WO2019119485A1 - 一种管腔道oct单通道光纤滑环 - Google Patents

一种管腔道oct单通道光纤滑环 Download PDF

Info

Publication number
WO2019119485A1
WO2019119485A1 PCT/CN2017/118611 CN2017118611W WO2019119485A1 WO 2019119485 A1 WO2019119485 A1 WO 2019119485A1 CN 2017118611 W CN2017118611 W CN 2017118611W WO 2019119485 A1 WO2019119485 A1 WO 2019119485A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
collimator
slip ring
bearing
channel
Prior art date
Application number
PCT/CN2017/118611
Other languages
English (en)
French (fr)
Inventor
杜宁意
李百灵
宋李烟
梁为亮
高峻
Original Assignee
广州永士达医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州永士达医疗科技有限责任公司 filed Critical 广州永士达医疗科技有限责任公司
Publication of WO2019119485A1 publication Critical patent/WO2019119485A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3604Rotary joints allowing relative rotational movement between opposing fibre or fibre bundle ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3826Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres characterised by form or shape

Definitions

  • the present invention relates to the field of optical fiber slip rings, and more particularly to a tubular channel OCT single-channel optical fiber slip ring.
  • Optical fiber slip rings are widely used in radar, turntable, photoelectric pods, video surveillance, cable reels, medical CT, robotics, wind power generation and many other fields.
  • the electric slip ring can no longer meet the demand, especially in the OCT field of the tube channel. It is urgent to improve the performance bottleneck of the related system. Therefore, the more More and more occasions use fiber optic rotary connectors instead of electric slip rings.
  • the single-mode fiber collimator commonly used at home and abroad, the single-mode fiber collimator requires extremely high assembly precision, and is difficult to assemble and process.
  • the object of the present invention is to provide a channel-channel OCT single-channel fiber-slip ring, which can effectively increase the mode field diameter and reduce the installation process by using a photonic crystal fiber instead of a single-mode fiber. Precision requirements.
  • a tubular channel OCT single-channel optical fiber slip ring comprising a first optical fiber collimator, a first collimator support tube, a slip ring base, a slip ring rotating body, a second collimator support tube, and a second optical fiber standard a straight tube, a first bearing, a second bearing, a first fiber conduit, a second fiber conduit, the first fiber conduit is fixedly mounted in the first fiber collimator, and the first fiber collimator is fixedly mounted In the first collimator support tube, the first collimator support tube is fixedly mounted outside the output of the slip ring base, and the first bearing is located inside the output of the slip ring base;
  • the second fiber guide is fixedly mounted in the second fiber collimator, the second fiber collimator is fixedly mounted in the second collimator support tube, and the second collimator support tube is fixed Mounted on the slip ring rotating body, the slip ring rotating body is in contact with the inner wall of the second bearing, and the second bearing is located on the input side of the slip ring base;
  • the first fiber collimator is coaxial with the self-focusing lens of the second fiber collimator and is not in contact with each other, and the first fiber conduit and the second fiber conduit are filled with a photonic crystal fiber.
  • the photonic crystal fiber has a mode field diameter of 14.5 micrometers to 18.5 micrometers.
  • a spacer ring is connected between the first bearing and the second bearing.
  • first protection tube and a second protection tube are further included, the first collimator support tube is encapsulated in the first protection tube, and the first protection tube is fixedly mounted on the output of the slip ring base On the outside, the second collimator support tube is encapsulated in the second protection tube, and the second protection tube is fixedly mounted on the slip ring rotating body.
  • first fiber collimator and the second fiber collimator are both flat and perpendicular to the axis.
  • an index matching medium is filled between the first fiber collimator and the second fiber collimator.
  • the slip ring base includes a cylindrical cavity, and the cylindrical cavity is sequentially placed with the first bearing, the spacer ring, and the second bearing from the inside to the outside, and the cylindrical cavity and the cavity
  • the output of the slip ring base is connected inside, the first through hole is opened on the inner side of the output, and the second through hole is opened on the outer side of the output, and the first through hole is connected to the second through hole and located at On the same central axis, the diameter of the first through hole is smaller than the second through hole, the first protective tube is inserted into the second through hole, and the head of the first collimator support tube is inserted into The first through hole, the first fiber collimator is connected to the cylindrical cavity.
  • the slip ring rotating body block includes a rotating portion, a cylindrical sleeve connected to the rotating portion, the cylindrical sleeve sequentially passes through the second bearing, the spacer ring, the first bearing, a first slot is defined in the rotating portion, the first slot is connected to the hollow channel of the cylindrical sleeve and is located on a same central axis, and the diameter of the hollow channel is smaller than the first slot, the first A second protective tube is inserted into the first slot, and a head of the second collimator support tube is inserted into the hollow passage.
  • the invention provides a tubular channel OCT single-channel optical fiber slip ring, which uses a photonic crystal optical fiber instead of a single-mode optical fiber collimator, thereby effectively increasing the mode field diameter and reducing the precision requirement during installation, and adopting the first optical fiber standard.
  • the refractive index matching grease is filled between the straightener and the second optical fiber collimator, one of which can further reduce the insertion loss between the two collimators, and the second does not have to be used like a foreign product filled with the refractive index matching liquid.
  • the sealing ring prevents the matching liquid from leaking, that is, the insertion loss of the filling matching liquid product is small, and the large rotational damping by the sealing ring seal is avoided, and the overall structure has low assembly precision, low insertion loss, and low rotation variation.
  • the advantages of high callback loss are easy to promote.
  • FIG. 1 is a schematic structural view of a tubular channel OCT single-channel optical fiber slip ring according to the present invention
  • FIG. 2 is an exploded perspective view of a tube channel OCT single-channel optical fiber slip ring according to the present invention
  • FIG. 3 is a cross-sectional view showing a tubular channel OCT single-channel optical fiber slip ring of the present invention
  • Figure 4 is an enlarged schematic view of the area A in Figure 3;
  • Figure 5 is a schematic view of the mode field diameter in the present invention.
  • Figure 6 is a schematic view of off-axis deviation in the present invention.
  • Figure 7 is a schematic view of axial deviation in the present invention.
  • Figure 8 is a schematic illustration of angular deviation in the present invention.
  • a first fiber collimator 1, a first fiber collimator; 2, a first collimator support tube; 3, a first guard tube; 4, a slip ring base; 5, a spacer ring; 6, a slip ring rotating body; a second protective tube; 8, a second collimator support tube; 9, a second fiber collimator; 11, a first fiber guide; 41, an output outer side; 42, an output inner side; 43, an input side; a bearing; 52, a second bearing; 91, a second fiber guide; X 0 , off-axis deviation; Angle deviation; Z, axial deviation.
  • a tubular channel OCT single-channel optical fiber slip ring as shown in FIGS. 1-4, includes a first fiber collimator 1, a first collimator support tube 2, a slip ring base 4, and a slip ring rotating body 6 a second collimator support tube 8, a second fiber collimator 9, a first bearing 51, a second bearing 52, a first fiber guide 11, and a second fiber guide 91.
  • the first fiber guide 11 is fixedly mounted on the first In the fiber collimator 1, the first fiber collimator 1 is fixedly mounted in the first collimator support tube 2, and the first collimator support tube 2 is fixedly mounted on the output outer side 41 of the slip ring base 4, first The bearing 51 is located on the inner side 42 of the output of the slip ring base 4; the second fiber guide 91 is fixedly mounted in the second fiber collimator 9, and the second fiber collimator 9 is fixedly mounted in the second collimator support tube 8.
  • the second collimator support tube 8 is fixedly mounted on the slip ring rotating body 6, the slip ring rotating body 6 is set on the second bearing 52, and the second bearing 52 is located on the input side 43 of the slip ring base 4; the first optical fiber collimator 1 is coaxial with the self-focusing lens of the second fiber collimator 9 and does not contact each other, and the first fiber guide 11 and the second fiber guide 91 are provided with a photonic crystal fiber.
  • the transmitted optical signal is subjected to spot expansion collimation by the first optical fiber collimator 1 and the second optical fiber collimator 9, and the first optical fiber collimator 1 and the second optical fiber collimator 9 pass the slip ring.
  • the rotating body 6 and the slip ring base 4 cooperate with the bearing for non-contact rotational butt coupling, thereby realizing optical signal transmission between the rotating member and the stationary member.
  • the optical signal enters from the second fiber guide 91 and the second fiber collimator 9 to perform non-contact optical signals with the first fiber collimator 1. Coupling, the optical signal is outputted in the first fiber collimator 1, and the slip ring rotating body 6 realizes relatively high-speed rotation through the high-precision bearing during the optical signal transmission, and the first fiber collimator 1 and the second fiber collimator 9 The coaxiality determines the transmission quality of the optical signal.
  • the optical signal enters from the second fiber collimator 9 and is output from the first fiber collimator 1 so that it is indicated in the direction of FIG. 2, and the first fiber collimator 1 is connected to the slip ring base 4
  • the left side is also referred to as the output side
  • the outer side of the output side is referred to as the output outer side 41
  • the inner side is referred to as the output inner side 42
  • the second optical fiber collimator 9 is coupled to the slip ring base.
  • the right side of 4 can also be referred to as input side 43.
  • the three kinds of errors mentioned above are the off-axis deviation X 0 and the angular deviation.
  • the axial deviation Z where, as shown in Figure 6, is the off-axis deviation X 0 , its loss formula:
  • n 0 is the central refractive index of the self-focusing lens
  • It is the refractive index distribution parameter of the self-focusing lens
  • is the wavelength of the incident light.
  • the invention can effectively increase the mode field diameter ⁇ 0 through the photonic crystal fiber, thereby greatly reducing the angular deviation
  • the resulting insertion loss that is, the overall accuracy of the installation process is reduced.
  • the mode field diameter of the photonic crystal fiber used is from 14.5 microns to 18.5 microns, within which the off-axis deviation X 0 , angular deviation
  • the allowable range of the axial deviation Z is relatively easy to achieve, thereby reducing the accuracy requirements of the mounting process.
  • the use of a photonic crystal fiber having a mode field diameter of 16.5 micrometers reduces the allowable off-axis deviation X 0 to several tens of micrometers, allowing the axial deviation Z to be reduced to a few ten millimeters, allowing angular deviation. Increase to between 0.1 and 1 degree, thus greatly reducing the angular deviation The resulting insertion loss, that is, the overall accuracy of the installation process is reduced.
  • a spacer ring 5 is connected between the first bearing 51 and the second bearing 52.
  • a tubular channel OCT single-channel optical fiber slip ring further includes a first protective tube 3 and a second protective tube 7.
  • the first collimator support tube 2 is encapsulated in the first protective tube 3, and the first protection
  • the tube 3 is fixedly mounted on the output outer side 41 of the slip ring base 4,
  • the second collimator support tube 8 is enclosed in the second protective tube 7, and the second protective tube 7 is fixedly mounted to the slip ring rotating body 6.
  • the slip ring base 4 includes a cylindrical cavity.
  • the cylindrical cavity is sequentially disposed with a first bearing 51, a spacer ring 5 and a second bearing 52 from the inside to the outside.
  • the cylindrical cavity is connected to the output inner side 42 of the slip ring base 4 .
  • a first through hole is defined in the inner side 42 of the output, and a second through hole is defined in the outer side 41.
  • the first through hole is connected to the second through hole and located on the same central axis.
  • the diameter of the first through hole is smaller than the second through hole.
  • the first protective tube 3 is inserted into the second through hole, the head of the first collimator support tube 2 is inserted into the first through hole, and the first optical fiber collimator 1 is connected to the cylindrical cavity, as shown in FIG.
  • the first fiber collimator 1 protrudes from the first collimator support tube 2, and the two protrude from the first guard tube 3, so that the first guard tube 3 abuts against the bottom of the second through hole, the first collimation
  • the support tube 2 can continue to be inserted into the first through hole, and two layers of the protection structure and the fixed structure are provided, thereby ensuring the mounting precision and stability of the first fiber collimator 1.
  • the slip ring rotating body 6 includes a rotating portion and a cylindrical sleeve connected to the rotating portion. As shown in FIG. 2, a T-shaped structure is formed between the rotating portion and the cylindrical sleeve, wherein the cylindrical sleeve passes through the second bearing 52 in sequence. a spacer, a first slot 51, a first slot is formed in the rotating portion, the first slot is connected to the hollow channel of the cylindrical sleeve and is located on the same central axis, and the diameter of the hollow channel is smaller than the first slot, The second protective tube 7 is inserted into the first slot, and the head of the second collimator support tube 8 is inserted into the hollow passage.
  • both end faces of the first fiber collimator 1 and the second fiber collimator 9 are flat and perpendicular to the axis.
  • the first fiber collimator 1 and the second fiber collimator 9 are filled with an index matching medium, and the index matching medium may be specifically an index matching grease, and the index matching grease is used for reducing light.
  • the reflection loss reduces the insertion loss between the two fiber collimators.
  • the filling method of the structure does not need to use a sealing ring to prevent the matching liquid leakage, similar to the similar products of foreign filled index matching liquid.
  • the insertion loss of the filling matching liquid product is small, and the large rotational damping by the sealing ring seal is avoided.
  • the invention provides a tubular channel OCT single-channel optical fiber slip ring, which uses a photonic crystal optical fiber instead of a single-mode optical fiber collimator, thereby effectively increasing the mode field diameter and reducing the precision requirement during installation, and adopting the first optical fiber standard.
  • the straightener 1 and the second fiber collimator 9 are filled with an index matching grease, one of which can further reduce the insertion loss between the two collimators, and the second one does not have to be the same product as the foreign filled index matching liquid.
  • the same use of the sealing ring to prevent the matching liquid leakage that is, the insertion loss of the filling matching liquid product is small, and the large rotational damping by the sealing ring seal is avoided, and the overall structure has low assembly precision, low insertion loss, and rotation change. Low volume, high callback loss, etc., easy to promote.

Abstract

本发明提供一种管腔道OCT单通道光纤滑环,包括第一光纤准直器、第一准直器支撑管、滑环基座、滑环旋转体、第二准直器支撑管、第二光纤准直器、第一轴承、第二轴承、第一光纤导管、第二光纤导管,第一光纤准直器固定安装在第一准直器支撑管内,第一准直器支撑管固定安装于滑环基座的输出外侧,第二光纤准直器固定安装在第二准直器支撑管内,第二准直器支撑管固定安装于滑环旋转体,第一光纤准直器与第二光纤准直器的自聚焦透镜同轴相对且不相互接触,第一光纤导管、第二光纤导管内装有光子晶体光纤。本发明通过使用光子晶体光纤代替单模光纤准直器,从而有效的增大模场直径,降低安装加工时的精度要求。

Description

一种管腔道OCT单通道光纤滑环 技术领域
本发明涉及光纤滑环领域,尤其涉及一种管腔道OCT单通道光纤滑环。
背景技术
光纤滑环在雷达、转台、光电吊舱、视频监控、光缆卷筒、医疗CT、机器人、风力发电等多种领域内有广泛应用。随着信号传输带宽和种类的不断增加,对旋转平台间信号传输提出更高要求,电滑环已经不能满足需求,尤其是管腔道OCT领域,迫切需要改善相关系统的性能瓶颈,因此,越来越多的场合使用光纤旋转连接器替代电滑环。
目前国内外普遍使用的单模光纤准直器,单模光纤准直器要求的装配精度极高,组装加工上较为困难。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种管腔道OCT单通道光纤滑环,通过使用光子晶体光纤代替单模光纤,从而有效的增大模场直径,降低安装加工时的精度要求。
本发明的目的采用如下技术方案实现:
一种管腔道OCT单通道光纤滑环,包括第一光纤准直器、第一准直器支撑管、滑环基座、滑环旋转体、第二准直器支撑管、第二光纤准直器、第一轴承、第二轴承、第一光纤导管、第二光纤导管,所述第一光纤导管固定安装于所述第一光纤准直器内,所述第一光纤准直器固定安装在所述第一准直器支撑管内,所述第一准直器支撑管固定安装于所述滑环基座的输出外侧,所述第一轴承位于所述滑环基座的输出内侧;
所述第二光纤导管固定安装于所述第二光纤准直器内,所述第二光纤准直器固定安装在所述第二准直器支撑管内,所述第二准直器支撑管固定安装于所述滑环旋转体,所述滑环旋转体抵触于所述第二轴承的内壁,所述第二轴承位于所述滑环基座的输入侧;
所述第一光纤准直器与所述第二光纤准直器的自聚焦透镜同轴相对且不相互接触,所述第一光纤导管、所述第二光纤导管内装有光子晶体光纤。
进一步地,所述光子晶体光纤的模场直径为14.5微米至18.5微米。
进一步地,所述第一轴承与第二轴承之间连接有隔环。
进一步地,还包括第一防护管、第二防护管,所述第一准直器支撑管封装于所述第一防护管,所述第一防护管固定安装于所述滑环基座的输出外侧,所述第二准直器支撑管封装于所述第二防护管,所述第二防护管固定安装于所述滑环旋转体。
进一步地,所述第一光纤准直器与所述第二光纤准直器的两端面平整且垂直于轴线。
进一步地,所述第一光纤准直器与所述第二光纤准直器之间填充有折射率匹配介质。
进一步地,所述滑环基座包括圆柱空腔,所述圆柱空腔由内到外依次放置有所述第一轴承、所述隔环、所述第二轴承,所述圆柱空腔与所述滑环基座的输出内侧连接,所述输出内侧上开设有第一通孔,所述输出外侧上开设有第二通孔,所述第一通孔与所述第二通孔连接且位于同一中心轴线上,所述第一通孔的直径小于所述第二通孔,所述第一防护管插入至所述第二通孔,所述第一准直器支撑管的头部插入至所述第一通孔,所述第一光纤准直器与所述圆柱空腔连接。
进一步地,所述滑环旋转体块包括旋转部、与旋转部连接的圆柱套筒,所述圆柱套筒依次穿过所述第二轴承、所述隔环、所述第一轴承,所述旋转部上开设有第一槽孔,所述第一槽孔与所述圆柱套筒的中空通道连接且位于同一中心轴线上,所述中空通道的直径小于所述第一槽孔,所述第二防护管插入至所述第一槽孔,所述第二准直器支撑管的头部插入至所述中空通道。
相比现有技术,本发明的有益效果在于:
本发明提供一种管腔道OCT单通道光纤滑环,通过使用光子晶体光纤代替单模光纤准直器,从而有效的增大模场直径,降低安装加工时的精度要求,通过第一光纤准直器与第二光纤准直器之间填充有折射率匹配脂,其一能进一步降低了两个准直器之间的插入损耗,其二不必如国外填充折射率匹配液的同类产品一样使用密封环来防止匹配液泄漏,即实现了填充匹配液产品的插入损耗小,又避免了使用密封环密封带来的较大旋转阻尼,整体结构具有装配精度低、插入损耗低、旋转变化量低、回拨损耗高等优点,便于推广。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的一种管腔道OCT单通道光纤滑环的结构示意图;
图2为本发明的一种管腔道OCT单通道光纤滑环的分解示意图;
图3为本发明的一种管腔道OCT单通道光纤滑环的剖面示意图;
图4为图3中A区域的放大示意图;
图5为本发明中关于模场直径的示意图;
图6为本发明中关于离轴偏差的示意图;
图7为本发明中关于轴向偏差的示意图;
图8为本发明中关于角度偏差的示意图。
附图中:1、第一光纤准直器;2、第一准直器支撑管;3、第一防护管;4、滑环基座;5、隔环;6、滑环旋转体;7、第二防护管;8、第二准直器支撑管;9、第二光纤准直器;11、第一光纤导管;41、输出外侧;42、输出内侧;43、输入侧;51、第一轴承;52、第二轴承;91、第二光纤导管;X 0、离轴偏差;
Figure PCTCN2017118611-appb-000001
角度偏差;Z、轴向偏差。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
一种管腔道OCT单通道光纤滑环,如图1-图4所示,包括第一光纤准直器1、第一准直器支撑管2、滑环基座4、滑环旋转体6、第二准直器支撑管8、第二光纤准直器9、第一轴承51、第二轴承52、第一光纤导管11、第二光纤导管91,第一光纤导管11固定安装于第一光纤准直器1内,第一光纤准直器1固定安装在第一准直器支撑管2内,第一准直器支撑管2固定安装于滑环基座4的输出外侧41,第一轴承51位于滑环基座4的输出内侧42;第二光纤导管91固定安装于第二光纤准直器9内,第二光纤准直器9固定安装在第二准直器支撑管8内,第二准直器支撑管8固定安装于滑环旋转体6,滑环旋转体6套装于第二轴承52,第二轴承52位于滑环基座4的输入侧43;第一光纤准直器1与第 二光纤准直器9的自聚焦透镜同轴相对且不相互接触,第一光纤导管11、第二光纤导管91内装有光子晶体光纤。
如上所述,传输光信号是通过第一光纤准直器1与第二光纤准直器9来进行光斑扩束准直,第一光纤准直器1与第二光纤准直器9通过滑环旋转体6和滑环基座4配合轴承进行非接触的旋转对接耦合,从而实现旋转部件和静止部件之间光信号传输。
如图3所示,并结合图4的放大示意图,在工作时,光信号从第二光纤导管91、第二光纤准直器9进入,与第一光纤准直器1进行非接触的光信号耦合,光信号在第一光纤准直器1输出,在光信号传输过程中滑环旋转体6通过高精度轴承实现相对的高速旋转,第一光纤准直器1与第二光纤准直器9的同轴性决定光信号的传输质量。
如上所述,光信号从第二光纤准直器9进入,从第一光纤准直器1输出,故而以图二的方向示意,与第一光纤准直器1连接的为滑环基座4的左侧,又可称为输出侧,输出侧在外面的一侧称为输出外侧41,在里面的一侧称为输出内侧42;与第二光纤准直器9连接的为滑环基座4的右侧,又可称为输入侧43。
如图5-图8所示,相同的光纤准直器间耦合会出现三种误差,其中有必要说明一下的是关于模场直径ω 0,如图5所示,光从光纤中出射后,变为在自由空间中传输的高斯光束,它的束腰直径就是光纤的模场直径ω 0
上述所说的三种误差分别为离轴偏差X 0、角度偏差
Figure PCTCN2017118611-appb-000002
轴向偏差Z,其中,如图6所示的为离轴偏差X 0,其损耗公式:
Figure PCTCN2017118611-appb-000003
其中,n 0是自聚焦透镜的中心折射率,
Figure PCTCN2017118611-appb-000004
是自聚焦透镜的折射率分布参数, λ是入射光波长。
如图7所示的轴向偏差Z,其损耗公式:
Figure PCTCN2017118611-appb-000005
如图8所示的角度偏差
Figure PCTCN2017118611-appb-000006
其损耗公式:
Figure PCTCN2017118611-appb-000007
上述三条损耗公式分析说明,在选定的自聚焦透镜和入射光波长的情况下,角度偏差
Figure PCTCN2017118611-appb-000008
的增长速度最快;对于给定的插损要求,控制角度偏差
Figure PCTCN2017118611-appb-000009
公差造成的插损是最困难的,因为在实际应用中,轴向偏差Z的容许范围一般为几十毫米,离轴偏差X 0的容许范围一般为近百微米,而角度偏差
Figure PCTCN2017118611-appb-000010
的容许范围一般为0.01度,可见,角度偏差
Figure PCTCN2017118611-appb-000011
的容许范围是最难达到的。增大模场直径ω 0可以大幅度降低角度偏差
Figure PCTCN2017118611-appb-000012
造成的插损,而导致轴向偏差Z公差和离轴偏差X 0公差的容许范围虽然下降,但依然在给定的插损要求内,
本发明通过光子晶体光纤,可以有效增大模场直径ω 0,从而大幅度降低角度偏差
Figure PCTCN2017118611-appb-000013
造成的插损,即整体上降低安装加工的精度要求。
对于本发明来说,所使用的光子晶体光纤的模场直径为14.5微米至18.5微米,在该范围内离轴偏差X 0、角度偏差
Figure PCTCN2017118611-appb-000014
轴向偏差Z的的容许范围均比较容易达到,从而降低安装加工的精度要求。
在一实施例中,使用模场直径16.5微米的光子晶体光纤,会把容许离轴偏差X 0降低到几十微米,容许轴向偏差Z降低到十几毫米,容许角度偏差
Figure PCTCN2017118611-appb-000015
增大到0.1度至1度之间,从而大幅度降低角度偏差
Figure PCTCN2017118611-appb-000016
造成的插损,即整体上降低安装加工的精度要求。
在一实施例中,如图2所示,第一轴承51与第二轴承52之间连接有隔环5。
在一实施例中,一种管腔道OCT单通道光纤滑环还包括第一防护管3、第二防护管7,第一准直器支撑管2封装于第一防护管3,第一防护管3固定安装于滑环基座4的输出外侧41,第二准直器支撑管8封装于第二防护管7,第二防护管7固定安装于滑环旋转体6。
其中滑环基座4包括圆柱空腔,圆柱空腔由内到外依次放置有第一轴承51、隔环5、第二轴承52,圆柱空腔与滑环基座4的输出内侧42连接,输出内侧42上开设有第一通孔,输出外侧41上开设有第二通孔,第一通孔与第二通孔连接且位于同一中心轴线上,第一通孔的直径小于第二通孔,第一防护管3插入至第二通孔,第一准直器支撑管2的头部插入至第一通孔,第一光纤准直器1与圆柱空腔连接,如图4所示,第一光纤准直器1凸出第一准直器支撑管2,两者又凸出第一防护管3,从而使得第一防护管3抵住第二通孔的底部时,第一准直器支撑管2能继续插入至第一通孔,设置了两层的保护结构和固定结构,从而保证第一光纤准直器1的安装精度和使用时的稳定性。
其中滑环旋转体6块包括旋转部、与旋转部连接的圆柱套筒,如图2所示,旋转部与圆柱套筒之间呈T型结构,其中圆柱套筒依次穿过第二轴承52、隔环5、第一轴承51,旋转部上开设有第一槽孔,第一槽孔与圆柱套筒的中空通道连接且位于同一中心轴线上,中空通道的直径小于第一槽孔,第二防护管7插入至第一槽孔,第二准直器支撑管8的头部插入至中空通道。
如图4所示,第一光纤准直器1与第二光纤准直器9的两端面平整且垂直于轴线。
在一实施例中,第一光纤准直器1与第二光纤准直器9之间填充有折射率匹配介质,折射率匹配介质可以具体为折射率匹配脂,折射率匹配脂用于减少 光的反射损失,从而降低了两个光纤准直器之间的插入损耗,同时,该种结构的填充方式,不必较国外填充折射率匹配液的同类产品一样使用密封环来防止匹配液泄漏,即实现了填充匹配液产品的插入损耗小,又避免了使用密封环密封带来的较大旋转阻尼,。
本发明提供一种管腔道OCT单通道光纤滑环,通过使用光子晶体光纤代替单模光纤准直器,从而有效的增大模场直径,降低安装加工时的精度要求,通过第一光纤准直器1与第二光纤准直器9之间填充有折射率匹配脂,其一能进一步降低了两个准直器之间的插入损耗,其二不必如国外填充折射率匹配液的同类产品一样使用密封环来防止匹配液泄漏,即实现了填充匹配液产品的插入损耗小,又避免了使用密封环密封带来的较大旋转阻尼,整体结构具有装配精度低、插入损耗低、旋转变化量低、回拨损耗高等优点,便于推广。
以上,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书附图所示和以上而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

Claims (8)

  1. 一种管腔道OCT单通道光纤滑环,其特征在于:包括第一光纤准直器、第一准直器支撑管、滑环基座、滑环旋转体、第二准直器支撑管、第二光纤准直器、第一轴承、第二轴承、第一光纤导管、第二光纤导管,所述第一光纤导管固定安装于所述第一光纤准直器内,所述第一光纤准直器固定安装在所述第一准直器支撑管内,所述第一准直器支撑管固定安装于所述滑环基座的输出外侧,所述第一轴承位于所述滑环基座的输出内侧;
    所述第二光纤导管固定安装于所述第二光纤准直器内,所述第二光纤准直器固定安装在所述第二准直器支撑管内,所述第二准直器支撑管固定安装于所述滑环旋转体,所述滑环旋转体抵触于所述第二轴承的内壁,所述第二轴承位于所述滑环基座的输入侧;
    所述第一光纤准直器与所述第二光纤准直器的自聚焦透镜同轴相对且不相互接触,所述第一光纤导管、所述第二光纤导管内装有光子晶体光纤。
  2. 如权利要求1所述的一种管腔道OCT单通道光纤滑环,其特征在于:所述光子晶体光纤的模场直径为14.5微米至18.5微米。
  3. 如权利要求2所述的一种管腔道OCT单通道光纤滑环,其特征在于:所述第一轴承与第二轴承之间连接有隔环。
  4. 如权利要求3所述的一种管腔道OCT单通道光纤滑环,其特征在于:还包括第一防护管、第二防护管,所述第一准直器支撑管封装于所述第一防护管,所述第一防护管固定安装于所述滑环基座的输出外侧,所述第二准直器支撑管封装于所述第二防护管,所述第二防护管固定安装于所述滑环旋转体。
  5. 如权利要求4所述的一种管腔道OCT单通道光纤滑环,其特征在于:所述第一光纤准直器与所述第二光纤准直器的两端面平整且垂直于轴线。
  6. 如权利要求1-5任一项所述的一种管腔道OCT单通道光纤滑环,其特征在于:所述第一光纤准直器与所述第二光纤准直器之间填充有折射率匹配介质。
  7. 如权利要求4所述的一种管腔道OCT单通道光纤滑环,其特征在于:所述滑环基座包括圆柱空腔,所述圆柱空腔由内到外依次放置有所述第一轴承、所述隔环、所述第二轴承,所述圆柱空腔与所述滑环基座的输出内侧连接,所述输出内侧上开设有第一通孔,所述输出外侧上开设有第二通孔,所述第一通孔与所述第二通孔连接且位于同一中心轴线上,所述第一通孔的直径小于所述第二通孔,所述第一防护管插入至所述第二通孔,所述第一准直器支撑管的头部插入至所述第一通孔,所述第一光纤准直器与所述圆柱空腔连接。
  8. 如权利要求7所述的一种管腔道OCT单通道光纤滑环,其特征在于:所述滑环旋转体块包括旋转部、与旋转部连接的圆柱套筒,所述圆柱套筒依次穿过所述第二轴承、所述隔环、所述第一轴承,所述旋转部上开设有第一槽孔,所述第一槽孔与所述圆柱套筒的中空通道连接且位于同一中心轴线上,所述中空通道的直径小于所述第一槽孔,所述第二防护管插入至所述第一槽孔,所述第二准直器支撑管的头部插入至所述中空通道。
PCT/CN2017/118611 2017-12-18 2017-12-26 一种管腔道oct单通道光纤滑环 WO2019119485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711369062.XA CN108132501A (zh) 2017-12-18 2017-12-18 一种管腔道oct单通道光纤滑环
CN201711369062.X 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019119485A1 true WO2019119485A1 (zh) 2019-06-27

Family

ID=62390450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118611 WO2019119485A1 (zh) 2017-12-18 2017-12-26 一种管腔道oct单通道光纤滑环

Country Status (2)

Country Link
CN (1) CN108132501A (zh)
WO (1) WO2019119485A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175460B2 (en) * 2018-05-04 2021-11-16 Spinner Gmbh Optical rotary transmitter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261969A (zh) * 2019-06-19 2019-09-20 深圳市福瑞达显示技术有限公司 一种旋转接触式光通信连接结构
CN110286446A (zh) * 2019-06-19 2019-09-27 深圳市福瑞达显示技术有限公司 一种非接触式光通信连接结构
CN110174733A (zh) * 2019-06-19 2019-08-27 深圳市福瑞达显示技术有限公司 一种旋转接触式光通信连接接口
CN111736269B (zh) * 2020-08-06 2021-04-09 深圳市嘉驰机电科技有限公司 一种oct系统用光纤滑环及oct成像系统
CN114903527B (zh) * 2022-04-21 2023-06-23 深圳市嘉驰机电科技有限公司 Ivus和oct多模态成像系统用光电复合滑环

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093276A1 (en) * 2004-11-02 2006-05-04 The General Hospital Corporation Fiber-optic rotational device, optical system and method for imaging a sample
CN1975481A (zh) * 2006-12-15 2007-06-06 天津大学 光子晶体光纤动态耦合装置
CN102749681A (zh) * 2012-07-18 2012-10-24 九江精达检测技术有限公司 能实现单路光纤旋转连接器的精密调节装置及调节方法
CN204989546U (zh) * 2015-08-14 2016-01-20 上海屹扬通信科技有限公司 一种具有陶瓷插芯的光纤快速连接器
CN207557527U (zh) * 2017-12-18 2018-06-29 广州永士达医疗科技有限责任公司 一种管腔道oct单通道光纤滑环

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW507876U (en) * 2001-07-04 2002-10-21 Hon Hai Prec Ind Co Ltd Optical isolator
US7515782B2 (en) * 2006-03-17 2009-04-07 Zhang Boying B Two-channel, dual-mode, fiber optic rotary joint
JP4924024B2 (ja) * 2006-12-27 2012-04-25 日立電線株式会社 光コネクタ
CN101986176A (zh) * 2010-10-26 2011-03-16 飞秒光电科技(西安)有限公司 一种光纤旋转连接器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093276A1 (en) * 2004-11-02 2006-05-04 The General Hospital Corporation Fiber-optic rotational device, optical system and method for imaging a sample
CN1975481A (zh) * 2006-12-15 2007-06-06 天津大学 光子晶体光纤动态耦合装置
CN102749681A (zh) * 2012-07-18 2012-10-24 九江精达检测技术有限公司 能实现单路光纤旋转连接器的精密调节装置及调节方法
CN204989546U (zh) * 2015-08-14 2016-01-20 上海屹扬通信科技有限公司 一种具有陶瓷插芯的光纤快速连接器
CN207557527U (zh) * 2017-12-18 2018-06-29 广州永士达医疗科技有限责任公司 一种管腔道oct单通道光纤滑环

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175460B2 (en) * 2018-05-04 2021-11-16 Spinner Gmbh Optical rotary transmitter

Also Published As

Publication number Publication date
CN108132501A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2019119485A1 (zh) 一种管腔道oct单通道光纤滑环
US8814442B2 (en) Hardened multiport optical connector assembly
US5588077A (en) In-line, two-pass, fiber optic rotary joint
US5039193A (en) Fibre optic single mode rotary joint
US20070019908A1 (en) Fiber optic rotary joint with de-rotating prism
US7474822B2 (en) Optical fiber collimator
US10605996B2 (en) Expanded beam optical connector and method of making the same
US9470847B2 (en) Polarization maintaining connectors
US20120014645A1 (en) Single lens, multi-fiber optical connection method and apparatus
RU2068192C1 (ru) Штепсельное соединение волоконных световодов
US9625653B2 (en) Universal fiber optic connector
CN103955030B (zh) 一种锥形折射的多通道光纤旋转连接器
KR20110121632A (ko) 광섬유 로터리 조인트에 사용되는 저손실 시준기
CN212321901U (zh) 一种可拔插准直装置
US4718746A (en) Optical fiber graded index connector
US20130272658A1 (en) Multi-mode multi-fiber connection with expanded beam
CN207557527U (zh) 一种管腔道oct单通道光纤滑环
RU175146U1 (ru) Соединитель вращающийся для оптических кабелей
CN104317003A (zh) 一种同轴光准直器及其制作方法
CN211856985U (zh) 一种多通道阵列光隔离器
US9594214B1 (en) Optical fiber devices
CN203519874U (zh) 一种中空光滑环
CN109884747B (zh) 激光准直器及激光系统
CN209803379U (zh) 单模单光纤聚焦器
RU2402051C2 (ru) Универсальный волоконно-оптический вращающийся соединитель

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935168

Country of ref document: EP

Kind code of ref document: A1