WO2019117691A1 - Peptides binding to cd44v6 and use thereof - Google Patents

Peptides binding to cd44v6 and use thereof Download PDF

Info

Publication number
WO2019117691A1
WO2019117691A1 PCT/KR2018/016022 KR2018016022W WO2019117691A1 WO 2019117691 A1 WO2019117691 A1 WO 2019117691A1 KR 2018016022 W KR2018016022 W KR 2018016022W WO 2019117691 A1 WO2019117691 A1 WO 2019117691A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
cd44v6
peptide
v6pep
cells
Prior art date
Application number
PCT/KR2018/016022
Other languages
French (fr)
Korean (ko)
Inventor
이병헌
칸파티마
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180161981A external-priority patent/KR102194025B1/en
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to EP18889460.4A priority Critical patent/EP3733685A4/en
Priority to US16/772,810 priority patent/US11192920B2/en
Publication of WO2019117691A1 publication Critical patent/WO2019117691A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids

Definitions

  • the present invention relates to peptides that bind to CD44v6 and uses thereof for inhibiting cancer metastasis.
  • CD44 generally binds to the primary ligand hyaluronic acid (HA) and has a molecular weight in the range of 80 to 200 kDa.
  • HA primary ligand hyaluronic acid
  • the heterogeneity of the CD44 protein is due to selective splicing of the 10 variable exons and additional post-translational modifications.
  • the human CD44 gene is located on the short arm of chromosome 11p13, and all CD44 proteins are encoded on chromosome 2 in mice.
  • the CD44 chromosome consists of 20 exons, 10 of which are called CD44 variants and play a role in splicing, and "v” is abbreviated as variant and is named CD44v (1v-10v).
  • the isomer controls and participates in cell differentiation, cell migration and cellular behavior by mediating contact between the cell and the extracellular matrix, which is essential for maintaining tissue integrity. Because of these important functions, they tend to be related to pathological conditions, including tumor progression and metastasis.
  • Specific CD44 variants have been shown to be highly expressed in certain cancer metastatic stem cells.
  • CD44v6 is known to be involved in many cancers, and CD44v6-v10, which has a high frequency of mutation, has been reported to be involved in metastatic proliferation, for example, exon v6 promotes cancer cell metastasis.
  • the role of CD44v6 peptide in metastatic cancer is shown in Fig. According to previous reports, in the activation of c-Met of epithelial cells by binding of hepatocyte growth factor (HGF), HGF was found to contain mutant exon v6 in that it was dependent on CD44 exon v6 containing isomers The CD44 isomer plays a role in the transcriptional determinant.
  • HGF hepatocyte growth factor
  • CD44v6 in metastasis is known to mediate the action of HGF by interacting with c-Met receptor tyrosine kinase (RTK).
  • RTK c-Met receptor tyrosine kinase
  • the inhibitory action of the v6 peptide inhibits the cooperative receptor action between CD44v6 and c-Met to inhibit tumor cell invasion and metastasis, suggesting the possibility of developing a more stable and systematically usable compound.
  • CD44v6-specific antibodies CD44v6 siRNAs
  • CD44 variant v6-specific peptides CD44v6 isomers play a dual role in c-Met dependent signaling. According to several reports, an increase in CD44 isoforms in several human tumors is associated with a poor prognosis. Expression of CD44v6 isoform was confirmed in advanced non-Hodgkin's lymphoma and was associated with a poor prognosis. Expression of CD44v6 and CD44v8-v10 in colorectal cancer and ovarian cancer was also associated with poor prognosis, which may be considered as a precise diagnostic factor.
  • CD44v6 and CD44v7-v8 were associated with poor prognosis, and expression of CD44v6 and CD44v5 was also upregulated in gastric cancer.
  • humanized monoclonal anti-blocking antibodies have also been developed and applied to clinical trials, but the development of peptides capable of binding to and blocking CD44v6 is highly required.
  • the present invention relates to a peptide which binds to CD44v6 and its use, which comprises a peptide specifically binding to CD44v6 consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2, a cancer diagnostic composition comprising the peptide as an active ingredient, A pharmaceutical composition for preventing or treating cancer, a health functional food composition for cancer prevention or improvement, and a composition for drug delivery.
  • the present invention provides a peptide specifically binding to CD44v6 consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2.
  • the present invention also provides a polynucleotide encoding the peptide, a recombinant vector comprising the polynucleotide, and a transformant transformed with the recombinant vector.
  • the present invention also provides a composition for cancer diagnosis comprising the peptide as an active ingredient.
  • the present invention also provides a pharmaceutical composition for preventing or treating cancer comprising the peptide as an active ingredient.
  • the present invention also provides a health functional food composition for preventing or ameliorating cancer comprising the peptide as an active ingredient.
  • the present invention also provides a drug delivery composition comprising the peptide as an active ingredient.
  • the present invention relates to a peptide binding to CD44v6 and its use for inhibiting cancer metastasis using the peptide.
  • the peptide of the present invention specifically binds to CD44v6 and inhibits it, thereby inhibiting the movement and metastasis of cancer cells.
  • the peptide of the present invention is relatively stable in the serum and shows a high possibility as an anticancer therapeutic agent for inhibiting metastasis in accordance with progression and migration of cancer in the future.
  • Figure 1 shows the results of screening of CD44v6 binding peptides using phage display.
  • Figure 2 shows the CD44v6 specific cell binding results of v6Pep-1 and v6Pep-2.
  • Figure 3 shows HGF-induced phosphorylation inhibition results of c-Met and Erk by v6Pep-1 and v6Pep-2.
  • Figure 4 shows the inhibition of the internalization of HGF-induced c-Met by v6Pep-1 and v6Pep-2 and the pull-down of CD44v6.
  • Figure 5 shows the results for CD44v6 peptide targeting CD44v6-expressing human breast tumor cells in vivo.
  • e The result of analysis of the tumor tissue section by confocal microscope.
  • Figure 6 shows the results for inhibition of metastasis of the human breast cancer model by CD44v6 peptide.
  • (a) Represents a medication schedule.
  • Figure 7 shows the results for inhibition of metastasis of the human breast cancer model by CD44v6 peptide.
  • (a) and (b) are photographed whole body X-ray and bioluminescence imaging results.
  • (c) represents the lung weight on the 22nd day.
  • Figure 8 shows the results for CD44v6 peptide selectively targeting CD44v6-expressing mouse breast tumor cells in vivo.
  • Figure 9 shows the results for a CD44v6 peptide that blocks the metastasis of mouse tumor cells in vivo.
  • (c) and (d) are quantification results of whole proton fluxes in whole body and lung regions.
  • Figure 10 shows the results for a CD44v6 peptide that blocks the metastasis of mouse tumor cells in vivo.
  • (a) shows the result of tumor volume change after tumor inoculation.
  • Figure 11 shows the results for a CD44v6 peptide that blocks metastasis of mouse tumor cells in vivo.
  • Figure 12 shows the results for a CD44v6 peptide that blocks the metastasis of mouse tumor cells in vivo.
  • the primary tumor tissues were analyzed by immunofluorescence staining with phosphorylated c-Met (P-met) and c-Met antibodies.
  • P-met phosphorylated c-Met
  • c-Met antibodies phosphorylated c-Met antibodies
  • FIG. 13 is a schematic diagram showing the role of CD44v6 peptide in metastatic cancer.
  • the present inventors screened phage display peptide libraries with cells transiently overexpressing CD44v6. After multiple screenings, the selected phage clones were sequenced. Of these, two clones were found to bind most selectively to CD44v6 expressing cells compared to control clones. The peptides blocked RTK activation and inhibited tumor growth and metastatic spread in MDA-MB-231 and 4T1 breast cancer mice and also demonstrated significant effects in combination with crizotinib. As a result, the present inventors have successfully screened peptides that can specifically bind to CD44v6 and effectively inhibit them, and confirmed the possibility of the peptide as an anti-cancer therapeutic agent, thus completing the present invention.
  • the present invention provides a peptide specifically binding to CD44v6 consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2. Specifically, the peptides can inhibit phosphorylation of c-Met and block signal transduction between CD44v6 and c-Met.
  • the peptides of the present invention can be readily prepared by chemical synthesis known in the art (Creighton, Proteins, Structures and Molecular Principles, W. H. Freeman and Co., NY, 1983). Typical methods include liquid or solid phase synthesis, fractional condensation, F-MOC or T-BOC chemistry (see, for example, Chemical Approaches to the Synthesis of Peptides and Proteins, Williams et al., Eds., CRC Press, Boca Raton Florida A Practical Approach, Atherton & Sheppard, Eds., IRL Press, Oxford, England, 1989).
  • the peptides of the present invention can also be produced by genetic engineering methods.
  • a DNA sequence encoding the peptide is synthesized according to a conventional method.
  • DNA sequences can be synthesized by PCR amplification using appropriate primers.
  • the DNA sequence may be synthesized by standard methods known in the art, for example, using an automated DNA synthesizer (e.g., marketed by Biosearch or Applied Biosystems).
  • the constructed DNA sequence is operatively linked to the DNA sequence and contains one or more expression control sequences (e.g., promoters, enhancers, etc.) that regulate the expression of the DNA sequence , And the host cells are transformed with the recombinant expression vector formed therefrom.
  • expression control sequences e.g., promoters, enhancers, etc.
  • the resulting transformant is cultured under appropriate medium and conditions so that the DNA sequence is expressed, and the substantially pure peptide encoded by the DNA sequence is recovered from the culture.
  • the recovery can be performed using methods known in the art (e.g., chromatography).
  • substantially pure peptide herein is meant that the peptide according to the invention is substantially free of any other proteins derived from the host.
  • the peptide represented by the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2 includes a functional variant thereof.
  • &Quot; Functional variant " means any similar sequence in which substitution of some amino acids occurs at amino acid positions that do not affect the properties of the peptides of the invention that specifically bind to CD44v6.
  • the present invention also provides a polynucleotide encoding said peptide.
  • the " polynucleotide " is a polymer of deoxyribonucleotides or ribonucleotides present in single-stranded or double-stranded form.
  • the polynucleotide includes a nucleotide sequence encoding the peptide as well as a sequence complementary to the nucleotide sequence.
  • the complementary sequence includes not only perfectly complementary sequences but also substantially complementary sequences.
  • polynucleotide may be modified. Such modifications include addition, deletion or non-conservative substitution or conservative substitution of nucleotides.
  • the polynucleotide encoding the amino acid sequence is also interpreted to include a nucleotide sequence that exhibits substantial identity to the nucleotide sequence. The above substantial identity is determined by aligning the nucleotide sequence with any other sequence as much as possible and analyzing the aligned sequence using algorithms commonly used in the art to obtain a sequence having at least 80% homology, At least 90% homology or at least 95% homology.
  • the present invention also provides a recombinant vector comprising the polynucleotide.
  • the present invention provides a transformant transformed with said recombinant vector.
  • &quot means a DNA molecule that is replicated by itself, which is used to carry the clone gene (or another fragment of the clone DNA).
  • " recombinant vector " means a plasmid, viral vector or other medium known in the art capable of expressing an inserted nucleic acid in a host cell.
  • the polynucleotide encoding the peptide of the invention may be operably linked.
  • the recombinant vector generally comprises a replication origin that is capable of propagating in a host cell, at least one expression control sequence (e.g., a promoter, enhancer, etc.) that regulates expression, a selectable marker, and a sequence operably linked to an expression control sequence And a polynucleotide encoding the peptide of the invention.
  • the transformant may be one which has been transformed by the recombinant vector.
  • the transformants are produced by recombinant vectors containing polynucleotides encoding the peptides of the invention by methods known in the art such as, but not limited to, transient transfection, microinjection, Transfection, transduction, cell fusion, calcium phosphate precipitation, liposome-mediated transfection, DEAE dextran-mediated transfection, polybrene-mediated transfection, (Wu et al., J. Org. Immunol. Immunol. Immunol. Immunol. Immun. J. Immunol. Immun. Bio. Chem., 267: 963-967, 1992; Wu and Wu, J. Bio. Chem., 263: 14621-14624, 1988).
  • the present invention also provides a composition for cancer diagnosis comprising the peptide as an active ingredient.
  • the cancer may be a cancer overexpressing CD44v6, more preferably the cancer overexpressing CD44v6 is lung cancer, brain tumor, breast cancer, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, rectal cancer, stomach cancer, But are not limited to, renal cancer, bladder cancer, ovarian cancer, cholangiocarcinoma, gallbladder cancer, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer or squamous cell carcinoma.
  • diagnosis means identifying the presence or characteristic of a pathological condition.
  • diagnosis is to identify the presence or characteristics of the cancer.
  • the diagnosis of cancer using the peptide of the present invention can be made by detecting the binding of the peptide of the present invention to the tissue or cells directly obtained by blood, urine or biopsy.
  • the peptide of the present invention can be provided in a labeled state. That is, they may be provided by linking (e.g., covalently binding or bridging) to a detectable label.
  • the detectable label is a chromogenic enzyme (e.g., peroxidase (peroxidase), alkaline phosphatase (alkaline phosphatase)), radioactive isotopes (for example: 124 I, 125 I, 111 In, 99 mTc, 32 P, 35 S), A chromophore, a luminescent material or a fluorescent material such as FITC, RITC, rhodamine, cyanine, Texas Red, fluorescein, phycoerythrin, Quantum dots), and the like.
  • a chromogenic enzyme e.g., peroxidase (peroxidase), alkaline phosphatase (alkaline phosphatase)
  • radioactive isotopes for example: 124 I, 125 I, 111 In, 99 mTc, 32 P, 35 S
  • a chromophore e.g., a luminescent material or a fluorescent material
  • the detectable label may be an antibody epitope, a substrate, a cofactor, an inhibitor or an affinity ligand. Such labeling may be performed during the synthesis of the peptide of the present invention, or may be performed in addition to the peptide already synthesized.
  • a fluorescent substance is used as a detectable label
  • the cancer can be diagnosed by fluorescence-based tomography (FMT).
  • FMT fluorescence-based tomography
  • the peptide of the present invention labeled with a fluorescent substance can be circulated into the blood and the fluorescence by the peptide can be observed by fluorescence tomography. If fluorescence is observed, it is diagnosed as cancer.
  • the present invention also provides a pharmaceutical composition for preventing or treating cancer comprising the peptide as an active ingredient.
  • the present invention also provides a pharmaceutical composition for preventing or treating cancer, comprising a peptide and an anticancer agent as an active ingredient.
  • the anticancer agent is selected from the group consisting of crizotinib, doxorubicin, paclitaxel, vincristine, daunorubicin, vinblastine, actinomycin-D, docetaxel, etoposide, teniposide, bisantrene, homoharringtonine, Gleevec (STI-571), cisplatin, 5-fluorouracil, adriamycin, methotrexate, busulfan, But are not limited to, chlorambucil, cyclophosphamide, melphalan, nitrogen mustard, or nitrosoourea.
  • the cancer may be a cancer overexpressing CD44v6, more preferably the cancer overexpressing CD44v6 is lung cancer, brain tumor, breast cancer, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, rectal cancer, stomach cancer, But are not limited to, renal cancer, bladder cancer, ovarian cancer, cholangiocarcinoma, gallbladder cancer, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer or squamous cell carcinoma.
  • the pharmaceutical composition can inhibit cancer metastasis.
  • the pharmaceutical composition of the present invention may be prepared by using pharmaceutically acceptable and physiologically acceptable adjuvants in addition to the active ingredients.
  • the adjuvants include excipients, disintegrants, sweeteners, binders, coating agents, swelling agents, lubricants, Or a solubilizing agent such as a flavoring agent can be used.
  • the pharmaceutical composition of the present invention may be formulated into a pharmaceutical composition containing at least one pharmaceutically acceptable carrier in addition to the active ingredient for administration.
  • Acceptable pharmaceutical carriers for compositions that are formulated into a liquid solution include sterile water and sterile water suitable for the living body such as saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, One or more of these components may be mixed and used. If necessary, other conventional additives such as an antioxidant, a buffer, and a bacteriostatic agent may be added. In addition, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to formulate into injectable solutions, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
  • compositions of the present invention may be granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, suspending agents or injectable solutions or suspensions .
  • the pharmaceutical compositions of the present invention may be formulated and administered in a conventional manner via intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, intrasternal, percutaneous, intranasal, inhalation, topical, rectal, ≪ / RTI >
  • the effective amount of the active ingredient of the pharmaceutical composition of the present invention means the amount required for prevention or treatment of the disease.
  • the present invention is not limited to the particular type of the disease, the severity of the disease, the kind and amount of the active ingredient and other ingredients contained in the composition, the type of formulation and the patient's age, body weight, general health status, sex and diet, Rate of administration, duration of treatment, concurrent medication, and the like.
  • the composition of the present invention can be administered in an amount of 0.1 ng / kg to 10 g / kg once a day to several times a day in the case of an adult.
  • the present invention also provides a health functional food composition for preventing or ameliorating cancer comprising the peptide as an active ingredient.
  • the health functional food composition of the present invention may be provided in the form of powder, granules, tablets, capsules, syrups or beverages.
  • the health functional food composition may be used in combination with other food or food additives in addition to the active ingredient, Can be suitably used.
  • the amount of the active ingredient to be mixed can be suitably determined according to its use purpose, for example, prevention, health or therapeutic treatment.
  • the effective dose of the active ingredient contained in the health functional food composition may be used in accordance with the effective dose of the pharmaceutical composition.
  • the active ingredient can be used in an amount exceeding the above range since there is no problem in terms of safety.
  • the type of the health food includes meat, sausage, bread, chocolate, candy, snack, confectionery, pizza, ramen, other noodles, gums, dairy products including ice cream, Drinks, alcoholic beverages and vitamin complexes.
  • the present invention also provides a drug delivery composition comprising the peptide as an active ingredient.
  • the peptide according to the present invention can be used as an intelligent drug delivery vehicle for selectively delivering a drug to cancer tissues.
  • the peptide of the present invention When used in combination with a conventionally known drug to treat cancer, the peptide of the present invention selectively transmits the drug only to cancer tissues and cancer cells, thereby increasing the efficacy of the drug, Can significantly reduce the side effects.
  • the above drug may be used as an anticancer agent, and any anticancer agent that can be linked to the peptide of the present invention is not limited as long as it is conventionally used for the treatment of cancer.
  • any anticancer agent that can be linked to the peptide of the present invention is not limited as long as it is conventionally used for the treatment of cancer.
  • the linkage between the anticancer agent and the peptide of the present invention can be carried out by a method known in the art, for example, through covalent bonding, crosslinking and the like.
  • the peptide of the present invention can be chemically modified to the extent that its activity is not lost if necessary.
  • Human embryonic kidney cells HEK293 (ATCC), human breast cancer cells MDA-MB231 (ATCC), human prostate cancer cell PANC-1 (KCLB) and human cervical cancer cell HELA (ATCC) were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen) .
  • DMEM Dulbecco's modified Eagle's medium
  • MDA-MB-231-Red-Fluc-GFP (Bioware) and 4T1-Red-Fluc-GFP (Bioware) were cultured in DMEM supplemented with 10% fetal calf serum (FCS, PAA Laboratories).
  • MCF-7 was cultured in RMPI (Invitrogen) supplemented with 10% FCS.
  • Cells were cultured in a humidified incubator (85%) at 5% CO 2 , 37 ° C, under sterile conditions. All experiments were performed on a sterile clean bench. At 80% confluency, the adherent cells were passaged.
  • VFF-18 Mouse monoclonal CD44v6 (VFF-18) was purchased from Abcam, rabbit monoclonal antibody (AB51037) was purchased from Abcam, and the human monoclonal antibody to CD44 (VFF-7) was purchased from Santa Cruz Human monoclonal antibody (sc-7297) was purchased from Santa Cruz. Antibodies against Erk 1 (K-23) were purchased from Santa Cruz, and phospho-Erk phospho-p44 / 42 and phospho-c-Met (D26) ). Recombinant human HGF (R & D Systems, Wiesbaden, Germany) was activated overnight with 5% FCS.
  • a sequence encoding human CD44V6 was introduced using the PCR subcloning method.
  • the forward primer was GGACTTTCCAAAATGTCG and the reverse primer was ATTAGGACAAGGCTGGTGGG.
  • the expression vector was transformed with E. coli DH5 ⁇ and the DNA was isolated using a Mini-Prep Kit (Dokdo-Preparation) to obtain a high concentration of DNA for transient transfection.
  • HEK293 cells were transiently transfected in a 6-well plate with Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. Transformants were inoculated 24 hours prior to infection, 2 ⁇ 10 5 cell density of cells in 6-well plates. To transfect a well, 10 ⁇ l Lipofectamine 2000 reagent was diluted in 250 ⁇ l DMEM and reacted at room temperature for 5 minutes. Without serum, 4 ⁇ g of vector DNA was filled with 250 ⁇ l DMEM and mixed with Lipofectamine 2000 solution. The mixture was allowed to react at room temperature for 20 minutes (500 ⁇ l total per well). The old media of cells was immediately removed and replaced with fresh serum-free 1.5 ml DMEM medium.
  • Lipofectamine 2000 Invitrogen
  • DNA-transfection reagent-mixture was added to the cells. After 6 hours of incubation, the medium was replaced with a pre-warmed growth medium containing serum. Before starting the experiment, the newly inserted protein was expressed in the cells.
  • CD44v6 Peptides The bio-activity of the T7 hydrophobic library for screening Panning (Bio-panning)
  • Phage peptide libraries based on the T7 415-1b phage vector designated CX7C were designed according to the manufacturer's instructions (Novagen, Madison, WI).
  • the phage library has approximately 1 x 10 9 plaque-forming units (pfu). That is, transfected HEK-293 cells (GFP) were dispensed into 35 mm dishes and cultured confluently at 60-70%. For transient transfection of HEK-293 cells, cells were treated with Lipofectamine 2000 (Invitrogen). Prior to the start of the experiment, the cells were allowed to express a new insertion protein (GFP) expressing CD44v6 for 24-48 hours.
  • GFP transfected HEK-293 cells
  • the phage library of 1 x 10 9 plaque-forming units (pfu) was cultured in transfected HEK 293 cells for 1 hour at 4 ° C and the phages bound to the cells were incubated with 500 ⁇ L of BL21 bacteria (OD: 1 ) Culture medium. The eluate was used for titration and the remaining eluted phage were cultured in non-transfected cells for 30 min at 4 < 0 > C.
  • the unbound phages were then washed with DMEM containing 10 mg / ml bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • the phages bound to the cells were eluted with 500 ⁇ L of BL21 bacterial (OD: 1) culture medium at room temperature for 10 minutes.
  • the eluate was used for titration and the remaining eluted phage clone was dissolved in 10 ml of LB medium for the next cycle of amplification and the procedure was repeated 5 times.
  • the stepwise dilutions of the eluates were inoculated with E. coli cultured in LB medium for 2 hours at 37 ° C, and the number of colonies was counted by inverting the phage.
  • phages were first cultured and transfected into transfected cells.
  • a direct screening method was used to use all the phage clones in the next round as an amplification and phage enrichment method.
  • the drainage reduction of phage clones decreased by 1.9 ⁇ 10 1 fold in each of the 5 rounds.
  • DNA and amino acid sequence analysis of the DNA inserts of each of the 70 phage clones collected in the above was carried out by an automated DNA sequencer (Genotech Inc., Daegeon, Korea) using each primer (Macrogen). Amino acid sequences deduced from nucleotide sequences were aligned using the Clustal W program to find amino acid motifs shared between consensus sequences or peptides. Some of these peptides were randomly selected and BLAST searches were performed on the NCBI protein database to investigate proteins with high homology to each peptide sequence.
  • Serum-deficient (24 h) cells were incubated with growth factor HGF (25-50 ng / mL) for 10 min at 37 ° C. If indicated, cells were treated with CD44v6 specific peptide or control peptide (50 ⁇ g / ml) for 10 min at 37 ° C before induction, and the cells were washed with ice-cold PBS.
  • biotinylated CD44v6 peptide was incubated with monomeric avidin magnetic beads (Bioclone Inc.) for 30-60 minutes at room temperature with gentle rotation for peptide pull down prior to incubation with the cell lysate.
  • Cells were lysed using a cell lysis reagent (Thermo scientific) containing protease inhibitor. After the initial incubation of the biotinylated peptide + avidin beads (complex 1), the cells were washed with PBS and the complexes were incubated with the cell lysate for 30-60 minutes with gentle rotation at room temperature.
  • biotinylated peptide + avidin bead + cell lysate (complex 2) was eluted with 1X blocking buffer / elution buffer for 5 to 10 minutes after elution and eluted with CD44v6 antibody (Millipore) for pull- Western blot analysis was performed.
  • the MDA-MB-231 at a concentration of 2.5 ⁇ 10 5 cells per well was dispensed in a 12-well plate. After 24 hours, a scratch was made on the confluent cell layer using a sterile pipette tip. The medium was replaced with fresh medium containing HGF and HGF at 25 ng / ml was treated at 37 ° C for 10 minutes to induce growth factor. After the induction of HGF, 5 ⁇ g / ml CD44v6 peptide (each) and a combination of two peptides (v6Pep-1 + v6Pep-2) or 5 ⁇ g / ml of control peptide were treated at 37 ° C. for 10 minutes, , 48 hours and 60 hours, respectively (original magnification, ⁇ 100). The computer program ImageJ was used for quantitative evaluation and quantified the area covered by the cells in the scratch.
  • v6-1 5'-AGU AGU ACA ACG GAA ATT-39; v62: 59-GGA UAU CGC CAAACA CCC ATT-3 'or pool of non-specific control siRNA.
  • the control siRNA 50-CUACGCCAAUUUCGU (dTdT) 30) and glyceraldehyde-3 phosphate dehydrogenase (GAPDH) siRNA (50-UGUGAACCAUGAGAAGUA (dTdT) -30) were purchased from Bioneer. Transfection was performed using Lipofectamine 2000 (Invitrogen, Düsseldorf, Germany). Two transfections were performed at 24 hour intervals. Cells were cultured for 24 hours in a serum-deficient state for 48 hours after the first transfection and then further treated.
  • mice 6- to 8-week-old Balb / c female mice were purchased from Orient Bio. Under the guidelines of the Institutional Animal Care and Use Committee (IACUC) of Kyungpook National University, mice were kept and maintained.
  • IACUC Institutional Animal Care and Use Committee
  • the MDA-MB-231 cells (1 ⁇ 10 5 cells) was dispensed on the slide 4-well chamber. After the complete adhesion, the cell culture medium was changed to a fresh medium containing FITC-labeled peptide (10 ⁇ M) and incubated at 37 ° C. for 1 hour. The cells were washed with PBS for 3 to 5 minutes three times and then washed with CD44v6 antibody cruz), followed by Alexa 594-labeled goat anti-mouse IgG secondary antibody.
  • the nuclei were stained with DAPI and mounted on glass slides with a fading reagent, followed by observation of v6Pep-1 and v6Pep-2 accumulation labeled with FITC under confocal microscopy. Localization of FITC-labeled peptides in cells was observed under a confocal microscope (Zeiss, Jena, Germany).
  • In vivo NIRF imaging was performed using an IVIS Lumina III Imaging System (Perkin Elmer, Waltham, MA) under inhalation anesthesia.
  • IVIS Lumina III Imaging System Perkin Elmer, Waltham, MA
  • in vivo fluorescence images were taken at various time points (1, 2, 4 and 4 respectively) before and after injection. Mice were sacrificed after in vivo imaging and tumors and control organs were separated for further imaging using the IVIS Lumina III imaging system.
  • mice were euthanized 6 hours after CO 2 infusion. All major organs (liver, kidney, spleen, heart and lungs) were isolated with tumor tissue, washed with PBS and ex vivo fluorescence images were taken using IVIS Lumina III imaging system. The fluorescence intensities in the ROI of each organ were analyzed. Tumor tissues were fixed overnight with 4% paraformaldehyde and rapidly frozen. Tissue sections (8 ⁇ m thick) were prepared with cryo-microtome, stained with CD44v6 antibody (Santa Cruz) and stained with goat anti-mouse IgG secondary antibody labeled with Alexa 594. Control peptides and v6Pep-1 and v6Pep-2 tumor accumulation were observed by confocal microscopy after the nuclei were stained with DAPI.
  • MDA-MB-231 cells (5x10 3 cells / well in 96-well plate) were incubated with v6Pep-1, v6Pep-2 and v6Pep- Gt; 37 C < / RTI > for 4 hours. After replacing the serum-free medium with the culture medium containing 10% FBS, the cells were cultured for 24 hours and 48 hours and evaluated for cytotoxicity using CCK-8 assay (Dojindo, Kumamoto, Japan).
  • the cultured samples were diluted 100-fold and subjected to C18 reverse phase FPLC with a linear gradient of acetonitrile (Vydac protein and peptide C18, 0.1% trifluoroacetate in water for equilibrium and 0.1% trifluoroacetate in acetonitrile for equilibration) ≪ / RTI > To confirm the identity of the peaks from the profile of the C18 reversed phase FPLC, each peak was collected, vacuum dried, and analyzed by mass spectrometry (MS) using a MALDI-TOF mass spectrometer.
  • MS mass spectrometry
  • mice blood was collected and hematological factors were analyzed in DGMIF (Daegu-Gyeongbuk Medical Innovation Foundation) (Daegu, Korea).
  • DGMIF Daegu-Gyeongbuk Medical Innovation Foundation
  • HEK-293 cells transiently transfected with the CD44v6-GFP plasmid.
  • HEK-293 transfected cells were stained with CD44 variant 6 antibody (Fig. 1a). After confirmation by immunofluorescence analysis, transient transfection effects were also confirmed by western blotting at different time intervals of 24 h and 48 h, confirming transfection at each time point as compared to non-transfected HEK-293 cells .
  • the inventors In order to screen the CD44v6 specific peptides by direct screening methods, the inventors have confirmed the aggregate titer of all the phage clones in each round, which is significantly increased compared to the untransfected titres, 3.11 x 10 & lt ; 1 > times (Fig. 1B). In the 3rd, 4th and 5th rounds, 20 phage clones were randomly selected and the peptide-coding DNA inserts of phage clones were sequenced. Phage clones binding to CD44v6 expressing cells with high specificity were selected by phage binding ELISA, and several clones were found to bind in several expression and non-expression cell lines.
  • phage clones Compared with other phage clones, high levels of binding of clone-1 and clone-2 to CD44v6 were confirmed by phage ELISA and phage immunofluorescence staining, confirming the binding specificity and effect of phage clones.
  • Two phage clones showed high binding specificity in CD44v6 expressing cells.
  • the peptide sequence of the two clones is as follows. CNLNTIDTC (v6Pep-1, SEQ ID NO: 1), CNEWQLKSC (v6Pep-2, SEQ ID NO: 2).
  • Example 2 > CD44v6-specific cell binding of v6Pep-1 and v6Pep-2
  • MDA-MB-231 cells were cultured for 24 hours under the condition of serum deficiency and then applied to the experiment.
  • siRNAs v6-1 and v6-2 were transfected and maintained at different time intervals.
  • whole cell extracts were fractionated by SDS-PAGE, transferred to membranes, treated with 1 ⁇ g / ml of CD44v6 and CD44 antibody, and reacted overnight at 4 ° C.
  • Western blot analysis to confirm siRNA inhibition showed that CD44v6 specific siRNA inhibition was evident at 24 h, 48 h and 72 h, while wild-type CD44 was unchanged (Fig. 2a).
  • the CD44v6 isoform acts as a co-receptor for c-Met.
  • c-Met activation and signal transduction can be blocked by CD44v6 antibodies and peptides.
  • CD44v6 peptides v6Pep-1 and v6Pep-2
  • v6Pep1 + 2 the combination of two peptides
  • MDA-MB-231 and 4T1 cells were cultured under serum deprivation conditions (24 hours) and induced with growth factor HGF (25-50 ng / mL) for 10 minutes at 37 ° C. Prior to induction, cells were treated with CD44v6 specific peptide or control peptide (100 ng / ml) for 10 min at 37 < 0 > C. To detect activated Erk and activated c-Met, cells were lysed and applied to Western blot analysis using antibodies against phosphorylated Erk and phosphorylated c-Met.
  • CD44v6 and c-Met in order to determine the co-receptor function of CD44v6 and c-Met, it was dispensed on a 12-well plate for MDA-MB-231 at a concentration of 2.5 ⁇ 10 5 cells per well. After 24 hours, a scratch was made on the confluent cell layer using a sterile pipette tip. The medium was replaced with fresh medium containing HGF and HGF at 25 ng / ml was treated at 37 ° C for 10 minutes to induce growth factor.
  • the inventors have verified the internalization of the FITC-labeled peptide.
  • the internalization of the peptides was confirmed by confocal microscopy after reacting two peptides in MDA-MB-231 cells at 37 DEG C for 1 hour.
  • FITC-v6Pep-1 and FITC-v6Pep-2 were internalized into the cells in the range of 1-10 mu m and both were located in the cytoplasm.
  • CD44v6 peptide has high specificity with CD44v6 and its co-receptor c-MET.
  • MDA-MB-231 and 4T1 cells were incubated with different concentrations of v6Pep-1, v6Pep-2 and a combination of the two peptides (v6Pep-1 + v6Pep-2) for 24 hours to confirm the cytotoxicity of the CD44v6 peptide .
  • the combination of v6Pep-1, v6Ppep-2 and the two peptides did not affect cell viability.
  • MDA-MB-231 cells were xenografted with immunodeficient female nude mice to produce animal models.
  • MDA-MB231 cell suspension (5 x 106 cells) was subcutaneously injected with PBS into the right side of 5-week-old BALB / c female mice to prepare a tumor xenograft mouse.
  • In vivo fluorescence images were taken before or after injection at multiple time points (1, 2, 4, and 6 h, respectively) and flamma 675 was injected at the same concentration and method.
  • NIRF image signals were scanned and acquired using an IVIS imaging system (Caliper Life Sciences, Massachusetts).
  • IVIS imaging system Caliper Life Sciences, Massachusetts.
  • In vivo image analysis showed that v6Pep-1 and v6Pep-2 in MDA-MB-231 xenografted mice were located in tumor tissues at different time intervals and lasted for more than 6 h (FIGS. 5A and 5C).
  • the control peptides showed high non-specific tissue localization, and no accumulation could be confirmed at the tumor location.
  • v6Pep-1 and v6Pep-2 showed better tumor accumulation than the control peptides.
  • the fluorescence intensity of the target tumors showed a high accumulation in the v6Pep-1 and v6Pep-2 injected mice compared to the control peptides (Fig. 5b and Fig. 5d).
  • Control peptide-injected mice showed high accumulation in the liver and kidney compared to v6Pep-1 and v6Pep-2, and negligible levels in the lungs and spleen.
  • immunohistochemical analysis of the tissues revealed that v6Pep-1 and v6Pep-2 were co-located with CD44v6 in the tumor tissue, which was detected by staining with anti-CD44v6 antibody.
  • v6Pep-1 and v6Ppe-2 confirmed the antitumor effect of v6Pep-1 and v6Ppe-2 in combination with the c-Met inhibitor compound crizotinib in the MDA-MB-231 tumor model.
  • CD44v6 peptides are stable in the serum without degradation for more than 24 hours.
  • Systemic administration of v6Pep-1 + crizotinib and v6Pep-2 + crizotinib significantly inhibited metastasis compared to saline and control peptide treated groups, while v6Pep-1, v6Pep-2 and Cre- Each single administration of crizotinib also inhibited metastatic growth (Figure 6b).
  • tumor cells were xenografted with immunodeficient female nude mice to produce animal models.
  • 4T1 cell suspension (5 x 106 cells) was transplanted subcutaneously with PBS into breast fat pads of 5-week old BALB / c wild-type female mice to prepare tumor xenograft mice.
  • In vivo fluorescence images were taken before or after injection at multiple time points (1, 2, 4, and 6 h, respectively) and flamma 675 was injected at the same concentration and method.
  • NIRF image signals were scanned and acquired using an IVIS imaging system (Caliper Life Sciences, Massachusetts).
  • IVIS imaging system Caliper Life Sciences, Massachusetts.
  • v6Pep-1 and v6Pep-2 in 4T1 orthotopic mice were located in tumor tissues at different time intervals and lasted for more than 6h (Figs. 8A and 8C).
  • the control peptides showed high non-specific tissue localization, and no accumulation could be confirmed at the tumor location.
  • v6Pep-1 and v6Pep-2 showed better tumor accumulation than the control peptides. This clearly demonstrates that improved pharmacokinetic properties may not be an important factor in determining the tumor targeting activity of the peptides.
  • Control peptide-injected mice showed high accumulation in the liver and kidney compared to v6Pep-1 and v6Pep-2, and negligible levels in the lungs and spleen.
  • immunohistochemical analysis of the tissues revealed that v6Pep-1 and v6Pep-2 were co-located with CD44v6 in the tumor tissue, which was detected by staining with anti-CD44v6 antibody. Consistent with in vivo and ex vivo results, immunohistochemical analysis of tumor tissues indicated that v6Pep-1 and v6Pep-2 versus control peptides were associated with CD44v6 overexpressing tumor tissue (Fig. 8e).
  • the present inventors have confirmed the antitumor effect of v6Pep-1 and v6Ppe-2 in combination with crizotinib in the 4T1 tumor model.
  • Systemic administration of v6Pep-1 + crizotinib and v6Pep-2 + crizotinib significantly inhibited metastasis compared to the saline-treated group, and v6Pep-1, v6Pep-2 and crizotinib crizotinib alone inhibited tumor and metastatic growth slightly (Figure 9b).
  • Figure 9b As a result of quantification of total proton flux (proton number / second, p / s) in whole body and lung regions, flux was significantly reduced in the treated group (FIG.
  • In vivo antitumor activity was also measured in the 4T1 transgenic mouse model.
  • In vivo treatment similar to biochemical distribution and pharmacokinetic results, was performed by intravenously injecting 14.2 mg / kg of CD44v6 peptide three times a week and oral administration of crizotinib 25 mg / kg three times per week .
  • Intravenous administration of v6Pep-1 + crizotinib and v6Pep-2 + crizotinib in 4T1 mice significantly inhibited tumor growth, but a slight decrease in tumor growth was detected in the single treatment group (Fig. 10A).
  • the tumors grew more aggressively in the treated group with PBS and control peptide, and reached a size of 1,409 mm 3 after 28 days.
  • tumor volume has decreased slightly in CD44v6 peptide or crizotinib alone treated mice.
  • the weight of the resected tumor at the end of treatment was significantly reduced compared to the control (Fig. 10d).
  • inhibited metastatic growth in the PBS (saline) or single treatment group versus treated group showed negligible metastatic mass or micro mass (FIG. 10c).
  • C-Met activation in tumors using phosphorylated-c-Met staining was shown to be completely inhibited by the combination of CD44v6 peptide and crizotinib, and was partially inhibited in the single treatment group (Fig. 12A). Furthermore, caspase 3 detected more apoptotic cells in the tumor tissues of v6Pep-1 + crizotinib and v6Pep-2 + crizotinib treated group, but not the control group (Fig. 12b). These results suggest that v6Pep-1 + crizotinib and v6Pep-2 + crizotinib, which are specific for tumor location, penetrate various biological barriers and promote intracellular entry, followed by induction of large cell death .

Abstract

The present invention relates to peptides binding to CD44v6 and a use for inhibiting cancer metastasis by using the same. The peptides of the present invention specifically bind to and inhibit CD44v6, and thus exhibit the effect of inhibiting migration and metastasis of cancer cells. The peptides of the present invention have been obtained by selecting two types of peptides (v6Pep-1 and v6Pep-2) that bind well to cells in which human CD44v6 proteins are highly expressed by using phage peptide display technology, and it has been found that the peptides interfere with binding between c-Met and CD44v6 and inhibit migration of cancer cells. The peptides of the present invention are relatively stable in a serum and exhibit a high possibility as an anticancer therapeutic agent for inhibiting metastasis caused by progression and migration of cancer in the future.

Description

CD44v6에 결합하는 펩타이드 및 이의 용도Peptides that bind to CD44v6 and uses thereof
본 발명은 CD44v6에 결합하는 펩타이드 및 이를 이용한 암 전이 억제 용도에 관한 것이다.The present invention relates to peptides that bind to CD44v6 and uses thereof for inhibiting cancer metastasis.
높은 전이 가능성 및 줄기세포-유사 특성이 있는 암세포는 막관통 당단백질의 CD44 패밀리 멤버들을 발현하는데, 특히 여러 인간 암들의 공격적 단계에서 전이를 결정하는 인자로 알려진 CD44v6 이성질체(isoform)을 발현한다. CD44는 일반적으로 1차 리간드인 히알루론산(hyaluronic acid; HA)과 결합하고, 분자량은 80 내지 200 kDa 범위이다. CD44 단백질의 이질성(heterogeneity)은 10개 가변 엑손의 선택적 스플라이싱 및 추가적인 번역 후 변형에 기인한다. 인간 CD44 유전자는 염색체 11p13의 짧은 팔에 위치하고, 마우스에서는 염색체 2에 모든 CD44 단백질이 암호화된다. CD44 염색체는 20개의 엑손으로 구성되어 있으며, 그 중 10개는 CD44 변이체라 불리며, 스플라이싱에 있어 역할을 담당하고, "v"는 변이체의 약자로 CD44v (1v-10v)로 명명된다. 상기 이성질체는 세포 및 세포외 기질 사이의 접촉을 매개함으로써, 세포 분화, 세포 이동 및 세포 행동을 조절하고 참여하는데, 이는 조직 무결성(integrity)을 유지하는데 필수적이다. 이러한 중요한 기능들 때문에, 이들은 종양 진행 및 전이를 포함하는 병리학적 조건에 관련되는 경향이 있다. 특이적인 CD44 변이체들은 특정 암 전이 줄기세포에서 높게 발현되는 것으로 밝혀졌다.Cancer cells with high metastatic potential and stem cell-like properties express CD44 family members of the transmembrane glycoprotein, particularly CD44v6 isoforms, known as factors that determine metastasis at the aggressive stage of several human cancers. CD44 generally binds to the primary ligand hyaluronic acid (HA) and has a molecular weight in the range of 80 to 200 kDa. The heterogeneity of the CD44 protein is due to selective splicing of the 10 variable exons and additional post-translational modifications. The human CD44 gene is located on the short arm of chromosome 11p13, and all CD44 proteins are encoded on chromosome 2 in mice. The CD44 chromosome consists of 20 exons, 10 of which are called CD44 variants and play a role in splicing, and "v" is abbreviated as variant and is named CD44v (1v-10v). The isomer controls and participates in cell differentiation, cell migration and cellular behavior by mediating contact between the cell and the extracellular matrix, which is essential for maintaining tissue integrity. Because of these important functions, they tend to be related to pathological conditions, including tumor progression and metastasis. Specific CD44 variants have been shown to be highly expressed in certain cancer metastatic stem cells.
CD44v6은 많은 암에 관여하는 것으로 알려졌으며, 변이의 빈도가 높은 CD44v6-v10은 전이성 증식에 관여하는 것으로 보고되었는데, 예를 들면, 엑손 v6은 암세포의 전이를 촉진시키는 것으로 나타났다. 전이성 암에서의 CD44v6 펩타이드의 역할은 도 13에 나타냈다. 이전 보고에 따르면, 간세포 성장인자(hepatocyte growth factor, HGF)의 결합에 의한 상피세포의 c-Met 활성화에 있어, HGF는 이성질체를 포함하는 CD44 엑손 v6에 의존적인 점에서, 변이체 엑손 v6을 포함하는 CD44 이성질체는 전이 결정인자 역할을 한다. 즉, 전이에 있어 CD44v6의 역할은 수용체 타이로신 키나제(receptor tyrosine kinase; RTK)인 c-Met과 상호작용하여 HGF의 작용을 매개하는 것으로 알려져 있다. 상기 v6 펩타이드의 억제 작용은 CD44v6와 c-Met 간의 협동 수용체 작용을 차단시켜 종양세포의 침습 및 전이 확대를 억제시키므로 더 안정적이고 시스템적으로 사용가능한 화합물을 개발할 수 있는 가능성을 제시한다.CD44v6 is known to be involved in many cancers, and CD44v6-v10, which has a high frequency of mutation, has been reported to be involved in metastatic proliferation, for example, exon v6 promotes cancer cell metastasis. The role of CD44v6 peptide in metastatic cancer is shown in Fig. According to previous reports, in the activation of c-Met of epithelial cells by binding of hepatocyte growth factor (HGF), HGF was found to contain mutant exon v6 in that it was dependent on CD44 exon v6 containing isomers The CD44 isomer plays a role in the transcriptional determinant. In other words, the role of CD44v6 in metastasis is known to mediate the action of HGF by interacting with c-Met receptor tyrosine kinase (RTK). The inhibitory action of the v6 peptide inhibits the cooperative receptor action between CD44v6 and c-Met to inhibit tumor cell invasion and metastasis, suggesting the possibility of developing a more stable and systematically usable compound.
많은 암세포에서 c-Met 수용체를 통한 활성화 및 신호전달은 CD44v6-특이 항체, CD44v6 siRNAs 및 CD44 변이체 v6-특이 펩타이드 등을 통해 차단할 수 있다. CD44v6 이성질체는 c-Met 의존적 신호전달에 있어 이중 역할을 한다. 여러 보고에 따르면, 여러 인간 종양에서 CD44 이성질체의 증가는 나쁜 예후와 관련되어 있다. 고도 비호지킨 림프종에서 CD44v6 이성질체의 발현이 확인되었고, 나쁜 예후와 관련되어 있었다. 또한, 대장암 및 난소암에서의 CD44v6 및 CD44v8-v10의 발현도 나쁜 예후와 관련되어 있었는데, 이는 정밀한 진단 인자로 고려될 수도 있다. 자궁경부암에서도, CD44v6 및 CD44v7-v8의 높은 발현은 나쁜 예후와 관련되어 있었고, 위암에서도 CD44v6 및 CD44v5의 발현은 상향조절되었다. 한편, 인간화 단일클론 차단 항체들도 개발되었고, 임상에 적용되었으나, CD44v6에 결합하여 이를 차단할 수 있는 펩타이드에 대한 개발 필요성은 매우 높다.Activation and signaling through c-Met receptors in many cancer cells can be blocked through CD44v6-specific antibodies, CD44v6 siRNAs, and CD44 variant v6-specific peptides. CD44v6 isomers play a dual role in c-Met dependent signaling. According to several reports, an increase in CD44 isoforms in several human tumors is associated with a poor prognosis. Expression of CD44v6 isoform was confirmed in advanced non-Hodgkin's lymphoma and was associated with a poor prognosis. Expression of CD44v6 and CD44v8-v10 in colorectal cancer and ovarian cancer was also associated with poor prognosis, which may be considered as a precise diagnostic factor. In cervical cancer, high expression of CD44v6 and CD44v7-v8 was associated with poor prognosis, and expression of CD44v6 and CD44v5 was also upregulated in gastric cancer. On the other hand, humanized monoclonal anti-blocking antibodies have also been developed and applied to clinical trials, but the development of peptides capable of binding to and blocking CD44v6 is highly required.
본 발명은 CD44v6에 결합하는 펩타이드 및 이의 용도에 대한 것으로, 서열번호 1 또는 서열번호 2로 표시되는 아미노산 서열로 이루어진 CD44v6에 특이적으로 결합하는 펩타이드 및 상기 펩타이드를 유효성분으로 포함하는 암 진단용 조성물, 암 예방 또는 치료용 약학조성물, 암 예방 또는 개선용 건강기능식품 조성물 및 약물 전달용 조성물을 제공하고자 한다. The present invention relates to a peptide which binds to CD44v6 and its use, which comprises a peptide specifically binding to CD44v6 consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2, a cancer diagnostic composition comprising the peptide as an active ingredient, A pharmaceutical composition for preventing or treating cancer, a health functional food composition for cancer prevention or improvement, and a composition for drug delivery.
상기 과제의 해결을 위해, 본 발명은 서열번호 1 또는 서열번호 2로 표시되는 아미노산 서열로 이루어진 CD44v6에 특이적으로 결합하는 펩타이드를 제공한다. In order to solve the above problem, the present invention provides a peptide specifically binding to CD44v6 consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2.
또한, 본 발명은 상기 펩타이드를 코딩하는 폴리뉴클레오타이드, 상기 폴리뉴클레오타이드를 포함하는 재조합벡터 및 상기 재조합벡터로 형질전환된 형질전환체를 제공한다.The present invention also provides a polynucleotide encoding the peptide, a recombinant vector comprising the polynucleotide, and a transformant transformed with the recombinant vector.
또한, 본 발명은 상기 펩타이드를 유효성분으로 포함하는 암 진단용 조성물을 제공한다.The present invention also provides a composition for cancer diagnosis comprising the peptide as an active ingredient.
또한, 본 발명은 상기 펩타이드를 유효성분으로 포함하는 암 예방 또는 치료용 약학조성물을 제공한다. The present invention also provides a pharmaceutical composition for preventing or treating cancer comprising the peptide as an active ingredient.
또한, 본 발명은 상기 펩타이드를 유효성분으로 포함하는 암 예방 또는 개선용 건강기능식품 조성물을 제공한다.The present invention also provides a health functional food composition for preventing or ameliorating cancer comprising the peptide as an active ingredient.
또한, 본 발명은 상기 펩타이드를 유효성분으로 포함하는 약물 전달용 조성물을 제공한다.The present invention also provides a drug delivery composition comprising the peptide as an active ingredient.
본 발명은 CD44v6에 결합하는 펩타이드 및 이를 이용한 암 전이 억제 용도에 관한 것으로서, 본 발명의 펩타이드는 CD44v6과 특이적 결합하여 이를 억제함으로써 암세포의 이동 및 전이를 억제하는 효과를 나타낸다. 본 발명의 펩타이드는 파지 펩타이드 디스플레이 기술을 이용하여 사람의 CD44v6 단백질을 높게 발현시킨 세포를 대상으로 이와 잘 결합하는 두 종의 펩타이드(v6Pep-1 및 v6Pep-2)를 선별한 것으로, c-Met과 CD44v6간의 결합을 방해하며 암세포의 이동을 억제하는 것을 확인하였다. 본 발명의 펩타이드는 혈청 내에서 비교적 안정하여 향후 암의 진행 및 이동에 따른 전이를 억제하는 항암치료제로서 높은 가능성을 나타내고 있다.The present invention relates to a peptide binding to CD44v6 and its use for inhibiting cancer metastasis using the peptide. The peptide of the present invention specifically binds to CD44v6 and inhibits it, thereby inhibiting the movement and metastasis of cancer cells. The peptides of the present invention were obtained by screening two types of peptides (v6Pep-1 and v6Pep-2) that bind well to human CD44v6 protein with high expression of human CD44v6 protein using phage peptide display technology. Lt; RTI ID = 0.0 > CD44v6 < / RTI > and inhibits the migration of cancer cells. The peptide of the present invention is relatively stable in the serum and shows a high possibility as an anticancer therapeutic agent for inhibiting metastasis in accordance with progression and migration of cancer in the future.
도 1은 파지 디스플레이를 사용한 CD44v6 결합 펩타이드 선별 결과를 나타낸다. (a) CD44v6을 발현하는 DNA로 형질감염된 HEK-293 세포 및 형질감염되지 않은 세포의 면역형광 염색 결과이다. (b) 스크리닝 라운드 동안 파지 역가 집적 결과이다. (c) FACS 분석을 통한 MDA-MB-231, HELA, 4T1 및 MCF-7 세포에 대한 CD44v6 펩타이드의 상대 결합 결과이다. (d) CD44v6 발현 MDA-MB-231, HELA, 4T1 세포 및 CD44v6 비-발현 MCF-7 세포에서의 CD44v6 펩타이드 및 CD44v6 항체의 동시 위치화 결과이다. (e) CD44v6 펩타이드의 세포 결합 친화도 결과이다.Figure 1 shows the results of screening of CD44v6 binding peptides using phage display. (a) Immunofluorescent staining of HEK-293 cells transfected with DNA expressing CD44v6 and non-transfected cells. (b) Phage titres during the screening round. (c) the relative binding results of CD44v6 peptide to MDA-MB-231, HELA, 4T1 and MCF-7 cells via FACS analysis. (d) Results of co-localization of CD44v6 peptide and CD44v6 antibody in CD44v6 expressing MDA-MB-231, HELA, 4T1 cells and CD44v6 non-expressing MCF-7 cells. (e) cell binding affinity of CD44v6 peptide.
도 2는 v6Pep-1 및 v6Pep-2의 CD44v6 특이적 세포 결합 결과를 나타낸다. (a) MDA-MB-231 세포주에서 CD44v6 특이적 siRNA를 이용한 유전자 녹다운을 확인하기 위한 웨스턴 블랏 결과이다. (b) CD44v6 유전자 녹다운 후, FITC 표지된 CD44v6 펩타이드가 결합된 세포의 형광세기를 유세포 분석한 결과이다. (c) CD44v6 항체 반응 후, v6Pep-1 및 v6Pep-2로 염색된 MDA-MB-231 세포의 공초점 이미지 분석 결과이다. (d) MDA-MB-231 및 MCF-7 세포에서 CD44v6 항체 및 CD44v6 펩타이드의 경쟁 분석 결과이다. 세포와 펩타이드의 결합율을 3번의 독립적 실험 결과 평균±표준편차로 나타냈다. *p < 0.05, **p < 0.01 by Students t-test.Figure 2 shows the CD44v6 specific cell binding results of v6Pep-1 and v6Pep-2. (a) Western blot results for confirming gene knockdown using CD44v6 specific siRNA in MDA-MB-231 cell line. (b) Flow cytometry analysis of fluorescence intensity of FITC-labeled CD44v6-bound cells after CD44v6 gene knockdown. (c) Confocal image analysis of MDA-MB-231 cells stained with v6Pep-1 and v6Pep-2 after CD44v6 antibody reaction. (d) competition analysis of CD44v6 antibody and CD44v6 peptide in MDA-MB-231 and MCF-7 cells. The cell-peptide binding ratio was expressed as the mean ± standard deviation of three independent experiments. * p < 0.05, ** p < 0.01 by Students t-test.
도 3은 v6Pep-1 및 v6Pep-2에 의한 c-Met 및 Erk의 HGF-유도 인산화 억제 결과를 나타낸다. (a) 및 (c) HGF 유도 MDA-MB-231 및 4T1 세포에서 RTKs 및 Erk의 활성화를 나타내는 웨스턴 블랏 결과이다. (b) 및 (d) CD44v6 펩타이드 및 대조군 펩타이드 존재하에서의 세포 이동 분석 결과이다.Figure 3 shows HGF-induced phosphorylation inhibition results of c-Met and Erk by v6Pep-1 and v6Pep-2. (a) and (c) Western blot results indicating the activation of RTKs and Erk in HGF-induced MDA-MB-231 and 4T1 cells. (b) and (d) cell migration analysis results in the presence of CD44v6 peptide and control peptide.
도 4는 v6Pep-1 및 v6Pep-2에 의한 HGF-유도 c-Met의 내재화 억제 및 CD44v6의 풀다운(pull-down)을 나타낸다. (a) 유방 종양 MDA-MB-231 세포에서, CD44v6 항체 반응 후, FITC-표지된 CD44v6 펩타이드의 공초점 현미경 분석 결과이다. (b) MDA-MB-231 세포에서 HGF 유도에 따른 CD44v6 펩타이드의 공초점 현미경 분석 결과이다. (c) 인산화-c-Met 및 c-Met에 대한 웨스턴 블랏 분석 결과이다. (d) 스트렙타비딘 및 비오틴 표지된 펩타이드의 접합에 따른 풀다운 분석 결과이다.Figure 4 shows the inhibition of the internalization of HGF-induced c-Met by v6Pep-1 and v6Pep-2 and the pull-down of CD44v6. (a) Confocal microscopy analysis of FITC-labeled CD44v6 peptide after breast cancer MDA-MB-231 cells, CD44v6 antibody reaction. (b) Confocal microscope analysis of CD44v6 peptide following induction of HGF in MDA-MB-231 cells. (c) Western blot analysis of phosphorylated-c-Met and c-Met. (d) pulldown analysis results of the conjugation of streptavidin and biotin-labeled peptides.
도 5는 생체 내에서(in vivo) CD44v6-발현 인간 유방 종양 세포를 표적으로 하는 CD44v6 펩타이드에 대한 결과를 나타낸다. (a) v6Pep-1 및 v6Pep-2의 종양 호밍(homing) 활성을 생체 내에서(in vivo) 이미지화한 결과이다. (b) 여러 장기에서 CD44v6 펩타이드의 축적에 대한 생체 외(Ex-vivo) 이미지 결과이다. (c) 종양 위치에서의 생체 내(in vivo) 형광 세기를 정량한 결과이다. (d) 종양 및 대조 장기에서의 생체 외(Ex-vivo) 형광세기를 정량한 결과이다. (e) 종양 조직 절편을 공초점 현미경으로 분석한 결과이다.Figure 5 shows the results for CD44v6 peptide targeting CD44v6-expressing human breast tumor cells in vivo. (a) in vivo imaging of tumor homing activity of v6Pep-1 and v6Pep-2. (b) in-vivo imaging results for the accumulation of CD44v6 peptide in various organs. (c) fluorescence intensities in vivo at tumor sites. (d) In-vivo fluorescence intensity in tumor and control organ. (e) The result of analysis of the tumor tissue section by confocal microscope.
도 6은 CD44v6 펩타이드에 의한 인간 유방암 모델의 전이 억제에 대한 결과를 나타낸다. (a) 약물치료 계획표를 나타낸다. (b) 종양 성장의 생물발광 이미지화 및 모니터링 결과이다. (c) 전체 프로톤 플럭스의 정량화 결과이다. (d) 치료 과정 중 체중을 나타낸다.Figure 6 shows the results for inhibition of metastasis of the human breast cancer model by CD44v6 peptide. (a) Represents a medication schedule. (b) bioluminescence imaging and monitoring results of tumor growth. (c) the result of quantification of the total proton flux. (d) weight during treatment.
도 7은 CD44v6 펩타이드에 의한 인간 유방암 모델의 전이 억제에 대한 결과를 나타낸다. (a) 및 (b) 촬영된 전신 X- ray 및 생물발광 이미지화 결과이다. (c) 22일째 폐 무게를 나타낸다. (d) 생존율을 나타낸다. (e) 동결 폐 절편의 H & E 염색 분석 결과이다.Figure 7 shows the results for inhibition of metastasis of the human breast cancer model by CD44v6 peptide. (a) and (b) are photographed whole body X-ray and bioluminescence imaging results. (c) represents the lung weight on the 22nd day. (d) survival rate. (e) H & E staining analysis of the frozen section.
도 8은 생체 내에서(in vivo) CD44v6-발현 마우스 유방 종양 세포를 선택적으로 표적하는 CD44v6 펩타이드에 대한 결과를 나타낸다. (a) v6Pep-1 및 v6Pep-2의 종양 호밍(homing) 활성을 생체 내에서(in vivo) 이미지화한 결과이다. (b) 여러 장기에서 CD44v6 펩타이드의 축적에 대한 생체 외(Ex-vivo) 이미지 결과이다. (c) 종양 위치에서의 생체 내(in vivo) 형광 세기를 정량한 결과이다. (d) 종양 및 대조 장기에서의 생체 외(Ex-vivo) 형광세기를 정량한 결과이다. (e) 종양 조직 절편을 공초점 현미경으로 분석한 결과이다.Figure 8 shows the results for CD44v6 peptide selectively targeting CD44v6-expressing mouse breast tumor cells in vivo. (a) in vivo imaging of tumor homing activity of v6Pep-1 and v6Pep-2. (b) in-vivo imaging results for the accumulation of CD44v6 peptide in various organs. (c) fluorescence intensities in vivo at tumor sites. (d) In-vivo fluorescence intensity in tumor and control organ. (e) The result of analysis of the tumor tissue section by confocal microscope.
도 9는 생체 내(in vivo) 마우스 종양 세포의 전이를 차단하는 CD44v6 펩타이드에 대한 결과이다. (a) 실험 모식도를 나타낸다. (b) 종양 성장의 생물발광 이미지화 및 모니터링 결과이다. (c) 및 (d) 전신 및 폐 부위의 전체 프로톤 플럭스의 정량화 결과이다. Figure 9 shows the results for a CD44v6 peptide that blocks the metastasis of mouse tumor cells in vivo. (a) An experimental schematic diagram is shown. (b) bioluminescence imaging and monitoring results of tumor growth. (c) and (d) are quantification results of whole proton fluxes in whole body and lung regions.
도 10은 생체 내(in vivo) 마우스 종양 세포의 전이를 차단하는 CD44v6 펩타이드에 대한 결과이다. (a) 종양 접종 후 종양 부피 변화 결과를 나타낸다. (b) 치료 과정 중 체중을 나타낸다. (c) 처리 마지막 단계에서 폐에서의 전이성 종양 종괴의 수를 나타낸다. (d) 종양 무게를 나타낸다.Figure 10 shows the results for a CD44v6 peptide that blocks the metastasis of mouse tumor cells in vivo. (a) shows the result of tumor volume change after tumor inoculation. (b) weight during treatment. (c) the number of metastatic tumor masses in the lung at the end of treatment. (d) tumor weight.
도 11은 생체 내(in vivo) 마우스 종양 세포의 전이를 차단하는 CD44v6 펩타이드에 대한 결과이다. (a) 생존율을 나타낸다. (b) 동결 폐 절편의 H & E 염색 분석 결과이다.Figure 11 shows the results for a CD44v6 peptide that blocks metastasis of mouse tumor cells in vivo. (a) Survival rate. (b) H & E staining analysis of frozen section.
도 12는 생체 내(in vivo) 마우스 종양 세포의 전이를 차단하는 CD44v6 펩타이드에 대한 결과이다. (a) 처리 후, 인산화된 c-Met(P-met) 및 c-Met 항체로 1차 종양 조직을 면역형광염색 분석한 결과이다. (b) 처리 후, 동결 종양 조직의 caspase-3 염색 분석 결과이다.Figure 12 shows the results for a CD44v6 peptide that blocks the metastasis of mouse tumor cells in vivo. (a) After the treatment, the primary tumor tissues were analyzed by immunofluorescence staining with phosphorylated c-Met (P-met) and c-Met antibodies. (b) the caspase-3 staining of frozen tumor tissues after treatment.
도 13은 전이성 암에서의 CD44v6 펩타이드의 역할을 나타낸 모식도이다.13 is a schematic diagram showing the role of CD44v6 peptide in metastatic cancer.
이에, 본 발명자들은 CD44v6에 특이적으로 결합할 수 있는 펩타이드를 확인하기 위해서, CD44v6을 일시적으로 과발현하는 세포로 파지 디스플레이 펩타이드 라이브러리를 스크리닝하였다. 다수의 스크리닝 후, 선택된 파지 클론을 서열분석하였다. 이 중, 2개의 클론이 대조군 클론 대비 CD44v6 발현 세포와 가장 선택적으로 결합하는 것을 확인하였다. 펩타이드들은 RTK 활성화를 차단시켰고, MDA-MB-231 및 4T1 유방암 마우스에서 종양 성장 및 전이 확대를 억제시켰으며, 크리조티닙(crizotinib)과의 조합에서도 상당한 효과를 확인하였다. 결과적으로 본 발명자들은 CD44v6에 특이적으로 결합하고 이를 억제하는데 효과적으로 사용할 수 있는 펩타이드를 성공적으로 스크리닝하였으며, 상기 펩타이드의 항암 치료제로서의 가능성을 확인하고 본 발명을 완성하였다.Accordingly, in order to identify peptides capable of specifically binding to CD44v6, the present inventors screened phage display peptide libraries with cells transiently overexpressing CD44v6. After multiple screenings, the selected phage clones were sequenced. Of these, two clones were found to bind most selectively to CD44v6 expressing cells compared to control clones. The peptides blocked RTK activation and inhibited tumor growth and metastatic spread in MDA-MB-231 and 4T1 breast cancer mice and also demonstrated significant effects in combination with crizotinib. As a result, the present inventors have successfully screened peptides that can specifically bind to CD44v6 and effectively inhibit them, and confirmed the possibility of the peptide as an anti-cancer therapeutic agent, thus completing the present invention.
본 발명은 서열번호 1 또는 서열번호 2로 표시되는 아미노산 서열로 이루어진 CD44v6에 특이적으로 결합하는 펩타이드를 제공한다. 상세하게는, 상기 펩타이드는 c-Met의 인산화를 억제하여 CD44v6 및 c-Met 간의 신호전달을 차단할 수 있다.The present invention provides a peptide specifically binding to CD44v6 consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2. Specifically, the peptides can inhibit phosphorylation of c-Met and block signal transduction between CD44v6 and c-Met.
본 발명의 펩타이드는 당업계에 공지된 화학적 합성(Creighton, Proteins; Structures and Molecular Principles, W. H. Freeman and Co., NY, 1983)에 의해 쉽게 제조될 수 있다. 대표적인 방법으로서 액체 또는 고체상 합성, 단편 응축, F-MOC 또는 T-BOC 화학법이 포함되지만(Chemical Approaches to the Synthesis of Peptides and Proteins, Williams et al., Eds., CRC Press, Boca Raton Florida, 1997; A Practical Approach, Athert on & Sheppard, Eds., IRL Press, Oxford, England, 1989), 이들로 한정되는 것은 아니다.The peptides of the present invention can be readily prepared by chemical synthesis known in the art (Creighton, Proteins, Structures and Molecular Principles, W. H. Freeman and Co., NY, 1983). Typical methods include liquid or solid phase synthesis, fractional condensation, F-MOC or T-BOC chemistry (see, for example, Chemical Approaches to the Synthesis of Peptides and Proteins, Williams et al., Eds., CRC Press, Boca Raton Florida A Practical Approach, Atherton & Sheppard, Eds., IRL Press, Oxford, England, 1989).
또한 본 발명의 펩타이드는 유전공학적 방법에 의해 제조될 수 있다. 우선, 통상적인 방법에 따라 상기 펩타이드를 코딩하는 DNA 서열을 합성한다. DNA 서열은 적절한 프라이머를 사용하여 PCR 증폭함으로써 합성할 수 있다. 다른 방법으로 당업계에 공지된 표준 방법에 의해, 예컨대, 자동 DNA 합성기(예: Biosearch 또는 AppliedBiosystems사에서 판매하는 것)를 사용하여 DNA 서열을 합성할 수도 있다. 제작된 DNA 서열은 이 DNA 서열에 작동가능하게 연결되어(operatively linked) 그 DNA 서열의 발현을 조절하는 하나 또는 그 이상의 발현 조절 서열(expression control sequence)(예: 프로모터, 인핸서 등)을 포함하는 벡터에 삽입시키고, 이로부터 형성된 재조합 발현 벡터로 숙주세포를 형질전환시킨다. 생성된 형질전환체를 상기 DNA 서열이 발현되도록 적절한 배지 및 조건 하에서 배양하여, 배양물로부터 상기 DNA 서열에 의해 코딩된 실질적으로 순수한 펩타이드를 회수한다. 상기 회수는 이 기술분야에서 공지된 방법(예컨대, 크로마토그래피)을 이용하여 수행할 수 있다. 상기에서 '실질적으로 순수한 펩타이드'라 함은 본 발명에 따른 펩타이드가 숙주로부터 유래된 어떠한 다른 단백질도 실질적으로 포함하지 않는 것을 의미한다. The peptides of the present invention can also be produced by genetic engineering methods. First, a DNA sequence encoding the peptide is synthesized according to a conventional method. DNA sequences can be synthesized by PCR amplification using appropriate primers. Alternatively, the DNA sequence may be synthesized by standard methods known in the art, for example, using an automated DNA synthesizer (e.g., marketed by Biosearch or Applied Biosystems). The constructed DNA sequence is operatively linked to the DNA sequence and contains one or more expression control sequences (e.g., promoters, enhancers, etc.) that regulate the expression of the DNA sequence , And the host cells are transformed with the recombinant expression vector formed therefrom. The resulting transformant is cultured under appropriate medium and conditions so that the DNA sequence is expressed, and the substantially pure peptide encoded by the DNA sequence is recovered from the culture. The recovery can be performed using methods known in the art (e.g., chromatography). By "substantially pure peptide" herein is meant that the peptide according to the invention is substantially free of any other proteins derived from the host.
본 발명에서 상기 서열번호 1 또는 서열번호 2의 아미노산 서열로 표시되는 펩타이드는 이의 기능적 변이체를 포함하는 개념이다. “기능적 변이체”란 CD44v6에 특이적으로 결합하는 본 발명의 펩타이드의 성질에는 영향을 미치지 않는 아미노산 위치에서 일부 아미노산의 치환이 발생된 모든 유사한 서열을 의미한다.In the present invention, the peptide represented by the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2 includes a functional variant thereof. &Quot; Functional variant &quot; means any similar sequence in which substitution of some amino acids occurs at amino acid positions that do not affect the properties of the peptides of the invention that specifically bind to CD44v6.
또한, 본 발명은 상기 펩타이드를 코딩하는 폴리뉴클레오타이드를 제공한다.The present invention also provides a polynucleotide encoding said peptide.
상기 “폴리뉴클레오타이드(polynucleotide)”는 단일가닥 또는 이중가닥 형태로 존재하는 디옥시리보뉴클레오티드 또는 리보뉴클레오티드의 중합체이다. RNA 게놈 서열, DNA(gDNA 및 cDNA) 및 이로부터 전사되는 RNA 서열을 포괄하며, 특별하게 다른 언급이 없는 한 천연의 폴리뉴클레오타이드의 유사체를 포함한다.The &quot; polynucleotide &quot; is a polymer of deoxyribonucleotides or ribonucleotides present in single-stranded or double-stranded form. RNA genomic sequences, DNA (gDNA and cDNA) and RNA sequences transcribed therefrom, and includes analogs of natural polynucleotides unless otherwise specified.
상기 폴리뉴클레오타이드는 상기 펩타이드를 코딩하는 뉴클레오타이드 서열뿐만 아니라, 그 서열에 상보적인(complementary) 서열도 포함한다. 상기 상보적인 서열은 완벽하게 상보적인 서열뿐만 아니라, 실질적으로 상보적인 서열도 포함한다.The polynucleotide includes a nucleotide sequence encoding the peptide as well as a sequence complementary to the nucleotide sequence. The complementary sequence includes not only perfectly complementary sequences but also substantially complementary sequences.
또한, 상기 폴리뉴클레오타이드는 변형될 수 있다. 상기 변형은 뉴클레오타이드의 추가, 결실 또는 비보존적 치환 또는 보존적 치환을 포함한다. 상기 아미노산 서열을 코딩하는 폴리뉴클레오타이드는 상기 뉴클레오타이드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오타이드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기 뉴클레오타이드 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 80%의 상동성, 최소 90%의 상동성 또는 최소 95%의 상동성을 나타내는 서열일 수 있다.In addition, the polynucleotide may be modified. Such modifications include addition, deletion or non-conservative substitution or conservative substitution of nucleotides. The polynucleotide encoding the amino acid sequence is also interpreted to include a nucleotide sequence that exhibits substantial identity to the nucleotide sequence. The above substantial identity is determined by aligning the nucleotide sequence with any other sequence as much as possible and analyzing the aligned sequence using algorithms commonly used in the art to obtain a sequence having at least 80% homology, At least 90% homology or at least 95% homology.
또한, 본 발명은 상기 폴리뉴클레오타이드를 포함하는 재조합벡터를 제공한다.The present invention also provides a recombinant vector comprising the polynucleotide.
또한, 본 발명은 상기 재조합벡터로 형질전환된 형질전환체를 제공한다.In addition, the present invention provides a transformant transformed with said recombinant vector.
본 발명에 있어서,“벡터”는 클론유전자(또는 클론 DNA의 다른 조각)를 운반하는데 사용되는 스스로 복제되는 DNA분자를 의미한다.In the present invention, &quot; vector &quot; means a DNA molecule that is replicated by itself, which is used to carry the clone gene (or another fragment of the clone DNA).
본 발명에서 있어서, “재조합벡터”는 숙주 세포 내에서 삽입된 핵산을 발현할 수 있는 당 분야에 공지된 플라스미드, 바이러스 벡터 또는 기타 매개체를 의미하는 것으로서, 당업계에 공지된 통상의 발현벡터에 본 발명의 펩타이드를 암호화하는 폴리뉴클레오타이드가 작동가능하게 연결된 것일 수 있다. 상기 재조합벡터는 일반적으로 숙주세포에서 증식할 수 있는 복제원점, 발현을 조절하는 하나 이상의 발현 조절 서열(예. 프로모터, 인핸서 등), 선별 마커(selective marker) 및 발현 조절 서열과 작동가능하게 연결된 본 발명의 펩타이드를 암호화하는 폴리뉴클레오타이드를 포함할 수 있다. 형질전환체는 상기 재조합벡터에 의해 형질전환된 것일 수 있다.In the present invention, &quot; recombinant vector &quot; means a plasmid, viral vector or other medium known in the art capable of expressing an inserted nucleic acid in a host cell. The polynucleotide encoding the peptide of the invention may be operably linked. The recombinant vector generally comprises a replication origin that is capable of propagating in a host cell, at least one expression control sequence (e.g., a promoter, enhancer, etc.) that regulates expression, a selectable marker, and a sequence operably linked to an expression control sequence And a polynucleotide encoding the peptide of the invention. The transformant may be one which has been transformed by the recombinant vector.
바람직하게는 형질전환체는 본 발명의 펩타이드를 암호화하는 폴리뉴클레오타이드를 포함하는 재조합벡터를 당업계에 공지된 방법, 예를 들어 이에 한정되지는 않으나, 일시적 형질감염(transient transfection), 미세주사, 형질도입(transduction), 세포융합, 칼슘 포스페이트 침전법, 리포좀 매개된 형질감염(liposome-mediated transfection), DEAE 덱스트란-매개된 형질감염(DEAE Dextran- mediated transfection), 폴리브렌-매개된 형질 감염(polybrene-mediated transfection), 전기침공법(electropora tion), 유전자 총(gene gun) 및 세포 내로 핵산을 유입시키기 위한 다른 공지의 방법에 의해 숙주세포에 도입하여 수득할 수 있다(Wu et al., J. Bio. Chem., 267:963-967, 1992; Wu and Wu, J. Bio. Chem., 263:14621-14624, 1988).Preferably, the transformants are produced by recombinant vectors containing polynucleotides encoding the peptides of the invention by methods known in the art such as, but not limited to, transient transfection, microinjection, Transfection, transduction, cell fusion, calcium phosphate precipitation, liposome-mediated transfection, DEAE dextran-mediated transfection, polybrene-mediated transfection, (Wu et al., J. Org. Immunol. Immunol. Immunol. Immunol. Immun. J. Immunol. Immun. Bio. Chem., 267: 963-967, 1992; Wu and Wu, J. Bio. Chem., 263: 14621-14624, 1988).
또한, 본 발명은 상기 펩타이드를 유효성분으로 포함하는 암 진단용 조성물을 제공한다. The present invention also provides a composition for cancer diagnosis comprising the peptide as an active ingredient.
바람직하게는, 상기 암은 CD44v6이 과발현되는 암일 수 있고, 보다 바람직하게는 상기 CD44v6이 과발현되는 암은 폐암, 뇌종양, 유방암, 간암, 피부암, 식도암, 고환암, 신장암, 대장암, 직장암, 위암, 신장암, 방광암, 난소암, 담관암, 담낭암, 자궁암, 자궁경부암, 전립선암, 두경부암, 췌장암 또는 편평상피세포암일 수 있으나, 이에 한정되는 것은 아니다.Preferably, the cancer may be a cancer overexpressing CD44v6, more preferably the cancer overexpressing CD44v6 is lung cancer, brain tumor, breast cancer, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, rectal cancer, stomach cancer, But are not limited to, renal cancer, bladder cancer, ovarian cancer, cholangiocarcinoma, gallbladder cancer, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer or squamous cell carcinoma.
본 발명에서 "진단"이란 병리 상태의 존재 또는 특징을 확인하는 것을 의미한다. 본 발명의 목적상, 진단은 암의 존재 또는 특징을 확인하는 것이다. In the present invention, "diagnosis" means identifying the presence or characteristic of a pathological condition. For purposes of the present invention, the diagnosis is to identify the presence or characteristics of the cancer.
본 발명의 펩타이드를 이용한 암의 진단은 혈액, 소변이나 바이옵시(biopsy)에 의해 직접 얻은 해당 조직 또는 세포에 본 발명의 펩타이드를 반응시켜 이들의 결합을 검출함으로써 진단할 수 있다. The diagnosis of cancer using the peptide of the present invention can be made by detecting the binding of the peptide of the present invention to the tissue or cells directly obtained by blood, urine or biopsy.
또한, 본 발명의 펩타이드가 암 조직에 결합하였는지 여부를 용이하게 확인, 검출 및 정량하기 위하여, 본 발명의 펩타이드는 표지된 상태로 제공될 수 있다. 즉, 검출가능한 표지에 링크(예: 공유 결합 또는 가교)되어 제공될 수 있다. 상기 검출 가능한 표지는 발색효소(예: 퍼옥시다제(peroxidase), 알칼라인 포스파타제(alkaline phosphatase)), 방사성 동위원소(예: 124I, 125I, 111In, 99mTc, 32P, 35S), 크로모포어(chromophore), 발광물질 또는 형광물질(예: FITC, RITC, 로다민(rhodamine), 시아닌(cyanine), 텍사스레드(Texas Red), 플로레신(fluorescein), 피코에리트린(phycoerythrin), 퀀텀닷(quantum dots))등 일 수 있다.Further, in order to easily identify, detect and quantify whether or not the peptide of the present invention binds to cancer tissue, the peptide of the present invention can be provided in a labeled state. That is, they may be provided by linking (e.g., covalently binding or bridging) to a detectable label. The detectable label is a chromogenic enzyme (e.g., peroxidase (peroxidase), alkaline phosphatase (alkaline phosphatase)), radioactive isotopes (for example: 124 I, 125 I, 111 In, 99 mTc, 32 P, 35 S), A chromophore, a luminescent material or a fluorescent material such as FITC, RITC, rhodamine, cyanine, Texas Red, fluorescein, phycoerythrin, Quantum dots), and the like.
유사하게, 상기 검출 가능한 표지는 항체 에피토프(epitope), 기질(substrate), 보조인자(cofactor), 저해제 또는 친화 리간드일 수 있다. 이러한 표지는 본 발명의 펩타이드를 합성하는 과정 중에 수행할 수도 있고, 이미 합성된 펩타이드에 추가로 수행될 수도 있다. 만약 검출가능한 표지로 형광물질을 이용하는 경우에는 형광단층촬영(Fluorescence mediated tomography:FMT)으로 암을 진단할 수 있다. 예컨대, 형광물질로 표지된 본 발명의 펩타이드를 혈액 내로 순환시키고 형광단층촬영으로 펩타이드에 의한 형광을 관찰할 수 있다. 형광이 관찰된다면, 암으로 진단된다.Similarly, the detectable label may be an antibody epitope, a substrate, a cofactor, an inhibitor or an affinity ligand. Such labeling may be performed during the synthesis of the peptide of the present invention, or may be performed in addition to the peptide already synthesized. If a fluorescent substance is used as a detectable label, the cancer can be diagnosed by fluorescence-based tomography (FMT). For example, the peptide of the present invention labeled with a fluorescent substance can be circulated into the blood and the fluorescence by the peptide can be observed by fluorescence tomography. If fluorescence is observed, it is diagnosed as cancer.
또한, 본 발명은 상기 펩타이드를 유효성분으로 포함하는 암 예방 또는 치료용 약학조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating cancer comprising the peptide as an active ingredient.
또한, 본 발명은 펩타이드 및 항암제를 유효성분으로 포함하는 암 예방 또는 치료용 약학조성물을 제공한다. The present invention also provides a pharmaceutical composition for preventing or treating cancer, comprising a peptide and an anticancer agent as an active ingredient.
바람직하게는, 상기 항암제는 크리조티닙(crizotinib), 독소루비신, 파클리탁셀, 빈크리스틴, 다우노루비신(daunorubicin), 빈블라스틴(vinblastine), 액티노마이신-D(actinomycin-D), 도세탁셀, 에토포사이드(etoposide), 테니포사이드(teniposide), 비산트렌 (bisantrene), 호모해링토닌(homoharringtonine), 글리벡(Gleevec; STI-571), 시스플라틴, 5-플로오로우라실, 아드리아마이신, 메토트렉세이트, 부설판(busulfan), 클로람부실(chlorambucil), 시클로포스파미드(cyclophosphamide), 멜팔란 (melphalan), 니트로겐 무스타드(nitrogen mustard) 또는 니트로소우레아 (nitrosourea)일 수 있으나, 이에 한정되는 것은 아니다.Preferably, the anticancer agent is selected from the group consisting of crizotinib, doxorubicin, paclitaxel, vincristine, daunorubicin, vinblastine, actinomycin-D, docetaxel, etoposide, teniposide, bisantrene, homoharringtonine, Gleevec (STI-571), cisplatin, 5-fluorouracil, adriamycin, methotrexate, busulfan, But are not limited to, chlorambucil, cyclophosphamide, melphalan, nitrogen mustard, or nitrosoourea.
바람직하게는, 상기 암은 CD44v6이 과발현되는 암일 수 있고, 보다 바람직하게는 상기 CD44v6이 과발현되는 암은 폐암, 뇌종양, 유방암, 간암, 피부암, 식도암, 고환암, 신장암, 대장암, 직장암, 위암, 신장암, 방광암, 난소암, 담관암, 담낭암, 자궁암, 자궁경부암, 전립선암, 두경부암, 췌장암 또는 편평상피세포암일 수 있으나, 이에 한정되는 것은 아니다.Preferably, the cancer may be a cancer overexpressing CD44v6, more preferably the cancer overexpressing CD44v6 is lung cancer, brain tumor, breast cancer, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, rectal cancer, stomach cancer, But are not limited to, renal cancer, bladder cancer, ovarian cancer, cholangiocarcinoma, gallbladder cancer, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer or squamous cell carcinoma.
바람직하게는, 상기 약학조성물은 암의 전이를 억제시킬 수 있다.Preferably, the pharmaceutical composition can inhibit cancer metastasis.
본 발명의 약학 조성물은 유효 성분 이외에 약제학적으로 적합하고 생리학적으로 허용되는 보조제를 사용하여 제조될 수 있으며, 상기 보조제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등의 가용화제를 사용할 수 있다. 본 발명의 약학 조성물은 투여를 위해서 유효 성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1 종 이상 포함하여 약학 조성물로 바람직하게 제제화할 수 있다. 액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. The pharmaceutical composition of the present invention may be prepared by using pharmaceutically acceptable and physiologically acceptable adjuvants in addition to the active ingredients. Examples of the adjuvants include excipients, disintegrants, sweeteners, binders, coating agents, swelling agents, lubricants, Or a solubilizing agent such as a flavoring agent can be used. The pharmaceutical composition of the present invention may be formulated into a pharmaceutical composition containing at least one pharmaceutically acceptable carrier in addition to the active ingredient for administration. Acceptable pharmaceutical carriers for compositions that are formulated into a liquid solution include sterile water and sterile water suitable for the living body such as saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, One or more of these components may be mixed and used. If necessary, other conventional additives such as an antioxidant, a buffer, and a bacteriostatic agent may be added. In addition, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to formulate into injectable solutions, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
본 발명의 약학 조성물의 약제 제제 형태는 과립제, 산제, 피복정, 정제, 캡슐제, 좌제, 시럽, 즙, 현탁제, 유제, 점적제 또는 주사 가능한 액제 및 활성 화합물의 서방출형 제제 등이 될 수 있다. 본 발명의 약학 조성물은 정맥내, 동맥내, 복강내, 근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다. 본 발명의 약학 조성물의 유효성분의 유효량은 질환의 예방 또는 치료 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 이에 제한되는 것은 아니나, 예컨대, 본 발명의 조성물은 성인의 경우, 1일 1회 내지 수회 투여시, 0.1ng/kg~10g/kg 용량으로 투여할 수 있다. Pharmaceutical dosage forms of the pharmaceutical compositions of the present invention may be granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, suspending agents or injectable solutions or suspensions . The pharmaceutical compositions of the present invention may be formulated and administered in a conventional manner via intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, intrasternal, percutaneous, intranasal, inhalation, topical, rectal, &Lt; / RTI &gt; The effective amount of the active ingredient of the pharmaceutical composition of the present invention means the amount required for prevention or treatment of the disease. Accordingly, the present invention is not limited to the particular type of the disease, the severity of the disease, the kind and amount of the active ingredient and other ingredients contained in the composition, the type of formulation and the patient's age, body weight, general health status, sex and diet, Rate of administration, duration of treatment, concurrent medication, and the like. For example, the composition of the present invention can be administered in an amount of 0.1 ng / kg to 10 g / kg once a day to several times a day in the case of an adult.
또한, 본 발명은 상기 펩타이드를 유효성분으로 포함하는 암 예방 또는 개선용 건강기능식품 조성물을 제공한다.The present invention also provides a health functional food composition for preventing or ameliorating cancer comprising the peptide as an active ingredient.
본 발명의 건강기능식품 조성물은 분말, 과립, 정제, 캡슐, 시럽 또는 음료의 형태로 제공될 수 있으며, 상기 건강기능식품 조성물은 유효성분 이외에 다른 식품 또는 식품 첨가물과 함께 사용되고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효성분의 혼합양은 그의 사용 목적 예를 들어 예방, 건강 또는 치료적 처치에 따라 적합하게 결정될 수 있다.The health functional food composition of the present invention may be provided in the form of powder, granules, tablets, capsules, syrups or beverages. The health functional food composition may be used in combination with other food or food additives in addition to the active ingredient, Can be suitably used. The amount of the active ingredient to be mixed can be suitably determined according to its use purpose, for example, prevention, health or therapeutic treatment.
상기 건강기능식품 조성물에 함유된 유효성분의 유효용량은 상기 약학조성물의 유효용량에 준해서 사용할 수 있으나, 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 범위 이하일 수 있으며, 유효성분은 안전성 면에서 아무런 문제가 없기 때문에 상기 범위 이상의 양으로도 사용될 수 있음은 확실하다.The effective dose of the active ingredient contained in the health functional food composition may be used in accordance with the effective dose of the pharmaceutical composition. However, for the purpose of health and hygiene or for long-term consumption intended for health control, And it is clear that the active ingredient can be used in an amount exceeding the above range since there is no problem in terms of safety.
상기 건강식품의 종류에는 특별한 제한이 없고, 예로는 육류, 소세지, 빵, 쵸코렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜 음료 및 비타민 복합제 등을 들 수 있다.There is no particular limitation on the type of the health food, and examples thereof include meat, sausage, bread, chocolate, candy, snack, confectionery, pizza, ramen, other noodles, gums, dairy products including ice cream, Drinks, alcoholic beverages and vitamin complexes.
또한, 본 발명은 상기 펩타이드를 유효성분으로 포함하는 약물 전달용 조성물을 제공한다. The present invention also provides a drug delivery composition comprising the peptide as an active ingredient.
본 발명에 따른 펩타이드는 약물을 암 조직에 선택적으로 전달하는 지능형 약물 전달체로서 사용될 수 있다. 본 발명의 펩타이드를 종래 공지의 약물과 연결하여 암 치료에 이용한다면 본 발명의 펩타이드에 의해 약물이 암 조직 및 암 세포에만 선택적으로 전달되기 때문에 약물의 효력을 증가시킬 수 있고 동시에 정상조직에 미치는 약물의 부작용을 현저히 줄일 수 있다.The peptide according to the present invention can be used as an intelligent drug delivery vehicle for selectively delivering a drug to cancer tissues. When the peptide of the present invention is used in combination with a conventionally known drug to treat cancer, the peptide of the present invention selectively transmits the drug only to cancer tissues and cancer cells, thereby increasing the efficacy of the drug, Can significantly reduce the side effects.
상기 약물은 항암제로서, 본 발명의 펩타이드에 연결될 수 있는 항암제로는 종래 암의 치료에 사용되는 것이라면 제한 없이 사용될 수 있다. 예컨대, 크리조티닙(crizotinib), 독소루비신, 파클리탁셀, 빈크리스틴, 다우노루비신(daunorubicin), 빈블라스틴(vinblastine), 액티노마이신-D(actinomycin-D), 도세탁셀, 에토포사이드(etoposide), 테니포사이드(teniposide), 비산트렌 (bisantrene), 호모해링토닌(homoharringtonine), 글리벡(Gleevec; STI-571), 시스플라틴, 5-플로오로우라실, 아드리아마이신, 메토트렉세이트, 부설판(busulfan), 클로람부실(chlorambucil), 시클로포스파미드(cyclophosphamide), 멜팔란 (melphalan), 니트로겐 무스타드(nitrogen mustard) 및 니트로소우레아 (nitrosourea) 등이 있다. 항암제와 본 발명의 펩타이드 간의 연결은 당업계에 공지된 방법, 예컨대, 공유 결합, 가교 등을 통해 수행될 수 있다. 이를 위해 본 발명의 펩타이드는 필요하다면 그 활성이 소실되지 않는 범위에서 화학적으로 수식(modification)될 수 있다.The above drug may be used as an anticancer agent, and any anticancer agent that can be linked to the peptide of the present invention is not limited as long as it is conventionally used for the treatment of cancer. Such as crizotinib, doxorubicin, paclitaxel, vincristine, daunorubicin, vinblastine, actinomycin-D, docetaxel, etoposide, (Including but not limited to: teniposide, bisantrene, homoharringtonine, Gleevec (STI-571), cisplatin, 5-fluorouracil, adriamycin, methotrexate, busulfan, chlorambucil chlorambucil, cyclophosphamide, melphalan, nitrogen mustard, and nitrosoourea. The linkage between the anticancer agent and the peptide of the present invention can be carried out by a method known in the art, for example, through covalent bonding, crosslinking and the like. For this purpose, the peptide of the present invention can be chemically modified to the extent that its activity is not lost if necessary.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.
<실험예><Experimental Example>
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다. The following experimental examples are intended to provide experimental examples that are commonly applied to the respective embodiments according to the present invention.
1. 세포배양 1. Cell culture
인간 배아신장세포 HEK293 (ATCC), 인간 유방암세포 MDA-MB231 (ATCC), 인간 전립선암세포 PANC-1 (KCLB) 및 인간 자궁경부암세포 HELA (ATCC)는 Dulbecco modified Eagle's medium (DMEM, Invitrogen)에서 배양하였다. MDA-MB-231-Red-Fluc-GFP (Bioware) 및 4T1-Red-Fluc-GFP (Bioware)는 10% 우아혈청(fetal calf serum; FCS, PAA Laboratories)이 첨가된 DMEM에서 배양하였다. MCF-7는 10% FCS가 첨가된 RMPI (Invitrogen)에서 배양하였다. 세포들은 습윤 배양기(85%)에서 멸균 조건으로 5% CO2, 37℃에서 배양되었다. 모든 실험은 멸균된 클린 벤치에서 수행하였다. 80% 컨플루언시(confluency)가 되면, 접착 세포를 계대하였다.Human embryonic kidney cells HEK293 (ATCC), human breast cancer cells MDA-MB231 (ATCC), human prostate cancer cell PANC-1 (KCLB) and human cervical cancer cell HELA (ATCC) were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen) . MDA-MB-231-Red-Fluc-GFP (Bioware) and 4T1-Red-Fluc-GFP (Bioware) were cultured in DMEM supplemented with 10% fetal calf serum (FCS, PAA Laboratories). MCF-7 was cultured in RMPI (Invitrogen) supplemented with 10% FCS. Cells were cultured in a humidified incubator (85%) at 5% CO 2 , 37 ° C, under sterile conditions. All experiments were performed on a sterile clean bench. At 80% confluency, the adherent cells were passaged.
2. 항체 및 기타 시약2. Antibodies and other reagents
CD44v6에 대한 인간 단일클론항체 (VFF-7)는 Santa Cruz로부터 구입하였고, 마우스 단일클론 CD44v6 (VFF-18)는 Abcam으로부터 구입하였고, 토끼 단일클론항체 (AB51037)는 Abcam으로부터 구입하였고, CD44에 대한 인간 단일클론항체 (sc-7297)는 Santa Cruz로부터 구입하였다. Erk 1에 대한 항체 (K-23)는 Santa Cruz로부터 구입하였고, phospho-Erk phospho-p44/42 및 phospho-c-Met (D26), c-Met (25H2) 항체는 Cell Signaling Technology (Beverly, UK)로부터 구입하였다. 재조합 인간 HGF (R&D Systems, Wiesbaden, Germany)는 5% FCS로 밤새도록 활성화시켰다.Mouse monoclonal CD44v6 (VFF-18) was purchased from Abcam, rabbit monoclonal antibody (AB51037) was purchased from Abcam, and the human monoclonal antibody to CD44 (VFF-7) was purchased from Santa Cruz Human monoclonal antibody (sc-7297) was purchased from Santa Cruz. Antibodies against Erk 1 (K-23) were purchased from Santa Cruz, and phospho-Erk phospho-p44 / 42 and phospho-c-Met (D26) ). Recombinant human HGF (R & D Systems, Wiesbaden, Germany) was activated overnight with 5% FCS.
3. 구조체 및 단백질 생산3. Structure and protein production
Origene으로부터 구입한 CD44v6 발현 플라스미드 pCMV6-AC-GFP에서 GFP reading frame 21를 제거하기 위해서, PCR 서브클로닝 방법을 이용하여 인간 CD44V6을 코딩하는 서열을 도입하였다. Forward primer는 GGACTTTCCAAAATGTCG이며 Reverse primer는 ATTAGGACAAGGCTGGTGGG를 사용하였다. 발현벡터는 E.coli DH5α로 형질전환시켰고, Mini-Prep Kit (Dokdo-Preparation)를 사용하여 DNA를 분리하여, 일시적인 형질감염을 위한 높은 농도의 DNA를 얻었다.To remove the GFP reading frame 21 from the CD44v6-expressing plasmid pCMV6-AC-GFP purchased from Origene, a sequence encoding human CD44V6 was introduced using the PCR subcloning method. The forward primer was GGACTTTCCAAAATGTCG and the reverse primer was ATTAGGACAAGGCTGGTGGG. The expression vector was transformed with E. coli DH5α and the DNA was isolated using a Mini-Prep Kit (Dokdo-Preparation) to obtain a high concentration of DNA for transient transfection.
4. 형질감염4. Transfection
HEK293 세포는 Lipofectamine 2000 (Invitrogen)으로 6-웰 플레이트에서 제조사의 프로토콜에 따라 일시적으로 형질감염시켰다. 형질감염 전, 세포들을 6-웰 플레이트에 2 × 105 세포 농도로 24시간 동안 접종하였다. 한 웰을 형질감염시키기 위해, 10 ㎕ Lipofectamine 2000 시약을 250 ㎕ DMEM에 희석하였고, 상온에서 5분동안 반응시켰다. 혈청 없이, 4 ㎍의 벡터 DNA를 250 ㎕ DMEM으로 채우고, Lipofectamine 2000 용액으로 혼합하였다. 혼합물은 상온에서 20분 동안 반응시켰다(웰 당 총 500 ㎕). 세포의 오래된 배지는 즉시 제거하고, 혈청 없는 새로운 1.5 ml DMEM 배지로 대체하였다. 배양기로 옮기기 전, 500 ㎕ DNA-형질감염 시약-혼합물을 세포에 첨가하였다. 6시간 배양 후, 배지를 다시 혈청을 함유한 미리 데워진 성장 배지로 대체하였다. 실험을 시작하기 전, 새롭게 삽입된 단백질을 세포에서 발현시켰다. HEK293 cells were transiently transfected in a 6-well plate with Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. Transformants were inoculated 24 hours prior to infection, 2 × 10 5 cell density of cells in 6-well plates. To transfect a well, 10 μl Lipofectamine 2000 reagent was diluted in 250 μl DMEM and reacted at room temperature for 5 minutes. Without serum, 4 μg of vector DNA was filled with 250 μl DMEM and mixed with Lipofectamine 2000 solution. The mixture was allowed to react at room temperature for 20 minutes (500 μl total per well). The old media of cells was immediately removed and replaced with fresh serum-free 1.5 ml DMEM medium. Before transferring to the incubator, 500 μl DNA-transfection reagent-mixture was added to the cells. After 6 hours of incubation, the medium was replaced with a pre-warmed growth medium containing serum. Before starting the experiment, the newly inserted protein was expressed in the cells.
5. 5. CD44v6CD44v6 펩타이드Peptides 스크리닝을 위한 T7 소수성 라이브러리의 바이오- The bio-activity of the T7 hydrophobic library for screening 패닝Panning (Bio-panning)(Bio-panning)
CX7C(C, 시스테인; X, 임의의 아미노산 잔기)로 표시되는 T7 415-1b 파지 벡터에 기반한 파지 펩타이드 라이브러리는 제조사의 지침(Novagen, Madison, WI)에 따라 설계되었다. 상기 파지 라이브러리는 대략 1×109 플라크-형성 유닛(plaque-forming unit; pfu)를 가진다. 즉, 형질감염된 HEK-293 세포(GFP)를 35 mm 접시에 분주하였고, 60-70%로 컨플루언트(confluent) 하게 배양하였다. HEK-293 세포의 일시적인 형질감염을 위해, 세포들은 Lipofectamine 2000 (Invitrogen)으로 처리하였다. 실험을 시작하기 전에 상기 세포들은 24-48 시간 동안 CD44v6를 발현하는 새로운 삽입 단백질(GFP)을 발현하도록 하였다. 1×109 플라크-형성 유닛(pfu)의 파지 라이브러리를 형질감염된 HEK 293 세포에서 1시간 동안 4℃로 배양하였고, 상기 세포에 결합한 파지를 실온에서 10분 동안 500 μL의 BL21 박테리아 (OD: 1) 배양액으로 용출시켰다. 상기 용출물은 적정에 사용하였고, 잔여 용출 파지는 4℃에서 30분 동안 형질감염되지 않은 세포에서 배양하였다. Phage peptide libraries based on the T7 415-1b phage vector designated CX7C (C, cysteine; X, any amino acid residue) were designed according to the manufacturer's instructions (Novagen, Madison, WI). The phage library has approximately 1 x 10 9 plaque-forming units (pfu). That is, transfected HEK-293 cells (GFP) were dispensed into 35 mm dishes and cultured confluently at 60-70%. For transient transfection of HEK-293 cells, cells were treated with Lipofectamine 2000 (Invitrogen). Prior to the start of the experiment, the cells were allowed to express a new insertion protein (GFP) expressing CD44v6 for 24-48 hours. The phage library of 1 x 10 9 plaque-forming units (pfu) was cultured in transfected HEK 293 cells for 1 hour at 4 ° C and the phages bound to the cells were incubated with 500 μL of BL21 bacteria (OD: 1 ) Culture medium. The eluate was used for titration and the remaining eluted phage were cultured in non-transfected cells for 30 min at 4 &lt; 0 &gt; C.
그 후, 비결합 파지는 10 mg/ml 소 혈청 알부민(bovine serum albumin; BSA)을 함유하는 DMEM으로 씻어냈다. 세포에 결합한 파지는 500 μL의 BL21 박테리아 (OD: 1) 배양액으로 상온에서 10분 동안 용출시켰다. 용출물은 적정에 사용하였고, 잔여 용출 파지 클론은 다음 주기의 증폭을 위해 10 ml의 LB 배지에서 용해시켰고, 상기 과정을 5회 반복하였다. 용출물의 단계별 희석물은 37℃에서 2시간 동안 LB 배지에서 배양된 E. coli로 접종한 후, 파지의 역가는 콜로니의 수를 계수하여 측정하였다.The unbound phages were then washed with DMEM containing 10 mg / ml bovine serum albumin (BSA). The phages bound to the cells were eluted with 500 μL of BL21 bacterial (OD: 1) culture medium at room temperature for 10 minutes. The eluate was used for titration and the remaining eluted phage clone was dissolved in 10 ml of LB medium for the next cycle of amplification and the procedure was repeated 5 times. The stepwise dilutions of the eluates were inoculated with E. coli cultured in LB medium for 2 hours at 37 ° C, and the number of colonies was counted by inverting the phage.
CD44v6 발현 세포에 특이적인 파지 클론의 선택성을 향상시키기 위해, 파지를 먼저 형질감염된 세포로 배양하여 선별하였다. 본 발명에서는 다음 라운드에서 모든 파지 클론을 증폭 및 파지 농축 방법으로 사용하기 위해 직접 스크리닝 방법을 사용하였다. 파지 클론의 배수적 감소는 5 회 라운드에서 각각 1.9 × 101 배 감소하였다. To improve the selectivity of phage clones specific for CD44v6 expressing cells, phages were first cultured and transfected into transfected cells. In the present invention, a direct screening method was used to use all the phage clones in the next round as an amplification and phage enrichment method. The drainage reduction of phage clones decreased by 1.9 × 10 1 fold in each of the 5 rounds.
세 번째, 네 번째 및 다섯 번째 라운드의 형질감염된 배양접시로부터 유래한 총 70개의 클론(세 번째 라운드의 20개의 파지 클론, 네 번째 라운드의 20개의 파지 클론, 다섯 번째 라운드의 20개의 파지 클론) 및 비결합 파지 클론을 제외하기 위해 형질감염되지 않은 배양접시로부터 유래한 10개의 클론에 대해 서열 분석을 수행하였다.A total of 70 clones (20 phage clones in the third round, 20 phage clones in the fourth round, 20 phage clones in the fifth round) from the transfected petri dishes in the third, fourth and fifth rounds and Sequence analysis was performed on 10 clones derived from non-transfected culture dishes to exclude unbound bifunctional phage clones.
상기에서 수집한 70개의 각 파지 클론들의 DNA 삽입물(DNA inserts)의 DNA 및 아미노산 서열 분석은 각각의 프라이머(Macrogen)를 이용한 자동화된 DNA sequencer (Genotech Inc., Daegeon, Korea)에 의하여 수행하였다. 뉴클레오타이드 서열로부터 유추된 아미노산 서열을 Clustal W 프로그램을 사용하여 정렬하여 컨센서스 서열 또는 펩티드 간에 공유되는 아미노산 모티프를 찾았다. 이들 중 일부 펩타이드를 무작위로 뽑은 다음, 각 펩타이드 서열과 높은 상동성을 갖는 단백질들을 조사하기 위하여 NCBI protein database에 대한 BLAST search가 수행되었다. DNA and amino acid sequence analysis of the DNA inserts of each of the 70 phage clones collected in the above was carried out by an automated DNA sequencer (Genotech Inc., Daegeon, Korea) using each primer (Macrogen). Amino acid sequences deduced from nucleotide sequences were aligned using the Clustal W program to find amino acid motifs shared between consensus sequences or peptides. Some of these peptides were randomly selected and BLAST searches were performed on the NCBI protein database to investigate proteins with high homology to each peptide sequence.
6. RTKs 및 Erk의 활성화6. Activation of RTKs and Erk
혈청 결핍을 한 (24시간) 세포는 37℃에서 10분 동안 성장인자 HGF (25-50 ng/mL)로 배양하였다. 표시된 경우, 세포를 유도하기 전에 CD44v6 특이 펩타이드 또는 대조 펩타이드 (50㎍/ml)로 37℃에서 10분 동안 처리하고, 세포를 ice-cold PBS로 세정하였다. 활성화된 Erk와 활성화된 c-Met을 검출하기 위해 세포를 100 mM 디티오트레이톨 (DTT)을 함유하는 비등 소듐도데실설페이트 (SDS) 샘플 완충액에서 용해시키고, 인산화된 Erk 및 인산화된 c-Met에 대한 항체를 사용하여 웨스턴 블롯 분석을 수행하였다. 로딩 대조군을 동일한 블롯에서 수행하고, 스트리핑 (62.5 mM Tris, pH 6.8, 2 % SDS, 0.8 % DTT)하고 Erk 및 c-Met 항체로 탐침하였다. 블롯은 향상된 화학 발광 시스템 (Thermo Fisher Scientific)을 사용하여 염색되었다. 웨스턴 블롯 분석에서 밴드는 ImageJ (National Institutes of Health) 프로그램으로 정량화되었다.Serum-deficient (24 h) cells were incubated with growth factor HGF (25-50 ng / mL) for 10 min at 37 ° C. If indicated, cells were treated with CD44v6 specific peptide or control peptide (50 μg / ml) for 10 min at 37 ° C before induction, and the cells were washed with ice-cold PBS. To detect activated Erk and activated c-Met, cells were lysed in boiling sodium dodecyl sulfate (SDS) sample buffer containing 100 mM dithiothreitol (DTT) and phosphorylated Erk and phosphorylated c-Met &Lt; / RTI &gt; was used to perform Western blot analysis. Loading controls were performed in the same blot and stripped (62.5 mM Tris, pH 6.8, 2% SDS, 0.8% DTT) and probed with Erk and c-Met antibodies. The blot was stained using an enhanced chemiluminescence system (Thermo Fisher Scientific). In the western blot analysis, the bands were quantified with the ImageJ (National Institutes of Health) program.
7. 풀다운(pull down) 분석7. Pull down analysis
비오틴화 된 CD44v6 펩타이드는 세포 용해물과의 배양에 앞서 펩타이드 풀다운을 위해 완만하게 회전시키면서 실온에서 30-60분 동안 단량체 아비딘 자석 비즈 (Bioclone Inc.)와 함께 배양하였다. 단백질 분해 효소 저해제가 함유된 세포 용해 시약 (Thermo scientific)을 사용하여 세포를 용해시켰다. 비오틴화 된 펩타이드 + 아비딘 비드 (복합체 1)의 최초 배양 후 PBS로 세척하고 복합체를 실온에서 완만하게 회전시키면서 30-60 분 동안 세포 용해물과 함께 배양시켰다. 결합된 바이오틴화 된 펩타이드 + 아비딘 비드 + 세포 용해물 (복합체 2)을 용출 후 5 내지 10분 동안 1X 블로킹 완충액 / 용출 완충액에 의해 용리하고, 특정 단백질의 풀다운 분석을 위해 용출액을 CD44v6 항체 (Millipore)를 사용하여 웨스턴 블롯 분석을 수행하였다.The biotinylated CD44v6 peptide was incubated with monomeric avidin magnetic beads (Bioclone Inc.) for 30-60 minutes at room temperature with gentle rotation for peptide pull down prior to incubation with the cell lysate. Cells were lysed using a cell lysis reagent (Thermo scientific) containing protease inhibitor. After the initial incubation of the biotinylated peptide + avidin beads (complex 1), the cells were washed with PBS and the complexes were incubated with the cell lysate for 30-60 minutes with gentle rotation at room temperature. The combined biotinylated peptide + avidin bead + cell lysate (complex 2) was eluted with 1X blocking buffer / elution buffer for 5 to 10 minutes after elution and eluted with CD44v6 antibody (Millipore) for pull- Western blot analysis was performed.
8. 이동(migration) 분석8. Migration Analysis
MDA-MB-231을 웰당 2.5 × 105 세포의 농도로 12-웰 플레이트 상에 분주하였다. 24시간 후, 멸균 피펫 팁을 사용하여 컨플루언트 세포층에 스크래치를 만들었다. 배지를 성장인자 HGF 배지를 HGF를 포함한 신선한 배지로 교체하고, 성장인자로 유도하기 위해 25 ng/ml의 HGF를 37℃에서 10분간 처리하였다. HGF 유도 후 5㎍/ml CD44v6 펩타이드 (각각) 및 두 펩타이드의 조합 (v6Pep-1+v6Pep-2) 또는 5㎍/ml의 대조군 펩타이드를 37℃에서 10분 동안 처리한 후, 0시간, 24시간, 48시간, 60시간에서 시간 간격으로 세포의 사진(원본 배율, ×100)을 찍었다. 컴퓨터 프로그램 ImageJ는 정량적인 평가에 사용되었고, 스크래치에서 세포가 덮는 영역을 정량화하였다.The MDA-MB-231 at a concentration of 2.5 × 10 5 cells per well was dispensed in a 12-well plate. After 24 hours, a scratch was made on the confluent cell layer using a sterile pipette tip. The medium was replaced with fresh medium containing HGF and HGF at 25 ng / ml was treated at 37 ° C for 10 minutes to induce growth factor. After the induction of HGF, 5 μg / ml CD44v6 peptide (each) and a combination of two peptides (v6Pep-1 + v6Pep-2) or 5 μg / ml of control peptide were treated at 37 ° C. for 10 minutes, , 48 hours and 60 hours, respectively (original magnification, × 100). The computer program ImageJ was used for quantitative evaluation and quantified the area covered by the cells in the scratch.
9. siRNA 저해9. siRNA Inhibition
세포는 CD44v6-특이적 siRNA 2가지의 혼합물로 형질감염 시켰다: v6-1: 5’-AGU AGU ACA ACG GAA ATT-39; v62: 59-GGA UAU CGC CAAACA CCC ATT-3’ 또는 비특이적 대조군 siRNA의 풀. 대조군 siRNA (50-CUACGCCAAUUUCGU (dTdT) 30) 및 glyceraldehyde-3 phosphate dehydrogenase (GAPDH) siRNA (50-UGUGAACCAUGAGAAGUA (dTdT) -30)는 Bioneer에서 구매하였다. 형질감염은 Lipofectamine 2000 (Invitrogen, Karlsruhe, Germany)을 사용하여 수행하였다. 24 시간 간격으로 2회의 형질감염을 실시하였다. 첫 번째 형질 감염 후 48 시간 동안 세포를 24 시간 동안 혈청-결핍 상태로 배양한 후 추가적 처리를 하였다.Cells were transfected with a mixture of two CD44v6-specific siRNAs: v6-1: 5'-AGU AGU ACA ACG GAA ATT-39; v62: 59-GGA UAU CGC CAAACA CCC ATT-3 'or pool of non-specific control siRNA. The control siRNA (50-CUACGCCAAUUUCGU (dTdT) 30) and glyceraldehyde-3 phosphate dehydrogenase (GAPDH) siRNA (50-UGUGAACCAUGAGAAGUA (dTdT) -30) were purchased from Bioneer. Transfection was performed using Lipofectamine 2000 (Invitrogen, Karlsruhe, Germany). Two transfections were performed at 24 hour intervals. Cells were cultured for 24 hours in a serum-deficient state for 48 hours after the first transfection and then further treated.
10. 동물 실험10. Animal experiments
동물 실험을 위해, 6주에서 8주 된 Balb/c 암컷 마우스를 Orient Bio에서 구입하였다. 경북대학교 동물실험윤리위원회(Institutional Animal Care and Use Committee; IACUC)의 가이드라인 하에서, 마우스는 사육되고 유지시켰다. Balb/c 암컷 누드 마우스에서 폐전이 모델을 개발하기 위해 꼬리 정맥을 통해 1 × 106 MDA-MB-231 세포를 주사하여 종양을 준비하였고, Balb/c 야생형 암컷 마우스의 좌하 유방 지방 패드에 1 × 106 4T1 세포를 주사하였다. For animal experiments, 6- to 8-week-old Balb / c female mice were purchased from Orient Bio. Under the guidelines of the Institutional Animal Care and Use Committee (IACUC) of Kyungpook National University, mice were kept and maintained. To develop a pulmonary metastasis model in Balb / c female nude mice, 1 × 10 6 MDA-MB-231 cells were injected through the tail vein to prepare tumors. 1 × 10 6 4T1 cells were injected.
11. 공초점 주사 현미경 분석11. Confocal Scanning Microscopy Analysis
내재화 된 FITC 표지화 된 펩타이드 v6Pep-1 및 v6Pep-2의 분포를 시각화하기 위해, MDA-MB-231 세포 (1×105 세포)를 4 웰 챔버 슬라이드 상에 분주하였다. 완전한 접착 후 세포 배양 배지를 FITC가 표지된 펩타이드 (10 μM)가 함유 된 신선한 배지로 변경하고 37℃에서 1시간 동안 배양한 후 세포를 PBS로 3 ~ 5 분간 3회 세척한 후 CD44v6 항체 (Santa cruz)로 염색하고, 이어서 Alexa 594- 표지된 염소 항-마우스 IgG 2차 항체를 사용하였다. 핵을 DAPI로 염색하고 퇴색 시약으로 유리 슬라이드 상에 장착한 후, 공초점 현미경 하에서 FITC로 표지된 v6Pep-1 및 v6Pep-2 축적을 관찰하였다. 공초점 현미경 (Zeiss, Jena, Germany) 하에서 세포에서 FITC- 표지된 펩티드의 국소화를 관찰하였다.In order to visualize the internalization of FITC-labeled peptide-1, and the distribution of v6Pep v6Pep-2, the MDA-MB-231 cells (1 × 10 5 cells) was dispensed on the slide 4-well chamber. After the complete adhesion, the cell culture medium was changed to a fresh medium containing FITC-labeled peptide (10 μM) and incubated at 37 ° C. for 1 hour. The cells were washed with PBS for 3 to 5 minutes three times and then washed with CD44v6 antibody cruz), followed by Alexa 594-labeled goat anti-mouse IgG secondary antibody. The nuclei were stained with DAPI and mounted on glass slides with a fading reagent, followed by observation of v6Pep-1 and v6Pep-2 accumulation labeled with FITC under confocal microscopy. Localization of FITC-labeled peptides in cells was observed under a confocal microscope (Zeiss, Jena, Germany).
12. in vivo 생체 분포 이미징 분석12. In vivo biodistribution imaging analysis
v6Pep1 및 v6Pep-2 또는 대조군 펩타이드의 CD44v6 특이적 종양 표적화 활성을 특정 병원체가 없는 환경에서 자란 6주령의 암컷 BALB/c 누드 마우스 (체중 ≥20 ± 3g)를 사용하여 조사하였다. 종양은 MDA-MB231 세포 (5×106 세포)를 오른쪽 측면으로 피하 주사하여 유도하였다. 종양 세포를 2 내지 3주 동안 방치하였다. 종양 부피가 약 100 mm3에 도달한 후, 꼬리 정맥을 통해 v6Pep-1, v6Pep-2 및 NIRF로 표지된 대조군 펩타이드를 마우스 (각 그룹에 대해 n = 3)에 정맥 내 주사하였다. 생체 내 NIRF 이미징은 흡입 마취 하에서 IVIS 루미나 III 이미징 시스템 (Perkin Elmer, Waltham, MA)을 사용하여 수행되었다. v6Pep-1, v6Pep-2 및 대조군 펩타이드의 생체 분포를 조사하기 위해, 생체 내 형광 이미지를 다양한 시점 (각각 1, 2, 4 및 4)에서 주사 전후에 촬영하였다. 생체 내 이미징 후 마우스를 희생시키고 IVIS Lumina III 이미징 시스템을 사용하여 추가 이미징을 하기 위해 종양 및 대조군 기관을 분리하였다.CD44v6-specific tumor targeting activity of v6Pep1 and v6Pep-2 or control peptides was investigated using 6-week-old female BALB / c nude mice (body weight? 20 ± 3g) grown in an environment free of certain pathogens. Tumors were induced by subcutaneous injection of MDA-MB231 cells (5 × 10 6 cells) to the right side. Tumor cells were left for 2 to 3 weeks. After tumor volume reached approximately 100 mm 3 , control peptides labeled with v6Pep-1, v6Pep-2 and NIRF were intravenously injected into the mice (n = 3 for each group) via the tail vein. In vivo NIRF imaging was performed using an IVIS Lumina III Imaging System (Perkin Elmer, Waltham, MA) under inhalation anesthesia. To investigate the biodistribution of v6Pep-1, v6Pep-2 and control peptides, in vivo fluorescence images were taken at various time points (1, 2, 4 and 4 respectively) before and after injection. Mice were sacrificed after in vivo imaging and tumors and control organs were separated for further imaging using the IVIS Lumina III imaging system.
13. ex vivo 이미징 및 면역조직화학 분석 13. Ex vivo Imaging and Immunohistochemical Analysis
ex vivo 장기 분포를 분석하기 위해, 동물을 CO2 주입 6 시간 후 안락사 시켰다. 종양 조직과 함께 모든 주요 장기 (간, 신장, 비장, 심장 및 폐)를 분리하고 PBS로 세척하고 IVIS Lumina III 영상 시스템을 사용하여 ex vivo 형광 이미지를 촬영하였다. 각 장기의 관심 영역 (ROI) 내 형광 강도를 분석하였다. 종양 조직을 4% 파라포름알데히드로 추가로 밤새 고정시키고 급속 동결시켰다. 조직 절편 (8 μm 두께)은 cryo-microtome으로 준비하고 CD44v6 항체 (Santa Cruz)로 염색한 후 Alexa 594로 표지한 염소 항-마우스 IgG 2차 항체를 사용하여 염색하였다. 대조군 펩타이드와 v6Pep-1 및 v6Pep-2 종양 축적은 핵이 DAPI로 염색된 후 공초점 현미경으로 관찰되었다.To analyze ex-vivo long-term distribution, animals were euthanized 6 hours after CO 2 infusion. All major organs (liver, kidney, spleen, heart and lungs) were isolated with tumor tissue, washed with PBS and ex vivo fluorescence images were taken using IVIS Lumina III imaging system. The fluorescence intensities in the ROI of each organ were analyzed. Tumor tissues were fixed overnight with 4% paraformaldehyde and rapidly frozen. Tissue sections (8 μm thick) were prepared with cryo-microtome, stained with CD44v6 antibody (Santa Cruz) and stained with goat anti-mouse IgG secondary antibody labeled with Alexa 594. Control peptides and v6Pep-1 and v6Pep-2 tumor accumulation were observed by confocal microscopy after the nuclei were stained with DAPI.
14. 항암 치료14. Chemotherapy
종양의 크기가 약 100 mm3에 도달할 때 종양 보유 마우스를 무작위화 및 분류하였다. 각각의 펩타이드는 마우스의 꼬리 정맥 (14.2 mg/g 체중, 주 3 회 3 주)을 통해 정맥 내 주사되었다. 크리조티닙(crizotinib)은 이전 연구를 토대로 경구 투여 (25 mg/kg 체중, 3주 동안 1주 3회 투여)되었다. 종양 크기는 디지털 캘리퍼스를 사용하여 측정하였고, 종양 부피는 다음 공식을 사용하여 계산하였다 : 부피 = (L x W x H) / 2 (L : 길이, 가장 긴 치수, W : 폭, 짧은 치수, 마우스 몸체과 평형, H : 높이, 길이와 너비에 수직). 마우스에 종양 궤양이 있는지 검사하였다. 치료가 끝나면 마우스를 희생시키고 폐와 간을 분리하여 전이성 종괴가 있는지 검사하였다.Tumor bearing mice were randomized and sorted when the size of the tumors reached approximately 100 mm &lt; 3 &gt;. Each peptide was injected intravenously via the tail vein of the mouse (14.2 mg / g body weight, 3 times weekly for 3 weeks). Crizotinib was given orally (25 mg / kg body weight, three times a week for three weeks) based on previous studies. Tumor size was measured using digital calipers and tumor volume was calculated using the following formula: volume = (L x W x H) / 2 (L: length, longest dimension, W: width, Body and equilibrium, H: vertical to height, length and width). The mice were examined for tumor ulcers. At the end of treatment, the mice were sacrificed and the lungs and liver were separated and examined for metastatic masses.
15. MDA-MB-231 폐 전이 모델15. MDA-MB-231 lung metastasis model
MDA-MB231-luc 세포 (0.1 ml PBS 중 1 × 106)를 암컷 누드 마우스의 외측 꼬리 정맥에 주입하였다. 그 후, 초기 IVIS 영상을 기준으로 마우스를 그룹별 (그룹당 n = 10)로 분리하였다. 0일째부터, 마우스에게 꼬리 정맥을 통해 정맥 내 주사하여 CD44v6 펩타이드를 투여하였다 (14.2 mg/g 체중, 3주 동안 1주 3회). 마지막 IVIS 이미징 후, 마우스를 안락사시키고 전이성 종괴의 면역조직화학적 분석을 위해 각 마우스로부터 폐 조직을 제거하였다.MDA-MB231-luc cells (1x10 &lt; 6 &gt; in 0.1 ml PBS) were injected into the lateral tail vein of female nude mice. The mice were then divided into groups (n = 10 per group) based on the initial IVIS images. From Day 0, mice were administered intravenously via the tail vein to receive the CD44v6 peptide (14.2 mg / g body weight, three times weekly for 3 weeks). After the last IVIS imaging, the mice were euthanized and lung tissue was removed from each mouse for immunohistochemical analysis of the metastatic mass.
16. 세포 독성 분석16. Cytotoxicity analysis
MDA-MB-231 세포 (96-웰 플레이트에서 5 × 103 세포/웰)를 무 혈청 배양액에서 다양한 농도를 갖는 v6Pep-1, v6Pep-2 및 두 펩타이드의 조합 (v6Pep-1 + v6Pep-2)으로 37℃에서 4시간 동안 배양하였다. 무 혈청 배지를 10% FBS 함유 배양 배지로 교체한 후, 세포를 24시간 및 48시간 동안 배양한 후 CCK-8 분석 (Dojindo, Kumamoto, Japan)을 사용하여 세포 독성을 평가하였다.MDA-MB-231 cells (5x10 3 cells / well in 96-well plate) were incubated with v6Pep-1, v6Pep-2 and v6Pep- Gt; 37 C &lt; / RTI &gt; for 4 hours. After replacing the serum-free medium with the culture medium containing 10% FBS, the cells were cultured for 24 hours and 48 hours and evaluated for cytotoxicity using CCK-8 assay (Dojindo, Kumamoto, Japan).
17. 혈청 내 펩타이드의 안정성17. Stability of peptides in serum
혈청에서의 펩타이드 (v6Pep1 및 v6Pep-2)의 안정성을 조사하기 위해, 마우스로부터의 혈액을 수집하여 응고시킨 후, 4℃에서 2회 원심 분리하여 혈청을 수득한 다음 필터하였다 (0.22㎛ 공극). 펩타이드 (PBS 50 μl 중 100 μg)를 정해진 시간 주기 동안 37℃에서 필터된 혈청 50 μl와 함께 배양하였다. 배양된 샘플을 100배 희석하고 아세토니트릴 (Vydac 단백질 및 펩타이드 C18, 평형에 대해서는 물 중의 0.1% 트리플루오로아세테이트 및 용출에 대해서는 아세토니트릴 중의 0.1 % 트리플루오로아세테이트)의 선형 구배를 갖는 C18 역상 FPLC로 분획화 하였다. C18 역상 FPLC의 프로파일로부터 피크의 동일성을 확인하기 위해, 각 피크를 수집하고, 진공 건조시키고, MALDI-TOF 질량 분석기를 사용하여 질량 분석 (MS)에 의해 분석하였다. To examine the stability of the peptides (v6Pep1 and v6Pep-2) in the serum, blood from the mice was collected and coagulated, and then centrifuged twice at 4 DEG C to obtain serum (0.22 mu m voids). Peptides (100 μg in 50 μl PBS) were incubated with 50 μl of the filtered serum at 37 ° C for a defined period of time. The cultured samples were diluted 100-fold and subjected to C18 reverse phase FPLC with a linear gradient of acetonitrile (Vydac protein and peptide C18, 0.1% trifluoroacetate in water for equilibrium and 0.1% trifluoroacetate in acetonitrile for equilibration) &Lt; / RTI &gt; To confirm the identity of the peaks from the profile of the C18 reversed phase FPLC, each peak was collected, vacuum dried, and analyzed by mass spectrometry (MS) using a MALDI-TOF mass spectrometer.
18. 혈액학적 파라미터 분석18. Hematological parameter analysis
처리 종료 시 마우스 혈액을 채취하여 DGMIF (Daegu-Gyeongbuk Medical Innovation Foundation) (대구, 한국)에서 혈액학적 인자를 분석하였다.At the end of the treatment, mouse blood was collected and hematological factors were analyzed in DGMIF (Daegu-Gyeongbuk Medical Innovation Foundation) (Daegu, Korea).
<실시예 1> 파지 디스플레이를 이용한 CD44v6-결합 펩타이드의 선별Example 1 Screening of CD44v6-Binding Peptides Using Phage Display
CD44v6-결합 펩타이드를 스크리닝하기 위해, 먼저 본 발명자들은 CD44v6-GFP 플라스미드로 일시적인 형질감염시킨 HEK-293 세포를 제조하였다. CD44v6-GFP 플라스미드의 동시 국소화를 확인하기 위해서, HEK-293 형질감염된 세포를 CD44 변이체 6 항체로 염색하였다(도 1a). 면역형광분석으로 확인 후, 일시적인 형질감염 효과는 24 h 및 48 h의 상이한 시간 간격에서 웨스턴 블랏팅으로도 확인하였는데, 형질감염되지 않은 HEK-293 세포와 비교시 각 시간 포인트에서 형질감염된 것을 확인하였다. CD44v6 특이적 펩타이드를 직접 스크리닝 방법으로 선별하기 위해서, 본 발명자들은 각 라운드의 모든 파지 클론들의 집적 역가를 확인하였고, 이는 형질감염되지 않은 역가에 비해 상당히 증가한 것으로, 파지 집적 역가가 5 라운드 동안 라운드당 3.11 × 101 배 증가하는 것을 확인하였다(도 1b). 3번째, 4번째 및 5번째 라운드에서, 20개의 파지 클론들을 무작위로 선별하였고, 파지 클론의 펩타이드-코딩 DNA 삽입체를 서열분석하였다. CD44v6 발현 세포와 높은 특이성으로 결합하는 파지 클론을 파지 결합 ELISA를 통해 선별하였는데, 몇몇 클론들은 여러 발현 및 비발현 세포주에서 결합하는 것으로 나타났다. 다른 파지 클론들과 비교하여, 클론-1 및 클론-2가 CD44v6과 높은 수준으로 결합하는 것을 파지 ELISA 및 파지 면역형광염색을 통해 확인하였는데, 이는 파지 클론의 결합 특이성 및 효과를 확인한 것이다. 2개의 파지 클론은 CD44v6 발현 세포에서 높은 결합 특이성을 나타냈다. 상기 2개 클론의 펩타이드 서열은 다음과 같다. CNLNTIDTC (v6Pep-1, 서열번호 1), CNEWQLKSC (v6Pep-2, 서열번호 2). 펩타이드 결합은 유세포 분석 및 면역형광분석을 통해 확인하였고, v6Pep-1 및 v6Pep-2는 CD44 변이체 6을 발현하는 세포인 MDA-MB231, HELA, 4T1 및 PANC-1에서, 비발현 MCF-7 및 형질감염되지 않은 HEK-293에 비해 특이적으로 결합하는 것을 동시 국소화 분석을 통해 확인하였다(도 1c 및 도 1d). 이에, MDA-MB-231, 4T1, PANC-1 및 MCF-7 종양 세포에서 결합 친화도를 비교하여, 결합친화도가 향상(낮은 Kd 수치) 되었는지 확인하였다(도 1e). v6Pep-1 및 v6Pep-2 MCF-7과는 특이적인 결합을 보이지 않았고, MDA-MB-231, 4T1 및 PANC-1에서는 특이적으로 결합하는 것으로 나타났다.To screen for CD44v6-binding peptides, we first generated HEK-293 cells transiently transfected with the CD44v6-GFP plasmid. To confirm simultaneous localization of the CD44v6-GFP plasmid, HEK-293 transfected cells were stained with CD44 variant 6 antibody (Fig. 1a). After confirmation by immunofluorescence analysis, transient transfection effects were also confirmed by western blotting at different time intervals of 24 h and 48 h, confirming transfection at each time point as compared to non-transfected HEK-293 cells . In order to screen the CD44v6 specific peptides by direct screening methods, the inventors have confirmed the aggregate titer of all the phage clones in each round, which is significantly increased compared to the untransfected titres, 3.11 x 10 &lt; 1 &gt; times (Fig. 1B). In the 3rd, 4th and 5th rounds, 20 phage clones were randomly selected and the peptide-coding DNA inserts of phage clones were sequenced. Phage clones binding to CD44v6 expressing cells with high specificity were selected by phage binding ELISA, and several clones were found to bind in several expression and non-expression cell lines. Compared with other phage clones, high levels of binding of clone-1 and clone-2 to CD44v6 were confirmed by phage ELISA and phage immunofluorescence staining, confirming the binding specificity and effect of phage clones. Two phage clones showed high binding specificity in CD44v6 expressing cells. The peptide sequence of the two clones is as follows. CNLNTIDTC (v6Pep-1, SEQ ID NO: 1), CNEWQLKSC (v6Pep-2, SEQ ID NO: 2). Peptide binding was confirmed by flow cytometry and immunofluorescence analysis and v6Pep-1 and v6Pep-2 were detected in MDA-MB231, HELA, 4T1 and PANC-1 cells expressing CD44 variant 6, And specific binding to HEK-293 not infected was confirmed by simultaneous localization analysis (FIGS. 1C and 1D). Thus, binding affinity of MDA-MB-231, 4T1, PANC-1 and MCF-7 tumor cells was compared to confirm that the binding affinity was improved (low Kd value) (FIG. specific binding to v6Pep-1 and v6Pep-2 MCF-7, and specifically to MDA-MB-231, 4T1 and PANC-1.
<실시예 2> v6Pep-1 및 v6Pep-2의 CD44v6-특이적 세포 결합&Lt; Example 2 > CD44v6-specific cell binding of v6Pep-1 and v6Pep-2
MDA-MB-231 세포는 혈청 결핍 조건으로 24시간 동안 배양한 후, 이후 실험에 적용하였다. CD44v6 발현 억제를 위해, SiRNAs v6-1 및 v6-2을 형질감염시켰고, 상이한 시간 간격으로 유지시켰다. CD44v6 유전자의 침묵을 확인하기 위해서, 전체 세포 추출물을 SDS-PAGE로 분획화하였고, 멤브레인으로 옮겨 1μg/ml의 CD44v6 및 CD44 항체로 처리하여, 4℃에서 밤새도록 반응시켰다. siRNA 억제를 확인하기 위해 웨스턴 블랏 분석 결과, CD44v6 특이적 siRNA 억제는 24 h, 48h 및 72 h에서 확실히 나타났으나, 야생형 CD44는 변화가 없었다(도 2a). 침묵된 MDA-MB-231 세포에서도 펩타이드들이 특이적으로 결합하는지 확인하기 위해서, v6Pep-1, v6Pep-2(FITC 표지)와 함께 세포를 배양시킨 후, 유세포 분석을 수행하였다(도 2b). 그 결과, 두 펩타이드 모두 MDA-MB-231에서 낮은 결합을 나타냈고, 수치는 펩타이드의 평균 형광 세기(mean fluorescence intensity; MFI)를 계산하여 나타냈다. CD44v6 유전자의 침묵 후, 2개의 펩타이드 모두 결합이 억제되었는데, 이는 2개의 펩타이드가 모두 CD44v6와 특이적으로 결합한다는 것을 나타낸다. 유사하게, siRNA (100nmol) 처리 후, MDA-MB-231를 FITC 표지된 v6Pep-1 및 v6Pep-2와 반응시켜, 형광면역염색을 통해 결합을 확인하면, 2개의 펩타이드는 세포와 약한 결합을 나타냈고, 이는 v6Pep-1 및 v6Pep-2가 CD44v6 유전자와 특이적으로 결합한다는 것을 뒷받침한다(도 2c). MDA-MB-231 cells were cultured for 24 hours under the condition of serum deficiency and then applied to the experiment. For inhibition of CD44v6 expression, siRNAs v6-1 and v6-2 were transfected and maintained at different time intervals. To confirm the silencing of the CD44v6 gene, whole cell extracts were fractionated by SDS-PAGE, transferred to membranes, treated with 1 μg / ml of CD44v6 and CD44 antibody, and reacted overnight at 4 ° C. Western blot analysis to confirm siRNA inhibition showed that CD44v6 specific siRNA inhibition was evident at 24 h, 48 h and 72 h, while wild-type CD44 was unchanged (Fig. 2a). Cells were cultured with v6Pep-1, v6Pep-2 (FITC-labeled), and flow cytometry was performed (Fig. 2B) to confirm that the peptides specifically bind in the silent MDA-MB-231 cells. As a result, both peptides showed low binding in MDA-MB-231, and the values were calculated by calculating the mean fluorescence intensity (MFI) of the peptide. After silencing of the CD44v6 gene, binding of both peptides was inhibited, indicating that both peptides specifically bind to CD44v6. Similarly, when MDA-MB-231 was reacted with FITC-labeled v6Pep-1 and v6Pep-2 after treatment with siRNA (100 nmol) and binding was confirmed by fluorescent immunostaining, the two peptides showed weak binding to the cells , Which supports that v6Pep-1 and v6Pep-2 bind specifically to the CD44v6 gene (Fig. 2c).
또한, 도 2d에 나타낸 바와 같이, MDA-MB-231 세포를 anti-CD44v6 차단 항체로 전처리하면, 용량-의존적 방식으로 FITC 표지된 v6Pep-1 및 v6Pep-2의 결합이 상당히 감소하였고, MCF-7 세포에서는 최소 효과만이 확인되었다. 상기 결과는 MDA-MB-231 세포에 대해 v6Pep-1 및 v6Pep-2가 CD44v6과 특이적으로 결합한다는 것을 뒷받침한다.In addition, as shown in Figure 2D, pre-treatment of MDA-MB-231 cells with anti-CD44v6 blocking antibody significantly reduced binding of FITC labeled v6Pep-1 and v6Pep-2 in a dose- Only minimal effects were observed in the cells. The results support that v6Pep-1 and v6Pep-2 specifically bind to CD44v6 against MDA-MB-231 cells.
<< 실시예Example 3>  3> v6Pepv6Pep -1 및 -1 and v6Pepv6Pep -2에 의한 c-Met 및 C-Met by &lt; RTI ID = 0.0 &gt; Erk의Erk's HGFHGF -유도 인산화 억제 - Induced phosphorylation inhibition
다양한 암세포주 및 1차 세포에서, CD44v6 이성질체는 c-Met에 대한 공동 수용체로 작용한다. c-Met 활성화 및 신호전달은 CD44v6 항체 및 펩타이드에 의해 차단될 수 있다. 이에, 본 발명자들은 CD44v6 펩타이드들 (v6Pep-1 및 v6Pep-2) 및 2개 펩타이드의 조합(v6Pep1+2)의 c-Met 활성화에 대한 효과를 확인하여, 상기 펩타이드 그룹 및 조합이 CD44v6 및 c-Met 사이의 신호전달을 억제하거나 차단하는지 확인하였다. 본 발명에서, MDA-MB-231 및 4T1 세포를 혈청 결핍 조건(24시간)으로 배양하였고, 성장 인자 HGF (25-50 ng/mL)로 37℃에서 10분 동안 유도시켰다. 유도 전, 세포들을 CD44v6 특이 펩타이드 또는 대조 펩타이드 (100 ng/ml)로 37℃에서 10분 동안 처리하였다. 활성화된 Erk 및 활성화된 c-Met을 검출하기 위해서, 세포들을 용해시켰고, 인산화된 Erk 및 인산화된 c-Met에 대한 항체를 사용하여 웨스턴 블랏 분석에 적용하였다. 로딩 대조군으로도 동일한 블랏 분석을 수행하였고, 스트리핑 (62.5 mM Tris, pH 6.8, 2 % SDS, 0.8 % DTT)하였고, Erk 및 c-Met 항체로 탐침하였다(도 3a 및 도 3c). v6Pep-1, v6Pep-2 각각 5ug/ml 및 두 펩타이드의 조합 (v6Pep-1+2) 10ug/ml (5ug/ml+5ug/ml)으로 처리한 MDA-MB-231 세포는 c-Met 및 이의 하류 표적 Erk의 인산화를 크게 감소시켰다. 또한, CD44v6 펩타이드로 처리한 HELA 세포의 전-반응도 c-Met 및 Erk의 인산화를 감소시켰다. 또한, CD44v6 및 c-Met의 공동 수용체 기능을 확인하기 위해서, MDA-MB-231을 웰 당 2.5 × 105 세포의 농도로 12-웰 플레이트 상에 분주하였다. 24시간 후, 멸균 피펫 팁을 사용하여 컨플루언트 세포층에 스크래치를 만들었다. 배지를 성장인자 HGF 배지를 HGF를 포함한 신선한 배지로 교체하고, 성장인자로 유도하기 위해 25 ng/ml의 HGF를 37℃에서 10분간 처리하였다. HGF 유도 후 5㎍/ml CD44v6 펩타이드 (각각) 및 두 펩타이드의 조합 (v6Pep-1+v6Pep-2) 또는 5㎍/ml의 대조군 펩타이드를 37℃에서 10분 동안 처리한 후, 0시간, 24시간, 60시간에서 시간 간격으로 세포의 사진(원본 배율, ×100)을 찍었다. HGF는 세포의 이동 및 증식을 유도하였고, 컨플루언트 단일층의 스크래치를 회복시켰으나, CD44v6 펩타이드의 존재 하에서는 상기 효과가 강하게 억제되었다(도 3b 및 도 3d). 대조군 펩타이드는 아무 효과가 없었다.In various cancer cell lines and primary cells, the CD44v6 isoform acts as a co-receptor for c-Met. c-Met activation and signal transduction can be blocked by CD44v6 antibodies and peptides. We therefore confirmed the effect of CD44v6 peptides (v6Pep-1 and v6Pep-2) and the combination of two peptides (v6Pep1 + 2) on c-Met activation, indicating that the peptide groups and combinations are CD44v6 and c- Met was inhibited or blocked. In the present invention, MDA-MB-231 and 4T1 cells were cultured under serum deprivation conditions (24 hours) and induced with growth factor HGF (25-50 ng / mL) for 10 minutes at 37 ° C. Prior to induction, cells were treated with CD44v6 specific peptide or control peptide (100 ng / ml) for 10 min at 37 &lt; 0 &gt; C. To detect activated Erk and activated c-Met, cells were lysed and applied to Western blot analysis using antibodies against phosphorylated Erk and phosphorylated c-Met. The same blot analysis was also performed as the loading control and stripping (62.5 mM Tris, pH 6.8, 2% SDS, 0.8% DTT) and probing with Erk and c-Met antibodies (Figures 3a and 3c). MDA-MB-231 cells treated with 5 ug / ml each of v6Pep-1 and v6Pep-2 and 10 ug / ml (5 ug / ml + 5 ug / ml) of the combination of two peptides (v6Pep-1 + 2) Significantly reduced phosphorylation of downstream target Erk. In addition, the pre-reactivity of HELA cells treated with CD44v6 peptide reduced the phosphorylation of c-Met and Erk. Further, in order to determine the co-receptor function of CD44v6 and c-Met, it was dispensed on a 12-well plate for MDA-MB-231 at a concentration of 2.5 × 10 5 cells per well. After 24 hours, a scratch was made on the confluent cell layer using a sterile pipette tip. The medium was replaced with fresh medium containing HGF and HGF at 25 ng / ml was treated at 37 ° C for 10 minutes to induce growth factor. After the induction of HGF, 5 μg / ml CD44v6 peptide (each) and a combination of two peptides (v6Pep-1 + v6Pep-2) or 5 μg / ml of control peptide were treated at 37 ° C. for 10 minutes, , And pictures of cells (original magnification, × 100) were taken at time intervals from 60 hours. HGF induced cell migration and proliferation and restored the scratch of the confluent monolayer, but the effect was strongly suppressed in the presence of the CD44v6 peptide (FIG. 3b and FIG. 3d). The control peptides had no effect.
<실시예 4> v6Pep-1 및 v6Pep-2에 의한 HGF-유도 c-Met 내재화 억제 Example 4 Inhibition of HGF-induced c-Met by v6Pep-1 and v6Pep-2
CD44v6 결합 펩타이드가 세포 내로 내재화될 수 있는지 확인하기 위해서, 본 발명자들은 FITC 표지 펩타이드의 내재화를 검증하였다. 상기 펩타이드의 내재화는 MDA-MB-231 세포에서 2개의 펩타이드를 37℃, 1시간 동안 반응시킨 후, 공초점 현미경을 통해 확인하였다. 도 4a에 나타낸 바와 같이, FITC-v6Pep-1 및 FITC-v6Pep-2는 1-10μm 범위에서 세포 내로 내재화되었고, 세포질에 둘다 위치하였다. c-Met에 대한 CD44v6의 공동 수용체 기능이 c-Met의 내재화를 조절한다는 것을 나타내기 위해, 본 발명자들은 HGF 유도 전, MDA-MB-231 세포를 CD44v6 펩타이드 또는 대조군 펩타이드로 전-배양시켰고, 공초점 현미경을 사용하여 c-Met의 내재화 과정을 확인하였다(도 4b). 대조군 펩타이드 및 CD44v6 펩타이드 처리된 세포 모두, HGF 미존재 하에서는 c-Met가 멤브레인에 위치하였다(도 4b). 하지만, HGF 유도 30 분 및 60 분 후에는 염색 부분이 강하게 세포질에 위치하는 것을 확인하였다. 대부분의 세포들에서 멤브레인 염색이 사라지는 것을 정량적으로 확인하였다. 대조적으로, c-Met는 멤브레인 상에 존재하였고, CD44v6로 전-배양한 MDA-MB-231 세포 상에서 거의 내재화가 일어나지 않았다. 대조군 펩타이드를 처리한 세포에서, HGF 유도 후 c-Met는 내재화되었다. 대조군 펩타이드는 억제 효과가 없었다. 반대로, CD44v6 펩타이드는 c-Met 내재화를 강하게 감소시켰고, c-Met는 모든 시간 포인트에 멤브레인에서 검출되었다. CD44v6 펩타이드를 처리한 대부분의 세포들에서 c-Met가 멤브레인에 존재하는 것을 정량하여 명확히 확인하였다. 웨스턴 분석 결과, CD44v6 펩타이드들에 의한 c-Met 활성화 억제가 확인되었다(도 4c). CD44v6 항체를 사용한 웨스턴 블롯 분석을 위해, 바이오틴화 된 펩타이드 + 아비딘 비드 + 세포 용해물 (복합체 2)을 용출하였고, 특정 단백질의 풀다운 분석을 수행하였다. v6Pep-1에 의해 CD44v6 및 c-MET이 모두 풀다운 되었고, v6Pep-2에 의해 CD44v6이 풀다운되었다(도 4d). 반면, 야생형 CD44는 두 펩타이드 중 어느 것에 의해서도 풀다운 되지 않았다. 이는 v6Pep-1 및 v6Pep-2가 CD44 변이체 6 단백질에 특이성을 갖고, v6Pep-1은 c-Met을 풀다운시킨다는 것을 나타낸다. 상기 결과는 CD44v6 펩타이드가 CD44v6 및 이의 공동 수용체인 c-MET과 높은 특이성을 갖는다는 것을 뒷받침한다. CD44v6 펩타이드의 세포독성을 확인하기 위해서, MDA-MB-231 및 4T1 세포를 상이한 농도의 v6Pep-1, v6Pep-2 및 상기 2개 펩타이드의 조합 (v6Pep-1+v6Pep-2)으로 24시간 동안 반응시켰다. v6Pep-1, v6Ppep-2 및 상기 2개 펩타이드의 조합은 세포 생존능에는 영향을 미치지 않았다.In order to confirm that the CD44v6 binding peptide can be internalized into the cells, the inventors have verified the internalization of the FITC-labeled peptide. The internalization of the peptides was confirmed by confocal microscopy after reacting two peptides in MDA-MB-231 cells at 37 DEG C for 1 hour. As shown in Fig. 4A, FITC-v6Pep-1 and FITC-v6Pep-2 were internalized into the cells in the range of 1-10 mu m and both were located in the cytoplasm. To demonstrate that the co-receptor function of CD44v6 on c-Met modulates the internalization of c-Met, we prior to induction of HGF, MDA-MB-231 cells were pre-cultured with CD44v6 peptide or control peptide, Focusing microscopy was used to confirm the internalization process of c-Met (Fig. 4B). In both the control and CD44v6 peptide treated cells, c-Met was located on the membrane in the absence of HGF (Fig. 4B). However, after 30 minutes and 60 minutes of HGF induction, it was confirmed that the stained portion was strongly located in the cytoplasm. We quantitatively identified disappearance of membrane staining in most of the cells. In contrast, c-Met was present on the membrane and almost no internalization occurred on MDA-MB-231 cells pre-incubated with CD44v6. In cells treated with control peptides, c-Met was internalized after HGF induction. Control peptides were not inhibitory. Conversely, the CD44v6 peptide strongly reduced c-Met internalization, and c-Met was detected in the membrane at all time points. In most cells treated with CD44v6 peptide, the presence of c-Met on the membrane was quantitatively identified. Western analysis showed inhibition of c-Met activation by CD44v6 peptides (Figure 4c). For Western blot analysis using CD44v6 antibody, biotinylated peptide + avidin bead + cell lysate (complex 2) was eluted and pulldown analysis of specific proteins was performed. CD44v6 and c-MET were both pulled down by v6Pep-1 and CD44v6 was pulled down by v6Pep-2 (Fig. 4d). On the other hand, wild-type CD44 was not pulled down by either of the two peptides. Indicating that v6Pep-1 and v6Pep-2 have specificity for the CD44 variant 6 protein and v6Pep-1 pulls down c-Met. The results support that CD44v6 peptide has high specificity with CD44v6 and its co-receptor c-MET. MDA-MB-231 and 4T1 cells were incubated with different concentrations of v6Pep-1, v6Pep-2 and a combination of the two peptides (v6Pep-1 + v6Pep-2) for 24 hours to confirm the cytotoxicity of the CD44v6 peptide . The combination of v6Pep-1, v6Ppep-2 and the two peptides did not affect cell viability.
<< 실시예Example 5> 생체 내에서(in  5> in vivo vivovivo ) ) CD44v6CD44v6 -발현 인간 유방 종양 세포를 표적으로 하는 CD44v6 펩타이드 - CD44v6 peptide targeting expressed human breast tumor cells
펩타이드 탐침을 사용한 모니터링 및 이미징 분석을 위해, MDA-MB-231 세포를 면역결핍 암컷 누드 마우스로 피하 이종이식(xenograft)하여 동물 모델을 제작하였다. MDA-MB231 세포 현탁액 (5×106 세포)을 5주령 BALB/c 암컷 마우스의 오른쪽 측면으로 PBS와 함께 피하 주사하여 이식함으로써, 종양 이종이식 마우스를 제작하였다. 종양 크기가 약 100-200 mm3 부피에 도달하면, 마우스를 마취시켰고, FPR 675-표지된 v6Pep-1 (n = 3) 및 v6Pep-2 (n = 3), 대조군 (n = 3)을 정맥 내 주사하였다. 생체 내(in vivo) 형광 이미지는 여러 시간 포인트(각각 1, 2, 4 및 6 h)에서 주입 전 또는 주입 후에 촬영하였고, flamma 675는 동일한 농도 및 방법으로 주입하였다. NIRF 이미지 신호는 IVIS imaging system (Caliper Life Sciences, Massachusetts)을 이용하여 스캔하고 획득하였다. 생체 내(in vivo) 이미지 분석 결과, MDA-MB-231 이종이식 마우스에서 v6Pep-1 및 v6Pep-2는 상이한 시간 간격으로 종양 조직에 위치하였고, 6h 이상 지속되었다(도 5a 및 도 5c). 한편, 대조군 펩타이드는 높은 비-특이적 조직 국소화를 나타내어, 종양 위치에서는 아무런 축적을 확인할 수 없었다. 거의 유사한 약리동력학적 특성에도 불구하고, v6Pep-1 및 v6Pep-2는 대조군 펩타이드에 비해 우수한 종양 축적 효과를 나타냈다. 생체 외(Ex vivo) 형광 이미지는 주입 후 6시간 후에 절제된 종양 및 장기에서 수집하였다. 종양 조직을 가진 모든 주요 장기(간, 신장, 비장, 심장 및 폐)가 분리되었고, PBS로 씻어냈고, 675nm FPR-675 fluorophore 여기 파장 및 698 nm 방출 파장에서 생체 외(Ex vivo) 형광 이미지를 촬영하였다(n = 3). 각 장기의 관심 영역(region of interest; ROI) 내 형광 세기를 분석하였다. 표적 종양의 형광 세기는 대조군 펩타이드 대비 v6Pep-1 및 v6Pep-2 주입 마우스에서 높은 축적을 나타냈다(도 5b 및 도 5d). 대조군 펩타이드 주입 마우스는 v6Pep-1 및 v6Pep-2 대비 간 및 신장에서 높은 축적을 나타냈고, 폐 및 비장에서는 무시할 만한 수준이었다. 또한, 조직의 면역조직화학 분석 결과, v6Pep-1 및 v6Pep-2는 종양 조직에 CD44v6와 동시-위치하는 것을 확인하였는데, 이는 anti-CD44v6 항체로 염색하여 검출하였다. 생체 내(in vivo) 및 생체 외(ex vivo) 결과와 일관되게, 종양 조직의 면역조직화학 분석 결과는 대조군 펩타이드 대비 v6Pep-1 및 v6Pep-2가 CD44v6 과발현 종양 조직과 연관되어 있다는 것을 나타냈다(도 5e).For monitoring and imaging analysis using peptide probes, MDA-MB-231 cells were xenografted with immunodeficient female nude mice to produce animal models. MDA-MB231 cell suspension (5 x 106 cells) was subcutaneously injected with PBS into the right side of 5-week-old BALB / c female mice to prepare a tumor xenograft mouse. When the tumor size reached about 100-200 mm 3 volume, the mice were anesthetized and the FPR 675-labeled v6Pep-1 (n = 3) and v6Pep-2 (n = 3) . In vivo fluorescence images were taken before or after injection at multiple time points (1, 2, 4, and 6 h, respectively) and flamma 675 was injected at the same concentration and method. NIRF image signals were scanned and acquired using an IVIS imaging system (Caliper Life Sciences, Massachusetts). In vivo image analysis showed that v6Pep-1 and v6Pep-2 in MDA-MB-231 xenografted mice were located in tumor tissues at different time intervals and lasted for more than 6 h (FIGS. 5A and 5C). On the other hand, the control peptides showed high non-specific tissue localization, and no accumulation could be confirmed at the tumor location. Despite almost similar pharmacokinetic properties, v6Pep-1 and v6Pep-2 showed better tumor accumulation than the control peptides. Ex vivo fluorescence images were collected from resected tumors and organs 6 hours after injection. All major organs with tumor tissue (liver, kidney, spleen, heart and lungs) were isolated and washed with PBS and exposed to ex vivo fluorescence images at 675 nm FPR-675 fluorophore excitation wavelength and 698 nm emission wavelength (N = 3). The fluorescence intensities within each region of interest (ROI) were analyzed. The fluorescence intensity of the target tumors showed a high accumulation in the v6Pep-1 and v6Pep-2 injected mice compared to the control peptides (Fig. 5b and Fig. 5d). Control peptide-injected mice showed high accumulation in the liver and kidney compared to v6Pep-1 and v6Pep-2, and negligible levels in the lungs and spleen. In addition, immunohistochemical analysis of the tissues revealed that v6Pep-1 and v6Pep-2 were co-located with CD44v6 in the tumor tissue, which was detected by staining with anti-CD44v6 antibody. Consistent with in vivo and ex vivo results, immunohistochemical analysis of tumor tissues indicated that v6Pep-1 and v6Pep-2 versus control peptides were associated with CD44v6 overexpressing tumor tissue (Fig. 5e).
<실시예 6> 인간 유방암 모델의 전이를 억제하는 CD44v6 펩타이드 Example 6 CD44v6 Peptide Inhibiting Metastasis of Human Breast Cancer Model
다음으로, 본 발명자들은 MDA-MB-231 종양 모델에서 c-Met 억제제 화합물인 크리조티닙(crizotinib)과 조합하여 v6Pep-1 및 v6Ppe-2의 항종양 효과를 확인하였다. CD44v6 펩타이드들은 혈청 내에서 24시간 이상 분해 없이 안정적이다. 식염수 및 대조군 펩타이드 처리군에 비해, v6Pep-1 + 크리조티닙(crizotinib) 및 v6Pep-2 + 크리조티닙(crizotinib)의 전신 투여는 전이를 상당히 억제하였고, v6Pep-1, v6 Pep-2 및 크리조티닙(crizotinib)의 각각 단독 투여도 전이성 성장을 억제하였다(도 6b). 전신 및 폐 부위에서 전체 프로톤 플럭스(프로톤 수/초, p/s)의 정량 결과, 플럭스는 처리군에서 상당히 감소하였다(도 6c). 또한, X- ray로 각 군의 전신 생물발광 이미지 분석 결과에서도 유사하게 나타났다(도 7a). 크리조티닙(crizotinib)과 함께 v6Pep-1 및 v6Ppe-2의 생물학적 안정성을 확인하기 위해, 본 발명자들은 연속적인 주입 처리 과정 중 체중 변화를 관측하였다(도 6d). 치료 동안, 상기 CD44v6 펩타이드의 주입에 따른 마우스의 체중 변화는 거의 없었다. 또한, 치료 후 여러 혈액 생화학 분석 및 혈액학적 파라미터 분석도 진행하였으나, 큰 차이는 없었다. 또한, PBS (식염수) 또는 단일 처리군 대비 처리군에서 억제된 전이성 성장은 무시할 정도의 전이성 종괴 또는 미세 종괴를 나타냈다(도 7b). 정상 폐 무게와 비교하여 무게에 차이를 나타내는 PBS 처리군에서 폐 무게를 측정하였다. 이는 CD44v6 펩타이드 처리군 대비 전이성 종괴 증가 및 폐 무게의 감소가 생존율을 감소시킨다는 것을 나타냈다(도 7c 및 도 7d). 동결 폐 조직의 H & E 염색 결과, 대조군 또는 단독처리군 보다 조합 처리군에서 정상 폐 조직학적 소견을 나타냈다(도 7e).Next, the inventors confirmed the antitumor effect of v6Pep-1 and v6Ppe-2 in combination with the c-Met inhibitor compound crizotinib in the MDA-MB-231 tumor model. CD44v6 peptides are stable in the serum without degradation for more than 24 hours. Systemic administration of v6Pep-1 + crizotinib and v6Pep-2 + crizotinib significantly inhibited metastasis compared to saline and control peptide treated groups, while v6Pep-1, v6Pep-2 and Cre- Each single administration of crizotinib also inhibited metastatic growth (Figure 6b). As a result of quantification of total proton flux (proton number / second, p / s) at the whole body and lungs, the flux was significantly reduced in the treatment group (FIG. Also, the results of analysis of whole body bioluminescence images of each group were similar by X-ray (Fig. 7A). To confirm the biological stability of v6Pep-1 and v6Ppe-2 with crizotinib, we observed weight changes during the continuous infusion process (Fig. 6d). During treatment, there was little weight change in the mice following the injection of the CD44v6 peptide. In addition, several blood biochemical analyzes and hematological parameters were analyzed after treatment, but there was no significant difference. In addition, inhibited metastatic growth in the PBS (saline) or monotherapy group treated group showed negligible metastatic mass or micro-mass (Fig. 7b). Pulmonary weights were measured in the PBS treatment group, which showed differences in weight compared to normal lung weight. This indicated that an increase in metastatic mass and a decrease in lung weight compared to the CD44v6 peptide treatment group reduced the survival rate (Figs. 7c and 7d). H & E staining of frozen lung tissue revealed normal pulmonary histology in the combination treatment group than in the control or single treatment group (FIG. 7E).
<< 실시예Example 7> 생체 내에서(in  7> in vivo vivovivo ) ) CD44v6CD44v6 -발현 마우스 유방 종양 세포를 선택적으로 표적하는 CD44v6 펩타이드 Lt; RTI ID = 0.0 &gt; CD44v6 &lt; / RTI &gt; peptide
펩타이드 탐침을 사용한 모니터링 및 이미징 분석을 위해, 종양세포를 면역결핍 암컷 누드 마우스로 피하 이종이식(xenograft)하여 동물 모델을 제작하였다. 4T1 세포 현탁액 (5×106 세포)을 5주령 BALB/c 야생형 암컷 마우스의 유방 지방 패드로 PBS와 함께 피하 주사하여 이식함으로써, 종양 이종이식 마우스를 제작하였다. 종양 크기가 약 100-200 mm3 부피에 도달하면, 마우스를 마취시켰고, FPR 675-표지된 v6Pep-1 (n = 3) 및 v6Pep-2 (n = 3), 대조군 (n = 3)을 정맥 내 주사하였다. 생체 내(in vivo) 형광 이미지는 여러 시간 포인트(각각 1, 2, 4 및 6 h)에서 주입 전 또는 주입 후에 촬영하였고, flamma 675는 동일한 농도 및 방법으로 주입하였다. NIRF 이미지 신호는 IVIS imaging system (Caliper Life Sciences, Massachusetts)을 이용하여 스캔하고 획득하였다. 생체 내(in vivo) 이미지 분석 결과, 4T1 동소이식(orthotopic) 마우스에서 v6Pep-1 및 v6Pep-2는 상이한 시간 간격으로 종양 조직에 위치하였고, 6h 이상 지속되었다(도 8a 및 도 8c). 한편, 대조군 펩타이드는 높은 비-특이적 조직 국소화를 나타내어, 종양 위치에서는 아무런 축적을 확인할 수 없었다. 거의 유사한 약리동력학적 특성에도 불구하고, v6Pep-1 및 v6Pep-2는 대조군 펩타이드에 비해 우수한 종양 축적 효과를 나타냈다. 이는 펩타이드의 종양 표적화 활성을 결정하는데 있어, 향상된 약리동력학적 특성이 중요한 인자가 아닐수도 있음을 명확히 나타낸다. 생체 외(Ex vivo) 형광 이미지는 주입 후 6시간 후에 절제된 종양 및 장기에서 수집하였다. 종양 조직을 가진 모든 주요 장기(간, 신장, 비장, 심장 및 폐)가 분리되었고, PBS로 씻어냈고, 675nm FPR-675 fluorophore 여기 파장 및 698 nm 방출 파장에서 생체 외(Ex vivo) 형광 이미지를 촬영하였다(n = 3). 각 장기의 관심 영역(region of interest; ROI) 내 형광 세기를 분석하였다. 표적 종양의 형광 세기는 대조군 펩타이드 대비 v6Pep-1 및 v6Pep-2 주입 마우스에서 높은 축적을 나타냈다(도 8b 및 도 8d). 대조군 펩타이드 주입 마우스는 v6Pep-1 및 v6Pep-2 대비 간 및 신장에서 높은 축적을 나타냈고, 폐 및 비장에서는 무시할 만한 수준이었다. 또한, 조직의 면역조직화학 분석 결과, v6Pep-1 및 v6Pep-2는 종양 조직에 CD44v6와 동시-위치하는 것을 확인하였는데, 이는 anti-CD44v6 항체로 염색하여 검출하였다. 생체 내(in vivo) 및 생체 외(ex vivo) 결과와 일관되게, 종양 조직의 면역조직화학 분석 결과는 대조군 펩타이드 대비 v6Pep-1 및 v6Pep-2가 CD44v6 과발현 종양 조직과 연관되어 있다는 것을 나타냈다(도 8e).For monitoring and imaging analysis using peptide probes, tumor cells were xenografted with immunodeficient female nude mice to produce animal models. 4T1 cell suspension (5 x 106 cells) was transplanted subcutaneously with PBS into breast fat pads of 5-week old BALB / c wild-type female mice to prepare tumor xenograft mice. When the tumor size reached about 100-200 mm 3 volume, the mice were anesthetized and the FPR 675-labeled v6Pep-1 (n = 3) and v6Pep-2 (n = 3) . In vivo fluorescence images were taken before or after injection at multiple time points (1, 2, 4, and 6 h, respectively) and flamma 675 was injected at the same concentration and method. NIRF image signals were scanned and acquired using an IVIS imaging system (Caliper Life Sciences, Massachusetts). In vivo image analysis showed that v6Pep-1 and v6Pep-2 in 4T1 orthotopic mice were located in tumor tissues at different time intervals and lasted for more than 6h (Figs. 8A and 8C). On the other hand, the control peptides showed high non-specific tissue localization, and no accumulation could be confirmed at the tumor location. Despite almost similar pharmacokinetic properties, v6Pep-1 and v6Pep-2 showed better tumor accumulation than the control peptides. This clearly demonstrates that improved pharmacokinetic properties may not be an important factor in determining the tumor targeting activity of the peptides. Ex vivo fluorescence images were collected from resected tumors and organs 6 hours after injection. All major organs with tumor tissue (liver, kidney, spleen, heart and lungs) were isolated and washed with PBS and exposed to ex vivo fluorescence images at 675 nm FPR-675 fluorophore excitation wavelength and 698 nm emission wavelength (N = 3). The fluorescence intensities within each region of interest (ROI) were analyzed. The fluorescence intensities of the target tumors showed a high accumulation in v6Pep-1 and v6Pep-2 injected mice compared to the control peptides (Fig. 8b and Fig. 8d). Control peptide-injected mice showed high accumulation in the liver and kidney compared to v6Pep-1 and v6Pep-2, and negligible levels in the lungs and spleen. In addition, immunohistochemical analysis of the tissues revealed that v6Pep-1 and v6Pep-2 were co-located with CD44v6 in the tumor tissue, which was detected by staining with anti-CD44v6 antibody. Consistent with in vivo and ex vivo results, immunohistochemical analysis of tumor tissues indicated that v6Pep-1 and v6Pep-2 versus control peptides were associated with CD44v6 overexpressing tumor tissue (Fig. 8e).
<< 실시예Example 8> 생체 내(in  8> in vivo (in vivovivo ) 마우스 종양 세포의 전이를 차단하는 ) To block metastasis of mouse tumor cells CD44v6CD44v6 펩타이드  Peptides
본 발명자들은 4T1 종양 모델에서 크리조티닙(crizotinib)과 조합하여 v6Pep-1 및 v6Ppe-2의 항종양 효과를 확인하였다. 식염수 처리군에 비해, v6Pep-1 + 크리조티닙(crizotinib) 및 v6Pep-2 + 크리조티닙(crizotinib)의 전신 투여는 전이를 상당히 억제하였고, v6Pep-1, v6 Pep-2 및 크리조티닙(crizotinib)의 각각 단독 투여도 종양 및 전이성 성장을 약간 억제하였다(도 9b). 전신 및 폐 부위에서 전체 프로톤 플럭스(프로톤 수/초, p/s)의 정량 결과, 플럭스는 처리군에서 상당히 감소하였다(도 9c 및 도 9d). 또한, 4T1 동소이식 마우스 모델에서 생체 내(in vivo) 항종양 활성을 측정하였다. 생분포 및 약리동력학적 결과와 유사하게, 생체 내(in vivo) 치료는 CD44v6 펩타이드 14.2 mg/kg을 주당 3번 정맥 주사하였고, 크리조티닙(crizotinib) 25 mg/kg을 주당 3번 경구투여하여 시작하였다. 4T1 마우스에서 v6Pep-1 + 크리조티닙(crizotinib) 및 v6Pep-2 + 크리조티닙(crizotinib)의 정맥 투여는 종양 성장을 크게 억제하였으나, 단독 처리군에서는 종양 성장에 있어 유의성 없는 약간의 감소가 검출되었다(도 10a). 반면, PBS 및 대조군 펩타이드로 처리군에서는 종양이 더 공격적으로 성장하였고, 28일 후에는 1,409 mm3 정도의 크기에 도달하였다. 암세포 표면상에서 높게 발현되는 CD44v6에 종양 표적화가 향상된 결과로, CD44v6 펩타이드 또는 크리조티닙(crizotinib) 단독 처리 마우스에서는 종양 부피가 약간 감소하는 것으로 나타났다. 치료 마지막 단계의 절제된 종양 무게는 대조군 대비 상당히 감소하였다(도 10d). 또한, PBS (식염수) 또는 단일 처리군 대비 처리군에서 억제된 전이성 성장은 무시할 정도의 전이성 종괴 또는 미세 종괴를 나타냈다(도 10c). 크리조티닙(crizotinib)과 함께 v6Pep-1 및 v6Ppe-2의 생물학적 안정성을 확인하기 위해, 본 발명자들은 처리 과정 중 체중 변화를 관측하였고, 치료 동안, 상기 CD44v6 펩타이드 및 약물의 연속적인 주입에 따른 마우스의 체중 변화는 거의 없었다(도 10b). 또한, 치료 후 여러 혈액 생화학 분석 및 혈액학적 파라미터 분석도 진행하였으나, 큰 차이는 없었다. PBS 및 대조군 펩타이드에서 측정된 생존율이 펩타이드 및 크리조티닙(crizotinib) 처리군 보다 낮게 나타났다(도 11a). 동결 폐 조직의 H & E 염색 결과, 대조군 또는 단독처리군 보다 조합 처리군에서 정상 폐 조직학적 소견을 나타냈다(도 11b). 인산화-c-Met 염색을 사용한 종양 내 c-Met 활성화는 CD44v6 펩타이드 및 크리조티닙(crizotinib) 조합 처리에 의해 완전히 억제되는 것으로 나타났고, 단독 처리군에서는 일부 억제되는 것으로 나타났다(도 12a). 또한, v6Pep-1 + 크리조티닙(crizotinib) 및 v6Pep-2 + 크리조티닙(crizotinib) 처리군의 종양 조직에서 caspase 3은 세포사멸성 세포를 더 검출하였으나, 대조군을 그렇지 않았다(도 12b). 상기 결과는 종양 위치에 특이적인 v6Pep-1 + 크리조티닙(crizotinib) 및 v6Pep-2 + 크리조티닙(crizotinib)이 여러 생물학적 장벽을 침투하고, 세포 내 진입을 촉진시키며, 이어서 대규모 세포사멸을 유도한다는 것을 뒷받침한다.The present inventors have confirmed the antitumor effect of v6Pep-1 and v6Ppe-2 in combination with crizotinib in the 4T1 tumor model. Systemic administration of v6Pep-1 + crizotinib and v6Pep-2 + crizotinib significantly inhibited metastasis compared to the saline-treated group, and v6Pep-1, v6Pep-2 and crizotinib crizotinib alone inhibited tumor and metastatic growth slightly (Figure 9b). As a result of quantification of total proton flux (proton number / second, p / s) in whole body and lung regions, flux was significantly reduced in the treated group (FIG. 9c and FIG. 9d). In vivo antitumor activity was also measured in the 4T1 transgenic mouse model. In vivo treatment, similar to biochemical distribution and pharmacokinetic results, was performed by intravenously injecting 14.2 mg / kg of CD44v6 peptide three times a week and oral administration of crizotinib 25 mg / kg three times per week . Intravenous administration of v6Pep-1 + crizotinib and v6Pep-2 + crizotinib in 4T1 mice significantly inhibited tumor growth, but a slight decrease in tumor growth was detected in the single treatment group (Fig. 10A). On the other hand, the tumors grew more aggressively in the treated group with PBS and control peptide, and reached a size of 1,409 mm 3 after 28 days. As a result of improved tumor targeting to CD44v6, which is highly expressed on the cancer cell surface, tumor volume has decreased slightly in CD44v6 peptide or crizotinib alone treated mice. The weight of the resected tumor at the end of treatment was significantly reduced compared to the control (Fig. 10d). In addition, inhibited metastatic growth in the PBS (saline) or single treatment group versus treated group showed negligible metastatic mass or micro mass (FIG. 10c). To confirm the biological stability of v6Pep-1 and v6Ppe-2 in combination with crizotinib, we observed changes in body weight during the course of treatment and, during treatment, mice with continuous infusion of the CD44v6 peptide and drug (Fig. 10B). In addition, several blood biochemical analyzes and hematological parameters were analyzed after treatment, but there was no significant difference. Survival rates measured in PBS and control peptides were lower than in the peptide and crizotinib treated groups (Figure 11a). H & E staining of frozen lung tissues revealed normal pulmonary histologic findings in the combination treatment group than in the control or single treatment group (FIG. 11B). C-Met activation in tumors using phosphorylated-c-Met staining was shown to be completely inhibited by the combination of CD44v6 peptide and crizotinib, and was partially inhibited in the single treatment group (Fig. 12A). Furthermore, caspase 3 detected more apoptotic cells in the tumor tissues of v6Pep-1 + crizotinib and v6Pep-2 + crizotinib treated group, but not the control group (Fig. 12b). These results suggest that v6Pep-1 + crizotinib and v6Pep-2 + crizotinib, which are specific for tumor location, penetrate various biological barriers and promote intracellular entry, followed by induction of large cell death .
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that such detail is solved by the person skilled in the art without departing from the scope of the invention. will be. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (18)

  1. 서열번호 1 또는 서열번호 2로 표시되는 아미노산 서열로 이루어진 CD44v6에 특이적으로 결합하는 펩타이드.A peptide that specifically binds to CD44v6 consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2.
  2. 제1항에 있어서, 상기 펩타이드는 c-Met의 인산화를 억제하여 CD44v6 및 c-Met 간의 신호전달을 차단하는 것을 특징으로 하는 CD44v6에 특이적으로 결합하는 펩타이드.2. The peptide of claim 1, wherein said peptide specifically inhibits phosphorylation of c-Met and blocks signal transduction between CD44v6 and c-Met.
  3. 제1항의 펩타이드를 코딩하는 폴리뉴클레오타이드.A polynucleotide encoding the peptide of claim 1.
  4. 제3항의 폴리뉴클레오타이드를 포함하는 재조합벡터.A recombinant vector comprising the polynucleotide of claim 3.
  5. 제4항의 재조합벡터로 형질전환된 형질전환체.A transformant transformed with the recombinant vector of claim 4.
  6. 제1항의 펩타이드를 유효성분으로 포함하는 암 진단용 조성물.A composition for diagnosing cancer comprising the peptide of claim 1 as an active ingredient.
  7. 제6항에 있어서, 상기 암은 CD44v6이 과발현되는 암인 것을 특징으로 하는 암 진단용 조성물. The cancer diagnostic composition according to claim 6, wherein the cancer is cancer in which CD44v6 is overexpressed.
  8. 제7항에 있어서, 상기 CD44v6이 과발현되는 암은 폐암, 뇌종양, 유방암, 간암, 피부암, 식도암, 고환암, 신장암, 대장암, 직장암, 위암, 신장암, 방광암, 난소암, 담관암, 담낭암, 자궁암, 자궁경부암, 전립선암, 두경부암, 췌장암 및 편평상피세포암으로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 암 진단용 조성물. 8. The method of claim 7, wherein the cancer overexpressing CD44v6 is selected from the group consisting of lung cancer, brain tumor, breast cancer, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, rectal cancer, gastric cancer, kidney cancer, bladder cancer, ovarian cancer, , Cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, and squamous cell carcinoma.
  9. 제1항의 펩타이드를 유효성분으로 포함하는 암 예방 또는 치료용 약학조성물.A pharmaceutical composition for preventing or treating cancer comprising the peptide of claim 1 as an active ingredient.
  10. 제1항의 펩타이드 및 항암제를 유효성분으로 포함하는 암 예방 또는 치료용 약학조성물.A pharmaceutical composition for preventing or treating cancer comprising the peptide of claim 1 and an anticancer agent as an active ingredient.
  11. 제10항에 있어서, 상기 항암제는 크리조티닙(crizotinib), 독소루비신, 파클리탁셀, 빈크리스틴, 다우노루비신(daunorubicin), 빈블라스틴(vinblastine), 액티노마이신-D(actinomycin-D), 도세탁셀, 에토포사이드(etoposide), 테니포사이드(teniposide), 비산트렌 (bisantrene), 호모해링토닌(homoharringtonine), 글리벡(Gleevec; STI-571), 시스플라틴, 5-플로오로우라실, 아드리아마이신, 메토트렉세이트, 부설판(busulfan), 클로람부실(chlorambucil), 시클로포스파미드(cyclophosphamide), 멜팔란 (melphalan), 니트로겐 무스타드(nitrogen mustard) 및 니트로소우레아 (nitrosourea)로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 암 예방 또는 치료용 약학조성물.11. The method of claim 10, wherein the anticancer agent is selected from the group consisting of crizotinib, doxorubicin, paclitaxel, vincristine, daunorubicin, vinblastine, actinomycin-D, Etoposide, teniposide, bisantrene, homoharringtonine, Gleevec (STI-571), cisplatin, 5-fluorouracil, adriamycin, methotrexate, is selected from the group consisting of at least one selected from the group consisting of chlorobutanol, busulfan, chlorambucil, cyclophosphamide, melphalan, nitrogen mustard, and nitrosourea. Or a pharmaceutically acceptable salt thereof.
  12. 제9항 또는 제10항에 있어서, 상기 암은 CD44v6이 과발현되는 암인 것을 특징으로 하는 암 예방 또는 치료용 약학조성물.11. The pharmaceutical composition for preventing or treating cancer according to claim 9 or 10, wherein the cancer is cancer in which CD44v6 is overexpressed.
  13. 제12항에 있어서, 상기 CD44v6이 과발현되는 암은 폐암, 뇌종양, 유방암, 간암, 피부암, 식도암, 고환암, 신장암, 대장암, 직장암, 위암, 신장암, 방광암, 난소암, 담관암, 담낭암, 자궁암, 자궁경부암, 전립선암, 두경부암, 췌장암 및 편평상피세포암으로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 암 예방 또는 치료용 약학조성물.13. The method of claim 12, wherein the cancer that overexpresses CD44v6 is lung cancer, brain tumor, breast cancer, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, rectal cancer, stomach cancer, kidney cancer, bladder cancer, ovarian cancer, , Cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, and squamous cell carcinoma.
  14. 제9항 또는 제10항에 있어서, 상기 약학조성물은 암의 전이를 억제시키는 것을 특징으로 하는 암 예방 또는 치료용 약학조성물.The pharmaceutical composition for preventing or treating cancer according to claim 9 or 10, wherein the pharmaceutical composition inhibits cancer metastasis.
  15. 제1항의 펩타이드를 유효성분으로 포함하는 암 예방 또는 개선용 건강기능식품 조성물.A health functional food composition for preventing or ameliorating cancer comprising the peptide of claim 1 as an active ingredient.
  16. 제1항의 펩타이드를 유효성분으로 포함하는 약물 전달용 조성물.A composition for drug delivery comprising the peptide of claim 1 as an active ingredient.
  17. 제16항에 있어서, 상기 약물은 항암제인 것을 특징으로 하는 약물 전달용 조성물.The drug delivery composition according to claim 16, wherein the drug is an anticancer agent.
  18. 제17항에 있어서, 상기 항암제는 크리조티닙(crizotinib), 독소루비신, 파클리탁셀, 빈크리스틴, 다우노루비신(daunorubicin), 빈블라스틴(vinblastine), 액티노마이신-D(actinomycin-D), 도세탁셀, 에토포사이드(etoposide), 테니포사이드(teniposide), 비산트렌 (bisantrene), 호모해링토닌(homoharringtonine), 글리벡(Gleevec; STI-571), 시스플라틴, 5-플로오로우라실, 아드리아마이신, 메토트렉세이트, 부설판(busulfan), 클로람부실(chlorambucil), 시클로포스파미드(cyclophosphamide), 멜팔란 (melphalan), 니트로겐 무스타드(nitrogen mustard) 및 니트로소우레아 (nitrosourea)로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 약물 전달용 조성물.18. The method of claim 17, wherein the anticancer agent is selected from the group consisting of crizotinib, doxorubicin, paclitaxel, vincristine, daunorubicin, vinblastine, actinomycin-D, Etoposide, teniposide, bisantrene, homoharringtonine, Gleevec (STI-571), cisplatin, 5-fluorouracil, adriamycin, methotrexate, is selected from the group consisting of at least one selected from the group consisting of chlorobutanol, busulfan, chlorambucil, cyclophosphamide, melphalan, nitrogen mustard, and nitrosourea. Or a pharmaceutically acceptable salt thereof.
PCT/KR2018/016022 2017-12-15 2018-12-17 Peptides binding to cd44v6 and use thereof WO2019117691A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18889460.4A EP3733685A4 (en) 2017-12-15 2018-12-17 Peptides binding to cd44v6 and use thereof
US16/772,810 US11192920B2 (en) 2017-12-15 2018-12-17 Peptides for binding to CD44v6 and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170173305 2017-12-15
KR10-2017-0173305 2017-12-15
KR1020180161981A KR102194025B1 (en) 2017-12-15 2018-12-14 CD44v6 binding peptide and use thereof
KR10-2018-0161981 2018-12-14

Publications (1)

Publication Number Publication Date
WO2019117691A1 true WO2019117691A1 (en) 2019-06-20

Family

ID=66819451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016022 WO2019117691A1 (en) 2017-12-15 2018-12-17 Peptides binding to cd44v6 and use thereof

Country Status (1)

Country Link
WO (1) WO2019117691A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266409A (en) * 2020-10-28 2021-01-26 南开大学 Etoposide self-assembly nanofiber polypeptide, preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009007427A2 (en) * 2007-07-12 2009-01-15 Pierre Fabre Medicament Novel antibodies inhibiting c-met dimerization, and uses thereof
KR101741594B1 (en) * 2015-06-30 2017-05-30 경북대학교 산학협력단 Pharmaceutical composition comprising fusion peptide targeting cancer cells and tumor associated macrophages for treating cancer and inhibiting metastasis
KR101750549B1 (en) * 2015-05-18 2017-07-03 경북대학교 산학협력단 Peptides for targeting tumor cells and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009007427A2 (en) * 2007-07-12 2009-01-15 Pierre Fabre Medicament Novel antibodies inhibiting c-met dimerization, and uses thereof
KR101750549B1 (en) * 2015-05-18 2017-07-03 경북대학교 산학협력단 Peptides for targeting tumor cells and uses thereof
KR101741594B1 (en) * 2015-06-30 2017-05-30 경북대학교 산학협력단 Pharmaceutical composition comprising fusion peptide targeting cancer cells and tumor associated macrophages for treating cancer and inhibiting metastasis

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE PROTEIN 22 March 2016 (2016-03-22), ANONYMOUS: "hypothetical protein AYK26_06250 [Euryarchaeota archaeon SM23-78]", XP055617896, retrieved from NCBI Database accession no. KYK25351 *
DATABASE PROTEIN 24 November 2015 (2015-11-24), ANONYMOUS: "hypothetical protein T4B_10595 [Trichinella pseudospiralis]", XP055617901, retrieved from NCBI Database accession no. KRY97216 *
MATZKE-OGI ET AL.: "Inhibition of Tumor Growth and Metastasis in Pancreatic Cancer Models by Interference With CD 44v6 Signaling", GASTROENTEROLOGY, vol. 150, no. 2, 2016, pages 513 - 525, XP029393874 *
See also references of EP3733685A4 *
TODARO ET AL.: "CD 44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis", CELL STEM CELL, vol. 14, no. 3, 6 March 2014 (2014-03-06), pages 342 - 356, XP055617893 *
WU ET AL., J. BIO. CHEM., vol. 267, 1992, pages 963 - 967
WUWU, J. BIO. CHEM., vol. 263, 1988, pages 14621 - 14624

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266409A (en) * 2020-10-28 2021-01-26 南开大学 Etoposide self-assembly nanofiber polypeptide, preparation method and application
CN112266409B (en) * 2020-10-28 2022-05-13 南开大学 Etoposide self-assembly nanofiber polypeptide, preparation method and application

Similar Documents

Publication Publication Date Title
US9226963B2 (en) Antagonist anti-Rspondin3 antibodies
KR101951410B1 (en) Inhibition of axl signaling in anti-metastatic therapy
KR20160074000A (en) Cancer models and associated methods
KR20010086070A (en) Promotion or Inhibition of Angiogenesis and Cardiovascularization
Maroni et al. RETRACTED: Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1α stabilization/nuclear translocation in bone metastasis from breast carcinoma
WO2019117690A1 (en) Peptide bound to pl-l1 and use thereof
JP2021510538A (en) Protein molecules and their use
KR20190072466A (en) PD-L1 binding peptide and use thereof
KR102194025B1 (en) CD44v6 binding peptide and use thereof
CN113727602B (en) Anti-NME antibodies and methods of treating cancer or cancer metastasis
WO2019117691A1 (en) Peptides binding to cd44v6 and use thereof
EP2218457B1 (en) CD44v6 peptides as inhibitors of bacterial infections
US8703917B2 (en) Epidermal growth factor receptor variants and pharmaceutical compositions thereof
US20130089548A1 (en) Method and compositions to induce apoptosis of tumoral cells expressing shh
CN116367857A (en) anti-NME antibodies and methods of treating cancer or cancer metastasis
US11696938B2 (en) Human cancer cell metastasis inhibitory agent and human cancer cell determination agent
US20090048158A1 (en) Insulin-Like Growth Factor Binding Protein-4 Compounds and Methods for Inhibiting Angiogenesis and Tumor Growth in Mammalian Cells
WO2023153711A1 (en) Peptide binding to mesothelin, and use thereof
JP4462560B2 (en) Apoptosis inducer and apoptosis induction method
WO2022035222A1 (en) Peptide selectively binding to cancer cell-derived exosome, and uses thereof
EP2802341B1 (en) Methods for preventing, treating or diagnosing disorders
WO2024049046A1 (en) PEPTIDES THAT SELECTIVELY BIND TO Trop2 AND USE THEREOF
EP1790983A1 (en) Method of screening compound preventing cells from infection with hepatitis c virus (hcv)
TWI808063B (en) Method for treatment or prevention of a cancer
CN116075318A (en) anti-NME antibodies and methods of treating cancer or cancer metastasis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018889460

Country of ref document: EP

Effective date: 20200715