WO2019120711A1 - Safety guard clip for power take off joints and shafts - Google Patents

Safety guard clip for power take off joints and shafts Download PDF

Info

Publication number
WO2019120711A1
WO2019120711A1 PCT/EP2018/079449 EP2018079449W WO2019120711A1 WO 2019120711 A1 WO2019120711 A1 WO 2019120711A1 EP 2018079449 W EP2018079449 W EP 2018079449W WO 2019120711 A1 WO2019120711 A1 WO 2019120711A1
Authority
WO
WIPO (PCT)
Prior art keywords
retainer ring
locking clip
bearing
safety guard
teeth
Prior art date
Application number
PCT/EP2018/079449
Other languages
French (fr)
Inventor
Jeremy BURGESS
Original Assignee
Sparex Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sparex Limited filed Critical Sparex Limited
Publication of WO2019120711A1 publication Critical patent/WO2019120711A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/84Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
    • F16D3/841Open covers, e.g. guards for agricultural p.t.o. shafts
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B71/00Construction or arrangement of setting or adjusting mechanisms, of implement or tool drive or of power take-off; Means for protecting parts against dust, or the like; Adapting machine elements to or for agricultural purposes
    • A01B71/08Means for protecting against dust, or the like, or for cleaning agricultural implements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B21/00Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings
    • F16B21/10Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts
    • F16B21/16Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft
    • F16B21/18Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft with circlips or like resilient retaining devices, i.e. resilient in the plane of the ring or the like; Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/12Mounting or assembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/30Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected in which the coupling is specially adapted to constant velocity-ratio
    • F16D3/32Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected in which the coupling is specially adapted to constant velocity-ratio by the provision of two intermediate members each having two relatively perpendicular trunnions or bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/84Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
    • F16D3/843Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers
    • F16D3/845Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers allowing relative movement of joint parts due to the flexing of the cover

Definitions

  • the invention relates to a safety guard support clip.
  • the safety guard support is especially suited for use with a wide angle power take off joint (WAPTO) of an agricultural tractor, harvester or implement as well as standard power take off (PTO) joints.
  • WAPTO wide angle power take off joint
  • PTO standard power take off
  • the safety guard support may also be used to cover any other rotating shaft, rotating joint or universal joint.
  • Guards fitted to the PTO shafts of agricultural equipment are typically formed of a plastic material and comprise a tube with enlarged end portions or bellows to accommodate the coupling mechanism.
  • a bearing is often fitted to the PTO shaft to support the guard and allow the shaft and guard to rotate with respect to one another.
  • a means of securing the guard to the bearing member or shaft is often provided in the form of a releasable clip.
  • the guard In the case of guards for a WAPTO joint, the guard must be supported relative to the centre part of the wide angle joint.
  • safety guard support for a PTO component comprising a locking clip a bearing and a retainer ring wherein the locking clip may include at least two castellations.
  • Angular displacement of the locking clip may move the locking clip from an unlocked positon to a locked position.
  • the retainer ring has a catch which engages with the locking clip in a locked position and provides visual indication that the locking clip is in a locked position.
  • the locking clip may engage the bearing in more than two places when in the locked position.
  • the locking clip may contact the bearing in 10 to 20 discrete places when in the locked position.
  • the numerous contact points reduce the force required to be borne by any single locking point thereby reducing the risk of component failure.
  • the locking clip may be captive in the retainer ring when the locking clip is in an unlocked position.
  • Fig. 1 is a cross section of a safety guard on wide angle joint on a power take off shaft including a safety guard support;
  • Fig. 2 is a perspective view of the safety guard support of Fig 1 ;
  • Fig. 3 is an exploded view of the safety guard support of Fig 2;
  • Fig. 4 is a perspective view of the retainer ring of the safety guard support
  • Fig. 5 is a perspective view of one of the corresponding formations of the retainer ring;
  • Fig. 6 is a perspective view of the bearing of the safety guard support;
  • Fig. 7 is a perspective view of one of the corresponding formations of the bearing;
  • Fig. 8 is a perspective view of a locking clip according to the invention;
  • Fig. 9 is a perspective view of a safety guard according to the invention in a locked position
  • Fig. 10 is a perspective view of a safety guard according to the invention in an unlocked position
  • Fig. 1 1 is a detail view of figure 9;
  • Fig. 12 is a detail view of figure 10;
  • FIG. 10 a cross section through a WAPTO which is indicated generally 10.
  • the WAPTO 10 is of any type known in the art.
  • the WAPTO 10 includes and input shaft 12, and output shaft 14 and a WAPTO joint 16.
  • the input shaft 12 is configured to be in operable communication with a PTO of a tractor (not shown).
  • the input shaft 12 may be directly connected to a PTO of a tractor or other machine or connected to another intermediate shaft which is in turn driven by the PTO of a tractor or other machine.
  • the output shaft 14 is configured to be in operable communication with an implement (not shown).
  • the output shaft 16 delivers a rotational input to the input of an implement for example a mower as is known in the art.
  • the WAPTO joint 16 connects the input shaft 12 to the output shaft 14 as is commonplace in the art.
  • the WAPTO joint 16 facilitates the transmission of power from the input shaft 12 to the output shaft 14 thereby allowing the PTO of a tractor or other machine to provide mechanical power to an implement such as a mower.
  • the WAPTO joint 16 allows an the input shaft 12 and output shaft 14 to be longitudinally misaligned and yet still able to transmit rotational forces from a tractors PTO to an implement as is well known in the art.
  • the WAPTO 10 of figure 1 is provided with a safety guard which is indicated generally 20.
  • the safety guard 20 comprises a first bellows 22, a retainer ring 24, locking clip 26, a second bellows 28 and a bearing 30.
  • the first bellows 22 is tube like and has a number of circumferential corrugations 32.
  • the circumferential corrugations 32 allow the first bellows 22 to be elastically compressed in a longitudinal direction.
  • the second bellows 28 is also tube like and has a number of circumferential corrugations 34.
  • the circumferential corrugations 34 allow the second bellows 28 to be elastically compressed in a longitudinal direction.
  • the second bellows 28 includes a number of annular ridges 36 which are positioned proximate to an end of the second bellows 28 and on an inner face of the second bellows 28.
  • the retainer ring 24 is best seen in figure 4.
  • the retainer ring 24 is generally cylindrical in shape and comprises an inner face 38, an outer face 40, and extends from a first end 42 to a second end 44.
  • the retainer ring 24 includes a number of annular grooves 46 on the outer face 40 which are positioned proximate the first end 42.
  • the annular grooves 46 correlate with the annular ridges 36 to retain the second bellows 28 on the retainer ring 24.
  • the retainer ring further includes a flange 48 which extends from radial outward the outer face 40.
  • the flange 48 cooperates with a circumferential corrugation 32 of the first bellows 22 so that the first bellows 22 can be affixed be affixed to the retainer ring 24.
  • one or both of the first and second bellows 22, 28 may be moulded with are otherwise affixed to the retainer ring 24.
  • the retainer ring 24 has a slot 50 for receiving the locking clip 26 therethrough.
  • the slot 50 is in the form of a groove in the outer face 40 which extends part of the way circumferentially around the retainer ring 24.
  • the groove which forms part of the slot 50 extends all the way through the retainer ring 24 from the outer surface 40 through to the inner surface 38 in the form of hole 52 such that the locking clip 26 can be received therethrough.
  • a number of formations or teeth 54 are situated on the inner face 38 of the retainer ring 24.
  • each of the teeth 54 have a scallop section 56 which decreases the volume of material required for their construction.
  • the teeth 54 form castellations on the internal face 38 of the retainer ring 24.
  • Each of the teeth 54 are generally triangular when viewed in plan, having a base portion 56 and a tip portion 58.
  • Each tooth extends longitudinally away from the first end 42 of the retainer ring 24 along the inner face 38 narrowing towards the tip portion 58.
  • Each of the teeth 54 also tapers in depth from a relatively thin section at the base 56 to a relatively thick section at the tip portion 58.
  • the retainer ring 24 further includes a grease port 60.
  • the grease port 60 allows grease to be administered to the bearing 30. Grease or else another lubricant can be pumped through the grease port 60 to the bearing 30.
  • the bearing 30 comprises a radial slit 62, a plurality of conduits 66, an inside surface 68, an outside surface 70, a body 72 and a number of formations or teeth 74.
  • the teeth are formed by a radial slit 62, a plurality of conduits 66, an inside surface 68, an outside surface 70, a body 72 and a number of formations or teeth 74.
  • the bearing 30 is of a conventional annular overall shape and is constructed from a plastic for example nylon.
  • the radial slit 62 allows the bearing to be elastically manipulated such that radial split can be spread apart to allow the bearing 30 to installed onto a WAPTO component.
  • the conduits 66 are each a tube that is orientated substantially radially to the centre of the annular bearing.
  • the conduits 66 provide grease channels such that grease can be fed into the conduits 66 to lubricate the inside surface 68 of the bearing which in use will be in dynamic contact with the surface of a WAPTO component e.g. a shaft or joint component.
  • the teeth 74 are positioned in a regularly spaced formation on the outside surface 70 of the bearing 30. That is, the teeth are arranged in a discontinuous pattern around the periphery of the bearing 30. In this specific example, each of the teeth 74 is arranged such that a conduit 66 extends therethrough.
  • Grease administered to the end of the conduits 66 which opens into is in the teeth 74 can make its way to the opening of the conduits 66 on the inside surface 68 of the bearing 30 since each of the conduits 66 passes thought a tooth 74 and the entire body 72 of the bearing 30.
  • the locking clip 26 in this embodiment is a U-shaped wire clip.
  • the locking clip 26 comprises a pair of legs 82 and a removal notch 84.
  • the bearing 30 is installed onto a WAPTO component, in this embodiment, the bearing 30 is fitted onto a WAPTO joint 16.
  • the portion of the body 72 of the bearing 30 which is proximate to the inside surface 68 is received in a recess 86 on the WAPTO joint 16.
  • the bearing 30 is prevented from moving longitudinally since it is retained by the recess 86.
  • the bearing 30 can however rotate freely in the recess 86 about the longitudinal axis of the WAPTO joint 16.
  • first bellows 22 and the second bellows 28 are installed onto the retainer ring 24.
  • the first bellows 22 is retained on the retainer ring 24 by the flange 48 and the second bellow 28 is retained on the retainer ring 24 by the snap fitting of the annular ridges 236 into the annular grooves 46 in a conventional manner.
  • the retainer ring 24 including the bellows 22, 28 can then be positioned onto the WAPTO, receiving the input shaft 12, the output shaft 14 and the WAPTO joint 16 therethrough.
  • the teeth 74 of the retainer ring 24 must be brought into intermeshing relationship with the teeth 54 of the bearing 30.
  • the teeth 54, 74 are so shaped that spacing between the teeth 54, 74 mesh together until the plane of the slot 50 is in the same plane as the clip groove 80.
  • the interdigitated relationship of the teeth 54, 74 prevent relative rotation of the bearing 30 and the retainer ring 24.
  • the wedge like taper of the teeth 54, 74 and the relative dimensioning of the retainer ring 24 and the bearing 30 cause the radial slit 62 to be substantially closed as the retainer ring 24 is pressed into engagement with the bearing
  • the locking clip 26 is inserted into the slot 50.
  • the legs 82 protrude toward the centre of the bearing 30 and are received in the clip groove 80 in the teeth 74 of the bearing 30. Inserting the locking clip 26 like this acts and an interference member, thereby preventing unwanted separation of the bearing 30 and the retainer ring 24 when the safety guard 20 is in use.
  • a retaining formation 88 receives the removal notch 84 portion of the locking clip 26 in a snap fit engagement.
  • Each of the teeth 74 has a conduit 66 for receiving grease therethrough.
  • One of the teeth 74 will be received in the space between the two teeth 54 which neighbour the grease port 60 on the retainer ring 24. Because of this design, one of the conduits 66 will always be in alignment with the grease port 66 regardless of the relative axial orientation of the bearing 30 and the retainer ring 24. Grease can thus be applied to the bearing 30 inside surface 68 via the conduits 66 and grease port 60 without removing the retainer ring 24 from engagement of with the bearing 30.
  • a different type of locking clip arrangement is used.
  • the bearing 30 is substantially the same as previously described.
  • a locking clip 126 is different to the locking clip 26 and a retainer ring 124 differs slightly to the previously described retainer ring 24. All the features other than the locking clip 126 and how the locking clip 126 is retained in the retainer ring 124 are as previously described in the aforementioned embodiment.
  • the retainer ring 124 is generally cylindrical in shape and comprises an inner face 138, an outer face 140, and extends from a first end 142 to a second end 144.
  • the retainer ring 124 includes a number of annular grooves 146 on the outer face 140 which are positioned proximate the first end 142.
  • the annular grooves 146 correlate with the annular ridges 36 to retain the second bellows 28 on the retainer ring 124.
  • the retainer ring further includes a flange 148 which extends from radial outward the outer face 140. The flange 148 cooperates with a circumferential corrugation 32 of the first bellows 22 such that the first bellows 22 can be affixed be affixed to the retainer ring 124.
  • a number of formations or teeth 154 are situated on the inner face 138 of the retainer ring 124.
  • the teeth 154 form castellations of discontinuous raised sections on the internal face 138 of the retainer ring 124.
  • Each of the teeth 154 are generally triangular when viewed in plan, having a base portion 156 and a tip portion 158.
  • Each tooth extends longitudinally away from the first end 142 of the retainer ring 124 along the inner face 138 narrowing towards the tip portion 158.
  • Each of the teeth 154 also tapers in depth from a relatively thin section at the base 156 to a relatively thick section at the tip portion 158.
  • the retainer ring 124 has a slot 150 for receiving the locking clip 126.
  • the slot 150 is in the form of a groove in the outer face 140 which extends around the entire circumference around the retainer ring 124.
  • the slot 150 extends from the outer face 140 all the way through the retainer ring 24 to the inner face 138.
  • the slot 150 substantially bisects the retainer ring 124 but does not bisect the teeth 154.
  • the teeth 154 support the two parts of the retainer ring 124.
  • the retainer ring also includes a locking tab or catch 166.
  • the locking tab or catch 166 is in the form of a raised portion of the retainer ring 124 outer face which resides in a recess 164 in the outer face 140 and acts as a catch 166 to prevent rotational motion of the locking clip 126 relative to the retainer ring 124.
  • the slot 150 may extend partially around the outer face and partially around the inner face such that the lower portion of the locking clip 126 is received inside the retainer ring 124.
  • the retainer ring 124 further includes a grease port 160 (not shown).
  • the grease port 160 allows grease to be administered to the bearing 30. Grease or else another lubricant can be pumped through the grease port 160 and through conduits 66 to the bearing 30.
  • the locking clip 126 is a castellated arcuate member comprising castellations 188, a locking tab 184 and legs 182 which extend from the locking tab 184.
  • the locking clip 126 is configured to be received in the slot 150 of the retainer ring 124 in such a manner that only axial rotation of the locking clip 126 and retainer ring 124 is permitted.
  • the locking clip 126 In use, to lock the retainer ring 124 to the bearing 30, the locking clip 126 must be rotated axially relative to the retainer ring 124.
  • the locking clip 126 has two positions in which it can reside: a locked position as seen in figure 1 1 and an unlocked position as is seen in figure 10.
  • the locking clip 126 is moved from the locked position wherein the locking tab 184 is residing in the recess 164, to a position where the locking tab 184 is situated in engagement with the catch 166.
  • each of the castellations 188 are in alignment with the teeth 154 of the retainer ring 124. As the castellations 188 in this position do not extend beyond the outer profile of each of the teeth 154, the retainer ring 124 is able to receive the teeth 74 of the bearing 30 in the spaces between the teeth 174 in meshing engagement.
  • the locking clip 126 is configured to be retained in the retainer ring 124 even when the locking clip is in the unlocked position by the dimensioning of the respective components.
  • each of the castellations 188 of the locking clip 126 have been angularly displaced so that they are no longer in alignment with the teeth 154.
  • the castellations 188 now reside between the teeth 154 of the retainer ring 124 and are in alignment and thus in engagement with the teeth 74 of the bearing.
  • the castellations 188 of the retainer ring 124 are configured to be received in the clip groove 80 of the teeth 74 of the bearing 30 thereby preventing longitudinal separation of the retainer ring 124 and the bearing 30 when the locking clip 126 is in the locked position.

Abstract

A safety guard support for a PTO component comprising a locking clip, a bearing and a retainer ring wherein the locking clip includes at least two castellations.

Description

SAFETY GUARD CLIP FOR POWER TAKE OFF JOINTS AND SHAFTS
FIELD OF THE INVENTION
The invention relates to a safety guard support clip. The safety guard support is especially suited for use with a wide angle power take off joint (WAPTO) of an agricultural tractor, harvester or implement as well as standard power take off (PTO) joints. However it will be appreciated that the safety guard support may also be used to cover any other rotating shaft, rotating joint or universal joint.
TECHNICAL BACKGROUND
Safety legislation in many western jurisdictions requires that PTO shafts and their connecting members and joints are covered by a guard which reduces the risk of injury for the operator. Guards fitted to the PTO shafts of agricultural equipment are typically formed of a plastic material and comprise a tube with enlarged end portions or bellows to accommodate the coupling mechanism. To minimize wear of the plastic guard, a bearing is often fitted to the PTO shaft to support the guard and allow the shaft and guard to rotate with respect to one another. Furthermore, to prevent axial movement of the guard relative to the bearing and/or shaft, a means of securing the guard to the bearing member or shaft is often provided in the form of a releasable clip. In the case of guards for a WAPTO joint, the guard must be supported relative to the centre part of the wide angle joint.
SUMMARY OF THE INVENTION
It is an object of the invention to provide an alternative guard support mechanism for a PTO safety guard which securely mounts a PTO guard to a PTO shaft or WAPTO joint yet allows free rotation of the PTO guard relative to the PTO shaft, PTO joint, or WAPTO joint.
According to the invention, there is provided: safety guard support for a PTO component comprising a locking clip a bearing and a retainer ring wherein the locking clip may include at least two castellations.
Angular displacement of the locking clip may move the locking clip from an unlocked positon to a locked position. The retainer ring has a catch which engages with the locking clip in a locked position and provides visual indication that the locking clip is in a locked position.
The locking clip may engage the bearing in more than two places when in the locked position.
The locking clip may contact the bearing in 10 to 20 discrete places when in the locked position. The numerous contact points reduce the force required to be borne by any single locking point thereby reducing the risk of component failure.
The locking clip may be captive in the retainer ring when the locking clip is in an unlocked position.
Other advantages of the invention will be apparent from the following description.
INTRODUCTION TO THE DRAWINGS
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Fig. 1 is a cross section of a safety guard on wide angle joint on a power take off shaft including a safety guard support;
Fig. 2 is a perspective view of the safety guard support of Fig 1 ;
Fig. 3 is an exploded view of the safety guard support of Fig 2;
Fig. 4 is a perspective view of the retainer ring of the safety guard support;
Fig. 5 is a perspective view of one of the corresponding formations of the retainer ring; Fig. 6 is a perspective view of the bearing of the safety guard support;
Fig. 7 is a perspective view of one of the corresponding formations of the bearing; Fig. 8 is a perspective view of a locking clip according to the invention;
Fig. 9 is a perspective view of a safety guard according to the invention in a locked position;
Fig. 10 is a perspective view of a safety guard according to the invention in an unlocked position;
Fig. 1 1 is a detail view of figure 9;
Fig. 12 is a detail view of figure 10;
The drawings are provided by way of reference only, and will be acknowledged as not to scale. SPECIFIC DESCRIPTION OF THE INVENTION
In an embodiment of the invention, with reference to figure 1 there is shown a cross section through a WAPTO which is indicated generally 10. The WAPTO 10 is of any type known in the art. In this specific example the WAPTO 10 includes and input shaft 12, and output shaft 14 and a WAPTO joint 16.
The input shaft 12 is configured to be in operable communication with a PTO of a tractor (not shown). The input shaft 12 may be directly connected to a PTO of a tractor or other machine or connected to another intermediate shaft which is in turn driven by the PTO of a tractor or other machine. The output shaft 14 is configured to be in operable communication with an implement (not shown). The output shaft 16 delivers a rotational input to the input of an implement for example a mower as is known in the art.
The WAPTO joint 16 connects the input shaft 12 to the output shaft 14 as is commonplace in the art. The WAPTO joint 16 facilitates the transmission of power from the input shaft 12 to the output shaft 14 thereby allowing the PTO of a tractor or other machine to provide mechanical power to an implement such as a mower. The WAPTO joint 16 allows an the input shaft 12 and output shaft 14 to be longitudinally misaligned and yet still able to transmit rotational forces from a tractors PTO to an implement as is well known in the art.
The WAPTO 10 of figure 1 is provided with a safety guard which is indicated generally 20.
In this specific example, the safety guard 20 comprises a first bellows 22, a retainer ring 24, locking clip 26, a second bellows 28 and a bearing 30.
The first bellows 22 is tube like and has a number of circumferential corrugations 32. The circumferential corrugations 32 allow the first bellows 22 to be elastically compressed in a longitudinal direction.
The second bellows 28 is also tube like and has a number of circumferential corrugations 34. The circumferential corrugations 34 allow the second bellows 28 to be elastically compressed in a longitudinal direction. The second bellows 28 includes a number of annular ridges 36 which are positioned proximate to an end of the second bellows 28 and on an inner face of the second bellows 28.
The retainer ring 24 is best seen in figure 4. The retainer ring 24 is generally cylindrical in shape and comprises an inner face 38, an outer face 40, and extends from a first end 42 to a second end 44.
The retainer ring 24 includes a number of annular grooves 46 on the outer face 40 which are positioned proximate the first end 42. The annular grooves 46 correlate with the annular ridges 36 to retain the second bellows 28 on the retainer ring 24. The retainer ring further includes a flange 48 which extends from radial outward the outer face 40. The flange 48 cooperates with a circumferential corrugation 32 of the first bellows 22 so that the first bellows 22 can be affixed be affixed to the retainer ring 24. Alternatively one or both of the first and second bellows 22, 28 may be moulded with are otherwise affixed to the retainer ring 24.
The retainer ring 24 has a slot 50 for receiving the locking clip 26 therethrough. The slot 50 is in the form of a groove in the outer face 40 which extends part of the way circumferentially around the retainer ring 24. The groove which forms part of the slot 50 extends all the way through the retainer ring 24 from the outer surface 40 through to the inner surface 38 in the form of hole 52 such that the locking clip 26 can be received therethrough.
A number of formations or teeth 54 are situated on the inner face 38 of the retainer ring 24. In this specific example, each of the teeth 54 have a scallop section 56 which decreases the volume of material required for their construction. With reference to figure 5, a portion of the retainer ring 24 is shown in more detail. The teeth 54 form castellations on the internal face 38 of the retainer ring 24. Each of the teeth 54 are generally triangular when viewed in plan, having a base portion 56 and a tip portion 58. Each tooth extends longitudinally away from the first end 42 of the retainer ring 24 along the inner face 38 narrowing towards the tip portion 58. Each of the teeth 54 also tapers in depth from a relatively thin section at the base 56 to a relatively thick section at the tip portion 58. The retainer ring 24 further includes a grease port 60. The grease port 60 allows grease to be administered to the bearing 30. Grease or else another lubricant can be pumped through the grease port 60 to the bearing 30.
The bearing 30 comprises a radial slit 62, a plurality of conduits 66, an inside surface 68, an outside surface 70, a body 72 and a number of formations or teeth 74. The teeth
74 each comprise a root portion 76, nose portion 78 and a clip groove 80. Each of the teeth 74 has a narrowing taper from the root portion 76 to the nose portion 78 in both width and depth, that is, the teeth 74 have a wedge like profile which thickens towards the root portion 76. The bearing 30 is of a conventional annular overall shape and is constructed from a plastic for example nylon. The radial slit 62 allows the bearing to be elastically manipulated such that radial split can be spread apart to allow the bearing 30 to installed onto a WAPTO component. The conduits 66 are each a tube that is orientated substantially radially to the centre of the annular bearing. The conduits 66 provide grease channels such that grease can be fed into the conduits 66 to lubricate the inside surface 68 of the bearing which in use will be in dynamic contact with the surface of a WAPTO component e.g. a shaft or joint component. The teeth 74 are positioned in a regularly spaced formation on the outside surface 70 of the bearing 30. That is, the teeth are arranged in a discontinuous pattern around the periphery of the bearing 30. In this specific example, each of the teeth 74 is arranged such that a conduit 66 extends therethrough. Grease administered to the end of the conduits 66 which opens into is in the teeth 74 can make its way to the opening of the conduits 66 on the inside surface 68 of the bearing 30 since each of the conduits 66 passes thought a tooth 74 and the entire body 72 of the bearing 30.
The locking clip 26 in this embodiment is a U-shaped wire clip. The locking clip 26 comprises a pair of legs 82 and a removal notch 84.
In use, firstly the bearing 30 is installed onto a WAPTO component, in this embodiment, the bearing 30 is fitted onto a WAPTO joint 16. The portion of the body 72 of the bearing 30 which is proximate to the inside surface 68 is received in a recess 86 on the WAPTO joint 16. The bearing 30 is prevented from moving longitudinally since it is retained by the recess 86. The bearing 30 can however rotate freely in the recess 86 about the longitudinal axis of the WAPTO joint 16.
Next the first bellows 22 and the second bellows 28 are installed onto the retainer ring 24. The first bellows 22 is retained on the retainer ring 24 by the flange 48 and the second bellow 28 is retained on the retainer ring 24 by the snap fitting of the annular ridges 236 into the annular grooves 46 in a conventional manner. The retainer ring 24 including the bellows 22, 28 can then be positioned onto the WAPTO, receiving the input shaft 12, the output shaft 14 and the WAPTO joint 16 therethrough.
To secure the retainer ring in position relative to the bearing 30 the teeth 74 of the retainer ring 24 must be brought into intermeshing relationship with the teeth 54 of the bearing 30. The teeth 54, 74 are so shaped that spacing between the teeth 54, 74 mesh together until the plane of the slot 50 is in the same plane as the clip groove 80. The interdigitated relationship of the teeth 54, 74 prevent relative rotation of the bearing 30 and the retainer ring 24. The wedge like taper of the teeth 54, 74 and the relative dimensioning of the retainer ring 24 and the bearing 30 cause the radial slit 62 to be substantially closed as the retainer ring 24 is pressed into engagement with the bearing
30. This occurs because the outer diameter of the bearing 30 is oversized when the radial split 62 is open when compared to the internal diameter of the retainer ring 24.
To secure the retainer ring 24 longitudinally relative to the bearing 30, the locking clip 26 is inserted into the slot 50. The legs 82 protrude toward the centre of the bearing 30 and are received in the clip groove 80 in the teeth 74 of the bearing 30. Inserting the locking clip 26 like this acts and an interference member, thereby preventing unwanted separation of the bearing 30 and the retainer ring 24 when the safety guard 20 is in use. To ensure that the locking clip 26 does not move out of position unexpectedly it is held in position by a retaining formation 88. The retaining formation 88 receives the removal notch 84 portion of the locking clip 26 in a snap fit engagement.
Each of the teeth 74 has a conduit 66 for receiving grease therethrough. One of the teeth 74 will be received in the space between the two teeth 54 which neighbour the grease port 60 on the retainer ring 24. Because of this design, one of the conduits 66 will always be in alignment with the grease port 66 regardless of the relative axial orientation of the bearing 30 and the retainer ring 24. Grease can thus be applied to the bearing 30 inside surface 68 via the conduits 66 and grease port 60 without removing the retainer ring 24 from engagement of with the bearing 30.
In a further embodiment of the invention, a different type of locking clip arrangement is used. In this embodiment the bearing 30 is substantially the same as previously described. In this embodiment, a locking clip 126 is different to the locking clip 26 and a retainer ring 124 differs slightly to the previously described retainer ring 24. All the features other than the locking clip 126 and how the locking clip 126 is retained in the retainer ring 124 are as previously described in the aforementioned embodiment.
With reference to figures 9 to 12, the retainer ring 124 is generally cylindrical in shape and comprises an inner face 138, an outer face 140, and extends from a first end 142 to a second end 144.
The retainer ring 124 includes a number of annular grooves 146 on the outer face 140 which are positioned proximate the first end 142. The annular grooves 146 correlate with the annular ridges 36 to retain the second bellows 28 on the retainer ring 124. The retainer ring further includes a flange 148 which extends from radial outward the outer face 140. The flange 148 cooperates with a circumferential corrugation 32 of the first bellows 22 such that the first bellows 22 can be affixed be affixed to the retainer ring 124.
A number of formations or teeth 154 are situated on the inner face 138 of the retainer ring 124. The teeth 154 form castellations of discontinuous raised sections on the internal face 138 of the retainer ring 124. Each of the teeth 154 are generally triangular when viewed in plan, having a base portion 156 and a tip portion 158. Each tooth extends longitudinally away from the first end 142 of the retainer ring 124 along the inner face 138 narrowing towards the tip portion 158. Each of the teeth 154 also tapers in depth from a relatively thin section at the base 156 to a relatively thick section at the tip portion 158.
The retainer ring 124 has a slot 150 for receiving the locking clip 126. The slot 150 is in the form of a groove in the outer face 140 which extends around the entire circumference around the retainer ring 124. The slot 150 extends from the outer face 140 all the way through the retainer ring 24 to the inner face 138. The slot 150 substantially bisects the retainer ring 124 but does not bisect the teeth 154. The teeth 154 support the two parts of the retainer ring 124. The retainer ring also includes a locking tab or catch 166. The locking tab or catch 166 is in the form of a raised portion of the retainer ring 124 outer face which resides in a recess 164 in the outer face 140 and acts as a catch 166 to prevent rotational motion of the locking clip 126 relative to the retainer ring 124. In an alternative arrangement that is not shown, the slot 150 may extend partially around the outer face and partially around the inner face such that the lower portion of the locking clip 126 is received inside the retainer ring 124.
The retainer ring 124 further includes a grease port 160 (not shown). The grease port 160 allows grease to be administered to the bearing 30. Grease or else another lubricant can be pumped through the grease port 160 and through conduits 66 to the bearing 30.
The locking clip 126 is a castellated arcuate member comprising castellations 188, a locking tab 184 and legs 182 which extend from the locking tab 184. The locking clip 126 is configured to be received in the slot 150 of the retainer ring 124 in such a manner that only axial rotation of the locking clip 126 and retainer ring 124 is permitted.
In use, to lock the retainer ring 124 to the bearing 30, the locking clip 126 must be rotated axially relative to the retainer ring 124. The locking clip 126 has two positions in which it can reside: a locked position as seen in figure 1 1 and an unlocked position as is seen in figure 10. The locking clip 126 is moved from the locked position wherein the locking tab 184 is residing in the recess 164, to a position where the locking tab 184 is situated in engagement with the catch 166.
It will be understood that when the locking clip 126 is in the unlocked position, each of the castellations 188 are in alignment with the teeth 154 of the retainer ring 124. As the castellations 188 in this position do not extend beyond the outer profile of each of the teeth 154, the retainer ring 124 is able to receive the teeth 74 of the bearing 30 in the spaces between the teeth 174 in meshing engagement. The locking clip 126 is configured to be retained in the retainer ring 124 even when the locking clip is in the unlocked position by the dimensioning of the respective components.
In the locked position, the locking clip 126 has been rotated relative to the retainer ring 124, consequently the locking tab 184 has moved from the recess 164 and into engagement with the catch 166. Each of the castellations 188 of the locking clip 126 have been angularly displaced so that they are no longer in alignment with the teeth 154. The castellations 188 now reside between the teeth 154 of the retainer ring 124 and are in alignment and thus in engagement with the teeth 74 of the bearing. Specifically the castellations 188 of the retainer ring 124 are configured to be received in the clip groove 80 of the teeth 74 of the bearing 30 thereby preventing longitudinal separation of the retainer ring 124 and the bearing 30 when the locking clip 126 is in the locked position.
Although described in relation to a PTO shaft of an agricultural machine, it should be understood that the advantages of the invention can be delivered for a safety guard for other rotational shafts in other applications.

Claims

1. A safety guard support for a PTO component comprising a locking clip, a bearing and a retainer ring wherein the locking clip includes at least two castellations.
2. A safety guard support according to claim 1 wherein angular displacement of the locking clip moves the locking clip from an unlocked positon to a locked position.
3. A safety guard support according to claims 1 or 2 wherein the retainer ring has a catch which engages with the locking clip in a locked position and provides visual indication that the locking clip is in a locked position.
4. A safety guard support according to any preceding claim wherein the locking clip engages the bearing in more than two places when in the locked position.
5. A safety guard support according to any preceding claim wherein the locking clip contacts the bearing in 10 to 20 discrete places when in the locked position.
6. A safety guard support according to any preceding claim wherein the locking clip is captive in the retainer ring when the locking clip is in an unlocked position.
PCT/EP2018/079449 2017-12-22 2018-10-26 Safety guard clip for power take off joints and shafts WO2019120711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1721805.8 2017-12-22
GBGB1721805.8A GB201721805D0 (en) 2017-12-22 2017-12-22 Safety guard clip for power take off joints and shafts

Publications (1)

Publication Number Publication Date
WO2019120711A1 true WO2019120711A1 (en) 2019-06-27

Family

ID=61131607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/079449 WO2019120711A1 (en) 2017-12-22 2018-10-26 Safety guard clip for power take off joints and shafts

Country Status (2)

Country Link
GB (1) GB201721805D0 (en)
WO (1) WO2019120711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3636945A1 (en) * 2018-10-10 2020-04-15 Sparex Limited Castellated locking clip for a safety guard of a power take off shaft with a coupling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2924953A (en) * 1957-01-14 1960-02-16 Borg Warner Shield assembly
US9562570B2 (en) * 2012-12-21 2017-02-07 Sparex Limited Safety guard for power take off

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2924953A (en) * 1957-01-14 1960-02-16 Borg Warner Shield assembly
US9562570B2 (en) * 2012-12-21 2017-02-07 Sparex Limited Safety guard for power take off

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3636945A1 (en) * 2018-10-10 2020-04-15 Sparex Limited Castellated locking clip for a safety guard of a power take off shaft with a coupling

Also Published As

Publication number Publication date
GB201721805D0 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
US11668351B2 (en) Safety guard support for power take off joints and shafts
US5586791A (en) Push-fit connector for joining a fluid line to a pipe
US6367980B1 (en) Ultra thin type rolling bearing and cage therefor
US9822818B1 (en) Bearing assembly with combination set screw and concentric shaft locking mechanism
US20200116206A1 (en) Castellated clip for power take off joint and shaft guards
US4435166A (en) Guard made up of sectional units for cardan shafts
WO2019120711A1 (en) Safety guard clip for power take off joints and shafts
CN102057174B (en) Torque limiter
US5484242A (en) Snap ring retaining washer
CA2263208C (en) Cardan transmission shaft, in particular of telescopic type, with protective sleeve and protective boots for the end forks
EP3486516A1 (en) Flexible rotational shaft with diaphragm couplings for angular and axial displacements
EP1803954B1 (en) Tripod type constant velocity joint
EP2935924B1 (en) Safety guard for power take off
GB1566735A (en) Guard device for rotry shaft
EP0611896A1 (en) Coupling shaft
US6896621B2 (en) Torque limiting coupling
GB2117089A (en) Toothed coupling
US2957322A (en) Couplings
EP3680501B1 (en) Retaining ring assemblies
GB2047372A (en) Safety guards for cardan shafts
CN214661453U (en) Shaft and pine nut thresher
US9683609B1 (en) Flexible couplings with improved torque transmitting insert
KR200307969Y1 (en) Angular snap ring
CN117957382A (en) Tripod constant velocity universal joint
JP2018048695A (en) Slide type constant velocity universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18800521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18800521

Country of ref document: EP

Kind code of ref document: A1