WO2019119369A1 - 一种声镊装置 - Google Patents

一种声镊装置 Download PDF

Info

Publication number
WO2019119369A1
WO2019119369A1 PCT/CN2017/117834 CN2017117834W WO2019119369A1 WO 2019119369 A1 WO2019119369 A1 WO 2019119369A1 CN 2017117834 W CN2017117834 W CN 2017117834W WO 2019119369 A1 WO2019119369 A1 WO 2019119369A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit body
ultrasonic
resonance unit
sonar device
particles
Prior art date
Application number
PCT/CN2017/117834
Other languages
English (en)
French (fr)
Inventor
李飞
张鹏飞
蔡飞燕
郑海荣
黄继卿
周伟
肖杨
邱维宝
李永川
苏敏
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2017/117834 priority Critical patent/WO2019119369A1/zh
Publication of WO2019119369A1 publication Critical patent/WO2019119369A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers

Definitions

  • the present application relates to the field of micro-nanoparticle manipulation, and more particularly to a sonar device.
  • the current single beam sonar is mainly realized in two ways: single-element high-frequency ultrasonic Gaussian beam and multi-array phase-regulated vortex sound beam. These two methods have high requirements for the transducer processing process or the design of the electronic system. For example, in order to realize a high-frequency ultrasonic Gaussian beam, a higher level of piezoelectric crystal grinding process is required, and a 100 MHz Gaussian beam is required to be ground to a thickness of 30 ⁇ m, which is time consuming and laborious, and mass production cannot be achieved. In order to realize the vortex sound beam, it is not only necessary to perform precise cutting and layout on the array elements, but also requires a complicated electronic system to achieve precise control of the phase of the signal emitted by each array element. In addition, the operating frequencies of the above two single beam sonars are usually fixed, and it is difficult to flexibly select the operating frequency depending on the size of the manipulation particles.
  • optical tweezers technology Due to the momentum exchange between the particles and the light waves and the reflection of the light, the particles are subjected to the optical radiation pressure in the focused laser field. Therefore, manipulation of the particles can be achieved based on the pressure of the optical radiation, which leads to the development of the optical tweezers technology.
  • the research and development of optical microscopy technology for precise manipulation of single atoms or micro-nano objects has had a major impact on biology, quantum optics, soft matter physics, nanostructure materials science and basic medical research.
  • the optical tweezers technology not only provides an important research method for studying the basic mechanical, physical and biochemical characteristics of micro-nano particles such as metals, cells, proteins and DNA, and micro-nano structures based on them.
  • the diaphragm system is relatively expensive, and the thermal effect of the laser can cause damage to biological particles such as cells.
  • this technique mainly uses the lateral acoustic radiation force perpendicular to the acoustic axis to attract the particles to the center of the sound beam, while the axial acoustic radiation force is the same as the sound propagation direction and exhibits thrust.
  • Baresch et al. proposed a method for three-dimensional manipulation of particles by a single beam.
  • the method uses array transducers, each of which has an independent signal transmitting circuit. Firstly, the excitation signals of each array element are inversely calculated according to the target sound field to be generated, and then the excitation signals are input into the corresponding signal transmission circuits, and the corresponding array elements are excited to emit sound waves, and the emitted sound waves of all array elements are finally synthesized into the target sound field.
  • This method produces an axial and lateral attraction to the particles so that the particles can be captured at the center of the sound beam.
  • this method requires precise cutting and layout of the array elements, and also requires a complicated electronic system to precisely control the phase and amplitude of the transmitted signals of each array element.
  • the operating frequencies of the above two single beam sonars are usually fixed, and it is difficult to flexibly select the operating frequency depending on the size of the manipulation particles.
  • the technical problem to be solved by the present application is to provide a sonar device for the deficiencies of the prior art.
  • a sonar device comprising an ultrasonic transmitting mechanism and a waveguide structure disposed on the ultrasonic transmitting mechanism, the ultrasonic transmitting mechanism for transmitting ultrasonic waves, the waveguide structure for conducting ultrasonic waves, characterized by further comprising a resonance unit
  • the resonance unit body is disposed on the waveguide mechanism, and the ultrasonic wave excites the resonance unit body to resonate, and a local field of the captured particles is generated on the surface of the resonance unit body.
  • the resonance unit body includes a solid structure whose surface is made of a soft material, and the soft material includes a material having a transverse wave velocity smaller than a longitudinal wave velocity of water.
  • the resonance unit body includes a solid structure made of a soft material.
  • the soft material includes polylactic acid or rubber.
  • the resonance unit body includes a solid structure composed of a soft material wrapped with a hard material, and the hard material is a material having a transverse wave velocity greater than or equal to the longitudinal wave velocity of water.
  • the hard material includes a metal.
  • the solid structure includes a sphere, a cylinder, a pyramid or a prism.
  • the ultrasonic transmitting mechanism includes a signal generator, a power amplifier, and an ultrasonic transducer, and the signal generator is configured to generate an electrical signal, and the electrical signal is amplified by a power amplifier to excite the ultrasonic transducer Ultrasonic waves are generated.
  • the waveguide structure includes a plastic case and an ultrasonic coupling agent disposed in the case, and the waveguide structure is made of a polylactic acid or a plexiglass material by 3D printing.
  • the resonance unit body is made of 3D printing.
  • the ultrasonic wave transmitting mechanism is for transmitting ultrasonic waves
  • the waveguide structure is for conducting ultrasonic waves
  • the resonance unit body Disposed on the waveguide mechanism the ultrasonic excitation resonates with the resonance unit body to generate a local field of the capture particle on the surface of the resonance unit body, and the local field generates an acoustic radiation force on the particle to stably capture the particle on the surface of the resonance unit body.
  • the captured particles can be moved by moving the ultrasonic transmitting mechanism.
  • the ultrasonic frequency used in the present application is very low, and the precise phase modulation is not required, so the transducer is easy to manufacture and does not require a complicated electronic system, and only the resonant unit body of the designed processing unit modulates the low-frequency incident sound field in the resonance unit body. By creating a local field on the surface, manipulation of the capture of micron-sized particles can be achieved. When the ultrasonic transmitting mechanism is turned off, particles trapped on the surface of the resonance unit body are released due to the loss of the acoustic radiation force.
  • the sonar device of the present application has simple manufacturing process and low price, and can realize quantitative production.
  • FIG. 1 is a schematic diagram of functional modules of a sonar device of the present application in an embodiment
  • FIG. 2 is a schematic structural view of a sonar device of the present application in an embodiment
  • 3 is a transmission spectrum calculated by calculating a resonance unit body composed of a soft material PLA
  • Figure 4 is a soft-field PLA solid cylindrical low-order resonance sound pressure field
  • Figure 5 is a high-order resonance sound pressure field of a soft cylindrical solid cylindrical material
  • Figure 6 is a transmission spectrum of a resonant unit body composed of a soft material rubber-wrapped hard material stainless steel
  • Figure 7 is a resonance sound pressure field of a resonance unit body composed of a soft material rubber-wrapped hard material stainless steel;
  • Figure 8 is a transmission spectrum obtained by measuring a solid cylindrical shape resonance unit body made of a soft material PLA
  • Figure 9 is an experimental result of the low-order resonance sonar device capturing particles
  • Figure 10 is an experimental result of a high-order resonance sonar device capturing particles.
  • an embodiment of the sonar device of the present application includes an ultrasonic transmitting mechanism 10, a waveguide structure 20, and a resonant unit body 30.
  • the resonant unit body 30 may have one or more, and the waveguide structure 20 is disposed on the ultrasonic wave transmitting mechanism 10, the resonance unit body 30 is disposed on the waveguide mechanism 20, the ultrasonic wave transmitting mechanism 10 is for transmitting ultrasonic waves, the waveguide structure 20 is for conducting ultrasonic waves, and the ultrasonic wave exciting resonant unit body 30 is resonating, in the resonance unit body 30
  • the surface produces a localized field that captures particles.
  • the resonance unit body 30 includes a solid structure, and the surface of the solid structure is composed of a soft material.
  • the soft material refers to a material having a transverse wave velocity smaller than the longitudinal wave velocity of water.
  • the resonant unit body may be a solid structure that is entirely composed of a soft material.
  • the soft material may include polylactic acid (PLA) or rubber or the like.
  • the resonant unit body comprises a solid structure composed of a soft material wrapped with a hard material, the hard material being a material having a transverse wave velocity greater than or equal to the longitudinal wave velocity of the water.
  • the hard material may include a metal such as stainless steel, aluminum or copper.
  • the solid structure may include various shapes such as a sphere, a cylinder, a pyramid, or a prism.
  • the ultrasonic transmitting mechanism 10 includes a signal generator 11, a power amplifier 12, and an ultrasonic transducer 13, which is used to generate an electrical signal that is amplified by the power amplifier 12 to excite the ultrasonic transducer. 13 produces ultrasound.
  • the waveguide structure 20 of the present application includes a plastic housing and an ultrasonic coupling agent disposed within the housing, and the waveguide structure is made of 3D printing of polylactic acid or plexiglass material.
  • the waveguide structure 20 is used to connect the ultrasonic transducer 13 and the resonance unit body 30, and the waveguide structure 20 is provided with an ultrasonic coupling agent for propagating the ultrasonic waves emitted from the ultrasonic transducer 13.
  • the ultrasonic wave emitted from the ultrasonic transducer 13 is propagated to the resonance unit body 30 via the ultrasonic coupling agent in the waveguide structure 20, and the resonance unit body 30 is excited to generate a local strong field on the surface of the resonance unit body 30, and the local strong field is generated.
  • the acoustic radiation force is generated on the particles to stably capture the particles on the surface of the resonance unit body 30.
  • the captured particles can be moved by moving the ultrasonic transducer 13. When the ultrasonic transducer 13 is turned off, particles trapped on the surface of the resonance unit body 30 are released due to the loss of the acoustic radiation force.
  • the resonant unit body 30 of the present application is made by 3D printing. Both the low-order resonance and the high-order resonance of the resonance unit body 30 can be used to manipulate the capture particles, and thus the sonar device of the present application can achieve flexible and controllable manipulation of the particles by changing the driving frequency.
  • the resonance unit body 30 of the present application may be a solid cylinder or a sphere made of a soft material having a transverse wave velocity smaller than the longitudinal wave velocity of water.
  • Fig. 3 is a transmission spectrum when the resonance unit body is a column of 350 ⁇ m in diameter composed of polylactic acid (PLA), and it can be seen that the spectrum contains low-order and high-order resonance frequencies.
  • Figure 4 shows the distribution of the local sound pressure field on the surface of the PLA cylinder at low-order resonance
  • Figure 5 shows the distribution of the local sound pressure field on the surface of the PLA cylinder at high-order resonance. It can be seen that the higher-order resonance sound pressure field is more localized than the low-order resonance sound pressure field, so that smaller particles can be stably captured. Under different excitation frequency excitations, respectively, low-order resonance and high-order resonance are excited, and selective capture of particles of different sizes or the same size but different materials of the same material can be realized. Therefore, the sonar device of the present application is flexible and controllable.
  • the resonance unit body 30 may be a solid material having a transverse wave velocity smaller than the longitudinal wave velocity of water and a solid material having a transverse wave velocity greater than the longitudinal velocity of the water.
  • Figure 6 shows the transmission spectrum of a 500 ⁇ m diameter composite cylinder made of soft rubber-wrapped stainless steel. It can be seen that there is a significant resonance peak in the spectrum.
  • Figure 7 shows the distribution of the local acoustic pressure field of the composite cylinder at resonance.
  • Fig. 8 is a transmission spectrum of a cylindrical resonance unit body made of an experimentally measured PLA material.
  • the cylinder has a diameter of 300 ⁇ m and is obtained by 3D printing. It can be seen from the figure that the transmission spectrum of the resonance unit body has several minimum values of the transmission coefficient, and the corresponding resonance frequency is the resonance frequency of the resonance unit body, wherein the resonance frequency near 1.5 MHz is the low of the resonance unit body. The order resonance frequency, and the remaining minimum values correspond to the high-order resonance frequency.
  • Fig. 9 is an experimental result of sonar-capture particles based on low-order resonance of a resonance unit body.
  • the resonance unit body in the experiment was a PLA cylinder having a diameter of 300 ⁇ m.
  • the waveguide structure is a 3D printed plastic housing.
  • the ultrasonic transducer uses a center frequency 1.5 MHz unfocused transducer.
  • a signal generator (AFG 3102, Tektronix, Beaverton, OR, USA) produces a continuous sine wave of 1.552 MHz that is amplified by a power amplifier (150A100B, Amplifier Research, Souderton, PA, USA) to excite the ultrasonic transducer to emit ultrasonic waves.
  • a signal generator (AFG 3102, Tektronix, Beaverton, OR, USA) produces a continuous sine wave of 1.552 MHz that is amplified by a power amplifier (150A100B, Amplifier Research, Souderton, PA, USA) to excite the ultrasonic transducer to emit ultra
  • Fig. 9 shows a process in which polystyrene particles having a diameter of 15 ⁇ m are captured by a sonar resonance unit body PLA.
  • Fig. 10 is an experimental result of sonar-capture particles based on high-order resonance of a resonance unit body.
  • the resonance unit body in the experiment was a PLA cylinder having a diameter of 300 ⁇ m.
  • the waveguide structure is a 3D printed plastic housing.
  • the ultrasonic transducer uses a center frequency 3.5 MHz unfocused transducer.
  • a signal generator (AFG 3102, Tektronix, Beaverton, OR, USA) produces a 3.2 MHz continuous sine wave that is amplified by a power amplifier (150A100B, Amplifier Research, Souderton, PA, USA) to excite the ultrasonic transducer to emit ultrasonic waves.
  • FIG. 10 shows the process of capturing a single diameter 5 ⁇ m polystyrene particle by the sonar resonance unit PLA.
  • the present application discloses a sonar device based on a resonant unit body, including an ultrasonic transducer, a resonant unit body, a waveguide structure, a signal generator, and a power amplifier.
  • the waveguide structure is used to connect the ultrasonic transducer and the resonant unit body, and the waveguide structure is provided with an ultrasonic coupling agent for propagating the ultrasonic waves emitted by the ultrasonic transducer.
  • the ultrasonic wave emitted by the ultrasonic transducer propagates to the resonance unit body through the ultrasonic coupling agent in the waveguide structure, exciting the resonance unit body to resonate, and generating a local strong field on the surface of the resonance unit body, and the local strong field generates acoustic radiation on the particle.
  • the force stably captures the particles on the surface of the resonance unit body.
  • the captured particles can be moved by moving the transducer. When the ultrasound is turned off, the particles trapped on the surface of the resonance unit body are released due to the loss of the acoustic radiation force.
  • the resonance unit body may be a solid body made of a soft material having a transverse wave velocity smaller than the longitudinal wave velocity of water, and may have a shape of a cylinder or a sphere.
  • the resonance unit body may be a solid material in which a soft material having a transverse wave velocity smaller than a longitudinal wave velocity of water and a transverse wave velocity greater than a longitudinal wave velocity of water constitutes a composite solid body, and the shape thereof may be a cylinder or a sphere.
  • the low-order resonance and high-order resonance of the resonance unit body can be used to manipulate the capture particles, so the sonar based on the resonance unit body can realize flexible and controllable manipulation of the particles by changing the driving frequency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

一种声镊装置,包括超声波发射机构(10)和设置在超声波发射机构(10)上的波导结构(20),超声波发射机构(10)用于发射超声波,波导结构(20)用于传导超声波,还包括共振单元体(30),共振单元体(30)设置在波导结构(20)上,超声波激励共振单元体(30)共振,在共振单元体(30)表面产生捕获颗粒的局域场。本声镊装置使用的超声频率很低,不需要精确调制相位,因此换能器易于加工制造,且不需要复杂的电子系统,仅通过设计加工的共振单元体(30)调制低频入射声场的方式,在共振单元体(30)表面产生局域场,就可实现对微米级颗粒的捕获等操控。当关掉超声波发射机构(10)时,由于失去声辐射力,捕获在共振单元体(30)表面的颗粒会被释放。本声镊装置制作工艺简单、价格低廉,可以实现量化生产。

Description

一种声镊装置 技术领域
本申请涉及微纳米颗粒操控领域,尤其涉及一种声镊装置。
背景技术
当前单声束声镊主要通过两种方式实现:单阵元高频超声高斯束和多阵元相位调控涡旋声束。这两种方式对于换能器加工工艺或者电子系统的设计均有很高的要求。比如为了实现高频超声高斯束,需要较高水平的压电晶体磨制工艺,发射100MHz的高斯束,需要将压电晶体磨到30μm厚,费时费力,且无法实现批量生产。而为了实现涡旋声束,不仅需要对阵元进行精密切割和布局,而且需要复杂的电子系统实现对每个阵元发射信号相位的精确控制。另外,上述两种单声束声镊的工作频率通常是固定的,难以根据操控颗粒的大小灵活地选择工作频率。
由于颗粒和光波之间的动量交换以及光的反射,颗粒在聚焦激光场中会受到光辐射压力的作用。因此基于光辐射压力可实现对颗粒的操控,这导致了光镊技术的发展。光镊技术对单个原子或者微纳米物体的精确操控技术的研究与开发对生物学、量子光学、软物质物理学、纳米结构材料学和医学基础研究均产生了重大的影响。光镊技术不仅为研究金属、细胞、蛋白质、DNA等微纳米颗粒及以其为基元的微纳结构的基本力学、物理和生化特性提供了重要研究手段。但是光镊系统比较昂贵,且激光的热效应会对细胞等生物颗粒造成损伤。
与光辐射力类似,由于声场中的颗粒也会与声波之间发生动量交换,因此声场中的颗粒会受到声辐射力。基于声辐射力的声镊技术也可实现对颗粒的操控。与光镊技术相比,声镊技术因其具有非接触、无创、低廉、普遍适用性等优点而受到了广泛的关注。吴君汝等率先提出了声镊概念,并通过两个共聚焦探头,在声势阱处俘获了270μm的颗粒,在实验上首次实现了声镊效应。但是这种技术是利用两个声束实现的,非单声束声镊。Lee等利用单个30MHz高频换能器产生的高斯聚焦波束,实现了对直径40μm液滴的捕获。为了能够对更小的颗粒提供稳定的操控,该研究小组后来又将超声频率提高到了100MHz和300MHz,增强了焦点附近声场的局域化程度,从而实现了对单细胞或者亚微米颗粒的操 控,但同时也进一步提高了换能器加工制造的难度。另外,这种技术主要是利用垂直于声轴的侧向声辐射力将颗粒吸引至声束中心,而轴向声辐射力与声传播方向相同,表现为推力。为了抵消轴向声辐射力的作用,需要引入一张薄膜阻挡颗粒沿声轴方向的运动。Baresch等首次提出了一种单声束三维操控颗粒的方法。该方法使用阵列换能器,每个阵元均有独立的信号发射电路。首先根据所要产生的目标声场反向计算每个阵元的激励信号,再将这些激励信号输入对应的信号发射电路,激励相应的阵元发射声波,所有阵元的发射声波最终合成为目标声场。该方法可产生对颗粒轴向和侧向的吸引力,因而可以将颗粒捕获在声束中心。但是该方法需要对阵元精密切割和布局,也需要复杂的电子系统来精确控制每个阵元的发射信号的相位和幅度。另外,上述两种单声束声镊的工作频率通常是固定的,难以根据操控颗粒的大小灵活地选择工作频率。
当前单声束声镊对于换能器加工工艺或者电子系统的设计均有很高的要求。这是因为为了对颗粒提供稳定捕获需要对波束的剖面进行设计,但是一般很难根据设计的声场剖面反向加工相应的换能器。
发明内容
本申请要解决的技术问题是针对现有技术的不足,提供一种声镊装置。
本申请要解决的技术问题通过以下技术方案加以解决:
一种声镊装置,包括超声波发射机构和设置在所述超声波发射机构上的波导结构,所述超声波发射机构用于发射超声波,所述波导结构用于传导超声波,其特征在于,还包括共振单元体,所述共振单元体设置在所述波导机构上,超声波激励所述共振单元体共振,在所述共振单元体表面产生捕获颗粒的局域场。
上述声镊装置中,所述共振单元体包括表面由软材料构成的实心结构,所述软材料包括横波速小于水的纵波速的材料。
上述声镊装置中,所述共振单元体包括由软材料构成的实心结构。
上述声镊装置中,所述软材料包括聚乳酸或橡胶。
上述声镊装置中,所述共振单元体包括由软材料包裹硬材料构成的实心结构,所述硬材料为横波速大于等于水的纵波速的材料。
上述声镊装置中,所述硬材料包括金属。
上述声镊装置中,所述实心结构包括球体、圆柱体、棱锥或棱柱。
上述声镊装置中,所述超声波发射机构包括信号发生器、功率放大器和超声换能器,所述信号发生器用于产生电信号,所述电信号经功率放大器放大后激励所述超声换能器产生超声波。
上述声镊装置中,所述波导结构包括塑料壳体和设置在所述壳体内的超声耦合剂,且所述波导结构由聚乳酸或有机玻璃材料经3D打印制成。
上述声镊装置中,所述共振单元体由3D打印制成。
由于采用了以上技术方案,使本申请具备的有益效果在于:
⑴在本申请的具体实施方式中,由于包括超声波发射机构、设置在所述超声波发射机构上的波导结构和共振单元体,超声波发射机构用于发射超声波,波导结构用于传导超声波,共振单元体设置在波导机构上,超声波激励共振单元体共振,在共振单元体表面产生捕获颗粒的局域场,该局域场对颗粒产生声辐射力将颗粒稳定捕获在共振单元体表面。通过移动超声波发射机构可以移动捕获的颗粒。本申请使用的超声频率很低,不需要精确调制相位,因此换能器易于加工制造,且不需要复杂的电子系统,仅通过设计加工的共振单元体调制低频入射声场的方式,在共振单元体表面产生局域场,就可实现对微米级颗粒的捕获等操控。当关掉超声波发射机构时,由于失去声辐射力,捕获在共振单元体表面的颗粒会被释放。本申请声镊装置制作工艺简单、价格低廉,可以实现量化生产。
⑵在本申请的具体实施方式中,由于共振单元体可通过3D打印等方式实现,因此进一步简化了单声束声镊装置的制造工艺。
附图说明
图1为本申请的声镊装置在一种实施方式中的功能模块示意图;
图2为本申请的声镊装置在一种实施方式中的结构示意图;
图3为对软材料PLA构成的共振单元体进行计算得出的透射谱;
图4为软材料PLA实心圆柱低阶共振声压场;
图5为软材料PLA实心圆柱高阶共振声压场;
图6为软材料橡胶包裹硬材料不锈钢构成的共振单元体的透射谱;
图7为软材料橡胶包裹硬材料不锈钢构成的共振单元体的共振声压 场;
图8为对软材料PLA制成的实心圆柱形状共振单元体进行测量得出的透射谱;
图9为低阶共振的声镊装置捕获颗粒的实验结果;
图10为高阶共振的声镊装置捕获颗粒的实验结果。
具体实施方式
下面通过具体实施方式结合附图对本申请作进一步详细说明。
如图1、图2所示,本申请的声镊装置,其一种实施方式,包括超声波发射机构10、波导结构20和共振单元体30,共振单元体30可以有一个或多个,波导结构20设置在超声波发射机构10上,共振单元体30设置在波导机构20上,超声波发射机构10用于发射超声波,波导结构20用于传导超声波,超声波激励共振单元体30共振,在共振单元体30表面产生捕获颗粒的局域场。
本申请的声镊装置,共振单元体30包括实心结构,实心结构的表面由软材料构成,本申请中,软材料指横波速小于水的纵波速的材料。
在一种实施方式中,共振单元体可以为全部由软材料构成的实心结构。软材料可以包括聚乳酸(PLA)或橡胶等。
在另一种实施方式中,共振单元体包括由软材料包裹硬材料构成的实心结构,硬材料为横波速大于等于水的纵波速的材料。硬材料可以包括金属,如不锈钢、铝或铜等。
本申请的声镊装置,实心结构可以包括球体、圆柱体、棱锥或棱柱等多种形状。
在一种实施方式中,超声波发射机构10包括信号发生器11、功率放大器12和超声换能器13,信号发生器11用于产生电信号,电信号经功率放大器12放大后激励超声换能器13产生超声波。
本申请的波导结构20包括塑料壳体和设置在该壳体内的超声耦合剂,且波导结构由聚乳酸或有机玻璃材料经3D打印制成。
波导结构20用于连接超声换能器13和共振单元体30,波导结构20内装有超声耦合剂,用于传播超声换能器13发出的超声波。超声换能器13发出的超声波经波导结构20内的超声耦合剂传播至共振单元体30处,激励共振单元体30共振,在共振单元体30表面产生局域强场,该 局域强场会对颗粒产生声辐射力将颗粒稳定捕获在共振单元体30表面。通过移动超声换能器13可以移动捕获的颗粒。当关掉超声换能器13时,由于失去声辐射力,捕获在共振单元体30表面的颗粒会被释放。
在一种实施方式中,本申请的共振单元体30由3D打印制成。共振单元体30的低阶共振和高阶共振均可用于操控捕获颗粒,因此本申请的声镊装置可通过改变驱动频率可对颗粒实现灵活的可调控操控。
本申请的共振单元体30可以是横波速小于水的纵波速的软材料构成的实心圆柱或者圆球。图3是共振单元体为聚乳酸(PLA)构成的直径350μm圆柱时的透射谱,可以看到频谱中含有低阶和高阶等共振频率。图4为低阶共振时PLA圆柱的表面局域声压场的分布,图5为高阶共振时PLA圆柱的表面局域声压场的分布。可以看出,高阶共振声压场比低阶共振声压场的局域化程度更高,因此可以稳定捕获更小的颗粒。在不同的共振频率激励下,分别激发低阶共振和高阶共振,可以实现对相同材料不同尺寸或者相同尺寸但不同材料的颗粒的选择性捕获。因此,本申请的声镊装置是灵活可调控的。
共振单元体30可以是横波速小于水的纵波速的软材料包裹横波速大于水的纵波速的硬材料构成复合材料实心圆柱或者圆球。图6为软橡胶包裹不锈钢构成的直径500μm复合材料圆柱的透射谱,可以看到频谱存在一显著的共振峰。图7为共振时复合材料圆柱的表面局域声压场的分布。
图8为实验测量的PLA材料制成的圆柱形共振单元体的透射谱。圆柱的直径为300μm,通过3D打印获得。从图中可以看出,共振单元体的透射谱存在几个透射系数的极小值,其对应的共振频率即为共振单元体的共振频率,其中1.5MHz附近的共振频率为共振单元体的低阶共振频率,其余极小值对应的共振频率为高阶共振频率。
图9为基于共振单元体低阶共振的声镊捕获颗粒的实验结果。实验中的共振单元体为直径300μm的PLA圆柱。波导结构为3D打印的塑料外壳。超声换能器采用中心频率1.5MHz非聚焦换能器。信号发生器(AFG 3102,Tektronix,Beaverton,OR,USA)产生1.552MHz的连续正弦波经过功率放大器(150A100B,Amplifier Research,Souderton,PA,USA)放大后激励超声换能器发射超声波。入射超声波经波导结构里的超声耦合剂传播至共振单元体PLA处激发PLA的低阶共振,并在PLA表面产 生局域强场。图9显示了直径15μm的聚苯乙烯颗粒被声镊的共振单元体PLA捕获的过程。
图10为基于共振单元体高阶共振的声镊捕获颗粒的实验结果。实验中的共振单元体为直径300μm的PLA圆柱。波导结构为3D打印的塑料外壳。超声换能器采用中心频率3.5MHz非聚焦换能器。信号发生器(AFG 3102,Tektronix,Beaverton,OR,USA)产生3.2MHz的连续正弦波经过功率放大器(150A100B,Amplifier Research,Souderton,PA,USA)放大后激励超声换能器发射超声波。入射超声波经波导结构里的超声耦合剂传播至共振单元体PLA处激发PLA的低阶共振,并在PLA表面产生局域强场。图10显示了单个直径5μm的聚苯乙烯颗粒被声镊的共振单元体PLA捕获的过程。
本申请公开了一种基于共振单元体的声镊装置,包括超声换能器,共振单元体,波导结构、信号发生器和功率放大器。波导结构用来连接超声换能器和共振单元体,波导结构内装有超声耦合剂用来传播超声换能器发出的超声波。超声换能器发出的超声波经波导结构内的超声耦合剂传播至共振单元体处,激励共振单元体共振,在共振单元体表面产生局域强场,该局域强场会对颗粒产生声辐射力将颗粒稳定捕获在共振单元体表面。通过移动换能器可以移动捕获的颗粒。当关掉超声时,由于失去声辐射力,捕获在共振单元体表面的颗粒会被释放。
共振单元体的可以是横波速小于水的纵波速的软材料构成的实心体,其形状可以是圆柱或者圆球等。共振单元体可以是横波速小于水的纵波速的软材料包裹横波速大于水的纵波速的硬材料构成复合材料实心体,其形状可以是圆柱或者圆球等。
共振单元体的低阶共振和高阶共振均可用于操控捕获颗粒,因此基于共振单元体的声镊通过改变驱动频率可对颗粒实现灵活的可调控操控。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 一种声镊装置,包括超声波发射机构和设置在所述超声波发射机构上的波导结构,所述超声波发射机构用于发射超声波,所述波导结构用于传导超声波,其特征在于,还包括共振单元体,所述共振单元体设置在所述波导机构上,超声波激励所述共振单元体共振,在所述共振单元体表面产生捕获颗粒的局域场。
  2. 如权利要求1所述的声镊装置,其特征在于,所述共振单元体包括表面由软材料构成的实心结构,所述软材料包括横波速小于水的纵波速的材料。
  3. 如权利要求2所述的声镊装置,其特征在于,所述共振单元体包括由软材料构成的实心结构。
  4. 如权利要求3所述的声镊装置,其特征在于,所述软材料包括聚乳酸或橡胶。
  5. 如权利要求2所述的声镊装置,其特征在于,所述共振单元体包括由软材料包裹硬材料构成的实心结构,所述硬材料为横波速大于等于水的纵波速的材料。
  6. 如权利要求5所述的声镊装置,其特征在于,所述硬材料包括金属。
  7. 如权利要求2所述的声镊装置,其特征在于,所述实心结构包括球体、圆柱体、棱锥或棱柱。
  8. 如权利要求1至7中任一项所述的声镊装置,其特征在于,所述超声波发射机构包括信号发生器、功率放大器和超声换能器,所述信号发生器用于产生电信号,所述电信号经功率放大器放大后激励所述超声换能器产生超声波。
  9. 如权利要求1至7中任一项所述的声镊装置,其特征在于,所述波导结构包括塑料壳体和设置在所述壳体内的超声耦合剂,且所述波导结构由聚乳酸或有机玻璃材料经3D打印制成。
  10. 如权利要求1至7中任一项所述的声镊装置,其特征在于,所述共振单元体由3D打印制成。
PCT/CN2017/117834 2017-12-21 2017-12-21 一种声镊装置 WO2019119369A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117834 WO2019119369A1 (zh) 2017-12-21 2017-12-21 一种声镊装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117834 WO2019119369A1 (zh) 2017-12-21 2017-12-21 一种声镊装置

Publications (1)

Publication Number Publication Date
WO2019119369A1 true WO2019119369A1 (zh) 2019-06-27

Family

ID=66994379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117834 WO2019119369A1 (zh) 2017-12-21 2017-12-21 一种声镊装置

Country Status (1)

Country Link
WO (1) WO2019119369A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1830752A (zh) * 2006-04-29 2006-09-13 北京工业大学 一种用于金属微粒的激光光镊微细操控方法及装置
CN103203328A (zh) * 2013-03-14 2013-07-17 深圳先进技术研究院 基于结构声场操控和筛选颗粒的系统及方法
US20150330951A1 (en) * 2014-05-13 2015-11-19 Reuven Gordon Laser tweezer system for measuring acoustic vibrations of nanoparticles
CN105214742A (zh) * 2015-10-10 2016-01-06 中国科学院深圳先进技术研究院 基于人工结构声场的微流体系统及操控微粒的方法
CN106251925A (zh) * 2016-08-29 2016-12-21 深圳先进技术研究院 一种基于狭缝声子晶体的微粒操控系统及方法
CN107260258A (zh) * 2017-08-01 2017-10-20 武汉半边天微创医疗技术有限公司 一种射频超声镊

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1830752A (zh) * 2006-04-29 2006-09-13 北京工业大学 一种用于金属微粒的激光光镊微细操控方法及装置
CN103203328A (zh) * 2013-03-14 2013-07-17 深圳先进技术研究院 基于结构声场操控和筛选颗粒的系统及方法
US20150330951A1 (en) * 2014-05-13 2015-11-19 Reuven Gordon Laser tweezer system for measuring acoustic vibrations of nanoparticles
CN105214742A (zh) * 2015-10-10 2016-01-06 中国科学院深圳先进技术研究院 基于人工结构声场的微流体系统及操控微粒的方法
CN106251925A (zh) * 2016-08-29 2016-12-21 深圳先进技术研究院 一种基于狭缝声子晶体的微粒操控系统及方法
CN107260258A (zh) * 2017-08-01 2017-10-20 武汉半边天微创医疗技术有限公司 一种射频超声镊

Similar Documents

Publication Publication Date Title
CN109939913B (zh) 一种声镊装置
US9601103B2 (en) Methods and devices for generating high-amplitude and high-frequency focused ultrasound with light-absorbing materials
Yao et al. Power ultrasound and its applications: A state-of-the-art review
CN108463778B (zh) 用于在物体中产生全息超声场的设备和方法
Baac et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy
WO2018176526A1 (zh) 一种基于时间反转技术操控微粒的系统与方法
Zheng et al. Acoustic trapping with a high frequency linear phased array
Chen et al. An adjustable multi‐scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer
Minin et al. Mesoscale acoustical cylindrical superlens
CN111530513B (zh) 一种基于人工结构平板的声镊子
Lim et al. A one-sided acoustic trap for cell immobilization using 30-MHz array transducer
Xi et al. Collective bubble dynamics near a surface in a weak acoustic standing wave field
Chen et al. Helical‐like 3D ultrathin piezoelectric element for complicated ultrasonic field
Rajabi et al. Acoustic radiation force control: Pulsating spherical carriers
Tang et al. Agglomeration of particles by a converging ultrasound field and their quantitative assessments
Wells Physics of ultrasound
WO2019119369A1 (zh) 一种声镊装置
Remillieux et al. Improving the air coupling of bulk piezoelectric transducers with wedges of power-law profiles: A numerical study
Tang et al. Acoustic rotation of non-spherical micro-objects: Characterization of acoustophoresis and quantification of rotational stability
Wevers et al. Low-frequency ultrasonic piezoceramic sandwich transducer
Wang et al. Laser-guided acoustic tweezers
Liu et al. An ultrasonic tweezer with multiple manipulation functions based on the double-parabolic-reflector wave-guided high-power ultrasonic transducer
Melde The Acoustic Hologram and Particle Manipulation with Structured Acoustic Fields
Mitri High-order pseudo-gaussian scalar acoustical beams [Correspondence]
KR19990077508A (ko) 초음파이미지화방법및장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935548

Country of ref document: EP

Kind code of ref document: A1