WO2019120005A1 - 手术机器人系统及其手术器械 - Google Patents

手术机器人系统及其手术器械 Download PDF

Info

Publication number
WO2019120005A1
WO2019120005A1 PCT/CN2018/114902 CN2018114902W WO2019120005A1 WO 2019120005 A1 WO2019120005 A1 WO 2019120005A1 CN 2018114902 W CN2018114902 W CN 2018114902W WO 2019120005 A1 WO2019120005 A1 WO 2019120005A1
Authority
WO
WIPO (PCT)
Prior art keywords
surgical instrument
connector
surgical
force
connecting member
Prior art date
Application number
PCT/CN2018/114902
Other languages
English (en)
French (fr)
Inventor
李涛
朱祥
何超
Original Assignee
微创(上海)医疗机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微创(上海)医疗机器人有限公司 filed Critical 微创(上海)医疗机器人有限公司
Priority to JP2020534184A priority Critical patent/JP7127128B2/ja
Priority to EP18892834.5A priority patent/EP3730062A4/en
Priority to RU2020123951A priority patent/RU2740114C1/ru
Publication of WO2019120005A1 publication Critical patent/WO2019120005A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure

Definitions

  • the present invention relates to the field of medical device technology, and in particular to a surgical robot system and a surgical instrument thereof.
  • Minimal invasive surgical is accepted by more and more patients because of its small wounds and quick recovery, and more and more surgical modes are slow by traditional open surgery. Slowly progress to microtrauma surgery. At the same time, the continuous advancement of surgical methods has greatly promoted the development and advancement of the corresponding surgical instruments. Early hand-held surgical instruments were constantly replaced by mechanized and intelligent surgical instruments. As the most advanced surgical method in the modern era, the surgical robot system is constantly impacting people's medical concepts, and various micro-trauma surgical robot systems with different functions are emerging.
  • the surgical instruments of the surgical robot system generally contain four degrees of freedom of rotation, swing, pitch and opening, so that they can best fit the function of the human hand.
  • the movement of the surgical instrument is like the doctor himself. The same is done by hand.
  • surgical instruments are more flexible than human hands and can perform operations that cannot be performed by human hands.
  • the Da Vinci surgical robot system including:
  • Some surgical robots do not contain a force feedback mechanism; that is, during the actual operation, the surgical instruments cannot give feedback to the doctor about their actual working environment and stress state, which may make the doctor unable to perceive the device during operation.
  • the interference outside the field of view, or the device touches certain human structures, but the doctor does not know, let the robot perform the surgical operation; these will greatly affect the doctor's feeling of use, and will affect the effect of the surgery. It can even lead to surgery failure.
  • the structure of the force feedback mechanism is complicated.
  • the surgical robot including the force feedback mechanism disclosed in Chinese Patent No. CN101340850A detects strain corresponding to the longitudinal axis of the shaft by providing a plurality of strain gauges on the outer side of the distal end of the shaft connecting the end effector, and then passes the strain. Calculate the magnitude of the force.
  • the above-mentioned surgical robot uses an indirect force feedback structure to realize the force feedback mechanism of the surgical instrument.
  • the strain gauge itself is not directly connected or contacted with the end effector, and the stress measured by the strain gauge is converted into a surgical instrument by a more complicated algorithm.
  • the force measurement situation and the measurement accuracy of the indirect force feedback mechanism are relatively low, which does not meet the design principle of surgical instruments for surgical robots.
  • the object of the present invention is to provide a surgical robot system and a surgical instrument thereof, which solve the problems of the structure, calculation complexity and low accuracy of the end contact force measurement of the surgical instrument in the prior art.
  • a surgical instrument comprising a mechanical structural unit and a pressure sensor, wherein the mechanical structural unit comprises an instrument shaft and an end effector, the instrument shaft comprising a body and extending from a distal end of the body a connecting portion including a first connecting member and a second connecting member that are radially distributed, the first connecting member being fixedly coupled to the body of the instrument shaft, the second connecting member and the end portion Actuator fixed connection;
  • the pressure sensor includes a sensitive element disposed between the first connector and the second connector for sensing the action of the connector to obtain the end effector The Descartes force.
  • the first connecting member is a hollow supporting shaft
  • the second connecting member is a hollow base
  • the base is formed by an axial extension of the proximal end of the end effector, and the base is used for the base
  • the sleeve is sleeved with the support shaft.
  • the first connecting member is an outer layer structure
  • the second connecting member is an inner layer structure
  • the outer layer structure and the inner layer structure are radially connected and form a groove, and the sensitive component Set in the groove.
  • the axial section of the groove has a U shape.
  • an outer surface dimension of the first connector is smaller than an inner surface dimension of the second connector.
  • the inner surface dimension of the second connecting member is smaller than the sum of the outer surface dimension of the first connecting member and the radial dimension of the sensitive component, or the inner surface dimension of the second connecting member is larger than a sum of an outer surface dimension of the first connector and a radial dimension of the sensitive component, and a filler is further disposed between the first connector and the second connector to increase the first connection The elasticity between the piece and the second connector.
  • an inner surface dimension of the first connector is greater than an outer surface dimension of the second connector.
  • an inner surface dimension of the first connecting member is smaller than a sum of an outer surface dimension of the second connecting member and a radial dimension of the sensitive component, or the inner surface dimension of the first connecting member is larger than a sum of an outer surface dimension of the second connector and a radial dimension of the sensitive component, and a filler is further disposed between the first connector and the second connector to increase the first connection The elasticity between the piece and the second connector.
  • the filler is rubber or silica gel.
  • the pressure sensor comprises one of the sensitive elements or comprises a plurality of the sensitive elements, the plurality of sensitive elements being distributed along the circumferential and/or axial direction of the surgical instrument.
  • a plurality of the sensitive elements are distributed in a plurality of rows in the axial direction of the surgical instrument, and a plurality of the sensitive elements in each row of sensitive elements are evenly distributed in the circumferential direction of the surgical instrument.
  • two adjacent rows of sensitive elements are staggered.
  • a surgical robot system including a slave device including a robot arm and a surgical instrument; the distal end of the robot arm is detachably coupled to the surgical instrument to The surgical instrument is driven to move around a fixed point.
  • the surgical robot system further includes a main end device and a control unit, the main end device includes a display device; the control unit is communicably connected to the main end device and the slave device, The control unit acquires the Cartes force received by the end effector from the sensitive element of the surgical instrument and transmits it to the force indicating device.
  • the force indicating device is a main hand provided with a motor
  • the control unit sends a torque command to the motor of the main hand to make the operator feel the force of the end of the surgical instrument.
  • the main hand further includes a vibration motor, and when the force applied to the end of the surgical instrument exceeds a preset threshold, the control unit sends a vibration command to the vibration motor of the main hand to remind the operator to pay attention to the end of the surgical instrument. Larger.
  • the surgical instrument according to the present invention has a first connecting member and a second connecting member which are radially distributed, and a sensitive member is disposed between the first connecting member and the second connecting member, and the sensitive member of the pressure sensor can be Sensing force information of the second connecting member to the first connecting member is sensed, and according to the force information, a Cartesian force received by the end effector of the surgical instrument can be obtained.
  • the pressure sensor is a strain gauge pressure sensor, a piezoresistive pressure sensor, or a piezoelectric pressure sensor.
  • the sensitive element is disposed between the first connecting member and the second connecting member to receive the force of the connecting portion.
  • the force of the second connecting member to the sensitive member and the first connecting member deforms the sensitive member to generate deformation information. Further, by obtaining the pressure between the first connecting member and the second connecting member by the deformation information, the Cartesian force received at the end of the surgical instrument can be accurately and uniquely determined.
  • the distal end of the instrument shaft of the surgical instrument is axially extended to form a double-layered and hollow support shaft.
  • the support shaft has a U-shaped axial section, due to the U-shape of the support shaft.
  • the thin wall feature can further improve the accuracy of the force at the end of the obtained surgical instrument.
  • the surgical instrument provided by the invention has a simple force transmission path and a more accurate measurement of the contact force; on the other hand, the contact force of the end of the surgical instrument is obtained.
  • the method is simple, no additional parts need to be added, the complexity of the structure of the surgical instrument is reduced, and it is easy to install.
  • various surgical instruments are available for use in the surgical robot system provided by the present invention due to fewer modifications to the surgical instrument.
  • FIG. 1 is a schematic structural view of a surgical robot system according to an embodiment of the present invention.
  • FIG. 2a is a schematic structural view of a surgical instrument according to an embodiment of the present invention.
  • Figure 2b is a partial enlarged view of the surgical instrument shown in Figure 2a;
  • 3a is a schematic structural view of a deformable portion of a distal end of a surgical instrument according to an embodiment of the present invention
  • FIG. 3b is a schematic structural view showing a deformable portion of a distal end of a surgical instrument according to another embodiment of the present invention.
  • FIG. 4a is a schematic structural view showing a deformable portion integrally formed with a distal end of a surgical instrument according to another embodiment of the present invention.
  • Figure 4b is a cross-sectional view of the surgical instrument shown in Figure 4a;
  • Figure 4c is a partial enlarged view of the surgical instrument shown in Figure 4b.
  • the surgical robot system provided by the present embodiment can measure one or more of the radial force and the axial force received by the end of the surgical instrument.
  • FIG. 1 is a schematic structural diagram of a surgical robot system according to an embodiment of the present invention, the surgical robot system including a slave device.
  • the slave device includes a surgical cart 1, a robot arm 2, a surgical instrument 3, and an endoscope 4.
  • the operating table 1 as the base of the entire slave device supports all of the mechanical mechanisms while the operating table 1 is movable on the ground to enable the slave device to be close to or away from the patient.
  • the robot arm 2 is mounted on the operating table 1 and has a plurality of degrees of freedom for driving the surgical instrument 3 to move around a fixed point.
  • the surgical instrument 3 is brought to the planned position of the operation by adjustment of the robot arm 2, that is, by adjustment of the operating table 1 and the robot arm 2, the fixed point is located Near the patient's location.
  • the surgical instrument 3 is detachably mounted on the end of the robot arm 2, and may be fixedly connected to the end of the robot arm 2 or movably connected to the end of the robot arm 2.
  • the surgical instrument 3 acts as an output mechanism for the entire slave device, which will eventually enter the lesion area of the patient's body to effect treatment of the lesion.
  • the endoscope 4 is mounted at the end of the robotic arm 2 different from the surgical instrument 3 and is used to acquire image information in the surgical environment.
  • the image information includes, but is not limited to, human patient tissue information and location information of the surgical instrument 3.
  • the endoscope 4 is mounted on the robot arm 2, it is communicably connected to the main end device described below to display the information in the surgical environment collected by the endoscope 4 in real time.
  • the endoscope 4 may be a stereoscopic type or a non-stereoscopic type, and is not limited thereto.
  • the surgical robotic system further includes a primary end device including an imaging system 5, a main hand 6, an armrest 7, and a base 8.
  • a primary end device including an imaging system 5, a main hand 6, an armrest 7, and a base 8.
  • the information collected by the endoscope 4 is displayed by the imaging system 5, and the doctor can observe the movement of the surgical instrument 3 during the operation in real time through the imaging system 5, and the doctor passes the operation of the main hand 6 according to the observed result.
  • the doctor observes the position and movement of the end of the surgical instrument in the patient through the imaging system 5 at the console, and controls the surgical instrument 3 through the main hand 6 to complete multi-dimensional space motion, such as pitch, swing, rotation, opening and closing, etc. The action completes the entire surgical procedure.
  • the armrest 7 can support the doctor's arm, so that the doctor can maintain a high level of comfort during a long period of operation, and at the same time, the armrest 7 can be raised and lowered to meet the needs of different doctors.
  • the base 8 as a base structure of the primary end device is free to move on the ground, which supports all of the other configurations of the primary end devices described above.
  • the specific surgical procedure of the surgical robot system is:
  • the doctor operates the surgical cart 1 and the base 8 to push the slave device to the vicinity of the patient's operating bed, so that the slave device is in a good surgical position; the master device is pushed to A relatively good operating position for the convenience of the doctor;
  • the surgical instrument 3 and the endoscope 4 are inserted into the patient through an incision in the patient;
  • the doctor observes the position and movement state of the end effector of the surgical instrument 3 in the patient through the stereoscopic imaging system 5, and adjusts the position and motion state of the end effector by the main hand 6, thereby performing a microtrauma operation.
  • the control from the main hand 6 to the surgical instrument 3 is the basis of the master-slave control of the surgical robot system, and in order to better reproduce the surgical procedure, that is, to reflect the stress condition encountered by the surgical instrument 3 in actual operation,
  • the surgical instrument 3 is provided with a function of force feedback in order to feed back the stress state of the surgical instrument 3 itself to the main hand 6 to facilitate the doctor to adaptively adjust the surgical operation.
  • the present invention provides a surgical instrument configured with a sensing device and a corresponding surgical robotic system.
  • the surgical instrument 3 further includes a sensing device 9 for sensing force information at the end of the surgical instrument 3.
  • the surgical robot system further comprises a control unit 10 for receiving and transmitting the force information of the surgical instrument 3 acquired by the sensing device 9.
  • the control unit 10 is respectively connected to the primary device and the secondary device, for example, by a data cable or a wireless communication connection.
  • the control unit 10 is responsible for processing the data of the sensing device 9 according to the control strategy and calculating and controlling various types of data required in the operation.
  • the control unit 10 transmits the force information of the end of the surgical instrument 3 to the force indicating device of the primary end device such that the force at the end of the surgical instrument 3 is perceived by the doctor.
  • the force indicating device may be an imaging system 5 to display the magnitude and direction of the force applied to the end of the surgical instrument 3 in the imaging system 5.
  • the force indicating device may also be a main hand 6 provided with a motor.
  • the control unit 10 can also control the motor of the main hand 6 according to the force information at the end of the surgical instrument 3 to the doctor. Apply force.
  • the control from the main hand 6 to the surgical instrument 3 is the basis of the master-slave control of the surgical robot system.
  • the stress state of the surgical instrument 3 itself is fed back to the main hand 6, and the surgical instrument 3 is provided with a function of force feedback.
  • the force applied to the end of the surgical instrument 3 is calculated by the force data of the sensing device 9, and then the control unit 10 can issue a torque command to the motor of the main hand 6 so that the operator feels the surgical instrument 3
  • the force at the end is.
  • the main hand 6 is further provided with a vibration motor.
  • the control unit 10 can also issue a vibration command to the vibration motor of the main hand 6 to remind the operator to pay attention to the operation.
  • the end of the instrument 3 is subjected to a large force.
  • the surgical instrument includes a mechanical structural unit including an instrument shaft and an end effector, the mechanical structural unit including a body and a connecting portion extending from a distal end of the body,
  • the instrument shaft is connected to the end effector via the connecting portion, the pressure sensor as the sensing device 9 of the present invention, the sensing element sensing the force information of the connecting portion (ie, performing the end The instrument received the Cartesian force).
  • the surgical instrument will be described in further detail below.
  • Figure 2a is a schematic view of a mechanical structural unit of a surgical instrument according to an embodiment of the present invention
  • Figure 2b is a partial enlarged view of the mechanical structural unit of the surgical instrument shown in Figure 2a.
  • the mechanical structural unit of the surgical instrument 3 includes a power module 301, a mounting base 302, an instrument shaft 303, a force transmitting mechanism 304, and an end effector 305.
  • the power module 301 is located at the proximal end of the instrument shaft 303, and the end effector 305 is located at the distal end of the instrument shaft 303.
  • the power module 301 provides a driving force to the force transmitting mechanism 304, and then transmits the driving force to the end effector 305 through the force transmitting mechanism 304, so that the end effector 305 can perform multi-dimensional rotation and/or opening and closing, and the like. motion.
  • the power module 301 is detachably connected to an external motor, and obtains power from an external motor, and is connected to the motor through a speed reducer.
  • the power outputted by the motor is decelerated by the speed reducer and then transmitted to the power module 301 and the force transmission mechanism 304.
  • the force transmission mechanism 304 is, for example, a wire drive, including a wire and a guide wheel.
  • the wire is used to transmit power.
  • the guide wheel is used to adjust the extending direction of the wire.
  • the force transmission mechanism 304 specifically passes through the instrument bar 303 and the power module 301. It is connected to the end effector 305.
  • the end effector 305 implements specific surgical operations on the patient's lesion area, including cutting, knotting, grasping, and the like.
  • the present invention does not limit the type of the end effector 305, and may be scissors, pliers, and probes. And other equipment.
  • the mounting base 302 is detachably coupled to the end of the robot arm 2 .
  • the power module 301 is received in the mounting base 302 .
  • the proximal end of the instrument shaft 303 is coupled to the mounting base 302 and the distal end is coupled to the end effector 305.
  • the instrument shaft 303 can provide sufficient length to allow the end effector 305 to contact a patient's affected area during surgery.
  • the instrument shaft 303 includes a body and a connecting portion 320 extending from a distal end of the body (see Fig. 4a).
  • the connecting portion 320 includes a first connecting member and a second connecting member that are radially distributed, the first connecting member is fixedly connected to the body of the instrument rod, and the second connecting member is fixedly connected to the end effector .
  • the sensing element of the pressure sensor is disposed between the first connecting member and the second connecting member, that is, on the connecting portion 320 of the instrument shaft 303, and senses the force of the connecting portion 320 to be known.
  • the force of the connecting portion 320 is even the overall force of the end effector 305 (i.e., the reaction force of the human tissue to the end effector 305).
  • the connecting portion 320 can be separately formed from the body of the instrument shaft 303, that is, separately processed and assembled to form a whole.
  • the sensitive component may be selected from a piezoelectric, piezoresistive, strain gauge or the like strain gauge for sensing the force of the connecting portion 320.
  • the pressure sensor includes a circuit including a sensitive component, and when the resistance is deformed by the force to cause a change in resistance, the current or voltage of the circuit also changes, through the calibrated current or voltage and pressure. Correspondingly, the pressure sensor senses the pressure experienced by the sensitive component.
  • the first connector and the second connector are of a split design.
  • the second connector is a base 310 that is coupled to the proximal end of the end effector 305, and the base 310 is a hollow structure to facilitate passage of the force transmitting mechanism 304.
  • the first connecting member is a supporting shaft 311 fixedly connected to the body of the instrument shaft 303, and the supporting shaft 311 is also a hollow structure to facilitate the passage of the force transmitting mechanism 304.
  • the diameter and material of the support shaft 311 may be the same as or different from other parts of the instrument shaft 303.
  • one or more sensitive elements 312 are attached to the outer surface (preferably an outer circular surface) of the support shaft 311.
  • the plurality of the sensitive elements 312 are evenly distributed along the circumferential direction of the support shaft 311, and more preferably, the The support shaft 311 is axially provided with a plurality of rows of circumferentially evenly distributed sensitive elements 312, and each row of sensitive elements 312 is staggered with a row of sensitive elements 312.
  • the inner diameter of the base 310 is larger than the outer diameter of the support shaft 311, and is slightly smaller than the outer diameter of the support shaft 311 and the radial dimension of the sensitive element 312 to form an interference fit, so that the support shaft 311 can be inserted into the base 310. Inside and combined with it.
  • the radial dimension of the sensitive element 312 is the thickness of the sensitive element 312 along the cross-sectional direction of the base 310 or the support shaft 311.
  • the inner diameter of the base 310 is slightly larger than the sum of the outer diameter of the support shaft 311 and the radial dimension of the sensitive element 312, that is, a clearance fit relationship is formed therebetween.
  • a gap between the base 310 and the support shaft 311 is preferably provided with a filler, such as an elastic rubber, a silicone rubber or the like, thereby lifting the connection portion 320. elasticity.
  • the base 310 and the support shaft 311 are preferably formed coaxially and in a clearance fit relationship.
  • the base 310 is fixedly coupled to the end effector 305, and the sensitive component 312 Positioned between the support shaft 311 and the base 310, when the end effector 305 of the surgical instrument 3 is subjected to a Cartes force and transmits a force to the base 310, the base 310 applies a force to the sensitive element 312. This force is immediately sensed by the sensitive component 312. Therefore, by measuring the force applied to the base 310 and the support shaft 311, the Cartesian force received by the end 305 of the surgical instrument can be accurately and uniquely measured, and the measurement error caused by the change of the end structure of the surgical instrument or the like can be avoided.
  • the end effector 305 of the surgical instrument 3 when the end effector 305 of the surgical instrument 3 is subjected to a Cartes force applied by human tissue, the end effector 305 transmits a force to the base 310, and the base 310 A force is applied to the sensitive element 312 on the outer surface of the support shaft 311. Further, based on the force data obtained by the sensing of the sensitive element 312, the Cartesian force received by the end effector 305 of the surgical instrument 3 can be known.
  • the sensitive component 312 is not limited to be attached to the outer surface of the support shaft 311, and may be attached to the inner surface (preferably the inner circular surface) of the base 310.
  • the base 310 is attached to the sensitive component 312.
  • the inner diameter i.e., the inner diameter of the base 310 minus the radial dimension of the sensitive element 312 may be slightly smaller than the outer diameter of the support shaft 311 to form an interference fit.
  • the first connecting member of the connecting portion 320 is sleeved with the second connecting member, as shown in FIG. 3b.
  • the second connector is a base 313 that is proximally coupled to the end effector 305, the base 313 being of a hollow configuration to facilitate passage of the force transmitting mechanism 304.
  • the first connecting member is a supporting shaft 314 fixedly connected with the body of the instrument shaft 303, and the supporting shaft 314 is also a hollow structure to facilitate the passage of the force transmitting mechanism 304.
  • the diameter and material of the support shaft 314 may be the same as or different from other parts of the instrument shaft 303.
  • One or more sensitive elements 315 are attached to the inner surface (preferably the inner circular surface) of the support shaft 314.
  • the difference from the above embodiment is that the outer diameter of the base 313 is smaller than the inner diameter of the support shaft 314 and slightly larger than the difference between the inner diameter of the support shaft 314 and the radial dimension of the sensitive element 315, that is, the base 313 can be used for interference.
  • the support shaft 314 is inserted into the support shaft 314.
  • the outer diameter of the base 313 may be slightly smaller than the difference between the inner diameter of the support shaft 314 and the radial dimension of the sensitive element 315, that is, the base 313 forms a clearance fit with the support shaft 314, and the base 313 and the support
  • the gap between the shafts 314 is provided with a filler such as elastic rubber, silica gel or the like.
  • the base 313 is coaxially arranged with the support shaft 314 and has a clearance fit relationship.
  • the sensitive component 315 can be attached to the inner surface of the support shaft 314, and can also be attached to the outer surface (preferably the outer circular surface) of the base 313.
  • the base 313 is attached to the sensitive component 315.
  • the outer diameter ie, the sum of the outer diameter of the base 313 and the radial dimension of the sensitive element 315) is slightly larger than the inner diameter of the support shaft 314 to form an interference fit, or the outer diameter of the base 313 and the diameter of the sensitive element 315.
  • the sum of the dimensions is slightly smaller than the inner diameter of the support shaft 314, forming a clearance fit relationship, and filling the gap between the two with a filler.
  • any of the above described bases 310, 313 can be formed by the proximal extension of the proximal end of the end effector 305.
  • the first connector and the second connector may be integrally formed, simplifying the structure of the surgical instrument, and optimizing the size of the surgical instrument.
  • the first connecting member is an outer layer structure 323 connected to the distal end of the body of the instrument shaft 303, as described above.
  • the outer structure 323 is a hollow structure to facilitate passage of the force transmitting mechanism 304.
  • the second connector is an inner layer structure 324 that is coupled to the proximal end of the end effector 305, and the inner layer structure 324 is a hollow structure to facilitate passage of the force transmitting mechanism 304 described above.
  • the connecting portion 320 is fixedly coupled to the end effector 305, preferably the inner layer structure 324 is fixedly coupled to the end effector 305.
  • the outer layer structure 323 is located at the periphery of the inner layer structure 324 and is radially coupled to the inner layer structure 324 to collectively form the lever arms of the attachment portion 320 of the instrument shaft.
  • a groove 322 is formed between the inner layer structure 324 and the outer layer structure 323.
  • the groove 322 has a U shape.
  • a reinforcing plate is disposed in the groove 322 to enhance the structural strength thereof.
  • one or more sensitive elements 321 are placed in the recess 322, such as on the inner surface of the outer layer structure 323 of the connecting portion 320, or attached to the inner layer structure 324 of the connecting portion 320.
  • the recess 322 is provided with a filler, such as elastic rubber, silica gel or the like, to increase the elasticity of the connecting portion 320.
  • the inner and outer structures of the recess 322 may be deformed to some extent due to the hollow feature of the lever arm of the connecting portion 320, thereby being sensitive to extrusion.
  • the element 321 deforms the sensitive element 321 , and according to the deformation, the pressure sensor can obtain the force received by the sensitive element 321 , thereby sensing the force (including size and direction) of the end effector 305, and finally obtaining the end of the surgical instrument.
  • Force a plurality of the sensing elements 321 are uniformly distributed circumferentially in the groove 322. More preferably, the groove 322 is axially disposed with a plurality of rows of circumferentially evenly distributed sensing elements 321 to further improve detection. accurate.
  • the present invention includes, but is not limited to, the configurations listed in the above embodiments, and any content that is transformed based on the configuration provided by the above embodiments belongs to the present invention.
  • the scope of protection of the invention Those skilled in the art can make the same according to the content of the above embodiments.
  • the present invention also provides a surgical robot system including a slave end device including a mechanical arm and the above-mentioned surgical instrument, the end of the mechanical arm and the surgical instrument can be A detachable connection to drive the surgical instrument to move around the fixed point.
  • the surgical robot system further includes a main end device and a control unit, the main end device includes a force indicating device, the control unit is communicably connected with the main end device and the slave end device, and the control unit is The sensor element of the surgical instrument acquires the Cartesian force experienced by the end effector and transmits it to the force indicating device.
  • the control unit 10 can use an existing PLC controller, a single chip microcomputer, a microprocessor, etc., and those skilled in the art can know how to select based on the common knowledge in the art based on the disclosure of the present application.
  • a surgical instrument has a first connector and a second connector that are radially distributed, and a sensitive component is disposed between the first connector and the second connector, and the sensor can sense the The force information at the end of the instrument shaft of the surgical instrument is obtained, and the Cartesian force received by the end effector of the surgical instrument is obtained.
  • the pressure sensor is a strain gauge pressure sensor, a piezoresistive pressure sensor or a piezoelectric pressure sensor, and the sensitive component is disposed between the first connecting member and the second connecting member to The force of the connection is sensed.
  • the end of the surgical instrument is subjected to an external force, and the first connecting member and the second connecting member are forced and transmitted to the sensitive component, and the sensitive component is deformed, and the deformation is immediately recognized by the sensitive component to obtain the force of the connecting portion. Therefore, by obtaining the pressure between the first connecting member and the second connecting member by the deformation information, the Cartesian force received at the end of the surgical instrument can be accurately and uniquely determined.
  • the distal end of the instrument shaft of the surgical instrument is axially extended to form a double-layered and hollow support shaft.
  • the support shaft has a U-shaped axial section, due to the U-shape of the support shaft.
  • the thin wall feature can further improve the accuracy of the force at the end of the obtained surgical instrument.
  • the surgical instrument provided by the invention has a simple force transmission path and a more accurate measurement of the contact force; on the other hand, the contact force of the end of the surgical instrument is obtained.
  • the method is simple, is not constrained by the specific configuration of the surgical instrument, does not need to add additional parts, reduces the complexity of the structure of the surgical instrument, and is also easy to install.
  • various surgical instruments are available for use in the surgical robot system provided by the present invention due to fewer modifications to the surgical instrument.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Manipulator (AREA)
  • Surgical Instruments (AREA)

Abstract

一种手术机器人系统及其手术器械(3),有助于简化接触力测量的结构,还可以提高测量的精度。手术器械(3)包括机械结构单元和压力传感器,机械结构单元包括器械杆(303)和末端执行器(305),器械杆(303)包括本体和从本体的远端延伸的连接部(320),连接部(320)包括径向分布的第一、二连接件,第一连接件与本体固定连接,第二连接件与末端执行器(305)固定连接;压力传感器包括敏感元件(312、315、321),敏感元件(312、315、321)设置在第一、二连接件之间,用于感测连接部(320)对其作用,以获得末端执行器(305)受到的笛卡尔力。手术机器人系统包括从端设备,从端设备包括机械臂(2)和手术器械(3),机械臂(2)的末端与手术器械(3)可拆卸式连接,以驱动手术器械(3)围绕不动点运动。

Description

手术机器人系统及其手术器械 技术领域
本发明涉及医疗器械技术领域,特别涉及一种手术机器人系统及其手术器械。
背景技术
微创伤手术(minimal invasive surgical)由于其具有创口小、恢复快等优点,被越来越多的患者所接受,并且越来越多的手术模式都由传统的开放式手术(open surgical)慢慢地发展到微创伤手术。同时,手术方法的不断进步也大大地推动着相应的手术器械的发展与进步,早期的手持式手术器械在不断地被机械化、智能化的手术器械所取代。作为当代最为先进的手术方式,手术机器人系统在不断地冲击着人们的医疗理念,各种功能不同的微创伤手术机器人系统正在不断涌现。
微创伤手术中,腹腔镜手术由于其实现较早,现在已基本实现普及。作为其中的佼佼者,达芬奇手术机器人系统已经获得了全世界的认可,其基本覆盖了欧美国家,可见其系统具有绝对的优势。达芬奇手术机器人系统基本的控制理念即是主从遥控操作的控制方式,医生通过主控制台的主操作手,实现对病人端机器人的器械的控制。一般,病人端机器人具有多个机械臂,可持手术器械和内窥镜。但是,手术机器人系统的手术器械不同于一般的手术器械,其更具有自动化和智能化的特征。
手术机器人系统的手术器械一般含有自转、摆动、俯仰和开合四个自由度,使其能最好的拟合人手的功能,当医生在操作机器人的过程中,手术器械的运动就像医生本人用手进行操作一样。更者,手术器械相对于人手更加的灵活,能完成人手不能进行的操作。但是,目前国内外,包括达芬奇手术机器人系统均存在着某些不足,主要包括:
(1)一些手术机器人本身不含有力反馈机制;即在实际的手术过程中,手术器械不能向医生反馈其实际的工作环境及受力状态,这会使得医生在操作过程中无法感知器械碰到的视野之外的干扰,或是器械触碰到某些人体结构,而 医生却不知道,任由机器人进行手术操作;这些都会很大程度的影响医生的使用感觉,同时会影响手术的效果,甚至会导致手术失败。
(2)另外一些手术机器人虽含有力反馈机制,但是实现力反馈机制的结构繁杂。例如中国专利CN101340850A公开的含有力反馈机制的手术机器人,通过在连接末端执行器的轴的远端外侧设置多个应变测量器,检测平行于所述轴的纵向轴线的应变,再通过所述应变计算出力的大小。上述手术机器人采用间接的力反馈结构实现手术器械的力反馈机制,应变测量器本身与末端执行器并不直接相连或接触,需要通过较复杂的算法将应变测量器测得的应力转变为手术器械的受力情况,且间接力反馈机制的测量精确度相对较低,不符合手术机器人用手术器械的设计宗旨。
发明内容
本发明的目的在于提供一种手术机器人系统及其手术器械,以解决现有技术中手术器械末端接触力测量的结构和计算复杂以及准确度低等问题。
根据本发明的一个方面,提供了一种手术器械,包括机械结构单元和压力传感器,其中,所述机械结构单元包括器械杆和末端执行器,所述器械杆包括本体和从本体的远端延伸的一连接部,所述连接部包括径向分布的第一连接件和第二连接件,所述第一连接件与所述器械杆的本体固定连接,所述第二连接件与所述末端执行器固定连接;
所述压力传感器包括敏感元件,所述敏感元件设置在所述第一连接件和所述第二连接件之间,用于感测所述连接部对其的作用,以获得所述末端执行器受到的笛卡尔力。
可选地,所述第一连接件为一中空的支撑轴,所述第二连接件为一中空的底座,所述底座由所述末端执行器的近端轴向延伸形成,所述底座用于与所述支撑轴相套接。
可选地,所述第一连接件为一外层结构,第二连接件为一内层结构,所述外层结构和所述内层结构径向连接并形成一凹槽,所述敏感元件设置在所述凹槽中。
可选地,所述凹槽的轴向截面呈U形状。
可选地,所述第一连接件的外表面尺寸小于所述第二连接件的内表面尺寸。进一步的,所述第二连接件的内表面尺寸小于所述第一连接件的外表面尺寸与所述敏感元件的径向尺寸之和,或者,所述第二连接件的内表面尺寸大于所述第一连接件的外表面尺寸与所述敏感元件的径向尺寸之和,且所述第一连接件和所述第二连接件之间还设有填充物,以增加所述第一连接件和所述第二连接件之间的弹性。
可选地,所述第一连接件的内表面尺寸大于所述第二连接件的外表面尺寸。进一步的,所述第一连接件的内表面尺寸小于所述第二连接件的外表面尺寸与所述敏感元件的径向尺寸之和,或者,所述第一连接件的内表面尺寸大于所述第二连接件的外表面尺寸与所述敏感元件的径向尺寸之和,且所述第一连接件和所述第二连接件之间还设有填充物,以增加所述第一连接件和所述第二连接件之间的弹性。
可选地,所述填充物为橡胶或硅胶。
可选地,所述压力传感器包括一个所述敏感元件,或者包括多个所述敏感元件,多个所述敏感元件沿所述手术器械的周向和/或轴向分布。
可选地,多个所述敏感元件在所述手术器械的轴向上分布成多排,每一排敏感元件中的多个敏感元件在所述手术器械的周向上均匀分布。
可选地,相邻两排敏感元件相交错布置。
根据本发明的另一个方面,提供了一种手术机器人系统,包括从端设备,所述从端设备包括机械臂以及手术器械;所述机械臂的末端与所述手术器械可拆卸式连接,以驱动所述手术器械围绕一不动点运动。
可选地,所述手术机器人系统还包括主端设备和控制单元,所述主端设备包括一示力装置;所述控制单元与所述主端设备和所述从端设备通讯连接,所述控制单元从所述手术器械的敏感元件获取所述末端执行器受到的笛卡尔力,并传输至所述示力装置。
可选地,所述示力装置为设有马达的主手,所述控制单元向主手的马达发出力矩指令,以使操作者感受到手术器械末端的受力。
可选地,所述主手还包括振动马达,当手术器械末端的受力超过预设阈值时,所述控制单元向主手的振动马达发出振动指令,提醒操作者注意手术器械 的末端受力较大。
根据本发明的手术器械,其具有径向分布的第一连接件和第二连接件,且所述第一连接件和第二连接件之间设置有敏感元件,所述压力传感器的敏感元件可以感测所述第二连接件对第一连接件的作用力信息,根据该作用力信息可以获得手术器械末端执行器受到的笛卡尔力。
在一个实施例中,所述压力传感器为应变式压力传感器、压阻式压力传感器或压电式压力传感器。所述敏感元件布置于第一连接件和第二连接件之间,以接受连接部的作用力。所述手术器械的末端执行器受外力作用时,第二连接件对敏感元件以及第一连接件的作用力使所述敏感元件发生变形,产生形变信息。进一步,通过形变信息获得第一连接件和第二连接件之间的压力,即可准确地、唯一地测定手术器械末端所受到的笛卡尔力。
特别的,所述手术器械的器械杆远端轴向延伸形成有一个双层且中空的支撑轴,优选的,所述支撑轴具有轴向截面为U形的凹槽,由于支撑轴的U形薄壁特征,可以进一步提高获得的手术器械末端受力的精确性。
与使用电机力计算手术器械末端的受力的现有技术相比,本发明提供的手术器械,一方面力传导路径简单,接触力的测量更为准确;另一方面获取手术器械末端的接触力的方式简易,无需添加额外的零件,降低了手术器械的结构的复杂性,而且还便于安装。此外,由于对手术器械的改动较少,因此现有各种的手术器械均可以在本发明提供的手术机器人系统使用。
附图说明
图1是本发明一实施例的手术机器人系统的结构示意图;
图2a是本发明一实施例的手术器械的结构示意图;
图2b是图2a所示的手术器械的局部放大图;
图3a是本发明一实施例的手术器械末端构造有分体成型的可变形部分的结构示意图;
图3b是本发明另一实施例的手术器械末端构造有分体成型的可变形部分的结构示意图;
图4a是本发明其他实施例的手术器械末端构造有一体成型的可变形部分的 结构示意图;
图4b是图4a所示的手术器械的剖视图;
图4c是图4b所示的手术器械的局部放大图。
附图标记说明如下:
手术台车-1,机械臂-2,手术器械-3,动力模组-301,安装底座-302,器械杆-303,力传递机构-304,末端执行器-305,内窥镜-4,成像系统-5,主手-6,扶手-7,基座-8;
传感装置-9,控制单元-10;底座-310、313,敏感元件-312、315、321,支撑轴-311、314,连接部-320,外层结构-323,内层结构-324,凹槽-322。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图1~4对本发明提出的手术机器人系统及其手术器械做进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。如说明书中所述,“末端”、“远端”指的是远离产品操作者、靠近病人的一端,“近端”指的是靠近产品操作者、远离病人的一端。如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。
首先,需要补充的是,本实施例提供的手术机器人系统可以测量手术器械末端所受到的径向力和轴向力中的一个或多个。
接着参阅图1,图1是本发明一实施例的手术机器人系统的结构示意图,所述手术机器人系统包括从端设备。所述从端设备包括手术台车1、机械臂2、手术器械3和内窥镜4。所述手术台车1作为整个所述从端设备的基座,支撑着全部的机械机构,同时所述手术台车1可在地面上移动,使所述从端设备能够靠近或远离患者。
所述机械臂2安装于手术台车1上并具有多个自由度,用于驱动所述手术器械3围绕一不动点运动。当所述手术台车1到达患者附近时,通过对机械臂2的调整,使手术器械3到达手术的规划位置,即通过手术台车1和机械臂2的调整,使所述不动点位于病患位置附近。所述手术器械3可拆卸安装于机械臂2 的末端,可以与所述机械臂2末端相对固定连接,也可以与所述机械臂2末端可移动连接。所述手术器械3作为整个所述从端设备的输出机构,其最终将进入患者体内病灶区,实现对病灶的处理。
所述内窥镜4安装于不同于手术器械3之机械臂2的末端,并用于采集手术环境中的图像信息。该图像信息包括但不限于人体病患组织信息以及手术器械3的位置信息。而且,所述内窥镜4安装在机械臂2上后,与下述的主端设备通讯连接,以实时显示内窥镜4采集的手术环境中的信息。所述内窥镜4可以是立体式,也可以是非立体式,具体不限。
继续参考图1,所述手术机器人系统还包括主端设备,所述主端设备包括成像系统5、主手6、扶手7和基座8。手术时,一方面所述内窥镜4采集的信息通过成像系统5展现,医生通过成像系统5即可实时观察手术过程中手术器械3的运动,同时医生根据观察的结果通过主手6的操作来控制手术器械3下一步运动。手术过程中,医生在控制台通过成像系统5观察手术器械末端在患者体内的位置和运动,并通过主手6控制手术器械3以完成多维的空间运动,诸如俯仰、摆动、自转以及开合等动作,进而完成整个手术过程。所述扶手7可支撑医生的手臂,使医生在长时间手术过程中能保持较高的舒适感,同时,所述扶手7可升降,使其满足不同医生的需求。所述基座8作为主端设备的基础结构可在地面上自由移动,其支撑着上述所有的主端设备的其他结构。
所述手术机器人系统具体的手术过程为:
首先,医生通过对手术台车1和基座8进行操作,使所述从端设备推送到患者的手术床附近,从而使所述从端设备处于一个良好的手术位置;将主端设备推送到一个较为良好的操作位置,便于医生的操作;
然后,通过对机械臂2的操作,使手术器械3、内窥镜4到达手术切点附近;
之后,将手术器械3和内窥镜4通过患者身上的切口插入患者体内;
最后,医生通过立体成像系统5观察手术器械3的末端执行器在患者体内的位置和运动状态,并通过主手6调整末端执行器的位置和运动状态,进而实施微创伤手术。
显然,从主手6到手术器械3的控制是手术机器人系统主从控制的基础,进而为了更好地重现手术过程,即反映手术器械3在实际操作中所遇到的受力 状况,需使手术器械3具备力反馈的功能,以便于将手术器械3自身的受力状况反馈到主手6而便于医生适应性调整手术操作。因此,本发明提供了一种配置了传感装置的手术器械以及相应的手术机器人系统。
具体的,所述手术器械3还包括传感装置9,用于感测手术器械3末端的受力信息。同时,所述手术机器人系统还包含控制单元10,用于接受并传递传感装置9获取的手术器械3的受力信息。所述控制单元10分别与所述主端设备和所述从端设备通讯连接,例如通过数据线缆相连或者无线通讯连接。而所述控制单元10则负责根据控制策略,处理传感装置9的数据并计算、控制手术中需要的各类数据。所述控制单元10将手术器械3末端的受力信息发送至所述主端设备的示力装置,以使手术器械3末端的受力被医生感知。
所述示力装置可以是成像系统5,以在成像系统5中显示手术器械3末端受力的大小与方向。所述示力装置也可以是设有马达的主手6,医生在操作过程中,所述控制单元10根据手术器械3末端的受力信息还可以对主手6的马达进行控制,以对医生施以作用力。显然,从主手6到手术器械3的控制是手术机器人系统主从控制的基础,为了更好的重现手术过程,即重现手术器械3在实际操作中所遇到的受力状况,需将手术器械3自身的受力状况反馈到主手6,使手术器械3具备力反馈的功能。因此,通过所述传感装置9的受力数据计算得到手术器械3末端的受力,之后,所述控制单元10可以向主手6的马达发出力矩指令,以使操作者感受到手术器械3末端的受力情况。优选,所述主手6还设有振动马达。当通过所述传感装置9的受力数据计算得到手术器械3末端的受力超过预设阈值之后,所述控制单元10还可以向主手6的振动马达发出振动指令,提醒操作者注意手术器械3的末端受力较大的情况。
在本发明中,所述手术器械包括机械结构单元和压力传感器,所述机械结构单元包括器械杆和末端执行器,所述器械杆包括本体和从本体的远端延伸的一连接部,所述器械杆通过所述连接部与所述末端执行器连接,所述压力传感器作为本发明的传感装置9,其敏感元件感测所述连接部对其的作用力信息(即为所述末端执行器受到的笛卡尔力)。接下去将对所述手术器械的实现方式作进一步详细说明。
首先,参阅图2a和图2b,图2a为本发明一实施例的手术器械的机械结构 单元示意图,图2b是图2a所示的手术器械的机械结构单元的局部放大图。如图2a和图2b所示,所述手术器械3的机械结构单元包括动力模组301、安装底座302、器械杆303、力传递机构304和末端执行器305。
所述动力模组301位于器械杆303的近端,所述末端执行器305位于器械杆303的远端。所述动力模组301为力传递机构304提供驱动力,再通过所述力传递机构304将驱动力传递至末端执行器305,使得末端执行器305能够完成多维的旋转和(或)开合等运动。
所述动力模组301与外部的电机可拆卸连接,从外部的电机获取动力,并与电机通过减速器连接,电机输出的动力通过减速器减速后由动力模组301、力传递机构304传递至末端执行器305。所述力传递机构304例如为丝传动,包括钢丝以及导向轮,钢丝用于传递动力,导向轮用于调整钢丝的延伸方向,所述力传递机构304具体穿过器械杆303与动力模组301和末端执行器305连接。所述末端执行器305实现对患者病灶区的具体手术操作,包括切割、打结、抓取等动作,但是,本发明对末端执行器305的种类没有任何限制,可以是剪刀、钳子、探针等器械。
所述安装底座302用于与机械臂2的末端可拆卸地连接,优选的,所述动力模组301容置于安装底座302内。所述器械杆303的近端与安装底座302连接,远端与末端执行器305连接。所述器械杆303能够提供足够的长度使末端执行器305在手术时能接触人体病患部位。
其中,所述器械杆303包括本体和从本体的远端延伸的连接部320(参阅图4a)。所述连接部320包括径向分布的第一连接件和第二连接件,所述第一连接件与所述器械杆的本体固定连接,所述第二连接件与所述末端执行器固定连接。进而,所述压力传感器的敏感元件设置在所述第一连接件和第二连接件之间,即位于器械杆303的连接部320上,感测所述连接部320对其作用力,进而获知所述连接部320的受力,乃至末端执行器305的整体受力情况(即人体组织给末端执行器305的反作用力)。所述连接部320可与器械杆303的本体分体成型,即单独加工后再组装一起形成一个整体。另外,所述敏感元件可以选自压电式、压阻式、应变式等应变片,用以感测所述连接部320的受力。在一个实施例中,所述压力传感器包括含有敏感元件的电路,当敏感元件受力产生形变 导致电阻发生改变时,所述电路的电流或电压亦发生改变,通过经过标定的电流或电压与压力之间的对应关系,所述压力传感器感测出敏感元件受到的压力。
例如图3a所示的优选实施例中,所述第一连接件和第二连接件为分体设计。具体而言,所述第二连接件为与末端执行器305之近端连接的底座310,且所述底座310为中空结构,以便于前述力传递机构304通过。同时,所述第一连接件为与所述器械杆303的本体固定连接的支撑轴311,同样所述支撑轴311亦为中空结构,以便于力传递机构304通过。所述支撑轴311的直径、材料可以与器械杆303其他部分相同,也可以不相同。并且,一个或多个敏感元件312贴于支撑轴311的外表面(优选为外圆面),优选的,多个所述敏感元件312沿支撑轴311的周向均匀分布,更优选,所述支撑轴311轴向上设有多排周向均匀分布的敏感元件312,且每排敏感元件312与邻近一排的敏感元件312相交错布置。另外,所述底座310的内径大于支撑轴311的外径,且略小于支撑轴311的外径与敏感元件312的径向尺寸之和以形成过盈配合,从而使得支撑轴311能够插入底座310内并与之相结合。此处,敏感元件312的径向尺寸即为敏感元件312沿底座310或支撑轴311的横截面方向的厚度。在使用时通过调整测量基准,以去除由于过盈配合带来的敏感元件测量误差。在另外一个实施例中,所述底座310的内径略大于支撑轴311的外径与敏感元件312的径向尺寸之和,即两者之间形成间隙配合关系。如若底座310与支撑轴311为间隙配合关系,在所述底座310与支撑轴311之间的空隙优选设有填充物,所述填充物例如是弹性橡胶、硅胶等,以此提升连接部320的弹性。进一步,所述底座310与支撑轴311较佳地形成同轴布置并呈间隙配合关系。
在底座310与支撑轴311相套接形成的连接部320中,由于支撑轴311与所述器械杆303的本体固定连接,所述底座310与末端执行器305固定连接,且所述敏感元件312置于支撑轴311和底座310之间,当所述手术器械3的末端执行器305受笛卡尔力作用,并将力传递至所述底座310,所述底座310施力于所述敏感元件312,这一力即刻被敏感元件312所感测。因此,通过测量底座310和支撑轴311的受力,即可准确地、唯一地测定手术器械末端305所受到的笛卡尔力,同时还可以避免手术器械末端结构的变化等所产生的测量误差。
具体来说,实际手术过程中,当所述手术器械3的末端执行器305受到人 体组织施加的笛卡尔力时,所述末端执行器305将力传递至所述底座310,而所述底座310将力施加于支撑轴311外表面上的敏感元件312。进而,根据敏感元件312感测而获得的受力数据,可以获知所述手术器械3的末端执行器305受到的笛卡尔力。
然而,所述敏感元件312不限于贴于支撑轴311的外表面上,还可以贴于底座310的内表面(优选为内圆面)上,此时,所述底座310贴敏感元件312后的内径(即底座310的内径减去敏感元件312的径向尺寸)可略小于支撑轴311的外径以形成过盈配合。
与前述实施例相对的,所述连接部320的第一连接件套接所述第二连接件,具体参阅图3b。如图3b所示的实施例中,所述第二连接件为与末端执行器305近端连接的底座313,所述底座313为中空结构,以便于力传递机构304通过。同时,所述第一连接件为与所述器械杆303的本体固定连接的支撑轴314,同样所述支撑轴314为中空结构,以便于力传递机构304通过。所述支撑轴314的直径、材料可以与器械杆303其他部分相同,也可以不相同。一个或多个敏感元件315贴于支撑轴314的内表面(优选为内圆面)。与上述实施例区别在于,所述底座313的外径小于支撑轴314的内径,且略大于支撑轴314的内径与敏感元件315的径向尺寸之间的差值,即底座313能够以过盈配合的方式插入支撑轴314内。同样的,所述底座313的外径可以略小于支撑轴314的内径与敏感元件315的径向尺寸之间的差值,即底座313与支撑轴314形成间隙配合,并所述底座313与支撑轴314之间的空隙设置有填充物,例如弹性橡胶、硅胶等。优选的,所述底座313与支撑轴314同轴布置并呈间隙配合关系。
当然,所述敏感元件315除可贴于支撑轴314的内表面上,还可贴于底座313的外表面(优选为外圆面)上,此时,所述底座313贴敏感元件315后的外径(即所述底座313的外径与敏感元件315的径向尺寸之和)略大于支撑轴314的内径,以形成过盈配合,或者所述底座313的外径与敏感元件315的径向尺寸之和略小于支撑轴314的内径,形成间隙配合关系,并采用填充物填充两者之间的空隙。
上述底座310、313中任何一个,均可由末端执行器305的近端轴向延伸形成。
此外,所述第一连接件和第二连接件可以为一体成型设计,简化手术器械的结构,优化手术器械的尺寸。与上述实施例类似,如图4a~图4c所示的另一个优选的方案中,所述第一连接件为与所述器械杆303之本体的远端连接的外层结构323,同样所述外层结构323为中空结构,以便于力传递机构304通过。所述第二连接件为与末端执行器305之近端连接的内层结构324,且所述内层结构324为中空结构,以便于前述力传递机构304通过。所述连接部320与末端执行器305固定连接,优选所述内层结构324与末端执行器305固定连接。特别地,所述外层结构323位于所述内层结构324的外围,并与所述内层结构324径向连接,共同形成了所述器械杆的连接部320的杆臂。由此,所述内层结构324和外层结构323之间形成有凹槽322,优选,所述凹槽322的形状为U形。优选的,所述凹槽322内设有一个加强板以增强其结构强度。更有,一个或多个敏感元件321置于所述凹槽322中,例如贴在所述连接部320的外层结构323的内表面上,或者贴在所述连接部320的内层结构324的外表面上,优选,所述凹槽322内设有填充物,例如弹性橡胶、硅胶等,以此增加连接部320的弹性。
应理解的是,当所述末端执行器305受到人体组织施加的作用力时,由于连接部320的杆臂中空的特征使得凹槽322的内外层结构会发生一定程度的变形,从而挤压敏感元件321,使敏感元件321产生形变,根据形变所述压力传感器可以获得敏感元件321受到的作用力,进而可感测末端执行器305的受力(包括大小和方向),最终得到手术器械末端的受力。可选的,多个所述敏感元件321周向均匀分布在所述凹槽322中,更优选,所述凹槽322轴向上设有多排周向均匀分布的敏感元件321,使检测更加准确。
上述实施例对手术器械的结构进行了详细说明,当然,本发明包括但不局限于上述实施中所列举的构型,任何在上述实施例提供的构型基础上进行变换的内容,均属于本发明所保护的范围。本领域技术人员可以根据上述实施例的内容举一反三。
另外,本发明还提供了一种手术机器人系统,所述的手术机器人系统包括从端设备,所述从端设备包括机械臂以及上述的手术器械,所述机械臂的末端与所述手术器械可拆卸式连接,以驱动所述手术器械围绕不动点运动。进一步 所述手术机器人系统还包括主端设备和控制单元,所述主端设备包括示力装置,所述控制单元与所述主端设备和所述从端设备通讯连接,所述控制单元从所述手术器械的敏感元件获取所述末端执行器受到的笛卡尔力,并传输至所述示力装置。此外,所述控制单元10可以采用现有的PLC控制器、单片机、微处理器等,本领域技术人员可在本申请公开基础上结合本领域的公知常识能够知晓如何选择。
根据本发明的手术器械,其具有径向分布的第一连接件和第二连接件,且所述第一连接件和第二连接件之间设置有敏感元件,所述敏感元件可以感测所述手术器械的器械杆末端的受力信息,进而获得了手术器械末端执行器受到的笛卡尔力。进而,在一个优选实施例中,所述压力传感器为应变式压力传感器、压阻式压力传感器或压电式压力传感器,所述敏感元件布置于第一连接件和第二连接件之间,以感测连接部的受力。所述手术器械末端受外力作用,而使第一连接件和第二连接件受力并传递至敏感元件,并使敏感元件发生变形,这一变形即刻被敏感元件所识别得到连接部的受力,因此,通过形变信息获得第一连接件和第二连接件之间的压力,即可准确地、唯一地测定手术器械末端所受到的笛卡尔力。
特别的,所述手术器械的器械杆远端轴向延伸形成有一个双层且中空的支撑轴,优选的,所述支撑轴具有轴向截面为U形的凹槽,由于支撑轴的U形薄壁特征,可以进一步提高获得的手术器械末端受力的精确性。
与使用电机力计算手术器械末端的受力的现有技术相比,本发明提供的手术器械,一方面力传导路径简单,接触力的测量更为准确;另一方面获取手术器械末端的接触力的方式简易,不受手术器械具体构型的约束,无需添加额外的零件,降低了手术器械的结构的复杂性,而且还便于安装。此外,由于对手术器械的改动较少,因此现有各种的手术器械均可以在本发明提供的手术机器人系统使用。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (16)

  1. 一种手术器械,其特征在于,包括机械结构单元和压力传感器,其中,
    所述机械结构单元包括器械杆和末端执行器,所述器械杆包括本体和从本体的远端延伸的一连接部,所述连接部包括径向分布的第一连接件和第二连接件,所述第一连接件与所述器械杆的本体固定连接,所述第二连接件与所述末端执行器固定连接;
    所述压力传感器包括一敏感元件,所述敏感元件设置在所述第一连接件和所述第二连接件之间,用于感测所述连接部对其的作用,以获得所述末端执行器受到的笛卡尔力。
  2. 如权利要求1所述的手术器械,其特征在于,所述第一连接件为一中空的支撑轴,所述第二连接件为一中空的底座,所述底座由所述末端执行器的近端轴向延伸形成,所述底座用于与所述支撑轴相套接。
  3. 如权利要求1所述的手术器械,其特征在于,所述第一连接件为一外层结构,第二连接件为一内层结构,所述外层结构和所述内层结构径向连接并形成一凹槽,所述敏感元件设置在所述凹槽中。
  4. 如权利要求3所述的手术器械,其特征在于,所述凹槽的轴向截面呈U形状。
  5. 如权利要求1所述的手术器械,其特征在于,所述第一连接件的外表面尺寸小于所述第二连接件的内表面尺寸,且
    所述第二连接件的内表面尺寸小于所述第一连接件的外表面尺寸与所述敏感元件的径向尺寸之和。
  6. 如权利要求1所述的手术器械,其特征在于,所述第二连接件的内表面尺寸大于所述第一连接件的外表面尺寸与所述敏感元件的径向尺寸之和,且所述第一连接件和所述第二连接件之间还设有填充物,以增加所述第一连接件和所述第二连接件之间的弹性。
  7. 如权利要求1所述的手术器械,其特征在于,所述第一连接件的内表面尺寸大于所述第二连接件的外表面尺寸,且
    所述第一连接件的内表面尺寸小于所述第二连接件的外表面尺寸与所述敏 感元件的径向尺寸之和。
  8. 如权利要求1所述的手术器械,其特征在于,所述第一连接件的内表面尺寸大于所述第二连接件的外表面尺寸与所述敏感元件的径向尺寸之和,且所述第一连接件和所述第二连接件之间还设有填充物,以增加所述第一连接件和所述第二连接件之间的弹性。
  9. 如权利要求6或8所述的手术器械,其特征在于,所述填充物为橡胶或硅胶。
  10. 如权利要求1所述的手术器械,其特征在于,所述压力传感器包括一个所述敏感元件,或者包括多个所述敏感元件,多个所述敏感元件沿所述手术器械的周向和/或轴向分布。
  11. 如权利要求10所述的手术器械,其特征在于,多个所述敏感元件在所述手术器械的轴向上分布成多排,每一排敏感元件中的多个敏感元件在所述手术器械的周向上均匀分布。
  12. 如权利要求11所述的手术器械,其特征在于,相邻两排敏感元件相交错布置。
  13. 一种手术机器人系统,其特征在于,包括:从端设备,
    所述从端设备包括:
    机械臂;以及
    如权利要求1~12中任一项所述的手术器械;
    所述机械臂的末端与所述手术器械可拆卸式连接,以驱动所述手术器械围绕一不动点运动。
  14. 如权利要求13所述的手术机器人系统,其特征在于,所述手术机器人系统还包括主端设备和控制单元,所述主端设备包括示力装置;
    所述控制单元与所述主端设备和所述从端设备通讯连接,所述控制单元从所述手术器械的敏感元件获取所述末端执行器受到的笛卡尔力,并传输至所述示力装置。
  15. 如权利要求14所述的手术机器人系统,其特征在于,所述示力装置为设有马达的主手,所述控制单元向主手的马达发出力矩指令,以使操作者感受到手术器械末端的受力。
  16. 如权利要求15所述的手术机器人系统,其特征在于,所述主手还包括振动马达,当手术器械末端的受力超过预设阈值时,所述控制单元向主手的振动马达发出振动指令,提醒操作者注意手术器械的末端受力较大。
PCT/CN2018/114902 2017-12-21 2018-11-09 手术机器人系统及其手术器械 WO2019120005A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020534184A JP7127128B2 (ja) 2017-12-21 2018-11-09 手術ロボットシステム及びその手術器具
EP18892834.5A EP3730062A4 (en) 2017-12-21 2018-11-09 SURGICAL ROBOT SYSTEM AND SURGICAL INSTRUMENT FOR IT
RU2020123951A RU2740114C1 (ru) 2017-12-21 2018-11-09 Хирургическая роботизированная система и хирургический инструмент для нее

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711394632.0 2017-12-21
CN201711394632.0A CN108042162B (zh) 2017-12-21 2017-12-21 手术机器人系统及其手术器械

Publications (1)

Publication Number Publication Date
WO2019120005A1 true WO2019120005A1 (zh) 2019-06-27

Family

ID=62131196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114902 WO2019120005A1 (zh) 2017-12-21 2018-11-09 手术机器人系统及其手术器械

Country Status (5)

Country Link
EP (1) EP3730062A4 (zh)
JP (1) JP7127128B2 (zh)
CN (1) CN108042162B (zh)
RU (1) RU2740114C1 (zh)
WO (1) WO2019120005A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108042162B (zh) * 2017-12-21 2020-06-16 微创(上海)医疗机器人有限公司 手术机器人系统及其手术器械
CN108433814B (zh) * 2018-03-16 2019-12-24 微创(上海)医疗机器人有限公司 手术机器人系统及其手术器械
CN111991089B (zh) * 2020-09-10 2022-02-11 苏州大学 一种微创手术机器人及其末端集成夹持器
CN112365966B (zh) * 2020-09-27 2024-04-09 青岛大学附属医院 结合vr技术的数字化手术系统
CN114452003B (zh) * 2020-11-10 2024-03-12 重庆金山医疗机器人有限公司 一种手术机器人
CN112386211B (zh) * 2020-11-16 2021-07-09 清华大学 柔性内窥镜装置
CN112472162A (zh) * 2020-12-19 2021-03-12 深圳市精锋医疗科技有限公司 手术器械装置以及手术机器人
CN114451989A (zh) * 2022-01-27 2022-05-10 武汉达九科技有限公司 手术机器人力反馈系统中末端执行器力检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391144A (en) * 1990-02-02 1995-02-21 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
CN101325920A (zh) * 2005-12-30 2008-12-17 直观外科手术公司 模块化的力传感器
CN101340850A (zh) 2005-12-30 2009-01-07 直观外科手术公司 外科器械的力和扭矩检测
CN105796043A (zh) * 2016-03-09 2016-07-27 苏州大学 一种基于压力传感器信息的内窥镜机器人控制方法及装置
CN206151580U (zh) * 2016-08-09 2017-05-10 济南大学 机器人辅助精确靶向穿刺软组织目标柔性针夹紧固定装置
CN108042162A (zh) * 2017-12-21 2018-05-18 微创(上海)医疗机器人有限公司 手术机器人系统及其手术器械

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620436A (en) * 1984-10-09 1986-11-04 Hitachi, Ltd. Method and apparatus for calibrating transformation matrix of force sensor
US5209721A (en) * 1992-01-31 1993-05-11 Wilk Peter J Laparoscopic surgical device and related method
EP1906858B1 (en) * 2005-07-01 2016-11-16 Hansen Medical, Inc. Robotic catheter system
EP2289455B1 (en) 2005-12-30 2019-11-13 Intuitive Surgical Operations, Inc. Modular force sensor
WO2009089614A1 (en) 2008-01-14 2009-07-23 The University Of Western Ontario Sensorized medical instrument
US8332072B1 (en) * 2008-08-22 2012-12-11 Titan Medical Inc. Robotic hand controller
KR101180665B1 (ko) * 2009-07-03 2012-09-07 주식회사 이턴 하이브리드 수술용 로봇 시스템 및 수술용 로봇 제어방법
KR102181391B1 (ko) * 2011-02-15 2020-11-20 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 조임 예측을 나타내는 시스템
JP6177230B2 (ja) * 2011-04-14 2017-08-09 セント・ジュード・メディカル・インターナショナル・ホールディング・エスエーアールエルSt. Jude Medical International Holding S.a,r.l. カテーテル用の小型力センサ
CN104274244B (zh) * 2013-07-04 2016-08-10 上海工程技术大学 微创手术器械的触觉反馈系统
JPWO2016088205A1 (ja) * 2014-12-02 2017-09-21 オリンパス株式会社 医療用マニピュレータ
JP2017029214A (ja) 2015-07-29 2017-02-09 ソニー株式会社 医療用器具及び医療用支持アーム装置
CN107485466A (zh) * 2017-09-21 2017-12-19 铜仁市恒睿生产力促进中心有限公司 一种局部形变的可扩式导管鞘和介入器械输送装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391144A (en) * 1990-02-02 1995-02-21 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
CN101325920A (zh) * 2005-12-30 2008-12-17 直观外科手术公司 模块化的力传感器
CN101340850A (zh) 2005-12-30 2009-01-07 直观外科手术公司 外科器械的力和扭矩检测
CN105796043A (zh) * 2016-03-09 2016-07-27 苏州大学 一种基于压力传感器信息的内窥镜机器人控制方法及装置
CN206151580U (zh) * 2016-08-09 2017-05-10 济南大学 机器人辅助精确靶向穿刺软组织目标柔性针夹紧固定装置
CN108042162A (zh) * 2017-12-21 2018-05-18 微创(上海)医疗机器人有限公司 手术机器人系统及其手术器械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3730062A4

Also Published As

Publication number Publication date
EP3730062A4 (en) 2021-01-20
JP2021506460A (ja) 2021-02-22
RU2740114C1 (ru) 2021-01-11
CN108042162B (zh) 2020-06-16
CN108042162A (zh) 2018-05-18
EP3730062A1 (en) 2020-10-28
JP7127128B2 (ja) 2022-08-29

Similar Documents

Publication Publication Date Title
WO2019120005A1 (zh) 手术机器人系统及其手术器械
JP6931420B2 (ja) 手術ロボットシステム
CN107961078B (zh) 手术机器人系统及其手术器械
US20230218354A1 (en) Surgery supporting apparatus for controlling motion of robot arm
KR101342917B1 (ko) 수술 기구에 관한 힘과 토크를 감지하는 방법
CN108210078B (zh) 手术机器人系统
EP2323564B1 (en) Modular tool with signal feedback
US9314310B2 (en) Robotic catheter system input device
JP5773884B2 (ja) ロボットカテーテルシステム入力装置
CN111419403B (zh) 手术机器人
US8930027B2 (en) Force feedback system
US8372019B2 (en) Apparatus and method for sensing force on a robotically controlled medical instrument
EP1986563B1 (en) System and apparatus for measuring distal forces on a working instrument
WO2019174496A1 (zh) 手术机器人系统及其手术器械
US20220401171A1 (en) Devices and methods for crimp interface for cable tension sensor
JP2024059703A (ja) 多目的医療機器
CN115605155A (zh) 控制界面和包括这种控制界面的机器人系统
CN112826596A (zh) 力感知装置、医疗器械、医疗操控系统及主从式医疗操控系统
KR20150112286A (ko) 내시경 장치
JP6875690B1 (ja) 手術ロボット、及び手術ロボットの制御ユニット
WO2022196037A1 (ja) 力計測装置及び力計測方法、手術装置、及び手術システム
CN115590625A (zh) 用于血管腔内介入手术机器人的力反馈操作装置
WO2024081300A1 (en) Surgical system haptic feedback systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534184

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018892834

Country of ref document: EP

Effective date: 20200721