WO2019119446A1 - System and method for managing the state of a building block within a 3d structure of building blocks - Google Patents

System and method for managing the state of a building block within a 3d structure of building blocks Download PDF

Info

Publication number
WO2019119446A1
WO2019119446A1 PCT/CN2017/118094 CN2017118094W WO2019119446A1 WO 2019119446 A1 WO2019119446 A1 WO 2019119446A1 CN 2017118094 W CN2017118094 W CN 2017118094W WO 2019119446 A1 WO2019119446 A1 WO 2019119446A1
Authority
WO
WIPO (PCT)
Prior art keywords
building block
state
building
building blocks
group
Prior art date
Application number
PCT/CN2017/118094
Other languages
French (fr)
Inventor
Zheng Shi
Richard-Martin DICKINSON
Original Assignee
Zheng Shi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zheng Shi filed Critical Zheng Shi
Priority to PCT/CN2017/118094 priority Critical patent/WO2019119446A1/en
Publication of WO2019119446A1 publication Critical patent/WO2019119446A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/06Building blocks, strips, or similar building parts to be assembled without the use of additional elements
    • A63H33/08Building blocks, strips, or similar building parts to be assembled without the use of additional elements provided with complementary holes, grooves, or protuberances, e.g. dovetails
    • A63H33/086Building blocks, strips, or similar building parts to be assembled without the use of additional elements provided with complementary holes, grooves, or protuberances, e.g. dovetails with primary projections fitting by friction in complementary spaces between secondary projections, e.g. sidewalls
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/042Mechanical, electrical, optical, pneumatic or hydraulic arrangements; Motors

Definitions

  • the present invention relates to method and system for interacting with building blocks.
  • Interactive objects having electronic components have been developed to enhance the appeal of these objects. Also, some attempts to represent physical objects in virtual environments have been made. However, there are not robust solutions for collecting information about how tactile objects are interacted with, analyzing the interactivity, providing feedback to a user, and assessing manual ability and dexterousness, cognitive ability, memory and retention, providing challenges based on past performance, etc.
  • the present invention improves upon the traditional building block game by allowing for interactive feedback from individual or multiple building blocks within a 3D structure.
  • the present invention provides a system and method managing the state of a building block within a 3D structure of building blocks.
  • a processor is operatively linked to the 3D structure and configured to recognize said 3D structure and further configured to instruct an output device embedded in a first building block within the 3D structure to indicate to the user the state of that building block and wherein the state of the first building block is related to the connectivity of the first building block to other building blocks within the 3D structure, and according to the computer program.
  • the system includes multiple building blocks, each having coupling means for releasably interconnecting with another building block and each embedded with an output device that is operatively connected to the processor, a 3D structure constructed by a user using a subset of the building blocks, a processor, a means for data communication between the processor and the 3D structure, and a power source.
  • Each building block is assigned a unique identification number
  • the processor is further configured to deduce the interconnectivity of building blocks within the 3D structure and to execute a computer program related to the 3D structure.
  • the processor is configured to instruct the output device embedded in a building block within the 3D structure to indicate the state of that building block to an end user
  • the state of a building block can comprise but is not limited to: activated; deactivated; on standby; and hibernating; selected; deselected; an error has occurred during operation; operational and normal; operation completed; and operation initiated.
  • the output device can comprise but is not limited to: LED lights; speaker system; vibration device.
  • the building block design can comprise but is not limited to: cube; cuboids; octagon; pyramid.
  • the state of one or more building blocks is changed when a user adds or removes blocks to the 3D structure.
  • the processor is further configured to group a plurality of building blocks within the 3D structure to indicate to the user their group state via one or more output devices embedded in said plurality of building blocks within the 3D structure.
  • the system includes multiple building blocks, each having coupling means for releasably interconnecting with another building block and each embedded with an output device that is operatively connected to the processor, a 3D structure constructed by a user using a subset of the building blocks, a processor, a means for data communication between the processor and the 3D structure, and a power source.
  • Each building block is assigned a unique identification number
  • the processor is further configured to deduce the interconnectivity of building blocks within the 3D structure and to execute a computer program related to the 3D structure.
  • at least one surface of the building blocks is embedded with a touch sensor, and the processor is configured to detect and recognize touches performed upon a building block’s face.
  • the processor is configured to instruct the output device embedded in a building block within the 3D structure to indicate the state of that building block to an end user, and the state of said building block can be changed whenever the user physically touches said building block.
  • Figs. 1a, 1b and 1c are exemplary schematic diagrams illustrating the system in accordance with one embodiment of the present invention.
  • Fig. 2 is an exemplary schematic diagram illustrating the system process flow in accordance with the system described in Figs. 1a and 1b.
  • Figs. 3a and 3b are exemplary schematic diagrams illustrating the system of the present invention in accordance with another embodiment of the present invention.
  • Figs. 4a and 4b are exemplary schematic diagrams illustrating the system of the present invention in accordance with another embodiment of the present invention.
  • the embodiments of the present invention use LED lights embedded into the building blocks as the means for visual feedback to the user, it will be obvious to one of ordinary skill in the art that the present invention can be applied using other visual output devices such as display screens embedded in the building blocks.
  • the present invention does not also go into details as to the specific system and method used as a communication means between the processor and the building blocks. Again, it is understood that this aspect of the presented embodiments is considered prior art.
  • the present invention provides a system and method managing the state of a building block within a 3D structure of building blocks.
  • Figs. 1a, 1b, and 1c are exemplary schematic diagrams illustrating the system in accordance with one embodiment of the present invention.
  • the system includes multiple building blocks 101, each having coupling means for releasably interconnecting with another building block 101, a 3D structure 102 assembled by a user using a subset of the building blocks 101, a processor 103, a means 104 for data communication between the processor 103 and the 3D structure 102, and a power source105.
  • Each building block 101 is embedded with an MCU 106 and an LED light 107 that are both operatively connected to the processor 103. Said LED lights 107 are capable of displaying three distinct colors (blue, red and green) .
  • Each building block’s 101 MCU 106 is assigned a unique identification number, and the processor 103 is further configured to deduce the interconnectivity of building blocks 101 within the 3D structure 102 by wirelessly communicating with the MCUs 106 and to execute a computer program related to the 3D structure 102.
  • the processor 103 is further configured to instruct a specific building block’s 101 MCU 106 to turn on or off its building block’s 101 LED light 107 so as to visually indicate to the user the state of the building block 101 within the 3D structure 102.
  • no lighting indicates a ‘Deactivated’ state
  • green lighting indicates an ‘Activated’ state
  • blue lighting indicates a ‘Hibernation’ state
  • red lighting indicates a ‘Standby’ state.
  • the processor 103 has not instructed any of the building blocks 101 within the 3D structure 102 to light up their LED lights 107.
  • the state of every building block 101 is visually indicated to the user as ‘Deactivated’ .
  • the processor has instructed one building block’s 108 MCU 106 to light up the green LED of said building block’s 108 LED lights 107.
  • the state of that building block 108 is visually indicated to the user as ‘Activated’ .
  • a blue light would visually indicate to the user a ‘Hibernation’ state and a red light would visually indicate to the user a ‘Standby’ state.
  • Fig. 1c further illustrates multiple building blocks 101 grouped together by the computer program, and the processor 103 has simultaneously instructed every building block’s 101 MCU 106 to light up their respective LED lights 107 using the same light color so as to visually indicate to the user the state of that group.
  • the first group 109 located on the top row of the 3D structure 102 are grouped together with their LED lights lighting up in green, indicating an ‘Activated’ state.
  • the second group 110 located in the center of the 3D structure 102 are grouped together with their LED lights lighting up in blue, indicating a ‘Hibernation’ state.
  • the third group 111 located on the bottom left corner of the 3D structure 102 are grouped together with their LED lights lighting up in red, indicating a ‘Standby’ state.
  • the remaining building blocks 101 which do not have their LED lights lit are considered to be in a ‘Deactivated’ state.
  • Fig. 2 is an exemplary schematic diagram illustrating the system process flow in accordance with the system described in Figs. 1a and 1b.
  • Step 1 assembling by a user a 3D structure 102 from multiple building blocks 101 with each building block 101 having means for releasably interconnecting with other building blocks 101;
  • Step 2 deducing the interconnectivity of building blocks 101 within the 3D structure 102 by a processor 103 via a means 104 for data communication between the processor 103 and the 3D structure 102;
  • Step 3 executing a computer program related to the 3D structure 102 by the processor 103;
  • Step 4 indicating to the user the state of a first building block 101 within the 3D structure 102 by an output device (the output device in the embodiment illustrated in Fig. 1 being LED lights 107 embedded in each building block 101) embedded in the first building block 101, wherein the state of the first building block 101 is related to the connectivity of the first building block 101 to other building blocks 101 within the 3D structure 102, and according to the computer program.
  • an output device the output device in the embodiment illustrated in Fig. 1 being LED lights 107 embedded in each building block 101
  • Figs. 3a and 3b are exemplary schematic diagrams illustrating the system of the present invention in accordance with another embodiment of the present invention.
  • Figs. 3a and 3b discloses a system and method wherein a computer program is designed to provide sensory feedback to a user whenever the user completes a specific 3D structure 302 using various building blocks 301. Sensory feedback is instructed to one or more output devices 305, 307, 308 via the processor 303.
  • the system in Figs. 3a and 3b includes multiple building blocks 301, each having coupling means for releasably interconnecting with another building block 301, a 3D structure 302 assembled by a user using a subset of the building blocks 301, a processor303, and a means 304 for data communication between the processor 303 and the 3D structure 302.
  • Each building block 301 is embedded with an MCU 306, an LED light 307 and a vibration device 308, all of which are operatively connected to the processor 303.
  • Each building block’s 301 MCU 306 is assigned a unique identification number and the processor 303 is further configured to deduce the interconnectivity of building blocks 301 within the 3D structure 302 by wirelessly communicating with the MCUs 306 and to execute a computer program related to the 3D structure 302.
  • An audio device 305 is also operatively connected to the processor 303.
  • the user has almost completed the 3D structure 302 depicting a dog by assembling various typed of building blocks 301.
  • the computer program is preconfigured to instruct the processor 303 to provide specific forms of sensorial feedback to the user via the output devices 307, 308 embedded in the building blocks 301 within the 3D structure 302 once the processor 303 detects that the user has assembled a 3D structure 302 identical to a 3D structure contained in a database of 3D structures located in the memory.
  • all the building blocks 301’s state are within a ‘Deactivated’ state.
  • Fig. 3b the user has added the last missing building block 309 to create the final 3D structure of a dog.
  • the processor is configured to deduce the interconnectivity of building blocks 301, 309 within the 3D structure and to execute a computer program that subsequently infers that the user has just created a dog structure.
  • the computer program is preconfigured to instruct the processor 303 to provide specific forms of sensorial feedback to the user via the output devices 307, 308. Additionally, for the embodiment in Figs.
  • another sensorial feedback would comprise a specific instruction to the audio device 305 to broadcast out to the user a predetermined audio file of a dog barking noise as well as lighting up of the whole or partial 3D structure 302 via the LED lights 307 (i.e., indicating the state of the building blocks 301, 309 as ‘Activated’ ) and causing the whole structure to vibrate via the vibration device 308.
  • Figs. 4a and 4b are exemplary schematic diagrams illustrating the system of the present invention in accordance with another embodiment of the present invention.
  • the system in Figs. 4a and 4b includes multiple building blocks 401, each having coupling means for releasably interconnecting with another building block 401, a 3D structure 402 assembled by a user using a subset of the building blocks 401, a processor403, and a means 404 for data communication between the processor 403 and the 3D structure 402.
  • Each building block 401 is embedded with an MCU 406 and an LED light 407 that are all operatively connected to the processor403.
  • Each building block’s 401 MCU 406 is assigned a unique identification number and the processor 403 is further configured to deduce the interconnectivity of building blocks 401 within the 3D structure 402 by wirelessly communicating with the MCUs 406 and to execute a computer program related to the 3D structure 402.
  • An audio device 408 is also operatively connected to the processor 403.
  • each building block 401 further comprises a touch sensor 405 that is operatively connected to the building block’s 401 MCU 406 that is configured to detect a user finger touch upon the surface of a building block 401 within the 3D structure 402 and to further transmit this information to the processor 403.
  • the illustrated 3D structure 402 comprises a group of building blocks 401 whose state is indicated as ‘Inactive’ .
  • an ‘Inactive’ state is shown to the user whenever a building block’s 401 LED light 407 is turned off.
  • Fig. 4b the same 3D structure 402 has had one of its building blocks 401 change its state to ‘Active’ after the user has physically touched the surface of that ‘Active’ state building block 409.
  • a physical touch upon a building block’s 401 surface would cause both that building block’s 409 LED light 407 to light up as well as the processor 403 to instruct the audio device 408 to broadcast back to the user an audio file indicating the change of state.

Abstract

The present invention provides a system and method managing the state of a building block within a 3D structure of building blocks. A processor is operatively linked to the 3D structure and configured to recognize said 3D structure and further configured to instruct an output device embedded in a first building block within the 3D structure to indicate to the user the state of that building block. And the state of the first building block is related to the connectivity of the first building block to other building blocks within the 3D structure, and according to the computer program.

Description

SYSTEM AND METHOD FOR MANAGING THE STATE OF A BUILDING BLOCK WITHIN A 3D STRUCTURE OF BUILDING BLOCKS TECHNICAL FIELD
The present invention relates to method and system for interacting with building blocks.
BACKGROUND
Human interaction with blocks, toy bricks and other objects is pervasive across societies and cultures. This interaction is encouraged at a very young age to help develop motor skills, learn spatial relationships and basic physics, etc. Even after youth, tactile play is encouraged to entertain, develop further manual dexterity, express artistic and creative skills, develop logical and other cognitive acumen, etc.
Interactive objects having electronic components have been developed to enhance the appeal of these objects. Also, some attempts to represent physical objects in virtual environments have been made. However, there are not robust solutions for collecting information about how tactile objects are interacted with, analyzing the interactivity, providing feedback to a user, and assessing manual ability and dexterousness, cognitive ability, memory and retention, providing challenges based on past performance, etc.
Accordingly, it is desirable to provide a new and innovative way to play the traditional building blocks by adding a new layer of interactivity allowing for scalable gameplay which is both fun and accessible to a wide age range.
SUMMARY OF INVENTION
The present invention improves upon the traditional building block game by allowing for interactive feedback from individual or multiple building blocks within a 3D structure.
The present invention provides a system and method managing the state of a building block within a 3D structure of building blocks. A processor is operatively linked to the 3D structure and configured to recognize said 3D structure and further configured to instruct an output device embedded in a first building block within the 3D structure to indicate to the user the state of that building block and wherein the state of the first building block is related to the connectivity of the first building block to other building blocks within the 3D structure, and according to the computer program.
In accordance with one embodiment of the present invention, the system includes multiple building blocks, each having coupling means for releasably interconnecting with another building block and each embedded with an output device that is operatively connected to the processor, a 3D structure constructed by a user using a subset of the building blocks, a processor, a means for data communication between the processor and the 3D structure, and a power source. Each building block is assigned a unique identification number, and the processor is further configured to deduce the interconnectivity of building blocks within the 3D structure and to execute a computer program related to the 3D structure. The processor is configured to instruct the output device embedded in a building block within the 3D structure to indicate the state of that building block to an end user
In accordance with another embodiment of the present invention, the state of a building block can comprise but is not limited to: activated; deactivated; on standby; and hibernating; selected; deselected; an error has occurred during operation; operational and normal; operation completed; and operation initiated.
In accordance with another embodiment of the present invention, the output device can comprise but is not limited to: LED lights; speaker system; vibration device.
In accordance with another embodiment of the present invention, the building block design can comprise but is not limited to: cube; cuboids; octagon; pyramid.
In accordance with another embodiment of the present invention, the state of one or more building blocks is changed when a user adds or removes blocks to the 3D structure.
In accordance with another embodiment of the present invention, the processor is further configured to group a plurality of building blocks within the 3D structure to indicate to the user their group state via one or more output devices embedded in said plurality of building blocks within the 3D structure.
In accordance with another embodiment of the present invention, the system includes multiple building blocks, each having coupling means for releasably interconnecting with another building block and each embedded with an output device that is operatively connected to the processor, a 3D structure constructed by a user using a subset of the building blocks, a processor, a means for data communication between the processor and the 3D structure, and a power source. Each building block is assigned a unique identification number, and the processor is further configured to deduce the interconnectivity of building blocks within the 3D structure and to execute a computer program related to the 3D structure. Further, at least one surface of the building blocks is embedded with a touch sensor, and the processor is configured to detect and recognize touches performed upon a building block’s face. In the embodiment described above, the processor is configured to instruct the output device embedded in a building block within the 3D structure to indicate the state of that building block to an end user, and the state of said building block can be changed whenever the user physically touches said building block.
BRIEF DESCRIPTION OF THE DRAWINGS
To better illustrate the technical features of the embodiments of the present invention, various embodiments of the present invention will be briefly described in conjunction with the accompanying drawings. It should be obvious that the drawings are only for exemplary embodiments of the present invention, and that a person of ordinary skill in the art may derive additional drawings without deviating from the principles of the present invention.
Figs. 1a, 1b and 1c are exemplary schematic diagrams illustrating the system in accordance with one embodiment of the present invention.
Fig. 2 is an exemplary schematic diagram illustrating the system process flow in accordance with the system described in Figs. 1a and 1b.
Figs. 3a and 3b are exemplary schematic diagrams illustrating the system of  the present invention in accordance with another embodiment of the present invention.
Figs. 4a and 4b are exemplary schematic diagrams illustrating the system of the present invention in accordance with another embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Reference will now be made in detail to various embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the embodiments, it will be understood that this is not intended to limit the scope of the invention to these specific embodiments. The invention is intended to cover all alternatives, modifications and equivalents within the spirit and scope of invention, which is defined by the apprehended claims.
Furthermore, in the detailed description of the present invention, specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits are not described in detail to avoid unnecessarily obscuring a clear understanding of the present invention.
Furthermore, although the embodiments of the present invention primarily use block designs, it will be obvious to one of ordinary skill in the art that the present invention can be applied for other geometric structures such as cuboids; cylinders; cones; prisms; pyramids etc.
Furthermore, although the embodiments of the present invention primarily use certain building block states, it will be obvious to one of ordinary skill in the art that the present invention can be applied for other states such as: selected; deselected; an error has occurred during operation; operational and normal; operation completed; and operation initiated.
Furthermore, although the embodiments of the present invention use LED lights embedded into the building blocks as the means for visual feedback to the user, it will be obvious to one of ordinary skill in the art that the present invention can be  applied using other visual output devices such as display screens embedded in the building blocks.
Additionally, the present invention does not go into details as to the specific system and method used to power the building blocks. It is understood that this aspect of the presented embodiments is considered prior art.
The present invention does not also go into details as to the specific system and method used as a communication means between the processor and the building blocks. Again, it is understood that this aspect of the presented embodiments is considered prior art.
The present invention may be better understood and its numerous objects and advantages will become apparent to those skilled in the art by reference to the accompanying drawings.
The present invention provides a system and method managing the state of a building block within a 3D structure of building blocks.
Figs. 1a, 1b, and 1c are exemplary schematic diagrams illustrating the system in accordance with one embodiment of the present invention.
As shown in Fig. 1a, the system includes multiple building blocks 101, each having coupling means for releasably interconnecting with another building block 101, a 3D structure 102 assembled by a user using a subset of the building blocks 101, a processor 103, a means 104 for data communication between the processor 103 and the 3D structure 102, and a power source105. Each building block 101 is embedded with an MCU 106 and an LED light 107 that are both operatively connected to the processor 103. Said LED lights 107 are capable of displaying three distinct colors (blue, red and green) . Each building block’s 101 MCU 106 is assigned a unique identification number, and the processor 103 is further configured to deduce the interconnectivity of building blocks 101 within the 3D structure 102 by wirelessly communicating with the MCUs 106 and to execute a computer program related to the 3D structure 102.
The processor 103 is further configured to instruct a specific building block’s 101 MCU 106 to turn on or off its building block’s 101 LED light 107 so as to visually indicate to the user the state of the building block 101 within the 3D structure 102. In the embodiment described in Fig. 1a, no lighting indicates a ‘Deactivated’  state, green lighting indicates an ‘Activated’ state, blue lighting indicates a ‘Hibernation’ state, and red lighting indicates a ‘Standby’ state.
In Fig. 1a, the processor 103 has not instructed any of the building blocks 101 within the 3D structure 102 to light up their LED lights 107. Thus, the state of every building block 101 is visually indicated to the user as ‘Deactivated’ .
As illustrated in Fig. 1b, the processor has instructed one building block’s 108 MCU 106 to light up the green LED of said building block’s 108 LED lights 107. Thus, the state of that building block 108 is visually indicated to the user as ‘Activated’ . Alternatively, a blue light would visually indicate to the user a ‘Hibernation’ state and a red light would visually indicate to the user a ‘Standby’ state.
Fig. 1c further illustrates multiple building blocks 101 grouped together by the computer program, and the processor 103 has simultaneously instructed every building block’s 101 MCU 106 to light up their respective LED lights 107 using the same light color so as to visually indicate to the user the state of that group. There are three distinct building blocks 101  groups  109, 110, 111 illustrated in Fig. 1c. The first group 109 located on the top row of the 3D structure 102 are grouped together with their LED lights lighting up in green, indicating an ‘Activated’ state. The second group 110 located in the center of the 3D structure 102 are grouped together with their LED lights lighting up in blue, indicating a ‘Hibernation’ state. The third group 111 located on the bottom left corner of the 3D structure 102 are grouped together with their LED lights lighting up in red, indicating a ‘Standby’ state. The remaining building blocks 101 which do not have their LED lights lit are considered to be in a ‘Deactivated’ state.
Fig. 2 is an exemplary schematic diagram illustrating the system process flow in accordance with the system described in Figs. 1a and 1b.
As shown in Fig. 2, the system’s process flow is comprised of the following steps:
Step 1: assembling by a user a 3D structure 102 from multiple building blocks 101 with each building block 101 having means for releasably interconnecting with other building blocks 101;
Step 2: deducing the interconnectivity of building blocks 101 within the 3D structure 102 by a processor 103 via a means 104 for data communication between the  processor 103 and the 3D structure 102;
Step 3: executing a computer program related to the 3D structure 102 by the processor 103; and
Step 4: indicating to the user the state of a first building block 101 within the 3D structure 102 by an output device (the output device in the embodiment illustrated in Fig. 1 being LED lights 107 embedded in each building block 101) embedded in the first building block 101, wherein the state of the first building block 101 is related to the connectivity of the first building block 101 to other building blocks 101 within the 3D structure 102, and according to the computer program.
Figs. 3a and 3b are exemplary schematic diagrams illustrating the system of the present invention in accordance with another embodiment of the present invention.
The embodiment illustrated in Figs. 3a and 3b discloses a system and method wherein a computer program is designed to provide sensory feedback to a user whenever the user completes a specific 3D structure 302 using various building blocks 301. Sensory feedback is instructed to one or  more output devices  305, 307, 308 via the processor 303.
Similar to the embodiment illustrated in Fig. 1, the system in Figs. 3a and 3b includes multiple building blocks 301, each having coupling means for releasably interconnecting with another building block 301, a 3D structure 302 assembled by a user using a subset of the building blocks 301, a processor303, and a means 304 for data communication between the processor 303 and the 3D structure 302. Each building block 301 is embedded with an MCU 306, an LED light 307 and a vibration device 308, all of which are operatively connected to the processor 303. Each building block’s 301 MCU 306 is assigned a unique identification number and the processor 303 is further configured to deduce the interconnectivity of building blocks 301 within the 3D structure 302 by wirelessly communicating with the MCUs 306 and to execute a computer program related to the 3D structure 302. An audio device 305 is also operatively connected to the processor 303.
As shown in Fig. 3a, the user has almost completed the 3D structure 302 depicting a dog by assembling various typed of building blocks 301. The computer program is preconfigured to instruct the processor 303 to provide specific forms of  sensorial feedback to the user via the  output devices  307, 308 embedded in the building blocks 301 within the 3D structure 302 once the processor 303 detects that the user has assembled a 3D structure 302 identical to a 3D structure contained in a database of 3D structures located in the memory. As the user had not completed the dog structure yet, all the building blocks 301’s state are within a ‘Deactivated’ state.
In Fig. 3b, the user has added the last missing building block 309 to create the final 3D structure of a dog. The processor is configured to deduce the interconnectivity of  building blocks  301, 309 within the 3D structure and to execute a computer program that subsequently infers that the user has just created a dog structure. The computer program is preconfigured to instruct the processor 303 to provide specific forms of sensorial feedback to the user via the  output devices  307, 308. Additionally, for the embodiment in Figs. 3a and 3b, it can be envisaged that another sensorial feedback would comprise a specific instruction to the audio device 305 to broadcast out to the user a predetermined audio file of a dog barking noise as well as lighting up of the whole or partial 3D structure 302 via the LED lights 307 (i.e., indicating the state of the  building blocks  301, 309 as ‘Activated’ ) and causing the whole structure to vibrate via the vibration device 308.
Figs. 4a and 4b are exemplary schematic diagrams illustrating the system of the present invention in accordance with another embodiment of the present invention.
Like the previous embodiments, the system in Figs. 4a and 4b includes multiple building blocks 401, each having coupling means for releasably interconnecting with another building block 401, a 3D structure 402 assembled by a user using a subset of the building blocks 401, a processor403, and a means 404 for data communication between the processor 403 and the 3D structure 402. Each building block 401 is embedded with an MCU 406 and an LED light 407 that are all operatively connected to the processor403. Each building block’s 401 MCU 406 is assigned a unique identification number and the processor 403 is further configured to deduce the interconnectivity of building blocks 401 within the 3D structure 402 by wirelessly communicating with the MCUs 406 and to execute a computer program related to the 3D structure 402. An audio device 408 is also operatively connected to the processor 403. Furthermore, each building block 401 further comprises a touch sensor 405 that is operatively connected to the building block’s 401 MCU 406 that is  configured to detect a user finger touch upon the surface of a building block 401 within the 3D structure 402 and to further transmit this information to the processor 403.
In Fig. 4a, the illustrated 3D structure 402 comprises a group of building blocks 401 whose state is indicated as ‘Inactive’ . Within this embodiment an ‘Inactive’ state is shown to the user whenever a building block’s 401 LED light 407 is turned off.
In Fig. 4b, the same 3D structure 402 has had one of its building blocks 401 change its state to ‘Active’ after the user has physically touched the surface of that ‘Active’ state building block 409. A physical touch upon a building block’s 401 surface would cause both that building block’s 409 LED light 407 to light up as well as the processor 403 to instruct the audio device 408 to broadcast back to the user an audio file indicating the change of state.

Claims (20)

  1. A system for managing the state of a physical building block within a 3D structure of building blocks, comprising:
    a plurality of building blocks, each having coupling means for releasably interconnecting with another building block;
    a 3D structure constructed by a user using a subset of the building blocks;
    a processor that is configured to deduce the interconnectivity of building blocks within the 3D structure, and to execute a computer program related to the 3D structure;
    a means for data communication between the processor and the 3D structure;
    an output device embedded in a first building block within the 3D structure;
    wherein the processor is configured to instruct the output device embedded in the first building block to indicate the state of the first building block to an end user, and wherein the state of the first building block is related to the connectivity of the first building block to other building blocks within the 3D structure, and according to the computer program.
  2. The system of claim 1, wherein the state of a building block is selected from a group comprising activated, deactivated, on standby, hibernating, selected, deselected, an error has occurred during operation, operational and normal, operation completed, and operation initiated.
  3. The system of claim 1, wherein the state of a building block or a group of building blocks is changed through user manipulation.
  4. The system of claim 3, wherein the state of a building block or a group of building blocks is changed by adding or removing building blocks from the 3D structure.
  5. The system of claim 3, wherein the state of a building block or a group of building blocks is changed by physically touching a building block within the 3D structure.
  6. The system of claim 1, wherein a group of building blocks within the 3D structure are formed to share a single state.
  7. The system of claim 1, wherein the output device is selected from a group comprising LED lights, a speaker system, a vibration device, and a display screen.
  8. The system of claim 1, further comprising a touch sensor embedded in each building block that is operatively connected to the processor.
  9. The system of claim 8, wherein at least two different surfaces of the building block are embedded with separate touch sensors.
  10. The system of claim 1, wherein the building block design is selected from a group comprising cube, cuboids, octagon, and pyramid.
  11. A method managing the state of a building block within a 3D structure of building blocks, comprising:
    assembling by a user a 3D structure from a plurality of building blocks with each building block having means for releasably interconnecting with other building blocks;
    deducing the interconnectivity of building blocks within the 3D structure by a processor via a means for data communication between the processor and the 3D structure;
    executing a computer program related to the 3D structure by the processor;
    indicating to an end user the state of a first building block within the 3D structure by an output device embedded in the first building block, wherein the state of the first building block is related to the connectivity of the first building block to other building blocks within the 3D structure, and according to the computer program.
  12. The method of claim 11, wherein the state of a building block is selected from a group comprising activated, deactivated, on standby, hibernating, selected, deselected, an error has occurred during operation, operational and normal, operation completed, and operation initiated.
  13. The method of claim 11, further comprising, changing the state of a building block or a group of building blocks through user manipulation.
  14. The method of claim 13, further comprising, changing the state of a building block or a group of building blocks by adding or removing building blocks from the 3D structure.
  15. The method of claim 13, further comprising, changing the state of a building block or a group of building blocks by physically touching a building block within the 3D structure.
  16. The method of claim 11, further comprising, forming a group of building blocks within the 3D structure to share a single state.
  17. The method of claim 11, wherein the output device is selected from a group comprising LED lights, a speaker system, a vibration device, and a display screen.
  18. The method of claim 11, further comprising a touch sensor embedded in each building block that is operatively connected to the processor.
  19. The method of claim 18, wherein at least two different surfaces of the building block are embedded with separate touch sensors.
  20. The method of claim 11, wherein the building block design is selected from a group comprising cube, cuboids, octagon, and pyramid.
PCT/CN2017/118094 2017-12-22 2017-12-22 System and method for managing the state of a building block within a 3d structure of building blocks WO2019119446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118094 WO2019119446A1 (en) 2017-12-22 2017-12-22 System and method for managing the state of a building block within a 3d structure of building blocks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118094 WO2019119446A1 (en) 2017-12-22 2017-12-22 System and method for managing the state of a building block within a 3d structure of building blocks

Publications (1)

Publication Number Publication Date
WO2019119446A1 true WO2019119446A1 (en) 2019-06-27

Family

ID=66992889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118094 WO2019119446A1 (en) 2017-12-22 2017-12-22 System and method for managing the state of a building block within a 3d structure of building blocks

Country Status (1)

Country Link
WO (1) WO2019119446A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102302854A (en) * 2011-05-24 2012-01-04 深圳市合智创盈电子有限公司 Electronic building block combination system
CN103500352A (en) * 2013-10-18 2014-01-08 步步高教育电子有限公司 Tag information display device based on near field induction and intelligence toy
CN103566600A (en) * 2013-11-14 2014-02-12 步步高教育电子有限公司 Educational toy and method for achieving man-machine interaction function of same
CN106457055A (en) * 2014-05-15 2017-02-22 乐高公司 A toy construction system with function construction elements
US20170252664A1 (en) * 2016-03-07 2017-09-07 Microsoft Technology Licensing, Llc Electromagnetically coupled building blocks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102302854A (en) * 2011-05-24 2012-01-04 深圳市合智创盈电子有限公司 Electronic building block combination system
CN103500352A (en) * 2013-10-18 2014-01-08 步步高教育电子有限公司 Tag information display device based on near field induction and intelligence toy
CN103566600A (en) * 2013-11-14 2014-02-12 步步高教育电子有限公司 Educational toy and method for achieving man-machine interaction function of same
CN106457055A (en) * 2014-05-15 2017-02-22 乐高公司 A toy construction system with function construction elements
US20170252664A1 (en) * 2016-03-07 2017-09-07 Microsoft Technology Licensing, Llc Electromagnetically coupled building blocks

Similar Documents

Publication Publication Date Title
US8465356B2 (en) Display puzzle
US10293268B2 (en) Block, block system, information processing apparatus, display method, and information processing method
WO2016055862A1 (en) Interactive learning blocks
CN105983229A (en) Electronic go game board and gaming method independently allowing human-machine or online go game
US20160162040A1 (en) System and method for operating a computer program with physical objects
CN103446757A (en) Chess and card and entertainment device
CN105848740A (en) Interchangeable gaming layout powered by a display element
KR101027834B1 (en) Multimedia Cube
CN102228741A (en) Full-automatic chess game table
WO2019119446A1 (en) System and method for managing the state of a building block within a 3d structure of building blocks
US8803810B2 (en) Multiple use education and entertainment device for young users
US9162139B2 (en) Cube puzzle
TWM394176U (en) Block-type multi-media interactive jigsaw puzzle
KR102301027B1 (en) A system and method for constructing a reader participation type electronic book using module
WO2019056297A1 (en) System and method for interacting with multiple building blocks within a structure
CN202569440U (en) Pirate chess
Arif et al. Extending the Design Space of Tangible Objects via Low-Resolution Edge Displays
CN216352272U (en) Intelligent learning desktop and computing equipment
WO2018145389A1 (en) Six-sided touch chessboard
CN103532942A (en) Mahjong tile arrangement control method and mahjong tile arrangement control device
JP5804412B2 (en) GAME DEVICE AND GAME PROGRAM
Huhtamo Tactile temptations: About contemporary art, exhibitions and tactility
CN211862122U (en) Intelligent multi-person entertainment table
CN202620676U (en) Three-layered trapezoidal combined jigsaw puzzle
TW201801051A (en) Blocks learning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17935579

Country of ref document: EP

Kind code of ref document: A1