WO2019119289A1 - 一种定位方法、装置及电子设备、计算机程序产品 - Google Patents

一种定位方法、装置及电子设备、计算机程序产品 Download PDF

Info

Publication number
WO2019119289A1
WO2019119289A1 PCT/CN2017/117417 CN2017117417W WO2019119289A1 WO 2019119289 A1 WO2019119289 A1 WO 2019119289A1 CN 2017117417 W CN2017117417 W CN 2017117417W WO 2019119289 A1 WO2019119289 A1 WO 2019119289A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
coordinate data
gps
priority
output
Prior art date
Application number
PCT/CN2017/117417
Other languages
English (en)
French (fr)
Inventor
林义闽
廉士国
王超鹏
易万鑫
Original Assignee
深圳前海达闼云端智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海达闼云端智能科技有限公司 filed Critical 深圳前海达闼云端智能科技有限公司
Priority to CN201780002725.6A priority Critical patent/CN108235735A/zh
Priority to PCT/CN2017/117417 priority patent/WO2019119289A1/zh
Publication of WO2019119289A1 publication Critical patent/WO2019119289A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1656Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with passive imaging devices, e.g. cameras

Definitions

  • the present application relates to positioning technologies, and in particular, to a positioning method, device, electronic device and computer program product.
  • any positioning technology cannot cover all areas.
  • a single sensor solution that can solve indoor positioning and solve outdoor positioning is rare. Most of them need to rely on multiple sensor fusion to solve the problem of large-scale and complex robots. Free walking in the environment.
  • the so-called multi-sensor fusion is to integrate the incomplete information of the local environment provided by multiple sensors.
  • the embodiment of the present application provides a positioning method, a device, and an electronic device and a computer program product, which can be used for seamless switching positioning indoors and outdoors, and continuously provide accurate position information.
  • a positioning method including the following steps Step:
  • the positioning method with higher priority is used to perform positioning and output coordinate data
  • the positioning mode with lower priority is used to perform positioning and output coordinate data
  • the coordinate data output by the different positioning modes is mapped to the pre-established path map according to the predetermined coordinate mapping relationship.
  • a positioning apparatus including:
  • a priority determining module configured to determine priorities of multiple positioning modes
  • a positioning module configured to perform positioning and output coordinate data by using the higher priority positioning mode when the positioning condition of the higher priority positioning mode is met; and the positioning condition that does not satisfy the higher priority positioning mode, When the positioning condition of the lower priority positioning mode is satisfied, the positioning method with lower priority is used to perform positioning and output coordinate data;
  • the mapping module is configured to map the coordinate data output by the different positioning modes to the pre-established path map according to the predetermined coordinate mapping relationship.
  • an electronic device comprising: a display, a memory, one or more processors; and one or more modules, the one or more modules being stored In the memory, and configured to be executed by the one or more processors, the one or more modules include instructions for performing the various steps in the positioning method of the first aspect of the embodiments of the present application.
  • a computer program product for encoding an instruction for performing a process, the process comprising the positioning method of the first aspect of the embodiment of the present application .
  • the device, and the electronic device and the computer program product according to the embodiments of the present application by integrating a plurality of different positioning technologies to achieve seamless switching positioning indoors and outdoors, accurate position information can be continuously given.
  • FIG. 1 is a schematic flowchart diagram of implementation of a positioning method in an embodiment of the present application
  • FIG. 2 is a schematic structural view of a positioning device in an embodiment of the present application.
  • FIG. 3 is a schematic diagram showing a process of fusion mapping in the embodiment of the present application.
  • FIG. 4 is a schematic diagram showing a path map generated by the fusion construction in the embodiment of the present application.
  • FIG. 5 is a block diagram showing a process of merging positioning in the embodiment of the present application.
  • FIG. 6 is a schematic diagram showing a scene of a drawing in the embodiment of the present application.
  • FIG. 7 is a schematic diagram showing a process of merging positioning in the embodiment of the present application.
  • FIG. 1 is a schematic flowchart of the implementation of the positioning method in the embodiment of the present application. As shown in the figure, the positioning method may include the following steps:
  • Step 101 Determine a priority of multiple positioning modes.
  • Step 102 When the positioning condition of the positioning mode with higher priority is satisfied, the positioning method with higher priority is used to perform positioning and output coordinate data.
  • Step 103 When the positioning condition of the positioning mode with higher priority is not satisfied, and the positioning condition of the positioning mode with lower priority is satisfied, the positioning mode with lower priority is used to perform positioning and output coordinate data.
  • Step 104 Map coordinate data output by different positioning modes to a pre-established path map according to a predetermined coordinate mapping relationship.
  • the embodiment of the present application combines a plurality of different positioning modes, and focuses on solving the problem of seamlessly integrating map creation and positioning of different positioning technologies, and can realize seamless switching positioning indoors and outdoors, and continuously provide accurate position information.
  • the positioning manner may include: GPS positioning, visual positioning, wireless positioning, and IMU positioning; the priority order of the multiple positioning modes may be: GPS positioning, wireless positioning, visual positioning, and IMU positioning.
  • the positioning method in the embodiment of the present application may include GPS positioning, visual positioning, wireless positioning, IMU positioning, and the like, and may also be other positioning methods in the prior art, which is not limited in this application. As these positioning methods are relatively mature positioning technologies in the prior art, each positioning method in the prior art may be implemented by one or more technical means, and any of the positioning methods may adopt any technical means of the prior art. This application is not described here.
  • GPS positioning technology belongs to the currently widely used positioning technology. It extracts navigation data and time information from satellite broadcasting to achieve fast positioning. It is usually suitable for outdoor environment and wide-area positioning.
  • Vision positioning technology is a key technology in the field of computer vision, which can include monocular vision positioning, binocular vision positioning, etc., and usually can be positioned by multiple cameras.
  • the image of the object can be acquired, and then the three-dimensional coordinate position of the object is obtained by combining the camera calibration result and the three-dimensional coordinate calculation principle.
  • the wireless positioning technology can generally include ultrasonic positioning, RFID (Radio Frequency Identification) positioning, wifi positioning, mobile communication positioning (such as 4G positioning, etc.), Bluetooth positioning, etc., and is generally suitable for indoor environments and short-distance positioning scenes.
  • RFID Radio Frequency Identification
  • wifi positioning such as 4G positioning, etc.
  • mobile communication positioning such as 4G positioning, etc.
  • Bluetooth positioning etc.
  • the IMU Inertial Measurement Unit
  • the IMU is a device that measures the three-axis attitude angle (or angular rate) and acceleration of an object. It usually consists of three single-axis accelerometers and three single-axis gyros.
  • the accelerometer can detect objects.
  • the carrier coordinate system is independent of the three-axis acceleration signal, and the gyro can detect the angular velocity signal of the object relative to the navigation coordinate system, and calculate the attitude of the object by measuring the angle Su and the acceleration of the object in three-dimensional space.
  • the priority order of the multiple positioning modes may be set as: GPS positioning, wireless positioning, visual positioning, IMU positioning, that is, GPS positioning priority is selected as the positioning mode, and the GPS positioning failure or accuracy is not At high time, wireless positioning or visual positioning is adopted, and IMU positioning is adopted when wireless positioning or visual positioning fails or the accuracy is not high.
  • the visual positioning may be adopted when the wireless positioning fails or the accuracy is not high, and further, the IMU positioning is adopted when the visual positioning fails or the accuracy is not high.
  • a person skilled in the art can prioritize various positioning modes according to the accuracy of the actual positioning mode and the actual scene, which is not limited in this application.
  • the positioning method with the higher priority is used to perform positioning and output coordinate data, and the positioning condition that does not satisfy the higher priority positioning mode
  • the positioning and outputting the coordinate data by using the lower priority positioning mode may include:
  • GPS is used to locate and output GPS coordinate data Gs;
  • the reliability of visual positioning is lower than the preset visual threshold or the reliability of wireless positioning is lower than the preset.
  • the inertial measurement unit IMU is used to locate and output the IMU coordinate data Ss.
  • the coordinate data output by all the positioning modes can be collected, and then the coordinate data is fused, and unified to the same coordinate system according to the pre-established coordinate mapping table to form a path map merging a plurality of positioning modes.
  • the embodiment of the present application may also perform positioning in the following sequence:
  • the positioning method with the higher priority is used to perform positioning and output coordinate data, and the positioning condition of the positioning mode with higher priority is not satisfied, and the priority is satisfied.
  • the positioning and outputting the coordinate data by using the lower priority positioning mode may include:
  • GPS is used to locate and output GPS coordinate data Gs;
  • the inertial measurement unit IMU is used to locate and output the IMU coordinate data Ss.
  • the GPS threshold, the wireless threshold, the visual threshold, etc. can all be determined by performing multiple experiments on different scenes (indoor, outdoor, dense outdoor, etc.).
  • the current GPS reliability is lower than the preset GPS threshold, the wireless positioning reliability is lower than the preset wireless threshold, or the visual positioning reliability is lower than the preset visual threshold, and may also be respectively understood as the GPS positioning failure. Or inaccurate positioning, wireless positioning failure or inaccurate positioning, visual positioning failure or inaccurate positioning.
  • the positioning and outputting the IMU coordinate data Ss by using the inertial measurement unit IMU may include:
  • the inertial measurement unit IMU is positioned according to the walking step and direction, and the data obtained by the IMU positioning is converted into the IMU coordinate data Ss output.
  • IMU positioning technology can be divided into IMU step positioning and IMU inertial navigation system (usually referred to as IMU inertial navigation, also called INS) positioning.
  • IMU inertial navigation also called INS
  • the IMU step positioning may include the following steps: collecting motion acceleration data of the object, segmenting the effective gait and completing step counting and step length estimation; calculating the motion direction of the current gait according to the angular velocity and acceleration of the effective gait, and finally according to the step size Positioning in the direction of motion.
  • the inertial navigation system is a navigation parameter solving system based on the gyro and accelerometer.
  • the navigation coordinate system can be established according to the output of the gyro.
  • the speed and position of the object in the navigation coordinate system can be calculated according to the output of the accelerometer.
  • the position of the known point for example, the pose data of the last frame of the visual positioning
  • the continuously measured motion heading angle and velocity are used to derive the position of the next point of the object, thereby continuously measuring the current position of the object.
  • the IMU positioning can be implemented by using the prior art. Since the original data obtained by the IMU positioning is a gyro signal and an acceleration signal, the embodiment of the present application can further convert the gyro signal and the acceleration signal into coordinate data.
  • the utilizing visual positioning and outputting the visual coordinate data Vs may include:
  • the image data ls is converted into visual coordinate data Vs for output.
  • the visual positioning can acquire the image of the object by using a visual sensor (such as an RGBD camera), and obtain the image coordinates of the target through digital image processing and feature point extraction, and further calculate the geometrical parameters and position and posture of the object by a computer. parameter.
  • a visual sensor such as an RGBD camera
  • the specific image data acquisition and the conversion of the image data into coordinate data can be implemented by using the prior art, which is not described herein.
  • the wireless positioning may include wifi positioning or 4G positioning.
  • the wireless positioning in the embodiment of the present application may include wifi positioning, 4G positioning, and may also include RFID radio frequency positioning, ultrasonic positioning, optical tracking positioning, Bluetooth positioning, etc., which may be implemented by using existing technologies. This is no longer listed one by one.
  • the method may further include:
  • a coordinate mapping relationship and a path map are determined according to the coordinate data after the time synchronization.
  • the embodiment of the present application may first determine a coordinate mapping relationship between coordinate data output by different positioning modes, and a path map obtained by mapping to a unified coordinate system. The current location of the object and the trajectory of the walk are displayed on the path map.
  • the positioning method with the lower priority is used to perform positioning and output coordinate data.
  • the current coordinate data is corrected by using the higher priority positioning mode.
  • the positioning technology when the high-priority positioning technology fails or the accuracy is not high, the positioning technology can be converted to a low-priority positioning technology to continue positioning. When the high-priority positioning technology is successfully positioned again or the accuracy is required, the high-priority positioning technology can continue to be used.
  • the priority positioning technology performs positioning, which may include correcting the current location by using a high-priority positioning technology, and then performing subsequent positioning.
  • the embodiment of the present application provides a positioning device. Since the principle of solving the problem of these devices is similar to that of a positioning method, the repeated description will not be repeated, and the following description will be made.
  • the positioning device can include:
  • a priority determining module 201 configured to determine priorities of multiple positioning modes
  • the locating module 202 is configured to perform positioning and output coordinate data by using the higher priority positioning mode when the positioning condition of the higher priority positioning mode is met; and the positioning condition that does not satisfy the higher priority positioning mode When the positioning condition of the lower priority positioning mode is satisfied, the positioning method with lower priority is used to perform positioning and output coordinate data;
  • the mapping module 203 is configured to map the coordinate data output by the different positioning modes to the pre-established path map according to the predetermined coordinate mapping relationship.
  • the priority determining module may be configured to determine a priority order of the positioning manners: GPS positioning, wireless positioning, visual positioning, and IMU positioning.
  • the positioning module may include:
  • a GPS positioning module configured to use GPS to locate and output GPS coordinate data Gs when the current GPS reliability reaches a preset GPS threshold
  • a visual positioning module configured to visually locate and output visual coordinate data Vs by using a camera when the current GPS reliability is lower than a preset GPS threshold; or, the wireless positioning module is used to lower the reliability of the current GPS.
  • the GPS threshold is set, wireless positioning and outputting wireless coordinate data Ws;
  • the IMU positioning module is configured to locate and output the IMU coordinate data Ss by using the inertial measurement unit IMU when the reliability of the visual positioning is lower than the preset visual threshold or the reliability of the wireless positioning is lower than the preset wireless threshold.
  • the IMU positioning module may include:
  • An IMU acquiring unit configured to acquire pose data of a last frame of visual positioning of the camera
  • the IMU positioning unit is configured to perform the inertial measurement unit IMU positioning according to the walking step and direction based on the pose data, and convert the data obtained by the IMU positioning into the IMU coordinate data Ss output.
  • the visual positioning module may include:
  • a visual acquisition unit configured to acquire image data ls captured by the camera
  • a visual positioning unit for converting the image data ls into visual coordinate data Vs output.
  • the wireless positioning module can be used to locate and output wireless coordinate data Ws by using wifi or 4G.
  • the apparatus may further include:
  • An acquisition module is configured to collect coordinate data outputted by multiple positioning modes in different scenarios before performing positioning
  • a synchronization module for time synchronization of the above data
  • a determining module configured to determine a coordinate mapping relationship and a path map according to the coordinate data after the time synchronization.
  • the apparatus may further include:
  • a correction module configured to perform positioning and output coordinates by using the lower priority positioning mode when the positioning condition that does not satisfy the higher priority positioning mode and the positioning condition of the lower priority positioning mode are satisfied After the data, if the positioning condition of the higher priority positioning mode is satisfied again, the current coordinate data is corrected by using the higher priority positioning mode.
  • An embodiment of the present application provides an electronic device, including: a display, a memory, one or more processors; and one or more modules, the one or more modules are stored in the memory, and configured The execution is performed by the one or more processors, the one or more modules comprising instructions for performing the various steps in the positioning method of the first aspect of the embodiments of the present application.
  • the embodiment of the present application provides a computer program product for encoding an instruction for executing a process, the process comprising the positioning method of the first aspect of the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a fusion mapping process in the embodiment of the present application. As shown in the figure, the fusion process may be:
  • the original data is collected, including data of GPS, camera, IMU and wireless positioning module;
  • the original data of GPS output is outdoor position latitude and longitude Gs
  • the original data output by the camera is image data ls
  • the original data output by IMU is including direction.
  • 9-axis data Ds the raw data output by the wireless positioning module is the position coordinate Ws;
  • the image data Is is input into the vSLAM or the vIO module to complete the mapping, the coordinate data Vs is obtained, and the IMU data Ds is input into the IMU grading module to complete the mapping, and the coordinate data Ss is obtained.
  • the data generation map library of Gs, Vs, Ss, and Ws is integrated, and the map library may include a path map, a coordinate map, an image feature library, and the like.
  • the following is an example of generating a path map with a fusion map.
  • FIG. 4 is a schematic diagram of a path map generated by the fusion mapping in the embodiment of the present application.
  • the relative paths obtained by all the positioning methods can be unified into the same coordinate system through the coordinate mapping table.
  • the AB segment is a relative path created by vision
  • the BC segment is the relative path obtained by the IMU step
  • the CD segment is the absolute path obtained by GPS positioning
  • the DE segment is the relative path obtained by the IMU step
  • the EF segment is visually used.
  • the relative path created, FA is the relative path of wireless positioning (for example: WIFI, 4G, etc.).
  • Combining the paths obtained by these different positioning methods into one coordinate system constitutes a path map that combines multiple positioning methods.
  • FIG. 5 is a block diagram showing the process of merging positioning in the embodiment of the present application.
  • the image data obtained by the camera may be converted into coordinate data according to the image feature library in the pre-established map library, and may be based on the fusion positioning. For each positioning result, the corresponding position is automatically selected and mapped to the path map through the coordinate mapping table.
  • the embodiment of the present application provides a scheme for integrating the mapping and positioning based on multiple positioning modes, and solves the defect that the positioning system cannot be continuously positioned in the indoor and outdoor two different scenarios.
  • the solution provided by the embodiment of the present application is easy to implement, has a good positioning effect, and can accurately and continuously locate in indoor and outdoor scenes, and can be implemented for application scenarios such as intelligent robot navigation and blind guide blindness.
  • Figure, positioning provides the basis.
  • the embodiment of the present application provides a pedestrian mapping and positioning method based on vision, IMU, and GPS fusion, which will be described below.
  • the fusion mapping process can include the following steps:
  • the path data M and the coordinate map T are collectively generated by the above coordinate data Gs, Vs, and Ss.
  • FIG. 6 is a schematic diagram of a scene of a drawing in the embodiment of the present application, as shown in the figure, from an indoor scene
  • the visual SLAM construction effect is better in the indoor scene, and the construction and positioning can be maintained to provide the pose; while the transition to the outdoor, the visual SLAM effect is worse, and the IMU step-by-step positioning plays a role.
  • the IMU step-by-step positioning plays a role.
  • FIG. 7 is a schematic diagram of a fusion positioning process in the embodiment of the present application. As shown in the figure, the fusion positioning may include the following steps:
  • Visual SLAM positioning and IMU step positioning can be performed in parallel in different threads.
  • Visual SLAM is the main one, and IMU is the auxiliary.
  • Visual SLAM positioning can be based on the map data acquired by the camera and the previously established map for real-time positioning when visual SLAM positioning. When it fails, the pose data of the last frame is transmitted to the IMU. After the IMU obtains the pose, the positioning is continued according to the step and direction of walking, and if the visual SLAM is successfully positioned again, the positioning can be corrected once. Achieve better positioning results.
  • the embodiment of the present application provides a behavior mapping and positioning method based on IMU, GPS, and wireless positioning and fusion, which will be described below.
  • Fusion mapping can include the following steps:
  • GPS positioning instead of GPS positioning (for example: wifi positioning or 4G positioning, etc.) to construct the map and output Ws;
  • the path map M and the coordinate map T are collectively generated by the coordinate data Gs, Ws, and Ss described above.
  • Fusion positioning can include the following steps:
  • the embodiment of the present application provides an intelligent logistics vehicle based on vision, IMU inertia, GPS fusion mapping and positioning, which will be described below.
  • the intelligent logistics vehicle can be merged and constructed according to the following steps:
  • the path map M and the coordinate map T are collectively generated by the coordinate data Gs, Vs, and Ss described above.
  • the intelligent logistics vehicle can be integrated and positioned according to the following steps:
  • the sixth embodiment and the eighth embodiment of the present application both use GPS positioning, visual positioning, and IMU positioning fusion
  • the sixth embodiment is to locate a person, so the IMU positioning adopts a step positioning method
  • the eighth embodiment is The vehicle is positioned, so the IMU positioning can be performed by inertial positioning.
  • the embodiment of the present application proposes a technical solution for integrating mapping and positioning, which can be used for mapping and positioning of a robot, and solves the problem of map creation and positioning under all weather and multiple scenes, and only uses visual, IMU, GPS and other devices. Positioning can be achieved at a lower cost; and during the fusion process, the optimal mapping and positioning working mode can be automatically selected according to the threshold, and the indoor and outdoor functions can be seamlessly completed and reconstructed indoors and outdoors.
  • embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the present application can adopt an entirely hardware embodiment, complete software implementation. For example, or in combination with an embodiment of software and hardware aspects.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种定位方法、装置、电子设备及计算机程序产品,包括:确定多种定位方式的优先级;在满足优先级较高的定位方式的定位条件时,利用所述优先级较高的定位方式进行定位并输出坐标数据;在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据;根据预先确定的坐标映射关系,将不同定位方式输出的坐标数据映射到预先建立的路径地图上。本申请通过将多种不同的定位技术进行融合,实现室内外无缝切换定位,可以持续给出精确的位置信息。

Description

一种定位方法、装置及电子设备、计算机程序产品 技术领域
本申请涉及定位技术,尤其涉及一种定位方法、装置、电子设备及计算机程序产品。
背景技术
随着社会的不断发展,智能社会向我们大步走来,机器人作为智能社会的一个重要切入点,正在改变人类的生产方式和生活方式。智能机器人如果想要应用到实际中,需要具备任何环境下的自主行走的能力,而这一能力的具备就需要有一种高精度的定位技术来保证。
目前,任何一种定位技术的工作范围无法覆盖所有区域,比如既能解决室内定位,又能解决室外定位的单一传感器方案很少见,大多需要依赖多种传感器融合才能解决机器人在大范围、复杂环境下的自由行走问题。所谓多传感器融合就是把多个传感器所提供的局部环境的不完整信息加以综合。
虽然,现有一些多传感融合的定位技术,但是这些技术只能通过在多个不同的位置、设置若干个传感器获取局部数据然后再进行融合才能实现定位,定位精度低、且无法做到无缝切换,不能满足全场景、全路况等应用。
发明内容
本申请实施例中提供了一种定位方法、装置、及电子设备、计算机程序产品,可以用于室内外无缝切换定位,持续给出精确的位置信息。
根据本申请实施例的第一个方面,提供了一种定位方法,包括如下步 骤:
确定多种定位方式的优先级;
在满足优先级较高的定位方式的定位条件时,利用所述优先级较高的定位方式进行定位并输出坐标数据;
在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据;
根据预先确定的坐标映射关系,将不同定位方式输出的坐标数据映射到预先建立的路径地图上。
根据本申请实施例的第二个方面,提供了一种定位装置,包括:
优先级确定模块,用于确定多种定位方式的优先级;
定位模块,用于在满足优先级较高的定位方式的定位条件时,利用所述优先级较高的定位方式进行定位并输出坐标数据;在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据;
映射模块,用于根据预先确定的坐标映射关系,将不同定位方式输出的坐标数据映射到预先建立的路径地图上。
根据本申请实施例的第三个方面,提供了一种电子设备,该电子设备包括:显示器,存储器,一个或多个处理器;以及一个或多个模块,该一个或多个模块被存储在该存储器中,并被配置成由该一个或多个处理器执行,该一个或多个模块包括用于执行本申请实施例的第一个方面的定位方法中各个步骤的指令。
根据本申请实施例的第四个方面,提供了一种计算机程序产品,该计算机程序产品对用于执行一种过程的指令进行编码,该过程包括本申请实施例的第一个方面的定位方法。
采用根据本申请实施例的定位方法、装置、及电子设备、计算机程序产品,通过将多种不同的定位技术进行融合,实现室内外无缝切换定位,可以持续给出精确的位置信息。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了本申请实施例中定位方法实施的流程示意图;
图2示出了本申请实施例中定位装置的结构示意图;
图3示出了本申请实施例中融合建图过程示意图;
图4示出了本申请实施例中融合建图生成的路径地图示意图;
图5示出了本申请实施例中融合定位的过程框图;
图6示出了本申请实施例中建图场景示意图;
图7示出了本申请实施例中融合定位流程示意图。
具体实施方式
以下通过具体示例,进一步阐明本发明实施例技术方案的实质。显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例1、
图1示出了本申请实施例中定位方法实施的流程示意图,如图所示,所述定位方法可以包括如下步骤:
步骤101、确定多种定位方式的优先级;
步骤102、在满足优先级较高的定位方式的定位条件时,利用所述优先级较高的定位方式进行定位并输出坐标数据;
步骤103、在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据;
步骤104、根据预先确定的坐标映射关系,将不同定位方式输出的坐标数据映射到预先建立的路径地图上。
本申请实施例将多种不同的定位方式进行融合,着重解决不同定位技术的无缝融合地图创建和定位问题,能够实现室内外无缝切换定位,持续给出精确的位置信息。
实施中,所述定位方式可以包括:GPS定位、视觉定位、无线定位、以及IMU定位;所述多种定位方式的优先级先后顺序可以为:GPS定位、无线定位、视觉定位、IMU定位。
本申请实施例中定位方式可以包括GPS定位、视觉定位、无线定位、IMU定位等等,还可以为现有技术中其他定位方式,本申请对此不作限制。由于这些定位方式均为现有技术中较为成熟的定位技术,现有技术中每种定位方式可能存在一种或多种技术手段来实现,这些定位方式均可以采用现有技术的任一技术手段,本申请在此不做赘述。
其中,
GPS定位技术属于目前较为广泛使用的定位技术,从卫星广播中提取出导航数据和时间信息实现快速定位,通常适合室外环境、广域定位。
视觉定位技术是计算机视觉领域的关键技术,可以包括单目视觉定位、双目视觉定位等,通常可以采用多个摄像头共同完成定位。具体实现时,可以获取物体的图像,然后结合摄像头标定结果以及三维坐标计算原理得到物体的三维坐标位置。
无线定位技术通常可以包括超声波定位、RFID(射频识别,Radio Frequency Identification)定位、wifi定位、移动通信定位(如4G定位等)、蓝牙定位等,通常适合室内环境、短距离定位场景。
IMU(Inertial measurement unit,惯性测量单元)是测量物体三轴姿态角(或角速率)以及加速度的装置,通常包含了三个单轴的加速度计和三个单轴的陀螺,加速度计可以检测物体在载体坐标系独立三轴的加速度信号,而陀螺可以检测物体相对于导航坐标系的角速度信号,通过测量物体在三维空间中的角度苏和加速度来计算出物体的姿态。
本申请实施例中将所述多种定位方式的优先级先后顺序可以设置为:GPS定位、无线定位、视觉定位、IMU定位,即,GPS定位优先选择作为定位方式,在GPS定位失败或精度不高时再采用无线定位或视觉定位,在无线定位或视觉定位失败或精度不高时再采用IMU定位。具体实施时,还可以再无线定位失败或精度不高时采用视觉定位,进一步地,在视觉定位失败或精度不高时再采用IMU定位。
本领域技术人员可以根据实际定位方式的精准度以及实际场景需要对各种定位方式进行优先级设置,本申请对此不作限制。
实施中,所述在满足优先级较高的定位方式的定位条件时,利用所述优先级较高的定位方式进行定位并输出坐标数据,在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据,可以包括:
在当前GPS的可信度达到预设GPS阈值时,利用GPS定位并输出GPS坐标数据Gs;
在当前GPS的可信度低于预设GPS阈值时,利用视觉定位并输出视觉坐标数据Vs或利用无线定位并输出无线坐标数据Ws;
在视觉定位的可信度低于预设视觉阈值或无线定位的可信度低于预设 无线阈值时,利用惯性测量单元IMU定位并输出IMU坐标数据Ss。
具体实施时,可以采集所有定位方式输出的坐标数据,然后将这些坐标数据进行融合,根据预先建立的坐标映射表统一到同一坐标系下,构成一个融合了多种定位方式的路径地图。
在实际实施时,本申请实施例还可以采用如下顺序进行定位:
所述在满足优先级较高的定位方式的定位条件时,利用所述优先级较高的定位方式进行定位并输出坐标数据,在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据,可以包括:
在当前GPS的可信度达到预设GPS阈值时,利用GPS定位并输出GPS坐标数据Gs;
在当前GPS的可信度低于预设GPS阈值时,利用无线定位并输出无线坐标数据Ws;
在无线定位的可信度低于预设无线阈值时,利用视觉定位并输出视觉坐标数据Vs;
在视觉定位的可信度低于预设视觉阈值时,利用惯性测量单元IMU定位并输出IMU坐标数据Ss。
其中,GPS阈值、无线阈值、视觉阈值等均可以通过对不同场景(室内、空旷室外、密集室外等等)进行多次实验来确定得到。
所述当前GPS的可信度低于预设GPS阈值、无线定位的可信度低于预设无线阈值、或者视觉定位的可信度低于预设视觉阈值,也可以分别理解为GPS定位失败或定位不准确、无线定位失败或定位不准确、视觉定位失败或定位不准确等。
实施中,所述利用惯性测量单元IMU定位并输出IMU坐标数据Ss,可以包括:
获取视觉定位的最后一帧的位姿数据;
在所述位姿数据的基础上,根据行走步长和方向进行惯性测量单元IMU定位,将IMU定位得到的数据转换为IMU坐标数据Ss输出。
其中,IMU定位技术又可以分为IMU计步定位和IMU惯性导航系统(通常可以简称为IMU惯导,也可以称为INS)定位。
IMU计步定位可以包括如下步骤:采集物体运动加速度数据,对有效步态进行分割并完成计步和步长估计;根据有效步态的角速度、加速度计算当前步态的运动方向,最终根据步长、运动方向进行定位。
惯性导航系统(INS)是以陀螺和加速度计为器件的导航参数解算系统,可以根据陀螺的输出建立导航坐标系,根据加速度计的输出计算物体在导航坐标系的速度和位置,可以根据一个已知点的位置(例如:可以是视觉定位的最后一帧的位姿数据)、以及连续测得的运动航向角和速度推算出物体下一点的位置,从而连续测出物体的当前位置。
IMU定位可以采用现有技术实现,由于IMU定位得到的原始数据为陀螺信号和加速度信号,因此,本申请实施例还可以进一步将陀螺信号和加速度信号转换为坐标数据。
实施中,所述利用视觉定位并输出视觉坐标数据Vs,可以包括:
获取摄像头拍摄到的图像数据ls;
将所述图像数据ls转换为视觉坐标数据Vs输出。
具体实施时,视觉定位可以用视觉传感器(如RGBD摄像头等)获取物体的图像,经过数字图像处理及特征点提取,得到目标的图像坐标,还可以进一步由计算机计算物体空间几何参数和位置姿态等参数。对于具体的图像数据获取、以及图像数据转换为坐标数据,均可以采用现有技术实现,本申请在此不做赘述。
实施中,所述无线定位可以包括wifi定位或4G定位等。
具体实施时,本申请实施例中无线定位可以包括wifi定位、4G定位,还可以包括RFID射频定位、超声波定位、光跟踪定位、蓝牙定位等等,这些均可以采用现有技术实现,本申请在此不再一一列举。
实施中,在进行定位之前,可以进一步包括:
采集不同场景下的多种定位方式输出的坐标数据;
将上述数据进行时间同步;
根据所述时间同步后的坐标数据确定坐标映射关系和路径地图。
具体实施时,本申请实施例在进行定位之前,可以先确定不同定位方式输出的坐标数据之间的坐标映射关系、以及通过映射到统一坐标系之后得到的路径地图,在后续定位时,可以在路径地图上显示物体的当前位置以及行走的轨迹。
实施中,在所述在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据之后,可以进一步包括:
若再次满足优先级较高的定位方式的定位条件,利用所述优先级较高的定位方式对当前坐标数据进行修正。
具体实施时,当高优先级的定位技术失败或精度不高时,可以转换为低优先级的定位技术继续定位,当高优先级的定位技术再次定位成功或精度达到要求时,可以继续采用高优先级的定位技术进行定位,其中可以包括采用高优先级的定位技术先对当前位置进行修正,再进行后续定位。
实施例2、
基于同一发明构思,本申请实施例提供了一种定位装置,由于这些设备解决问题的原理与一种定位方法相似,故重复之处不再赘述,下面进行说明。
图2示出了本申请实施例中定位装置的结构示意图,如图所示,所述 定位装置可以包括:
优先级确定模块201,用于确定多种定位方式的优先级;
定位模块202,用于在满足优先级较高的定位方式的定位条件时,利用所述优先级较高的定位方式进行定位并输出坐标数据;在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据;
映射模块203,用于根据预先确定的坐标映射关系,将不同定位方式输出的坐标数据映射到预先建立的路径地图上。
实施中,所述优先级确定模块可以用于确定定位方式的优先级先后顺序为:GPS定位、无线定位、视觉定位、IMU定位。
实施中,所述定位模块,可以包括:
GPS定位模块,用于在当前GPS的可信度达到预设GPS阈值时,利用GPS定位并输出GPS坐标数据Gs;
视觉定位模块,用于在当前GPS的可信度低于预设GPS阈值时,利用摄像头视觉定位并输出视觉坐标数据Vs;或者,无线定位模块,用于在当前GPS的可信度低于预设GPS阈值时,利用无线定位并输出无线坐标数据Ws;
IMU定位模块,用于在视觉定位的可信度低于预设视觉阈值或无线定位的可信度低于预设无线阈值时,利用惯性测量单元IMU定位并输出IMU坐标数据Ss。
实施中,所述IMU定位模块,可以包括:
IMU获取单元,用于获取摄像头视觉定位的最后一帧的位姿数据;
IMU定位单元,用于在所述位姿数据的基础上,根据行走步长和方向进行惯性测量单元IMU定位,将IMU定位得到的数据转换为IMU坐标数据Ss输出。
实施中,所述视觉定位模块,可以包括:
视觉获取单元,用于获取摄像头拍摄到的图像数据ls;
视觉定位单元,用于将所述图像数据ls转换为视觉坐标数据Vs输出。
实施中,所述无线定位模块可以用于利用wifi或4G进行定位并输出无线坐标数据Ws。
实施中,所述装置可以进一步包括:
采集模块,用于在进行定位之前,采集不同场景下的多种定位方式输出的坐标数据;
同步模块,用于将上述数据进行时间同步;
确定模块,用于根据所述时间同步后的坐标数据确定坐标映射关系和路径地图。
实施中,所述装置可以进一步包括:
修正模块,用于在所述在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据之后,若再次满足优先级较高的定位方式的定位条件,利用所述优先级较高的定位方式对当前坐标数据进行修正。
采用根据本申请实施例的定位装置,通过将多种不同的定位技术进行融合,实现室内外无缝切换定位,可以持续给出精确的位置信息。
实施例3、
本申请实施例提供了一种电子设备,该电子设备包括:显示器,存储器,一个或多个处理器;以及一个或多个模块,该一个或多个模块被存储在该存储器中,并被配置成由该一个或多个处理器执行,该一个或多个模块包括用于执行本申请实施例的第一个方面的定位方法中各个步骤的指令。
实施例4、
本申请实施例提供了一种计算机程序产品,该计算机程序产品对用于执行一种过程的指令进行编码,该过程包括本申请实施例的第一个方面的定位方法。
实施例5、
为了便于实施,本申请实施例对融合建图和定位的实例过程进行说明如下:
图3示出了本申请实施例中融合建图过程示意图,如图所示,所述融合过程可以为:
采集原始数据,包括GPS、摄像头、IMU和无线定位模块的数据;GPS输出的原始数据为室外的位置经纬度Gs,摄像头输出的原始数据为图像数据ls,IMU输出的原始数据为包括方向在内的9轴数据Ds,无线定位模块输出的原始数据为位置坐标Ws;
给所有的原始数据加上同步的时间戳;
然后,将图像数据Is输入vSLAM或者vIO模块完成建图、得到坐标数据Vs,将IMU数据Ds输入IMU计步模块完成建图、得到坐标数据Ss。
最后,融合Gs,Vs,Ss,Ws的数据生成地图库,地图库可以包含路径地图、坐标映射表,图像特征库等。
下面以融合建图生成路径地图实例进行说明。
图4示出了本申请实施例中融合建图生成的路径地图示意图,如图所示,本申请实施例可以将所有定位方式获取到的相对路径,通过坐标映射表统一到同一个坐标系下。例如:AB段是用视觉创建的相对路径,BC段是IMU计步得到的相对路径,CD段是GPS定位得到的绝对路径,DE段又是IMU计步得到的相对路径,EF段是用视觉创建的相对路径,FA是无线定位(例如:WIFI、4G等)的相对路径。
将这些不同的定位方式获得的路径融合到一个坐标系下,这样就构成了一个融合了多种定位方法的路径地图。
图5示出了本申请实施例中融合定位的过程框图,如图所示,摄像机获得的图像数据可以根据预先建立的地图库中的图像特征库转换为坐标数据,在融合定位时,可以根据各个定位结果,自动选择对应的位置通过坐标映射表统一映射到该路径地图上。
针对室内外复杂环境下的定位问题,本申请实施例提供了一种基于多种定位方式融合建图和定位的方案,解决了室内外两种不同场景下、以往定位系统不能持续定位的缺陷,采用本申请实施例所提供的方案,实现容易、定位效果较好,且能够准确的在室内、室外场景中进行无缝、持续的定位,可以为智能机器人导航以及盲人导盲等应用场景实现建图、定位提供依据。
实施例6、
本申请实施例提供了一种基于视觉、IMU、GPS融合的行人建图和定位方法,下面进行说明。
首先,融合建图过程可以包括如下步骤:
1、事先实验获取不同场景中(室内、空旷室外、密集建筑群的室外)GPS定位的可信度,设定不同场景中对应的不同GPS阈值;
2、开启GPS,获取当前GPS的可信度,与实验设定的阈值进行比较,在达到阈值时启动GPS定位并输出坐标数据Gs;
3、当GPS可信度很低时,不采用GPS定位,此时可以切换至视觉数据方式进行建图,输出Vs;
4、当视觉建图失败时,切换至IMU计步来继续之前的建图,输出Ss;
5、将上述坐标数据Gs、Vs、Ss统一生成路径地图M和坐标映射表T。
图6示出了本申请实施例中建图场景示意图,如图所示,从室内场景 过渡到室外场景的过程中,在室内场景中视觉SLAM建图效果较好,可以一直保持建图和定位提供位姿;当向室外过渡时,视觉SLAM效果变差,IMU计步定位发挥作用,继续完成定位;当过渡到完全空旷的室外时,GPS开始定位,完成整个从室内到室外的地图融合过程。
图7示出了本申请实施例中融合定位流程示意图,如图所示,融合定位可以包括如下步骤:
1、开启GPS,获取当前GPS的可信度,与实验获得的阈值进行比较,达到阈值的情况下进行GPS定位,输出坐标数据Gs,并且查询坐标映射表T将该坐标数据映射到路径地图M上;
2、当GPS可信度很低时,不采用GPS进行定位,此时切换到视觉数据方式进行定位,输出Vs,并且查询坐标映射表T将该坐标映射到路径地图M上;
3、当视觉建图失败时,切换至IMU计步来继续之前的定位,输出坐标数据Ss,根据最后时刻的Vs数据,将Ss坐标数据映射到路径地图M上。
视觉SLAM定位和IMU计步定位可以并行执行在不同线程中,视觉SLAM为主,IMU为辅,视觉SLAM定位可以根据摄像头获取到的地图数据和之前建立的地图进行实时的定位,当视觉SLAM定位失效时,将最后一帧的位姿数据传给IMU,IMU获取位姿以后,根据行走的步长和方向,继续进行定位,并且如果视觉SLAM再次成功定位,那么就可以对定位做一次矫正,实现更好的定位效果。
实施例七、
本申请实施例提供了一种基于IMU、GPS、无线定位融合的行为建图和定位方法,下面进行说明。
融合建图可以包括如下步骤:
1、事先实验获取不同场景中(室内、空旷室外、密集建筑群室外)GPS 定位的可信度,设定不同的阈值;
2、开启GPS,获取当前GPS的可信度,与实验中的阈值进行比较,达到阈值的情况下进行GPS定位,输出坐标数据Gs;
3、当GPS可信度很低时,可以不采用GPS定位,切换至无线定位(例如:wifi定位或4G定位等)进行建图,输出Ws;
4、若无线定位置信度较低,则可以自动切换至IMU计步来继续之前的建图,输出Ss;
5、将上述的坐标数据Gs、Ws、Ss统一生成路径地图M和坐标映射表T。
融合定位可以包括如下步骤:
1、开启GPS,获取当前GPS的可信度,与实验中的阈值进行比较,达到阈值的情况下开启GPS进行定位,输出坐标数据Gs,并且查询映射表T将该坐标映射到路径地图上M;
2、当GPS可信度很低时,不采用GPS进行定位,切换到无线数据方式进行定位,输出Ws,并且查询映射表T将该坐标映射到路径地图上M;3、当无线信号较弱的时候,切换至IMU计步来继续之前的定位,输出Ss,根据最后时刻的Vs数据,将Ss转换到路径地图上M。
实施例八、
本申请实施例提供了一种基于视觉、IMU惯导、GPS融合建图和定位的智能物流车,下面进行说明。
该智能物流车可以按照以下步骤进行融合建图:
1、事先实验获取不同场景中(室内、空旷室外、密集建筑群室外)GPS定位的可信度,设定不同的阈值;
2、开启GPS,获取当前GPS的可信度,与实验中的阈值进行比较,达到阈值的情况下开启GPS进行定位,输出坐标数据Gs。
3、当GPS可信度很低,不采用GPS进行定位,这时候切换到视觉定位(vSLAM、或者VIO)模式下进行建图,输出Vs;
4、若视觉定位的置信度较低,则自动切换至IMU惯导系统来继续之前的建图,输出Ss;
5、将上述的坐标数据Gs,Vs,Ss统一生成路径地图M和坐标映射表T。
该智能物流车可以按照以下步骤进行融合定位:
1、开启GPS,获取当前GPS的可信度,与实验中的阈值进行比较,达到阈值的情况下开启GPS进行定位,输出坐标数据Gs,并且查询映射表T将该坐标映射到路径地图上M;
2、当GPS可信度很低,不采用GPS进行定位,这时候切换到视觉模块进行定位,输出Vs,并且查询映射表T将该坐标映射到路径地图上M;
3、当视觉定位失败时,可以切换至IMU惯导系统来继续之前的定位,输出Ss,根据最后时刻的Vs数据,将Ss转换到路径地图上M。
本申请实施例六和实施例八虽然都是采用GPS定位、视觉定位、以及IMU定位融合,但实施例六是对人进行定位,所以IMU定位采用的是计步定位方式,而实施例八是对车进行定位,所以IMU定位可以采用惯导定位方式。
本申请实施例提出了一种融合建图和定位的技术方案,可以用于机器人的建图和定位,解决了全天候、多场景下的地图创建和定位问题,仅用视觉、IMU、GPS等设备即可实现定位,成本较低;且在融合过程中可以自动根据阈值选择最佳的建图和定位工作模式,室内外通用,可以在室内室外无缝完成建图和定位。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施 例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种定位方法,其特征在于,包括如下步骤:
    确定多种定位方式的优先级;
    在满足优先级较高的定位方式的定位条件时,利用所述优先级较高的定位方式进行定位并输出坐标数据;
    在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据;
    根据预先确定的坐标映射关系,将不同定位方式输出的坐标数据映射到预先建立的路径地图上。
  2. 如权利要求1所述的方法,其特征在于,所述定位方式包括:GPS定位、视觉定位、无线定位、以及IMU定位;所述多种定位方式的优先级先后顺序为:GPS定位、无线定位、视觉定位、IMU定位。
  3. 如权利要求1或2所述的方法,其特征在于,所述在满足优先级较高的定位方式的定位条件时,利用所述优先级较高的定位方式进行定位并输出坐标数据,在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据,包括:
    在当前GPS的可信度达到预设GPS阈值时,利用GPS定位并输出GPS坐标数据Gs;
    在当前GPS的可信度低于预设GPS阈值时,利用视觉定位并输出视觉坐标数据Vs或利用无线定位并输出无线坐标数据Ws;
    在视觉定位的可信度低于预设视觉阈值或无线定位的可信度低于预设无线阈值时,利用惯性测量单元IMU定位并输出IMU坐标数据Ss。
  4. 如权利要求1所述的方法,其特征在于,在进行定位之前,进一步 包括:
    采集不同场景下的多种定位方式输出的坐标数据;
    将上述数据进行时间同步;
    根据所述时间同步后的坐标数据确定坐标映射关系和路径地图。
  5. 如权利要求1所述的方法,其特征在于,在所述在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据之后,进一步包括:
    若再次满足优先级较高的定位方式的定位条件,利用所述优先级较高的定位方式对当前坐标数据进行修正。
  6. 一种定位装置,其特征在于,包括:
    优先级确定模块,用于确定多种定位方式的优先级;
    定位模块,用于在满足优先级较高的定位方式的定位条件时,利用所述优先级较高的定位方式进行定位并输出坐标数据;在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据;
    映射模块,用于根据预先确定的坐标映射关系,将不同定位方式输出的坐标数据映射到预先建立的路径地图上。
  7. 如权利要求6所述的装置,其特征在于,所述优先级确定模块用于确定定位方式的优先级先后顺序为:GPS定位、无线定位、视觉定位、IMU定位。
  8. 如权利要求6或7所述的装置,其特征在于,所述定位模块,包括:
    GPS定位模块,用于在当前GPS的可信度达到预设GPS阈值时,利用GPS定位并输出GPS坐标数据Gs;
    视觉定位模块,用于在当前GPS的可信度低于预设GPS阈值时,利用摄像头视觉定位并输出视觉坐标数据Vs;或者,无线定位模块,用于在当 前GPS的可信度低于预设GPS阈值时,利用无线定位并输出无线坐标数据Ws;
    IMU定位模块,用于在视觉定位的可信度低于预设视觉阈值或无线定位的可信度低于预设无线阈值时,利用惯性测量单元IMU定位并输出IMU坐标数据Ss。
  9. 如权利要求6所述的装置,其特征在于,进一步包括:
    采集模块,用于在进行定位之前,采集不同场景下的多种定位方式输出的坐标数据;
    同步模块,用于将上述数据进行时间同步;
    确定模块,用于根据所述时间同步后的坐标数据确定坐标映射关系和路径地图。
  10. 如权利要求6所述的装置,其特征在于,进一步包括:
    修正模块,用于在所述在不满足优先级较高的定位方式的定位条件、满足优先级较低的定位方式的定位条件时,利用所述优先级较低的定位方式进行定位并输出坐标数据之后,若再次满足优先级较高的定位方式的定位条件,利用所述优先级较高的定位方式对当前坐标数据进行修正。
  11. 一种电子设备,其特征在于,所述电子设备包括:显示器,存储器,一个或多个处理器;以及一个或多个模块,所述一个或多个模块被存储在所述存储器中,并被配置成由所述一个或多个处理器执行,所述一个或多个模块包括用于执行权利要求1-5中任一所述方法中各个步骤的指令。
  12. 一种计算机程序产品,所述计算机程序产品对用于执行一种过程的指令进行编码,所述过程包括根据权利要求1-5中任一项所述的方法。
PCT/CN2017/117417 2017-12-20 2017-12-20 一种定位方法、装置及电子设备、计算机程序产品 WO2019119289A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780002725.6A CN108235735A (zh) 2017-12-20 2017-12-20 一种定位方法、装置及电子设备、计算机程序产品
PCT/CN2017/117417 WO2019119289A1 (zh) 2017-12-20 2017-12-20 一种定位方法、装置及电子设备、计算机程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117417 WO2019119289A1 (zh) 2017-12-20 2017-12-20 一种定位方法、装置及电子设备、计算机程序产品

Publications (1)

Publication Number Publication Date
WO2019119289A1 true WO2019119289A1 (zh) 2019-06-27

Family

ID=62643334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117417 WO2019119289A1 (zh) 2017-12-20 2017-12-20 一种定位方法、装置及电子设备、计算机程序产品

Country Status (2)

Country Link
CN (1) CN108235735A (zh)
WO (1) WO2019119289A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112494034A (zh) * 2020-11-30 2021-03-16 重庆优乃特医疗器械有限责任公司 基于3d体态检测分析的数据处理分析系统及方法
WO2023185420A1 (zh) * 2022-03-26 2023-10-05 华为技术有限公司 用于定位的方法和通信装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801276B (zh) * 2018-07-23 2022-03-15 奇瑞汽车股份有限公司 高精度地图生成方法及装置
CN110531398A (zh) * 2019-09-02 2019-12-03 中国安全生产科学研究院 基于gps与超声波的室外机器人定位系统及方法
CN110779520B (zh) * 2019-10-21 2022-08-23 腾讯科技(深圳)有限公司 导航方法及装置、电子设备和计算机可读存储介质
CN112866897B (zh) * 2019-11-08 2022-11-11 大唐移动通信设备有限公司 一种定位测量方法、终端和网络节点
CN111024062B (zh) * 2019-12-31 2022-03-29 芜湖哈特机器人产业技术研究院有限公司 基于伪gnss及ins的制图系统
CN111521195B (zh) * 2020-04-10 2022-03-04 广州铁路职业技术学院(广州铁路机械学校) 一种智能机器人
CN113596905B (zh) * 2020-04-30 2023-06-30 维沃移动通信有限公司 定位测量上报方法、配置方法、装置及电子设备
CN111562603B (zh) * 2020-06-30 2022-10-04 深圳摩吉智行科技有限公司 基于航位推算的导航定位方法、设备及存储介质
CN111854733B (zh) * 2020-07-28 2022-06-21 广东博智林机器人有限公司 一种多源融合定位方法及系统
CN112305576A (zh) * 2020-10-31 2021-02-02 中环曼普科技(南京)有限公司 一种多传感器融合的slam算法及其系统
CN112558087B (zh) * 2020-11-20 2023-06-23 东风汽车集团有限公司 一种自动驾驶车辆的定位系统及方法
CN112986908B (zh) * 2021-04-26 2021-08-17 网络通信与安全紫金山实验室 定位标定方法、系统及存储介质
CN113587928B (zh) * 2021-07-28 2022-12-16 北京百度网讯科技有限公司 导航方法、装置、电子设备、存储介质及计算机程序产品
CN114323000B (zh) * 2021-12-17 2023-06-09 中国电子科技集团公司第三十八研究所 线缆ar引导装配系统及方法
CN114383626B (zh) * 2022-01-19 2023-05-16 广州小鹏自动驾驶科技有限公司 全场景智能辅助驾驶的导航方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090105950A1 (en) * 2007-10-18 2009-04-23 Ianywhere Solutions, Inc. Real-Time Location Information System Using Multiple Positioning Technologies
CN104677351A (zh) * 2015-01-26 2015-06-03 泰科智慧科技(北京)有限公司 一种基于多种信号融合的人员定位系统及方法
CN204925790U (zh) * 2015-05-13 2015-12-30 山东和协科技有限公司 机器人物流配送系统
CN106027960A (zh) * 2016-05-13 2016-10-12 深圳先进技术研究院 一种定位系统和方法
CN106501833A (zh) * 2015-09-07 2017-03-15 石立公 一种基于多源定位的检测车辆所在道路区域的系统和方法
CN106569243A (zh) * 2015-10-09 2017-04-19 深圳市盛思达通讯技术有限公司 多定位模式的混合定位方法、控制系统及智能手表

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209387A (zh) * 2013-03-22 2013-07-17 福建联迪商用设备有限公司 联合gps、wifi、基站的定位方法、装置及系统
CN104035115B (zh) * 2014-06-06 2017-01-25 中国科学院光电研究院 一种视觉辅助的卫星导航定位方法及定位机
CN106705964A (zh) * 2017-01-06 2017-05-24 武汉大学 全景相机融合imu、激光扫描仪定位与导航系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090105950A1 (en) * 2007-10-18 2009-04-23 Ianywhere Solutions, Inc. Real-Time Location Information System Using Multiple Positioning Technologies
CN104677351A (zh) * 2015-01-26 2015-06-03 泰科智慧科技(北京)有限公司 一种基于多种信号融合的人员定位系统及方法
CN204925790U (zh) * 2015-05-13 2015-12-30 山东和协科技有限公司 机器人物流配送系统
CN106501833A (zh) * 2015-09-07 2017-03-15 石立公 一种基于多源定位的检测车辆所在道路区域的系统和方法
CN106569243A (zh) * 2015-10-09 2017-04-19 深圳市盛思达通讯技术有限公司 多定位模式的混合定位方法、控制系统及智能手表
CN106027960A (zh) * 2016-05-13 2016-10-12 深圳先进技术研究院 一种定位系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112494034A (zh) * 2020-11-30 2021-03-16 重庆优乃特医疗器械有限责任公司 基于3d体态检测分析的数据处理分析系统及方法
WO2023185420A1 (zh) * 2022-03-26 2023-10-05 华为技术有限公司 用于定位的方法和通信装置

Also Published As

Publication number Publication date
CN108235735A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2019119289A1 (zh) 一种定位方法、装置及电子设备、计算机程序产品
CN106840148B (zh) 室外作业环境下基于双目摄像机的可穿戴式定位与路径引导方法
WO2018068771A1 (zh) 目标跟踪方法、系统、电子设备和计算机存储介质
CN110243358A (zh) 多源融合的无人车室内外定位方法及系统
KR101220527B1 (ko) 센서 시스템, 이를 이용하는 환경 지도 작성 시스템 및 방법
CN109374008A (zh) 一种基于三目摄像头的图像采集系统及方法
Li et al. Self-positioning for UAV indoor navigation based on 3D laser scanner, UWB and INS
JP2018028489A (ja) 位置推定装置、位置推定方法
JP2022518911A (ja) 乗り物のセンサとカメラアレイからの構造化された地図データの生成
KR20140049361A (ko) 다중 센서 시스템, 이를 이용하는 3차원 월드 모델링 장치 및 방법
WO2017008454A1 (zh) 一种机器人的定位方法
CN111182174B (zh) 一种扫地机器人补光的方法及装置
WO2019126957A1 (zh) 端云结合定位方法、装置及电子设备、计算机程序产品
KR102219843B1 (ko) 자율주행을 위한 위치 추정 장치 및 방법
CN105116886A (zh) 一种机器人自主行走的方法
KR101764222B1 (ko) 고정밀 측위 시스템 및 방법
CN113965646B (zh) 定位控制方法及装置、电子设备、存储介质
CN112362044A (zh) 室内定位方法、装置、设备和系统
WO2019080879A1 (zh) 数据处理方法、计算机设备和存储介质
Qian et al. Optical flow based step length estimation for indoor pedestrian navigation on a smartphone
WO2023143132A1 (zh) 传感器数据的标定
Tang et al. Ic-gvins: A robust, real-time, ins-centric gnss-visual-inertial navigation system for wheeled robot
Calloway et al. Three tiered visual-inertial tracking and mapping for augmented reality in urban settings
CN111798489B (zh) 一种特征点跟踪方法、设备、介质及无人设备
TW202319707A (zh) 混合型室內定位系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17935153

Country of ref document: EP

Kind code of ref document: A1