WO2019123567A1 - Turbine housing and turbocharger with said turbine housing - Google Patents

Turbine housing and turbocharger with said turbine housing Download PDF

Info

Publication number
WO2019123567A1
WO2019123567A1 PCT/JP2017/045707 JP2017045707W WO2019123567A1 WO 2019123567 A1 WO2019123567 A1 WO 2019123567A1 JP 2017045707 W JP2017045707 W JP 2017045707W WO 2019123567 A1 WO2019123567 A1 WO 2019123567A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet opening
turbine housing
flow passage
channel
scroll
Prior art date
Application number
PCT/JP2017/045707
Other languages
French (fr)
Japanese (ja)
Inventor
北村 剛
東條 正希
星 徹
裕太 石井
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to PCT/JP2017/045707 priority Critical patent/WO2019123567A1/en
Publication of WO2019123567A1 publication Critical patent/WO2019123567A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a turbine housing and a turbocharger provided with the turbine housing.
  • connection flow path from the turbine housing to the scroll is relatively long and the connection flow path is often a curved pipe, and the waste gate flow path (WG flow path) It is considered that the bypass flow rate when the waste gate valve (WG valve) is opened decreases and the flow from the WG flow path interferes with the diffuser to warm up the turbine housing depending on the positional relationship with the connection flow path.
  • Patent Document 1 discloses a turbine housing having such a WG flow passage and a WG valve.
  • At least one embodiment of the present disclosure provides a turbine housing with reduced loss of thermal energy from exhaust gases while suppressing degradation of turbine performance, and a turbocharger including the turbine housing.
  • the purpose is
  • a turbine housing according to at least one embodiment of the present invention, A connecting channel having an inlet opening at one end, A scroll channel connected to the other end of the connection channel; A diffuser channel having one end connected to the scroll channel and an outlet opening at the other end; A turbine housing in which a waste gate flow path (WG flow path) is formed, which bypasses the scroll flow path and communicates the connection flow path with the diffuser flow path.
  • WG flow path waste gate flow path
  • the WG channel is Waste gate inlet opening (WG inlet opening) opened to the connection flow path; Including a wastegate outlet opening (WG outlet opening) opening into the diffuser flow path,
  • the WG outlet opening is a first portion on the interior or periphery of the WG outlet opening, extending a first straight line from the first portion to the inlet opening perpendicularly to the WG outlet opening
  • the first straight line has a first portion passing inside or on the periphery of the inlet opening.
  • the exhaust gas when the WG flow passage bypasses the scroll flow passage, the exhaust gas easily flows in the WG flow passage due to the positional relationship between the WG outlet opening and the inlet opening of the connection flow passage.
  • the flow rate of the exhaust gas flowing to the scroll flow path is suppressed, and the loss of thermal energy from the exhaust gas can be reduced in the turbine housing.
  • only the positional relationship between the WG outlet opening and the inlet opening of the connection flow channel is limited, and no special configuration is provided in the path from the connection flow channel through the scroll flow channel to the diffuser flow channel. Therefore, it is possible to suppress a decrease in turbine performance during operation with the WG valve closed.
  • connection flow passage is configured such that the flow passage area decreases from the inlet opening toward the scroll flow passage.
  • the exhaust gas does not reliably flow in the connection flow channel from the inlet opening toward the scroll flow channel, so that the effects and advantages obtained by the configuration of the above (2) can be reliably obtained.
  • the WG outlet opening is a second portion on the interior or periphery of the WG outlet opening, extending a second straight line from the second portion perpendicular to the WG outlet opening toward the outlet opening
  • the second straight line has a second portion passing inside or on the periphery of the outlet opening.
  • the exhaust gas bypassing the scroll passage through the WG passage is likely to flow out of the diffuser passage, thereby further reducing the loss of heat energy from the exhaust gas in the turbine housing be able to.
  • a pipe formed of a sheet metal is connected to the turbine housing at least one of the inlet opening and the outlet opening.
  • the layout when providing the turbine housing to the exhaust pipe may be limited.
  • exhausting is achieved by connecting a thin walled plate made of sheet metal, ie, a pipe having a small heat capacity, to at least one of the inlet opening of the connecting channel and the outlet opening of the diffuser channel.
  • the potential of the turbine housing layout can be extended while reducing the loss of thermal energy from the gas.
  • a turbocharger according to at least one embodiment of the present invention, The turbine housing according to any one of the above (1) to (5) is provided.
  • the positional relationship between the WG outlet opening and the inlet opening of the connecting channel makes it easier for the exhaust gas to flow through the WG channel when the WG channel bypasses the scroll channel. Therefore, the flow rate of the exhaust gas flowing to the scroll passage is suppressed, and the loss of heat energy from the exhaust gas can be reduced in the turbine housing.
  • this configuration only the positional relationship between the WG outlet opening and the inlet opening of the connection flow channel is limited, and no special configuration is provided in the path from the connection flow channel through the scroll flow channel to the diffuser flow channel. Therefore, it is possible to suppress a decrease in turbine performance during operation with the WG valve closed.
  • FIG. 1 is a perspective view of a turbine housing according to Embodiment 1 of the present disclosure. It is a schematic diagram which shows the positional relationship of WG exit opening and the entrance opening of a connection flow path in the turbine housing which concerns on Embodiment 1 of this indication.
  • FIG. 5 is a partial cross-sectional view of a turbine housing according to Embodiment 2 of the present disclosure.
  • FIG. 7 is a schematic view showing a positional relationship between a WG outlet opening and an inlet opening of a connection channel and an outlet opening of a diffuser channel in a turbine housing according to a third embodiment of the present disclosure.
  • FIG. 7 is a side view of a turbine housing according to Embodiment 4 of the present disclosure. 7 is a graph schematically showing the operation and effect of the turbine housing according to the first to fourth embodiments of the present disclosure.
  • the turbine housing 1 of the turbocharger includes a connecting flow passage 2 including a connection flow passage 12, a scroll flow passage 3 including a scroll flow passage 13, and a diffuser flow including a diffuser flow passage 15.
  • connection channel 12 has an inlet opening 12 a, and the other end of the connection channel 12 is connected to the scroll channel 13.
  • One end of the diffuser flow path 15 is connected to the scroll flow path 13 via the turbine flow path 4a, and the other end of the diffuser flow path 15 has an outlet opening 15a.
  • the WG channel 16 includes a waste gate inlet opening (WG inlet opening) 16 a opening to the connection channel 12 and a waste gate outlet opening (WG outlet opening) 16 b opening to the diffuser channel 15.
  • the turbine housing 1 is provided with a turbine wheel 4 rotatable by the exhaust gas flowing through the scroll passage 13 and a waste gate valve (WG valve) 7 capable of opening and closing the outlet opening 16 b of the WG passage 16. .
  • WG valve waste gate valve
  • first straight line 21 extending from the first portion 10, which is a portion on or inside the WG outlet opening 16b, perpendicular to the WG outlet opening 16b toward the inlet opening 12a.
  • the positional relationship between the WG outlet opening 16b and the inlet opening 12a is such that the first straight line 21 passes through a point A on the inside or the periphery of the inlet opening 12a.
  • the center C of the WG outlet opening 16b is circular, and the center C of the WG outlet opening 16b extends from the center of gravity of the shape to the inlet opening 12a perpendicular to the WG outlet opening 16b.
  • the first straight line 21' passes through a point A 'on the inside or the periphery of the inlet opening 12a.
  • the WG passage 16 bypasses the scroll passage 13 due to the positional relationship between the WG outlet opening 16 b and the inlet opening 12 a as shown in FIG. It will be easier. As a result, the flow rate of the exhaust gas flowing to the scroll passage 13 is suppressed, so that the loss of thermal energy from the exhaust gas can be reduced in the turbine housing 1.
  • this configuration only the positional relationship between the WG outlet opening 16 b and the inlet opening 12 a of the connection flow channel 12 is limited, and a special route is provided from the connection flow channel 12 through the scroll flow channel 13 to the diffuser flow channel 15. Since the above configuration is not provided, it is possible to suppress a decrease in turbine performance at the time of operation with the WG valve 7 closed. Also, by reducing the loss of thermal energy from the exhaust gas, the response of the turbocharger can also be improved.
  • the connecting flow passage portion 2 can be shaped so as not to have the curved pipe portion as much as possible, and as a result, the connecting flow
  • the length of the passage 12 can be as short as possible. In this way, the residence time of the exhaust gas in the turbine housing 1 can be shortened, and the heat capacity of the turbine housing 1 can be reduced. Therefore, in the turbine housing 1, the loss of thermal energy from the exhaust gas is reduced. can do. Furthermore, when the length of the connection flow path 12 is made as short as possible, the obstruction of the flow of exhaust gas to the scroll flow path 13 is reduced, so turbine performance when the WG flow path 16 does not bypass the scroll flow path 13 It is possible to suppress the decrease.
  • the turbine housing according to the second embodiment is different from the first embodiment in the shape of the connection flow passage 12.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • connection flow passage 12 is configured such that the flow passage area decreases from the inlet opening 12 a toward the scroll flow passage 13.
  • the area of the inlet opening is S1
  • the channel area of the connection channel 12 at the position 31 closest to the scroll channel 13 of the portion 30 where the WG inlet opening 16a is formed is S
  • the flow passage area of the connection flow passage 12 in the portion 32 connected to the scroll flow passage 13 is A
  • the other configuration is the same as that of the first embodiment.
  • connection flow passage 12 is configured such that the flow passage area decreases from the inlet opening 12 a toward the scroll flow passage 13, so exhaust gas is connected from the inlet opening 12 a toward the scroll flow passage 13. Since it becomes difficult to flow through the flow passage 12, that is, the exhaust gas becomes easy to flow through the WG flow passage 16, the flow rate of the exhaust gas flowing into the scroll flow passage 13 is suppressed, and the turbine housing 1 loses heat energy from the exhaust gas Can be reduced.
  • connection flow channel 12 in which the flow channel area decreases from the inlet opening 12a toward the scroll flow channel 13 is S / S1 ⁇ 1/2 and A ⁇ S as described above, the inlet opening 12a. Since it becomes difficult for exhaust gas to certainly flow through the connection channel 12 toward the scroll channel 13, the above-mentioned effect can be obtained reliably.
  • the turbine housing according to the third embodiment further specifies the positional relationship between the WG outlet opening 16 b and the outlet opening 15 a of the diffuser channel 15 with respect to each of the first and second embodiments.
  • the third embodiment will be described below in a form in which the positional relationship is further specified in the configuration of the first embodiment, but the positional relationship may be specified in the configuration of the second embodiment to be the third embodiment.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • the second straight line 22 extending from the second portion 11, which is a portion on the inside or the periphery of the WG outlet opening 16b, perpendicular to the WG outlet opening 16b toward the outlet opening 15a.
  • the positional relationship between the WG outlet opening 16b and the outlet opening 15a is such that the second straight line 22 passes through a point B on the inside or the periphery of the outlet opening 15a.
  • the center C of the WG outlet opening 16b is circular, and the center C of the WG outlet opening 16b extends from the center of gravity of the shape to the outlet opening 15a perpendicularly to the WG outlet opening 16b.
  • the second straight line 22' passes through a point B 'on the inside or the periphery of the outlet opening 15a.
  • the other configuration is the same as that of the first embodiment.
  • the WG channel 16 bypasses the scroll channel 13 (see FIG. 1).
  • the exhaust gas flowing into the connection flow passage 12 (see FIG. 1) through the inlet opening 12 a can easily flow in the WG flow passage 16.
  • the exhaust gas flowing through the WG passage 16 and flowing into the diffuser passage 15 through the WG outlet opening 16b has a positional relationship between the WG outlet opening 16b and the outlet opening 15a as shown in FIG. , And easily flow out of the diffuser passage 15 through the outlet opening 15a.
  • the residence time of the exhaust gas flowing through the WG passage 16 in the turbine housing 1 (see FIG. 1) is shortened, so that the loss of thermal energy from the exhaust gas can be further reduced in the turbine housing 1 .
  • the rotation axis L of the turbine wheel 4 passes through a point D on the inside or the periphery of the outlet opening 15a.
  • each of the first to third embodiments has a pipe formed of a sheet metal.
  • the fourth embodiment will be described below in the form in which the above-described piping is added to the configuration of the first embodiment, the above-described piping can be added to any of the configurations of the second and third embodiments to make the fourth embodiment.
  • the same components as those of the first embodiment are designated by the same reference numerals, and the detailed description thereof is omitted.
  • pipes 41 and 42 formed of sheet metal are connected to the turbine housing 1 at each of the inlet opening 12 a and the outlet opening 15 a.
  • the other configuration is the same as that of the first embodiment.
  • the positional relationship between the WG outlet opening 16b and the inlet opening 12a is limited, and in the third embodiment, the positional relationship between the WG outlet opening 16b and the outlet opening 15a is also limited.
  • the layout when providing the turbine housing 1 to an exhaust pipe may be limited.
  • the pipes 41 and 42 with thin wall thickness made of sheet metal, that is, small heat capacity are connected to the turbine housing 1 at each of the inlet opening 12a and the outlet opening 15a. The possibility of the layout of the turbine housing 1 can be expanded while reducing the loss of energy.
  • the pipes 41 and 42 are connected to each of the inlet opening 12a and the outlet opening 15a, but the pipe 41 or 42 may be connected to any one of the inlet opening 12a and the outlet opening 15a.
  • a curved pipe may be provided depending on the layout when the turbine housing 1 is provided in the exhaust pipe (not shown) instead of the straight pipes 41 and 42 as shown in FIG. 5. Further, by providing the heat insulating material so as to cover the outer peripheral surfaces of the pipes 41 and 42, it is possible to further reduce the loss of thermal energy from the exhaust gas.
  • FIG. 6 shows the transition of the temperature (outlet temperature) of the exhaust gas flowing out of the turbine housing as a comparative example different from the configuration of the first to fourth embodiments and the temperature (inlet temperature) of the exhaust gas flowing into each turbine housing ) Is also shown.
  • the required value corresponds to the temperature required to activate the catalyst provided in the exhaust pipe.
  • the outlet temperature is lower than the inlet temperature because of the loss of thermal energy from the exhaust gas at them.
  • the outlet temperature can reach the required value earlier than in the turbine housing of the comparative example, and therefore, catalyst activation can be performed early after engine startup.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

This turbine housing has formed therein: a connection flow passage having an inlet opening at one end thereof; a scroll flow passage connecting to the other end of the connection flow passage; a diffuser flow passage having one end connecting to the scroll flow passage, and the other end having an outlet opening; and a WG flow passage which bypasses the scroll flow passage and which connects the connection flow passage and the diffuser flow passage. The WG flow passage includes a WG inlet opening which is open to the connection flow passage, and WG outlet opening which is open to the diffuser flow passage. The WG outlet opening has a first portion located inside the WG outlet opening or on the peripheral edge section of the WG outlet opening. When a first straight line is extended from the first portion toward the inlet opening in the direction perpendicular to the WG outlet opening, the first straight line passes through the inside of the inlet opening or the peripheral edge section of the inlet opening.

Description

タービンハウジング及びこのタービンハウジングを備えたターボチャージャーTurbine housing and turbocharger provided with this turbine housing
 本開示は、タービンハウジング及びこのタービンハウジングを備えたターボチャージャーに関する。 The present disclosure relates to a turbine housing and a turbocharger provided with the turbine housing.
 エンジン起動時には、排気ガスを浄化するための触媒を活性化するために、排気ガスで触媒を早期に昇温する必要がある。しかし、ターボチャージャーを備える車両では、排気ガスがターボチャージャーのタービンを流通する際に、タービンハウジングにおいて熱エネルギーのロスが生じて排気ガスの温度が低下してしまい、触媒の活性化に時間がかかってしまうおそれがある。このため、タービンハウジングにおける熱エネルギーのロスを低減する必要がある。 When the engine is started, it is necessary to raise the temperature of the catalyst early with the exhaust gas in order to activate the catalyst for purifying the exhaust gas. However, in a vehicle equipped with a turbocharger, when exhaust gas flows through the turbine of the turbocharger, a loss of thermal energy occurs in the turbine housing, the temperature of the exhaust gas decreases, and it takes time to activate the catalyst. There is a risk of For this reason, it is necessary to reduce the loss of thermal energy in the turbine housing.
 タービンハウジングにおける熱エネルギーのロスの原因としては、タービンハウジングからスクロールまでの接続流路が比較的長く、接続流路が曲管である場合も多いことと、ウェイストゲート流路(WG流路)と接続流路との位置関係によって、ウェイストゲート弁(WG弁)が開いたときのバイパス流量が少なくなることと、WG流路からの流れがディフューザー部と干渉してタービンハウジングを温めることとが考えられる。このようなWG流路及びWG弁を有するタービンハウジングが例えば特許文献1に開示されている。 The cause of loss of thermal energy in the turbine housing is that the connection flow path from the turbine housing to the scroll is relatively long and the connection flow path is often a curved pipe, and the waste gate flow path (WG flow path) It is considered that the bypass flow rate when the waste gate valve (WG valve) is opened decreases and the flow from the WG flow path interferes with the diffuser to warm up the turbine housing depending on the positional relationship with the connection flow path. Be For example, Patent Document 1 discloses a turbine housing having such a WG flow passage and a WG valve.
米国特許第8904785号明細書U.S. Pat. No. 8,904,785
 しかしながら、タービンハウジングにおける熱エネルギーのロスを低減するためにタービンハウジングの形状を変更すると、WG弁を閉めた通常運転時にタービン性能が低下する可能性があるといった課題があった。 However, there has been a problem that when the shape of the turbine housing is changed to reduce the loss of thermal energy in the turbine housing, turbine performance may be reduced during normal operation with the WG valve closed.
 上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、タービン性能の低下を抑制しながら排気ガスからの熱エネルギーのロスを低減したタービンハウジング及びこのタービンハウジングを備えたターボチャージャーを提供することを目的とする。 In view of the above, at least one embodiment of the present disclosure provides a turbine housing with reduced loss of thermal energy from exhaust gases while suppressing degradation of turbine performance, and a turbocharger including the turbine housing. The purpose is
(1)本発明の少なくとも1つの実施形態に係るタービンハウジングは、
 一端に入口開口を有する接続流路と、
 前記接続流路の他端と接続するスクロール流路と、
 一端が前記スクロール流路に接続するとともに他端に出口開口を有するディフューザー流路と、
 前記スクロール流路をバイパスして前記接続流路と前記ディフューザー流路とを連通するウェイストゲート流路(WG流路)と
が形成されたタービンハウジングであって、
 前記WG流路は、
 前記接続流路に開口するウェイストゲート入口開口(WG入口開口)と、
 前記ディフューザー流路に開口するウェイストゲート出口開口(WG出口開口)と
を含み、
 前記WG出口開口は、該WG出口開口の内部又は周縁部上の第1部分であって、該第1部分から前記WG出口開口に対して垂直に前記入口開口に向かって第1直線を延ばすと該第1直線は前記入口開口の内部又は周縁部上を通る第1部分を有する。
(1) A turbine housing according to at least one embodiment of the present invention,
A connecting channel having an inlet opening at one end,
A scroll channel connected to the other end of the connection channel;
A diffuser channel having one end connected to the scroll channel and an outlet opening at the other end;
A turbine housing in which a waste gate flow path (WG flow path) is formed, which bypasses the scroll flow path and communicates the connection flow path with the diffuser flow path.
The WG channel is
Waste gate inlet opening (WG inlet opening) opened to the connection flow path;
Including a wastegate outlet opening (WG outlet opening) opening into the diffuser flow path,
The WG outlet opening is a first portion on the interior or periphery of the WG outlet opening, extending a first straight line from the first portion to the inlet opening perpendicularly to the WG outlet opening The first straight line has a first portion passing inside or on the periphery of the inlet opening.
 上記(1)の構成によると、WG出口開口と接続流路の入口開口との位置関係により、WG流路がスクロール流路をバイパスする場合に、排気ガスがWG流路を流れやすくなるので、スクロール流路へ流れる排気ガスの流量が抑制され、タービンハウジングにおいて、排気ガスからの熱エネルギーのロスを低減することができる。この構成では、WG出口開口と接続流路の入口開口との位置関係を限定してるに過ぎず、接続流路からスクロール流路を通ってディフューザー流路に至る経路に特別な構成を設けていないので、WG弁を閉めた運転時におけるタービン性能の低下を抑制することができる。 According to the configuration of the above (1), when the WG flow passage bypasses the scroll flow passage, the exhaust gas easily flows in the WG flow passage due to the positional relationship between the WG outlet opening and the inlet opening of the connection flow passage. The flow rate of the exhaust gas flowing to the scroll flow path is suppressed, and the loss of thermal energy from the exhaust gas can be reduced in the turbine housing. In this configuration, only the positional relationship between the WG outlet opening and the inlet opening of the connection flow channel is limited, and no special configuration is provided in the path from the connection flow channel through the scroll flow channel to the diffuser flow channel. Therefore, it is possible to suppress a decrease in turbine performance during operation with the WG valve closed.
(2)いくつかの実施形態では、上記(1)の構成において、
 前記接続流路は、前記入口開口から前記スクロール流路に向かって流路面積が減少するように構成されている。
(2) In some embodiments, in the configuration of (1) above,
The connection flow passage is configured such that the flow passage area decreases from the inlet opening toward the scroll flow passage.
 上記(2)の構成によると、入口開口からスクロール流路に向かって排気ガスが接続流路を流れにくくなることにより、WG流路がスクロール流路をバイパスする場合に、排気ガスがWG流路を流れやすくなるので、スクロール流路へ流れる排気ガスの流量が抑制され、タービンハウジングにおいて、排気ガスからの熱エネルギーのロスを低減することができる。 According to the configuration of (2), when the WG flow passage bypasses the scroll flow passage by the exhaust gas being less likely to flow through the connection flow passage from the inlet opening toward the scroll flow passage, the exhaust gas flows through the WG flow passage The flow rate of the exhaust gas flowing to the scroll flow path is suppressed, and the loss of thermal energy from the exhaust gas can be reduced in the turbine housing.
(3)いくつかの実施形態では、上記(2)の構成において、
 前記入口開口の面積をS1とし、前記WG入口開口が形成された部位の最も前記スクロール流路側の位置における前記接続流路の流路面積をSとし、前記スクロール流路と接続する部分における前記接続流路の流路面積をAとすると、S/S1≦1/2かつA<Sである。
(3) In some embodiments, in the configuration of (2) above,
The area of the inlet opening is S1, and the channel area of the connection channel at the position closest to the scroll channel on the part where the WG inlet opening is formed is S, and the connection at the portion connected to the scroll channel Assuming that the flow passage area of the flow passage is A, S / S1 ≦ 1/2 and A <S.
 上記(3)の構成によると、入口開口からスクロール流路に向かって排気ガスが確実に接続流路を流れにくくなるので、上記(2)の構成によって得られる作用効果を確実に得ることができる。 According to the configuration of the above (3), the exhaust gas does not reliably flow in the connection flow channel from the inlet opening toward the scroll flow channel, so that the effects and advantages obtained by the configuration of the above (2) can be reliably obtained. .
(4)いくつかの実施形態では、上記(1)~(3)のいずれかの構成において、
 前記WG出口開口は、該WG出口開口の内部又は周縁部上の第2部分であって、該第2部分から前記WG出口開口に対して垂直に前記出口開口に向かって第2直線を延ばすと該第2直線は前記出口開口の内部又は周縁部上を通る第2部分を有する。
(4) In some embodiments, in any of the configurations of (1) to (3) above,
The WG outlet opening is a second portion on the interior or periphery of the WG outlet opening, extending a second straight line from the second portion perpendicular to the WG outlet opening toward the outlet opening The second straight line has a second portion passing inside or on the periphery of the outlet opening.
 上記(4)の構成によると、WG流路を通ってスクロール流路をバイパスした排気ガスはディフューザー流路から流出しやすくなるので、タービンハウジングにおいて、排気ガスからの熱エネルギーのロスをより低減することができる。 According to the configuration of the above (4), the exhaust gas bypassing the scroll passage through the WG passage is likely to flow out of the diffuser passage, thereby further reducing the loss of heat energy from the exhaust gas in the turbine housing be able to.
(5)いくつかの実施形態では、上記(1)~(4)のいずれかの構成において、
 前記タービンハウジングには、前記入口開口及び前記出口開口の少なくとも一方において、板金から形成された配管が接続されている。
(5) In some embodiments, in any of the configurations of (1) to (4) above,
A pipe formed of a sheet metal is connected to the turbine housing at least one of the inlet opening and the outlet opening.
 上記(1)~(4)の構成では、タービンハウジングを排気管に設けるときのレイアウトが制限されてしまう可能性がある。これに対し、上記(5)の構成によると、板金からなる壁厚の薄い、すなわち熱容量の小さい配管を接続流路の入口開口及びディフューザー流路の出口開口の少なくとも一方に接続することによって、排気ガスからの熱エネルギーのロスを低減しながらタービンハウジングのレイアウトの可能性を広げることができる。 In the configurations of (1) to (4) above, the layout when providing the turbine housing to the exhaust pipe may be limited. On the other hand, according to the configuration of the above (5), exhausting is achieved by connecting a thin walled plate made of sheet metal, ie, a pipe having a small heat capacity, to at least one of the inlet opening of the connecting channel and the outlet opening of the diffuser channel. The potential of the turbine housing layout can be extended while reducing the loss of thermal energy from the gas.
(6)本発明の少なくとも1つの実施形態に係るターボチャージャーは、
 上記(1)~(5)のいずれかのタービンハウジングを備える。
(6) A turbocharger according to at least one embodiment of the present invention,
The turbine housing according to any one of the above (1) to (5) is provided.
 上記(6)の構成によると、タービン性能の低下を抑制しながら排気ガスからの熱エネルギーのロスを低減することができる。 According to the configuration of the above (6), it is possible to reduce the loss of thermal energy from the exhaust gas while suppressing the deterioration of the turbine performance.
 本開示の少なくとも1つの実施形態によれば、WG出口開口と接続流路の入口開口との位置関係により、WG流路がスクロール流路をバイパスする場合に、排気ガスがWG流路を流れやすくなるので、スクロール流路へ流れる排気ガスの流量が抑制され、タービンハウジングにおいて、排気ガスからの熱エネルギーのロスを低減することができる。この構成では、WG出口開口と接続流路の入口開口との位置関係を限定してるに過ぎず、接続流路からスクロール流路を通ってディフューザー流路に至る経路に特別な構成を設けていないので、WG弁を閉めた運転時におけるタービン性能の低下を抑制することができる。 According to at least one embodiment of the present disclosure, the positional relationship between the WG outlet opening and the inlet opening of the connecting channel makes it easier for the exhaust gas to flow through the WG channel when the WG channel bypasses the scroll channel. Therefore, the flow rate of the exhaust gas flowing to the scroll passage is suppressed, and the loss of heat energy from the exhaust gas can be reduced in the turbine housing. In this configuration, only the positional relationship between the WG outlet opening and the inlet opening of the connection flow channel is limited, and no special configuration is provided in the path from the connection flow channel through the scroll flow channel to the diffuser flow channel. Therefore, it is possible to suppress a decrease in turbine performance during operation with the WG valve closed.
本開示の実施形態1に係るタービンハウジングの斜視図である。1 is a perspective view of a turbine housing according to Embodiment 1 of the present disclosure. 本開示の実施形態1に係るタービンハウジングにおいてWG出口開口と接続流路の入口開口との位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of WG exit opening and the entrance opening of a connection flow path in the turbine housing which concerns on Embodiment 1 of this indication. 本開示の実施形態2に係るタービンハウジングの部分断面図である。FIG. 5 is a partial cross-sectional view of a turbine housing according to Embodiment 2 of the present disclosure. 本開示の実施形態3に係るタービンハウジングにおいてWG出口開口と接続流路の入口開口及びディフューザー流路の出口開口との位置関係を示す模式図である。FIG. 7 is a schematic view showing a positional relationship between a WG outlet opening and an inlet opening of a connection channel and an outlet opening of a diffuser channel in a turbine housing according to a third embodiment of the present disclosure. 本開示の実施形態4に係るタービンハウジングの側面図である。FIG. 7 is a side view of a turbine housing according to Embodiment 4 of the present disclosure. 本開示の実施形態1~4に係るタービンハウジングの作用効果を模式的に示すグラフである。7 is a graph schematically showing the operation and effect of the turbine housing according to the first to fourth embodiments of the present disclosure.
 以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments. The dimensions, materials, shapes, relative arrangements, and the like of components described in the following embodiments are not intended to limit the scope of the present invention, but merely illustrative examples.
(実施形態1)
 図1に示されるように、ターボチャージャーのタービンハウジング1は、接続流路12を含む接続流路部2と、スクロール流路13を含むスクロール流路部3と、ディフューザー流路15を含むディフューザー流路部5と、スクロール流路13をバイパスして接続流路12とディフューザー流路15とを連通するウェイストゲート流路(WG流路)16を含むウェイストゲート流路部(WG流路部)6とを備えている。すなわち、タービンハウジング1を備えるターボチャージャーは、シングルスクロールターボである。
(Embodiment 1)
As shown in FIG. 1, the turbine housing 1 of the turbocharger includes a connecting flow passage 2 including a connection flow passage 12, a scroll flow passage 3 including a scroll flow passage 13, and a diffuser flow including a diffuser flow passage 15. A waste gate passage (WG passage) 6 including a waste gate passage (WG passage) 16 for bypassing the scroll passage 13 and connecting the connection passage 12 and the diffuser passage 15 by bypassing the scroll passage 13 And have. That is, the turbocharger provided with the turbine housing 1 is a single scroll turbo.
 接続流路12の一端は入口開口12aを有し、接続流路12の他端はスクロール流路13に接続されている。ディフューザー流路15の一端はタービン流路4aを介してスクロール流路13に接続され、ディフューザー流路15の他端は出口開口15aを有している。WG流路16は、接続流路12に開口するウェイストゲート入口開口(WG入口開口)16aと、ディフューザー流路15に開口するウェイストゲート出口開口(WG出口開口)16bとを含んでいる。 One end of the connection channel 12 has an inlet opening 12 a, and the other end of the connection channel 12 is connected to the scroll channel 13. One end of the diffuser flow path 15 is connected to the scroll flow path 13 via the turbine flow path 4a, and the other end of the diffuser flow path 15 has an outlet opening 15a. The WG channel 16 includes a waste gate inlet opening (WG inlet opening) 16 a opening to the connection channel 12 and a waste gate outlet opening (WG outlet opening) 16 b opening to the diffuser channel 15.
 タービンハウジング1には、スクロール流路13を流通した排気ガスによって回転可能なタービンホイール4と、WG流路16の出口開口16bを開閉可能なウェイストゲート弁(WG弁)7とが設けられている。 The turbine housing 1 is provided with a turbine wheel 4 rotatable by the exhaust gas flowing through the scroll passage 13 and a waste gate valve (WG valve) 7 capable of opening and closing the outlet opening 16 b of the WG passage 16. .
 図2に示されるように、WG出口開口16bの内部又は周縁部上の部分である第1部分10からWG出口開口16bに対して垂直に入口開口12aに向かって延びる第1直線21を想定する。WG出口開口16bと入口開口12aとの位置関係は、第1直線21が入口開口12aの内部又は周縁部上の点Aを通るようになっている。好ましくは、WG出口開口16bが円形状であればその中心C、WG出口開口16bが円形状でなければその形状の重心位置からWG出口開口16bに対して垂直に入口開口12aに向かって延びる第1直線21’を想定し、第1直線21’が入口開口12aの内部又は周縁部上の点A’を通るようになっている。 As shown in FIG. 2, assume a first straight line 21 extending from the first portion 10, which is a portion on or inside the WG outlet opening 16b, perpendicular to the WG outlet opening 16b toward the inlet opening 12a. . The positional relationship between the WG outlet opening 16b and the inlet opening 12a is such that the first straight line 21 passes through a point A on the inside or the periphery of the inlet opening 12a. Preferably, the center C of the WG outlet opening 16b is circular, and the center C of the WG outlet opening 16b extends from the center of gravity of the shape to the inlet opening 12a perpendicular to the WG outlet opening 16b. Assuming a straight line 21 ', the first straight line 21' passes through a point A 'on the inside or the periphery of the inlet opening 12a.
 次に、実施形態1に係るタービンハウジング1内を排気ガスが流れる動作について説明する。
 図1に示されるように、WG弁7がWG流路16のWG出口開口16bを閉じている場合には、入口開口12aを介して接続流路12に流入した排気ガスは、WG流路16を流通せずに全量がスクロール流路13内に流入し、スクロール流路13を流通する。スクロール流路13を流通した排気ガスはタービンホイール4に対して仕事をすることでエネルギーを失い、ディフューザー流路15内に流入する。タービンホイール4は排気ガスによって仕事をされることで回転する。ディフューザー流路15内に流入した排気ガスは出口開口15aを介してタービンハウジング1から流出する。
Next, an operation of exhaust gas flowing in the turbine housing 1 according to the first embodiment will be described.
As shown in FIG. 1, when the WG valve 7 closes the WG outlet opening 16 b of the WG passage 16, the exhaust gas flowing into the connection passage 12 through the inlet opening 12 a is the WG passage 16. The whole quantity flows into the scroll flow path 13 without flowing through and flows through the scroll flow path 13. The exhaust gas flowing through the scroll passage 13 loses energy by working on the turbine wheel 4 and flows into the diffuser passage 15. The turbine wheel 4 is rotated by work by the exhaust gas. The exhaust gas flowing into the diffuser passage 15 flows out of the turbine housing 1 through the outlet opening 15a.
 一方、WG弁7がWG流路16のWG出口開口16bを開放している場合には、入口開口12aを介して接続流路12に流入した排気ガスの一部がWG流路16を流通することにより、スクロール流路13をバイパスしてディフューザー流路15内に流入し、出口開口15aを介してタービンハウジング1から流出する。残りの排気ガスは、スクロール流路13及びディフューザー流路15を順次流通して、出口開口15aを介してタービンハウジング1から流出する。 On the other hand, when the WG valve 7 opens the WG outlet opening 16b of the WG flow passage 16, a part of the exhaust gas flowing into the connection flow passage 12 flows through the WG flow passage 16 through the inlet opening 12a. As a result, the scroll flow passage 13 is bypassed to flow into the diffuser flow passage 15 and flow out of the turbine housing 1 through the outlet opening 15a. The remaining exhaust gas flows sequentially through the scroll flow passage 13 and the diffuser flow passage 15, and flows out of the turbine housing 1 through the outlet opening 15a.
 実施形態1では、図2に示されるようなWG出口開口16bと入口開口12aとの位置関係により、WG流路16がスクロール流路13をバイパスする場合に、排気ガスがWG流路16を流れやすくなる。これにより、スクロール流路13へ流れる排気ガスの流量が抑制されるので、タービンハウジング1において、排気ガスからの熱エネルギーのロスを低減することができる。この構成では、WG出口開口16bと接続流路12の入口開口12aとの位置関係を限定してるに過ぎず、接続流路12からスクロール流路13を通ってディフューザー流路15に至る経路に特別な構成を設けていないので、WG弁7を閉めた運転時におけるタービン性能の低下を抑制することができる。また、排気ガスからの熱エネルギーのロスを低減することにより、ターボチャージャーのレスポンスを向上することもできる。 In the first embodiment, when the WG passage 16 bypasses the scroll passage 13 due to the positional relationship between the WG outlet opening 16 b and the inlet opening 12 a as shown in FIG. It will be easier. As a result, the flow rate of the exhaust gas flowing to the scroll passage 13 is suppressed, so that the loss of thermal energy from the exhaust gas can be reduced in the turbine housing 1. In this configuration, only the positional relationship between the WG outlet opening 16 b and the inlet opening 12 a of the connection flow channel 12 is limited, and a special route is provided from the connection flow channel 12 through the scroll flow channel 13 to the diffuser flow channel 15. Since the above configuration is not provided, it is possible to suppress a decrease in turbine performance at the time of operation with the WG valve 7 closed. Also, by reducing the loss of thermal energy from the exhaust gas, the response of the turbocharger can also be improved.
 また、図2に示されるようなWG出口開口16bと入口開口12aとの位置関係により、接続流路部2が曲管部分をできる限り有さない形状にすることができ、その結果、接続流路12の長さをできる限り短くすることができる。このようにすると、排気ガスのタービンハウジング1内の滞留時間を短くすることができ、タービンハウジング1の熱容量を小さくすることができるので、タービンハウジング1において、排気ガスからの熱エネルギーのロスを低減することができる。さらに、接続流路12の長さをできる限り短くすると、スクロール流路13への排気ガスの流れの障害が低減されるので、WG流路16がスクロール流路13をバイパスしない場合のタービン性能の低下を抑制することができる。 Further, due to the positional relationship between the WG outlet opening 16b and the inlet opening 12a as shown in FIG. 2, the connecting flow passage portion 2 can be shaped so as not to have the curved pipe portion as much as possible, and as a result, the connecting flow The length of the passage 12 can be as short as possible. In this way, the residence time of the exhaust gas in the turbine housing 1 can be shortened, and the heat capacity of the turbine housing 1 can be reduced. Therefore, in the turbine housing 1, the loss of thermal energy from the exhaust gas is reduced. can do. Furthermore, when the length of the connection flow path 12 is made as short as possible, the obstruction of the flow of exhaust gas to the scroll flow path 13 is reduced, so turbine performance when the WG flow path 16 does not bypass the scroll flow path 13 It is possible to suppress the decrease.
(実施形態2)
 次に、実施形態2に係るタービンハウジングについて説明する。実施形態2に係るタービンハウジングは、実施形態1に対して、接続流路12の形状を変更したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
Second Embodiment
Next, a turbine housing according to a second embodiment will be described. The turbine housing according to the second embodiment is different from the first embodiment in the shape of the connection flow passage 12. In the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
 図3に示されるように、接続流路12は、入口開口12aからスクロール流路13に向かって流路面積が減少するように構成されている。この構成は、入口開口の面積をS1とし、WG入口開口16aが形成された部位30の最もスクロール流路13側の位置31における接続流路12の流路面積をSとし、接続流路12とスクロール流路13とが接続する部分32における接続流路12の流路面積をAとすると、S/S1≦1/2かつA<Sであることが好ましい。その他の構成は実施形態1と同じである。 As shown in FIG. 3, the connection flow passage 12 is configured such that the flow passage area decreases from the inlet opening 12 a toward the scroll flow passage 13. In this configuration, the area of the inlet opening is S1, the channel area of the connection channel 12 at the position 31 closest to the scroll channel 13 of the portion 30 where the WG inlet opening 16a is formed is S, and Assuming that the flow passage area of the connection flow passage 12 in the portion 32 connected to the scroll flow passage 13 is A, it is preferable that S / S1 ≦ 1/2 and A <S. The other configuration is the same as that of the first embodiment.
 実施形態1と同様に、WG流路16がスクロール流路13をバイパスする場合、入口開口12aを介して接続流路12内に流入した排気ガスの一部がWG流路16を通る一方、残りの排気ガスはスクロール流路13内に流入する。実施形態2では、入口開口12aからスクロール流路13に向かって流路面積が減少するように接続流路12が構成されているので、入口開口12aからスクロール流路13に向かって排気ガスが接続流路12を流れにくくなる、すなわち、排気ガスがWG流路16を流れやすくなるので、スクロール流路13へ流れる排気ガスの流量が抑制され、タービンハウジング1において、排気ガスからの熱エネルギーのロスを低減することができる。 As in the first embodiment, when the WG flow passage 16 bypasses the scroll flow passage 13, a part of the exhaust gas flowing into the connection flow passage 12 through the inlet opening 12a passes through the WG flow passage 16 while the rest Exhaust gas flows into the scroll passage 13. In the second embodiment, the connection flow passage 12 is configured such that the flow passage area decreases from the inlet opening 12 a toward the scroll flow passage 13, so exhaust gas is connected from the inlet opening 12 a toward the scroll flow passage 13. Since it becomes difficult to flow through the flow passage 12, that is, the exhaust gas becomes easy to flow through the WG flow passage 16, the flow rate of the exhaust gas flowing into the scroll flow passage 13 is suppressed, and the turbine housing 1 loses heat energy from the exhaust gas Can be reduced.
 尚、入口開口12aからスクロール流路13に向かって流路面積が減少する接続流路12の構成を、上記のようにS/S1≦1/2かつA<Sとすることにより、入口開口12aからスクロール流路13に向かって排気ガスが確実に接続流路12を流れにくくなるので、上記作用効果を確実に得ることができる。 The configuration of the connection flow channel 12 in which the flow channel area decreases from the inlet opening 12a toward the scroll flow channel 13 is S / S1 ≦ 1/2 and A <S as described above, the inlet opening 12a. Since it becomes difficult for exhaust gas to certainly flow through the connection channel 12 toward the scroll channel 13, the above-mentioned effect can be obtained reliably.
(実施形態3)
 次に、実施形態3に係るタービンハウジングについて説明する。実施形態3に係るタービンハウジングは、実施形態1及び2のそれぞれに対して、WG出口開口16bとディフューザー流路15の出口開口15aとの位置関係をさらに特定したものである。以下では、実施形態1の構成に上記位置関係をさらに特定した形態で実施形態3を説明するが、実施形態2の構成に上記位置関係を特定して実施形態3とすることもできる。尚、実施形態3において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
(Embodiment 3)
Next, a turbine housing according to the third embodiment will be described. The turbine housing according to the third embodiment further specifies the positional relationship between the WG outlet opening 16 b and the outlet opening 15 a of the diffuser channel 15 with respect to each of the first and second embodiments. The third embodiment will be described below in a form in which the positional relationship is further specified in the configuration of the first embodiment, but the positional relationship may be specified in the configuration of the second embodiment to be the third embodiment. In the third embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
 図4に示されるように、WG出口開口16bの内部又は周縁部上の部分である第2部分11からWG出口開口16bに対して垂直に出口開口15aに向かって延びる第2直線22を想定する。WG出口開口16bと出口開口15aとの位置関係は、第2直線22が出口開口15aの内部又は周縁部上の点Bを通るようになっている。好ましくは、WG出口開口16bが円形状であればその中心C、WG出口開口16bが円形状でなければその形状の重心位置からWG出口開口16bに対して垂直に出口開口15aに向かって延びる第2直線22’を想定し、第2直線22’が出口開口15aの内部又は周縁部上の点B’を通るようになっている。その他の構成は実施形態1と同じである。 As shown in FIG. 4, assume a second straight line 22 extending from the second portion 11, which is a portion on the inside or the periphery of the WG outlet opening 16b, perpendicular to the WG outlet opening 16b toward the outlet opening 15a. . The positional relationship between the WG outlet opening 16b and the outlet opening 15a is such that the second straight line 22 passes through a point B on the inside or the periphery of the outlet opening 15a. Preferably, the center C of the WG outlet opening 16b is circular, and the center C of the WG outlet opening 16b extends from the center of gravity of the shape to the outlet opening 15a perpendicularly to the WG outlet opening 16b. Assuming a two straight line 22 ', the second straight line 22' passes through a point B 'on the inside or the periphery of the outlet opening 15a. The other configuration is the same as that of the first embodiment.
 実施形態3では、WG出口開口16bと入口開口12aとの位置関係が実施形態1と同じになっているので、WG流路16(図1参照)がスクロール流路13(図1参照)をバイパスする場合に、入口開口12aを介して接続流路12(図1参照)内に流入した排気ガスはWG流路16を流れやすくなる。WG流路16を流通してWG出口開口16bを介してディフューザー流路15内に流入した排気ガスは、WG出口開口16bと出口開口15aとの位置関係が図4のようになっていることにより、出口開口15aを介してディフューザー流路15から流出しやすくなる。この結果、WG流路16を流通する排気ガスのタービンハウジング1(図1参照)内の滞留時間が短くなるので、タービンハウジング1において、排気ガスからの熱エネルギーのロスをより低減することができる。 In the third embodiment, since the positional relationship between the WG outlet opening 16b and the inlet opening 12a is the same as that of the first embodiment, the WG channel 16 (see FIG. 1) bypasses the scroll channel 13 (see FIG. 1). In this case, the exhaust gas flowing into the connection flow passage 12 (see FIG. 1) through the inlet opening 12 a can easily flow in the WG flow passage 16. The exhaust gas flowing through the WG passage 16 and flowing into the diffuser passage 15 through the WG outlet opening 16b has a positional relationship between the WG outlet opening 16b and the outlet opening 15a as shown in FIG. , And easily flow out of the diffuser passage 15 through the outlet opening 15a. As a result, the residence time of the exhaust gas flowing through the WG passage 16 in the turbine housing 1 (see FIG. 1) is shortened, so that the loss of thermal energy from the exhaust gas can be further reduced in the turbine housing 1 .
 実施形態3ではさらに、タービンホイール4の回転軸線Lが出口開口15aの内部又は周縁部上の点Dを通るようになっていることが好ましい。この形態により、WG流路16を流通せずにスクロール流路13を流通した排気ガスが出口開口15aを介してディフューザー流路15から流出しやすくなる。この結果、スクロール流路13を流通する排気ガスのタービンハウジング1内の滞留時間が短くなるので、タービンハウジング1において、排気ガスからの熱エネルギーのロスをより低減することができる。 Furthermore, in the third embodiment, preferably, the rotation axis L of the turbine wheel 4 passes through a point D on the inside or the periphery of the outlet opening 15a. With this configuration, the exhaust gas flowing in the scroll flow passage 13 without flowing in the WG flow passage 16 easily flows out of the diffuser flow passage 15 through the outlet opening 15 a. As a result, since the residence time of the exhaust gas flowing through the scroll flow passage 13 in the turbine housing 1 is shortened, the loss of thermal energy from the exhaust gas can be further reduced in the turbine housing 1.
(実施形態4)
 次に、実施形態4に係るタービンハウジングについて説明する。実施形態4に係るタービンハウジングは、実施形態1~3のそれぞれに対して、板金から形成された配管を有するようにしたものである。以下では、実施形態1の構成に上記配管を付加した形態で実施形態4を説明するが、実施形態2及び3のいずれかの構成に上記配管を付加して実施形態4とすることもできる。尚、実施形態4において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
(Embodiment 4)
Next, a turbine housing according to a fourth embodiment will be described. The turbine housing according to the fourth embodiment is such that each of the first to third embodiments has a pipe formed of a sheet metal. Although the fourth embodiment will be described below in the form in which the above-described piping is added to the configuration of the first embodiment, the above-described piping can be added to any of the configurations of the second and third embodiments to make the fourth embodiment. In the fourth embodiment, the same components as those of the first embodiment are designated by the same reference numerals, and the detailed description thereof is omitted.
 図5に示されるように、タービンハウジング1には、入口開口12a及び出口開口15aのそれぞれにおいて、板金から形成された配管41及び42が接続されている。その他の構成は実施形態1と同じである。 As shown in FIG. 5, pipes 41 and 42 formed of sheet metal are connected to the turbine housing 1 at each of the inlet opening 12 a and the outlet opening 15 a. The other configuration is the same as that of the first embodiment.
 実施形態1~3ではWG出口開口16bと入口開口12aとの位置関係が限定されており、実施形態3ではさらに、WG出口開口16bと出口開口15aとの位置関係も限定されていることから、タービンハウジング1を図示しない排気管に設けるときのレイアウトが制限されてしまう可能性がある。これに対し、実施形態4では、板金からなる壁厚の薄い、すなわち熱容量の小さい配管41及び42を入口開口12a及び出口開口15aのそれぞれにおいてタービンハウジング1に接続することによって、排気ガスからの熱エネルギーのロスを低減しながらタービンハウジング1のレイアウトの可能性を広げることができる。 In the first to third embodiments, the positional relationship between the WG outlet opening 16b and the inlet opening 12a is limited, and in the third embodiment, the positional relationship between the WG outlet opening 16b and the outlet opening 15a is also limited. The layout when providing the turbine housing 1 to an exhaust pipe (not shown) may be limited. On the other hand, in the fourth embodiment, the pipes 41 and 42 with thin wall thickness made of sheet metal, that is, small heat capacity, are connected to the turbine housing 1 at each of the inlet opening 12a and the outlet opening 15a. The possibility of the layout of the turbine housing 1 can be expanded while reducing the loss of energy.
 実施形態4では、入口開口12a及び出口開口15aのそれぞれにおいて配管41及び42が接続されているが、入口開口12a及び出口開口15aのいずれか一方に配管41又は42が接続されてもよい。 In the fourth embodiment, the pipes 41 and 42 are connected to each of the inlet opening 12a and the outlet opening 15a, but the pipe 41 or 42 may be connected to any one of the inlet opening 12a and the outlet opening 15a.
 実施形態4では、図5に示されるような直管状の配管41,42ではなく、タービンハウジング1を図示しない排気管に設けるときのレイアウト次第で、曲管状の配管を設けてもよい。また、配管41,42の外周面を覆うように断熱材を設けることにより、排気ガスからの熱エネルギーのロスをさらに低減することができる。 In the fourth embodiment, a curved pipe may be provided depending on the layout when the turbine housing 1 is provided in the exhaust pipe (not shown) instead of the straight pipes 41 and 42 as shown in FIG. 5. Further, by providing the heat insulating material so as to cover the outer peripheral surfaces of the pipes 41 and 42, it is possible to further reduce the loss of thermal energy from the exhaust gas.
 実施形態1~4に係る(本開示の)タービンハウジング1を有するターボチャージャーをエンジンに設け、エンジン起動後の、タービンハウジング1から流出する排気ガスの温度(出口温度)の推移を図6に模式的に示す。図6には、実施形態1~4の構成とは異なる比較例としてのタービンハウジングから流出する排気ガスの温度(出口温度)の推移と、それぞれのタービンハウジングに流入する排気ガスの温度(入口温度)も示している。尚、要求値とは、排気管に設けられる触媒を活性化するために必要な温度に相当する。 A turbocharger having a turbine housing 1 (of the present disclosure) according to Embodiments 1 to 4 is provided in an engine, and transition of the temperature (outlet temperature) of exhaust gas flowing out of the turbine housing 1 after engine startup is schematically shown in FIG. Show. FIG. 6 shows the transition of the temperature (outlet temperature) of the exhaust gas flowing out of the turbine housing as a comparative example different from the configuration of the first to fourth embodiments and the temperature (inlet temperature) of the exhaust gas flowing into each turbine housing ) Is also shown. The required value corresponds to the temperature required to activate the catalyst provided in the exhaust pipe.
 本開示のタービンハウジング1及び比較例のタービンハウジングの両方とも、それらにおいて排気ガスからの熱エネルギーロスがあるために、出口温度は入口温度よりも低くなっている。しかしながら、本開示のタービンハウジング1では、比較例のタービンハウジングに比べて早期に出口温度が要求値に達することができるので、エンジン始動後、早期に触媒の活性化が可能になる。 In both the turbine housing 1 of the present disclosure and the turbine housing of the comparative example, the outlet temperature is lower than the inlet temperature because of the loss of thermal energy from the exhaust gas at them. However, in the turbine housing 1 of the present disclosure, the outlet temperature can reach the required value earlier than in the turbine housing of the comparative example, and therefore, catalyst activation can be performed early after engine startup.
1 タービンハウジング
2 接続流路部
3 スクロール流路部
4 タービンホイール
4a タービン流路
5 ディフューザー流路部
6 ウェイストゲート流路部
7 ウェイストゲート弁
10 第1部分
11 第2部分
12 接続流路
12a 入口開口
13 スクロール流路
15 ディフューザー流路
15a 出口開口
16 ウェイストゲート流路
16a ウェイストゲート入口開口
16b ウェイストゲート出口開口
21 第1直線
22 第2直線
30 WG入口開口が形成された部位
31 (部位30の)最もスクロール流路側の位置
32 接続流路とスクロール流路とが接続する部分
41 配管
42 配管
L 回転軸線
DESCRIPTION OF SYMBOLS 1 turbine housing 2 connection flow path portion 3 scroll flow path portion 4 turbine wheel 4 a turbine flow path 5 diffuser flow path portion 6 waste gate flow path portion 7 waste gate valve 10 first portion 11 second portion 12 connection flow path 12 a inlet opening 13 scroll channel 15 diffuser channel 15a outlet opening 16 waste gate channel 16a waste gate inlet opening 16b waste gate outlet opening 21 first straight line 22 second straight line 30 WG inlet opening formed part 31 (of part 30) most Position 32 on the scroll flow channel side Part 41 where the connection flow channel and the scroll flow channel are connected Piping 42 Piping L Rotational axis

Claims (6)

  1.  一端に入口開口を有する接続流路と、
     前記接続流路の他端と接続するスクロール流路と、
     一端が前記スクロール流路に接続するとともに他端に出口開口を有するディフューザー流路と、
     前記スクロール流路をバイパスして前記接続流路と前記ディフューザー流路とを連通するウェイストゲート流路(WG流路)と
    が形成されたタービンハウジングであって、
     前記WG流路は、
     前記接続流路に開口するウェイストゲート入口開口(WG入口開口)と、
     前記ディフューザー流路に開口するウェイストゲート出口開口(WG出口開口)と
    を含み、
     前記WG出口開口は、該WG出口開口の内部又は周縁部上の第1部分であって、該第1部分から前記WG出口開口に対して垂直に前記入口開口に向かって第1直線を延ばすと該第1直線は前記入口開口の内部又は周縁部上を通る第1部分を有するタービンハウジング。
    A connecting channel having an inlet opening at one end,
    A scroll channel connected to the other end of the connection channel;
    A diffuser channel having one end connected to the scroll channel and an outlet opening at the other end;
    A turbine housing in which a waste gate flow path (WG flow path) is formed, which bypasses the scroll flow path and communicates the connection flow path with the diffuser flow path.
    The WG channel is
    Waste gate inlet opening (WG inlet opening) opened to the connection flow path;
    Including a wastegate outlet opening (WG outlet opening) opening into the diffuser flow path,
    The WG outlet opening is a first portion on the interior or periphery of the WG outlet opening, extending a first straight line from the first portion to the inlet opening perpendicularly to the WG outlet opening The turbine housing according to claim 1, wherein the first straight line passes through the inside or the periphery of the inlet opening.
  2.  前記接続流路は、前記入口開口から前記スクロール流路に向かって流路面積が減少するように構成されている、請求項1に記載のタービンハウジング。 The turbine housing according to claim 1, wherein the connection flow passage is configured to decrease a flow passage area from the inlet opening toward the scroll flow passage.
  3.  前記入口開口の面積をS1とし、前記WG入口開口が形成された部位の最も前記スクロール流路側の位置における前記接続流路の流路面積をSとし、前記スクロール流路と接続する部分における前記接続流路の流路面積をAとすると、S/S1≦1/2かつA<Sである、請求項2に記載のタービンハウジング。 The area of the inlet opening is S1, and the channel area of the connection channel at the position closest to the scroll channel on the part where the WG inlet opening is formed is S, and the connection at the portion connected to the scroll channel The turbine housing according to claim 2, wherein S / S 1 ≦ 1/2 and A <S, where A is a flow passage area of the flow passage.
  4.  前記WG出口開口は、該WG出口開口の内部又は周縁部上の第2部分であって、該第2部分から前記WG出口開口に対して垂直に前記出口開口に向かって第2直線を延ばすと該第2直線は前記出口開口の内部又は周縁部上を通る第2部分を有する、請求項1~3のいずれか一項に記載のタービンハウジング。 The WG outlet opening is a second portion on the interior or periphery of the WG outlet opening, extending a second straight line from the second portion perpendicular to the WG outlet opening toward the outlet opening The turbine housing according to any one of the preceding claims, wherein the second straight line has a second portion passing inside or on the peripheral edge of the outlet opening.
  5.  前記タービンハウジングには、前記入口開口及び前記出口開口の少なくとも一方において、板金から形成された配管が接続されている、請求項1~4のいずれか一項に記載のタービンハウジング。 The turbine housing according to any one of claims 1 to 4, wherein a pipe formed of a sheet metal is connected to the turbine housing at least one of the inlet opening and the outlet opening.
  6.  請求項1~5のいずれか一項に記載のタービンハウジングを備えるターボチャージャー。 A turbocharger comprising the turbine housing according to any one of claims 1 to 5.
PCT/JP2017/045707 2017-12-20 2017-12-20 Turbine housing and turbocharger with said turbine housing WO2019123567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045707 WO2019123567A1 (en) 2017-12-20 2017-12-20 Turbine housing and turbocharger with said turbine housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045707 WO2019123567A1 (en) 2017-12-20 2017-12-20 Turbine housing and turbocharger with said turbine housing

Publications (1)

Publication Number Publication Date
WO2019123567A1 true WO2019123567A1 (en) 2019-06-27

Family

ID=66992523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045707 WO2019123567A1 (en) 2017-12-20 2017-12-20 Turbine housing and turbocharger with said turbine housing

Country Status (1)

Country Link
WO (1) WO2019123567A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793627A (en) * 1980-11-29 1982-06-10 Yamaha Motor Co Ltd Turbo supercharger for multiple cylinder engine
JPH07145735A (en) * 1993-11-24 1995-06-06 Ishikawajima Harima Heavy Ind Co Ltd Exhaust bypass structure for turbo charger
JPH11506508A (en) * 1994-12-20 1999-06-08 アウディ アーゲー Exhaust gas turbocharger
JP2015014258A (en) * 2013-07-05 2015-01-22 株式会社Ihi Supercharger
JP2017145719A (en) * 2016-02-16 2017-08-24 マツダ株式会社 Supercharging device for engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793627A (en) * 1980-11-29 1982-06-10 Yamaha Motor Co Ltd Turbo supercharger for multiple cylinder engine
JPH07145735A (en) * 1993-11-24 1995-06-06 Ishikawajima Harima Heavy Ind Co Ltd Exhaust bypass structure for turbo charger
JPH11506508A (en) * 1994-12-20 1999-06-08 アウディ アーゲー Exhaust gas turbocharger
JP2015014258A (en) * 2013-07-05 2015-01-22 株式会社Ihi Supercharger
JP2017145719A (en) * 2016-02-16 2017-08-24 マツダ株式会社 Supercharging device for engine

Similar Documents

Publication Publication Date Title
EP2896802B1 (en) Exhaust heat recovery device
US9845893B2 (en) Exhaust gate
JP4779898B2 (en) Turbine housing
JP5369723B2 (en) Centrifugal compressor
KR20140116968A (en) Flow rate-variable valve mechanism and vehicle supercharger
WO2012090724A1 (en) Turbine scroll structure
JP6780714B2 (en) Supercharger
JP2002349276A (en) Turbine housing
WO2014109210A1 (en) Supercharger
JP2002054447A (en) Turbine housing
JP2007023894A (en) Turbocharger
JP2002349275A (en) Turbine housing of supercharger
JP6792432B2 (en) Internal combustion engine
JP2008231993A (en) Turbine device
US10774663B2 (en) Device for exhaust-gas routing having a turbocharger
WO2019123567A1 (en) Turbine housing and turbocharger with said turbine housing
JP6651564B2 (en) Flange fastening structure
JP6667488B2 (en) Turbine housing
JP6834862B2 (en) Turbocharger
JP6288478B2 (en) Turbocharger
JP2008101479A (en) Exhaust valve structure, exhaust system heat exchanger, and exhaust system structure
JP4708300B2 (en) Turbocharger
JP6759144B2 (en) Supercharger
US11492916B2 (en) Turbine
JP7424540B2 (en) Turbines and superchargers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP