WO2019120314A1 - 一种基于单壁碳纳米角电极的固态离子选择性电极及制备方法 - Google Patents

一种基于单壁碳纳米角电极的固态离子选择性电极及制备方法 Download PDF

Info

Publication number
WO2019120314A1
WO2019120314A1 PCT/CN2019/074849 CN2019074849W WO2019120314A1 WO 2019120314 A1 WO2019120314 A1 WO 2019120314A1 CN 2019074849 W CN2019074849 W CN 2019074849W WO 2019120314 A1 WO2019120314 A1 WO 2019120314A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ion selective
wall carbon
ion
carbon nanohorn
Prior art date
Application number
PCT/CN2019/074849
Other languages
English (en)
French (fr)
Inventor
平建峰
姜成美
姚瑶
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2019120314A1 publication Critical patent/WO2019120314A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes

Definitions

  • the invention relates to the technical field of electrochemical sensors, in particular to a solid ion selective electrode based on a single-wall carbon nano-horn electrode and a preparation method thereof.
  • An ion selective electrode is a type of electrochemical sensor that utilizes a membrane potential to measure the activity or concentration of ions in a solution. When it is contacted with a solution containing ions to be tested, it is produced at the interface of its sensitive membrane and solution. The ion activity is directly related to the membrane potential.
  • ion selective electrodes As an analytical test tool that can quickly, accurately, conveniently and selectively determine a certain ion content in complex samples, ion selective electrodes have been widely used in environmental monitoring, biomedical testing, chemical production, geological testing and other fields.
  • Conventional ion selective electrodes consist of a sensitive membrane, an internal filling fluid and conductive elements. However, due to the presence of the internal filling liquid, such a sensor cannot be developed in the direction of miniaturization.
  • coated electrodes have been widely used for ion selective electrode preparation because of their simple preparation, easy miniaturization, and similar sensitivity and selectivity to conventional ion selective electrodes.
  • the coated electrode is made of a metal wire coated with an ion selective polymerization film.
  • the electrode since a thin layer of water is easily formed between the film and the metal, the electrode may cause severe potential drift and poor reproducibility.
  • the redox process in the water layer is mainly the reduction of dissolved oxygen, and the potential drift of the electrode is mainly caused by the change of pH and dissolved oxygen in the sample. Therefore, in order to make the coated ion selective electrode have better stability, it is necessary to select a substrate having a relatively high water repellency while having a fast electron transfer rate for preparing an ion selective electrode.
  • the carbon material has strong water repellency and is low in cost, so it can be used as a substrate for an ion selective electrode.
  • conventional carbon materials such as graphite, glassy carbon, and the like have a slow electron conduction rate, and coating electrodes based on these materials as a substrate are inferior in sensitivity.
  • the invention provides a solid-state ion selective electrode based on a single-wall carbon nano-horn electrode, which has extremely high potential stability, sensitivity and selectivity.
  • a solid-state ion selective electrode based on a single-walled carbon nanohorn electrode comprising an electrode substrate and an ion-selective polymer film coated on a surface of the electrode substrate, the electrode substrate being doped with a single-wall carbon nanohorn or surface
  • An electrode modified with a single-walled carbon nanohornaea comprising an electrode substrate and an ion-selective polymer film coated on a surface of the electrode substrate, the electrode substrate being doped with a single-wall carbon nanohorn or surface
  • An electrode modified with a single-walled carbon nanohornaea comprising an electrode substrate and an ion-selective polymer film coated on a surface of the electrode substrate, the electrode substrate being doped with a single-wall carbon nanohorn or surface
  • An electrode modified with a single-walled carbon nanohornaea comprising an electrode substrate and an ion-selective polymer film coated on a surface of the electrode substrate, the electrode substrate being doped with a single-wall carbon nanohorn
  • Single-walled carbon nanohorns have a diameter of 2 to 5 nm and a length of 40 to 50 nm, and their morphology is similar to that of a truncated single-walled carbon nanotube, but has a unique tapered structure at one end.
  • Single-walled carbon nanohorns have high specific surface capacitance and high electron conduction rate, and have strong hydrophobicity.
  • Solid-state ion-selective electrodes prepared with single-wall carbon nano-horn electrodes as electrode substrates have extremely high potential stability. , sensitivity and selectivity.
  • the electrode doped with single-wall carbon nano-horn is a single-wall carbon nano-horn carbon paste electrode, and the single-wall carbon nano-horn carbon paste electrode is composed of single-wall carbon nano-horn and binder, and the single-wall carbon nano-angle and viscosity
  • the mass ratio of the mixture is 7:1 to 7:7;
  • the binder is at least one of paraffin oil, triphenylamine and an ionic liquid; further preferably, the ionic liquid is an imidazole-based or pyridine-based hexafluorophosphate.
  • the electrode surface-modified with a single-walled carbon nano-corner is a screen-printed electrode or a glassy carbon electrode surface-modified with a single-walled carbon nanohorn.
  • the ion selective polymer membrane may be a calcium ion selective polymer membrane or a potassium ion selective polymer membrane.
  • the invention also provides a preparation method of the solid-state ion selective electrode based on the single-wall carbon nano-horn electrode described above, comprising the following steps:
  • the electrode substrate is prepared by:
  • the single-wall carbon nanohorn is uniformly mixed with the binder, inserted into the electrode sleeve, compacted, inserted into the wire, and dried to obtain an electrode substrate doped with a single-wall carbon nanohorn;
  • a single-walled carbon nanohorn dispersion is coated on the surface of the screen printed electrode or the glassy carbon electrode, and dried to obtain an electrode substrate having a surface-modified single-walled carbon nano-corner.
  • the single-walled carbon nanohorns can be prepared by prior art techniques, for example, refer to the reference (Nan Li, Zhiyong Wang, Keke Zhao, Zujin Shi, Zhennan Gu, Shukun Xu, Carbon, 2010, 4, 1580-1585). .) Preparation using an arc discharge method.
  • the ion-selective polymer film solution is composed of a solute and a solvent, and the solute includes an ion carrier, a polymer, a plasticizer, and a lipophilic macromolecule.
  • the ion-selective polymer film solution is applied dropwise to the electrode substrate, and after drying, becomes an ion-selective polymer film.
  • the solute comprises:
  • the ionophore may be a calcium ion carrier or a potassium ion carrier; after the ion selective polymer membrane solution is dried, a corresponding calcium ion selective polymer film or a potassium ion selective polymer film may be respectively formed.
  • the calcium ionophore is ETH 1001, 10,19-bis[(octadecylcarbamoyl)methoxyacetyl]-1,4,7,13,16-pentaoxa-10,19- Diazacyclohexadecane (such as 21203 of Fluka), (-)-(R,R)-N,N'-di-[11-(ethoxycarbonyl)undecyl]-N,N' ,4,5-tetramethyl-3,6-dioxaoctane-diamide, diethyl N,N'-[(4R,5R)-4,5-dimethyl-1,8-di Oxo-3,6-dioxaoctylene] bis(12-methylaminolaurate) (eg, 21192 of Fluka), N, N, N', N'-tetra[cyclohexyl] diglycolic acid Diamide, N,N,N',N'-
  • the potassium ionophore is valinomycin (Valinomycin, such as Sigma V0627), 4-tert-butyl-2,2,14,14-tetraethyl-substituted-2a, 14a, dioxy bridge cup [4 Aromatic hydrocarbon-tetra-tert-butyl tetraacetate (such as Fluika's 60396), bis[(benzo-15-crown-5)-4'-ylmethyl]pimelate (such as Fluka's 60401), 2-ten Dialkyl-2-methyl-1,3-propanediylbis[N-[5'-nitro(benzo-15-crown-5)-4'-yl]carbamate] (eg Fluka) One of the 60397).
  • the polymer is polyvinyl chloride (PVC) and/or polymethyl methacrylate (PMMA).
  • the plasticizer is at least one of dinitrophenyloctyl ether, dioctyl adipate and butyl phthalate.
  • Plasticizers increase the plasticity of ion-selective polymer films.
  • the lipophilic macromolecule is potassium tetrachloroborohydride and/or sodium tetraphenylborate.
  • the lipophilic macromolecule can eliminate the interference of the lipophilic anion on the ionophore in the actual solution, increase the sensitivity of the electrode, and reduce the impedance of the membrane.
  • the mass of the organic solvent is 4-10 times the total mass of the solute.
  • the organic solvent is tetrahydrofuran.
  • the solid ion selective electrode of the invention is low in cost and simple to prepare; the solid ion selective electrode of the invention not only has comparable value compared to the ion selective electrode containing the inner filling liquid Sensitivity and selectivity, but also to the direction of the microelectrode.
  • Example 2 is a dynamic response diagram of a solid ion selective electrode prepared in Example 10.
  • Example 3 is a water layer test chart of the solid ion selective electrode prepared in Example 14.
  • the single-wall carbon nanohorn dimethylformamide (DMF) is dispersed on the surface of the glassy carbon electrode (or screen printing electrode) and dried at room temperature (or infrared lamp) to prepare the desired single-wall carbon nanohorn. Modify the electrode.
  • the concentration of the single-walled carbon nanohorn in the dispersion was 2 mg/ml; the volume of the dimethylformamide dispersion of the single-walled carbon nanohorn was 6-8 ⁇ L.
  • Single-walled carbon nanohorns can be prepared by prior art techniques, for example, by reference to the literature using arc discharge methods (Nan Li, Zhiyong Wang, Keke Zhao, Zujin Shi, Zhennan Gu, Shukun Xu, Carbon, 2010, 4, 1580-1585.).
  • the mixture was inserted into a clean electrode cannula and compacted, and a copper wire was inserted as a wire behind the electrode to prepare a desired carbon paste electrode.
  • the calcium ion polymer membrane solution is composed of a calcium ion carrier, a polymer, a plasticizer, a lipophilic macromolecule, and a solvent;
  • the calcium ionophore is N, N, N', N'-tetra[cyclohexyl] diglycolic acid diamide, based on the total mass of the solute, the mass percentage concentration of the calcium ionophore is 1%;
  • the polymer is polymethyl methacrylate, and the mass percentage concentration of the polymer is 33% based on the total mass of the solute;
  • the plasticizer is butyl phthalate, based on the total mass of the solute, the mass percentage concentration of the plasticizer is 65.8%;
  • the lipophilic macromolecule is sodium tetraphenylborate, and the mass percentage concentration of the lipophilic macromolecule is 0.2% based on the total mass of the solute;
  • the organic solvent is tetrahydrofuran, and its mass is 4 times that of the solute.
  • Example 3 Compared with Example 3, the difference is that the calcium ionophore is replaced by ETH 1001, 10,19-bis[(octadecylcarbamoyl)methoxyacetyl]-1,4,7, respectively. 13,16-pentaoxa-10,19-diazacyclohexadecane, (-)-(R,R)-N,N'-di-[11-(ethoxycarbonyl)undecyl ]-N,N',4,5-tetramethyl-3,6-dioxaoctane-diamide, diethyl N,N'-[(4R,5R)-4,5-dimethyl -1,8-dioxo-3,6-dioxaoctylene] bis(12-methylaminolaurate), N,N,N',N'-tetracyclohexyl-3-oxapenta Diamide, tert-butyl-cup [
  • Example 3 The single-walled carbon nanohorn modified electrode of Example 3 was replaced with a glassy carbon electrode which was not modified with a single-wall carbon nanohorn, and the same as in Example 3.
  • the potassium ion polymer membrane solution is composed of a potassium ion carrier, a polymer, a plasticizer, a lipophilic macromolecule, and a solvent;
  • the potassium ionophore is valinomycin (such as V0627 of Sigma), and the mass percentage of the potassium ionophore is 1% based on the total mass of the solute;
  • the polymer is polyvinyl chloride, based on the total mass of the solute, the mass percentage of the polymer is 33%;
  • the plasticizer is dinitrophenyloctyl ether, and the mass percentage of the plasticizer is 65.8% based on the total mass of the solute;
  • the lipophilic macromolecule is potassium tetrachlorobenzeneborate, and the mass percentage of the lipophilic macromolecule is 0.2% based on the total mass of the solute;
  • the organic solvent is tetrahydrofuran, and its mass is 4 times that of the solute.
  • Example 10 Compared with Example 10, the difference was that the potassium ionophore was replaced by 4-tert-butyl-2,2,14,14-tetraethyl-substituted-2a,14a,diox bridge [4], respectively.
  • Example 2 (1) according to the method of Example 2, using 0.7 g of single-wall carbon nanohorn powder and 0.3 g of paraffin oil to prepare a single-wall carbon nanohorn carbon paste electrode;
  • the potassium ion polymer membrane solution is composed of a potassium ion carrier, a polymer, a plasticizer, a lipophilic macromolecule, and a solvent;
  • the potassium ionophore is valinomycin (such as V0627 of Sigma), and the mass percentage of the potassium ionophore is 1% based on the total mass of the solute;
  • the polymer is polyvinyl chloride, based on the total mass of the solute, the mass percentage of the polymer is 33%;
  • the plasticizer is dinitrophenyloctyl ether, and the mass percentage of the plasticizer is 65.8% based on the total mass of the solute;
  • the lipophilic macromolecule is potassium tetrachlorobenzeneborate, and the mass percentage of the lipophilic macromolecule is 0.2% based on the total mass of the solute;
  • the organic solvent is tetrahydrofuran, and its mass is 4 times that of the solute.
  • Example 14 Compared with Example 14, the difference was that the potassium ionophore was replaced by 4-tert-butyl-2,2,14,14-tetraethyl-substituted-2a,14a,diox bridge [4], respectively.
  • Example 3 The electrodes prepared in Example 3 and Comparative Example 1 were activated in a 0.01 mol/L calcium chloride solution for 24 hours. The electrode was then placed in a 0.1 mol/L calcium chloride solution to observe its electrochemical impedance response. The results are shown in Figure 1.
  • the single-walled carbon nanohorn electrode has a faster electron transfer rate than the glassy carbon electrode.
  • the potassium ion selective electrode prepared in Example 10 was dried at room temperature for 24 hours, and then activated in a 0.01 mol/L potassium chloride solution for 24 hours. Then, the activated potassium ion selective electrode was placed in a 10 -6 mol/L potassium chloride solution, and the potassium ion concentration was gradually increased, and the potential response was observed. The results are shown in Fig. 2.
  • the potential response increases with the increase of potassium ion concentration, and the response time is within 10s, indicating that the potassium ion selective electrode based on the single-wall carbon nano-horn electrode has extremely high electron conduction ability.
  • the potassium ion selective electrode prepared in Example 14 was dried at room temperature for 24 hours, and then activated in a 0.01 mol/L potassium chloride solution for 24 hours. Then, the activated potassium ion selective electrode was placed in a 0.1 mol/L potassium chloride solution, and the response was observed. Then, the electrode was placed in a 0.1 mol/L sodium chloride solution to observe the potential response, and finally Then, it was placed in a 0.1 mol/L potassium chloride solution, and the potential response was observed. The results are shown in Fig. 3.
  • the potassium ion selective electrode after these steps, still maintains an extremely stable potential response and repeatability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种基于单壁碳纳米角电极的固态离子选择性电极及制备方法。固态离子选择性电极包括电极基底和涂覆在电极基底表面的离子选择性聚合物膜,电极基底为掺杂有单壁碳纳米角或表面修饰有单壁碳纳米角膜的电极。相比于含有内充液的离子选择性电极,固态离子选择性电极不仅具有相当的灵敏度和选择性,而且还可以向微电极方向发展。

Description

一种基于单壁碳纳米角电极的固态离子选择性电极及制备方法 技术领域
本发明涉及电化学传感器技术领域,尤其涉及一种基于单壁碳纳米角电极的固态离子选择性电极及制备方法。
背景技术
离子选择性电极是一类利用膜电势测定溶液中离子的活度或浓度的电化学传感器,当它和含待测离子的溶液接触时,在它的敏感膜和溶液的相界面上产生与该离子活度直接有关的膜电势。作为一种能够快速、准确、方便、选择性的测定复杂样品中某种离子含量的分析测试工具,离子选择性电极已广泛应用于环境监测、生物医学检测、化工生产、地质检测等领域。传统的离子选择性电极由敏感膜、内充液和导电元件组成。然而,由于内充液的存在,使得这种传感器无法向微型化方向发展。
现有技术中,涂覆电极以其制备简单、易于微型化、且具有与传统离子选择性电极相似的灵敏度和选择性等特点,已广泛用于离子选择性电极制备。涂覆电极由涂覆离子选择性聚合膜的金属线制成。然而,由于在膜与金属之间易于形成一层很薄的水层,因而电极会产生严重的电位漂移,重现性不好。水层中的氧化还原过程主要是溶解氧的还原,电极的电位漂移主要是由样品中pH和溶解氧的改变所引起。因此,为了使涂覆离子选择性电极具有较好的稳定性,必须选取憎水性较强,同时具有快速电子传递速率的基底用于制备离子选择性电极。
碳素材料具有较强的憎水性,同时成本低廉,因此可以用作离子选择性电极的基底。然而,常规的碳素材料如石墨、玻碳等,其电子传导速率较慢,基于这些材料作为基底的涂覆电极灵敏度较差。
发明内容
本发明提供一种基于单壁碳纳米角电极的固态离子选择性电极,具有极高的电位稳定性、灵敏度和选择性。
本发明提供了如下技术方案:
一种基于单壁碳纳米角电极的固态离子选择性电极,包括电极基底和涂覆在电极基底表面的离子选择性聚合物膜,所述的电极基底为掺杂有单壁碳纳米角或表面修饰有单壁碳纳米角膜的电极。
单壁碳纳米角(SWNHs)的直径为2~5nm,长度为40~50nm,其形态类似于截短后的单壁碳纳米管,但其一端具有独特的锥形结构。单壁碳纳米角具有高比表电容和 高电子传导速率的特性,同时具有较强的憎水性,以单壁碳纳米角电极为电极基底制备的固态离子选择性电极具有极高的电位稳定性、灵敏度和选择性。
掺杂有单壁碳纳米角的电极为单壁碳纳米角碳糊电极,单壁碳纳米角碳糊电极由单壁碳纳米角和粘合剂组成,所述的单壁碳纳米角与粘合剂的质量比为7:1~7:7;
所述的粘合剂为石蜡油、三苯胺和离子液体中的至少一种;再优选的,所述的离子液体为基于咪唑的或基于吡啶的六氟磷酸盐。
表面修饰有单壁碳纳米角膜的电极为采用单壁碳纳米角进行表面修饰的丝网印刷电极或玻碳电极。
所述的离子选择性聚合物膜可以为钙离子选择性聚合物膜或钾离子选择性聚合物膜。
本发明还提供了上述基于单壁碳纳米角电极的固态离子选择性电极的制备方法,包括以下步骤:
(1)制备电极基底;
(2)在所述的电极基底表面滴涂离子选择性聚合物膜溶液,干燥后得到所述的固态离子选择性电极。
优选的,电极基底的制备方法为:
将单壁碳纳米角与粘合剂混合均匀,塞入电极套管中,压实,插入导线,干燥后得到掺杂有单壁碳纳米角的电极基底;
或,在丝网印刷电极或玻碳电极的表面涂覆单壁碳纳米角分散液,干燥后得到表面修饰有单壁碳纳米角膜的电极基底。
所述的单壁碳纳米角可采用现有技术进行制备,例如,可参照参考文献(Nan Li,Zhiyong Wang,Keke Zhao,Zujin Shi,Zhennan Gu,Shukun Xu,Carbon,2010,4,1580-1585.)使用电弧放电的方法进行制备。
步骤(2)中,离子选择性聚合物膜溶液由溶质和溶剂组成,所述的溶质包括离子载体、聚合物、增塑剂和亲脂性大分子。离子选择性聚合物膜溶液滴涂于电极基底上,干燥后即成为离子选择性聚合物膜。
优选的,以质量百分比计,所述的溶质包括:
Figure PCTCN2019074849-appb-000001
所述的离子载体可以为钙离子载体或钾离子载体;离子选择性聚合物膜溶液干燥后分别可以形成相应的钙离子选择性聚合物膜或钾离子选择性聚合物膜。
所述的钙离子载体为ETH 1001、10,19-双[(十八烷基氨基甲酰基)甲氧基乙酰基]-1,4,7,13,16-五氧杂-10,19-二氮杂环二十一烷(如Fluka的21203)、(-)-(R,R)-N,N′-二-[11-(乙氧羰基)十一烷基]-N,N′,4,5-四甲基-3,6-二氧杂辛烷-二酰胺、二乙基 N,N′-[(4R,5R)-4,5-二甲基-1,8-二氧代-3,6-二氧杂亚辛基]双(12-甲氨基月桂酸酯)(如Fluka的21192)、N,N,N′,N′-四[环己基]二甘醇酸二酰胺、N,N,N′,N′-四环己基-3-氧杂戊二酰胺(如Fluka的21193)、叔丁基-杯[4]芳烃四[2-(二苯基磷酰基)乙醚](如Fluka的72385)中的一种。
所述的钾离子载体为缬氨霉素(Valinomycin,如Sigma的V0627)、4-叔-丁基-2,2,14,14-四乙基取代-2a,14a,二氧桥杯[4]芳烃-四乙酸四叔丁酯(如Fluka的60396)、双[(苯并-15-冠-5)-4′-基甲基]庚二酸酯(如Fluka的60401)、2-十二烷基-2-甲基-1,3-丙二基双[N-[5′-硝基(苯并-15-冠-5)-4′-基]氨基甲酸酯](如Fluka的60397)中的一种。
所述的聚合物为聚氯乙烯(PVC)和/或聚甲基丙烯酸甲酯(PMMA)。
所述的增塑剂二硝基苯辛基醚、己二酸二辛酯和邻苯二甲酸丁酯中的至少一种。
增塑剂能提高离子选择性聚合物膜的塑性。
所述的亲脂性大分子为四氯苯硼化钾和/或四苯硼钠。
亲脂性大分子可以排除实际溶液中亲脂性阴离子对离子载体的干扰,提高电极的灵敏度,并且降低膜的阻抗。
离子选择性聚合物膜溶液中,有机溶剂的质量为溶质总质量的4-10倍。
优选的,所述的有机溶剂为四氢呋喃。
与现有技术相比,本发明的有益效果为:
相比于传统的金属涂覆电极,本发明的固态离子选择性电极成本低廉,且制备简单;相比于含有内充液的离子选择性电极,本发明的固态离子选择性电极不仅具有相当的灵敏度和选择性,而且还可以向微电极方向发展。
附图说明
图1为电极在0.1mol/L的氯化钙溶液中的电化学阻抗谱图,其中:a为实施例3制备的固态离子选择性电极的响应曲线,b为对比例1制备的电极的响应曲线;
图2为实施例10制备的固态离子选择性电极的动态响应图;
图3为实施例14制备的固态离子选择性电极的水层测试图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例1单壁碳纳米角修饰电极基底的制备
将单壁碳纳米角的二甲基甲酰胺(DMF)分散液滴在玻碳电极(或丝网印刷电极)表面,室温(或红外灯)下干燥,制备成所需的单壁碳纳米角修饰电极。
分散液中单壁碳纳米角的浓度为2mg/ml;单壁碳纳米角的二甲基甲酰胺分散液的体积为6-8μL。
单壁碳纳米角可以采用现有技术进行制备,例如,可参照文献使用电弧放电的方法进行制备(Nan Li,Zhiyong Wang,Keke Zhao,Zujin Shi,Zhennan Gu,Shukun Xu,Carbon,2010,4,1580-1585.)。
实施例2单壁碳纳米角碳糊电极基底的制备
将单壁碳纳米角粉末与石蜡油、三苯胺或离子液体以7:3的质量比混合,充分研磨,得到均匀的混合物;
将混合物塞入干净的电极套管中并压实,在电极的后面插入一根铜线作为导线,制备成所需的碳糊电极。
实施例3钙离子选择性电极的制备
(1)根据实施例1的方法制备单壁碳纳米角修饰电极(以玻碳电极为基底);
(2)在上述制得的表面修饰有单壁碳纳米角的电极基底表面滴上100μL钙离子聚合物膜溶液,室温下干燥24小时;
钙离子聚合物膜溶液由钙离子载体、聚合物、增塑剂、亲脂性大分子以及溶剂组成;
钙离子载体为N,N,N′,N′-四[环己基]二甘醇酸二酰胺,以溶质的总质量为基准,钙离子载体的质量百分比浓度为1%;
聚合物为聚甲基丙烯酸甲酯,以溶质的总质量为基准,聚合物的质量百分比浓度为33%;
增塑剂为邻苯二甲酸丁酯,以溶质的总质量为基准,增塑剂的质量百分比浓度为65.8%;
亲脂大分子为四苯硼钠,以溶质的总质量为基准,亲脂大分子的质量百分比浓度为0.2%;
有机溶剂为四氢呋喃,其质量为溶质质量的4倍。
实施例4~9钙离子选择性电极的制备
与实施例3相比,不同之处在于,分别将钙离子载体替换为ETH 1001、10,19-双[(十八烷基氨基甲酰基)甲氧基乙酰基]-1,4,7,13,16-五氧杂-10,19-二氮杂环二十一烷、(-)-(R,R)-N,N′-二-[11-(乙氧羰基)十一烷基]-N,N′,4,5-四甲基-3,6-二氧杂辛烷-二酰胺、二乙基N,N′-[(4R,5R)-4,5-二甲基-1,8-二氧代-3,6-二氧杂亚辛基]双(12-甲氨基月桂酸酯)、N,N,N′,N′-四环己基-3-氧杂戊二酰胺、叔丁基-杯[4]芳烃四[2-(二苯基磷酰基)乙醚],其他参数同实施例3。
对比例1
将实施例3中的单壁碳纳米角修饰电极替换成未经单壁碳纳米角修饰的玻碳电极,其他同实施例3。
实施例10钾离子选择性电极的制备
(1)根据实施例1的方法制备单壁碳纳米角修饰电极(以玻碳电极为基底);
(2)在上述制得的表面修饰有单壁碳纳米角的电极基底表面滴上100μL钾离子聚合物膜溶液,室温下干燥24小时;
钾离子聚合物膜溶液由钾离子载体、聚合物、增塑剂、亲脂性大分子以及溶剂组成;
钾离子载体为缬氨霉素(Valinomycin,如Sigma的V0627),以溶质的总质量为基准,钾离子载体的质量百分数为1%;
聚合物为聚氯乙烯,以溶质的总质量为基准,聚合物的质量百分数为33%;
增塑剂为二硝基苯辛基醚,以溶质的总质量为基准,增塑剂的质量百分数为65.8%;
亲脂大分子为四氯苯硼化钾,以溶质的总质量为基准,亲脂大分子的质量百分数为0.2%;
有机溶剂为四氢呋喃,其质量为溶质质量的4倍。
实施例11~13钾离子选择性电极的制备
与实施例10相比,不同之处在于,分别将钾离子载体替换为4-叔-丁基-2,2,14,14-四乙基取代-2a,14a,二氧桥杯[4]芳烃-四乙酸四叔丁酯、双[(苯并-15-冠-5)-4′-基甲基]庚二酸酯、2-十二烷基-2-甲基-1,3-丙二基双[N-[5′-硝基(苯并-15-冠-5)-4′-基]氨基甲酸酯],其他参数同实施例10。
实施例14钾离子选择性电极的制备
(1)根据实施例2的方法,采用0.7g单壁碳纳米角粉末与0.3g石蜡油制备单壁碳纳米角碳糊电极;
(2)在上述制得的碳糊电极表面滴上30μL钾离子聚合物膜溶液,室温下干燥24小时;
钾离子聚合物膜溶液由钾离子载体、聚合物、增塑剂、亲脂性大分子以及溶剂组成;
钾离子载体为缬氨霉素(Valinomycin,如Sigma的V0627),以溶质的总质量为基准,钾离子载体的质量百分数为1%;
聚合物为聚氯乙烯,以溶质的总质量为基准,聚合物的质量百分数为33%;
增塑剂为二硝基苯辛基醚,以溶质的总质量为基准,增塑剂的质量百分数为65.8%;
亲脂大分子为四氯苯硼化钾,以溶质的总质量为基准,亲脂大分子的质量百分数为0.2%;
有机溶剂为四氢呋喃,其质量为溶质质量的4倍。
实施例15~17钾离子选择性电极的制备
与实施例14相比,不同之处在于,分别将钾离子载体替换为4-叔-丁基-2,2,14,14-四乙基取代-2a,14a,二氧桥杯[4]芳烃-四乙酸四叔丁酯、双[(苯并-15-冠-5)-4′-基甲基]庚二酸酯、2-十二烷基-2-甲基-1,3-丙二基双[N-[5′-硝基(苯并-15-冠-5)-4′-基]氨基甲酸酯],其他参数同实施例14。
测试例
将实施例3和对比例1制备的电极在0.01mol/L的氯化钙溶液中活化24小时。然后将电极置于0.1mol/L的氯化钙溶液中观察其电化学阻抗响应,结果见图1。
从图1中可以看出,相比于玻碳电极,单壁碳纳米角电极具有更快的电子传递速率。
将实施例10制备的钾离子选择性电极置于室温环境下干燥24小时后,在0.01mol/L的氯化钾溶液中活化24小时。然后将活化后的钾离子选择性电极置于10 -6mol/L的氯化钾溶液中,逐步增大钾离子浓度,观察其电位响应,结果如图2所示。
如图2所示,电位响应随着钾离子浓度的增加依次增加,同时响应时间在10s以内,说明以单壁碳纳米角电极为基底的钾离子选择性电极具有极高的电子传导能力。
将实施例14制备的钾离子选择性电极置于室温环境下干燥24小时后,在0.01mol/L的氯化钾溶液中活化24小时。然后将活化后的钾离子选择性电极置于0.1mol/L的氯化钾溶液中,观察其响应,然后再将电极置于0.1mol/L的氯化钠溶液中,观察其电位响应,最后再将其置于0.1mol/L的氯化钾溶液中,观察电位响应,结果如图3所示。
如图3所示,钾离子选择性电极经过这些步骤后,其依然能够保持极其稳定的电位响应和重复性。
分别测试实施例11~13、15~17制备的固态离子选择性电极的动态响应和水层测试性能,与实施例10和实施例14制备的电极性能一致。
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于单壁碳纳米角电极的固态离子选择性电极,其特征在于,包括电极基底和涂覆在电极基底表面的离子选择性聚合物膜,所述的电极基底为掺杂有单壁碳纳米角或表面修饰有单壁碳纳米角膜的电极。
  2. 根据权利要求1所述的固态离子选择性电极,其特征在于,掺杂有单壁碳纳米角的电极为单壁碳纳米角碳糊电极,单壁碳纳米角碳糊电极由单壁碳纳米角和粘合剂组成,所述的单壁碳纳米角与粘合剂的质量比为7:1~7:7;
    表面修饰有单壁碳纳米角膜的电极为采用单壁碳纳米角进行表面修饰的丝网印刷电极或玻碳电极。
  3. 根据权利要求1所述的固态离子选择性电极,其特征在于,所述的离子选择性聚合物膜为钙离子选择性聚合物膜或钾离子选择性聚合物膜。
  4. 一种根据权利要求1或2任一项所述的固态离子选择性电极的制备方法,其特征在于,包括以下步骤:
    (1)制备电极基底;
    (2)在所述的电极基底表面滴涂离子选择性聚合物膜溶液,干燥后得到所述的固态离子选择性电极。
  5. 根据权利要求4所述的固态离子选择性电极的制备方法,其特征在于,电极基底的制备方法为:
    将单壁碳纳米角与粘合剂混合均匀,塞入电极套管中,压实,插入导线,干燥后得到掺杂有单壁碳纳米角的电极基底;
    或,在丝网印刷电极或玻碳电极的表面涂覆单壁碳纳米角分散液,干燥后得到表面修饰有单壁碳纳米角膜的电极基底。
  6. 根据权利要求4所述的固态离子选择性电极的制备方法,其特征在于,步骤(2)中,离子选择性聚合物膜溶液由溶质和溶剂组成,所述的溶质包括离子载体、聚合物、增塑剂和亲脂性大分子。
  7. 根据权利要求6所述的固态离子选择性电极的制备方法,其特征在于,以质量百分比计,所述的溶质包括:
    Figure PCTCN2019074849-appb-100001
  8. 根据权利要求6或7任一项所述的固态离子选择性电极的制备方法,其特征在于,所述的离子载体可以为钙离子载体或钾离子载体;
    所述的钙离子载体为ETH 1001、10,19-双[(十八烷基氨基甲酰基)甲氧基乙酰基]-1,4,7,13,16-五氧杂-10,19-二氮杂环二十一烷、(-)-(R,R)-N,N′-二-[11-(乙氧羰基)十一烷基]-N,N′,4,5-四甲基-3,6-二氧杂辛烷-二酰胺、二乙基N,N′-[(4R,5R)-4,5-二甲基-1,8-二氧代-3,6-二氧杂亚辛基]双(12-甲氨基月桂酸酯)、N,N,N′,N′-四[环己基]二甘醇酸二酰胺、N,N,N′,N′-四环己基-3-氧杂戊二酰胺、叔丁基-杯[4]芳烃四[2-(二苯基磷酰基)乙醚]中的一种;
    所述的钾离子载体为缬氨霉素、4-叔-丁基-2,2,14,14-四乙基取代-2a,14a,二氧桥杯[4]芳烃-四乙酸四叔丁酯、双[(苯并-15-冠-5)-4′-基甲基]庚二酸酯、2-十二烷基-2-甲基-1,3-丙二基双[N-[5′-硝基(苯并-15-冠-5)-4′-基]氨基甲酸酯]中的一种。
  9. 根据权利要求6或7任一项所述的固态离子选择性电极的制备方法,其特征在于,所述的聚合物为聚氯乙烯和/或聚甲基丙烯酸甲酯。
  10. 根据权利要求6或7任一项所述的固态离子选择性电极的制备方法,其特征在于,所述的亲脂性大分子为四氯苯硼化钾和/或四苯硼钠。
PCT/CN2019/074849 2017-12-19 2019-02-12 一种基于单壁碳纳米角电极的固态离子选择性电极及制备方法 WO2019120314A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711374765.1A CN107884459A (zh) 2017-12-19 2017-12-19 一种基于单壁碳纳米角电极的固态离子选择性电极及其制备方法
CN201711374765.1 2017-12-19
CN201810261671.1A CN108828033A (zh) 2017-12-19 2018-03-27 一种基于单壁碳纳米角电极的固态离子选择性电极及制备方法
CN201810261671.1 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019120314A1 true WO2019120314A1 (zh) 2019-06-27

Family

ID=61771878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074849 WO2019120314A1 (zh) 2017-12-19 2019-02-12 一种基于单壁碳纳米角电极的固态离子选择性电极及制备方法

Country Status (2)

Country Link
CN (2) CN107884459A (zh)
WO (1) WO2019120314A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884459A (zh) * 2017-12-19 2018-04-06 浙江大学 一种基于单壁碳纳米角电极的固态离子选择性电极及其制备方法
CN109374711B (zh) * 2018-11-19 2019-12-24 浙江大学 一种基于MXene纳米片修饰的全固态离子选择性电极及其制备方法
CN109580751A (zh) * 2018-12-03 2019-04-05 中国科学院烟台海岸带研究所 一种实现分子印迹聚合物膜离子选择性电极更新的方法
CN113588754B (zh) * 2021-07-29 2022-04-29 中国石油大学(北京) 基于单壁碳纳米管复合多孔松果生物炭修饰的全固态离子选择性电极及制法
CN114235928A (zh) * 2021-12-09 2022-03-25 铂恩医疗科技(深圳)有限公司 一种钙离子选择电极感应膜溶液、其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021263A1 (en) * 2007-07-17 2009-01-22 Chung Yuan Christian University Multi-Ion Potential Sensor and Fabrication thereof
CN102507696A (zh) * 2011-10-19 2012-06-20 浙江大学 一种基于石墨烯电极的离子选择性电极及其制备方法
CN104090012A (zh) * 2014-07-21 2014-10-08 佳木斯大学 一种检测细胞内嘌呤碱基的碳纳米角/离子液体复合修饰电极的制备方法
CN105784825A (zh) * 2016-05-27 2016-07-20 海南师范大学 一种基于单壁碳纳米角修饰电极的电化学酶传感器制备及应用
CN105954338A (zh) * 2016-04-21 2016-09-21 福建师范大学 一种基于碳纳米角及三乙氧基硅烷的食源性污染物电化学传感方法
CN107884459A (zh) * 2017-12-19 2018-04-06 浙江大学 一种基于单壁碳纳米角电极的固态离子选择性电极及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2310476B1 (es) * 2007-05-29 2009-11-17 Universitat Rovira I Virgili Electrodos selectivos de iones de contacto solido basados en nanotubos de carbono.
JP2010038840A (ja) * 2008-08-07 2010-02-18 Sharp Corp 化学物質センシング素子、化学物質センシング装置、表面修飾カーボンナノ構造体の製造方法、及び、化学物質センシング素子の製造方法
CN107449816B (zh) * 2016-05-30 2019-09-13 中国科学院化学研究所 全固态离子选择性电极、制备方法和生物传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021263A1 (en) * 2007-07-17 2009-01-22 Chung Yuan Christian University Multi-Ion Potential Sensor and Fabrication thereof
CN102507696A (zh) * 2011-10-19 2012-06-20 浙江大学 一种基于石墨烯电极的离子选择性电极及其制备方法
CN104090012A (zh) * 2014-07-21 2014-10-08 佳木斯大学 一种检测细胞内嘌呤碱基的碳纳米角/离子液体复合修饰电极的制备方法
CN105954338A (zh) * 2016-04-21 2016-09-21 福建师范大学 一种基于碳纳米角及三乙氧基硅烷的食源性污染物电化学传感方法
CN105784825A (zh) * 2016-05-27 2016-07-20 海南师范大学 一种基于单壁碳纳米角修饰电极的电化学酶传感器制备及应用
CN107884459A (zh) * 2017-12-19 2018-04-06 浙江大学 一种基于单壁碳纳米角电极的固态离子选择性电极及其制备方法

Also Published As

Publication number Publication date
CN108828033A (zh) 2018-11-16
CN107884459A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
WO2019120314A1 (zh) 一种基于单壁碳纳米角电极的固态离子选择性电极及制备方法
Bagheri et al. Designing and fabrication of new molecularly imprinted polymer-based potentiometric nano-graphene/ionic liquid/carbon paste electrode for the determination of losartan
JP6883068B2 (ja) 分析物のセンサ
CN102507696B (zh) 一种基于石墨烯电极的离子选择性电极及其制备方法
CN109374711B (zh) 一种基于MXene纳米片修饰的全固态离子选择性电极及其制备方法
Liu et al. A solid-contact Pb2+-selective electrode based on electrospun polyaniline microfibers film as ion-to-electron transducer
Li et al. An all-solid-state polymeric membrane Pb2+-selective electrode with bimodal pore C60 as solid contact
Wardak Solid contact cadmium ion-selective electrode based on ionic liquid and carbon nanotubes
Mahmoud et al. Design of solid‐contact ion‐selective electrode with graphene transducer layer for the determination of flavoxate hydrochloride in dosage form and in spiked human plasma
Ganjali et al. Bio-mimetic ion imprinted polymer based potentiometric mercury sensor composed of nano-materials
CN112179964B (zh) 一种基于聚苯乙烯/金传感材料的自校准电极阵列及应用
Jiang et al. A solid-contact Pb2+-selective electrode based on a hydrophobic polyaniline microfiber film as the ion-to-electron transducer
Mugo et al. An integrated carbon entrapped molecularly imprinted polymer (MIP) electrode for voltammetric detection of resveratrol in wine
Jiang et al. Porous carbon-based robust, durable, and flexible electrochemical device for K+ detection in sweat
Kamal et al. Selective and sensitive lead (II) solid-contact potentiometric sensor based on naphthalene-sulfonamide derivative
Ai et al. Banana peel derived biomass carbon: Multi‐walled carbon nanotube composite modified electrode for sensitive voltammetric detection of baicalein
Jain et al. A graphene-polyaniline-Bi2O3 hybrid film sensor for voltammetric quantification of anti-inflammatory drug etodolac
CN113155933B (zh) 一种基于石墨烯-三氧化钼的全固态钾离子选择性电极及其制备方法和应用
Hassan et al. Molecular imprinted polymer-based potentiometric approach for the assay of the co-formulated tetracycline HCl, metronidazole and bismuth subcitrate in capsules and spiked human plasma
Alva et al. Ag/AgCl reference electrode based on thin film of arabic gum membrane
Liu et al. Robust fabrication of nanomaterial-based all-solid-state ion-selective electrodes
JP6682506B2 (ja) 金属酸化物pHセンサ
Faridbod et al. All solid sate potentiometric sensors for the measurement of paroxetine in pharmaceutical formulation
JP2004340965A (ja) 電位差測定イオン選択性電極
CN113155932B (zh) 一种基于石墨烯-五氧化二铌的全固态离子选择性电极及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19732218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19732218

Country of ref document: EP

Kind code of ref document: A1