WO2019120049A1 - 光通信装置以及相应的防伪方法和系统 - Google Patents

光通信装置以及相应的防伪方法和系统 Download PDF

Info

Publication number
WO2019120049A1
WO2019120049A1 PCT/CN2018/117865 CN2018117865W WO2019120049A1 WO 2019120049 A1 WO2019120049 A1 WO 2019120049A1 CN 2018117865 W CN2018117865 W CN 2018117865W WO 2019120049 A1 WO2019120049 A1 WO 2019120049A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical communication
communication device
function
identifier
information
Prior art date
Application number
PCT/CN2018/117865
Other languages
English (en)
French (fr)
Inventor
方俊
牛旭恒
李江亮
Original Assignee
北京外号信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京外号信息技术有限公司 filed Critical 北京外号信息技术有限公司
Publication of WO2019120049A1 publication Critical patent/WO2019120049A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation

Definitions

  • the invention belongs to the field of optical information technology, and more particularly to an optical communication device and a corresponding anti-counterfeiting method and system.
  • Barcodes and QR codes have been widely adopted to encode information. When these barcodes and QR codes are scanned with a specific device or software, the corresponding information is identified.
  • the recognition distance between the barcode and the two-dimensional code is very limited. For example, for a two-dimensional code, when scanning with a mobile phone camera, the phone must typically be placed at a relatively short distance, typically about 15 times the width of the two-dimensional code. Therefore, for long-distance recognition (for example, 200 times the width of the two-dimensional code), barcodes and two-dimensional codes are usually not implemented, or very large barcodes and two-dimensional codes must be customized, but this will bring about an increase in cost. And in many cases it is impossible to achieve due to various other restrictions. Moreover, barcodes and QR codes are also easily copied and replaced, and the security is not good, and it is not suitable for scenarios with high security requirements.
  • the invention provides an optical communication device comprising at least one light source and a controller, the controller controlling the light source to emit different light to communicate different information, wherein the controller is further configured to: Selecting one of a plurality of set transformation functions; providing an anti-counterfeit code and a function verification code associated with the optical communication device as input to the selected transformation function; and controlling the light source to transmit the optical communication device The identifier and the output value of the transform function.
  • the controller may be further configured to control the light source to transmit an identifier of the transformation function while transmitting an identifier of the optical communication device and an output value of the transformation function.
  • the controller may be configured to select a transformation function based on current time information.
  • the controller may be configured to select a transform function based on a current time by establishing a mapping between current time information and an identifier of a transform function.
  • the controller may be further configured to provide the current time information of the optical communication device together with the security code and the function verification code as an input to the selected transformation function.
  • the present invention provides an optical communication device anti-counterfeiting system comprising the above-described optical communication device and server; wherein the server is configured to:
  • optical communication device It is verified whether the optical communication device is legal by comparing the extracted security code with a security code corresponding to the optical communication device.
  • multiple optical communication devices may share the same function verification code, or different optical communication devices may use different function verification codes.
  • the optical communication device can be configured to select a transformation function based on current time information; the server can be configured to: estimate a current time of the optical communication device based on a current time of the server; and based on the estimate The current time of the optical communication device selects a plurality of inverse transform functions to be used to process the received information.
  • the optical communication device may perform time synchronization with the server periodically or irregularly.
  • the optical communication device may be further configured to control the light source to transmit current time information of the optical communication device while transmitting an identifier of the optical communication device and an output value of the conversion function;
  • the server may be further configured to extract time information from the received information for time synchronization with the optical communication device.
  • the present invention also provides an anti-counterfeiting system for an optical communication device, comprising a server, an optical communication device, and an anti-counterfeiting device communicatively coupled to the optical communication device, wherein:
  • the optical communication device includes at least one light source and a controller that controls the light source to emit different light to deliver different information;
  • the anti-counterfeiting device is configured to: select one transform function from a plurality of preset transform functions; provide a pseudo-code and a function verification code associated with the optical communication device as input to the selected transform function; An output value of the conversion function is provided to the optical communication device, and instructing the optical communication device to issue the output value and an identifier of the optical communication device;
  • the server is configured to: receive information obtained by image acquisition of the optical communication device via an image acquisition device; extract an identifier of the optical communication device from the information and determine a corresponding to the optical communication device based on the identifier a function verification code and a security code; providing the remaining information except the identifier as an input to a plurality of inverse transform functions for processing, and including an output of the inverse transform function of the determined function verification code from the processing result thereof Extracting the security code; and verifying whether the optical communication device is legal by comparing the extracted security code with a security code corresponding to the optical communication device.
  • the present invention provides an anti-counterfeiting method for an optical communication device, comprising:
  • Step S1) for the optical communication device to which the identification information is to be issued, select one transformation function from among a plurality of transformation functions, and provide the pseudo-code and the function verification code associated with the identifier of the optical communication device as input to the selected transformation function;
  • Step S2 presenting an identifier thereof and an output value of the transform function by the optical communication device;
  • Step S3 extracting, by the authentication server, an identifier of the optical communication device from the information transmitted by the optical communication device obtained by the image acquisition device, and determining a function verification code and a security code corresponding to the optical communication device based on the identifier;
  • Step S4) the remaining information other than the identifier is provided as input to the plurality of inverse transform functions for processing by the authentication server, and is extracted from the output of the inverse transform function including the determined function verification code in the processing result thereof.
  • Security code
  • Step S5) comparing the extracted security code with the security code corresponding to the optical communication device to verify the validity of the optical tag.
  • the conversion function can be selected in step S1) by establishing a mapping between the current time information of the optical communication device and the function identifier of the transformation function.
  • the method may further include: estimating, by the authentication server, a current time of the optical communication device; obtaining a function identifier by using the mapping based on the estimated current time; and selecting a function within a certain range centered on the function identifier
  • the information is processed by a plurality of inverse transform functions corresponding to the identifier.
  • the current time information of the optical communication device may also be included in the input in step S1).
  • the method further includes periodically synchronizing the optical communication device with the authentication server.
  • an optical communication device having anti-counterfeiting capability is provided.
  • many types of optical communication devices do not have two-way communication capabilities (for example, information can only be transmitted to the other party but cannot be received from the other party), most of the current anti-counterfeiting methods in communication technology are not applicable.
  • the present invention solves this problem well in the anti-counterfeiting of an optical communication device having only one-way communication capability.
  • the anti-counterfeiting method of the present invention provides an extremely high anti-counterfeiting capability by dynamically selecting a transform function, and thus is particularly suitable for application scenarios requiring strong anti-counterfeiting capabilities such as transactions and payment.
  • FIG. 1 is a schematic structural diagram of an anti-counterfeiting system of an optical communication device according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing an anti-counterfeiting method for an optical communication device according to an embodiment of the present invention.
  • an optical communication device is provided that is capable of transmitting different information by emitting different lights.
  • the optical communication device is also referred to herein as a "light tag" and both are used interchangeably throughout this application.
  • the optical communication device includes at least one light source and a controller for controlling different lights emitted by the light source to convey different information.
  • the controller can cause the light source to emit different light by changing the properties of the light emitted by the light source.
  • the property of the light may be any property that the optical imaging device (eg, CMOS imaging device) can perceive; for example, it may be an attribute of the human eye that is perceived by the intensity, color, wavelength, etc. of the light, or other attributes that are not perceptible to the human eye.
  • the intensity, color or wavelength of the electromagnetic wavelength outside the visible range of the human eye changes, or any combination of the above properties.
  • a change in the properties of light can be a single property change, or a combination of two or more properties can change.
  • the intensity of the light is selected as an attribute, it can be achieved simply by selecting to turn the light source on or off.
  • the light source is turned on or off to change the properties of the light, but those skilled in the art will appreciate that other ways to change the properties of the light are also possible.
  • the optical tag can be used in the optical tag as long as one of its properties that can be perceived by the optical imaging device can be varied at different frequencies.
  • Various common optical devices can be included in the light source, such as a light guide plate, a soft plate, a diffuser, and the like.
  • the light source may be an LED light, an array of a plurality of LED lights, a display screen or a part thereof, and even an illuminated area of light (for example, an illuminated area of light on a wall) may also serve as a light source.
  • the shape of the light source may be various shapes such as a circle, a square, a rectangle, a strip, an L, or the like.
  • the controller of the optical tag can control the properties of the light emitted by each source to communicate information.
  • "0" or "1" of binary digital information can be represented by controlling the turning on and off of each light source such that multiple light sources in the optical tag can be used to represent a sequence of binary digital information.
  • each light source can be used not only to represent a binary number, but also to represent data in ternary or larger hexadecimal.
  • each light source can represent data in ternary or larger hexadecimal. Therefore, the optical tag of the present invention can significantly increase the data encoding density compared to the conventional two-dimensional code.
  • the controller of the optical tag can control the light source to change the properties of the light it emits at a certain frequency. Therefore, the optical tag of the present invention can represent different data information at different times, for example, different. A sequence of binary digital information.
  • each frame of the image can be used to represent a set of information sequences, thereby comparing to a conventional static
  • the QR code can further significantly increase its data encoding density.
  • an optical label can be imaged using an optical imaging device or an image capture device that is common in the art, and the transmitted information, such as a binary data 1 or a data 0 information sequence, is determined from each frame of image to achieve light.
  • the optical imaging device or image acquisition device may include an image acquisition component, a processor, a memory, and the like.
  • the optical imaging device or image acquisition device may be, for example, a smart mobile terminal having a photographing function, including a mobile phone, a tablet, smart glasses, etc., which may include an image capture device and an image processing module.
  • the user visually finds the optical tag within a range of distance from the optical tag, and scans the optical tag by performing the information capture and interpretation process by causing the mobile terminal imaging sensor to face the optical tag.
  • the controller of the optical tag controls the light source to change the attribute of the light emitted by the light source at a certain frequency
  • the image acquisition frequency of the mobile terminal can be set to be greater than or equal to twice the frequency of the attribute conversion of the light source.
  • the process of identifying and decoding can be completed by performing a decoding operation on the acquired image frame.
  • the serial number, the check digit, the time stamp, and the like may be included in the information transmitted by the optical tag.
  • a start frame or an end frame may be given in a plurality of image frames as needed, or both, for indicating a start or end position of a complete period of the plurality of image frames, the start frame or the end frame may be It is set to display a particular combination of data, for example: all 0s or all 1s, or any special combination that will not be the same as the information that may actually be displayed.
  • CMOS imaging device when a continuous multi-frame image of a light source is captured by a CMOS imaging device, it can be controlled by a controller such that a switching time interval between operating modes of the light source is equal to a full frame imaging time of the CMOS imaging device. Length, thereby achieving frame synchronization of the light source with the imaging device. Assuming that each light source transmits 1 bit of information per frame, for a shooting speed of 30 frames per second, each light source can deliver 30 bits of information per second, with an encoding space of 2 30 , which can include, for example, an initial Frame tag (frame header), optical tag ID, password, verification code, URL information, address information, time stamp, or a different combination thereof.
  • Table 1 presents an example packet structure in accordance with one embodiment of the present invention:
  • the optical label according to the embodiment of the present invention transmits information by emitting different light, which has the advantages of long distance, visible light condition requirement, strong directivity, and positionability, and is transmitted by the optical label.
  • the information can change rapidly over time, providing a large information capacity. Therefore, optical tags have greater information interaction capabilities, which can provide great convenience for users and businesses.
  • each optical tag is assigned a unique identifier (ID) for uniquely identifying or identifying by the manufacturer, manager, user, etc. of the optical tag.
  • ID unique identifier
  • Light label In many cases, an optical tag needs to publish its identifier, and the user obtains its identifier by scanning the optical tag to access the service provided based on the optical tag. During this period, there may be various security risks caused by the interception, forgery or replacement of the identification information issued by the optical label.
  • FIG. 1 illustrates an optical tag anti-counterfeiting system including an optical tag 30 and an authentication server 40 in accordance with an embodiment of the present invention.
  • the optical tag 30 typically includes a controller and a light source for controlling the light source to emit different light to convey different information.
  • the user 10 can perform image acquisition on the optical tag 30 using the image capture device 20 (eg, a cell phone) to obtain information transmitted by the optical tag 30, and authenticate the validity of the optical tag 30 by the authentication server 40.
  • the image capture device 20 eg, a cell phone
  • the identification information of each optical tag 30 includes two parts: an identifier of the optical tag and a security code corresponding to the identifier.
  • the identifier is sent in plaintext, and the corresponding security code needs to be transformed by the set conversion function.
  • Only the authenticator (for example, the authentication server 40) who knows the conversion function can correctly inversely transform the received information to obtain the security code of the optical tag to verify the validity of the optical tag.
  • the pre-set conversion function is only visible to the optical tag 30 and the authentication server 40, and is kept secret for image acquisition devices, users, merchants, and other optical tag-based service providers.
  • the specific form of the transform function is not limited, and any function or transform rule that can cause the security code to be changed may be employed.
  • the order of each element in the security code is shuffled according to certain rules, and some positions in the security code are reversed and the like.
  • various existing symmetric encryption or asymmetric encryption algorithms may be selected to encrypt the security code.
  • an optical tag encrypts a security code with its key, and an authentication server can decrypt the received information with the same key.
  • the authentication server may compare the security code obtained by the inverse transform process with the security code corresponding to the optical tag ID saved by the server, and if the two are consistent, the optical tag is confirmed to be legal.
  • a set of optical tags may share a security code, and different sets of optical tags use different security codes. In some embodiments, it may also be that different optical tags use different security codes.
  • two or more transformation functions can be assigned to each optical tag.
  • Each time the optical tag issues its identification information one of the transformation functions may be selected according to a preset rule to transform its security code, so that the optical tag presents different coding information each time the identification information is released.
  • one of the transformation functions may be selected in a sequential or random extraction manner, and the identifier of the transformation function is issued together with the identification information of the optical label, so that the verification party can select the corresponding one by the identifier of the transformation function.
  • the verifier can select a corresponding inverse transform function by a function verification code.
  • the function verification code may be a fixed value pre-agreed by the authenticator and the optical tag. Each time the optical tag issues its identification information, its security code is transformed with the function verification code using the selected transformation function, and the output value of the conversion function is issued together with the identifier of the optical tag.
  • the function verification code can be located before or after the security code.
  • the verifier performs processing on the received information in turn by all the inverse transform functions stored therein. When the output value of an inverse transform function includes the correct function verification code, it is determined that the inverse transform function is a transform used with the optical label.
  • the function corresponding to the anti-aliasing code obtained by the inverse transform function can be further used to detect the legitimacy of the optical tag.
  • the data packet sent by the optical tag when it issues its identification information may include a frame header, a data field, a parity bit, and a frame trailer.
  • the data field contains an identifier that appears in clear text and an output value that is processed by the transform function with the pseudo code and the function verification code as input.
  • Signs can share the same function verification code.
  • a set of optical tags may share a function verification code, and different sets of optical tags use different function verification codes.
  • different optical tags may also be used with different function verification codes. But for the same optical tag, its different transform functions correspond to the same function verification code.
  • the authentication server 40 can have an inverse transform function corresponding to one or more transform functions for the optical tag and assign a unique one for each transform function and its corresponding inverse transform function.
  • Function identifier can be stored, for example, in a function table as shown in Table 3.
  • the optical tag 30 selects a transform function from a plurality of transform functions based on current time information each time its identification information is issued.
  • the relative time of the optical tag operation may also be used to indicate the current time.
  • the authentication server 40 can estimate and represent the current time information of the optical tag by using a processing manner similar to that of the optical tag end, and obtain the function identifier in the same mapping manner to select the inverse corresponding to the transform function adopted by the optical tag end. Transform function.
  • the authentication server 40 can record correspondingly when each optical tag enters the system, so that these moments can be compared with the current of the server. The time is compared to calculate how long each optical tag has been running, so that an estimate of the current time information of the optical tag can be obtained.
  • the current time information of the optical tag can be directly estimated by using the current time of the server. Even if the time of the server may not be completely synchronized with the optical tag time, there is a certain deviation. However, the server may first obtain a function identifier according to the estimated current time information of the optical tag, and then may be based on the function identifier. Selecting the function identifier and the inverse transform function corresponding to one or several function identifiers preceding or following it to inversely transform the received information, and the inverse transform function of the correct function verification code is included in the processing result.
  • the function corresponding to the transform function used by the tag, the security code extracted from its output is the security code sent by the optical tag.
  • the time of the optical tag and the server may be periodically synchronized by using an existing clock synchronization technology, so that the current time information of the optical tag estimated by the server is more accurate, thereby further reducing the need for an attempt.
  • the number of inverse transformation functions is faster.
  • an optical tag effective time length may be set. If the elapsed time since the last time synchronization has exceeded the effective time length, time synchronization between the optical tag and the server needs to be forced.
  • the effective time of the optical label can be set to be 60 days from the last synchronization time. If the optical label is not synchronized with the server for more than 60 days, the optical label is considered to be invalid, and the time synchronization is required before the light can be used. label.
  • the maximum time deviation t_e is 60 s;
  • the argument x represents the current time of the optical label, for example, the current value is 12000002s;
  • the mapping relationship between the result of h(x) and the function identifier is established;
  • the function identifier selected by the optical label end is
  • the current time t_s of the optical label estimated on the server side is 12000000s; considering the deviation between the two, the actual optical label current time should be in the range [12000000-60, 12000000+60], using the function h(x) pair
  • the time range is converted, and [2000000-1, 2000000+1] is obtained, so that the server side obtains the function identifiers corresponding to g(2000000), g(2000000-1), and g(2000000+1), respectively, and tries three times.
  • the correct inverse transform function corresponding to the transform function used by the optical tag is determined.
  • a more suitable h(x) may be selected such that h(t_s-t_e) and h(t_s+t_e) are as equal as possible, thereby enabling the server to determine the corresponding inverse transform function more quickly. For example or Then the distance between h(t_s-t_e) and h(t_s+t_e) can be reduced.
  • the optical tag may also release time synchronization information about the current time of the optical tag while the identifier information is being released, and the server may use the time synchronization information to perform time synchronization with the optical tag in time, so as to more accurately estimate.
  • the current time of the light label is as shown in Table 4, which includes a frame header, a data field, a check digit, and a frame tail; wherein the data field contains the text in the form of a clear text.
  • the time synchronization information can be used for time synchronization of the optical tag and the server, for example, can be used to correct the estimation of the current time of the optical tag on the server, so that the server can more accurately estimate the current time of the optical tag.
  • the time synchronization information may include current time information T l of the optical tag, and the server records the server time T s when the time synchronization information is received, and the synchronization time deviation between the optical tag and the server is (T). l -T s ). And each time the time synchronization information is received can be used to continually correct the synchronization time offset.
  • the server may maintain the optical tag ID as shown in Table 5. Synchronization time deviation table. The server updates Table 5 each time it obtains time synchronization information from the optical tag.
  • the server updates the synchronization time offset of the optical tag, and modifies the most recent synchronization time to the server when the time synchronization information is received. current time.
  • the effective time length of the optical label and the maximum time offset t_e between the optical label and the server, the time synchronization information carried by the optical label when the identification information is issued may be equal to the current time of the optical label divided by the remainder of t_e. .
  • the server when the server receives the time synchronization information, and calculates the remainder of the current time/t_e of the server, the synchronization time offset corresponding to the optical label in Table 5 may be updated to the received time synchronization information minus the remainder. . This can further reduce the number of bits needed to publish the time synchronization information to save bandwidth resources.
  • the security device capable of communicating with the optical tag 30 can also be included in the system of FIG.
  • the functions such as the above-described conversion processing relating to the optical tag are not performed by the optical tag controller, but may be realized by an anti-counterfeiting device (for example, a smartphone, a computer, or the like) capable of communicating with the optical tag 30.
  • the anti-counterfeiting device may select one of the plurality of transformation functions to transform the security code and the function verification code, time information, and the like, and then provide the transformed information to the optical tag for presentation or distribution.
  • the authentication server 40 receives the information from the image collection device 20
  • the synchronization time offset and the latest synchronization time corresponding to the optical label can be obtained from the above table 5 by using the optical label identifier in the information, and the estimated optical label end
  • the range of time should satisfy:
  • the authentication server 40 may extract the security code from the output of the inverse transform function corresponding to the correct function verification code to verify the validity of the security code, and extract the corresponding time label of the time synchronization information as shown in Table 5.
  • the synchronization time offset corresponding to the ID is updated.
  • the authentication server can maintain information about the security code and function verification code associated with each optical tag, as shown in Table 6.
  • the server may match the function verification code extracted from the output of the inverse transform function with the function verification code corresponding to the same optical label in Table 6. If the two are consistent, the inverse transform function may be determined to be the transform used with the optical label.
  • the inverse transform function corresponding to the function may be determined to be the transform used with the optical label.
  • the server compares the security code extracted from the output information of the inverse transform function with the security code corresponding to the same optical label identifier stored in Table 6. If the two are consistent, the optical label is determined to be a legal optical label.
  • the confirmation message is returned or the corresponding security code is returned so that the optical tag based service can be provided or accessed based on the optical tag identifier and its security code.
  • step S1 for the optical tag of the identification information to be issued, a transform function is selected from a plurality of transform functions, and a security code and a function verification code associated with the identifier of the optical tag are supplied as input to the selected transform function.
  • the security code and function verification code of the optical tag are preset and are only visible to the optical tag and the authentication server.
  • the identifier and the output value of the transform function are presented by the optical tag in step S2).
  • the information transmitted by the optical tag can be obtained by the image collecting device performing image capturing on the optical tag and decoding the collected image information.
  • the information transmitted by the optical tag can be obtained by the mobile phone carried by the user.
  • the authentication server When it is verified that the optical label is legal, it needs to be performed by the authentication server; for example, the information transmitted by the obtained optical label can be sent to the authentication server 40.
  • the identifier of the optical tag is extracted by the authentication server from the information transmitted by the optical tag obtained by the image collecting device in step S3), and the function verification code and the security code associated with the optical tag are determined by the identifier.
  • the remaining information other than the optical tag identifier is supplied as input to the selected plurality of inverse transform functions by the authentication server in step S4), and the inverse transform function of the function verification code determined in step S3) is selected in the output thereof.
  • a pseudo-code is extracted from the output of the inverse transform function for the inverse transform function corresponding to the optical label. Step S5) comparing the extracted security code with the security code of the optical tag determined in step S3), and if the two are consistent, it is confirmed that the optical tag is legal.
  • all optical tags can share the same function verification code and security code.
  • different sets of optical tags use different function verification codes and different security codes.
  • it is also possible that different optical tags use different function verification codes and different security codes. But for the same optical tag, the corresponding multiple transform functions correspond to the same function verification code.
  • the conversion function can be selected from a plurality of transformation functions based on the current time information each time the identification information is issued in step S1).
  • the transformation function can be selected according to the current time by establishing a mapping between the current time information and the function identifier of the transformation function as described above.
  • the method further includes the step S4′) estimating the current time of the optical label on the server side, and obtaining the function identifier based on the estimated optical label current time in the same mapping manner as the optical label end, so as to select and light.
  • the inverse transform function corresponding to the transform function used at the label end.
  • the server may first obtain a function identifier according to the estimated current time information of the optical tag in the same mapping manner, and then Based on the function identifier, the function identifier and the inverse transform function corresponding to one or several function identifiers before or after the function identifier are selected to perform inverse transform on the received information, and the inverse transform result includes the correct function verification code.
  • the inverse transform function is the one corresponding to the transform function used by the optical tag, and the anti-aliasing code extracted from its output is the anti-pseudo-code transmitted by the optical tag.
  • selecting the inverse transform function based on the estimated current time information of the optical label can greatly reduce the number of inverse transform functions that need to be tried, thereby improving the processing speed and saving. Computing resources.
  • the method may further include the step of synchronizing the time of the optical tag and the server, such that the current time information of the optical tag estimated by the server is more accurate, thereby further reducing the inverse transform function that needs to be tried.
  • the number is faster.
  • an optical tag effective time length may be set. If the elapsed time since the last time synchronization has exceeded the effective time length, time synchronization between the optical tag and the server needs to be forced. For example, the effective time of the optical label can be set to be 60 days from the last synchronization time. If the optical label is not synchronized with the server for more than 60 days, the optical label is considered to be invalid, and the time synchronization is required before the light can be used. label.
  • the time synchronization information about the current time of the optical label may also be released while the identification information is being released, so that the server can use the time synchronization information to perform time synchronization with the optical label in time, so as to more accurately estimate.
  • the current time of the light label For example, when the optical tag issues its identification information, the optical tag's security code, function verification code, and time synchronization information are provided as input to the selected conversion function. As described above in connection with Table 5, in some embodiments, the time synchronization information may include current time information T1 of the optical tag.
  • the method may further include recording, by the authentication server, the server time Ts when the time synchronization information is received as the most recent synchronization time, and calculating a synchronization time deviation between the optical tag and the server, that is, Tl-Ts; and according to each received The time synchronization information updates the synchronization time offset and the latest synchronization time corresponding to the optical tag.
  • the method further includes estimating, by the authentication server, the optical tag end time based on the optical tag identifier in the received information to extract the corresponding synchronization time offset and the most recent synchronization time.
  • the anti-counterfeiting method of the present invention can be applied to any optical tag (or light source) that can be used to transmit information.
  • the anti-counterfeiting method of the present invention can be applied to a light source that transmits information through different stripes based on a rolling shutter effect of CMOS (for example, the optical communication device described in Chinese Patent Publication No. CN104168060A), and can also be used in, for example, the patent CN105740936A.
  • CMOS for example, the optical communication device described in Chinese Patent Publication No. CN104168060A
  • the light label described for example, the anti-counterfeiting method of the present invention can also be applied to an array of optical tags (or light sources).
  • references in the specification to “individual embodiments”, “some embodiments”, “one embodiment”, or “embodiments”, etc., are used to refer to the particular features, structures, or properties described in connection with the embodiments. In at least one embodiment. Thus, appearances of the phrases “in the embodiment”, “the” Furthermore, the particular features, structures, or properties may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or properties shown or described in connection with one embodiment may be combined, in whole or in part, with the features, structures, or properties of one or more other embodiments without limitation, as long as the combination is not Logical or not working.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供一种光通信装置及其防伪系统和方法,该光通信装置将与其关联的防伪码和函数验证码作为输入提供给从多个变换函数中选择一个变换函数,控制其光源传递该光通信装置的标识符及所选择的变换函数的输出值。由认证服务器从通过图像采集设备获得的该光通信装置传递的信息中提取其标识符,并利用多个逆变换函数对收到的信息进行逆变换,以及从包含与该标识符关联的函数验证码的逆变换结果中提取防伪码,通过将所提取的防伪码与该标识符关联的防伪码进行比较来验证该光通信装置的合法性。

Description

光通信装置以及相应的防伪方法和系统 技术领域
本发明属于光信息技术领域,更具体地涉及一种光通信装置及相应的防伪方法和系统。
背景技术
条形码和二维码已经被广泛采用来对信息进行编码。当用特定设备或软件扫描这些条形码和二维码时,相应的信息就会被识别出来。然而,条形码和二维码的识别距离很受限制。例如,对于二维码而言,当用手机摄像头对其进行扫描时,该手机通常必须置于一个比较近的距离内,该距离通常只是二维码的宽度的15倍左右。因此,对于远距离识别(例如相当于二维码宽度的200倍的距离),条形码和二维码通常不能实现,或者必须定制非常大的条形码和二维码,但这会带来成本的提升,并且在许多情形下由于其他各种限制是不可能实现的。而且,条形码和二维码也很容易被仿制和替代,安全性不好,不适用于安全性要求较高的场景。
发明内容
因此,本发明的目的在于克服上述现有技术的缺陷,提供一种具有防伪功能的光通信装置及相应的防伪方法和系统。
本发明的目的是通过以下技术方案实现的:
一方面,本发明提供了一种光通信装置,包括至少一个光源和控制器,所述控制器控制所述光源发出不同的光以传递不同信息,其中所述控制器还被配置为:从预先设定的多个变换函数中选择一个变换函数;将与所述光通信装置关联的防伪码和函数验证码作为输入提供给所选择的变换函数;以及控制所述光源传递所述光通信装置的标识符和所述变换函数的输出值。
在上述光通信装置中,所述控制器还可被配置为控制所述光源在传递所述光通信装置的标识符和所述变换函数的输出值的同时传递所述变换函数的标识符。
在上述光通信装置中,所述控制器可被配置为基于当前时间信息来选择变换函数。
在上述光通信装置中,所述控制器可被配置为通过建立当前时间信息与变换函数的标识符之间的映射来基于当前时间选择变换函数。
在上述光通信装置中,所述控制器还可被配置为将光通信装置的当前时间信息与所述防伪码和函数验证码一起作为输入提供给所选择的变换函数。
在又一个方面,本发明提供了一种光通信装置防伪系统,包括上述的光通信装置和服务器;其中服务器,其被配置为:
接收经由图像采集设备对所述光通信装置进行图像采集获得的信息;
从所述信息提取光通信装置的标识符并基于所述标识符确定与该光通信装置对应的函数验证码和防伪码;
将除所述标识符之外的其余信息作为输入提供给多个逆变换函数进行处理,并从其处理结果中包含所确定的函数验证码的逆变换函数的输出中提取防伪码;
通过将所提取的防伪码与该光通信装置对应的防伪码进行比较来验证所述光通信装置是否合法。
在上述系统中,多个光通信装置可共享同一函数验证码,或者不同光通信装置可使用不同的函数验证码。
在上述系统中,所述光通信装置可被配置为基于当前时间信息来选择变换函数;所述服务器可被配置为:基于服务器的当前时间估计所述光通信装置的当前时间;以及基于所估计的光通信装置的当前时间来选择要用来对收到的信息进行处理的多个逆变换函数。
在上述系统中,所述光通信装置可定期地或不定期地与所述服务器进行时间同步。
在上述系统中,所述光通信装置还可被配置为控制所述光源在传递所述光通信装置的标识符和所述变换函数的输出值的同时传递所述光通信装置的当前时间信息;所述服务器还可被配置为:从所接收的信息中提取时间信息以与所述光通信装置进行时间同步。
在又一个方面,本发明还提供了一种光通信装置防伪系统,包括服务器、光通信装置及与所述光通信装置可通信地耦合的防伪装置,其中:
所述光通信装置包括至少一个光源和控制器,所述控制器控制所述光 源发出不同的光以传递不同信息;
所述防伪装置被配置为:从预先设定的多个变换函数中选择一个变换函数;将与所述光通信装置关联的防伪码和函数验证码作为输入提供给所选择的变换函数;以及将所述变换函数的输出值提供给所述光通信装置,并指示所述光通信装置发布该输出值与所述光通信装置的标识符;
所述服务器被配置为:接收经由图像采集设备对所述光通信装置进行图像采集获得的信息;从所述信息提取光通信装置的标识符并基于所述标识符确定与该光通信装置对应的函数验证码和防伪码;将除所述标识符之外的其余信息作为输入提供给多个逆变换函数进行处理,并从其处理结果中包含所确定的函数验证码的逆变换函数的输出中提取防伪码;以及通过将所提取的防伪码与该光通信装置对应的防伪码进行比较来验证所述光通信装置是否合法。
在又一个方面,本发明提供了一种用于光通信装置的防伪方法,包括:
步骤S1),对于待发布标识信息的光通信装置,从多个变换函数中选择一个变换函数,将与该光通信装置的标识符关联的防伪码和函数验证码作为输入提供给所选择的变换函数;
步骤S2),通过该光通信装置呈现其标识符及该变换函数的输出值;
步骤S3),由认证服务器从通过图像采集设备获得的光通信装置传递的信息中提取光通信装置的标识符,并基于该标识符确定与该光通信装置对应的函数验证码和防伪码;
步骤S4),由认证服务器将除所述标识符外的其余信息作为输入提供给多个逆变换函数进行处理,并从其处理结果中包含所确定的函数验证码的逆变换函数的输出中提取防伪码;
步骤S5),将所提取的防伪码与该光通信装置对应的防伪码进行比较以验证该光标签的合法性。
上述方法中,在步骤S1)可通过建立光通信装置当前时间信息与变换函数的函数标识符之间的映射来选择变换函数。
上述方法中还可包括:由认证服务器估计所述光通信装置的当前时间;基于所估计的当前时间通过所述映射获得函数标识符;以选择以该函数标识符为中心的一定范围内的函数标识符对应的多个逆变换函数来对所述信息进行处理。
上述方法中,在步骤S1)所述输入中还可包括光通信装置的当前时间 信息。在上述方法中,还可包括定期地对光通信装置与认证服务器进行时间同步。
通过采用本发明的方案,提供了具有防伪能力的光通信装置。特别是,由于许多类型的光通信装置并不具备双向通信能力(例如,仅能向另一方传递信息,但不能从该另一方接收信息),因此目前通信技术中的大多数防伪方法并不能适用于仅具备单向通信能力的光通信装置的防伪,本发明很好地解决了该问题。另外,通过采用本发明的方案,也可以防止伪造的光通信装置识别系统(例如,用于识别光通信装置的应用程序和服务器)对合法光通信装置的利用。
另外,本发明的防伪方法中通过对变换函数的动态选择,提供了极高的防伪能力,因此特别适用于交易、支付等需要强防伪能力的应用场景。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1为根据本发明一个实施例的光通信装置防伪系统结构示意图;
图2为根据本发明一个实施例的用于光通信装置的防伪方法流程示意图。
具体实施方式
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在本发明的一个实施例中提供了一种光通信装置,其能够通过发出不同的光来传输不同的信息。该光通信装置在本文中也被称为“光标签”,两者在整个本申请中可以互换使用。该光通信装置包括至少一个光源和控制器,控制器用于控制所述光源发出的不同的光来传递不同的信息。
其中控制器可以通过改变光源发出的光的属性来使得光源发出不同的光。光的属性可以是光学成像器件(例如CMOS成像器件)能够感知的任何属性;例如其可以是光的强度、颜色、波长等人眼可感知的属性,也可以是人眼不可感知的其他属性,例如在人眼可见范围外的电磁波长的强度、颜色或波长改变,或者是上述属性的任一组合。因此,光的属性变化可以是单个属性发生变化,也可以是两个或更多个属性的组合发生变化。 当选择光的强度作为属性时,可以简单地通过选择开启或关闭光源来实现。在下文中为了简单起见,以开启或关闭光源来改变光的属性,但本领域技术人员可以理解,用于改变光的属性的其他方式也是可行的。
在该光标签中可以使用各种形式的光源,只要其某一可被光学成像器件感知的属性能够以不同频率进行变化即可。光源中可以包括各种常见的光学器件,例如导光板、柔光板、漫射器等。例如,光源可以是一个LED灯、由多个LED灯构成的阵列、显示屏幕或者其中的一部分,甚至光的照射区域(例如光在墙壁上的照射区域)也可以作为光源。该光源的形状可以是各种形状,例如圆形、正方形、矩形、条状、L状等。
在一个实施例中,该光标签的控制器可以控制每个光源发出的光的属性,以便传递信息。例如,可以通过控制每个光源的开启和关闭来表示二进制数字信息的“0”或“1”,从而该光标签中多个光源可以用于表示一个二进制数字信息序列。如本领域技术人员可以理解的,每个光源不仅可以用于表示一个二进制数,还可以用于表示三进制或更大进制的数据。例如,可以通过将光源所发出的光的强度设置为从三种或更多种水平中进行选择,或者通过将光源所发出的光的颜色设置为从三种或更多种颜色中进行选择,甚至通过采用强度与颜色的组合,来使得每个光源能表示三进制或更大进制的数据。因此,相比于传统二维码,本发明的光标签可以显著提高数据编码密度。
在又一实施例中,该光标签的控制器可以控制光源以一定频率改变其所发出的光的属性,因此,本发明的光标签可以在不同的时间表示不同的数据信息,例如,不同的二进制数字信息序列。如此,当使用光学成像设备对本发明的光标签进行连续拍摄时(例如,以30帧/秒的速率),其每一帧图像都可以用于表示一组信息序列,从而相比于传统的静态二维码,可以进一步显著地提高其数据编码密度。
在本申请的实施例中,可以使用本领域常见的光学成像设备或图像采集设备对光标签进行成像,从每帧图像确定所传递的信息,例如二进制数据1或数据0信息序列,从而实现光标签向光学成像器件的信息传递。光学成像设备或图像采集设备可以包括图像采集元件、处理器和存储器等。光学成像设备或图像采集设备例如可以是具有拍摄功能的智能移动终端,包括手机、平板电脑、智能眼镜等,其可以包括图像采集装置和图像处理模块。用户在距离光标签视距范围内通过肉眼发现光标签,通过使移动终 端成像传感器朝向光标签,扫描该光标签并进行信息捕获与判读处理。当光标签的控制器控制光源以一定频率改变其所发出的光的属性时,移动终端的图像采集频率可以被设置为大于或等于光源的属性变换频率的2倍。通过对所采集的图像帧进行解码操作,可以完成识别解码的过程。在一个实施例中,为了避免图像帧的重复、遗漏等,可以在光标签所传递的信息中包括序列号、校验位、时间戳等。根据需要,可以在多个图像帧中给出起始帧或结束帧,或者二者兼有,用于指示多个图像帧的一个完整周期的开始或结束位置,该起始帧或结束帧可以被设定为显示某个特殊的数据组合,例如:全0或全1,或者任何不会与实际可能显示的信息相同的特殊组合。
以CMOS成像器件为例,当通过CMOS成像器件拍摄光源的连续的多帧图像时,可以通过控制器进行控制,使得光源的工作模式之间的切换时间间隔等于CMOS成像器件一个完整帧成像的时间长度,从而实现光源与成像器件的帧同步。假定每个光源每帧传输1比特的信息,那么对于30帧/每秒的拍摄速度,每个光源每秒钟可以传递30比特的信息,编码空间达到2 30,该信息可以包括例如,起始帧标记(帧头)、光标签的ID、口令、验证码、网址信息、地址信息、时间戳或其不同的组合等等。可以按照结构化方法,设定上述各种信息的顺序关系,形成数据包结构。每接收到一个完整的该数据包结构,视为获得一组完整数据(一个数据包),进而可以对其进行数据读取和校验分析。表1给出根据本发明的一个实施例的示例数据包结构:
表1
帧头 属性字段(可选) 数据字段 校验位 帧尾
相比于传统的二维码,根据本发明实施例的光标签通过发出不同的光来传递信息,其具有远距、可见光条件要求宽松、指向性强、可定位的优势,并且光标签所传递的信息可以随时间迅速变化,从而可以提供大的信息容量。因此,光标签具有更强的信息交互能力,从而可以为用户和商家提供巨大的便利性。为了基于光标签向用户和商家提供对应的服务,每个光标签都分配有唯一标识符(ID),该标识符用以由光标签的制造者、管理者及使用者等唯一地识别或标识光标签。在很多情况下,光标签需要发布其标识符,而使用者通过扫描光标签得到其标识符,以访问基于该光标签提供的服务。期间可能存在由于光标签发布的标识信息被截获、伪造或 替代而带来的各种安全隐患。
图1示出了根据本发明的一个实施例的光标签防伪系统,其包括光标签30和认证服务器40。光标签30中通常包括有控制器和光源,控制器用于控制光源发出不同的光来传递不同的信息。用户10可以使用图像采集设备20(例如手机)对光标签30进行图像采集以获得光标签30传递的信息,并通过认证服务器40对光标签30的合法性进行鉴别。
每个光标签30的标识信息包括两个部分:该光标签的标识符及与该标识符对应的防伪码。光标签30在每次发布其标识信息时,标识符以明文方式发送,而对应的防伪码需经设定的变换函数进行变换后传输。只有知道该变换函数的验证方(例如认证服务器40)才能对收到的信息正确地进行逆变换,从而获得光标签的防伪码,以验证光标签的合法性。其中预先设定的变换函数仅对于光标签30及认证服务器40可见,而对于图像采集设备、用户、商家及其他基于光标签的服务提供者保密。在本发明的实施例中,对于变换函数的具体形式不进行限制,可以采用能使得防伪码发生改变的任意函数或变换规则。例如,按照一定的规则打乱防伪码中各元素的次序,对于防伪码中某些位置进行反转处理等等。优选地,可以选择现有的各种对称加密或非对称加密算法来对防伪码进行加密。例如,光标签以其密钥对防伪码进行加密,而认证服务器可以以同一密钥对收到的信息进行解密。认证服务器可以将通过经逆变换处理得到的防伪码与在服务器保存的光标签ID对应的防伪码进行比较,如果二者一致,则确认该光标签合法。在一些实施例中,可以是一组光标签共享一个防伪码,不同组的光标签使用不同的防伪码。在一些实施例中,也可以是不同光标签使用不同的防伪码。
在一个实施例中,可以给每个光标签分配两个或更多个变换函数。光标签在每次发布其标识信息时,可以按照预先设定的规则选择其中一个变换函数来对其防伪码进行变换,以使得光标签在每次发布标识信息时都呈现的是不同的编码信息,以防止对光标签的伪造或替代。例如,可以依次序轮流或随机抽取的方式来选择其中一个变换函数,并将该变换函数的标识符与光标签的标识信息一起发布,从而验证方可以通过变换函数的标识符来选择与其对应的逆变换函数。在又一个实施例中,验证方可以通过函数验证码来选择对应的逆变换函数。该函数验证码可以是由验证方和光标签预先约定的一个固定值。光标签在每次发布其标识信息时,利用选择的 变换函数来对其防伪码与函数验证码一起进行变换,该变换函数的输出值与光标签的标识符一起进行发布。该函数验证码可以位于防伪码之前或之后。验证方以其存储的所有逆变换函数依次对收到的信息进行处理,当某个逆变换函数的输出值中包括正确的函数验证码时,则确定该逆变换函数是与光标签使用的变换函数相对应的,从而通过该逆变换函数获得的防伪码可以进一步用来检测光标签的合法性。在该实施例中,光标签在发布其标识信息时发送的数据包可包括帧头、数据字段、校验位及帧尾。如表2所示,该数据字段包含的是以明文形式出现的标识符和以防伪码和函数验证码为输入,经变换函数处理后的输出值。在一些实施例中,所有的光标
表2
帧头 标识符 防伪码 函数验证码 校验位 帧尾
签可以共享同一个函数验证码。在一些实施例中,可以是一组光标签共享一个函数验证码,不同组的光标签使用不同的函数验证码。在一些实施例中,也可以是不同光标签使用不同的函数验证码。但对于同一光标签,其不同的变换函数对应的是同一函数验证码。
继续参考图1,在一些实施例中,认证服务器40可以具有与用于光标签的一个或多个变换函数相对应的逆变换函数,并为每个变换函数及其相应逆变换函数分配唯一的函数标识符。上述信息例如可以存储在如表3所示的函数表中。
表3
函数标识符 变换函数 逆变换函数
在一个优选的实施例中,光标签30在每次发布其标识信息时,基于当前的时间信息来从多个变换函数中选择变换函数。例如,可以通过建立当前时间信息与变换函数的函数标识符之间的映射来根据当前时间选择变换函数。例如,如果光标签当前时刻为11月3日15点30分8秒,则光标签的当前时间信息可以记为(15*60+30)*60+8=55808秒,或15*60+30=480分或30*60+8=1808秒。又例如,也可以用光标签运行的相对时间来表示当前时间,通过计算光标签进入系统运行的时刻与当前时刻的差值可以知道光标签运行了多长时间。假定该差值恰好为50天,则其光标签当前时间信息可以记为4320000秒,如果该差值为50天3小时40分钟38秒,则光标签当前时间信息可记为4333238秒。假定系统中变换函数为n个,那么利用光标签当前时间信息t对n取余就可以建立光标签 当前时间信息与变换函数的函数标识符之间的映射,即函数标识符i=t mod n。这样,光标签每次选择的变换函数随时间的不同而不断发生变化。应指出,上述建立当前时间信息与变换函数的函数标识符之间的映射仅是举例进行示意性说明,而非进行任何限制,也可以采用其他数学方法建立二者之间的映射方式。
相应地,认证服务器40可以采用与光标签端类似的处理方式估计和表示光标签的当前时间信息,并以相同映射方式获得函数标识符,以便选择与光标签端采用的变换函数相对应的逆变换函数。例如在上述的以光标签运行的相对时间表示其当前时间信息的实施例中,认证服务器40可以对于每个光标签进入系统运行的时刻都有相应记录,因此可以通过将这些时刻与服务器的当前时间相比较来计算各个光标签运行了多长时间,从而可以得到对光标签当前时间信息的估计。在上述的基于光标签的当前时刻表示其当前时间信息的实施例中,可以直接利用服务器的当前时间估计光标签的当前时间信息。即便服务器的时间与光标签时间可能不完全同步而是存在一定偏差,但服务器可以先根据所估计的光标签当前时间信息以相同映射方式获得一个函数标识符,接着可以以该函数标识符为基础,选取该函数标识符及其前面或后面的一个或几个函数标识对应的逆变换函数对收到的信息进行相应逆变换,其处理结果中包含正确的函数验证码的逆变换函数就是与光标签使用的变换函数相对应的那个函数,从其输出中提取出的防伪码就是光标签发送的防伪码。与上面提到的遍历所有逆变换函数的方式相比,基于所估计的光标签当前时间信息选取逆变换函数可以大大减少了需要进行尝试的逆变换函数的个数,从而提高了处理速度并节省了计算资源。
在又一个实施例中,可以定期地通过现有的时钟同步技术来对光标签和服务器的时间进行同步,这样服务器所估计的光标签当前时间信息会更准确,从而可以进一步减少需要进行尝试的逆变换函数的个数,计算速度更快。在又一个实施例中,可以设定一个光标签有效时间长度,如果距离进行上次时间同步已经过去的时间超过了该有效时间长度,则需要强制进行光标签和服务器之间的时间同步。例如,可设定光标签有效时间为距离上次同步时间60天,如果光标签60多天都没有与服务器进行时间同步,则认为该光标签已经失效,需要进行时间同步之后才能继续使用该光标签。在该实施例中,光标签与服务器之间的时间偏差的范围是可以估计的。这 是因为时钟每天的偏移为固定的,所以当设定了光标签有效时间(即需要强制进行光标签和服务器时间同步的间隔)时,光标签与服务器之间的最大时间偏差也是可以确定的。例如:如果假设系统中时钟的偏移为1秒/天,并约定光标签有效时间为距离上次同步时间60天,那么光标签与服务器之间的最大的时间偏差则为60秒。设光标签时间和服务器的时间分别为:t_l和t_s,则二者之间满足:t_s-60s<=t_l<=t_s+60s。因此,假设光标签与服务器之间的最大时间偏差为t_e,服务器端估计的光标签的当前时间所在范围为[t_s-t_e,t_s+t_e],即光标签当前时间满足t_s-t_e<=t_l<=t_s+t_e。优选地,可以选择合适的单调函数h,使得h(t_s-t_e)<=h(t_l)<=h(t_s+t_e),从而可通过该函数对上述时间范围进行转换以更好地建立时间与函数标识符之间的映射。例如:令
Figure PCTCN2018117865-appb-000001
即对x/(t_e)的商进行上取整或下取整运算,则得到:t_s/(t_e)-1<=t_l/(t_e)<=t_s/(t_e)+1。如果光标签端和服务器端都是以该h(x)的结果与函数标识符之间建立映射,则在服务器端最多三次尝试就可获得与光标签使用的变换函数对应的正确的逆变换函数。
例如仍以上述示例进行说明:假设最大时间偏差t_e为60s;
Figure PCTCN2018117865-appb-000002
Figure PCTCN2018117865-appb-000003
自变量x表示光标签当前时间,例如当前取值为12000002s;在h(x)的结果与函数标识符之间建立映射关系g;则光标签端选择的函数标识符为
Figure PCTCN2018117865-appb-000004
而在服务器端估计的光标签当前时间t_s为12000000s;考虑到二者之间的偏差,实际的光标签当前时间应该在范围[12000000-60,12000000+60]中,使用函数h(x)对该时间范围进行转换,可得到[2000000-1,2000000+1],这样,服务器端分别获得g(2000000)、g(2000000-1)和g(2000000+1)对应的函数标识符,尝试三次就确定与光标签使用的变换函数对应的正确的逆变换函数。在又一个实施例中,可以选择更合适的h(x)使得h(t_s-t_e)和h(t_s+t_e)尽可能相等,从而可以使服务器端能更快速地确定对应的逆变换函数。例如令
Figure PCTCN2018117865-appb-000005
Figure PCTCN2018117865-appb-000006
则可以缩小h(t_s-t_e)和h(t_s+t_e)之间的距离。
在又一个实施例中,光标签在发布标识信息的同时还可以发布有关光标签当前时间的时间同步信息,服务器可以利用这些时间同步信息及时地与光标签进行时间同步,从而能更准确地估计光标签的当前时间。在该实施例中,光标签在发布其标识信息时发送的数据包如表4所示,其包括帧 头、数据字段、校验位及帧尾;其中该数据字段包含的是以明文形式出现的标识符和以防伪码、时间同步信息和函数验证码为输入,经变换函数处理后的输出值。其中时间同步信息可以用于对光标签和服务器进行时间同步,例如可以用于校正服务器上对于光标签当前时间的估计,使得服务器能更准确地估计光标签的当前时间。在一些实施例中,时间同步信息可以包含光标签的当前时间信息T l,服务器端记录收到该时间同步信息时的服务器时间T s,则光标签和服务器之间的同步时间偏差为(T l-T s)。并且每次收到时间同步信息可以用于不断校正该同步时间偏差。考虑到每个光标签与服务器的时间偏差以及与服务器的同步时刻(即收到光标签时间同步信息的时刻)都可能不一致,服务器端可以维护如表5所示的以光标签ID为索引的同步时间偏差表。服务器每次获得来自光标签的时间同步信息时对表5进行相应的更新。
表4
帧头 标识符 防伪码 时间同步信息 函数验证码 校验位 帧尾
表5
光标签ID1 同步时间偏差1 最近同步时刻1
光标签IDi 同步时间偏差i 最近同步时刻i
在表5中,以光标签ID作为索引,每次获得来自光标签的时间同步信息时,服务器更新该光标签的同步时间偏差,并将最近同步时刻修改为收到该时间同步信息时的服务器当前时间。在上述设置光标签的有效时间长度以及光标签与服务器之间的最大时间偏差t_e的实施例中,光标签在发布标识信息时携带的时间同步信息可以等于光标签的当前时间除以t_e的余数。类似地,服务器端收到该时间同步信息时,也计算服务器当前时间/t_e的余数,则表5中与该光标签对应的同步时间偏差可以更新为该收到的时间同步信息减去该余数。这样就可以进一步减少发布该时间同步信息所需要的位数以节省带宽资源。
继续参考图1,在又一些实施例中,图1所示的系统中还可包括能够与光标签30通信的防伪装置。上述与光标签相关的变换处理等功能不是由光标签控制器来进行的,而是可以由能够与光标签30进行通信的防伪装置(例如智能手机、计算机等)来实现。该防伪装置可从多个变换函数中选择其中一个变换函数来对防伪码和函数验证码以及时间信息等进行 变换,然后将变换后的信息提供给光标签以进行呈现或发布。
当用户10使用图像采集设备20采集了光标签的图像并对该图像进行解码后,可以获得光标签所传递的信息。用户10可以通过图像采集设备20将该信息传递到认证服务器40。当认证服务器40收到来自图像采集设备20的信息时,可以通过该信息中的光标签标识符从上表5中获得该光标签对应的同步时间偏差和最近同步时刻,则估计的光标签端时间的范围应该满足:
服务器端当前时间+同步时间偏差+(服务器端当前时间-最近同步时刻)*每天固定时钟偏移<=光标签端时间<=服务器端当前时间+同步时间偏差-(服务器端当前时间-最近同步时刻)*每天固定时钟偏移接着,如上文介绍的使用设定好的h(x)对该时间范围进行转换,以h(x)的结果作为输入提供给映射函数g以得到函数标识符,从而认证服务器40可遍历这样得到的各个函数标识符对应的逆变换函数,直到逆变换函数的输出中出现与光标签ID对应的正确的函数验证码为止。
接着,认证服务器40可以从该正确的函数验证码对应的逆变换函数的输出中提取出防伪码来验证该防伪码的合法性,并提取出时间同步信息对如表5所示的相应光标签ID对应的同步时间偏差进行更新。通常认证服务器可以维护与每个光标签关联的防伪码和函数验证码的相关信息,例如表6所示。服务器可以将从逆变换函数的输出中提取的函数验证码与表6中同一光标签对应的函数验证码进行匹配,如果二者一致,则可以确定该逆变换函数为与该光标签采用的变换函数对应的那个逆变换函数。然后服务器将从该逆变换函数的输出信息中提取的防伪码与表6中保存的同一光标签标识符对应的防伪码进行比对,如果二者一致,则确定该光标签为合法光标签,则返回确认信息或返回相应防伪码,以便于能基于光标签标识符及其防伪码提供或访问基于光标签的服务。
表6
光标签标识符 防伪码 函数验证码
现参考图2,其示出了根据本发明的一个实施例的光标签防伪方法的流程示意图。在步骤S1)对于待发布标识信息的光标签,从多个变换函数中选择一个变换函数,将与该光标签的标识符关联的防伪码和函数验证码作为输入提供给所选择的变换函数。其中光标签的防伪码和函数验证码是 预先设定的,仅对光标签和认证服务器可见。在步骤S2)通过该光标签呈现其标识符和该变换函数的输出值。如上文介绍的,光标签传递的信息可以通过图像采集设备对光标签进行图像采集并对采集的图像信息进行解码来获得,例如可通过用户携带的手机获取光标签传递的信息。当验证该光标签是否合法需要通过认证服务器来进行;例如,可以将获取的光标签传递的信息发送给认证服务器40。在步骤S3)由认证服务器从通过图像采集设备获得的光标签传递的信息中提取光标签的标识符,并通过该标识符确定与该光标签关联的函数验证码和防伪码。在步骤S4)由认证服务器将除光标签标识符之外的其余信息作为输入提供给选定的多个逆变换函数,选择其输出中包括在步骤S3)所确定的函数验证码的逆变换函数为该光标签对应的逆变换函数,从该逆变换函数的输出中提取防伪码。步骤S5)将所提取的防伪码与步骤S3)所确定的该光标签的防伪码进行比较,如果二者一致,则确认该光标签是合法的。
如上文提到的,在一些实施例中,所有的光标签可以共享同一个函数验证码和防伪码。在一些实施例中,不同组的光标签使用不同的函数验证码和不同的防伪码。在一些实施例中,也可以是不同光标签使用不同的函数验证码和不同的防伪码。但对于同一光标签,其相应的多个变换函数对应的是同一函数验证码。
在一个优选的实施例中,在步骤S1)在每次发布其标识信息时,可以基于当前的时间信息来从多个变换函数中选择变换函数。如上文介绍的可以通过建立当前时间信息与变换函数的函数标识符之间的映射来根据当前时间选择变换函数。在该实施例中,还包括步骤S4’)在服务器端估计光标签的当前时间,并且采用与光标签端相同的映射方式,基于所估计的光标签当前时间获得函数标识符,以便选择与光标签端采用的变换函数相对应的逆变换函数。如上文所述的,即便服务器的时间与光标签时间可能不完全同步而是存在一定偏差,但服务器可以先根据所估计的光标签当前时间信息以相同映射方式获得一个函数标识符,接着可以以该函数标识符为基础,选取该函数标识符及其前面或后面的一个或几个函数标识对应的逆变换函数对收到的信息进行相应逆变换,其逆变换结果中包含正确的函数验证码的逆变换函数就是与光标签使用的变换函数相对应的那个函数,从其输出中提取出的防伪码就是光标签发送的防伪码。与上面提到的遍历所有逆变换函数的方式相比,基于所估计的光标签当前时间信息选取逆变 换函数可以大大减少了需要进行尝试的逆变换函数的个数,从而提高了处理速度并节省了计算资源。
在又一个实施例中,该方法还可以包括对光标签和服务器的时间进行同步的步骤,这样服务器所估计的光标签当前时间信息会更准确,从而可以进一步减少需要进行尝试的逆变换函数的个数,计算速度更快。在又一个实施例中,可以设定一个光标签有效时间长度,如果距离进行上次时间同步已经过去的时间超过了该有效时间长度,则需要强制进行光标签和服务器之间的时间同步。例如,可设定光标签有效时间为距离上次同步时间60天,如果光标签60多天都没有与服务器进行时间同步,则认为该光标签已经失效,需要进行时间同步之后才能继续使用该光标签。如上文介绍的,当设定了光标签的有效时间时,光标签与服务器之间的时间偏差的范围是可以估计的。假设系统中时钟偏移为1秒/天,并约定光标签有效时间为距离上次同步时间60天,那么光标签与服务器之间的最大的时间偏差则为60秒。设光标签时间和服务器的时间分别为:t_l和t_s,则二者之间满足:t_s-60s<=t_l<=t_s+60s。因此,假设光标签与服务器之间的最大时间偏差为t_e,服务器端估计的光标签的当前时间所在范围为[t_s-t_e,t_s+t_e],即光标签当前时间满足t_s-t_e<=t_l<=t_s+t_e。如上文讨论的,可以选择合适的单调函数h,使得h(t_s-t_e)<=h(t_l)<=h(t_s+t_e),从而可通过该函数对上述时间范围进行转换以更好地建立时间与函数标识符之间的映射。例如:令
Figure PCTCN2018117865-appb-000007
即对x/(t_e)的商进行上取整或下取整运算,则得到:t_s/(t_e)-1<=t_l/(t_e)<=t_s/(t_e)+1。如上文介绍的,如果光标签端和服务器端都是以该h(x)的结果与函数标识符之间建立映射,则在服务器端最多三次尝试就可获得与光标签使用的变换函数对应的正确的逆变换函数。
在又一个实施例中,还可以在发布标识信息的同时还发布有关光标签当前时间的时间同步信息,以便服务器可以利用这些时间同步信息及时地与光标签进行时间同步,从而能更准确地估计光标签的当前时间。例如光标签在发布其标识信息时,以该光标签的防伪码、函数验证码及时间同步信息作为输入提供给选择的变换函数。如上文结合表5所述,在一些实施例中,时间同步信息可以包含光标签的当前时间信息Tl。该方法还可包括由认证服务器记录收到该时间同步信息时的服务器时间Ts作为最近同步时刻,并计算该光标签和服务器之间的同步时间偏差,即Tl-Ts;以及根据 每次收到时间同步信息更新该光标签对应的同步时间偏差和最近同步时刻。在这些实施例中,还包括由认证服务器根据收到的信息中的光标签标识符提取对应的同步时间偏差和最近同步时刻来估计光标签端时间。如上文介绍的,所估计的光标签端时间的范围应该满足:服务器端当前时间+同步时间偏差+(服务器端当前时间-最近同步时刻)*每天固定时钟偏移<=光标签端时间<=服务器端当前时间+同步时间偏差-(服务器端当前时间-最近同步时刻)*每天固定时钟偏移。
本发明的防伪方法可以适用于任何能够用于传递信息的光标签(或光源)。例如,本发明的防伪方法可以适用于基于CMOS的滚动快门效应而通过不同的条纹来传递信息的光源(例如在中国专利公开CN104168060A中所描述的光通信装置),也可以使用于如专利CN105740936A中所描述的光标签。另外,本发明的防伪方法也可以适用于光标签(或光源)的阵列。
本说明书中针对“各个实施例”、“一些实施例”、“一个实施例”、或“实施例”等的参考指代的是结合所述实施例描述的特定特征、结构、或性质包括在至少一个实施例中。因此,短语“在一些实施例中”、“在一个实施例中”、或“在实施例中”等在整个说明书中各地方的出现并非必须指代相同的实施例。此外,特定特征、结构、或性质可以在一个或多个实施例中以任何合适方式组合。因此,结合一个实施例中所示出或描述的特定特征、结构或性质可以整体地或部分地与一个或多个其他实施例的特征、结构、或性质无限制地组合,只要该组合不是非逻辑性的或不能工作。
在本申请中为了清楚说明,以一定的顺序描述了一些示意性的操作步骤,但本领域技术人员可以理解,这些操作步骤中的每一个并非是必不可少的,其中的一些步骤可以被省略或者被其他步骤替代。这些操作步骤也并非必须以所示的方式依次执行,相反,这些操作步骤中的一些可以根据实际需要以不同的顺序执行,或者并行执行,只要新的执行方式不是非逻辑性的或不能工作。
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所做出的各种改变以及变化。

Claims (17)

  1. 一种光通信装置,包括至少一个光源和控制器,所述控制器控制所述光源发出不同的光以传递不同信息,其中所述控制器还被配置为:
    从预先设定的多个变换函数中选择一个变换函数;
    将与所述光通信装置关联的防伪码和函数验证码作为输入提供给所选择的变换函数;
    控制所述光源传递所述光通信装置的标识符和所述变换函数的输出值。
  2. 根据权利要求1所述的光通信装置,其中所述控制器还被配置为控制所述光源在传递所述光通信装置的标识符和所述变换函数的输出值的同时传递所述变换函数的标识符。
  3. 根据权利要求1所述的光通信装置,其中所述控制器被配置为基于当前时间信息来选择变换函数。
  4. 根据权利要求3所述的光通信装置,其中所述控制器被配置为通过建立当前时间信息与变换函数的标识符之间的映射来基于当前时间选择变换函数。
  5. 根据权利要求3所述的光通信装置,其中所述控制器还被配置为将光通信装置的当前时间信息与所述防伪码和函数验证码一起作为输入提供给所选择的变换函数。
  6. 一种光通信装置防伪系统,包括:
    如权利要求1所述的光通信装置;
    服务器,其被配置为:
    接收经由图像采集设备对所述光通信装置进行图像采集获得的信息;
    从所述信息提取光通信装置的标识符并基于所述标识符确定与该光通信装置对应的函数验证码和防伪码;
    将除所述标识符之外的其余信息作为输入提供给多个逆变换函数进行处理,并从其处理结果中包含所确定的函数验证码的逆变换函数的输出中提取防伪码;
    通过将所提取的防伪码与该光通信装置对应的防伪码进行比较来验证所述光通信装置是否合法。
  7. 根据权利要求6所述的系统,其中多个光通信装置共享同一函数验证码。
  8. 根据权利要求6所述的系统,其中不同光通信装置使用不同的函数验证码。
  9. 根据权利要求6所述的系统,其中所述光通信装置被配置为基于当前时间信息来选择变换函数;
    所述服务器被配置为:
    基于服务器的当前时间估计所述光通信装置的当前时间;
    基于所估计的光通信装置的当前时间来选择要用来对收到的信息进行处理的多个逆变换函数。
  10. 根据权利要求9所述的系统,其中所述光通信装置定期地或不定期地与所述服务器进行时间同步。
  11. 根据权利要求9所述的系统,其中
    所述光通信装置还被配置为控制所述光源在传递所述光通信装置的标识符和所述变换函数的输出值的同时传递所述光通信装置的当前时间信息;
    所述服务器还被配置为:
    从所接收的信息中提取时间信息以与所述光通信装置进行时间同步。
  12. 一种光通信装置防伪系统,包括服务器、光通信装置及与所述光通信装置可通信地耦合的防伪装置,其中:
    所述光通信装置包括至少一个光源和控制器,所述控制器控制所述光源发出不同的光以传递不同信息;
    所述防伪装置被配置为:
    从预先设定的多个变换函数中选择一个变换函数;
    将与所述光通信装置关联的防伪码和函数验证码作为输入提供给所选择的变换函数;
    将所述变换函数的输出值提供给所述光通信装置,并指示所述光通信装置发布该输出值与所述光通信装置的标识符;
    所述服务器被配置为:
    接收经由图像采集设备对所述光通信装置进行图像采集获得的信息;
    从所述信息提取光通信装置的标识符并基于所述标识符确定与 该光通信装置对应的函数验证码和防伪码;
    将除所述标识符之外的其余信息作为输入提供给多个逆变换函数进行处理,并从其处理结果中包含所确定的函数验证码的逆变换函数的输出中提取防伪码;
    通过将所提取的防伪码与该光通信装置对应的防伪码进行比较来验证所述光通信装置是否合法。
  13. 一种用于光通信装置的防伪方法,包括:
    步骤S1),对于待发布标识信息的光通信装置,从多个变换函数中选择一个变换函数,将与该光通信装置的标识符关联的防伪码和函数验证码作为输入提供给所选择的变换函数;
    步骤S2),通过该光通信装置呈现其标识符及该变换函数的输出值;
    步骤S3),由认证服务器从通过图像采集设备获得的光通信装置传递的信息中提取光通信装置的标识符,并基于该标识符确定与该光通信装置对应的函数验证码和防伪码;
    步骤S4),由认证服务器将除所述标识符外的其余信息作为输入提供给多个逆变换函数进行处理,并从其处理结果中包含所确定的函数验证码的逆变换函数的输出中提取防伪码;
    步骤S5),将所提取的防伪码与该光通信装置对应的防伪码进行比较以验证该光标签的合法性。
  14. 根据权利要求13所述的方法,其中在步骤S1)通过建立光通信装置当前时间信息与变换函数的函数标识符之间的映射来选择变换函数。
  15. 根据权利要求14所述的方法,还包括:
    由认证服务器估计所述光通信装置的当前时间;
    基于所估计的当前时间通过所述映射获得函数标识符;
    选择以该函数标识符为中心的一定范围内的函数标识符对应的多个逆变换函数来对所述信息进行处理。
  16. 根据权利要求14所述的方法,在步骤S1)所述输入中还包括光通信装置的当前时间信息。
  17. 根据权利要求14、15或16中所述的方法,还包括定期地对光通信装置与认证服务器进行时间同步。
PCT/CN2018/117865 2017-12-19 2018-11-28 光通信装置以及相应的防伪方法和系统 WO2019120049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711375274.9 2017-12-19
CN201711375274.9A CN109934032B (zh) 2017-12-19 2017-12-19 光通信装置以及相应的防伪方法和系统

Publications (1)

Publication Number Publication Date
WO2019120049A1 true WO2019120049A1 (zh) 2019-06-27

Family

ID=66983760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117865 WO2019120049A1 (zh) 2017-12-19 2018-11-28 光通信装置以及相应的防伪方法和系统

Country Status (2)

Country Link
CN (1) CN109934032B (zh)
WO (1) WO2019120049A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060233357A1 (en) * 2004-02-24 2006-10-19 Sony Corporation Encrypting apparatus and encrypting method
CN103250372A (zh) * 2010-10-15 2013-08-14 耶德托公司 获得控制字以揭示客户端设备标识
CN105763525A (zh) * 2014-12-19 2016-07-13 北大方正集团有限公司 一种识别码生成方法和识别码解密方法及装置
CN106302508A (zh) * 2016-08-30 2017-01-04 西安小光子网络科技有限公司 一种基于主动应答的光标签防伪方法
CN106330461A (zh) * 2016-08-30 2017-01-11 西安小光子网络科技有限公司 一种基于单向散列函数的光标签防伪方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179556A (ja) * 2001-09-21 2003-06-27 Casio Comput Co Ltd 情報伝送方式、情報伝送システム、撮像装置、および、情報伝送方法
CN101334884B (zh) * 2008-07-29 2016-01-20 飞天诚信科技股份有限公司 提高转账安全性的方法和系统
CN105740936B (zh) * 2014-12-12 2019-03-08 方俊 一种光标签和识别光标签的方法及设备
CN106161655B (zh) * 2016-08-30 2020-07-17 西安小光子网络科技有限公司 一种基于光标签的用户喜好分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060233357A1 (en) * 2004-02-24 2006-10-19 Sony Corporation Encrypting apparatus and encrypting method
CN103250372A (zh) * 2010-10-15 2013-08-14 耶德托公司 获得控制字以揭示客户端设备标识
CN105763525A (zh) * 2014-12-19 2016-07-13 北大方正集团有限公司 一种识别码生成方法和识别码解密方法及装置
CN106302508A (zh) * 2016-08-30 2017-01-04 西安小光子网络科技有限公司 一种基于主动应答的光标签防伪方法
CN106330461A (zh) * 2016-08-30 2017-01-11 西安小光子网络科技有限公司 一种基于单向散列函数的光标签防伪方法及系统

Also Published As

Publication number Publication date
CN109934032B (zh) 2020-07-24
CN109934032A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
US10003582B2 (en) Technologies for synchronizing and restoring reference templates
EP3370384B1 (en) Two-dimensional code processing method and apparatus
CN106471795B (zh) 使用从来自经调制的光源的光照所解码的时间戳捕获的图像的验证
US10298398B2 (en) Peer discovery, connection, and data transfer
US8746568B2 (en) Data transfer using barcodes
CN101340437B (zh) 时间源校正方法及其系统
US20220360440A1 (en) Image acquisition apparatus, server, and encryption and decryption methods
CN103999442B (zh) 用于产生数字图像的装置和方法
CN102647423B (zh) 一种数字签章及印鉴的鉴别方法及系统
BR112013000358A2 (pt) método em um sistema que compreende um primeiro dispositivo de comunicação,um segundo dispositivo de comunicação, e um servidor,método em um primeiro dispositivo de comunicação,método em um segundo dispositivo de comunicação, método em um servidor,primeiro dispositivo de comunicação,segundo aparelho de comunicação,servidor,e produto de programa de computador.
CN102123148A (zh) 基于动态口令的认证方法、系统和装置
CN107888553B (zh) 一种验证方法、服务器和系统
US20150172059A1 (en) Methods and systems for messaging with physical presence and temporal verifications
WO2020115748A1 (en) Secure consensus over a limited connection
KR20220024302A (ko) 블록체인과 해쉬 암호화 기술을 기반으로 한 영상 인증 시스템 및 그 방법
CN109792387B (zh) 光通信装置防伪方法及系统
CN112565922A (zh) 一种广告监播方法、广告监播装置及计算机可读存储介质
WO2018041139A1 (zh) 基于主动应答的光通信装置防伪方法及系统
CN114221969B (zh) 基于近场通信的数据同步方法、终端、服务端、系统
US20220337570A1 (en) System and method for distributed, keyless electronic transactions with authentication
US20220029792A1 (en) Technique for cryptographic document protection and verification
WO2019120049A1 (zh) 光通信装置以及相应的防伪方法和系统
WO2019120050A1 (zh) 光通信装置以及相应的防伪方法和系统
US11902451B2 (en) Cross-blockchain identity and key management
CN105303085A (zh) 文件的分享方法及分享系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892910

Country of ref document: EP

Kind code of ref document: A1