、車線から自車両10のタイヤまでの距離が約20cmとなるようにしてもよい。特に、車線からタイヤがはみ出ないことが重要となるが、自車両のサイドミラー及びその他機器が車線からはみ出ないようにすることが好ましい。従って、当該偏位量は、自車両10の車種、装備機器等に応じて適宜調整されることになる。 For example, the shift amount of the host vehicle 10 described above, that is, the offset amount from the center of the width of the host vehicle at the center of the width of the host vehicle, makes the distance from the lane to the tire of the host vehicle 10 about 20 cm. Good. In particular, it is important that the tires do not run out of the lane, but it is preferable to prevent the side mirrors and other devices of the host vehicle from running out of the lane. Therefore, the offset amount is appropriately adjusted in accordance with the type of vehicle 10, the equipment and the like.
 以上のことを換言すると、本実施例に係る操舵制御部11dは、走行レーンからの逸脱を防止しつつも、自車両10に対して追越車両又は被追越車両となる周辺車両から離間して走行するような制御を行うことになる。これにより、自車両10と周辺車両との接触リスクを低減させ、車両の運転者に対して安全安心を担保することができる。 In other words, the steering control unit 11d according to the present embodiment separates from the surrounding vehicle to be the overtaking vehicle or the overtaking vehicle with respect to the host vehicle 10 while preventing the departure from the traveling lane. Control to run. Thereby, the contact risk between the own vehicle 10 and the surrounding vehicles can be reduced, and safety and security can be ensured for the driver of the vehicle.
 また、操舵制御部11dは、自車両10が追い越される車両(すなわち、被追越車両)である場合に、自車両10の走行レーンに対して追越車両の走行レーンとは反対側の走行レーンに他の追越車両又は他の被追越車両の存在が予測される場合に、自車両10の偏位量が減少するように操舵制御を行う。一方、操舵制御部11dは、自車両10が追い越す車両(すなわち、追越車両)である場合に、自車両10の走行レーンに対して被追越車両の走行レーンとは反対側の走行レーンに他の追越車両又は他の被追越車両の存在が予測される場合に、自車両10の偏位量が減少するように操舵制御も行う。 Further, when the host vehicle 10 is a passing vehicle (that is, a passing vehicle), the steering control unit 11 d is a traveling lane opposite to the traveling lane of the passing vehicle with respect to the traveling lane of the host vehicle 10 When the presence of another overtaking vehicle or another overtaking vehicle is predicted, the steering control is performed so that the amount of deviation of the host vehicle 10 is reduced. On the other hand, when the host vehicle 10 is a passing vehicle (that is, a passing vehicle), the steering control unit 11 d sets the running lane on the opposite side to the running lane of the passing vehicle to the running lane of the own vehicle 10. When the presence of another overtaking vehicle or another overtaking vehicle is predicted, steering control is also performed so that the amount of deviation of the host vehicle 10 is reduced.
 特に、本実施例において、操舵制御部11dは、反対側の走行レーンに他の追越車両又は他の被追越車両の存在が予測される場合に、反対側の走行レーンへの自車両10の寄せを行わず(すなわち、偏位量をゼロとする)、自車両10を走行レーンの中心で走行するように操舵制御を行うことも可能である。 In particular, in the present embodiment, the steering control unit 11 d is configured such that when the presence of another overtaking vehicle or another overtaking vehicle is predicted in the opposite traveling lane, the steering control unit 11 d moves the host vehicle 10 to the opposite traveling lane. It is also possible to perform steering control so that the host vehicle 10 travels in the center of the travel lane without shifting the distance (that is, setting the displacement amount to zero).
 これらのことを換言すると、本実施例に係る操舵制御部11dは、走行レーンからの逸脱を防止しつつも、自車両10の走行レーンの左右に位置した走行レーンを走行する周辺車両の存在に応じて、自車両10の適切な偏位量を決定することになる。これにより、自車両10の左右に周辺車両が存在する場合でも、両方の周辺車両との接触リスクを低減させ、車両の運転者に対して安全安心を担保することができる。 In other words, the steering control unit 11d according to the present embodiment prevents the departure from the traveling lane, but allows the presence of the peripheral vehicles traveling on the traveling lanes located on the left and right of the traveling lane of the own vehicle 10. Accordingly, an appropriate amount of deviation of the vehicle 10 will be determined. Thereby, even when surrounding vehicles exist in the right and left of self-vehicles 10, a contact risk with both surrounding vehicles can be reduced, and security can be secured to a driver of vehicles.
 また、本実施例において、追越車両判定部11cは、前方カメラ12、レーダセンサ17,18、及び/又は車々間通信装置22から供給される周辺車両の走行情報から、当該周辺車両の車種も判定している。そして、操舵制御部11dは、当該周辺車両の車種に応じて、上述した自車両10の偏位量を調整している。例えば、周辺車両が大型トラックであれば、当該偏位量を小さくし、小型の乗用車であれば偏位量を大きくしてもよい。これにより、周辺車両の車種に応じた自車両10と周辺車両との距離を確保することができ、自車両10と周辺車両との接触リスクをより低減させ、車両の運転者に対する安全安心の担保を強化することができる。なお、このような周辺車両の車種に応じた偏位量の調整を行うことなく、一律の偏位量を自車両に適用してかまわない。 Further, in the present embodiment, the overtaking vehicle determination unit 11c also determines the vehicle type of the surrounding vehicle from the traveling information of the surrounding vehicle supplied from the front camera 12, the radar sensors 17 and 18, and / or the inter-vehicle communication device 22. doing. Then, the steering control unit 11d adjusts the amount of deviation of the host vehicle 10 described above according to the type of the surrounding vehicle. For example, if the surrounding vehicle is a large truck, the amount of displacement may be reduced, and if it is a small passenger car, the amount of displacement may be increased. This makes it possible to secure the distance between the own vehicle 10 and the nearby vehicles according to the vehicle type of the nearby vehicles, further reducing the contact risk between the own vehicle 10 and the nearby vehicles, and securing safety and security for the driver of the vehicle. Can be strengthened. A uniform amount of deviation may be applied to the host vehicle without adjusting the amount of deviation according to the type of surrounding vehicle.
 更に、操舵制御部11dは、HMI19を介して表示装置14及び音響装置15に、上述した操舵制御が行われている旨を運転者に通知するための制御信号を供給している。すなわち、本実施例において、操舵制御部11dは、報知手段の一例である表示装置14及び音響装置15を制御する報知制御部としても機能している。これにより、自車両10の運転者は、自らの意図しない操舵が行われている場合であっても、自車両10又は周辺車両の追越動作に伴う操舵制御であることを把握でき、当該操舵制御を無効にするような無用なステアリング操作を行うこともなくなり、車両の運転者に対する安全安心の担保をより強化することができる。 Furthermore, the steering control unit 11 d supplies a control signal for notifying the driver that the above-described steering control is being performed to the display device 14 and the acoustic device 15 via the HMI 19. That is, in the present embodiment, the steering control unit 11 d also functions as a notification control unit that controls the display device 14 and the sound device 15 which are an example of the notification means. Thereby, the driver of the own vehicle 10 can grasp that it is the steering control accompanying the overtaking operation of the own vehicle 10 or the surrounding vehicles even when the unintended steering is performed, and the steering There is no need to perform unnecessary steering operations that would invalidate the control, and the security of the driver of the vehicle can be further enhanced.
 なお、当該報知制御部を操舵制御部11dとは別個に設けてもよい。 The notification control unit may be provided separately from the steering control unit 11d.
 次に、図1乃至図4を参照しつつ、追越車両又は被追越車両が自車両10の周辺に存在する場合における、自車両10の走行制御に関する制御ルーチンについて説明する。ここで、図2は、本実施例における車線保持補助ECU11によって実行される制御ルーチンを示すフローチャートである。また、図3は、自車両10が他車両(第1周辺車両30)に追い越される場合の車両の位置変化を示す模式図であり、図4は、他車両(第2周辺車両40)が自車両10に追い越される場合の車両の位置変化を示す模式図である。 Next, with reference to FIGS. 1 to 4, a control routine regarding travel control of the vehicle 10 in the case where the overtaking vehicle or the passing vehicle is present in the vicinity of the vehicle 10 will be described. Here, FIG. 2 is a flow chart showing a control routine executed by the lane keeping assist ECU 11 in the present embodiment. Further, FIG. 3 is a schematic view showing a change in position of a vehicle when the own vehicle 10 is overtaken by another vehicle (first nearby vehicle 30), and FIG. 4 is a diagram showing the other vehicle (second nearby vehicle 40) It is a schematic diagram which shows the position change of the vehicle in the case of being overtaken by the vehicle.
 先ず、自車両10が備える情報取得装置によって自車両10の走行情報が取得され、当該走行情報が車線保持補助ECU11に供給される(ステップS111)。具体的には、前方カメラ12から自車両10の前方の画像情報、速度センサ20から自車両10の速度情報、GPS21から自車両10の位置情報が車線保持補助ECU11に供給される。また、本ステップでは、車線保持補助(LKA状態)制御が行われているかについても、自車両10の走行情報として取得される。具体的には、車線保持補助ECU11が、操舵制御部11dから制御信号を操舵制御モータ16に供給しているか否かによって判断されることになる。 First, travel information of the host vehicle 10 is acquired by the information acquisition device provided in the host vehicle 10, and the travel information is supplied to the lane keeping assist ECU 11 (step S111). Specifically, image information ahead of the vehicle 10 from the front camera 12, speed information on the vehicle 10 from the speed sensor 20, and position information on the vehicle 10 from the GPS 21 are supplied to the lane keeping assist ECU 11. In addition, in this step, it is also acquired as travel information of the host vehicle 10 whether or not the lane keeping assist (LKA state) control is being performed. Specifically, the determination is made based on whether or not the lane keeping assist ECU 11 supplies a control signal from the steering control unit 11 d to the steering control motor 16.
 次に、自車両走行状態演算処理が自車両走行状態演算部11aによって行われる(ステップS112)。具体的には、自車両10の前方の画像情報、速度情報、及び必要な場合は位置情報から、自車両10がどのように走行しているかを算出する。 Next, the host vehicle travel state calculation process is performed by the host vehicle travel state calculation unit 11a (step S112). Specifically, it is calculated how the vehicle 10 is traveling from the image information ahead of the vehicle 10, the speed information, and the position information if necessary.
 次に、自車両10が備える情報取得装置によって周辺車両の走行情報が取得され、当該走行情報が車線保持補助ECU11に供給される(ステップS113)。具体的には、前方カメラ12やレーダセンサ17,18から自車両10の前方や左右後方を走行する周辺車両の距離、速度、加速度、及び取得出来る場合は車種情報、並びに自車両と周辺車両が車々間通信装置を備える場合は車々間通信装置22から周辺車両に関するさらなるが車線保持補助ECU11に供給される。 Next, the travel information of the surrounding vehicle is acquired by the information acquisition device provided in the own vehicle 10, and the travel information is supplied to the lane keeping assist ECU 11 (step S113). Specifically, the distance, speed, acceleration, and, if it can be acquired, vehicle type information of the surrounding vehicle traveling in front or left and right of the vehicle 10 from the front camera 12 or the radar sensors 17 and 18, vehicle type information and the surrounding vehicle When the inter-vehicle communication device is provided, the inter-vehicle communication device 22 further supplies the lane keeping assist ECU 11 regarding the surrounding vehicles.
 次に、周辺車両走行状態演算処理が周辺車両走行状態演算部11bによって行われる(ステップS114)。具体的には、周辺車両の速度情報及び位置情報から、周辺車両がどのように走行しているかを算出する。 Next, the surrounding vehicle traveling state calculation process is performed by the surrounding vehicle traveling state calculation unit 11b (step S114). Specifically, it calculates how the surrounding vehicle is traveling from the speed information and the position information of the surrounding vehicle.
 次に、算出した自車両10の走行状態及び周辺車両の走行状態から、自車両10及び周辺車両による追越動作があるか否かの判定である、側方車両追越し判定が追越車両判定部11cによって行われる(ステップS115)。すなわち、追越車両判定部11cは、算出した自車両10の走行状態及び周辺車両の走行状態に基づいて、自車両10が被追越車両になるか、或いは追越車両になるかを判定することになる。すなわち、周辺車両のなかから、自車両10に対して追越車両又は被追越車両となる対象車両が選定されることになる。 Next, the side vehicle overtaking determination is the overtaking vehicle determination unit, which is a determination as to whether or not there is an overtaking operation by the own vehicle 10 and the surrounding vehicles from the calculated traveling state of the own vehicle 10 and the traveling state of the surrounding vehicles. 11c (step S115). That is, the overtaking vehicle determination unit 11c determines whether the own vehicle 10 becomes an overtaking vehicle or an overtaking vehicle based on the calculated traveling state of the own vehicle 10 and the traveling state of the surrounding vehicles. It will be. That is, a target vehicle to be an overtaking vehicle or a passing vehicle is selected from the surrounding vehicles.
 ステップS115において、追越動作があると判定されると(ステップS115:Yes)、自車両10がLKA状態であるか否かの判定が、追越車両判定部11cによって行われる(ステップS116)。当該判定は、ステップS111において得られるLKA状態に関する情報が利用されて行われる。 When it is determined in step S115 that there is an overtaking operation (step S115: Yes), the overtaking vehicle determination unit 11c determines whether the host vehicle 10 is in the LKA state (step S116). The said determination is performed using the information regarding the LKA state obtained in step S111.
 ステップS116において、LKA状態であると判定されると(ステップS116:Yes)、上述した対象車両が大型車であるか否かの判定が、追越車両判定部11cによって行われる(ステップS117)。なお、ステップS117による対象車両の車種の判定は、より精度の高い制御を必要とする場合で、対象車両の車種の判定が出来る場合に行われる。精度の高い制御を必要としない場合はステップS117を飛ばし、S116でYesの場合にはステップ118に進んで構わない。すなわち、対象車両が大型車か否かに関わらず走行レーン内で自車両を偏位させるような制御をしても構わない。当該対象車両の車種の判定は、ステップS113において周辺車両の車種情報が得られる場合にはこれを利用して行われる。ここで、大型車とは、一般的な乗用車よりも大きいトラック、トレーラー、及びバス等の商用車、並びに消防自動車等の緊急車両が想定されるが、大型車の寸法及び基準は適宜設定することができる。 When it is determined in step S116 that the vehicle is in the LKA state (step S116: Yes), the overtaking vehicle determination unit 11c determines whether the target vehicle described above is a large vehicle (step S117). Note that the determination of the vehicle type of the target vehicle in step S117 is performed when the determination of the vehicle type of the target vehicle can be made in the case where the control with higher accuracy is required. If high-accuracy control is not required, step S117 may be skipped, and if the result of S116 is Yes, the process may proceed to step 118. That is, regardless of whether the target vehicle is a large vehicle or not, control may be performed such that the host vehicle is offset in the traveling lane. The determination of the vehicle type of the target vehicle is performed by using the vehicle type information of the surrounding vehicles when the vehicle type information of the surrounding vehicles is obtained in step S113. Here, large vehicles are assumed to be commercial vehicles such as trucks, trailers, and buses larger than general passenger cars, and emergency vehicles such as fire engines, but the size and criteria of large vehicles should be set appropriately. Can.
 ステップS117において、対象車両が大型車であると判定されると(ステップS117:Yes)、自車両10の走行レーンに対して対象車両の走行レーンとは反対側の走行レーンに他の追越車両又は他の被追越車両の存在が有るか否かの判定が、追越車両判定部11cによって行われる(ステップS117)。当該判定は、ステップS113において得られる周辺車両の情報が利用されて行われる。 If it is determined in step S117 that the target vehicle is a large vehicle (step S117: Yes), another passing vehicle is on the travel lane opposite to the travel lane of the target vehicle with respect to the travel lane of the host vehicle 10. Alternatively, it is determined by the overtaking vehicle determination unit 11c whether or not there is another passing vehicle (step S117). The said determination is performed using the information of the surrounding vehicle obtained in step S113.
 なお、ステップS115からステップS117の各ステップにおいて、Noと判定された場合には、追越動作に伴う走行制御は不要と判定され、本制御ルーチンは終了する。 In addition, when it determines with No in each step of step S115 to step S117, it determines with traveling control accompanying overtaking operation | movement being unnecessary, and this control routine is complete | finished.
 ステップS118において、対象車両の走行レーンとは反対側の走行レーンに他の追越車両又は他の被追越車両が存在しない判定されると(ステップS118:No)、対象車両の走行レーンとは反対側の走行レーンに向けて自車両10を寄せる操舵制御が、操舵制御部11dによって行われる。本実施例においては、反対側の走行レーンに他の周辺車両が存在しないため、反対側の走行レーンにはみ出さない限界まで操舵制御(走行レーン限界走行制御)が行われることになる(ステップS119)。 If it is determined in step S118 that there is no other overtaking vehicle or other overtaking vehicle in the traveling lane opposite to the traveling lane of the target vehicle (step S118: No), the traveling lane of the target vehicle The steering control unit 11 d performs steering control to move the host vehicle 10 toward the traveling lane on the opposite side. In the present embodiment, since there is no other peripheral vehicle in the opposite traveling lane, steering control (traveling lane limit traveling control) is performed to the limit not to protrude into the opposite traveling lane (step S119). ).
 例えば、自車両10が中央走行レーンを走行する被追越車両となり、第1周辺車両30が右側走行レーンを走行する追越車両となる場合(図3(a))、自車両10は、第1周辺車両30が走行する右側走行レーンから離間するように、操舵制御が行われる(図3(b))。そして、自車両10は中央走行レーンを逸脱せず、且つ左側走行レーンにはみ出さない限界まで幅寄して走行し、自車両10と第1周辺車両30との間隔が広い状態において、第1周辺車両30が自車両10を追い越すことになる(図3(c))。 For example, when the host vehicle 10 is a passing vehicle traveling in the central traveling lane and the first peripheral vehicle 30 is a passing vehicle traveling in the right traveling lane (FIG. 3A), the host vehicle 10 is 1) The steering control is performed so as to be separated from the right side traveling lane where the surrounding vehicle 30 travels (FIG. 3 (b)). Then, the vehicle 10 travels with a width that does not deviate from the central traveling lane and to a limit where it does not extend to the left traveling lane, and the first vehicle 30 and the first surrounding vehicle 30 have a wide interval. The surrounding vehicle 30 passes the host vehicle 10 (FIG. 3 (c)).
 一方、自車両10が中央走行レーンを走行する追越車両となり、第2周辺車両40が左側走行レーンを走行する被追越車両となる場合(図4(a))、自車両10は、第2周辺車両40が走行する左側走行レーンから離間するように、操舵制御が行われる(図4(b))。そして、自車両10は中央走行レーンを逸脱せず、且つ右側走行レーンにはみ出さない限界まで幅寄して走行し、自車両10と第2周辺車両40との間隔が広い状態において、自車両10が第2周辺車両40を追い越すことになる(図4(c))。 On the other hand, when the own vehicle 10 is an overtaking vehicle traveling on the central traveling lane and the second peripheral vehicle 40 is an overtaking vehicle traveling on the left traveling lane (FIG. 4A), the own vehicle 10 is 2) The steering control is performed so as to be separated from the left traveling lane in which the surrounding vehicle 40 travels (FIG. 4 (b)). Then, the vehicle 10 travels with a width that does not deviate from the central traveling lane and to a limit where it does not extend to the right traveling lane, and in a state where the distance between the vehicle 10 and the second peripheral vehicle 40 is wide 10 will overtake the second surrounding vehicle 40 (FIG. 4 (c)).
 ステップS118において、対象車両の走行レーンとは反対側の走行レーンに他の追越車両又は他の被追越車両が存在すると判定されると(ステップS118:Yes)、反対側の走行レーンに向けて自車両10を寄せる操舵制御は行われず、自車両10を走行レーンの中心で走行するように制御(車線中心走行制御)が行われる。 In step S118, when it is determined that another overtaking vehicle or another overtaking vehicle exists in the traveling lane on the opposite side to the traveling lane of the target vehicle (step S118: Yes), it is directed to the opposite traveling lane The steering control for moving the host vehicle 10 is not performed, and control (lane center travel control) is performed so that the host vehicle 10 travels in the center of the travel lane.
 例えば、図3(a)において、左側走行レーンに第2周辺車両40が存在する場合には、左側走行レーンに向けて自車両10を幅寄せする操舵制御は行われず、自車両10が中央走行レーンの中心を走行している状態において、第1周辺車両30が自車両10を追い越すことになる。また、図4(a)において、右側走行レーンに第1周辺車両30が存在する場合には、右側走行レーンに向けて自車両10を幅寄せする操舵制御は行われず、自車両10が中央走行レーンの中心を走行している状態において、自車両10が第2周辺車両40を追い越すことになる。 For example, in FIG. 3A, when the second surrounding vehicle 40 exists in the left traveling lane, steering control for moving the vehicle 10 toward the left traveling lane is not performed, and the own vehicle 10 travels in the center. In the state of traveling at the center of the lane, the first peripheral vehicle 30 passes the host vehicle 10. Further, in FIG. 4A, when the first peripheral vehicle 30 exists in the right traveling lane, the steering control for moving the own vehicle 10 toward the right traveling lane is not performed, and the own vehicle 10 travels in the center. In the state of traveling at the center of the lane, the own vehicle 10 passes the second surrounding vehicle 40.
 ステップS119における走行レーン限界走行制御、又はステップS120における車線中心走行制御が行われると、本制御ルーチンは終了する。 When the traveling lane limit traveling control in step S119 or the lane center traveling control in step S120 is performed, the control routine ends.
 以上のように、本実施例に係る制御ルーチンにおいては、走行レーンからの逸脱を防止しつつも、自車両10に対して追越車両又は被追越車両となる周辺車両から離間して走行するような制御が行われることになる。これにより、自車両10と周辺車両との接触リスクを低減させ、車両の運転者に対して安全安心を担保することができる。 As described above, in the control routine according to the present embodiment, the vehicle travels away from the host vehicle 10 away from the surrounding vehicle which becomes the passing vehicle or the passing vehicle while preventing the departure from the traveling lane. Such control will be performed. Thereby, the contact risk between the own vehicle 10 and the surrounding vehicles can be reduced, and safety and security can be ensured for the driver of the vehicle.
 なお、上述した実施例においては、LKAが前提となり、LKA状態でなければ操舵制御が行われないことになっていたが、LKAに代わる他の制御を必須の条件としてもよい。例えば、車線逸脱を報知によって運転者に知らせる機構が機能していることを前提としてもよい。また、車間距離保持機能付オートクルーズと連携することにより、車間距離を保持しつつ運転者に対して安全安心も担保できる追越動作を実現してもよい。 In the above-described embodiment, LKA is a premise, and the steering control is not performed unless in the LKA state, but another control instead of LKA may be an essential condition. For example, it may be premised that a mechanism for notifying the driver of a lane departure by notification is functioning. Further, in cooperation with the inter-vehicle distance holding function auto cruise, it is possible to realize an overtaking operation that can secure safety and security for the driver while maintaining the inter-vehicle distance.
<第二実施例>
 上述した第一実施例においては、自車両10の周辺情報として、周辺車両の走行情報のみを利用し、車両同士による追越のみを検出していたが、工事中のパイロン、高速道路の防音壁、又はトンネルの壁等の障害物の存在の情報を当該周辺情報に含め、自車両10と当該障害物との位置関係も考慮して、操舵制御を行ってもよい。このような場合の形態を第二実施例として、図5乃至図8を参照しつつ以下に説明する。
Second Embodiment
In the first embodiment described above, only travel information of the surrounding vehicles is used as peripheral information of the host vehicle 10, and only overtaking by vehicles is detected. However, pylons under construction, sound barriers of expressways Alternatively, information on the presence of an obstacle such as a tunnel wall may be included in the surrounding information, and steering control may be performed in consideration of the positional relationship between the vehicle 10 and the obstacle. A mode in such a case will be described below as a second embodiment with reference to FIGS. 5 to 8.
 ここで、図5は、本発明の第二実施例における車両走行制御装置を備える自動車のシステム構成図である。また、図6は、本発明の第二実施例における車両走行制御装置によって実行される制御ルーチンを示すフローチャートである。更に、図7は、自車両が他車両に追い越される場合の車両の位置変化を示す模式図である。そして、図8は、他車両が自車両に追い越される場合の車両の位置変化を示す模式図である。 Here, FIG. 5 is a system configuration diagram of an automobile provided with a vehicle travel control apparatus according to a second embodiment of the present invention. FIG. 6 is a flow chart showing a control routine executed by the vehicle travel control system in the second embodiment of the present invention. Furthermore, FIG. 7 is a schematic view showing a change in position of a vehicle when the host vehicle is overtaken by another vehicle. And FIG. 8 is a schematic diagram which shows the position change of the vehicle in case other vehicles are overtaken by own vehicle.
 なお、第一実施例と同様の構成については、同一の符号を付し、その説明は省略する。また、第一実施例と同様の制御についても、その説明は省略する。 The same components as those in the first embodiment are given the same reference numerals, and the description thereof is omitted. The description of the same control as in the first embodiment is also omitted.
 図5に示すように、本実施例における車線保持補助ECU11は、障害物50の存在及び自車両10と障害物50との位置関係も演算できるように、周辺車両走行状態演算部11bに代えて、周辺車両走行状態・障害物検出演算部11b’が設けられている。周辺車両走行状態・障害物検出演算部11b’は、前方カメラ12から供給される画像情報に基づいて、障害物50の有無を算出する。本実施例においては、前方カメラ12が自車両10の周辺の障害物50を検出する障害物検出部として機能する。 As shown in FIG. 5, the lane keeping assist ECU 11 in the present embodiment can calculate the presence of the obstacle 50 and the positional relationship between the vehicle 10 and the obstacle 50 in place of the surrounding vehicle travel state calculation unit 11 b. The surrounding vehicle traveling state / obstacle detection / calculation unit 11b 'is provided. The surrounding vehicle travel state and obstacle detection calculation unit 11 b ′ calculates the presence or absence of the obstacle 50 based on the image information supplied from the front camera 12. In the present embodiment, the front camera 12 functions as an obstacle detection unit that detects an obstacle 50 around the vehicle 10.
 そして、操舵制御部11dは、障害物50の有無に応じて、自車両10の変位量が制限された操舵制御を行う。具体的には、自車両10の走行レーンに対して追越車両又は被追越車両の走行レーンとは反対側の走行レーンに障害物50の存在が検出されると、自車両10の変位量が減少するように操舵制御を行う。当該操舵制御については、図6乃至図8を参照しつつ、制御ルーチンとともに、詳細に説明する。 Then, the steering control unit 11 d performs steering control in which the displacement amount of the host vehicle 10 is limited according to the presence or absence of the obstacle 50. Specifically, when the presence of the obstacle 50 is detected in the traveling lane opposite to the traveling lane of the overtaking vehicle or the passing vehicle with respect to the traveling lane of the own vehicle 10, the displacement amount of the own vehicle 10 Steering control so that The steering control will be described in detail along with the control routine with reference to FIGS. 6 to 8.
 先ず、第一実施例におけるステップS111及びステップS112と同様に、自車両状態の情報取得(ステップS211)、及び自車両走行状態演算処理(ステップS212)が行われる。その後、自車両10の周辺車両のみならず、自車両10の周辺に存在する障害物の情報取得が行われる(ステップS213)。周辺車両の情報取得については、第一実施例におけるステップ113と同様であり、障害物の情報取得は、前方カメラ12、レーダセンサ17,18によって行われる。続いて、第一実施例におけるステップS114と同様に、周辺車両の状態演算処理が行われる(ステップS214)。 First, similar to step S111 and step S112 in the first embodiment, information acquisition of the host vehicle state (step S211) and host vehicle traveling state calculation processing (step S212) are performed. Then, information acquisition of not only vehicles around the host vehicle 10 but also obstacles present around the host vehicle 10 is performed (step S213). The information acquisition of the surrounding vehicle is the same as step 113 in the first embodiment, and the information acquisition of the obstacle is performed by the front camera 12 and the radar sensors 17 and 18. Subsequently, in the same manner as step S114 in the first embodiment, state calculation processing of surrounding vehicles is performed (step S214).
 そして、第一実施例におけるステップS115~S118と同様に、追越し判定(ステップS215)、LKA状態判定(ステップS216)、対象車両の車種判定(ステップS217)、判定レーンの車両存在判定(ステップS218)が行われる。ステップS215~S217においてNoと判定されると、追越動作に伴う走行制御は不要と判定され、本制御ルーチンは終了する。なお、対象車両の車種判定(ステップ217)は第一実施例と同様に行わず、ステップ216でYesの場合はS218に進むことも可能である。また、ステップS218において、反対レーンに他の周辺車両が存在すると判定されると(ステップS218:No)、第一実施例におけるステップS120と同様に、車線中心走行制御が行われれる(ステップS219)。 Then, as in steps S115 to S118 in the first embodiment, the overtaking determination (step S215), the LKA state determination (step S216), the vehicle type determination of the target vehicle (step S217), and the vehicle presence determination of the determination lane (step S218) Is done. If it is determined No in steps S215 to S217, it is determined that traveling control associated with the overtaking operation is unnecessary, and the control routine ends. Note that the vehicle type determination of the target vehicle (step 217) is not performed as in the first embodiment, and in the case of Yes in step 216, it is also possible to proceed to S218. When it is determined in step S218 that another surrounding vehicle is present in the opposite lane (step S218: No), lane center traveling control is performed as in step S120 in the first embodiment (step S219). .
 次に、反対レーンに他の周辺車両が存在しないと判定されると(ステップS218:Yes)、当該反対レーンに障害物が存在するか否かの判定が、操舵制御部11dによって行われる(ステップS220)。当該反対レーンに障害物が存在しないと判定されると(ステップS220:No)、第一実施例におけるステップS119と同様に、走行レーン限界走行制御が行われる(ステップS221)。 Next, when it is determined that there is no other surrounding vehicle in the opposite lane (step S218: Yes), the steering control unit 11d determines whether an obstacle is present in the opposite lane (step S218). S220). If it is determined that an obstacle does not exist in the opposite lane (step S220: No), traveling lane limit traveling control is performed (step S221) as in step S119 in the first embodiment.
 一方、当該反対レーンに障害物が存在すると判定されると(ステップS220:Yes)、走行レーンからの逸脱を防止しつつも、障害物の種類、寸法、及び位置に応じて、自車両10の偏位量を制限して操舵制御(走行レーン制限走行制御)を行う。当該偏位量の制限としては、例えば、自車両10と障害物との衝突の危険性が上昇しない範囲において、自車両10を障害物が存在する走行レーンに向けて可能な限り幅寄せすることが考えられる。 On the other hand, when it is determined that an obstacle is present in the opposite lane (step S220: Yes), while preventing departure from the traveling lane, according to the type, size, and position of the obstacle, Steering control (travel lane limited travel control) is performed with the amount of deviation limited. As the limitation of the deviation amount, for example, the vehicle 10 is moved as far as possible toward the traveling lane in which the obstacle exists in a range where the risk of the collision between the vehicle 10 and the obstacle does not increase. Is considered.
 具体的に、自車両10が中央走行レーンを走行する被追越車両となり、第1周辺車両30が右側走行レーンを走行する追越車両となる場合であって、左側走行レーンに障害物50が存在することが検出されると(図7(a))、自車両10は中央走行レーンを逸脱せず、且つ右側走行レーンから離間するように操舵制御が行われる。ここで、当該操舵制御は、左側走行レーンにはみ出さない限界まで幅寄するようには行われず、障害物50との接触を回避できる適度の距離を維持した幅寄せが行われる(図7(b))。すなわち、第一実施例における図3(b)と比較して、左側走行レーンに向けた偏位量が少なく、自車両10と第1周辺車両30との間隔、及び自車両10と障害物50との間隔が確保された状態となる。そして、このような状態において、第1周辺車両30が自車両10を追い越し、更には自車両10も障害物の側方を通過することになる(図7(c))。 Specifically, in the case where the host vehicle 10 is a passing vehicle traveling in the central traveling lane and the first peripheral vehicle 30 is a passing vehicle traveling in the right traveling lane, the obstacle 50 is present in the left traveling lane. When it is detected that the vehicle 10 is present (FIG. 7A), the steering control is performed so that the host vehicle 10 does not deviate from the central traveling lane and is separated from the right traveling lane. Here, the steering control is not performed so as to extend to the limit where the vehicle does not extend to the left side traveling lane, and the width adjustment is performed maintaining an appropriate distance that can avoid contact with the obstacle 50 (FIG. b). That is, compared to FIG. 3B in the first embodiment, the amount of deviation toward the left traveling lane is smaller, the distance between the vehicle 10 and the first surrounding vehicle 30, and the vehicle 10 and the obstacle 50. It is in the state where the interval with is secured. Then, in such a state, the first peripheral vehicle 30 overtakes the host vehicle 10, and the host vehicle 10 also passes the side of the obstacle (FIG. 7 (c)).
 一方、自車両10が中央走行レーンを走行する追越車両となり、第2周辺車両40が左側走行レーンを走行する被追越車両となる場合であって、右側走行レーンに障害物50が存在することが検出されると(図8(a))、自車両10は中央走行レーンを逸脱せず、且つ左側走行レーンから離間するように操舵制御が行われる。ここで、当該操舵制御は、右側走行レーンにはみ出さない限界まで幅寄するようには行われず、障害物50との接触を回避できる適度の距離を維持した幅寄せが行われる(図8(b))。すなわち、第一実施例における図4(b)と比較して、右側走行レーンに向けた偏位量が少なく、自車両10と第2周辺車両40との間隔、及び自車両10と障害物50との間隔が確保された状態となる。そして、このような状態において、自車両10が第1周辺車両30を追い越し、更には自車両10が障害物の側方を通過することになる(図8(c))。 On the other hand, when the own vehicle 10 is an overtaking vehicle traveling on the central traveling lane and the second peripheral vehicle 40 is an overtaking vehicle traveling on the left traveling lane, the obstacle 50 exists in the right traveling lane. When this is detected (FIG. 8A), the steering control is performed so that the host vehicle 10 does not deviate from the central traveling lane and is separated from the left traveling lane. Here, the steering control is not performed so as to extend to the limit where the vehicle does not extend to the right-side traveling lane, and the width adjustment is performed maintaining an appropriate distance that can avoid contact with the obstacle 50 (see FIG. b). That is, as compared with FIG. 4B in the first embodiment, the amount of deviation toward the right-side traveling lane is smaller, the distance between the vehicle 10 and the second surrounding vehicle 40, and the vehicle 10 and the obstacle 50 It is in the state where the interval with is secured. Then, in such a state, the host vehicle 10 overtakes the first surrounding vehicle 30, and the host vehicle 10 passes the side of the obstacle (FIG. 8 (c)).
 以上のように、本実施例によれば、自車両10の周辺車両のみならず、周辺の障害物も考慮して操舵制御が行わるため、自車両10の周辺車両及び障害物との接触リスクが低減され、車両の運転者に対してより一層の安全安心を担保することができる。 As described above, according to the present embodiment, the steering control is performed in consideration of not only the surrounding vehicles of the own vehicle 10 but also the surrounding obstacles, so that the contact risk with the surrounding vehicles of the own vehicle 10 and the obstacles Can be reduced to secure further safety and security for the driver of the vehicle.
 10  自車両
 11  車線保持補助ECU(LKA-ECU)
 11a  自車両走行状態演算部
 11b  周辺車両走行状態演算部
 11c  追越車両判定部
 11d  操舵制御部(報知制御部)
 12  前方カメラ(情報取得装置)
 13  操舵角センサ(情報取得装置)
 14  表示装置
 15  音響装置
 16  操舵制御モータ
 17  レーダセンサ(情報取得装置)
 18  レーダセンサ(情報取得装置)
 19  ヒューマンマシンインターフェイス(HMI)
 20  速度センサ(情報取得装置)
 21  GPS(情報取得装置)
 22  車々間通信装置(情報取得装置)
 30  第1周辺車両
 31  GPS
 32  車々間通信装置
 40  第2周辺車両
 41  GPS
 42  車々間通信装置
 50  障害物
10 Host vehicle 11 Lane holding assist ECU (LKA-ECU)
11a Self-vehicle running condition calculation unit 11b Peripheral vehicle running condition calculation unit 11c Overtaking vehicle determination unit 11d Steering control unit (notification control unit)
12 Front camera (information acquisition device)
13 Steering angle sensor (information acquisition device)
14 Display Device 15 Sound Device 16 Steering Control Motor 17 Radar Sensor (Information Acquisition Device)
18 radar sensor (information acquisition device)
19 Human Machine Interface (HMI)
20 Speed Sensor (Information Acquisition Device)
21 GPS (Information Acquisition Device)
22 Inter-Vehicle Communication Device (Information Acquisition Device)
30 1st surrounding vehicle 31 GPS
32 inter-vehicle communication device 40 second surrounding vehicle 41 GPS
42 Inter-Vehicle Communication Device 50 Obstacle

Claims (7)

  1.  自車両の走行情報及び前記自車両の周辺を走行する周辺車両の走行情報を取得する情報取得装置を備える車両に設けられる車両走行制御装置において、
     前記情報取得装置から供給される前記自車両の走行情報に基づいて、前記自車両の走行状態を算出する自車両走行状態演算部と、
     前記情報取得装置から供給される前記周辺車両の走行情報に基づいて、前記周辺車両の走行状態を算出する周辺車両走行状態演算部と、
     前記自車両及び前記周辺車両の走行状態から前記周辺車両による追越動作を予測する追越車両判定部と、
     前記追越動作が予測された場合に、追越車両の走行レーンから離間するように、前記自車両の走行レーン内において前記自車両を偏位させて走行させるように操舵制御を行う操舵制御部と、を有する車両走行制御装置。
    In a vehicle travel control device provided in a vehicle including an information acquisition device for acquiring travel information of a host vehicle and travel information of a peripheral vehicle traveling around the host vehicle,
    A host vehicle traveling state calculation unit that calculates a traveling state of the host vehicle based on traveling information of the host vehicle supplied from the information acquisition device;
    A surrounding vehicle traveling state calculation unit that calculates the traveling state of the surrounding vehicle based on the traveling information of the surrounding vehicle supplied from the information acquisition device;
    An overtaking vehicle determination unit that predicts an overtaking operation by the surrounding vehicle from the traveling states of the own vehicle and the surrounding vehicle;
    A steering control unit that performs steering control so that the host vehicle travels in an offset manner within the travel lane of the host vehicle so as to move away from the travel lane of the overtaking vehicle when the overtaking operation is predicted. And a vehicle travel control device.
  2.  自車両の走行情報及び前記自車両の周辺を走行する周辺車両の走行情報を取得する情報取得装置を備える車両に設けられる車両走行制御装置において、
     前記情報取得装置から供給される前記自車両の走行情報に基づいて、前記自車両の走行状態を算出する自車両走行状態演算部と、
     前記情報取得装置から供給される前記周辺車両の走行情報に基づいて、前記周辺車両の走行状態を算出する周辺車両走行状態演算部と、
     前記自車両及び前記周辺車両の走行状態から前記自車両による追越動作を予測する追越車両判定部と、
     前記追越動作が予測された場合に、被追越車両の走行レーンから離間するように、前記自車両の走行レーン内において前記自車両を偏位させて走行させるように操舵制御を行う操舵制御部と、を有する車両走行制御装置。
    In a vehicle travel control device provided in a vehicle including an information acquisition device for acquiring travel information of a host vehicle and travel information of a peripheral vehicle traveling around the host vehicle,
    A host vehicle traveling state calculation unit that calculates a traveling state of the host vehicle based on traveling information of the host vehicle supplied from the information acquisition device;
    A surrounding vehicle traveling state calculation unit that calculates the traveling state of the surrounding vehicle based on the traveling information of the surrounding vehicle supplied from the information acquisition device;
    An overtaking vehicle determination unit that predicts an overtaking operation by the own vehicle from traveling states of the own vehicle and the surrounding vehicles;
    Steering control that performs steering control so that the host vehicle is deviated and travels in the travel lane of the host vehicle so as to be separated from the travel lane of the passing vehicle when the overtaking operation is predicted A vehicle travel control device having a unit.
  3.  前記操舵制御部は、前記自車両の走行レーンに対して前記自車両が偏位させられる側に隣接する走行レーンに他の車両の存在が予測される場合、前記自車両の偏位量が減少するように前記操舵制御を行う請求項1又は2に記載の車両走行制御装置。 When the presence of another vehicle is predicted in a traveling lane adjacent to the side where the vehicle is deviated with respect to the traveling lane of the vehicle, the steering control unit reduces the amount of deviation of the vehicle. The vehicle travel control device according to claim 1, wherein the steering control is performed to perform the steering control.
  4.  前記操舵制御部は、前記自車両の走行レーンに対して前記自車両が偏位させられる側に隣接する走行レーンに他の車両の存在が予測される場合、前記自車両の走行レーンの中心を走行するように前記自車両の前記操舵制御を行う請求項1又は2に記載の車両走行制御装置。 The steering control unit may control the center of the traveling lane of the own vehicle when the presence of another vehicle is predicted in the traveling lane adjacent to the side where the own vehicle is deviated with respect to the traveling lane of the own vehicle. The vehicle travel control device according to claim 1, wherein the steering control of the host vehicle is performed to travel.
  5.  前記情報取得装置が取得する前記自車両の周辺の情報に基づいて、前記自車両の周辺の障害物を検出する障害物検出部を有し、
     前記操舵制御部は、前記自車両の走行レーンに対して前記自車両が偏位させられる側に隣接する走行レーンに前記障害物の存在が検出される場合、前記自車両の偏位量が減少するように前記操舵制御を行う請求項1又は2に記載の車両走行制御装置。
    It has an obstacle detection part which detects an obstacle around the self-vehicle based on information around the self-vehicle which the information acquisition device acquires,
    The steering control unit reduces the amount of deviation of the vehicle when the presence of the obstacle is detected in a traveling lane adjacent to the side where the vehicle is deviated with respect to the traveling lane of the vehicle. The vehicle travel control device according to claim 1, wherein the steering control is performed to perform the steering control.
  6.  前記操舵制御部は、前記追越車両又は前記被追越車両の車種に応じて、前記自車両の偏位量を調整する請求項1~3及び5のいずれか1項に記載の車両走行制御装置。 The vehicle travel control according to any one of claims 1 to 3, wherein the steering control unit adjusts an amount of deviation of the host vehicle according to a type of the overtaking vehicle or the overtaking vehicle. apparatus.
  7.  前記操舵制御部による前記操舵制御が行われる際に、前記自車両の運転者に対して前記操舵制御の報知制御を行う報知制御部を有する請求項1乃至6のいずれか1項に記載の車両走行制御装置。 The vehicle according to any one of claims 1 to 6, further comprising: a notification control unit configured to perform notification control of the steering control to a driver of the host vehicle when the steering control unit performs the steering control. Traveling control device.
PCT/JP2018/039615 2017-12-22 2018-10-25 Vehicle travel control device WO2019123823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-246717 2017-12-22
JP2017246717A JP2019111927A (en) 2017-12-22 2017-12-22 Vehicle running controller

Publications (1)

Publication Number Publication Date
WO2019123823A1 true WO2019123823A1 (en) 2019-06-27

Family

ID=66992583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039615 WO2019123823A1 (en) 2017-12-22 2018-10-25 Vehicle travel control device

Country Status (2)

Country Link
JP (1) JP2019111927A (en)
WO (1) WO2019123823A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112455433A (en) * 2019-09-06 2021-03-09 现代自动车株式会社 Vehicle and method of controlling the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020115149A1 (en) * 2020-06-08 2021-12-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for adapting a driving behavior of a motor vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524135A (en) * 2002-04-23 2005-08-11 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Side guide support method and apparatus for vehicle
EP2253522A1 (en) * 2009-05-20 2010-11-24 Audi AG Method for operating a driver assistance system for transverse guidance of a motor vehicle and motor vehicle
WO2016024316A1 (en) * 2014-08-11 2016-02-18 日産自動車株式会社 Travel control device and method for vehicle
US9393998B2 (en) * 2013-12-04 2016-07-19 Mobileye Vision Technologies Ltd. Systems and methods for vehicle offset navigation
JP2016139369A (en) * 2015-01-29 2016-08-04 トヨタ自動車株式会社 Lane follow-up control device
JP2017111732A (en) * 2015-12-18 2017-06-22 三菱自動車工業株式会社 Vehicle control apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524135A (en) * 2002-04-23 2005-08-11 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Side guide support method and apparatus for vehicle
EP2253522A1 (en) * 2009-05-20 2010-11-24 Audi AG Method for operating a driver assistance system for transverse guidance of a motor vehicle and motor vehicle
US9393998B2 (en) * 2013-12-04 2016-07-19 Mobileye Vision Technologies Ltd. Systems and methods for vehicle offset navigation
WO2016024316A1 (en) * 2014-08-11 2016-02-18 日産自動車株式会社 Travel control device and method for vehicle
JP2016139369A (en) * 2015-01-29 2016-08-04 トヨタ自動車株式会社 Lane follow-up control device
JP2017111732A (en) * 2015-12-18 2017-06-22 三菱自動車工業株式会社 Vehicle control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112455433A (en) * 2019-09-06 2021-03-09 现代自动车株式会社 Vehicle and method of controlling the same

Also Published As

Publication number Publication date
JP2019111927A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
CN108698608B (en) Vehicle control system, vehicle control method, and storage medium
WO2018225575A1 (en) Vehicle control device
WO2018220811A1 (en) Vehicle control system and vehicle control method
JP2019036086A (en) Vehicle control system and vehicle control method
CN107176099B (en) Vehicle travel control device
JP6647361B2 (en) Vehicle driving support device
US11661065B2 (en) Vehicle travel control method and vehicle travel control apparatus
CN113365894B (en) Vehicle travel control method and travel control device
WO2018101254A1 (en) Vehicle control device
JP2018039303A (en) Vehicle control device
JP2020128167A (en) Vehicle control device
JP7434866B2 (en) Vehicle travel control method and travel control device
CN110446645B (en) Vehicle control device
WO2017135369A1 (en) Overtake assistance device
JP2018203108A (en) Vehicle control device
CN108064207B (en) Vehicle control device
CN111587206A (en) Vehicle control device, vehicle having the same, and control method
US20200298885A1 (en) Vehicle control apparatus, vehicle control method, vehicle, and storage medium
US11299163B2 (en) Control system of vehicle, control method of the same, and non-transitory computer-readable storage medium
US20230347926A1 (en) Driving control method and driving control device
WO2019123823A1 (en) Vehicle travel control device
JP7213149B2 (en) VEHICLE CONTROL DEVICE, VEHICLE, OPERATING METHOD AND PROGRAM OF VEHICLE CONTROL DEVICE
JP2019036050A (en) Traveling control device, traveling control method, and vehicle
US20200216096A1 (en) Control system of vehicle, control method of the same, and non-transitory computer-readable storage medium
JP6963752B2 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891059

Country of ref document: EP

Kind code of ref document: A1