WO2019117648A1 - Biosensor - Google Patents

Biosensor Download PDF

Info

Publication number
WO2019117648A1
WO2019117648A1 PCT/KR2018/015852 KR2018015852W WO2019117648A1 WO 2019117648 A1 WO2019117648 A1 WO 2019117648A1 KR 2018015852 W KR2018015852 W KR 2018015852W WO 2019117648 A1 WO2019117648 A1 WO 2019117648A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
detection
cuvette
detection structure
present
Prior art date
Application number
PCT/KR2018/015852
Other languages
French (fr)
Korean (ko)
Inventor
전진우
황혜진
박연수
김기범
Original Assignee
(주)플렉센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)플렉센스 filed Critical (주)플렉센스
Priority claimed from KR1020180160529A external-priority patent/KR102253033B1/en
Publication of WO2019117648A1 publication Critical patent/WO2019117648A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a biosensor technique for immunoassay, and more particularly, to a biosensor structured to improve immunoassay speed and sensitivity.
  • An enzyme-linked immunosorbent assay is an analytical technique that detects and quantifies target substances such as peptides, proteins, antibodies and hormones.
  • a target material such as an antigen, etc.
  • a reagent e.g., an antibody polymerized with an enzyme.
  • the substrate reacts with the enzyme to generate a measurable reaction product, so that the target substance can be detected and analyzed by evaluating the enzyme activity.
  • the types of ELISAs include direct ELISA, indirect ELISA, sandwich ELISA, and competitive ELISA.
  • Direct ELISA is detected by immobilizing the antigen on the surface of a multi-well plate and reacting specifically with antibodies conjugated with HRP or other markers.
  • the antigen is immobilized on the surface of the multi-well plate.
  • the labeled secondary antibody reacts with the primary antibody and is detected .
  • This method can be used to detect a specific antibody in a serum sample by replacing the primary antigen with a serum.
  • sandwich ELISA sandwich immunoassay
  • two antibodies specific for an antigen are used.
  • One of the antibodies acts as a capture antibody coated on the surface of the multi-well plate to immobilize the antigen, and the other antibody is polymerized with the antigen to facilitate the detection of the antigen.
  • the concentration of the antigen is measured by signal interference.
  • the antigen in the sample competes with the reference antigen for binding to the labeled antibody, where the reference antigen is preferentially coated on the multiple well plate. Since the sample is pre-reacted with the labeled antibody and then added to the well, depending on the amount of the antigen in the sample, the antibody capable of binding to the reference antigen may be more or less. According to this, as the number of antigens in the sample increases, the signal is weakened as the reference antigen is detected less and the signal becomes stronger as the amount of the antigen in the sample becomes smaller as more antigens are labeled in the well.
  • the present invention can improve the concentration of the reactant or antibody by improving the hook effect, which is known as a disadvantage of the conventional ELISA, and it is possible to improve the convenience of the immunoassay technique remarkably, And to provide a biosensor that is remarkably shortened.
  • a biosensor according to the present invention includes a detection structure formed in a plate shape and having a fixation substance that is specifically bound to a target material disposed on at least one of a surface and a surface of the biosensor.
  • At least one of the one surface and the other surface of the detection structure is formed in a protrusion shape, and a nanostructure is formed on the outer surface to which the fixing substance is bonded.
  • the target substance may be an amino acid, a peptide, a polypeptide, a protein, a glycoprotein, a lipoprotein, a nucleoside, a nucleotide, an oligonucleotide, a nucleic acid, a sugar, a carbohydrate, an oligosaccharide, , Hormones, metabolites, cytokines, chemokines, receptors, neurotransmitters, antigens, allergens, antibodies, substrates, metabolites, cofactors, inhibitors, drugs, drugs, nutrients, plion, toxins, poisons, At least one selected from the group consisting of chemical agents, biological agents, bacteria, viruses, radioactive isotopes, vitamins, heterocyclic aromatic compounds, carcinogens, mutagen, drugs, amphetamines, barbiturates, hallucinogens, It is more than one.
  • the immobilizing material and the target substance react with each other when the detecting structure is immersed in the cuvette containing the sample containing the target substance.
  • the biosensor further includes a grip portion connected to one end of the detection structure and gripped by a user.
  • the cap further includes a detachable cap inserted into the inlet of the cuvette, connecting the detection structure and the grip portion to each other.
  • the biosensor according to the present invention further includes a fixing part which is disposed on an outer surface of the cap and which is brought into close contact with the inner circumferential surface of the cuvette by a restoring force generated when the cap is deformed when the cuvette is inserted into the cuvette do.
  • the detecting structure is divided into a dipping part immersed in the sample and a non-dipping part, and the non-dipping part is provided with a narrow width part whose width is smaller than the width of the dipping part do.
  • At least one or more of the narrow-pore portions are formed concavely on at least one of both side surfaces of the detection structure, and are formed along the length direction of the detection structure.
  • the detection structures are arranged in a plurality of spaced apart from each other.
  • the biosensor further includes a pair of guards disposed opposite to each other with the detection structure therebetween to protect the detection structure.
  • a body having a predetermined length and a plurality of recesses are formed from one surface of the body so as to accommodate a sample containing the target substance, and the detection structure And at least one sensor strip including a reaction chamber in which the sensor strip is disposed.
  • the sensor strip may be detachably attached to one surface of the biosensor.
  • the detection structures are arranged vertically in multiple stages in a plurality of spaced apart from each other.
  • the biosensor according to the present invention may further include a sample injection port formed to be recessed from one surface of the body so as to communicate with the reaction chamber.
  • a biosensor further comprising: an insertion protrusion protruding from one surface of the fixing plate, wherein an insertion hole is formed in the main body such that the insertion protrusion is inserted or penetrated, And is attached to the fixing plate.
  • a corner of one end of the main body is recessed toward the inside, and when the insertion projection is inserted into the insertion hole, And a fixing jaw which is spaced apart from the fixing plate and protrudes from one surface of the fixing plate.
  • the biosensor according to the present invention can relatively increase the concentration of the receptor or antibody that reacts per unit volume, thereby enhancing the convenience of immunoassay, shortening the analysis time, and further improving the sensitivity of the reaction.
  • FIG. 1 (A) is a conceptual diagram showing a conventional ELISA analysis method using sequential reaction
  • FIG. 1 (B) is a conceptual diagram showing a one-step ELISA analysis method using simultaneous reaction.
  • FIGS. 2A to 2C are side views schematically showing a detection structure of a biosensor according to an embodiment of the present invention.
  • 3A to 3E are perspective views schematically illustrating a nanostructure of a biosensor according to an embodiment of the present invention.
  • FIGS. 4A and 4B are cross-sectional views of a cuvette-type biosensor according to an embodiment of the present invention
  • FIG. 4C is a perspective view.
  • FIG. 5 is a front view showing a process of inserting the biosensor shown in FIG. 4C into the cuvette.
  • FIG. 6 is a side view showing a state where the biosensor shown in FIG. 4C is inserted into the cuvette.
  • FIG. 7 is a perspective view of a cuvette type biosensor according to another embodiment of the present invention.
  • FIG. 8 is a perspective view of a strip-type biosensor according to an embodiment of the present invention.
  • FIG. 9 is a perspective view showing a detection structure of a strip biosensor according to an embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a sensor strip of a strip-type biosensor according to an embodiment of the present invention.
  • FIG. 11 is a perspective view of a strip-type biosensor according to another embodiment of the present invention.
  • 12 to 14B are an exploded perspective view and an assembled perspective view of a strip-type biosensor according to another embodiment of the present invention.
  • 15 is a flowchart of a sample analysis method using a cuvette type biosensor according to the present invention.
  • 16 is a flowchart of a sample analysis method using a strip biosensor according to the present invention.
  • FIGS. 17A to 17F are graphs showing experimental results of absorbance measured according to the concentration of various detection target antibodies using the biosensor according to the present invention.
  • FIG. 17A to 17F are graphs showing experimental results of absorbance measured according to the concentration of various detection target antibodies using the biosensor according to the present invention.
  • FIGS. 18A and 18B are graphs showing experimental results obtained by measuring the absorbance of a reaction product of an antibody to be detected having a different concentration using a biosensor having different numbers of detection structures according to the present invention.
  • FIG. 18A is a graph showing experimental results obtained by measuring the absorbance of a reaction product of an antibody to be detected having a different concentration using a biosensor having different numbers of detection structures according to the present invention.
  • FIG. It should be noted that, in the present specification, the reference numerals are added to the constituent elements of the drawings, and the same constituent elements are assigned the same number as much as possible even if they are displayed on different drawings. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description of the present invention, detailed description of related arts which may unnecessarily obscure the gist of the present invention will be omitted.
  • the factors that determine the reactivity in immunoassays vary, but the concentration of the protein in the sample and the concentration of the receptor or antibody that reacts with the protein are the most important factors.
  • FIG. 1 (A) is a conceptual diagram showing a conventional ELISA analysis method using sequential reaction
  • FIG. 1 (B) is a conceptual diagram showing a one-step ELISA analysis method using simultaneous reaction.
  • reaction complex in a general sandwich ELISA, a reaction complex is produced by reacting a sample containing a target substance such as protein on a substrate on which a receptor or an antibody is immobilized, and after washing the reaction complex The marker is reacted with the polymerized detection antibody.
  • This sequential reaction process is very complex. Therefore, there is a problem that an experienced user must perform in the laboratory and takes more than 4 hours to analyze.
  • FIG. 1 (B) in order to overcome the excessive analysis time and complexity of the reaction process of the sandwich ELISA shown in FIG. 1 (A), in some immunoassay techniques, a sample containing a target substance such as protein A method in which the marker-conjugated detection antibody is firstly mixed and reacted, and the mixture is reacted with the receptor or the substrate on which the antibody is immobilized is used.
  • a target substance such as protein A method in which the marker-conjugated detection antibody is firstly mixed and reacted, and the mixture is reacted with the receptor or the substrate on which the antibody is immobilized is used.
  • This method is very convenient because it can perform immunoassay with one sample injection, and the analysis time is shortened about 8 times compared with the conventional method.
  • the effectiveness of such an immunoassay technique may not be realized due to various reasons.
  • the unreacted target protein that has not reacted with the marker-conjugated detection antibody reacts with the antibody immobilized on the substrate. This phenomenon is referred to as a "hook effect" I call it.
  • the concentration can not be accurately identified due to the unreacted target protein without the marker.
  • the concentration of the receptor or antibody which is fundamentally involved in the reaction should be higher than the target protein.
  • the active surface area of the detection structure for fixing biomolecules and / or analytes is increased, the density of immobilized biomolecules and / or analytes can be increased, Can be expected. In this case, it is desirable to increase the active surface area while reducing the negative influence of the diffusion transport of various biomolecules, reagents and / or analytes.
  • the biosensor according to the present invention has an active surface area including a textured or modified polymer surface.
  • a submicron or a nanostructure may be formed on the surface of the polymer.
  • the submicron structure may be a structure in which at least one of physical dimensions such as length, width, height, diameter, and the like is about 1 ⁇ or less, and a nanostructure is a structure having at least one physical dimension of about 100 nm or less Respectively.
  • FIGS. 2A to 2C are side views schematically showing a detection structure of a biosensor according to an embodiment of the present invention.
  • FIGS. 3A to 3E are perspective views schematically showing a nanostructure of a biosensor according to an embodiment of the present invention. to be.
  • the biosensor according to the present invention includes a plate-shaped detection structure 10 having one surface and a surface opposite to the other surface.
  • an active surface may be included on each of the one side and the other side, and the active surface may be embodied as a textured polymer surface having a submicron or nanostructure 11.
  • the submicron or nanostructure 11 may be formed of a polymeric material, for example, the same material as that of the detection structure 10.
  • the active surface means a surface on which one or more biomolecules and / or analytes are immobilized for immunoassay.
  • the active surface may be implemented by chemical treatment to specifically bind biomolecules and / or analytes, such as antibodies or antigens.
  • the detection structure 10 may have a planar structure.
  • a biomolecule or a reagent such as a fixing material C, for example, an antibody, may be disposed on at least one surface of a flat plate surface, that is, one surface or another surface.
  • the fixing substance (C) is a substance that specifically binds to the target substance.
  • the target substance may be provided as a stand-alone substance or may be contained in a sample, and the detection substance (for example, biomolecule or reagent) in which the marker is polymerized may be further included in the sample.
  • the target material provided may be an amino acid, peptide, polypeptide, protein, glycoprotein, lipoprotein, nucleoside, nucleotide, oligonucleotide, nucleic acid, sugar, carbohydrate, oligosaccharide, polysaccharide, fatty acid, lipid, hormone, metabolite, cytokine, chemokine , A receptor, a neurotransmitter, an antigen, an allergen, an antibody, a substrate, a metabolite, a cofactor, an inhibitor, a drug, a drug, a nutrient, a plion, a toxin, a poison, an explosive, an insecticide, At least one selected from viruses, radioactive isotopes, vitamins, heterocyclic aromatic compounds, carcinogens, mutagen, drugs, amphetamines, barbiturates, hallucinogens, wastes, and contaminants.
  • Antibodies, proteins, peptides, Deoxyribo Nucleic Acid (DNA), and the like are examples of the immobilizing substance (C), which is specifically determined according to the target substance.
  • a synthetic reagent comprising a ribonucleic acid (RNA), a peptide nucleic acid (PNA), an enzyme, an enzyme substrate, a hormone, a hormone receptor and a functional group, Combinations thereof.
  • the marker may be any one of HRP (horseradish peroxidase), basic alkaline phosphatase, and fluorescein.
  • the sample is a reagent which reacts with the above-mentioned markers, such as ABTS (2,2'-azinobis [3-ethylbenzothiazoline-6-sulfonic acid] -diammonium salt) or TMB (3,3 ', 5,5'- Tetramethylbenzidine).
  • markers such as ABTS (2,2'-azinobis [3-ethylbenzothiazoline-6-sulfonic acid] -diammonium salt) or TMB (3,3 ', 5,5'- Tetramethylbenzidine).
  • ABTS 2,2'-azinobis [3-ethylbenzothiazoline-6-sulfonic acid] -diammonium salt
  • TMB 3,3 ', 5,5'- Tetramethylbenzidine
  • the target substance, the fixing substance (C), the marker, and the reagent are not necessarily limited to the above-mentioned kinds.
  • the submicron or nanostructure 11 may be formed on at least one of the one surface and the other surface of the detection structure 10.
  • the submicron or nanostructure 11 may be formed on one or both surfaces of the detection structure 10 and / or on the entire surface of the other surface, and on the outer surface of the submicron or nanostructure 11, (C) may be disposed.
  • the detection structure 10 having the submicron or nanostructure 11 has a larger surface area than the surface of the flat sensing structure 10 without the submicron or nanostructure 11, So that the substance C reacts with the target substance disposed in the detection structure 10.
  • the submicron or nanostructure 11 may be formed in at least one protrusion shape.
  • the submicron or nanostructure 11 may include protrusions whose cross-sectional area gradually decreases as the distance from the base increases. These projections improve the surface area at which the immobilizing material C is fixed, and at the same time reduce the negative influence of the diffusion transport of the various reagents and / or analytes.
  • the protrusions may be in the form of spheres, pyramids, triangles, rectangles, cubes, plates, discs, cylinders, wires, rods, sheets, And may be formed in the form of a fractal or the like, and the predetermined region may be cut or twisted in the above form.
  • the protrusions may be formed with a cut spherical shape, such as a hemisphere shape, wherein the hemispherical protrusions are regularly arranged to form a submicron or nanostructure array.
  • the submicron or nanostructure arrays may be arranged so that the projections are arranged in a zigzag shape, and the adjacent projections are in contact with each other (see FIG. 3A).
  • FIG. 3B or a semicircular shape (see FIG. 3C), and a pyramid having a smaller cross-sectional area in a direction perpendicular to the surface of the detection structure 10
  • a pyramidal frustrum see FIG. 3D
  • a conical frustrum see FIG. 3E
  • the submicron or nanostructure 11 improves the surface area, the concentration of the receptor or antibody involved in the reaction can be relatively increased. Thus, the sensitivity of the submicron or nanostructure 11 is improved compared to the conventional ELISA assay, and the concentration of the receptor or antibody It is possible to effectively control the hook effect that occurs when a higher concentration of protein is present.
  • the submicron or nanostructure arrays can be arranged regularly, for example, periodically, on the submicron or nanostructure 11.
  • the present invention is not limited thereto, and the submicron or nanostructure 11 may be irregularly arranged, or irregularly arranged in one direction and irregularly arranged in the other direction.
  • the submicron or nanostructure 11 may include nanowires, nanopillars, or nanofibers.
  • the biosensor according to the present invention can be provided in a cuvette type and a strip type.
  • the structure will be described below in detail.
  • the biosensor has a structure for detecting a structure that reduces the negative influence on the diffusion transport of various biomolecules, reagents, and / or analytes while simultaneously increasing the active surface.
  • the biosensor according to the present invention may include a transparent container having at least one cavity and a plurality of active surfaces inserted into the cavity to immobilize biomolecules or reagents.
  • the biosensor includes a transparent detection structure inserted into the cavity, and the transparent detection structure may include at least one main surface providing at least one active surface.
  • each of the active surfaces is spaced apart from one another at predetermined intervals to facilitate diffusion transport of various biomolecules, reagents, and / or analytes in the ELISA.
  • the distance between the adjacent active surfaces may be approximately 300 to 9000 ⁇ so as not to interfere with the diffusion transport.
  • the total active area provided for immobilizing the various biomolecules and / or analytes used in the ELISA may be from 1.0 to 6.0 mm2 / l per unit volume.
  • the detectable concentration of the analyte is increased by at least 2 times, more than 20 times, compared with the sensor not having the transparent detection structure, at which time the reaction rate does not decrease.
  • the space and the area of the active region are determined depending on the shape of the biosensor, the target material, and the like, and thus the present invention is not limited thereto.
  • FIGS. 4A and 4B are cross-sectional views of a cuvette type biosensor according to an embodiment of the present invention
  • FIG. 4C is a perspective view
  • FIG. 5 is a front view showing a process of inserting the biosensor shown in FIG. 6
  • a side view showing a state in which the biosensor shown in FIG. 4C is inserted into the cuvette.
  • the cuvette-type biosensor 1000A according to the first embodiment of the present invention includes a cuvette 1, and all or a part of the inner surface of the cuvette 1 is detected by a detection structure And a fixing substance C, which reacts with the target substance in the sample 3, may be disposed thereon.
  • the submicron or nanostructure 11 may be formed on the inner surface area of the cuvette 1 provided as a detection structure and the immobilizing material C may be disposed on the submicron or nanostructure 11.
  • the cuvette-type biosensor 1000B is implemented in such a manner that the detection structure 10 is inserted into a cuvette. That is, the cuvette-type biosensor 1000C is configured such that the detecting structure 10 is inserted into the cuvette 1 containing the target material and the fixing material C disposed on the detecting structure 10 reacts with the target material.
  • the target material may be included in the sample 3 and be accommodated in the cuvette 1. At this time, when the detection structure 10 is immersed in the sample 3, the immobilizing material C reacts with the target material .
  • the fixing structure C is disposed on the detection structure 10, and the nanostructure 11 is formed on the entire surface of the detection structure 10 and / And the fixing material C may be disposed on the outer surface.
  • a submicron or nanostructure 11 may be formed on the detection structure 10.
  • the submicron or nanostructure 11 may be formed on at least a part of the active region of each main surface of the detection structure 10.
  • the sub-micron or nanostructure 11 may be formed on one surface and / or the entire surface of the other surface of the detection structure 10 so that the entire surface thereof serves as an active region.
  • the submicron or nanostructure 11 may be formed on only one side and / or a part of the other side of the detection structure 10, and the active area may be provided only for a part thereof.
  • the cuvette 1 may be provided with a fixation material C in all or a part of the inner surface thereof,
  • the submicron or nanostructure 11 may be formed in the region and the immobilizing material C may be disposed on the submicron or nanostructure 11.
  • the absorbance of the detection structure 10 and the cuvette 1 itself can be measured using the absorbance of the detection structure 10 as a reference absorbance.
  • the detection structure 10 and the cuvette 1 may be formed of a material such as polycarbonate, polyethylene terephthalate, polymethylmethacrylate, triacetylcellulose, cyclic olefin, polyarylate, polyacrylate, Polyethylene naphthalate, polybutylene terephthalate, polyimide, or the like.
  • a material such as polycarbonate, polyethylene terephthalate, polymethylmethacrylate, triacetylcellulose, cyclic olefin, polyarylate, polyacrylate, Polyethylene naphthalate, polybutylene terephthalate, polyimide, or the like.
  • a material of the detecting structure 10 and / or the cuvette 1 is suitably selected in consideration of whether the material is effective for forming an active surface through chemical modification or functionalization of the surface, or is capable of direct modification to the surface.
  • the submicron or nanostructure 11 can be formed integrally with a solid substrate such as a polymer substrate, or can be formed separately on the substrate or can be formed by a suitable method such as etching or plasma treatment .
  • the active surface may comprise a biomolecule and / or a polymeric surface that is provided directly as an active surface to which the analyte is immobilized.
  • the active surface does not include any additional material, such as metal, but in other embodiments may further comprise additional material to form an active surface.
  • the cuvette-type biosensor 1000B may further include a grip portion 20 connected to one end of the detection structure 10.
  • the grip portion 20 is a member formed to be gripped by a user and is connected to one end of the detection structure 10. The user can hold the grip section 20 and insert the cuvette 1 from the free end of the detection structure 10 so that the detection structure 10 can be immersed in the sample 3.
  • the free end of the detecting structure 10 means the opposite end of the one end of the detecting structure 10 connected to the holding portion 20.
  • one or more detection structures 10 may be provided.
  • each of the detecting structures 10 is connected to and fixed to one holding portion 20.
  • one of the detecting structures 10 and one or the other of the detecting structures 10 are opposed to each other. And can be arranged in parallel and spaced apart from each other by a predetermined distance.
  • the interval between adjacent detection structures 10 may be any of the above-described separation distances, which is an important factor for achieving such effects as an increase in optical density and / or a reduction in reaction time.
  • the fixing material is disposed at a high density per unit area, so that the sensitivity of the sensor can be improved and the hook effect can be controlled.
  • the cuvette-type biosensor 1000B may further include a cap 30.
  • the cap 30 is removably inserted into the inlet of the cuvette 1 and is formed to close the inlet of the opened cuvette 1. At this time, the entire area can be closed by the cap 30 at the inlet of the cuvette 1, but only a part of the opening may be closed.
  • the cap 30 is disposed below the grip portion 20 and connects the grip portion 20 and the detection structure 10 to each other and is fixed in contact with the inner surface of the cuvette 1, Do not move in the cuvette (1).
  • the grip portion 20 and the cap 30 are shown as one body, but they may be formed to have a separate structure as shown in FIG. 4C.
  • the cuvette-type biosensor 1000C includes all the technical features of the cuvette-type biosensor 1000B described above, As described above in the biosensor 1000B, duplicate matters are omitted or simply described. In the following, a cuvette type biosensor 1000C will be described focusing on the differences.
  • a clearance may be formed between the outer surface of the cap 30 and the inner surface of the inlet of the cuvette 1 depending on the size of the inlet of the cuvette 1 in the cuvette type biosensor 1000B according to the present embodiment, Is not fixed to the cuvette 1, so that it is difficult to analyze the sample 3 accurately.
  • the biosensor 1000C according to the present embodiment may further include the fixing portion 40 so that the detecting structure 10 is fixed regardless of the relative size between the cuvette 1 and the cap 30.
  • the fixing portion 40 is disposed on the outer surface of the cap 30 so that the original position or shape of the cap 30 is changed when the cap 30 is inserted into the cuvette 1, And is formed to be in close contact with the inner peripheral surface.
  • the fixing portion 40 disposed on the cap 30 is thus brought into close contact with the cuvette 1, the detecting structure 10 connected to the cap 30 is fixed in the cuvette 1.
  • the fixing portion 40 when the cap 30 is inserted into the cuvette 1, the fixing portion 40 is deformed while being pressed by the inner surface of the cuvette 1, and is pressed against the inner surface of the inlet of the cuvette 1 by the elastic force As shown in Fig.
  • the fixing portion 40 may use the elasticity of the material itself such as rubber or the like, or may use the properties of parts such as a spring.
  • the fixing portion 40 does not necessarily have to use the elastic force of the material or the component, but can be implemented through a predetermined structure, which will be described in detail below.
  • the fixing portion 40 may extend from the outer surface of the cap 30 and may be bent in a predetermined direction.
  • the cap 30 may extend outward from the outer surface of the cap 30 and may be bent in parallel with the outer surface of the cap 30 to form an "a" 1 can be formed in a structure in which the protrusions can be closely contacted by the tension while being pressed.
  • the fixing portion 40 since the fixing portion 40 is pressed and moved in the direction of the cap 30, the facing portion of the outer surface of the cap 30 facing the fixing portion 40 can be recessed.
  • the fixing portion 40 may extend on the inner surface of the recessed portion and may have a protruding portion protruding outside the outer surface of the cap 30 so as to have a "C" shape.
  • the fixing portion 40 can be deformed into various structures other than the above-described structure as long as the cap 30 is brought into close contact with the inner surface of the cuvette 1 by tension when the cap 30 is inserted into the cuvette 1.
  • the detection structure 10 of the biosensor 1000C may include the narrow portion 12.
  • the detection structure 10 is immersed in the sample 3, it is divided into a dipping portion immersed in the sample 3 and a non-dipping portion not immersed. In the non-dipping portion, (12) is formed.
  • the detection structure 10 In order to analyze the sample 3, the detection structure 10 is inserted into the cuvette 1. At this time, the gap between the detection structure 10 and the inner surface of the cuvette 1 or the gap between the detection structures 10 A capillary force is generated and the sample 3 rises. Due to the rise of the sample (3), the amount of the sample (3) necessary for the analysis is increased, and the analytical reliability is seriously degraded.
  • the narrow part (12) is a solution to this problem.
  • the sample 3 rises along the detection structure 10 by the attractive force acting between the detection structure 10 and the sample 3. When the width of the sample 3 is narrowed at the narrow portion 12, becomes smaller, and the sample 3 no longer rises.
  • the narrow portion 12 may be formed in the shape of an up-and-down preventing groove 17 recessed in the side surface of the detecting structure 10. Since the rising preventing groove 17 is recessed by a predetermined depth from one side of the detecting structure 10 to the other side of the detecting structure 10, The width, that is, the distance between the both side surfaces is short. These rising preventing grooves 17 may be formed on only one side of the detecting structure 10, but may be formed on both sides of the detecting structure 10. In the case where the lift preventing grooves 17 are formed on the both side surfaces, they may be formed so as to face each other, but the present invention is not limited thereto and may be staggered in a zigzag fashion. Also, the rising preventing grooves 17 may be formed along the side surface of the detecting structure 10, spaced apart from each other by a predetermined distance in the longitudinal direction, and a plurality of the rising preventing grooves 17 may be formed.
  • the rising preventing groove 17 may be curved to be rounded, but it is not necessarily formed in such a shape, but it may be recessed in any form as long as the width of the detecting structure 10 is narrowed .
  • the guard structure 50 may further include a pair of guards 50 to protect the detection structure 10.
  • the pair of guards 50 is a member that is disposed opposite to the detection structure 10, with the detection structure 10 therebetween.
  • the guards 50 are arranged such that a plurality of detecting structures 10 are arranged between the pair of guards 50 even when a plurality of detecting structures 10 are arranged.
  • the guard 50 may be formed in a plate shape, but the shape of the guard 50 is not limited thereto. However, when the guard 50 is formed in the shape of a plate, the sample 3 may rise in the gap between the detection structure 10 arranged side by side or the inner surface of the cuvette 1, The narrow portion 12a may be formed to have a relatively narrow width at the height. At this time, the narrow portion 12a may also be formed by recessing the lift preventing groove 17a on the side surface of the guard 50. The narrow portion 12a may be formed in the guard 50, It is not necessary that the narrow portion 12a be formed.
  • the fixing material may be bonded to at least one of the one surface and the other surface of the guard 50, thereby improving the density of the fixing material per unit volume.
  • the thickness of the detection structure 10 may be selected in the range of about 100 to 5,000 mu m, and at least one main surface of the detection structure 10, that is, For example, one side and / or the other side may have an area of 10 to 100 mm < 2 >. Also, the active surface may account for 30-100% of the main surface.
  • the size of the cuvette 1 and the detection structure 10 may be such that the active surfaces are spaced apart from each other by a suitable distance, The size of the cuvette 1 can be determined so that about 1 to about 20 detection structures 10 are inserted.
  • the optical transparent container accommodating the at least one detection structure includes a strip container having a plurality of cavities.
  • the main surface of at least one plate-like detecting structure is arranged so as to be opposed to each other in a direction parallel to the depth direction in the cavity, while the present strip type biosensor has at least one plate- , And the main surfaces are arranged so as to face each other perpendicularly to the depth direction of the cavity.
  • a strip biosensor according to an embodiment of the present invention includes a plate structure having a main surface facing each other in parallel to each other.
  • the main surface faces the bottom surface of the cavity, is arranged substantially parallel to the bottom surface, and can be spaced apart from each other by an interval of about 500 mu m.
  • the transparent detection structure may include a plate structure in which the center portion is connected to the inside of the cavity at the central portion (see Figs. 8 to 11).
  • the main surfaces of at least one or more of the transparent detecting structures may overlap each other in a direction perpendicular to the depth direction of the cavity.
  • the mutually facing main surfaces of two adjacent transparent detection structures may be spaced apart by an interval of about 500 ⁇ or more.
  • FIG. 8 is a perspective view of a strip biosensor according to an embodiment of the present invention
  • FIG. 9 is a perspective view schematically showing a detection structure of a strip biosensor according to the present invention, Type biosensor according to the present invention.
  • the strip-type biosensor includes a main body 150 having a predetermined length, and a plurality of main bodies 150, which are recessed from one surface of the main body 150 to accommodate a sample containing the target material, And at least one sensor strip (100) including a reaction chamber (130) in which a dog is formed and in which a detection structure (10) is disposed.
  • the strip type biosensor according to the present invention includes a sensor strip 100.
  • the sensor strip 100 includes a reaction chamber 130 in a plate-shaped body 150 having a predetermined length and width, And the detection structure 10 is disposed in the reaction chamber 130.
  • the reaction chamber 130 is recessed from one of the outer surfaces of the main body 150 so that the sample is filled therein, and a plurality of the reaction chamber 130 are arranged along the longitudinal direction of the main body 150.
  • a fixing material may be disposed on the bottom surface of the reaction chamber 130, and a protruding nano structure (not shown) similar to that described above may be formed on the bottom surface of the reaction chamber 130. By arranging the fixing material, the density of the fixing material per unit volume can be increased.
  • the detection structure 10 is disposed in each of the plurality of reaction chambers 130 so as to be immersed in the sample contained in the reaction chamber 130.
  • the surface of the detection structure 10 may be formed in a planar shape, or a submicron or nanostructure 11 may be additionally formed on at least one or at least one surface of at least one of the one surface and the other surface, The material can be placed (see FIG. 9).
  • At least one sensor strip 100 may be provided and a plurality of reaction chambers 130 and detection structures 10 are provided in each of the sensor strips 100 so that a plurality of samples can be simultaneously analyzed. That is, analysis of different contents is performed for the same sample, or different capture bodies are fixed for each of the reaction chambers 130 or for each detection structure 10 in the same reaction chamber 130, The sample can be analyzed.
  • the other surface opposite to one surface of the sensor strip 100 having the opening of the reaction chamber 130 may be disposed on the fixing plate 200.
  • the fixing plate 200 is formed in a plate shape having a predetermined width and thickness, and at least one sensor strip 100 is detachably attached to one surface of the plate. At this time, the fixing plate 200 and the sensor strip 100 can be detached and attached by the insertion protrusion 400 and the insertion hole 120.
  • the insertion hole 120 may be formed in a shape corresponding to the external shape of the insertion protrusion 400 so as to be inserted or fixed such that the insertion protrusion 400 is inserted and released.
  • the inserting protrusion 400 protrudes from one side of the fixing plate 200 and the inserting hole 120 is formed on the other side of the main body 150 of the sensor strip 100 so that the sensor strip 100 and the fixing plate 200 can be detached and attached. At this time, the insertion protrusion 400 may be formed on the sensor strip 100, and the insertion hole 120 may be formed on the fixing plate 200.
  • the fixation plate 200 may have the puncture 210.
  • the perforations 210 are holes penetrating through the thickness direction of the fixing plate 200 and the reaction chamber 130 is disposed on a region of the fixing plate 200 where the perforations 21 are formed. Therefore, the reaction chamber 130 and the perforations 21 may be provided in the same number in positions corresponding to each other.
  • the bottom surface of the reaction chamber 130 and the detection structure 10 are also made of a material capable of transmitting light, for example, a bottom surface of the reaction chamber 130 and a detection structure 10, And may be made of a polymeric material such as polycarbonate, polyethylene terephthalate, polymethylmethacrylate, triacetylcellulose, cyclic olefin, polyarylate, polyacrylate, polyethylene naphthalate, polybutylene terephthalate or polyimide .
  • a polymeric material such as polycarbonate, polyethylene terephthalate, polymethylmethacrylate, triacetylcellulose, cyclic olefin, polyarylate, polyacrylate, polyethylene naphthalate, polybutylene terephthalate or polyimide .
  • the sensor strip 100 may include a plurality of detection structures 10, 10a, 10b, and 10c.
  • the plurality of detection structures 10, 10a, 10b, and 10c may be vertically arranged in a multi-stage spaced apart from each other at a predetermined interval along the depth direction of the reaction chamber 130.
  • any one detection structure 10a and the other detection structure 10b or 10c may be arranged to face each other.
  • the density (concentration) of the fixed substance per unit volume is increased.
  • a submicron or nanostructure 11 may be formed on the surface of the detection structure 10, and a fixing material may be disposed on the outer surface of the submicron or nanostructure 11.
  • the strip biosensor according to the present embodiment may further include a sample injection port 300. Since the sample injection port 300 is recessed from one surface of the main body 150 so as to communicate with the reaction chamber 130, the sample injected through the sample injection port 300 flows into the reaction chamber 130, The structure 10 is immersed in the sample.
  • FIG. 11 is a perspective view of another embodiment of the strip-type biosensor according to the present invention.
  • the strip-type biosensor according to the present embodiment may further include a fixing jaw 500 for more firmly fixing the sensor strip 100 to the fixing plate 200.
  • the fixing jaws 500 are formed to protrude from one surface of the fixing plate 200 and are spaced apart from the insertion protrusions 400 on the fixing plate 200 at a predetermined interval.
  • the spacing distance between the fixing protrusions 400 and the fixing protrusions 500 is set such that when the inserting protrusions 400 are inserted into the insertion holes 120, It is determined to contact the outer surface.
  • the sensor protrusion 400 may be inserted into the insertion hole 120 and may be fixed to the recessed corner of the sensor strip 100. In this case, The sensor strip 100 can be firmly fixed to the fixing plate 200 while the jaws 500 are in close contact with each other.
  • 12 to 14B are an exploded perspective view and a combined perspective view of a strip biosensor according to another embodiment of the present invention.
  • one or more detection structures according to an embodiment of the present invention may be formed in a protruding shape extending from the inner surface of the reaction chamber.
  • FIG. 12 shows an example for implementing the shape of the detection structure.
  • the sensor strip 100 in which the detection structure 10 is disposed is formed by stacking a plurality of plates.
  • the plate includes a bottom plate 110a in the form of a flat plate, a spacer plate 110b having a perforation in the center thereof, and a sensor plate 110c having a perforation in the central portion thereof and a protrusion extending in the central direction from the inner surface of the perforation
  • the bottom plate 110a, the spacer plate 110b, and the sensor plate 110c are sequentially stacked and assembled to form the strip type biosensor according to the present invention.
  • the reaction chamber 130 is formed in a state where the spacer plates 110b and the sensor plate 110c are formed at positions corresponding to each other, and the protrusion of the sensor plate 110c is connected to the detection structure 10 , 10a, and 10b.
  • two or more sensor plates 110c may be stacked.
  • the protrusions of one of the first sensor plates 111c and the protrusions of the other of the second sensor plates 113c may be formed so as not to overlap each other when they are stacked.
  • the protrusion of the first sensor plate 111c protrudes in the X axis direction perpendicular to the Z axis, and the protrusion of the second sensor plate 113c
  • the protruding portion can be deflected at a predetermined angle in the Y-axis direction with respect to the X-axis direction.
  • the protruding portions of the plurality of sensor plates 111c and 113c to be stacked are staggered from each other along the depth direction of the reaction chamber, and the detection structures 10a and 10b are arranged in a pattern corresponding thereto.
  • the arrangement pattern of the protrusions with respect to the depth direction of the reaction chamber 130 is not necessarily arranged so as to be staggered as described above, but the protrusions of the plurality of sensor plates 111c and 113c are formed at the same position, And may be formed to overlap with each other along the depth direction of the chamber 130.
  • the projections of the sensor plate 110c may be spaced apart from each other by two or more along the inner circumferential surface of the perforation.
  • the spacing between the protrusions of the sensor plate 110c may be spaced 30 to 180 degrees about the perforation.
  • the spacing can be changed according to the number of protrusions, the circumference of the inner circumference of the perforations, and the like.
  • the projections of one sensor plate 110c and the other sensor plate 110c may be disposed at intervals between the protrusions of the sensor plates 110c and 113c so that they do not overlap with each other.
  • the two or more sensor plates 110c can be continuously stacked, and furthermore, at least one spacer plate 110b can be stacked therebetween.
  • two or more spacer plates 110b may be stacked between the bottom plate 110a and the sensor plate 110c, and one or more spacer plates 110b may be continuously stacked on the sensor plate 110c.
  • the capacity of the reaction chamber 130 can be increased, and the inner peripheral surface of the perforation of each of the spacer plates 110b can be used as the active surface, so that the biomolecule and / or analyte, reagent and / The diffusion of the substance can be improved.
  • any one of the distal ends of the protrusions extends from the inner circumferential surface of the perforation, but the opposite free end is spaced apart from the inner circumferential surface of the perforation, and is also spaced from the free end of the other protrusions. Accordingly, the central portion of the reaction chamber 130 surrounded by the protrusions preferably arranges the protrusions so that the pipette can be easily accommodated.
  • two or more reaction chambers 130 may be formed by providing two or more perforations at positions corresponding to each other with respect to the spacer plate 110b and the sensor plate 110c, Protrusions may be formed for each perforation of the plate 110c so that the detection structure 10 may be disposed in each of the reaction chambers 130.
  • a strip biosensor is formed in each of a plurality of reaction chambers, in which a plurality of detection structures are arranged so as to overlap each other along the depth direction of the reaction chamber.
  • a strip-type biosensor is arranged in each of a plurality of reaction chambers so that a plurality of detection structures are staggered along the depth direction of the reaction chamber .
  • the biosensor according to the present invention can be effectively used for various immunoassays such as ELISA.
  • An ELISA assay method according to one embodiment prepares an ELISA kit according to any of the embodiments of the present invention.
  • the ELISA kit comprises one or more ELISA reagents, analytes and / or biomolecules, and a sensor assembly suitable for ELISA.
  • the ELISA assay may further comprise performing an ELISA reaction in a transparent container such as a cuvette or a sensor strip with one or more reaction chambers.
  • the ELISA assay method comprises the steps of: preparing a solution containing a target substance and a marker polymerization detection reagent specifically binding to the target substance; Immobilizing a capture reagent that is specifically bound to the target material on the active surface of the sensor assembly; Immersing at least a portion of the active surface in the solution so that the target material is specifically bound to the capture reagent and the marker polymerization detection reagent; And detecting the target substance specifically bound to the capture reagent and the marker polymerization detection reagent.
  • an ELISA assay method comprises preparing an ELISA well, wherein the ELISA well comprises a transparent container and at least one enhancement layer in the transparent container, And the bonding surface area ratio of the enhancement layer per liquid volume may be 1.0 to 5.0 mm 2 / ⁇ l.
  • the method may further comprise performing an ELISA reaction with the transparent container, wherein one washing step may be performed.
  • An ELISA kit according to the present invention comprises at least one of a coating buffer, a blocking buffer (e.g. PBS with 1% BSA), and a wash buffer (e.g. PBS with 0.05% v / v Tween-20) .
  • the ELISA kit may further comprise a substrate solution (e.g., TMB Core + (BHU062) or pNPP (BUF044)) and a stop solution (e.g., 0.2 MH 2 SO 4 or 1 M NaOH).
  • the ELISA assay method comprises the steps of coating a well with an antigen solution, optionally washing the plate with distilled water, adding a blocking buffer and washing the plate, adding the secondary antibody polymerized with the enzyme Washing the plate, adding the substrate solution and generating the reaction, and measuring the absorbance in the cuvette or well.
  • This method can be applied to indirect ELISA.
  • an ELISA assay method comprises the steps of coating a well, optionally washing the plate with distilled water, adding a blocking buffer and washing the plate, adding the sample to the well, Adding the antibody to each well (optionally including a washing step), adding the enzyme-conjugated streptavidin to the well (which may optionally include a washing step), adding the substrate solution to the well Or adding it to a cuvette, and measuring the absorbance.
  • This method can be applied to direct ELISA.
  • a direct ELISA comprises (i) coating a solid support with an antigen dissolved in a coating buffer; (ii) reacting the solid support with the blocking reagent for 1 hour to block non-specific binding sites of the solid support; (iii) washing the solid support with PBS or PBST three times for 1 minute; (iv) reacting a solid support with a first detection agent that binds to the antigen; (v) washing the solid support 5 times with PBS or PBST for 1 minute to remove the nonspecifically bound first detection reagent; And (vi) detecting a combined first detection reagent using a detection system such as UV, fluorescence, chemiluminescence, or other detection method.
  • a detection system such as UV, fluorescence, chemiluminescence, or other detection method.
  • the first detection reagent may be a detection reagent connected to a fluorescent dye or a reporter enzyme such as basic alkaline phosphatase (AP) or HRP (horseradish peroxidase), though it is not particularly limited.
  • This detection reagent converts a colorless substrate to a colored product and the optical density of the colored product can be measured with an ELISA plate reader at the target wavelength.
  • An indirect ELISA comprises (i) coating a solid support with an antigen dissolved in a coating buffer; (ii) reacting the solid support with the blocking reagent for 1 hour to block non-specific binding sites of the solid support; (iii) washing the solid support with PBS or PBST three times for 1 minute; (iv) reacting the solid support with a first detection agent in solution for 1 hour; (v) washing the solid support with PBS or PBST three times for 1 minute to remove the nonspecifically bound first detection reagent; (vi) reacting the second detection reagent in solution with the solid support for 1 hour; (vii) washing the solid support 5 times with PBS or PBST for 1 minute to remove the nonspecifically bound second detection reagent; And (viii) detecting the combined second detection means using a detection system such as UV, fluorescence, chemiluminescence, or other detection methods.
  • a detection system such as UV, fluorescence, chemiluminescence, or other detection methods.
  • the second detection time is associated with the first detection time.
  • the second detection reagent is not particularly limited, but may be a detection reagent linked to a reporter enzyme such as alkaline phosphatase (AP) or horseradish peroxidase (HRP).
  • AP alkaline phosphatase
  • HRP horseradish peroxidase
  • a direct ELISA according to the present invention comprises a first reaction step between a solid support and an antigen; A second reaction step between the solid support and the blocking reagent; And a third reaction step between the solid support and the first detection reagent.
  • the reaction step may be a two-phase reaction and may involve a coupling reaction between the antigen on the solid support and the detection reagent.
  • An indirect ELISA comprises a first reaction step between a solid support and an antigen; A second reaction step between the solid support and the blocking reagent; A third reaction step between the solid support and the first detection reagent, and a fourth reaction step with the solid support and the second detection reagent.
  • the reaction step may be a two-phase reaction and may involve a coupling reaction between the antigen on the solid support and the detection reagent.
  • the first reaction step (antigenic coating) may be allowed to react for at least 2 hours and the other reaction step may be allowed to react for about 1 hour.
  • the first reaction step (antigenic coating) can be allowed to react for at least 2 hours and the other reaction step for about 1 hour.
  • the cell-based ELISA is a method for the detection and quantification of cell proteins, in which the cell proteins are subjected to post-translational modifications related to cellular activities (for example, phosphorylation and degradation) -translational modification.
  • Cells are plated, treated according to the experimental requirements, fixed directly to the wells, and then permeabilized. After permeabilization, the immobilized cells can be subjected to similar procedures as conventional immunoblots, i.e., blocking, reaction with the first antibody, washing, reaction with the second antibody, addition of a chemilumescent substrate, have.
  • the ELISA according to the present invention was prepared by coating active wells and antigens for 4 days at 4 DEG C for 1 day, blocking the wells at 37 DEG C for 2 hours, then performing antibody and polymer binding at 37 DEG C for 2 hours each, After performing the enzyme substrate reaction at room temperature, the absorbance can be measured.
  • the ELISA kit according to the present invention can be used as an ELISA kit such as Acetylcholine ELISA Kit, AGE ELISA Kit, CXCL13 ELISA Kit, FGF23 ELISA Kit, HMGB1 ELISA Kit, iNOS ELISA Kit, LPS ELISA Kit, Malondialdehyde ELISA Kit, Melatonin ELISA Kit, An OVA ELISA Kit, an Oxytocin ELISA Kit, a PGE2 ELISA Kit, a PTHrP ELISA Kit, an S100b ELISA Kit, a Tenascin C ELISA Kit, a VEGF-B ELISA Kit, and a Versican ELISA Kit.
  • an ELISA kit such as Acetylcholine ELISA Kit, AGE ELISA Kit, CXCL13 ELISA Kit, FGF23 ELISA Kit, HMGB1 ELISA Kit, iNOS ELISA Kit, LPS ELISA
  • FIG. 15 is a flowchart of a sample analysis method using a cuvette type biosensor according to the present invention
  • FIG. 16 is a flowchart of a sample analysis method using a strip type biosensor according to the present invention.
  • a one-step antigen detection immunoassay using a cuvette type biosensor comprises: (a) a sample containing a target substance (for example, antigen); and Preparing a detection material polymerization solution (for example, a detection antibody complex solution and the like) each containing a detection substance (for example, detection antibody, etc.) ) Immersing the detection structure in which the immobilization material capable of binding to the target substance (for example, a capture antibody, etc.) is bonded to the surface in one of the sample and the detection substance polymerization solution, Or immersing the sample in a mixed solution of the sample and the detection material polymerization solution, and (c) measuring the absorbance.
  • a target substance for example, antigen
  • a detection material polymerization solution for example, a detection antibody complex solution and the like
  • the fixed substance, the target substance, and the detection substance polymerized with the marker react with each other. After about 15 to 30 minutes have elapsed, the detection structure is immersed in a cuvette containing an enzyme substrate, and absorbance is measured in that state. At this time, after completion of the step (b), the detection structure may be further washed to remove the detection target material on which the unreacted target substance and / or the marker is polymerized, and the detection structure may be immersed in the cuvette containing the enzyme substrate.
  • step (b) either one of the sample and the detection material polymerization solution is first injected through the sample injection port and then another one is injected, or the sample and the detection substance The polymer solution is mixed and injected, and the absorbance can be measured by injecting the enzyme substrate in step (c).
  • the biosensor of the present invention was detected within a concentration range of 6.1 to 390 pg / mL within 30 minutes, while a competitor's biosensor was in a concentration range of 78 to 5,000 pg / mL Detection time was 4 hours.
  • the biosensor according to the present invention was detectable in a concentration range of 0.2 to 390 ng / mL, and the detection time was about 15 to 30 minutes.
  • competitive biosensors were detected in the concentration range of 1-65 ng / mL for 90 minutes.
  • the detection range of the biosensor according to the present invention is 0.05 to 25 ng / mL and the detection time is 30 minutes, while the detection range of the competitor's biosensor is 7.8 to 500 ng / mL, and the time required was 120 minutes.
  • FIGS. 18A and 18B are graphs showing experimental results obtained by measuring the absorbance of a reaction product of an antibody to be detected having a different concentration using a biosensor having different numbers of detection structures according to the present invention.
  • FIG. 18A is a graph showing experimental results obtained by measuring the absorbance of a reaction product of an antibody to be detected having a different concentration using a biosensor having different numbers of detection structures according to the present invention.
  • the active or reactive region of the biosensor according to the present invention is relatively much wider compared to conventional ELISA plates.
  • the biosensor according to the present invention can react with a larger number of immobilizing substances (capture molecules to receptors) with the target substance.
  • the biosensor according to the present invention can reduce the hook effect, thereby improving the assay sensitivity, and at the same time, increasing the reaction rate and reducing the reaction time.
  • the sensitivity of the assay is increased as compared with the case of using a competitor's microtiter plate (96 well) .
  • a biosensor having six detection structures according to the present invention detects IgG with high sensitivity as compared with the case where two detection structures are provided.
  • the sensitivity of the biosensor having a plurality of detection structures is a result of a fixed substance (for example, capture molecules to receptors) being arranged at a high density and increasing their diffusion.
  • the biosensor according to the present invention is a plate-shaped detection structure in which an active surface is formed on one surface and / or the other surface, respectively, thereby increasing the convenience of immunoassay, shortening the analysis time and further enhancing the sensitivity of the reaction The possibility of industrial use is recognized.

Abstract

The present invention relates to a biosensor. The biosensor according to the present invention comprises: a detection structure which is formed in the shape of a plate and has an immobilized material disposed on either side or both sides thereof and binding specifically to a target material.

Description

바이오센서Biosensor
본 발명은 면역분석용 바이오센서 기술에 관한 것으로, 더욱 상세하게는 면역분석 속도 및 민감도를 향상시킬 수 있도록 구조화된 바이오센서에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor technique for immunoassay, and more particularly, to a biosensor structured to improve immunoassay speed and sensitivity.
ELISA (enzyme-linked immunosorbent assay)는 펩타이드, 단백질, 항체 및 호르몬 등과 같은 타겟 물질을 검출하고 정량하는 분석 기술이다. ELISA에서, 항원 등과 같은 타겟 물질은 고체 표면 상에 고정화된 다음, 시약, 예를 들어 효소와 중합된 항체와 복합체를 형성한다. 이에 기질을 첨가하면 기질이 효소와 반응하여 측정 가능한 반응 생성물을 생성하므로, 효소 활성을 평가하여 타겟 물질을 검출하고 분석할 수 있다. 이러한 ELISA의 유형으로는 직접 ELISA (direct ELISA), 간접 ELISA (indirect ELISA), 샌드위치 ELISA (sandwich ELISA) 및 경쟁 ELISA (competitive ELISA) 등이 있다.An enzyme-linked immunosorbent assay (ELISA) is an analytical technique that detects and quantifies target substances such as peptides, proteins, antibodies and hormones. In ELISA, a target material, such as an antigen, etc., is immobilized on a solid surface and then complexed with a reagent, e.g., an antibody polymerized with an enzyme. When the substrate is added, the substrate reacts with the enzyme to generate a measurable reaction product, so that the target substance can be detected and analyzed by evaluating the enzyme activity. The types of ELISAs include direct ELISA, indirect ELISA, sandwich ELISA, and competitive ELISA.
직접 ELISA는 항원이 멀티 웰 플레이트(multi-well plate)의 표면에 고정화되고, HRP 또는 다른 표지자가 결합된 항체와 특이적으로 반응함으로써 검출된다.Direct ELISA is detected by immobilizing the antigen on the surface of a multi-well plate and reacting specifically with antibodies conjugated with HRP or other markers.
간접 ELISA에서도, 직접 ELISA와 유사하게, 항원이 멀티 웰 플레이트의 표면에 고정화되지만, 여기서는 1차 항체가 그 항원과 특이적으로 반응한 후, 표지된 2차 항체가 1차 항체와 반응하여 검출된다. 이러한 방법은 1차 항원을 혈청(serum)으로 대체하여 혈청 시료내의 특이 항체를 검출하는데 사용할 수 있다.In the indirect ELISA, similarly to the direct ELISA, the antigen is immobilized on the surface of the multi-well plate. Here, after the primary antibody specifically reacts with the antigen, the labeled secondary antibody reacts with the primary antibody and is detected . This method can be used to detect a specific antibody in a serum sample by replacing the primary antigen with a serum.
샌드위치 ELISA (또는 샌드위치 면역 측정법)에서는 항원에 특이적인 2개의 항체가 사용된다. 항체 중 하나는 멀티 웰 플레이트의 표면에 코팅되어 항원을 고정화하는 포획 항체로 작용하고, 다른 항체는 그 항원과 중합되어 항원의 검출을 용이하게 한다.In a sandwich ELISA (or sandwich immunoassay), two antibodies specific for an antigen are used. One of the antibodies acts as a capture antibody coated on the surface of the multi-well plate to immobilize the antigen, and the other antibody is polymerized with the antigen to facilitate the detection of the antigen.
억제 ELISA 또는 경쟁 면역 측정법으로도 지칭되는 경쟁 ELISA의 경우에는, 항원의 농도가 신호 간섭에 의해 측정된다. 시료 내의 항원은 표지 항체와 결합하기 위해 기준 항원과 경쟁하는데, 여기서 기준 항원은 다중 웰 플레이트 상에 우선적으로 코팅된다. 시료는 표지 항체와 미리 반응한 후 웰에 첨가되기 때문에, 시료 내의 항원의 양에 따라 기준 항원과 결합할 수 있는 항체가 많거나 적을 수 있다. 이에 의하면, 시료에 항원이 많을수록 기준 항원이 적게 검출되어 신호가 약해지고, 시료에 항원의 양이 적을수록 웰에서 표지된 항원이 더 많아지기 때문에 신호가 강해진다.In the case of competitive ELISA, also referred to as inhibition ELISA or competitive immunoassay, the concentration of the antigen is measured by signal interference. The antigen in the sample competes with the reference antigen for binding to the labeled antibody, where the reference antigen is preferentially coated on the multiple well plate. Since the sample is pre-reacted with the labeled antibody and then added to the well, depending on the amount of the antigen in the sample, the antibody capable of binding to the reference antigen may be more or less. According to this, as the number of antigens in the sample increases, the signal is weakened as the reference antigen is detected less and the signal becomes stronger as the amount of the antigen in the sample becomes smaller as more antigens are labeled in the well.
본 발명은 상기와 같이, 종래 ELISA의 단점으로 알려진 후크 효과(hook effect)를 개선함으로써, 반응체 또는 항체의 농도를 향상시킬 수 있고, 기존의 면역분석기법 대비 편리성이 현저히 증대되고 분석시간이 현저히 단축되는 바이오센서를 제공하고자 한다.As described above, the present invention can improve the concentration of the reactant or antibody by improving the hook effect, which is known as a disadvantage of the conventional ELISA, and it is possible to improve the convenience of the immunoassay technique remarkably, And to provide a biosensor that is remarkably shortened.
본 발명에 따른 바이오센서는 판(plate) 형상으로 형성되고, 일면 및 타면 중 적어도 어느 하나 이상에 타겟 물질과 특이적으로 결합하는 고정 물질이 배치된 검지 구조체;를 포함한다.A biosensor according to the present invention includes a detection structure formed in a plate shape and having a fixation substance that is specifically bound to a target material disposed on at least one of a surface and a surface of the biosensor.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 검지 구조체의 일면 및 타면 중 적어도 어느 하나 이상에, 돌기 형태로 형성되고, 외면에 상기 고정 물질이 결합되는 나노 구조체가 형성된다.In addition, in the biosensor according to the present invention, at least one of the one surface and the other surface of the detection structure is formed in a protrusion shape, and a nanostructure is formed on the outer surface to which the fixing substance is bonded.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 타겟 물질은 아미노산, 펩티드, 폴리펩티드, 단백질, 당단백질, 지단백질, 뉴클레오시드, 뉴클레오티드, 올리고뉴클레오티드, 핵산, 당, 탄수화물, 올리고당, 다당류, 지방산, 지질, 호르몬, 대사물질, 사이토카인, 케모카인, 수용체, 신경 전달 물질, 항원, 알레르겐, 항체, 기질, 대사물질, 보조 인자, 저해제, 약물, 약제, 영양소, 플리온, 독소, 독, 폭약, 살충제, 화학적 교전제, 생물위험제, 박테리아, 바이러스, 방사선 동위원소, 비타민, 헤테로시클 방향족 화합물, 카르시노겐, 뮤타겐, 마약, 암페타민, 바르비투레이트, 환각제, 폐기물 및 오염물로 구성된 군으로부터 선택되는 적어도 어느 하나 이상이다.Also, in the biosensor according to the present invention, the target substance may be an amino acid, a peptide, a polypeptide, a protein, a glycoprotein, a lipoprotein, a nucleoside, a nucleotide, an oligonucleotide, a nucleic acid, a sugar, a carbohydrate, an oligosaccharide, , Hormones, metabolites, cytokines, chemokines, receptors, neurotransmitters, antigens, allergens, antibodies, substrates, metabolites, cofactors, inhibitors, drugs, drugs, nutrients, plion, toxins, poisons, At least one selected from the group consisting of chemical agents, biological agents, bacteria, viruses, radioactive isotopes, vitamins, heterocyclic aromatic compounds, carcinogens, mutagen, drugs, amphetamines, barbiturates, hallucinogens, It is more than one.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 타겟 물질을 포함하는 시료가 수용된 큐벳에, 상기 검지 구조체가 삽입되어 침지된 상태에서, 상기 고정 물질과 상기 타겟 물질이 반응한다.Further, in the biosensor according to the present invention, the immobilizing material and the target substance react with each other when the detecting structure is immersed in the cuvette containing the sample containing the target substance.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 검지 구조체의 일단과 연결되고, 사용자에 의해 파지되는 파지부;를 더 포함한다.Further, in the biosensor according to the present invention, the biosensor further includes a grip portion connected to one end of the detection structure and gripped by a user.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 검지 구조체와 상기 파지부를 서로 연결하고, 상기 큐벳의 입구에 삽탈 가능하게 삽입되는 캡;을 더 포함한다.Further, in the biosensor according to the present invention, the cap further includes a detachable cap inserted into the inlet of the cuvette, connecting the detection structure and the grip portion to each other.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 캡의 외면에 배치되고, 상기 캡이 상기 큐벳 내에 삽입될 때에 형태가 변하면서 발생하는 복원력에 의해 상기 큐벳의 내주면에 밀착되는 고정부;를 더 포함한다.The biosensor according to the present invention further includes a fixing part which is disposed on an outer surface of the cap and which is brought into close contact with the inner circumferential surface of the cuvette by a restoring force generated when the cap is deformed when the cuvette is inserted into the cuvette do.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 검지 구조체는 상기 시료에 침지되는 침지부와 비침지부로 구분되고, 상기 비침지부에, 상기 침지부의 폭보다 상대적으로 폭이 좁아지는 협폭부를 구비한다.Further, in the biosensor according to the present invention, the detecting structure is divided into a dipping part immersed in the sample and a non-dipping part, and the non-dipping part is provided with a narrow width part whose width is smaller than the width of the dipping part do.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 협폽부는 상기 검지 구조체의 양측면 중 적어도 어느 하나 이상에, 오목하게 함몰되어 형성되고, 상기 검지 구조체의 길이방향을 따라 적어도 하나 이상 형성된다.In the biosensor according to the present invention, at least one or more of the narrow-pore portions are formed concavely on at least one of both side surfaces of the detection structure, and are formed along the length direction of the detection structure.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 검지 구조체는 다수 개로, 서로 이격되어 나란하게 배치된다. Further, in the biosensor according to the present invention, the detection structures are arranged in a plurality of spaced apart from each other.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 검지 구조체를 사이에 두고 서로 맞은 편에 배치되어, 상기 검지 구조체를 보호하는 한 쌍의 가드;를 더 포함한다.Further, in the biosensor according to the present invention, the biosensor further includes a pair of guards disposed opposite to each other with the detection structure therebetween to protect the detection structure.
또한, 본 발명에 다른 바이오센서에 있어서, 소정의 길이를 갖는 본체, 및 상기 타겟 물질을 포함하는 시료를 수용할 수 있도록 상기 본체의 일면으로부터 함몰되어 다수 개가 형성되고 각각의 내부에 상기 검지 구조체가 배치되는 반응챔버를 포함하는 적어도 하나 이상의 센서스트립;을 더 포함한다.Further, in the biosensor according to the present invention, a body having a predetermined length and a plurality of recesses are formed from one surface of the body so as to accommodate a sample containing the target substance, and the detection structure And at least one sensor strip including a reaction chamber in which the sensor strip is disposed.
또한, 본 발명에 다른 바이오센서에 있어서, 일면에 상기 센서스트립이 탈착 가능하게 부착되는 고정판;을 더 포함한다.Further, in the biosensor according to the present invention, the sensor strip may be detachably attached to one surface of the biosensor.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 검지 구조체는 수 개로, 서로 이격되어 다단으로 상하 배열된다.Further, in the biosensor according to the present invention, the detection structures are arranged vertically in multiple stages in a plurality of spaced apart from each other.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 반응챔버와 연통되도록, 상기 본체의 일면으로부터 함몰되어 형성된 시료주입구;를 더 포함한다.Further, the biosensor according to the present invention may further include a sample injection port formed to be recessed from one surface of the body so as to communicate with the reaction chamber.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 고정판의 일면으로부터 돌출된 삽입돌출부;를 더 포함하고, 상기 본체에, 상기 삽입돌출부가 삽입되도록 함몰되거나 또는 관통된 삽입공이 형성되어, 상기 센서스트립이 상기 고정판에 부착된다.According to another aspect of the present invention, there is provided a biosensor, further comprising: an insertion protrusion protruding from one surface of the fixing plate, wherein an insertion hole is formed in the main body such that the insertion protrusion is inserted or penetrated, And is attached to the fixing plate.
또한, 본 발명에 다른 바이오센서에 있어서, 상기 본체 일단의 코너(corner)가 내측을 향하여 함몰되고, 상기 삽입돌출부가 상기 삽입공에 삽입될 때에, 상기 본체 일단의 코너에 접하도록, 상기 삽입돌출부로부터 이격되어 상기 고정판의 일면으로부터 돌출된 고정턱;을 더 포함한다.Further, in the biosensor according to the present invention, a corner of one end of the main body is recessed toward the inside, and when the insertion projection is inserted into the insertion hole, And a fixing jaw which is spaced apart from the fixing plate and protrudes from one surface of the fixing plate.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to that, terms and words used in the present specification and claims should not be construed in a conventional and dictionary sense, and the inventor may properly define the concept of the term in order to best explain its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.
본 발명에 따른 바이오센서는 단위 부피당 반응하는 수용체 또는 항체의 농도를 상대적으로 증가시킬 수 있도록 하여, 면역분석의 편의성을 증대시키고 분석시간을 단축시킴과 아울러 반응 민감도를 더욱 향상시킬 수 있다.The biosensor according to the present invention can relatively increase the concentration of the receptor or antibody that reacts per unit volume, thereby enhancing the convenience of immunoassay, shortening the analysis time, and further improving the sensitivity of the reaction.
도 1의 (A)는 순차반응을 이용한 종래의 ELISA 분석방법을, 도 1의 (B)는 동시반응을 이용한 원-스텝 ELISA 분석방법을 각각 나타내는 개념도이다.FIG. 1 (A) is a conceptual diagram showing a conventional ELISA analysis method using sequential reaction, and FIG. 1 (B) is a conceptual diagram showing a one-step ELISA analysis method using simultaneous reaction.
도 2a 내지 도 2c는 본 발명의 실시예에 따른 바이오센서의 검지 구조체를 개략적으로 도시한 측면도이다.2A to 2C are side views schematically showing a detection structure of a biosensor according to an embodiment of the present invention.
도 3a 내지 도 3e는 본 발명의 실시예에 따른 바이오센서의 나노 구조체를 개략적으로 도시한 사시도이다.3A to 3E are perspective views schematically illustrating a nanostructure of a biosensor according to an embodiment of the present invention.
도 4a 내지 도 4b는 본 발명의 실시예에 따른 큐벳형 바이오센서의 단면도이고, 도 4c는 사시도이다.FIGS. 4A and 4B are cross-sectional views of a cuvette-type biosensor according to an embodiment of the present invention, and FIG. 4C is a perspective view.
도 5는 도 4c에 도시된 바이오센서가 큐벳에 삽입되는 과정을 도시한 정면도이다.5 is a front view showing a process of inserting the biosensor shown in FIG. 4C into the cuvette.
도 6은 도 4c에 도시된 바이오센서가 큐벳에 삽입된 상태를 도시한 측면도이다.FIG. 6 is a side view showing a state where the biosensor shown in FIG. 4C is inserted into the cuvette.
도 7은 본 발명의 다른 실시예에 따른 큐벳형 바이오센서의 사시도이다.7 is a perspective view of a cuvette type biosensor according to another embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 스트립형 바이오센서의 사시도이다.8 is a perspective view of a strip-type biosensor according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 스트립형 바이오센서의 검지 구조체를 도시한 사시도이다.9 is a perspective view showing a detection structure of a strip biosensor according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따른 스트립형 바이오센서의 센서스트립을 도시한 사시도이다.10 is a perspective view illustrating a sensor strip of a strip-type biosensor according to an embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 따른 스트립형 바이오센서의 사시도이다.11 is a perspective view of a strip-type biosensor according to another embodiment of the present invention.
도 12 내지 도 14b는 본 발명의 또 다른 실시예에 따른 스트립형 바이오센서의 분해 사시도 및 결합 사시도이다.12 to 14B are an exploded perspective view and an assembled perspective view of a strip-type biosensor according to another embodiment of the present invention.
도 15는 본 발명에 따른 큐벳형 바이오센서를 이용한 시료 분석방법의 순서도이다.15 is a flowchart of a sample analysis method using a cuvette type biosensor according to the present invention.
도 16은 본 발명에 따른 스트립형 바이오센서를 이용한 시료 분석방법의 순서도이다.16 is a flowchart of a sample analysis method using a strip biosensor according to the present invention.
도 17a 내지 도 17f는 본 발명에 따른 바이오센서를 이용하여 다양한 검출 대상 항체의 농도에 따라 흡광도를 측정한 실험 결과 그래프이다.FIGS. 17A to 17F are graphs showing experimental results of absorbance measured according to the concentration of various detection target antibodies using the biosensor according to the present invention. FIG.
도 18a 내지 도 18b는 본 발명에 따른 검지 구조체의 개수가 서로 다른 바이오센서를 이용하여 농도가 상이한 검출 대상 항체의 반응 생성물의 흡광도를 측정한 실험 결과 그래프이다.FIGS. 18A and 18B are graphs showing experimental results obtained by measuring the absorbance of a reaction product of an antibody to be detected having a different concentration using a biosensor having different numbers of detection structures according to the present invention. FIG.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다. BRIEF DESCRIPTION OF THE DRAWINGS The objectives, specific advantages and novel features of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. It should be noted that, in the present specification, the reference numerals are added to the constituent elements of the drawings, and the same constituent elements are assigned the same number as much as possible even if they are displayed on different drawings. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description of the present invention, detailed description of related arts which may unnecessarily obscure the gist of the present invention will be omitted.
ELISA의 유형에 관계없이, 보다 신속하고 민감한 ELISA에 대한 공통 과제는 빠른 반응속도로, 타겟 물질의 감지 신호를 증강시키는 데 있다. 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.Regardless of the type of ELISA, a common challenge for faster and more sensitive ELISAs is to enhance the sensing signal of the target material at a faster rate of reaction. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
면역분석에서 반응성을 좌우하는 요인은 다양하지만, 그 중에서도 반응에 참여하는 시료 내 단백질의 농도와 해당 단백질과 반응하는 수용체 또는 항체의 농도가 가장 중요한 요소이다.The factors that determine the reactivity in immunoassays vary, but the concentration of the protein in the sample and the concentration of the receptor or antibody that reacts with the protein are the most important factors.
일반적인 ELISA의 경우, 면역분석용 마이크로티터 플레이트(microtiter plate)의 반응 영역은 시료를 수용하는 영역에 한정되기 때문에, 동일한 시료의 단위 부피당 그 반응에 관여하는 수용체 또는 항체의 농도가 제한적일 수밖에 없다. 또한, 민감도 증강을 위해 표면 대 부피비를 증대시키는 종래 ELISA 기술의 경우에는 다양한 시약 및/또는 분석물질의 확산을 감소시켜 반응 시간이 지나치게 늘어나는 문제점이 발생하는바, 이러한 문제점을 해결하기 위한 방안으로서 본 발명에 따른 바이오센서가 안출되었다. In the case of a general ELISA, since the reaction area of the microtiter plate for immunoassay is limited to the area for accommodating the sample, the concentration of the receptor or antibody involved in the reaction per unit volume of the same sample is limited. In addition, in the case of the conventional ELISA technique for increasing the surface-to-volume ratio for the purpose of increasing the sensitivity, diffusion of various reagents and / or analytes is reduced, resulting in a problem that the reaction time is excessively increased. A biosensor according to the invention has been developed.
도 1의 (A)는 순차반응을 이용한 종래의 ELISA 분석방법을, 도 1의 (B)는 동시반응을 이용한 원-스텝 ELISA 분석방법을 각각 나타내는 개념도이다. FIG. 1 (A) is a conceptual diagram showing a conventional ELISA analysis method using sequential reaction, and FIG. 1 (B) is a conceptual diagram showing a one-step ELISA analysis method using simultaneous reaction.
도 1의 (A)를 참고로, 일반적인 샌드위치 ELISA는 수용체 또는 항체가 고정되어 있는 기판에, 단백질과 같은 타겟 물질이 포함된 시료를 반응시켜 반응 복합체를 생성하고, 그 반응 복합체를 세척한 이후에 표지자가 중합된 탐지항체를 반응시킨다. 이와 같은 순차적인 반응과정은 매우 복잡하다. 따라서, 숙련된 사용자가 연구실 내에서 실시해야 하며, 분석시간에 4시간 이상이 소요되는 문제가 있다.1 (A), in a general sandwich ELISA, a reaction complex is produced by reacting a sample containing a target substance such as protein on a substrate on which a receptor or an antibody is immobilized, and after washing the reaction complex The marker is reacted with the polymerized detection antibody. This sequential reaction process is very complex. Therefore, there is a problem that an experienced user must perform in the laboratory and takes more than 4 hours to analyze.
도 1의 (B)를 참고로, 도 1의 (A)에 도시된 샌드위치 ELISA의 지나치게 긴 분석시간 및 반응과정의 복잡성을 해소하고자, 일부 면역분석 기술에서는 단백질 등의 타겟 물질이 포함된 시료와 표지자가 중합된 탐지항체를 먼저 혼합하여 반응시키고, 그 혼합물을 수용체 또는 항체가 고정된 기판에 반응시키는 방법을 사용한다. 이 방법은 한 번의 시료 주입으로 면역분석을 실시할 수 있으므로, 매우 편리하고, 분석시간이 기존 대비 8배 정도 단축되는 효과가 있다. 하지만, 이와 같은 면역분석기법의 효과는 다양한 이유로 인해 실현되지 못하는 경우가 있다. 예를 들어, 다량의 타겟 단백질이 존재하는 경우, 표지자가 중합된 탐지 항체와 반응하지 못한 미반응 타겟 단백질이 기판에 고정된 항체와 반응하게 되는데, 이러한 현상을 '후크 효과(hook effect)'라고 부른다. 또한, 표지자가 없는 미반응 타겟 단백질로 인해 농도를 정확하게 확인할 수 없게 된다. 이러한 문제점을 해결하기 위해서는 근본적으로 반응에 참여하는 수용체 또는 항체의 농도가 타겟 단백질보다 높아야 한다.1 (B), in order to overcome the excessive analysis time and complexity of the reaction process of the sandwich ELISA shown in FIG. 1 (A), in some immunoassay techniques, a sample containing a target substance such as protein A method in which the marker-conjugated detection antibody is firstly mixed and reacted, and the mixture is reacted with the receptor or the substrate on which the antibody is immobilized is used. This method is very convenient because it can perform immunoassay with one sample injection, and the analysis time is shortened about 8 times compared with the conventional method. However, the effectiveness of such an immunoassay technique may not be realized due to various reasons. For example, when a large amount of target protein is present, the unreacted target protein that has not reacted with the marker-conjugated detection antibody reacts with the antibody immobilized on the substrate. This phenomenon is referred to as a "hook effect" I call it. In addition, the concentration can not be accurately identified due to the unreacted target protein without the marker. In order to solve this problem, the concentration of the receptor or antibody which is fundamentally involved in the reaction should be higher than the target protein.
감도 증강 나노구조 활성 표면을 구비한 바이오센서Biosensor with Sensitivity Enhanced Nanostructured Active Surface
바이오센서에 있어서, 생체분자 및/또는 분석물질(유기물 또는 무기물)을 고정하는 검지 구조체의 활성 표면적이 증대되면, 고정되는 생체분자 및/또는 분석물질의 밀도를 증가시킬 수 있어 면역분석의 민감도 향상을 기대할 수 있다. 이 경우, 다양한 생체분자, 시약 및/또는 분석물질의 확산 수송(diffusion transport)의 부정적인 영향을 감소시키면서, 그 활성 표면적을 증대시키는 것이 바람직하다. In the biosensor, if the active surface area of the detection structure for fixing biomolecules and / or analytes (organic or inorganic substances) is increased, the density of immobilized biomolecules and / or analytes can be increased, Can be expected. In this case, it is desirable to increase the active surface area while reducing the negative influence of the diffusion transport of various biomolecules, reagents and / or analytes.
이에, 본 발명에 따른 바이오센서는 텍스처(textured) 또는 개질된 고분자 표면을 포함하는 활성 표면 영역을 구비한다. 여기서, 고분자 표면에는 서브미크론(submicron) 또는 나노 구조체가 형성될 수 있다. 이하에서, 서브미크론 구조체는, 예를 들어 길이, 폭, 높이, 직경 등의 물리적 치수 중 어느 하나 이상이 약 1 ㎛ 이하인 구조체를, 나노 구조체는 그 물리적 치수 중 하나 이상이 약 100 ㎚ 이하인 구조체를 각각 의미한다.Accordingly, the biosensor according to the present invention has an active surface area including a textured or modified polymer surface. Here, a submicron or a nanostructure may be formed on the surface of the polymer. Hereinafter, the submicron structure may be a structure in which at least one of physical dimensions such as length, width, height, diameter, and the like is about 1 탆 or less, and a nanostructure is a structure having at least one physical dimension of about 100 nm or less Respectively.
도 2a 내지 도 2c는 본 발명의 실시예에 따른 바이오센서의 검지 구조체를 개략적으로 도시한 측면도이고, 도 3a 내지 도 3e는 본 발명의 실시예에 따른 바이오센서의 나노 구조체를 개략적으로 도시한 사시도이다.FIGS. 2A to 2C are side views schematically showing a detection structure of a biosensor according to an embodiment of the present invention. FIGS. 3A to 3E are perspective views schematically showing a nanostructure of a biosensor according to an embodiment of the present invention. to be.
도 2a 내지 도 2c에 도시된 바와 같이, 본 발명에 따른 바이오센서는 일면과 이와 마주보는 반대쪽 타면을 구비한 판(plate) 형상의 검지 구조체(10)를 포함한다. 여기서, 일면 및 타면 각각에 활성 표면이 포함될 수 있는데, 그 활성 표면은 서브미크론 또는 나노 구조체(11)를 구비하는 텍스처(textured) 고분자 표면으로 구현될 수 있다. 서브미크론 또는 나노 구조체(11)는 고분자 재료로 형성될 수 있는데, 예를 들어 검지 구조체(10) 재료와 동일한 재료로 이루어질 수 있다. 여기서, 활성 표면은 면역분석을 위해, 하나 이상의 생체분자 및/또는 분석물질이 고정화되는 표면을 의미한다. 활성 표면은 생체분자 및/또는 분석물질, 예를 들어 항체 또는 항원이 특이적으로 결합되도록 화학처리를 하여 구현할 수도 있다. As shown in FIGS. 2A to 2C, the biosensor according to the present invention includes a plate-shaped detection structure 10 having one surface and a surface opposite to the other surface. Here, an active surface may be included on each of the one side and the other side, and the active surface may be embodied as a textured polymer surface having a submicron or nanostructure 11. The submicron or nanostructure 11 may be formed of a polymeric material, for example, the same material as that of the detection structure 10. Here, the active surface means a surface on which one or more biomolecules and / or analytes are immobilized for immunoassay. The active surface may be implemented by chemical treatment to specifically bind biomolecules and / or analytes, such as antibodies or antigens.
검지 구조체(10)는 평면형 구조로, 평평한 판면, 즉 일면 및 타면 중 적어도 어느 한 면 이상에 고정 물질(C), 예를 들어 항체 등과 같은 생체분자 또는 시약 등이 배치될 수 있다. 여기서, 고정 물질(C)은 타겟 물질과 특이적으로 서로 결합하는 물질이다. 한편, 타겟 물질은 그 자체로 독립적으로 제공되거나, 또는 시료에 포함되어 제공될 수 있으며, 이때 표지자가 중합된 검출물질(예를 들면, 생체분자 또는 시약)이 그 시료에 추가적으로 포함될 수도 있다. 제공되는 타겟 물질은 아미노산, 펩티드, 폴리펩티드, 단백질, 당단백질, 지단백질, 뉴클레오시드, 뉴클레오티드, 올리고뉴클레오티드, 핵산, 당, 탄수화물, 올리고당, 다당류, 지방산, 지질, 호르몬, 대사물질, 사이토카인, 케모카인, 수용체, 신경 전달 물질, 항원, 알레르겐, 항체, 기질, 대사물질, 보조 인자, 저해제, 약물, 약제, 영양소, 플리온, 독소, 독, 폭약, 살충제, 화학적 교전제, 생물위험제, 박테리아, 바이러스, 방사선 동위원소, 비타민, 헤테로시클 방향족 화합물, 카르시노겐, 뮤타겐, 마약, 암페타민, 바르비투레이트, 환각제, 폐기물, 및 오염물로 구성된 군으로부터 선택되는 적어도 어느 하나 이상일 수 있다. The detection structure 10 may have a planar structure. A biomolecule or a reagent, such as a fixing material C, for example, an antibody, may be disposed on at least one surface of a flat plate surface, that is, one surface or another surface. Here, the fixing substance (C) is a substance that specifically binds to the target substance. On the other hand, the target substance may be provided as a stand-alone substance or may be contained in a sample, and the detection substance (for example, biomolecule or reagent) in which the marker is polymerized may be further included in the sample. The target material provided may be an amino acid, peptide, polypeptide, protein, glycoprotein, lipoprotein, nucleoside, nucleotide, oligonucleotide, nucleic acid, sugar, carbohydrate, oligosaccharide, polysaccharide, fatty acid, lipid, hormone, metabolite, cytokine, chemokine , A receptor, a neurotransmitter, an antigen, an allergen, an antibody, a substrate, a metabolite, a cofactor, an inhibitor, a drug, a drug, a nutrient, a plion, a toxin, a poison, an explosive, an insecticide, At least one selected from viruses, radioactive isotopes, vitamins, heterocyclic aromatic compounds, carcinogens, mutagen, drugs, amphetamines, barbiturates, hallucinogens, wastes, and contaminants.
한편, 이러한 타겟 물질과 특이적으로 결합되는 고정 물질(C)은 타겟 물질에 따라 정해지는데, 고정 물질(C)의 일례로는, 저분자 화합물, 항원, 항체, 단백질, 펩타이드, Deoxyribo Nucleic Acid(DNA), Ribo Nucleic Acid(RNA), Peptide Nucleic Acid (PNA), 효소, 효소 기질, 호르몬, 호르몬 수용체, 관능기를 포함하는 합성 시약으로 구성된 군으로부터 선택되는 적어도 어느 하나 이상, 이의 모사물, 또는 이들의 조합을 포함할 수 있다. Antibodies, proteins, peptides, Deoxyribo Nucleic Acid (DNA), and the like are examples of the immobilizing substance (C), which is specifically determined according to the target substance. ), A synthetic reagent comprising a ribonucleic acid (RNA), a peptide nucleic acid (PNA), an enzyme, an enzyme substrate, a hormone, a hormone receptor and a functional group, Combinations thereof.
상기 표지자는 HRP(horseradish peroxidase), 염기성 탈인산화효소(alkaline phosphatase) 및 형광물질(fluorescein) 중 어느 하나일 수 있다. The marker may be any one of HRP (horseradish peroxidase), basic alkaline phosphatase, and fluorescein.
상기 시료는 상기 표지자와 반응하는 시약으로서, ABTS(2,2'-아지노비스[3-에틸벤조티아졸린-6-설폰산]-다이암모늄염) 또는 TMB(3,3',5,5'-테트라메틸벤지딘)를 포함하는 기질 용액을 더 포함하는 것일 수 있다. The sample is a reagent which reacts with the above-mentioned markers, such as ABTS (2,2'-azinobis [3-ethylbenzothiazoline-6-sulfonic acid] -diammonium salt) or TMB (3,3 ', 5,5'- Tetramethylbenzidine). ≪ / RTI >
다만, 타겟 물질, 고정 물질(C), 표지자, 및 시약 등은 반드시 전술한 종류에 한정되는 것은 아니다.However, the target substance, the fixing substance (C), the marker, and the reagent are not necessarily limited to the above-mentioned kinds.
한편, 도 3a 내지 도 3e과 같이, 검지 구조체(10)의 일면 및 타면 중 적어도 어느 한 면 이상에 서브미크론 또는 나노 구조체(11)가 형성될 수 있다. 여기서, 서브미크론 또는 나노 구조체(11)는 검지 구조체(10)의 일면 및/또는 타면의 전체 영역에, 또는 일부 영역에 형성될 수 있고, 이러한 서브미크론 또는 나노 구조체(11)의 외면에는 고정 물질(C)이 배치될 수 있다. 이렇게 서브미크론 또는 나노 구조체(11)를 구비한 검지 구조체(10)는 서브미크론 또는 나노 구조체(11)가 구비되지 않은 평면형 검지 구조체(10)의 표면에 비해 표면적이 넓어지므로, 더 많은 양의 고정 물질(C)이 검지 구조체(10)에 배치된 타겟 물질과 반응하게 된다.3A to 3E, the submicron or nanostructure 11 may be formed on at least one of the one surface and the other surface of the detection structure 10. [ Here, the submicron or nanostructure 11 may be formed on one or both surfaces of the detection structure 10 and / or on the entire surface of the other surface, and on the outer surface of the submicron or nanostructure 11, (C) may be disposed. The detection structure 10 having the submicron or nanostructure 11 has a larger surface area than the surface of the flat sensing structure 10 without the submicron or nanostructure 11, So that the substance C reacts with the target substance disposed in the detection structure 10.
한편, 서브미크론 또는 나노 구조체(11)는 적어도 하나 이상의 돌기 형태로 형성될 수 있는바, 서브미크론 또는 나노 구조체(11)는 베이스에서부터 멀어질수록 단면적이 점점 감소하는 돌기를 포함할 수 있다. 이러한 돌기는 고정 물질(C)이 고정되는 표면적을 향상시킴과 동시에, 다양한 시약 및/또는 분석물질의 확산 수송의 부정적 영향을 감소시킨다. 또한, 돌기는 구형, 피라미드(pyramid), 삼각형, 직사각형, 큐브(cube), 플레이트(plate), 디스크(disc), 실린더(cylinder), 와이어(wire), 로드(rod), 시트(sheet), 프랙탈(fractal) 등의 형태로 형성될 수 있고, 위의 형태에서 소정의 영역이 절단되거나 비틀린 형상으로 이루어질 수도 있다.On the other hand, the submicron or nanostructure 11 may be formed in at least one protrusion shape. The submicron or nanostructure 11 may include protrusions whose cross-sectional area gradually decreases as the distance from the base increases. These projections improve the surface area at which the immobilizing material C is fixed, and at the same time reduce the negative influence of the diffusion transport of the various reagents and / or analytes. In addition, the protrusions may be in the form of spheres, pyramids, triangles, rectangles, cubes, plates, discs, cylinders, wires, rods, sheets, And may be formed in the form of a fractal or the like, and the predetermined region may be cut or twisted in the above form.
일례로, 돌기는 절단된 구형, 예를 들어 반구(hemisphere) 형태 등으로 형성될 수 있고, 여기서 그 반구형 돌기가 규칙적으로 배열되어 서브미크론 또는 나노 구조체 어레이(array)를 형성할 수 있다. 이때, 서브미크론 또는 나노 구조체 어레이는 돌기가 지그재그 형태로 배열되고, 인접하는 돌기끼리 서로 접촉하도록 배열될 수도 있다(도 3a 참조). For example, the protrusions may be formed with a cut spherical shape, such as a hemisphere shape, wherein the hemispherical protrusions are regularly arranged to form a submicron or nanostructure array. At this time, the submicron or nanostructure arrays may be arranged so that the projections are arranged in a zigzag shape, and the adjacent projections are in contact with each other (see FIG. 3A).
또한, 돌기는 삼각기둥의 프리즘 형태(도 3b 참조), 또는 반원기둥 형태(도 3c 참조)로 형성될 수도 있으며, 검지 구조체(10)의 표면에 수직한 방향으로 갈수록 그 횡단면이 점점 작아지는 피라미드 절두체(pyramidal frustrum, 도 3d 참조), 또는 원추형 절두체(conical frustrum, 도 3e 참조) 형태로 형성될 수도 있다.3B) or a semicircular shape (see FIG. 3C), and a pyramid having a smaller cross-sectional area in a direction perpendicular to the surface of the detection structure 10 A pyramidal frustrum (see FIG. 3D), or a conical frustrum (see FIG. 3E).
이와 같이 서브미크론 또는 나노 구조체(11)는 표면적을 향상시키기 때문에, 반응에 관여하는 수용체 또는 항체의 농도를 상대적으로 증가시킬 수 있으므로, 기존 ELISA 분석방법 대비 민감도를 향상시키며, 특히 수용체 또는 항체의 농도보다 높은 농도의 단백질이 존재할 때 발생하는 후크 효과(hook effect)를 유효하게 제어할 수 있다.Since the submicron or nanostructure 11 improves the surface area, the concentration of the receptor or antibody involved in the reaction can be relatively increased. Thus, the sensitivity of the submicron or nanostructure 11 is improved compared to the conventional ELISA assay, and the concentration of the receptor or antibody It is possible to effectively control the hook effect that occurs when a higher concentration of protein is present.
한편, 서브미크론 또는 나노 구조체 어레이는 서브미크론 또는 나노 구조체(11)가 규칙적으로, 예를 들어 주기적으로 배열될 수 있다. 그러나 이에 의해 본 발명이 한정되는 것은 아니고, 서브미크론 또는 나노 구조체(11)가 불규칙적으로, 또는 일 방향에 대해서는 규칙적이고 타 방향에 대해서는 불규칙적으로 배열될 수도 있다. 한편, 서브미크론 또는 나노 구조체(11)는 나노와이어, 나노필라(nanopillar), 또는 나노섬유(nanofiber)를 포함할 수도 있다.On the other hand, the submicron or nanostructure arrays can be arranged regularly, for example, periodically, on the submicron or nanostructure 11. However, the present invention is not limited thereto, and the submicron or nanostructure 11 may be irregularly arranged, or irregularly arranged in one direction and irregularly arranged in the other direction. On the other hand, the submicron or nanostructure 11 may include nanowires, nanopillars, or nanofibers.
감도 및 시약 확산 증강 Sensitivity and reagent diffusion enhancement 큐벳형Cuvet type 바이오센서 Biosensor
본 발명에 따른 바이오센서는 큐벳형과 스트립형으로 제공될 수 있는데, 이하에서 그 구조를 구분하여 상세하게 설명한다. 전술한 바와 같이, 바이오센서는 다양한 생체분자, 시약 및/또는 분석물질의 확산 수송에 대한 부정적 영향을 감소시키고, 동시에 활성 표면이 증가된 구조의 검지 구조체를 구비하는 것이 바람직하다. 이러한 요구를 충족하기 위해서, 본 발명에 따른 바이오센서는 하나 이상의 공동(cavity)을 구비한 투명 용기 및 그 공동에 삽입되어 생체분자 또는 시약을 고정화하는 다수의 활성 표면을 포함할 수 있다. 여기서, 바이오센서는 상기 공동에 삽입되는 투명한 검지 구조체를 포함하고, 그 투명 검지 구조체는 하나 이상의 활성 표면을 제공하는 적어도 하나 이상의 메인 표면을 포함할 수 있다. 다수의 활성 표면은 생체분자 및/또는 분석물질을 고정하는 활성 표면적을 증가시킨다. 또한, 활성 표면 각각은 소정의 간격으로 이격되어 서로 분리됨으로써, ELISA에 있어 다양한 생체분자, 시약 및/또는 분석물질의 확산 수송을 촉진한다. 본 발명에서는 상기 확산 수송을 방해하지 않도록 인접하는 활성 표면 간의 간격이 대략 300 ~ 9000 ㎛일 수 있다. 또한, ELISA에 사용되는 다양한 생체분자 및/또는 분석물질을 고정하기 위해 제공되는 전체 활성 영역은 단위 부피 당 1.0 ~ 6.0 ㎟/㎕일 수 있다. 이 범위에서, 분석물질의 검출 가능 농도가 투명 검지 구조체를 구비하지 않은 센서에 비해 적게는 2배에서 많게는 20배 이상 증가하는데, 이때 반응속도는 감소하지 않는다. 다만, 상기 간격 및 활성 영역의 면적은 바이오센서의 형상, 타겟 물질 등에 의해 의존적으로 결정되는 것이므로, 반드시 이에 한정되는 것은 아니다.The biosensor according to the present invention can be provided in a cuvette type and a strip type. The structure will be described below in detail. As described above, it is preferable that the biosensor has a structure for detecting a structure that reduces the negative influence on the diffusion transport of various biomolecules, reagents, and / or analytes while simultaneously increasing the active surface. In order to meet such a demand, the biosensor according to the present invention may include a transparent container having at least one cavity and a plurality of active surfaces inserted into the cavity to immobilize biomolecules or reagents. Here, the biosensor includes a transparent detection structure inserted into the cavity, and the transparent detection structure may include at least one main surface providing at least one active surface. Many active surfaces increase the active surface area that fixes biomolecules and / or analytes. In addition, each of the active surfaces is spaced apart from one another at predetermined intervals to facilitate diffusion transport of various biomolecules, reagents, and / or analytes in the ELISA. In the present invention, the distance between the adjacent active surfaces may be approximately 300 to 9000 탆 so as not to interfere with the diffusion transport. In addition, the total active area provided for immobilizing the various biomolecules and / or analytes used in the ELISA may be from 1.0 to 6.0 mm2 / l per unit volume. In this range, the detectable concentration of the analyte is increased by at least 2 times, more than 20 times, compared with the sensor not having the transparent detection structure, at which time the reaction rate does not decrease. However, the space and the area of the active region are determined depending on the shape of the biosensor, the target material, and the like, and thus the present invention is not limited thereto.
도 4a 내지 도 4b는 본 발명의 실시예에 따른 큐벳형 바이오센서의 단면도이고, 도 4c는 사시도이고, 도 5는 도 4c에 도시된 바이오센서가 큐벳에 삽입되는 과정을 도시한 정면도이며, 도 6은 도 4c에 도시된 바이오센서가 큐벳에 삽입된 상태를 도시한 측면도이다.FIGS. 4A and 4B are cross-sectional views of a cuvette type biosensor according to an embodiment of the present invention, FIG. 4C is a perspective view, FIG. 5 is a front view showing a process of inserting the biosensor shown in FIG. 6 is a side view showing a state in which the biosensor shown in FIG. 4C is inserted into the cuvette.
도 4a에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 큐벳형 바이오센서(1000A)는 큐벳(cuvette, 1)을 포함하고, 그 큐벳(1)의 내면 중 전체 또는 일부 영역이 검지 구조체로 제공되고, 그 위에 시료(3) 내 타겟 물질과 반응하는 고정 물질(C)이 배치될 수 있다. 또한, 검지 구조체로 제공되는 큐벳(1)의 내면 영역에 서브미크론 또는 나노 구조체(11)가 형성되고, 그 서브미크론 또는 나노 구조체(11) 상에 고정 물질(C)이 배치될 수 있다.4A, the cuvette-type biosensor 1000A according to the first embodiment of the present invention includes a cuvette 1, and all or a part of the inner surface of the cuvette 1 is detected by a detection structure And a fixing substance C, which reacts with the target substance in the sample 3, may be disposed thereon. The submicron or nanostructure 11 may be formed on the inner surface area of the cuvette 1 provided as a detection structure and the immobilizing material C may be disposed on the submicron or nanostructure 11.
도 4b를 참고로, 본 발명의 제2 실시예에 따른 큐벳형 바이오센서(1000B)는 검지 구조체(10)가 큐벳(cuvette, 1)에 삽입되는 형태로 구현된다. 즉, 큐벳형 바이오센서(1000C)는 타겟 물질이 수용된 큐벳(1)에 검지 구조체(10)가 삽입되어 검지 구조체(10)에 배치된 고정 물질(C)이 타겟 물질과 반응하도록 구현되는 것이다. 여기서, 타겟 물질은 시료(3)에 포함되어 큐벳(1)에 수용될 수 있는데, 이때 검지 구조체(10)가 그 시료(3)에 침지된 상태에서, 고정 물질(C)이 타겟 물질과 반응하게 된다. 한편, 검지 구조체(10)에는 전술한 바와 같이, 고정 물질(C)이 배치되는데, 또한 나노 구조체(11)가 검지 구조체(10)의 일면 및/또는 타면의 전체 영역에, 또는 일부 영역에 형성되어 그 외면에 고정 물질(C)이 배치될 수도 있다. 일실시예에서, 검지 구조체(10) 상에 서브미크론 또는 나노 구조체(11)가 형성될 수 있다. 이때, 서브미크론 또는 나노 구조체(11)는 검지 구조체(10) 메인 표면 각각의 활성 영역 중 적어도 일부에 형성될 수 있다. 다른 실시예에서, 검지 구조체(10)의 일면 및/또는 타면 전체 영역에 걸쳐 서브미크론 또는 나노 구조체(11)가 형성되어 그 전면이 활성 영역으로 작용할 수 있다. 이와 달리, 검지 구조체(10)의 일면 및/또는 타면 중 일부분에만 서브미크론 또는 나노 구조체(11)가 형성되어, 그 일부에 대해서만 활성 영역이 제공될 수도 있다.Referring to FIG. 4B, the cuvette-type biosensor 1000B according to the second embodiment of the present invention is implemented in such a manner that the detection structure 10 is inserted into a cuvette. That is, the cuvette-type biosensor 1000C is configured such that the detecting structure 10 is inserted into the cuvette 1 containing the target material and the fixing material C disposed on the detecting structure 10 reacts with the target material. Here, the target material may be included in the sample 3 and be accommodated in the cuvette 1. At this time, when the detection structure 10 is immersed in the sample 3, the immobilizing material C reacts with the target material . On the other hand, the fixing structure C is disposed on the detection structure 10, and the nanostructure 11 is formed on the entire surface of the detection structure 10 and / And the fixing material C may be disposed on the outer surface. In one embodiment, a submicron or nanostructure 11 may be formed on the detection structure 10. At this time, the submicron or nanostructure 11 may be formed on at least a part of the active region of each main surface of the detection structure 10. [ In another embodiment, the sub-micron or nanostructure 11 may be formed on one surface and / or the entire surface of the other surface of the detection structure 10 so that the entire surface thereof serves as an active region. Alternatively, the submicron or nanostructure 11 may be formed on only one side and / or a part of the other side of the detection structure 10, and the active area may be provided only for a part thereof.
여기서, 큐벳(1)은 전술한 큐벳형 바이오센서(1000A, 도 4a 참조)와 유사하게, 그 내면 중 전체 또는 일부 영역에 고정 물질(C)이 배치될 수 있으며, 또한 그 내면의 전체 또는 일부 영역에 서브미크론 또는 나노 구조체(11)가 형성되고, 그 서브미크론 또는 나노 구조체(11) 상에 고정 물질(C)이 배치될 수 있다.Similar to the cuvette type biosensor 1000A (see Fig. 4A) described above, the cuvette 1 may be provided with a fixation material C in all or a part of the inner surface thereof, The submicron or nanostructure 11 may be formed in the region and the immobilizing material C may be disposed on the submicron or nanostructure 11.
한편, 흡광도 측정은 검지 구조체(10)가 큐벳(1)에 삽입된 상태에서 이루어질 수 있는데, 검지 구조체(10) 및 큐벳(1) 자체의 흡광도는 기준 흡광도로 활용한다.The absorbance of the detection structure 10 and the cuvette 1 itself can be measured using the absorbance of the detection structure 10 as a reference absorbance.
검지 구조체(10) 및 큐벳(1)은 소정의 투광도를 갖기 위해서, 예를 들어, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 트리아세틸셀룰로오스, 환상올레핀, 폴리아릴레이트, 폴리아크릴레이트, 폴리에틸렌 나프탈레이트, 폴리부틸렌테레프타레이트, 또는 폴리이미드 등과 같은 고분자 재료로 이루어질 수 있다. 다만, 이는 일례에 불과하고 광 투과가 가능한 소재이면 특별한 제한을 두지는 않는다. 검지 구조체(10) 및/또는 큐벳(1)의 재료는 표면의 화학적 변형 또는 기능화를 통한 활성 표면 형성에 효과적인지, 또는 표면에 대한 직접적인 변형이 가능한지 등을 고려하여 적절하게 선택한다. 예를 들어, 서브미크론 또는 나노 구조체(11)를 고분자 기판 등과 같은 고체 기판과 일체로 형성할 수 있거나, 그 기판 위에 별도로 성형할 수 있거나, 또는 에칭이나 플라즈마 처리 등과 적절한 방법으로 형성할 수 있는 재료를 선택한다. 따라서, 일실시예에서, 활성 표면은 생체분자 및/또는 분석물질이 고정되는 활성 표면으로서 직접 제공되는 고분자 표면을 포함할 수 있다. 상기 실시예에서, 활성 표면은 금속 등과 같은 추가적인 물질을 포함하지 않지만, 다른 실시예에서는 활성 표면을 형성하는 추가적 물질을 더 포함할 수 있다. The detection structure 10 and the cuvette 1 may be formed of a material such as polycarbonate, polyethylene terephthalate, polymethylmethacrylate, triacetylcellulose, cyclic olefin, polyarylate, polyacrylate, Polyethylene naphthalate, polybutylene terephthalate, polyimide, or the like. However, this is only an example, and there is no particular limitation in the case of a light-transmitting material. The material of the detecting structure 10 and / or the cuvette 1 is suitably selected in consideration of whether the material is effective for forming an active surface through chemical modification or functionalization of the surface, or is capable of direct modification to the surface. For example, the submicron or nanostructure 11 can be formed integrally with a solid substrate such as a polymer substrate, or can be formed separately on the substrate or can be formed by a suitable method such as etching or plasma treatment . Thus, in one embodiment, the active surface may comprise a biomolecule and / or a polymeric surface that is provided directly as an active surface to which the analyte is immobilized. In this embodiment, the active surface does not include any additional material, such as metal, but in other embodiments may further comprise additional material to form an active surface.
한편, 본 발명에 따른 큐벳형 바이오센서(1000B)는 검지 구조체(10)의 일단과 연결되는 파지부(20)를 더 포함할 수 있다. 파지부(20)는 사용자에 의해 파지되도록 형성된 부재로서, 검지 구조체(10)의 일단과 연결된다. 사용자는 파지부(20)를 잡고, 검지 구조체(10)의 자유단부터 큐벳(1) 내에 삽입하여, 시료(3)에 검지 구조체(10)를 침지시킬 수 있다. 검지 구조체(10)의 자유단은 파지부(20)에 연결되는 검지 구조체(10) 일단의 반대쪽 말단을 의미한다.Meanwhile, the cuvette-type biosensor 1000B according to the present invention may further include a grip portion 20 connected to one end of the detection structure 10. The grip portion 20 is a member formed to be gripped by a user and is connected to one end of the detection structure 10. The user can hold the grip section 20 and insert the cuvette 1 from the free end of the detection structure 10 so that the detection structure 10 can be immersed in the sample 3. The free end of the detecting structure 10 means the opposite end of the one end of the detecting structure 10 connected to the holding portion 20. [
여기서, 검지 구조체(10)는 하나 이상 제공될 수 있다. 다수 개의 검지 구조체(10)를 구비하는 경우, 각각이 하나의 파지부(20)에 연결되어 고정되는데, 이때 검지 구조체(10) 중 어느 하나의 일면과 다른 하나의 일면 또는 타면이 서로 마주보도록, 서로 소정의 간격을 두고 이격되어 나란하게 배열될 수 있다. 여기서, 서로 인접하는 검지 구조체(10) 사이의 간격은 전술한 이격 거리 중 어느 하나일 수 있고, 이는 광학 밀도의 증가 및/또는 반응 시간 감소 등과 같은 효과를 달성하기 위한 중요한 요소가 된다. 이렇게 다수 개의 검지 구조체(10)가 마련되면, 단위면적당 높은 밀도(농도)로 고정 물질이 배치되므로, 센서의 민감도를 향상시키고 나아가 후크 효과를 제어할 수 있다.Here, one or more detection structures 10 may be provided. When a plurality of detecting structures 10 are provided, each of the detecting structures 10 is connected to and fixed to one holding portion 20. At this time, one of the detecting structures 10 and one or the other of the detecting structures 10 are opposed to each other. And can be arranged in parallel and spaced apart from each other by a predetermined distance. Here, the interval between adjacent detection structures 10 may be any of the above-described separation distances, which is an important factor for achieving such effects as an increase in optical density and / or a reduction in reaction time. When the plurality of detecting structures 10 are provided, the fixing material is disposed at a high density per unit area, so that the sensitivity of the sensor can be improved and the hook effect can be controlled.
또한, 본 발명에 따른 큐벳형 바이오센서(1000B)는 캡(30)을 더 포함할 수 있다. 여기서, 캡(30)은 큐벳(1)의 입구에 삽탈 가능하게 삽입되어, 개방된 큐벳(1)의 입구를 폐쇄하도록 형성된다. 이때, 큐벳(1)의 입구는 캡(30)에 의해 전체 영역이 폐쇄될 수 있으나, 그 중 일부 영역만 폐쇄되어도 무방하다. 이러한 캡(30)은 파지부(20)의 하부에 배치되어, 파지부(20)와 검지 구조체(10)를 서로 연결하며, 큐벳(1)의 내면에 접하여 고정됨으로써, 검지 구조체(10)가 큐벳(1) 내에서 움직이지 않도록 한다. 도 4b에서는 파지부(20) 및 캡(30)을 일체로 도시했으나, 도 4c와 같이 서로 분리된 구조를 가지도록 형성될 수 있다.In addition, the cuvette-type biosensor 1000B according to the present invention may further include a cap 30. Here, the cap 30 is removably inserted into the inlet of the cuvette 1 and is formed to close the inlet of the opened cuvette 1. At this time, the entire area can be closed by the cap 30 at the inlet of the cuvette 1, but only a part of the opening may be closed. The cap 30 is disposed below the grip portion 20 and connects the grip portion 20 and the detection structure 10 to each other and is fixed in contact with the inner surface of the cuvette 1, Do not move in the cuvette (1). In FIG. 4B, the grip portion 20 and the cap 30 are shown as one body, but they may be formed to have a separate structure as shown in FIG. 4C.
도 4c 내지 도 6를 참고로, 본 발명의 제3 실시예에 따른 큐벳형 바이오센서(1000C)는 전술한 큐벳형 바이오센서(1000B)의 기술적 특징을 모두 포함하고, 이에 대한 구체적 내용은 큐벳형 바이오센서(1000B)에서 상술하였는바, 중복되는 사항에 대해서는 설명을 생략하거나 간단하게만 기술하고, 이하에서는 차이점을 중심으로 큐벳형 바이오센서(1000C)를 설명한다.Referring to FIGS. 4C to 6, the cuvette-type biosensor 1000C according to the third embodiment of the present invention includes all the technical features of the cuvette-type biosensor 1000B described above, As described above in the biosensor 1000B, duplicate matters are omitted or simply described. In the following, a cuvette type biosensor 1000C will be described focusing on the differences.
본 실시예에 따른 큐벳형 바이오센서(1000B)에 있어 큐벳(1) 입구의 사이즈에 따라서 캡(30)의 외면과 큐벳(1) 입구의 내면 사이에 유격이 생길 수 있고, 이로 인해 캡(30)이 큐벳(1)에 고정되지 않아 정확한 시료(3)의 분석이 곤란해지는 문제가 발생할 수 있다. 이에, 본 실시예에 다른 바이오센서(1000C)는 큐벳(1)과 캡(30) 사이의 상대적인 크기에 상관없이 검지 구조체(10)가 고정되도록, 고정부(40)를 더 포함할 수 있다.A clearance may be formed between the outer surface of the cap 30 and the inner surface of the inlet of the cuvette 1 depending on the size of the inlet of the cuvette 1 in the cuvette type biosensor 1000B according to the present embodiment, Is not fixed to the cuvette 1, so that it is difficult to analyze the sample 3 accurately. The biosensor 1000C according to the present embodiment may further include the fixing portion 40 so that the detecting structure 10 is fixed regardless of the relative size between the cuvette 1 and the cap 30. [
상기 고정부(40)는 캡(30)의 외면에 배치되어, 캡(30)이 큐벳(1)에 삽입될 때에, 본래의 위치 또는 형태가 변하고, 이때 발생하는 복원력에 의해 큐벳(1)의 내주면에 밀착되도록 형성된다. 이렇게 캡(30)에 배치된 고정부(40)가 큐벳(1)에 밀착되면, 캡(30)에 연결된 검지 구조체(10)가 큐벳(1) 내에서 고정된다. The fixing portion 40 is disposed on the outer surface of the cap 30 so that the original position or shape of the cap 30 is changed when the cap 30 is inserted into the cuvette 1, And is formed to be in close contact with the inner peripheral surface. When the fixing portion 40 disposed on the cap 30 is thus brought into close contact with the cuvette 1, the detecting structure 10 connected to the cap 30 is fixed in the cuvette 1.
구체적으로, 고정부(40)는, 큐벳(1)에 캡(30)이 삽입될 때에, 큐벳(1)의 내면에 의해 가압되면서 변형이 일어나고, 탄성력에 의해 큐벳(1)의 입구 내면에 밀착되는 탄성체로 형성될 수 있다. 이러한 고정부(40)는 고무 등과 같은 소재가 가지는 물성 자체의 탄성력을 이용하거나, 용수철과 같은 부품의 속성을 이용할 수도 있다. 다만, 고정부(40)가 반드시 재료 내지 부품이 가지는 탄성력을 이용해야 하는 것은 아니고, 소정의 구조를 통해서도 구현 가능한데, 이하에서 자세하게 설명한다.Specifically, when the cap 30 is inserted into the cuvette 1, the fixing portion 40 is deformed while being pressed by the inner surface of the cuvette 1, and is pressed against the inner surface of the inlet of the cuvette 1 by the elastic force As shown in Fig. The fixing portion 40 may use the elasticity of the material itself such as rubber or the like, or may use the properties of parts such as a spring. However, the fixing portion 40 does not necessarily have to use the elastic force of the material or the component, but can be implemented through a predetermined structure, which will be described in detail below.
고정부(40)는 캡(30)의 외면으로부터 연장되되, 소정의 방향으로 절곡되어 형성될 수 있다. 예를 들어, 캡(30)의 외면으로부터 외측으로 연장되되, 캡(30)의 외면과 나란하게 절곡되어, "ㄱ"자 형태를 이루고, 그 말단에 외측으로 돌출된 돌출부가 형성됨으로써, 큐벳(1)의 내면에 돌출부가 가압되면서 텐션(tension)에 의해 밀착될 수 있는 구조로 형성될 수 있다. 이때, 고정부(40)가 캡(30) 방향으로 가압되어 움직이므로, 캡(30)의 외면 중 고정부(40)와 대향하는 대향부분은 오목하게 함몰될 수 있다.The fixing portion 40 may extend from the outer surface of the cap 30 and may be bent in a predetermined direction. For example, the cap 30 may extend outward from the outer surface of the cap 30 and may be bent in parallel with the outer surface of the cap 30 to form an "a" 1 can be formed in a structure in which the protrusions can be closely contacted by the tension while being pressed. At this time, since the fixing portion 40 is pressed and moved in the direction of the cap 30, the facing portion of the outer surface of the cap 30 facing the fixing portion 40 can be recessed.
상술한 구조 이외에도, 함몰된 상기 대향부분의 내면에 고정부(40)가 연장되고, 캡(30)의 외면 외측으로 돌출되는 돌출부가 형성되어, "ㄴ" 자 형태의 구조로 이루어질 수도 있다. In addition to the above-described structure, the fixing portion 40 may extend on the inner surface of the recessed portion and may have a protruding portion protruding outside the outer surface of the cap 30 so as to have a "C" shape.
결과적으로, 고정부(40)는 캡(30)이 큐벳(1)에 삽입될 때에, 텐션에 의해 큐벳(1)의 내면에 밀착되는 한, 상술한 구조 이외에도 다양한 구조로 변형 가능하다.As a result, the fixing portion 40 can be deformed into various structures other than the above-described structure as long as the cap 30 is brought into close contact with the inner surface of the cuvette 1 by tension when the cap 30 is inserted into the cuvette 1. [
한편, 본 실시예에 따른 바이오센서(1000C)의 검지 구조체(10)는 협폭부(12)를 구비할 수 있다. 검지 구조체(10)가 시료(3)에 침지될 때에, 시료(3)에 침지되는 침지부와 침지되지 않는 비침지부로 구분되는데, 비침지부에 침지부의 폭보다 상대적으로 폭이 좁아지도록 협폭부(12)가 형성된다. Meanwhile, the detection structure 10 of the biosensor 1000C according to the present embodiment may include the narrow portion 12. When the detection structure 10 is immersed in the sample 3, it is divided into a dipping portion immersed in the sample 3 and a non-dipping portion not immersed. In the non-dipping portion, (12) is formed.
시료(3)를 분석하기 위해서는, 큐벳(1) 내에 검지 구조체(10)가 삽입되는데, 이때 검지 구조체(10)와 큐벳(1) 내면 사이의 간극이나, 서로 나란한 검지 구조체(10) 사이의 간극에서, 모세관력이 발생하여, 시료(3)가 상승하게 된다. 이러한 시료(3)의 상승으로 인해, 분석에 필요한 시료(3)의 양이 증가하고, 분석 신뢰도가 심각하게 저하된다. 이러한 문제를 해결하기 위한 방안으로서 안출된 것이 협폭부(12)이다. 시료(3)는 검지 구조체(10)와의 사이에서 작용하는 인력에 의해, 검지 구조체(10)를 따라 상승하므로, 협폭부(12)에서 그 폭이 좁아지면, 검지 구조체(10)와 시료(3)가 접하는 면적이 작아져서, 더 이상 시료(3)가 상승하지 않게 된다.In order to analyze the sample 3, the detection structure 10 is inserted into the cuvette 1. At this time, the gap between the detection structure 10 and the inner surface of the cuvette 1 or the gap between the detection structures 10 A capillary force is generated and the sample 3 rises. Due to the rise of the sample (3), the amount of the sample (3) necessary for the analysis is increased, and the analytical reliability is seriously degraded. The narrow part (12) is a solution to this problem. The sample 3 rises along the detection structure 10 by the attractive force acting between the detection structure 10 and the sample 3. When the width of the sample 3 is narrowed at the narrow portion 12, Becomes smaller, and the sample 3 no longer rises.
구체적으로, 협폭부(12)는 검지 구조체(10)의 측면에 오목하게 함몰된 상승방지홈(17) 형태로 형성될 수 있다. 여기서, 상승방지홈(17)은 검지 구조체(10)의 일측면에서부터 타측면 방향으로, 소정의 깊이만큼, 함몰되어 형성되므로, 상승방지홈(17)이 형성된 위치에서의 검지 구조체(10)의 폭, 즉 양측면 사이의 거리가 짧게 형성된다. 이러한 상승방지홈(17)은 검지 구조체(10)의 일측면에만 형성될 수 있으나, 양측면 각각에 형성될 수도 있다. 양측면 각각에 상승방지홈(17)이 형성된 경우에, 서로 마주보도록 형성될 수 있으나, 반드시 이에 한정되는 것은 아니고, 지그재그 형식으로 엇갈리게 형성되어도 무방하다. 또한, 상승방지홈(17)은 검지 구조체(10)의 측면을 따라, 길이방향으로 소정의 간격으로 이격되어, 다수 개가 형성될 수도 있다.Specifically, the narrow portion 12 may be formed in the shape of an up-and-down preventing groove 17 recessed in the side surface of the detecting structure 10. Since the rising preventing groove 17 is recessed by a predetermined depth from one side of the detecting structure 10 to the other side of the detecting structure 10, The width, that is, the distance between the both side surfaces is short. These rising preventing grooves 17 may be formed on only one side of the detecting structure 10, but may be formed on both sides of the detecting structure 10. In the case where the lift preventing grooves 17 are formed on the both side surfaces, they may be formed so as to face each other, but the present invention is not limited thereto and may be staggered in a zigzag fashion. Also, the rising preventing grooves 17 may be formed along the side surface of the detecting structure 10, spaced apart from each other by a predetermined distance in the longitudinal direction, and a plurality of the rising preventing grooves 17 may be formed.
이러한 상승방지홈(17)은 함몰되는 부위가 만곡되어 라운드지게 형성될 수 있으나, 반드시 이러한 형상으로 형성되어야 하는 것은 아니고, 검지 구조체(10)의 폭이 좁아지는 한, 어떠한 형태로 함몰되어도 무방하다. The rising preventing groove 17 may be curved to be rounded, but it is not necessarily formed in such a shape, but it may be recessed in any form as long as the width of the detecting structure 10 is narrowed .
한편, 도 7은 본 발명에 따른 큐벳형 바이오센서의 다른 실시예에 따른 사시도로, 도 7에 도시된 바와 같이, 본 발명의 제4 실시예에 따른 바이오센서(1000D)는 전술한 제3 실시예에 따른 바이오센서(1000C)에 추가적으로, 검지 구조체(10)를 보호하기 위해, 한 쌍의 가드(50)를 더 포함할 수 있다. 여기서, 한 쌍의 가드(50)는 검지 구조체(10)를 사이에 두고, 검지 구조체(10)와 이격되어, 서로 맞은 편에 배치되는 부재이다. 다수 개의 검지 구조체(10)가 배치된 경우에도, 한 쌍의 가드(50) 사이에 다수 개의 검지 구조체(10)가 배열되도록, 가드(50)가 배치된다. 이렇게 가드(50)가 검지 구조체(10)의 양쪽 최외측 각각에 배치되므로, 큐벳(1)의 내면에 검지 구조체(10)가 닿지 않도록 하고, 외부의 충격 등으로부터 검지 구조체(10)를 보호할 수 있다. 가드(50)는 판 형태로 형성될 수 있으나, 그 형태가 반드시 이에 한정되는 것은 아니다. 다만, 가드(50)가 판 형상으로 형성된 경우에, 나란하게 배치되는 검지 구조체(10) 또는 큐벳(1) 내측면 사이의 간극에서 시료(3)가 상승할 수도 있으므로, 가드(50)에도 소정의 높이에서 상대적으로 그 폭이 좁아지는 협폭부(12a)가 형성될 수도 있다. 이때, 협폭부(12a)도 가드(50)의 측면에 상승방지홈(17a)이 함몰되어 형성될 수 있는데, 반드시 가드(50)에 협폭부(12a)가 형성되거나, 상승방지홈(17a)에 의해 협폭부(12a)가 형성되어야 하는 것은 아니다. 7 is a perspective view of a cuvette type biosensor according to another embodiment of the present invention. As shown in FIG. 7, the biosensor 1000D according to the fourth embodiment of the present invention includes the above- In addition to the biosensor 1000C according to the example, the guard structure 50 may further include a pair of guards 50 to protect the detection structure 10. Here, the pair of guards 50 is a member that is disposed opposite to the detection structure 10, with the detection structure 10 therebetween. The guards 50 are arranged such that a plurality of detecting structures 10 are arranged between the pair of guards 50 even when a plurality of detecting structures 10 are arranged. Since the guards 50 are disposed on both outermost sides of the detection structure 10, the detection structure 10 is prevented from contacting the inner surface of the cuvette 1, and the detection structure 10 is protected from external impact . The guard 50 may be formed in a plate shape, but the shape of the guard 50 is not limited thereto. However, when the guard 50 is formed in the shape of a plate, the sample 3 may rise in the gap between the detection structure 10 arranged side by side or the inner surface of the cuvette 1, The narrow portion 12a may be formed to have a relatively narrow width at the height. At this time, the narrow portion 12a may also be formed by recessing the lift preventing groove 17a on the side surface of the guard 50. The narrow portion 12a may be formed in the guard 50, It is not necessary that the narrow portion 12a be formed.
또한, 가드(50)의 일면 및 타면 중 적어도 어느 한 면 이상에 고정 물질이 결합되어, 단위부피당 고정 물질의 밀도를 향상시킬 수 있다.Further, the fixing material may be bonded to at least one of the one surface and the other surface of the guard 50, thereby improving the density of the fixing material per unit volume.
한편, 도 2a 내지 도 7에 도시된 본 발명에 따른 실시예에서, 검지 구조체(10)의 두께는 대략 100 ~ 5,000 ㎛ 범위에서 선택될 수 있고, 검지 구조체(10)의 적어도 하나 이상의 메인 표면, 예를 들어 일면 및/또는 타면은 10 ~ 100 ㎟의 면적을 가질 수 있다. 또한, 활성 표면은 상기 메인 표면 대비 30 ~ 100%를 차지할 수 있다. 큐벳(1)은 약 50 ~ 3,000 ㎣ 정도의 액체를 수용할 수 있도록 형성될 수 있으며, 큐벳(1)과 검지 구조체(10)의 크기는 활성 표면이 서로 적당한 거리를 두고 이격될 수 있고, 적절한 활성 영역이 형성되도록 정해지며, 일례로 1 ~ 20 개 정도의 검지 구조체(10)가 삽입되도록 큐벳(1)의 크기가 정해질 수 있다.2A to 7, the thickness of the detection structure 10 may be selected in the range of about 100 to 5,000 mu m, and at least one main surface of the detection structure 10, that is, For example, one side and / or the other side may have an area of 10 to 100 mm < 2 >. Also, the active surface may account for 30-100% of the main surface. The size of the cuvette 1 and the detection structure 10 may be such that the active surfaces are spaced apart from each other by a suitable distance, The size of the cuvette 1 can be determined so that about 1 to about 20 detection structures 10 are inserted.
감도 및 시약 확산 증강 Sensitivity and reagent diffusion enhancement 스트립형Strip type 바이오센서 Biosensor
이하에서는 스트립형 바이오센서에 대해 설명한다. 본 실시예에서, 적어도 하나 이상의 검지 구조체를 수용하는 광학적 투명 용기는 다수의 공동(cavity)을 구비하는 스트립 용기를 포함한다. 전술한 큐벳형 바이오센서는 적어도 하나 이상의 판 형 검지 구조체의 메인 표면이 공동 내에서 그 깊이방향에 대해 나란하게 서로 대향하도록 배치되는 반면, 본 스트립형 바이오센서는 적어도 하나 이상의 판 형 투명 검지 구조체는, 그 메인 표면이 공동 내 깊이방향에 대해 수직으로 서로 대향하도록 배치된다. 본 발명의 일실시예에 따른 스트립형 바이오센서는 투명 검지 구조체는 서로 평행하게 대향하는 메인 표면을 구비하는 판 구조체를 포함한다. 여기서, 메인 표면은 공동의 바닥면과 마주보는데, 실질적으로는 그 바닥면과 평행하게 배열되고, 약 500 ㎛의 간격을 두고 서로 이격될 수 있다.Hereinafter, a strip biosensor will be described. In this embodiment, the optical transparent container accommodating the at least one detection structure includes a strip container having a plurality of cavities. In the above-described cuvette type biosensor, the main surface of at least one plate-like detecting structure is arranged so as to be opposed to each other in a direction parallel to the depth direction in the cavity, while the present strip type biosensor has at least one plate- , And the main surfaces are arranged so as to face each other perpendicularly to the depth direction of the cavity. A strip biosensor according to an embodiment of the present invention includes a plate structure having a main surface facing each other in parallel to each other. Here, the main surface faces the bottom surface of the cavity, is arranged substantially parallel to the bottom surface, and can be spaced apart from each other by an interval of about 500 mu m.
한편, 투명 검지 구조체는 중심부가 중심부가 공동의 내측과 연결된 판 구조체를 포함할 수 있다(도 8 내지 도 11 참조). 여기서, 적어도 하나 이상의 투명 검지 구조체의 메인 표면들은 공동의 깊이방향에 대해 수직으로 서로 평행하게 중첩될 수 있다. 한편, 2개 이상의 투명 검지 구조체가 배열되는 경우, 서로 인접하는 2개의 투명 검지 구조체의 서로 마주보는 각각의 메인 표면은 약 500 ㎛ 이상의 간격으로 이격 배치될 수 있다.On the other hand, the transparent detection structure may include a plate structure in which the center portion is connected to the inside of the cavity at the central portion (see Figs. 8 to 11). Here, the main surfaces of at least one or more of the transparent detecting structures may overlap each other in a direction perpendicular to the depth direction of the cavity. On the other hand, when two or more transparent detection structures are arranged, the mutually facing main surfaces of two adjacent transparent detection structures may be spaced apart by an interval of about 500 탆 or more.
도 8은 본 발명에 따른 스트립형 바이오센서의 일실시예에 따른 사시도이고, 도 9는 본 발명에 따른 스트립형 바이오센서의 검지 구조체를 개략적으로 도시한 사시도이며, 도 10은 본 발명에 따른 스트립형 바이오센서의 센서스트립을 도시한 사시도이다.FIG. 8 is a perspective view of a strip biosensor according to an embodiment of the present invention, FIG. 9 is a perspective view schematically showing a detection structure of a strip biosensor according to the present invention, Type biosensor according to the present invention.
한편, 도 8 내지 도 10에 도시된 바와 같이, 스트립형 바이오센서는 소정의 길이를 갖는 본체(150), 및 타겟 물질을 포함하는 시료를 수용할 수 있도록 본체(150)의 일면으로부터 함몰되어 다수 개가 형성되고 각각의 내부에 검지 구조체(10)가 배치되는 반응챔버(130)를 포함하는 적어도 하나 이상의 센서스트립(100)을 포함한다.8 to 10, the strip-type biosensor includes a main body 150 having a predetermined length, and a plurality of main bodies 150, which are recessed from one surface of the main body 150 to accommodate a sample containing the target material, And at least one sensor strip (100) including a reaction chamber (130) in which a dog is formed and in which a detection structure (10) is disposed.
구체적으로, 본 발명에 따른 스트립형 바이오센서는 센서스트립(100)을 포함하는데, 센서스트립(100)은 소정의 길이와 폭을 갖는 판(plate) 형상의 본체(150)에 반응챔버(130)가 형성되고, 그 반응챔버(130) 내부에 검지 구조체(10)가 배치되는 구조를 갖는다.The strip type biosensor according to the present invention includes a sensor strip 100. The sensor strip 100 includes a reaction chamber 130 in a plate-shaped body 150 having a predetermined length and width, And the detection structure 10 is disposed in the reaction chamber 130.
반응챔버(130)는 내부에 시료가 채워지도록, 본체(150)의 외면 중 어느 하나의 일면으로부터 오목하게 함몰되어 형성되고, 본체(150)의 길이방향을 따라서 다수 개가 배열된다. 한편, 반응챔버(130)의 바닥면에는 고정 물질이 배치될 수 있고, 나아가 그 바닥면에도 전술한 바와 유사한 돌기형의 나노 구조체(도시되지 않음)가 형성되고, 그 돌기형 나노 구조체외 외면에 고정 물질이 배치됨으로써, 단위부피당 고정 물질의 밀도를 증대시킬 수 있다.The reaction chamber 130 is recessed from one of the outer surfaces of the main body 150 so that the sample is filled therein, and a plurality of the reaction chamber 130 are arranged along the longitudinal direction of the main body 150. On the other hand, a fixing material may be disposed on the bottom surface of the reaction chamber 130, and a protruding nano structure (not shown) similar to that described above may be formed on the bottom surface of the reaction chamber 130. By arranging the fixing material, the density of the fixing material per unit volume can be increased.
검지 구조체(10)는 반응챔버(130) 내에 수용된 시료에 침지될 수 있도록, 다수의 반응챔버(130) 각각에 배치된다. 여기서, 검지 구조체(10)의 표면은 평면형으로 형성되거나, 또한 일면 및 타면 중 적어도 어느 한 면 이상의 전체 영역에, 또는 일부 영역에 추가적으로 서브미크론 또는 나노 구조체(11)가 형성되고, 그 외면에 고정 물질이 배치될 수 있다(도 9 참조). The detection structure 10 is disposed in each of the plurality of reaction chambers 130 so as to be immersed in the sample contained in the reaction chamber 130. Here, the surface of the detection structure 10 may be formed in a planar shape, or a submicron or nanostructure 11 may be additionally formed on at least one or at least one surface of at least one of the one surface and the other surface, The material can be placed (see FIG. 9).
센서스트립(100)은 적어도 하나 이상 제공될 수 있고, 센서스트립(100) 각각에 다수의 반응챔버(130) 및 검지 구조체(10)가 구비되므로, 다수의 시료를 동시에 분석할 수 있다. 즉, 동일 시료에 대하여 서로 다른 내용의 분석을 실행하거나, 또는 각각의 반응챔버(130)마다, 또는 동일 반응챔버(130) 내 각각의 검지 구조체(10)마다 서로 다른 포획 상체가 고정되어 서로 다른 시료를 분석할 수 있다. 한편, 반응챔버(130)의 개구부가 형성된 센서스트립(100) 일면의 반대쪽 타면은 고정판(200) 상에 배치될 수 있다.At least one sensor strip 100 may be provided and a plurality of reaction chambers 130 and detection structures 10 are provided in each of the sensor strips 100 so that a plurality of samples can be simultaneously analyzed. That is, analysis of different contents is performed for the same sample, or different capture bodies are fixed for each of the reaction chambers 130 or for each detection structure 10 in the same reaction chamber 130, The sample can be analyzed. On the other hand, the other surface opposite to one surface of the sensor strip 100 having the opening of the reaction chamber 130 may be disposed on the fixing plate 200.
고정판(200)은 소정의 넓이와 두께를 갖는 판 형상으로 형성되고, 그 일면에 적어도 하나 이상의 센서스트립(100)이 탈착 가능하게 부착된다. 이때, 고정판(200)과 센서스트립(100)은 삽입돌출부(400)와 삽입공(120)에 의해 탈부착될 수 있다. 삽입공(120)은 삽입돌출부(400)가 삽입되어 고정되고, 삽탈되어 해제되도록, 삽입돌출부(400)의 외형에 대응되는 형상으로 함몰되거나 또는 관통되어 형성될 수 있다. 여기서, 삽입돌출부(400)가 고정판(200)의 일면으로부터 돌출되어 형성되고, 센서스트립(100)의 본체(150)의 타면에 삽입공(120)이 구비되어, 센서스트립(100)과 고정판(200)이 탈부착될 수 있다. 이때, 삽입돌출부(400)가 센서스트립(100)에 형성되고, 삽입공(120)이 고정판(200)에 형성되어도 무방하다.The fixing plate 200 is formed in a plate shape having a predetermined width and thickness, and at least one sensor strip 100 is detachably attached to one surface of the plate. At this time, the fixing plate 200 and the sensor strip 100 can be detached and attached by the insertion protrusion 400 and the insertion hole 120. The insertion hole 120 may be formed in a shape corresponding to the external shape of the insertion protrusion 400 so as to be inserted or fixed such that the insertion protrusion 400 is inserted and released. The inserting protrusion 400 protrudes from one side of the fixing plate 200 and the inserting hole 120 is formed on the other side of the main body 150 of the sensor strip 100 so that the sensor strip 100 and the fixing plate 200 can be detached and attached. At this time, the insertion protrusion 400 may be formed on the sensor strip 100, and the insertion hole 120 may be formed on the fixing plate 200.
본 발명에 따른 바이오센서는 흡광도 측정을 통해 타겟 물질을 분석하므로, 외부의 광이 검지 구조체(10)에 조사되어야 하는바, 고정판(200)은 천공(210)을 구비할 수 있다. 천공(210)은 고정판(200)의 두께방향을 따라 관통된 구멍으로, 천공(21)이 형성된 고정판(200) 영역 상에 반응챔버(130)가 배치된다. 따라서, 반응챔버(130)와 천공(21)은 서로 대응하는 위치에, 동일한 개수로 마련될 수 있다. 또한, 반응챔버(130)의 바닥면 및 검지 구조체(10)를 통해서도 광 투과가 가능하여야 하는바, 반응챔버(130)의 바닥면 및 검지 구조체(10)도 광 투과가 가능한 소재, 예를 들어 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 트리아세틸셀룰로오스, 환상올레핀, 폴리아릴레이트, 폴리아크릴레이트, 폴리에틸렌 나프탈레이트, 폴리부틸렌테레프타레이트, 또는 폴리이미드 등과 같은 고분자 재료로 이루어질 수 있다. 다만, 이는 일실시예이고, 그 소재가 반드시 이에 한정되는 것은 아니다.Since the biosensor according to the present invention analyzes the target material through the measurement of the absorbance, external light must be irradiated to the detection structure 10, and the fixation plate 200 may have the puncture 210. The perforations 210 are holes penetrating through the thickness direction of the fixing plate 200 and the reaction chamber 130 is disposed on a region of the fixing plate 200 where the perforations 21 are formed. Therefore, the reaction chamber 130 and the perforations 21 may be provided in the same number in positions corresponding to each other. The bottom surface of the reaction chamber 130 and the detection structure 10 are also made of a material capable of transmitting light, for example, a bottom surface of the reaction chamber 130 and a detection structure 10, And may be made of a polymeric material such as polycarbonate, polyethylene terephthalate, polymethylmethacrylate, triacetylcellulose, cyclic olefin, polyarylate, polyacrylate, polyethylene naphthalate, polybutylene terephthalate or polyimide . However, this is an embodiment, and the material is not necessarily limited thereto.
또한, 본 실시예에 따른 센서스트립(100)은 다수 개의 검지 구조체(10, 10a, 10b, 10c)를 포함할 수 있다. 여기서, 다수 개의 검지 구조체(10, 10a, 10b, 10c)는 반응챔버(130)의 깊이방향을 따라서 서로 소정의 간격을 두고 이격되어 다단으로 상하 배열될 수 있다. 이때, 어느 하나의 검지 구조체(10a)와 다른 하나의 검지 구조체(10b 또는 10c)는 서로 마주보게 배치될 수 있다. 이렇게 다수의 검지 구조체(10)가 마련됨으로써, 단위부피당 고정 물질의 밀도(농도)가 높아지게 된다. 이때, 검지 구조체(10)의 표면에 서브미크론 또는 나노 구조체(11)가 형성되고, 서브미크론 또는 나노 구조체(11)의 외면에 고정 물질이 배치될 수도 있다.In addition, the sensor strip 100 according to the present embodiment may include a plurality of detection structures 10, 10a, 10b, and 10c. Here, the plurality of detection structures 10, 10a, 10b, and 10c may be vertically arranged in a multi-stage spaced apart from each other at a predetermined interval along the depth direction of the reaction chamber 130. [ At this time, any one detection structure 10a and the other detection structure 10b or 10c may be arranged to face each other. By providing a plurality of the detecting structures 10 in this way, the density (concentration) of the fixed substance per unit volume is increased. At this time, a submicron or nanostructure 11 may be formed on the surface of the detection structure 10, and a fixing material may be disposed on the outer surface of the submicron or nanostructure 11.
또한, 본 실시예에 따른 스트립형 바이오센서는 시료주입구(300)를 더 포함할 수 있다. 여기서, 시료주입구(300)는 반응챔버(130)과 연통되도록 본체(150)의 일면으로부터 함몰되어 형성되므로, 시료주입구(300)를 통해 주입된 시료가 반응챔버(130) 내부로 유입되고, 검지 구조체(10)는 그 시료 중에 침지된다.In addition, the strip biosensor according to the present embodiment may further include a sample injection port 300. Since the sample injection port 300 is recessed from one surface of the main body 150 so as to communicate with the reaction chamber 130, the sample injected through the sample injection port 300 flows into the reaction chamber 130, The structure 10 is immersed in the sample.
도 11은 본 발명에 따른 스트립형 바이오센서의 다른 실시예에 따른 사시도이다.11 is a perspective view of another embodiment of the strip-type biosensor according to the present invention.
도 11을 참고로, 본 실시예에 따른 스트립형 바이오센서는 센서스트립(100)을 고정판(200)에 더욱 견고히 고정하기 위해서, 고정턱(500)을 더 포함할 수 있다. 고정턱(500)은 고정판(200)의 일면으로부터 돌출되어 형성되는데, 고정판(200) 상의 삽입돌출부(400)와는 소정의 간격을 두고 서로 이격되도록 배치된다. 여기서, 고정턱(500)과 삽입돌출부(400)의 이격거리는 삽입돌출부(400)가 삽입공(120)에 삽입될 때에, 고정턱(500)이 센서스트립(100)의 본체(150) 일단쪽 외면에 접하도록 정해진다. 한편, 센서스트립(100)의 본체(150) 일단의 코너(corner)가 내측을 향하여 함몰되도록 형성될 수 있고, 이때 삽입돌출부(400)가 삽입공(120)에 삽입되면서, 함몰된 코너와 고정턱(500)이 밀착되면서 센서스트립(100)이 고정판(200)에 단단히 고정될 수 있다.11, the strip-type biosensor according to the present embodiment may further include a fixing jaw 500 for more firmly fixing the sensor strip 100 to the fixing plate 200. As shown in FIG. The fixing jaws 500 are formed to protrude from one surface of the fixing plate 200 and are spaced apart from the insertion protrusions 400 on the fixing plate 200 at a predetermined interval. The spacing distance between the fixing protrusions 400 and the fixing protrusions 500 is set such that when the inserting protrusions 400 are inserted into the insertion holes 120, It is determined to contact the outer surface. The sensor protrusion 400 may be inserted into the insertion hole 120 and may be fixed to the recessed corner of the sensor strip 100. In this case, The sensor strip 100 can be firmly fixed to the fixing plate 200 while the jaws 500 are in close contact with each other.
도 12 내지 도 14b는 본 발명의 다른 실시예에 따른 스트립형 바이오센서의 분해 사시도, 및 결합 사시도이다.12 to 14B are an exploded perspective view and a combined perspective view of a strip biosensor according to another embodiment of the present invention.
도 12 내지 도 14b에 도시된 바와 같이, 본 발명의 실시예에 따른 하나 이상의 검지 구조체는 반응챔버의 내면으로부터 연장되어 돌출된 형태로 형성될 수 있다. As shown in FIGS. 12 to 14B, one or more detection structures according to an embodiment of the present invention may be formed in a protruding shape extending from the inner surface of the reaction chamber.
도 12는 상기 검지 구조체의 형태를 구현하기 위한 일례를 도시하고 있는데, 이를 참고하면, 검지 구조체(10)가 배치된 센서스트립(100)은 다수 개의 플레이트가 적층되어 형성된다. 상기 플레이트는 평평한 형태의 바닥 플레이트(110a), 중심부에 천공을 구비하는 스페이서 플레이트(110b), 중심부에 천공이 형성되되 그 천공의 내면으로부터 중심부 방향으로 연장된 돌출부를 구비하는 센서 플레이트(110c)를 포함하고, 바닥 플레이트(110a), 스페이서 플레이트(110b), 및 센서 플레이트(110c)가 순차적으로 적층되어 조립됨으로써, 본 발명에 따른 스트립형 바이오센서를 형성할 수 있다. 이때, 스페이서 플레이트(110b)와 센서 플레이트(110c) 각각의 천공이 서로 대응되는 위치에 형성되어 적층된 상태에서 반응챔버(130)를 형성하게 되고, 센서 플레이트(110c)의 돌출부가 검지 구조체(10, 10a, 10b)를 형성하게 된다.FIG. 12 shows an example for implementing the shape of the detection structure. Referring to FIG. 12, the sensor strip 100 in which the detection structure 10 is disposed is formed by stacking a plurality of plates. The plate includes a bottom plate 110a in the form of a flat plate, a spacer plate 110b having a perforation in the center thereof, and a sensor plate 110c having a perforation in the central portion thereof and a protrusion extending in the central direction from the inner surface of the perforation And the bottom plate 110a, the spacer plate 110b, and the sensor plate 110c are sequentially stacked and assembled to form the strip type biosensor according to the present invention. At this time, the reaction chamber 130 is formed in a state where the spacer plates 110b and the sensor plate 110c are formed at positions corresponding to each other, and the protrusion of the sensor plate 110c is connected to the detection structure 10 , 10a, and 10b.
한편, 센서 플레이트(110c)는 2개 이상 적층될 수 있다. 이때, 어느 하나의 제1 센서 플레이트(111c)의 돌출부와 다른 하나의 제2 센서 플레이트(113c)의 돌출부는 적층되는 때에 서로 겹쳐지지 않도록 형성될 수 있다. 이를 구현하기 위해서, 반응챔버(130)의 깊이방향을 Z축으로 할 때에, 제1 센서 플레이트(111c)의 돌출부가 Z축에 수직인 X축 방향으로 돌출되고, 제2 센서 플레이트(113c)의 돌출부가 X축 방향에 대해 Y축 방향으로 소정의 각도로 편향되어 돌출될 수 있다. 이 경우, 적층되는 다수의 센서 플레이트(111c, 113c)의 돌출부는 반응챔버의 깊이방향을 따라 서로 엇갈리면서 지그재그로 배열되어, 이에 대응되는 패턴으로 검지 구조체(10a, 10b)가 배열된다. 다만, 반응챔버(130)의 깊이방향에 대한 돌출부의 배열 패턴이 반드시 상기와 같이 엇갈리도록 배치되는 것은 아니고, 다수의 센서 플레이트(111c, 113c)의 돌출부가 동일한 위치에 형성되어, 적층될 때에 반응챔버(130)의 깊이방향을 따라 서로 겹쳐지게 형성될 수도 있다.On the other hand, two or more sensor plates 110c may be stacked. At this time, the protrusions of one of the first sensor plates 111c and the protrusions of the other of the second sensor plates 113c may be formed so as not to overlap each other when they are stacked. In order to realize this, when the depth direction of the reaction chamber 130 is the Z axis, the protrusion of the first sensor plate 111c protrudes in the X axis direction perpendicular to the Z axis, and the protrusion of the second sensor plate 113c The protruding portion can be deflected at a predetermined angle in the Y-axis direction with respect to the X-axis direction. In this case, the protruding portions of the plurality of sensor plates 111c and 113c to be stacked are staggered from each other along the depth direction of the reaction chamber, and the detection structures 10a and 10b are arranged in a pattern corresponding thereto. However, the arrangement pattern of the protrusions with respect to the depth direction of the reaction chamber 130 is not necessarily arranged so as to be staggered as described above, but the protrusions of the plurality of sensor plates 111c and 113c are formed at the same position, And may be formed to overlap with each other along the depth direction of the chamber 130.
여기서, 센서 플레이트(110c)의 돌출부는 2개 이상으로, 천공의 내주면을 따라 소정의 간격을 두고 이격될 수 있다. 일례로, 센서 플레이트(110c)의 돌출부 사이의 간격은 천공을 중심으로 30 ~ 180°만큼 이격될 수 있다. 다만, 그 간격은 돌출부의 개수 및 천공의 내주면 둘레 등에 따라 변경 가능하다. 이 경우, 어느 하나의 센서 플레이트(110c, 111c)의 돌출부가 다른 하나의 센서 플레이트(110c, 113c)의 돌출부 사이의 간격에 배치되어 서로 겹치지 않도록 형성될 수 있다.Here, the projections of the sensor plate 110c may be spaced apart from each other by two or more along the inner circumferential surface of the perforation. In one example, the spacing between the protrusions of the sensor plate 110c may be spaced 30 to 180 degrees about the perforation. However, the spacing can be changed according to the number of protrusions, the circumference of the inner circumference of the perforations, and the like. In this case, the projections of one sensor plate 110c and the other sensor plate 110c may be disposed at intervals between the protrusions of the sensor plates 110c and 113c so that they do not overlap with each other.
한편, 2개 이상의 센서 플레이트(110c)는 연속적으로 적층될 수 있고, 나아가 그 사이에 적어도 하나 이상의 스페이서 플레이트(110b)가 적층될 수 있다. 또한, 바닥 플레이트(110a)와 센서 플레이트(110c) 사이에도 2개 이상의 스페이서 플레이트(110b)가, 그리고 센서 플레이트(110c) 위에도 하나 이상의 스페이서 플레이트(110b)가 연속하여 적층될 수 있다. 이러한 경우, 반응챔버(130)의 용량을 증대시킬 수 있으며, 스페이서 플레이트(110b) 각각의 천공의 내주면을 활성 표면으로 사용할 수 있으므로, ELISA에 있어 생체분자 및/또는 분석물질, 시약 및/또는 분석물질의 확산을 향상시킬 수 있다.On the other hand, the two or more sensor plates 110c can be continuously stacked, and furthermore, at least one spacer plate 110b can be stacked therebetween. Also, two or more spacer plates 110b may be stacked between the bottom plate 110a and the sensor plate 110c, and one or more spacer plates 110b may be continuously stacked on the sensor plate 110c. In this case, the capacity of the reaction chamber 130 can be increased, and the inner peripheral surface of the perforation of each of the spacer plates 110b can be used as the active surface, so that the biomolecule and / or analyte, reagent and / The diffusion of the substance can be improved.
한편, 돌출부의 말단 중 어느 하나의 고정단은 천공의 내주면으로부터 연장되지만, 그 반대쪽 자유단은 천공의 내주면과 이격되고, 다른 돌출부의 자유단과도 이격된다. 이에, 돌출부에 의해 둘러싸이는 반응챔버(130)의 중심부는 피펫(pipette)이 용이하게 수용될 수 있도록 돌출부를 배열하는 것이 바람직하다.On the other hand, any one of the distal ends of the protrusions extends from the inner circumferential surface of the perforation, but the opposite free end is spaced apart from the inner circumferential surface of the perforation, and is also spaced from the free end of the other protrusions. Accordingly, the central portion of the reaction chamber 130 surrounded by the protrusions preferably arranges the protrusions so that the pipette can be easily accommodated.
본 발명에 따른 스트립형 바이오센서는 스페이서 플레이트(110b), 및 센서 플레이트(110c)마다 서로 대응되는 위치에 2개 이상의 천공이 각각 구비되어 2개 이상의 반응챔버(130)가 형성될 수 있고, 센서 플레이트(110c)의 각각의 천공마다 돌출부가 형성되어 각각의 반응챔버(130) 내에 검지 구조체(10)가 배치될 수 있다. 이 경우, 도 13a 내지 도 13b를 참고로, 다수의 반응챔버 각각에 다수의 검지 구조체가 반응챔버의 깊이방향을 따라 서로 겹치도록 배열된 스트립형 바이오센서가 형성된다. In the strip biosensor according to the present invention, two or more reaction chambers 130 may be formed by providing two or more perforations at positions corresponding to each other with respect to the spacer plate 110b and the sensor plate 110c, Protrusions may be formed for each perforation of the plate 110c so that the detection structure 10 may be disposed in each of the reaction chambers 130. [ In this case, with reference to Figs. 13A to 13B, a strip biosensor is formed in each of a plurality of reaction chambers, in which a plurality of detection structures are arranged so as to overlap each other along the depth direction of the reaction chamber.
한편, 14a 내지 도 14b와 같이, 돌출부의 배열이 서로 다른 센서 플레이트를 적층함으로써, 다수의 반응챔버 각각에 다수의 검지 구조체가 반응챔버의 깊이방향을 따라 서로 엇갈리도록 배열된 스트립형 바이오센서가 형성될 수도 있다.On the other hand, as shown in Figs. 14a to 14b, by stacking sensor plates having different arrangements of projections, a strip-type biosensor is arranged in each of a plurality of reaction chambers so that a plurality of detection structures are staggered along the depth direction of the reaction chamber .
감도 및 확산 증강 센서 조립체를 이용한 면역분석 방법Immunoassay method using sensitivity and diffusion enhancement sensor assembly
본 발명에 따른 바이오센서는 ELISA 등과 같은 다양한 면역분석에 효과적으로 사용될 수 있다. 일실시예에 따른 ELISA 분석방법은 본 발명의 실시예 중 어느 하나에 따른 ELISA 키트(kit)를 준비한다. 여기서, ELISA 키트는 하나 이상의 ELISA용 시약, 분석물질 및/또는 생체분자, 그리고 ELISA에 적합한 센서 조립체를 포함한다. The biosensor according to the present invention can be effectively used for various immunoassays such as ELISA. An ELISA assay method according to one embodiment prepares an ELISA kit according to any of the embodiments of the present invention. Here, the ELISA kit comprises one or more ELISA reagents, analytes and / or biomolecules, and a sensor assembly suitable for ELISA.
또한, ELISA 분석방법은 전술한 큐벳 또는 하나 이상의 반응챔버를 구비한 센서스트립 등과 같은 투명 용기 내에서 ELISA 반응을 수행하는 단계를 더 포함할 수 있다. In addition, the ELISA assay may further comprise performing an ELISA reaction in a transparent container such as a cuvette or a sensor strip with one or more reaction chambers.
또한, ELISA 분석방법은 타겟 물질 및 그 타겟 물질에 특이적으로 결합되는 표지자 중합 검출시약을 포함하는 용액을 준비하는 단계; 타겟 물질에 특이적으로 결합되는 포획시약을 센서 조립체의 활성 표면 상에 고정하는 단계; 타겟 물질이 포획시약 및 표지자 중합 검출시약에 특이적으로 결합되도록 적어도 일부의 활성 표면을 상기 용액에 침지하는 단계; 포획시약 및 표지자 중합 검출시약에 특이적으로 결합된 타겟 물질을 검출하는 단계;를 더 포함할 수 있다.In addition, the ELISA assay method comprises the steps of: preparing a solution containing a target substance and a marker polymerization detection reagent specifically binding to the target substance; Immobilizing a capture reagent that is specifically bound to the target material on the active surface of the sensor assembly; Immersing at least a portion of the active surface in the solution so that the target material is specifically bound to the capture reagent and the marker polymerization detection reagent; And detecting the target substance specifically bound to the capture reagent and the marker polymerization detection reagent.
한편, 다른 실시예에 따른 ELISA 분석방법은 ELISA 웰(well)을 준비하는 단계를 포함하는데, 여기서 ELISA 웰은 투명 용기, 및 상기 투명 용기 내에 하나 이상의 증강층을 포함하고, 상기 증강층은 항체가 결합되도록 형성되며, 액체 부피당 증강층의 결합 표면 면적 비가 1.0 ~ 5.0 ㎟/㎕일 수 있다. 또한, 상기 방법은 상기 투명 용기로 ELISA 반응을 수행하는 단계를 더 포함할 수 있고, 여기서 한 번의 세척 단계를 거칠 수 있다.On the other hand, an ELISA assay method according to another embodiment comprises preparing an ELISA well, wherein the ELISA well comprises a transparent container and at least one enhancement layer in the transparent container, And the bonding surface area ratio of the enhancement layer per liquid volume may be 1.0 to 5.0 mm 2 / ㎕. In addition, the method may further comprise performing an ELISA reaction with the transparent container, wherein one washing step may be performed.
본 발명에 따른 ELISA 프로토콜 및/또는 성분들은 간접 ELISA, 스트렙트아비딘(streptavidin) 검출 직접 ELISA, 샌드위치 ELISA, 경쟁 ELISA 및/또는 스트렙-비오틴(strep-biotin) 검출 샌드위치 ELISA 등에 사용되기 위한 것이다. 본 발명에 따른 ELISA 키트는 코팅 완충액, 블로킹 완충액(예를 들어, 1% BSA 첨가 PBS), 및 세척 완충액(예를 들어, 0.05% v/v Tween-20 첨가 PBS) 중 적어도 하나 이상을 포함할 수 있다. 또한, ELISA 키트는 기질 용액(예를 들어, TMB Core+ (BHU062) 또는 pNPP (BUF044)) 및 정지액(stop solution, 예를 들어 0.2M H2SO4 또는 1M NaOH)을 더 포함할 수 있다.The ELISA protocol and / or components according to the present invention are intended for use in indirect ELISA, streptavidin detection direct ELISA, sandwich ELISA, competition ELISA and / or strep-biotin detection sandwich ELISA. An ELISA kit according to the present invention comprises at least one of a coating buffer, a blocking buffer (e.g. PBS with 1% BSA), and a wash buffer (e.g. PBS with 0.05% v / v Tween-20) . The ELISA kit may further comprise a substrate solution (e.g., TMB Core + (BHU062) or pNPP (BUF044)) and a stop solution (e.g., 0.2 MH 2 SO 4 or 1 M NaOH).
한편, 본 발명에 따른 ELISA 분석방법은 항원 용액으로 웰을 코팅하는 단계, 선택적으로 플레이트를 증류수로 세척하는 단계, 블로킹 완충액을 첨가하고 플레이트를 세척하는 단계, 효소가 중합된 2차 항체를 첨가하고 플레이트를 세척하는 단계, 기질 용액을 첨가하고 반응을 발생시키는 단계, 및 큐벳 또는 웰에서 흡광도를 측정하는 단계 중 적어도 하나 이상을 포함할 수 있다. 이러한 방법은 간접 ELISA에 적용될 수 있다.Meanwhile, the ELISA assay method according to the present invention comprises the steps of coating a well with an antigen solution, optionally washing the plate with distilled water, adding a blocking buffer and washing the plate, adding the secondary antibody polymerized with the enzyme Washing the plate, adding the substrate solution and generating the reaction, and measuring the absorbance in the cuvette or well. This method can be applied to indirect ELISA.
한편, 본 발명에 따른 ELISA 분석방법은 웰을 코팅하는 단계, 선택적으로 플레이트를 증류수로 세척하는 단계, 블로킹 완충액을 첨가하고 플레이트를 세척하는 단계, 시료를 웰에 첨가하는 단계, 비오틴이 중합된 검출항체를 각각의 웰에 첨가하는 단계(선택적으로 세척 단계를 포함할 수 있음), 효소가 중합된 스트렙트아비딘을 웰에 첨가하는 단계(선택적으로 세척 단계를 포함할 수 있음), 기질 용액을 웰 또는 큐벳에 첨가하는 단계, 및 흡광도를 측정하는 단계 중 적어도 하나 이상을 포함할 수 있다. 이러한 방법은 직접 ELISA에 적용될 수 있다.On the other hand, an ELISA assay method according to the present invention comprises the steps of coating a well, optionally washing the plate with distilled water, adding a blocking buffer and washing the plate, adding the sample to the well, Adding the antibody to each well (optionally including a washing step), adding the enzyme-conjugated streptavidin to the well (which may optionally include a washing step), adding the substrate solution to the well Or adding it to a cuvette, and measuring the absorbance. This method can be applied to direct ELISA.
한편, 본 발명에 따른 직접 ELISA는 (i) 코팅 완충액에 용해된 항원으로 고체 지지체를 코팅하는 단계; (ii) 고체 지지체를 블로킹 시약과 1시간 동안 반응시켜 고체 지지체의 비특이적 결합부위를 블로킹하는 단계; (iii) 고체 지지체를 PBS 또는 PBST로 1분 동안 3회 세척하는 단계; (iv) 항원과 결합하는 제1 검출 시제(agent)와 고체 지지체를 반응시키는 단계; (v) 고체 지지체를 PBS 또는 PBST로 1분 동안 5회 세척하여 비특이적으로 결합된 제1 검출 시제를 제거하는 단계; 및 (vi) UV, 형광, 화학 발광 등의 검출 시스템 또는 다른 검출 방법을 사용하여 결합된 제1 검출 시제를 검출하는 단계를 포함한다. 제1 검출 시제는 특별한 제한은 없지만, 형광 염료, 또는 염기성 탈인산화 효소(alkaline phosphatase, AP)나 HRP(horseradish peroxidase) 등과 같은 리포터 효소와 연결된 검출 시제일 수 있다. 이러한 검출 시제는 무색 기질을 유색 생성물로 변환시키고, 유색 생성물의 광학 밀도는 타겟 파장에서 ELISA 플레이트 판독기로 측정할 수 있다.Meanwhile, a direct ELISA according to the present invention comprises (i) coating a solid support with an antigen dissolved in a coating buffer; (ii) reacting the solid support with the blocking reagent for 1 hour to block non-specific binding sites of the solid support; (iii) washing the solid support with PBS or PBST three times for 1 minute; (iv) reacting a solid support with a first detection agent that binds to the antigen; (v) washing the solid support 5 times with PBS or PBST for 1 minute to remove the nonspecifically bound first detection reagent; And (vi) detecting a combined first detection reagent using a detection system such as UV, fluorescence, chemiluminescence, or other detection method. The first detection reagent may be a detection reagent connected to a fluorescent dye or a reporter enzyme such as basic alkaline phosphatase (AP) or HRP (horseradish peroxidase), though it is not particularly limited. This detection reagent converts a colorless substrate to a colored product and the optical density of the colored product can be measured with an ELISA plate reader at the target wavelength.
본 발명에 따른 간접 ELISA는 (i) 코팅 완충액에 용해된 항원으로 고체 지지체를 코팅하는 단계; (ii) 고체 지지체를 블로킹 시약과 1시간 동안 반응시켜 고체 지지체의 비특이적 결합부위를 블로킹하는 단계; (iii) 고체 지지체를 PBS 또는 PBST로 1분 동안 3회 세척하는 단계; (iv) 용액 내 제1 검출 시제(agent)와 고체 지지체를 1시간 동안 반응시키는 단계; (v) 고체 지지체를 PBS 또는 PBST로 1분 동안 3회 세척하여 비특이적으로 결합된 제1 검출 시제를 제거하는 단계; (vi) 용액 내 제2 검출 시제와 고체 지지체를 1시간 동안 반응시키는 단계; (vii) 고체 지지체를 PBS 또는 PBST로 1분 동안 5회 세척하여 비특이적으로 결합된 제2 검출 시제를 제거하는 단계; 및 (viii) UV, 형광, 화학 발광 등의 검출 시스템 또는 다른 검출 방법을 사용하여 결합된 제2 검출 시제를 검출하는 단계를 포함한다. 여기서, 제2 검출 시제는 제1 검출 시제와 결합한다. 제2 검출 시제는 특별한 제한은 없지만, 염기성 탈인산화 효소(alkaline phosphatase, AP)나 HRP(horseradish peroxidase) 등과 같은 리포터 효소와 연결된 검출 시제일 수 있다. 이러한 검출 시제는 무색 기질을 유색 생성물로 변환시키고, 유색 생성물의 광학 밀도는 타겟 파장에서 ELISA 플레이트 판독기로 측정할 수 있다.An indirect ELISA according to the present invention comprises (i) coating a solid support with an antigen dissolved in a coating buffer; (ii) reacting the solid support with the blocking reagent for 1 hour to block non-specific binding sites of the solid support; (iii) washing the solid support with PBS or PBST three times for 1 minute; (iv) reacting the solid support with a first detection agent in solution for 1 hour; (v) washing the solid support with PBS or PBST three times for 1 minute to remove the nonspecifically bound first detection reagent; (vi) reacting the second detection reagent in solution with the solid support for 1 hour; (vii) washing the solid support 5 times with PBS or PBST for 1 minute to remove the nonspecifically bound second detection reagent; And (viii) detecting the combined second detection means using a detection system such as UV, fluorescence, chemiluminescence, or other detection methods. Here, the second detection time is associated with the first detection time. The second detection reagent is not particularly limited, but may be a detection reagent linked to a reporter enzyme such as alkaline phosphatase (AP) or horseradish peroxidase (HRP). This detection reagent converts a colorless substrate to a colored product and the optical density of the colored product can be measured with an ELISA plate reader at the target wavelength.
본 발명에 따른 직접 ELISA는 고체 지지체와 항원 사이의 제1 반응 단계; 고체 지지체와 블로킹 시약 사이의 제2 반응 단계; 및 고체 지지체와 제1 검출 시제 사이의 제3 반응 단계를 포함할 수 있다. 상기 반응 단계는 2상 반응(two-phase reaction)일 수 있고, 고체 지지체 상의 항원과 검출 시제 사이의 결합 반응을 포함할 수 있다.A direct ELISA according to the present invention comprises a first reaction step between a solid support and an antigen; A second reaction step between the solid support and the blocking reagent; And a third reaction step between the solid support and the first detection reagent. The reaction step may be a two-phase reaction and may involve a coupling reaction between the antigen on the solid support and the detection reagent.
본 발명에 따른 간접 ELISA는 고체 지지체와 항원 사이의 제1 반응 단계; 고체 지지체와 블로킹 시약 사이의 제2 반응 단계; 고체 지지체와 제1 검출 시제와의 제3 반응 단계, 및 고체 지지체와 제2 검출 시제와의 제4 반응 단계를 포함할 수 있다. 상기 반응 단계는 2상 반응(two-phase reaction)일 수 있고, 고체 지지체 상의 항원과 검출 시제 사이의 결합 반응을 포함할 수 있다.An indirect ELISA according to the present invention comprises a first reaction step between a solid support and an antigen; A second reaction step between the solid support and the blocking reagent; A third reaction step between the solid support and the first detection reagent, and a fourth reaction step with the solid support and the second detection reagent. The reaction step may be a two-phase reaction and may involve a coupling reaction between the antigen on the solid support and the detection reagent.
본 발명에 따른 직접 ELISA에 있어서, 제1 반응 단계(항원 코팅)는 적어도 2시간 동안 반응시키고, 다른 반응 단계는 약 1시간 동안 반응시킬 수 있다.In a direct ELISA according to the present invention, the first reaction step (antigenic coating) may be allowed to react for at least 2 hours and the other reaction step may be allowed to react for about 1 hour.
본 발명에 따른 간접 ELISA에있어서, 제1 반응 단계(항원 코팅)는 적어도 2시간 동안 반응시키고, 다른 반응 단계는 약 1시간 동안 반응시킬 수 있다.In the indirect ELISA according to the present invention, the first reaction step (antigenic coating) can be allowed to react for at least 2 hours and the other reaction step for about 1 hour.
본 발명에 따른 세포 기반 ELISA(cell-based ELISA, C-ELISA)는 세포 단백질의 검출 및 정량화를 위한 방식으로, 세포 단백질은 세포 활성(예를 들어, 인산화 및 분해)과 관련된 번역 후 변형(post-translational modification)을 포함할 수 있다. 세포를 플레이팅하고, 실험요구 사항에 따라 처리하고, 웰에 직접 고정한 다음, 투과화(permeabilized)한다. 투과화 후에, 고정된 세포에 대해 종래 면역 블록(immunoblot)과 유사하게, 즉 블로킹, 제1 항체와의 반응, 세척, 제2 항체와의 반응, 화학발광 기질(chemilumescent substrate) 추가 등을 실행할 수 있다.The cell-based ELISA (C-ELISA) according to the present invention is a method for the detection and quantification of cell proteins, in which the cell proteins are subjected to post-translational modifications related to cellular activities (for example, phosphorylation and degradation) -translational modification. Cells are plated, treated according to the experimental requirements, fixed directly to the wells, and then permeabilized. After permeabilization, the immobilized cells can be subjected to similar procedures as conventional immunoblots, i.e., blocking, reaction with the first antibody, washing, reaction with the second antibody, addition of a chemilumescent substrate, have.
본 발명에 따른 ELISA는 4℃에서 활성 웰과 항원을 1일 동안 코팅하고, 37℃에서 2시간 동안 웰을 블로킹한 다음, 각각 37℃에서 2시간 동안 항체 및 중합체 결합을 수행하고, 5분 동안 실온에서 효소 기질 반응을 수행한 후, 흡광도를 측정할 수 있다.The ELISA according to the present invention was prepared by coating active wells and antigens for 4 days at 4 DEG C for 1 day, blocking the wells at 37 DEG C for 2 hours, then performing antibody and polymer binding at 37 DEG C for 2 hours each, After performing the enzyme substrate reaction at room temperature, the absorbance can be measured.
본 발명에 따른 ELISA 키트(kit)는 Acetylcholine ELISA Kit, AGE ELISA Kit, CXCL13 ELISA Kit, FGF23 ELISA Kit, HMGB1 ELISA Kit, iNOS ELISA Kit, LPS ELISA Kit, Malondialdehyde ELISA Kit, Melatonin ELISA Kit, NAG ELISA Kit, OVA ELISA Kit, Oxytocin ELISA Kit, PGE2 ELISA Kit, PTHrP ELISA Kit, S100b ELISA Kit, Tenascin C ELISA Kit, VEGF-B ELISA Kit, 및 Versican ELISA Kit로 이루어진 군에서 선택되는 적어도 어느 하나 이상일 수 있다.The ELISA kit according to the present invention can be used as an ELISA kit such as Acetylcholine ELISA Kit, AGE ELISA Kit, CXCL13 ELISA Kit, FGF23 ELISA Kit, HMGB1 ELISA Kit, iNOS ELISA Kit, LPS ELISA Kit, Malondialdehyde ELISA Kit, Melatonin ELISA Kit, An OVA ELISA Kit, an Oxytocin ELISA Kit, a PGE2 ELISA Kit, a PTHrP ELISA Kit, an S100b ELISA Kit, a Tenascin C ELISA Kit, a VEGF-B ELISA Kit, and a Versican ELISA Kit.
이하에서는, 본 발명에 따른 바이오센서를 이용한 원-스텝 항원검출 면역분석 방법에 대해 설명한다.Hereinafter, a one-step antigen detection immunoassay using the biosensor according to the present invention will be described.
도 15는 본 발명에 따른 큐벳형 바이오센서를 이용한 시료 분석방법의 순서도이고, 도 16은 본 발명에 따른 스트립형 바이오센서를 이용한 시료 분석방법의 순서도이다.FIG. 15 is a flowchart of a sample analysis method using a cuvette type biosensor according to the present invention, and FIG. 16 is a flowchart of a sample analysis method using a strip type biosensor according to the present invention.
먼저, 도 15에 도시된 바와 같이, 본 발명에 따른 큐벳형 바이오센서를 이용한 원-스텝 항원검출 면역분석 방법은, (a) 타겟 물질(예를 들어, 항원 등)을 포함하는 시료, 및 표지자가 중합된 검출물질(예를 들어, 검출항체(detection antibody) 등)을 포함하는 검출물질중합용액(예를 들어, 검출항체중합용액(detection antibody complex solution) 등)을 각각 준비하는 단계, (b) 타겟 물질에 결합 가능한 고정 물질(예를 들어, 포획 항체(capture antibody) 등)가 표면에 결합된 검지 구조체를, 상기 시료 및 상기 검출물질중합용액 중 어느 하나에 침지시킨 후 다른 하나에 침지시키거나, 또는 상기 시료와 상기 검출물질중합용액을 혼합한 혼합용액에 침지시키는 단계, 및 (c) 흡광도를 측정하는 단계를 포함할 수 있다.15, a one-step antigen detection immunoassay using a cuvette type biosensor according to the present invention comprises: (a) a sample containing a target substance (for example, antigen); and Preparing a detection material polymerization solution (for example, a detection antibody complex solution and the like) each containing a detection substance (for example, detection antibody, etc.) ) Immersing the detection structure in which the immobilization material capable of binding to the target substance (for example, a capture antibody, etc.) is bonded to the surface in one of the sample and the detection substance polymerization solution, Or immersing the sample in a mixed solution of the sample and the detection material polymerization solution, and (c) measuring the absorbance.
상기 (b) 단계에서 고정 물질과 타겟 물질, 그리고 표지자가 중합된 검출물질이 서로 반응하게 된다. 대략적으로 15 ~ 30 분 정도가 경과하여 반응이 종료되면, 검지 구조체를 효소기질(enzyme substrate)이 수용된 큐벳에 침지시켜 그 상태에서 흡광도를 측정한다. 이때, (b) 단계 종료한 후에, 추가적으로 검지 구조체를 세척하여 미반응 타겟 물질 및/또는 표지자가 중합된 검출물질를 제거하고, 효소기질이 수용된 큐벳에 검지 구조체를 침지시킬 수도 있다.In the step (b), the fixed substance, the target substance, and the detection substance polymerized with the marker react with each other. After about 15 to 30 minutes have elapsed, the detection structure is immersed in a cuvette containing an enzyme substrate, and absorbance is measured in that state. At this time, after completion of the step (b), the detection structure may be further washed to remove the detection target material on which the unreacted target substance and / or the marker is polymerized, and the detection structure may be immersed in the cuvette containing the enzyme substrate.
한편, 스트립형 바이오센서의 경우에는, (b) 단계에서, 시료주입구를 통해, 상기 시료 및 상기 검출물질중합용액 중 어느 하나를 먼저 주입한 후 다른 하나를 주입하거나, 또는 상기 시료와 상기 검출물질중합용액을 혼합하여 주입하고, (c) 단계에서 효소기질을 주입하여 흡광도를 측정할 수 있다.On the other hand, in the case of the strip-type biosensor, in step (b), either one of the sample and the detection material polymerization solution is first injected through the sample injection port and then another one is injected, or the sample and the detection substance The polymer solution is mixed and injected, and the absorbance can be measured by injecting the enzyme substrate in step (c).
전술한 방법에 따라, 곡물 곰팡이독소(aflatoxin B1), 과일목 잔류농약(streptomycin), HE4(human epididymis protein 4), CEA(carcinoembryonic antigen), Mouse IgG, 및 Cortisol을 타겟 물질로 선정하여, 그 농도에 따른 흡광도를 측정하고, 그 결과를 도 17a 내지 도 17f에 도시하였다.According to the above-mentioned method, aflatoxin B1, streptomycin, human epididymis protein 4 (HE4), carcinoembryonic antigen (CEA), mouse IgG and Cortisol were selected as target substances, , And the results are shown in Figs. 17A to 17F.
곡물 곰팡이독소를 분석하는 경우(도 17a 참조), 19.53 ~ 312.5 pg/mL의 농도 범위에서 검출 가능했고, 검출 시간은 45분이 소요되었다. 과일목 잔류농약의 경우(도 17b 참조)에는, 0.39 ~ 50 ng/mL 농도 범위에서 검출되고 검출 시간은 30분이 소요되었다. When analyzing grain mycotoxins (see FIG. 17A), detection was possible in the concentration range of 19.53-312.5 pg / mL and the detection time was 45 minutes. In the case of pesticide residues of fruit trees (see FIG. 17b), the detection was carried out in a concentration range of 0.39 to 50 ng / mL and the detection time was 30 minutes.
한편, 본 발명에 따른 바이오센서의 민감도가 향상되는지 확인하기 위해서, HE4, CEA, Mouse IgG, 및 Cortisol을 대상으로는 경쟁사의 바이오센서를 이용해서도 분석을 실시하였다. 경쟁사의 바이오센서인 ELISA kit를 사용하였고, 본 발명에 따른 바이오센서에 의해 측정된 흡광도는 실선으로, 경쟁사의 바이오센서에 의해 측정된 흡광도는 점선으로 표시한다.In order to confirm that the sensitivity of the biosensor according to the present invention is improved, analysis was also performed using a competitor's biosensor for HE4, CEA, Mouse IgG, and Cortisol. The ELISA kit, which is a biosensor of a competitor, was used. The absorbance measured by the biosensor according to the present invention is indicated by a solid line, and the absorbance measured by a competitor's biosensor is indicated by a dotted line.
HE4 분석(도 17c 참조)에 있어서, 본 발명에 따른 바이오센서는 6.1 ~ 390 pg/mL의 농도 범위에서 30분 내에 검출이 완료되었으나, 경쟁사의 바이오센서는 78 ~ 5,000 pg/mL의 농도 범위에서 검출되었고 검출 시간은 4시간이 소요되었다.In the HE4 assay (see FIG. 17C), the biosensor of the present invention was detected within a concentration range of 6.1 to 390 pg / mL within 30 minutes, while a competitor's biosensor was in a concentration range of 78 to 5,000 pg / mL Detection time was 4 hours.
CEA 분석의 경우(도 17d 참조), 본 발명에 따른 바이오센서는 0.2 ~ 390 ng/mL의 농도 범위에서 검출 가능했고, 검출 시간은 15 ~ 30분 정도였다. 반면, 경쟁사의 바이오센서는 90분 동안 1 ~ 65 ng/mL의 농도 범위에서 검출되었다.In the case of CEA analysis (see FIG. 17D), the biosensor according to the present invention was detectable in a concentration range of 0.2 to 390 ng / mL, and the detection time was about 15 to 30 minutes. On the other hand, competitive biosensors were detected in the concentration range of 1-65 ng / mL for 90 minutes.
Mouse IgG을 검출하는 경우(도 17e 참조), 본 발명에 따른 바이오센서의 검출 농도 범위는 0.05 ~ 25 ng/mL이고, 검출 시간은 30분인데 반해, 경쟁사의 바이오센서의 검출 범위는 7.8 ~ 500 ng/mL이고 이때 소요되는 시간은 120분이었다.17A), the detection range of the biosensor according to the present invention is 0.05 to 25 ng / mL and the detection time is 30 minutes, while the detection range of the competitor's biosensor is 7.8 to 500 ng / mL, and the time required was 120 minutes.
Cortisol을 타겟 물질로 한 경우(도 17f 참조), 본 발명에 따른 바이오센서를 사용하면 0.05 ~ 25 ng/mL의 농도 범위에서 30분 내에 검출 가능하였으나, 경쟁사의 바이오센서를 사용하면 7.8 ~ 500 ng/mL의 농도 범위에서 120분이 소요되었다.When using a biosensor according to the present invention, it was possible to detect within a concentration range of 0.05 to 25 ng / mL within 30 minutes. However, when a competitive biosensor is used, 7.8 to 500 ng / mL for 120 minutes.
위의 결과를 종합적으로 분석해 보면, 본 발명에 따른 바이오센서를 사용하는 경우 센서 민감도가 매우 향상되고, 타겟 물질의 검출에 소요되는 시간이 단축됨을 알 수 있다.Comprehensively analyzing the above results, it can be seen that when the biosensor according to the present invention is used, the sensitivity of the sensor is greatly improved and the time required for detecting the target substance is shortened.
도 18a 내지 도 18b는 본 발명에 따른 검지 구조체의 개수가 서로 다른 바이오센서를 이용하여 농도가 상이한 검출 대상 항체의 반응 생성물의 흡광도를 측정한 실험 결과 그래프이다.FIGS. 18A and 18B are graphs showing experimental results obtained by measuring the absorbance of a reaction product of an antibody to be detected having a different concentration using a biosensor having different numbers of detection structures according to the present invention. FIG.
전술한 바와 같이, 본 발명에 따른 바이오센서의 활성 또는 반응 영역은 종래 ELISA 플레이트와 비교할 때에 상대적으로 훨씬 넓게 형성된다. 이에 종래 ELISA 플레이트에 비해, 본 발명에 따른 바이오센서는 더 많은 수의 고정 물질(포획 분자 내지 수용체)이 표적 물질과 반응할 수 있다. 그 결과, 본 발명에 따른 바이오센서는 후크 효과를 감소시켜 분석 민감도를 향상시키고, 동시에 반응속도를 증가시켜 반응 시간을 줄일 수 있다. As described above, the active or reactive region of the biosensor according to the present invention is relatively much wider compared to conventional ELISA plates. Compared to the conventional ELISA plate, the biosensor according to the present invention can react with a larger number of immobilizing substances (capture molecules to receptors) with the target substance. As a result, the biosensor according to the present invention can reduce the hook effect, thereby improving the assay sensitivity, and at the same time, increasing the reaction rate and reducing the reaction time.
도 18a를 참고로, 본 발명에 따른 바이오센서를 사용하는 경우(◇ 표시) 경쟁사 바이오센서(microtiter plate; 96 well)를 사용하는 경우(△ 표시)에 비해 분석 민감도가 증가했고, 분석시간은 상당히 단축된다. Referring to FIG. 18A, when the biosensor according to the present invention is used (marked), the sensitivity of the assay is increased as compared with the case of using a competitor's microtiter plate (96 well) .
또한, 본 발명에 따른 다수의 검지 구조체가 적층됨으로써, 항원 등과 같은 단백질과 반응하는 수용체 및 항체의 농도가 실질적으로 증가한다. 예를 들어, 도 18b를 참조하면, 본 발명에 따라 6개의 검지 구조체를 구비하는 바이오센서는 2개의 검지 구조체를 구비한 경우에 비해 높은 감도로 IgG를 검출한다. 종합적으로, 다수의 검지 구조체를 구비하는 바이오센서의 고민감도는 고정 물질(예를 들어, 포획 분자 내지 수용체)이 고밀도로 배치되고 이들의 확산이 증대된 결과이다.In addition, by stacking a plurality of detection structures according to the present invention, the concentration of the receptor and the antibody reacting with the protein such as antigen and the like is substantially increased. For example, referring to FIG. 18B, a biosensor having six detection structures according to the present invention detects IgG with high sensitivity as compared with the case where two detection structures are provided. In general, the sensitivity of the biosensor having a plurality of detection structures is a result of a fixed substance (for example, capture molecules to receptors) being arranged at a high density and increasing their diffusion.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the present invention. It is obvious that the modification or improvement is possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속한 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
본 발명에 따른 바이오센서는 판(plate) 형상의 검지 구조체로서 그 일면 및/또는 타면 각각에 활성 표면이 형성되어, 면역분석의 편의성을 증대시키고 분석시간을 단축시킴과 아울러 반응 민감도를 더욱 향상시키므로 산업상 이용가능성이 인정된다.The biosensor according to the present invention is a plate-shaped detection structure in which an active surface is formed on one surface and / or the other surface, respectively, thereby increasing the convenience of immunoassay, shortening the analysis time and further enhancing the sensitivity of the reaction The possibility of industrial use is recognized.

Claims (16)

  1. 판(plate) 형상으로 형성되고, 일면 및 타면 중 적어도 어느 하나 이상에 타겟 물질과 특이적으로 결합하는 고정 물질이 배치된 검지 구조체;A detecting structure formed in a plate shape and having a fixing material that is specifically bonded to a target material on at least one of a surface and a surface of the substrate;
    를 포함하는 바이오센서..
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 검지 구조체의 일면 및 타면 중 적어도 어느 하나 이상에, 돌기 형태로 형성되고, 외면에 상기 고정 물질이 결합되는 나노 구조체가 형성되는 바이오센서.Wherein at least one of the one surface and the other surface of the detection structure is formed in a protrusion shape, and a nanostructure to which the fixation substance is bonded is formed on the outer surface.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 타겟 물질은 아미노산, 펩티드, 폴리펩티드, 단백질, 당단백질, 지단백질, 뉴클레오시드, 뉴클레오티드, 올리고뉴클레오티드, 핵산, 당, 탄수화물, 올리고당, 다당류, 지방산, 지질, 호르몬, 대사물질, 사이토카인, 케모카인, 수용체, 신경 전달 물질, 항원, 알레르겐, 항체, 기질, 대사물질, 보조 인자, 저해제, 약물, 약제, 영양소, 플리온, 독소, 독, 폭약, 살충제, 화학적 교전제, 생물위험제, 박테리아, 바이러스, 방사선 동위원소, 비타민, 헤테로시클 방향족 화합물, 카르시노겐, 뮤타겐, 마약, 암페타민, 바르비투레이트, 환각제, 폐기물 및 오염물로 구성된 군으로부터 선택되는 적어도 어느 하나 이상인 바이오센서.Wherein the target material is selected from the group consisting of amino acids, peptides, polypeptides, proteins, glycoproteins, lipoproteins, nucleosides, nucleotides, oligonucleotides, nucleic acids, sugars, carbohydrates, oligosaccharides, polysaccharides, fatty acids, lipids, hormones, metabolites, cytokines, Receptor, neurotransmitter, antigen, allergen, antibody, substrate, metabolite, cofactor, inhibitor, drug, drug, nutrient, plion, toxin, poison, explosive, insecticide, chemical agonist, biohazard agent, bacteria, virus Wherein the biosensor is at least one selected from the group consisting of radioactive isotopes, vitamins, heterocyclic aromatic compounds, carcinogens, mutagen, drugs, amphetamines, barbiturates, hallucinogens, wastes, and contaminants.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 타겟 물질을 포함하는 시료가 수용된 큐벳에, 상기 검지 구조체가 삽입되어 침지된 상태에서, 상기 고정 물질과 상기 타겟 물질이 반응하는 바이오센서.Wherein the fixation substance and the target substance react with each other in a state that the detection structure is inserted and immersed in a cuvette containing a sample containing the target substance.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 검지 구조체의 일단과 연결되고, 사용자에 의해 파지되는 파지부;A gripper connected to one end of the detecting structure and gripped by a user;
    를 더 포함하는 바이오센서.Further comprising a biosensor.
  6. 청구항 5에 있어서,The method of claim 5,
    상기 검지 구조체와 상기 파지부를 서로 연결하고, 상기 큐벳의 입구에 삽탈 가능하게 삽입되는 캡;A cap connected to the detection structure and the grip portion so as to be removably inserted into an inlet of the cuvette;
    을 더 포함하는 바이오센서.Further comprising a biosensor.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 캡의 외면에 배치되고, 상기 캡이 상기 큐벳 내에 삽입될 때에 형태가 변하면서 발생하는 복원력에 의해 상기 큐벳의 내주면에 밀착되는 고정부;A fixing part which is disposed on an outer surface of the cap and which is brought into close contact with an inner circumferential surface of the cuvette by a restoring force generated when the cap is deformed when the cuvette is inserted into the cuvette;
    를 더 포함하는 바이오센서.Further comprising a biosensor.
  8. 청구항 4에 있어서,The method of claim 4,
    상기 검지 구조체는The detection structure
    상기 시료에 침지되는 침지부와 비침지부로 구분되고,An immersion part immersed in the sample and a non-immersion part,
    상기 비침지부에, 상기 침지부의 폭보다 상대적으로 폭이 좁아지는 협폭부를 구비하는 바이오센서.And the narrowed portion in the non-stuck portion is narrower in width than the width of the immersed portion.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 협폽부는The narrow-
    상기 검지 구조체의 양측면 중 적어도 어느 하나 이상에, 오목하게 함몰되어 형성되고,And at least one of both side surfaces of the detection structure is recessed and formed,
    상기 검지 구조체의 길이방향을 따라 적어도 하나 이상 형성되는 바이오센서.Wherein at least one biosensor is formed along the longitudinal direction of the detection structure.
  10. 청구항 4에 있어서,The method of claim 4,
    상기 검지 구조체는The detection structure
    다수 개로, 서로 이격되어 나란하게 배치되는 바이오센서.A plurality of biosensors spaced apart from one another and arranged in parallel.
  11. 청구항 1에 있어서,The method according to claim 1,
    소정의 길이를 갖는 본체, 및 상기 타겟 물질을 포함하는 시료를 수용할 수 있도록 상기 본체의 일면으로부터 함몰되어 다수 개가 형성되고 각각의 내부에 상기 검지 구조체가 배치되는 반응챔버를 포함하는 적어도 하나 이상의 센서스트립;At least one sensor including at least one sensor including a reaction chamber in which a plurality of the reaction chamber are disposed inside the reaction chamber, the reaction chamber being recessed from one surface of the body so as to receive a sample containing the target substance, strip;
    을 더 포함하는 바이오센서.Further comprising a biosensor.
  12. 청구항 11에 있어서,The method of claim 11,
    일면에 상기 센서스트립이 탈착 가능하게 부착되는 고정판;A fixing plate on which the sensor strip is detachably attached;
    을 더 포함하는 바이오센서.Further comprising a biosensor.
  13. 청구항 11에 있어서,The method of claim 11,
    상기 검지 구조체는The detection structure
    다수 개로, 서로 이격되어 다단으로 상하 배열되는 바이오센서.A plurality of biosensors spaced apart from one another and arranged vertically in multiple stages.
  14. 청구항 11에 있어서,The method of claim 11,
    상기 반응챔버와 연통되도록, 상기 본체의 일면으로부터 함몰되어 형성된 시료주입구;A sample injection port formed to be recessed from one surface of the main body so as to communicate with the reaction chamber;
    를 더 포함하는 바이오센서.Further comprising a biosensor.
  15. 청구항 12에 있어서,The method of claim 12,
    상기 고정판의 일면으로부터 돌출된 삽입돌출부;An insertion protrusion protruding from one surface of the fixing plate;
    를 더 포함하고,Further comprising:
    상기 본체에, 상기 삽입돌출부가 삽입되도록 함몰되거나 또는 관통된 삽입공이 형성되어, 상기 센서스트립이 상기 고정판에 부착되는 바이오센서.Wherein the inserting hole is formed in the body so that the insertion protrusion is inserted or penetrated, and the sensor strip is attached to the fixing plate.
  16. 청구항 15에 있어서,16. The method of claim 15,
    상기 본체 일단의 코너(corner)가 내측을 향하여 함몰되고,A corner of one end of the main body is depressed toward the inside,
    상기 삽입돌출부가 상기 삽입공에 삽입될 때에, 상기 본체 일단의 코너에 접하도록, 상기 삽입돌출부로부터 이격되어 상기 고정판의 일면으로부터 돌출된 고정턱;A fixing jaw that is spaced apart from the insertion protrusion and protrudes from one surface of the fixing plate so as to come into contact with a corner of one end of the main body when the insertion protrusion is inserted into the insertion hole;
    을 더 포함하는 바이오센서.Further comprising a biosensor.
PCT/KR2018/015852 2017-12-13 2018-12-13 Biosensor WO2019117648A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0171638 2017-12-13
KR20170171638 2017-12-13
US201862662088P 2018-04-24 2018-04-24
US62/662,088 2018-04-24
KR1020180160529A KR102253033B1 (en) 2017-12-13 2018-12-13 Biosensor
KR10-2018-0160529 2018-12-13

Publications (1)

Publication Number Publication Date
WO2019117648A1 true WO2019117648A1 (en) 2019-06-20

Family

ID=66820429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015852 WO2019117648A1 (en) 2017-12-13 2018-12-13 Biosensor

Country Status (1)

Country Link
WO (1) WO2019117648A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100239951B1 (en) * 1993-11-12 2000-01-15 로드니 베버스 테이트 Analytical devices and method of use thereof
KR101328190B1 (en) * 2013-03-05 2013-11-13 (주)플렉센스 Cartridge for analyzing samples by localized surface plasmon resonance and the method thereof
KR20130007472U (en) * 2012-06-20 2013-12-30 (주)미코바이오메드 Disease diagnosis device
US20140171344A1 (en) * 2009-07-29 2014-06-19 Dynex Technologies, Inc. Sample Plate Systems and Methods
KR101793074B1 (en) * 2016-05-17 2017-11-02 (주)플렉센스 Biosensor and method of assaying substances using thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100239951B1 (en) * 1993-11-12 2000-01-15 로드니 베버스 테이트 Analytical devices and method of use thereof
US20140171344A1 (en) * 2009-07-29 2014-06-19 Dynex Technologies, Inc. Sample Plate Systems and Methods
KR20130007472U (en) * 2012-06-20 2013-12-30 (주)미코바이오메드 Disease diagnosis device
KR101328190B1 (en) * 2013-03-05 2013-11-13 (주)플렉센스 Cartridge for analyzing samples by localized surface plasmon resonance and the method thereof
KR101793074B1 (en) * 2016-05-17 2017-11-02 (주)플렉센스 Biosensor and method of assaying substances using thereof

Similar Documents

Publication Publication Date Title
WO2014196803A1 (en) A strip for rapid testing having a variable control line and a diagnosis kit using the same
EP2390663B1 (en) Reagents, kits and methods for detecting biological molecules by energy transfer from an activated chemiluminescent substrate to an energy acceptor dye
US20010046682A1 (en) Dry biochemical assay plate and method for making the same
WO2019203493A1 (en) Multiwell electrode-based biosensor
KR20040032926A (en) Luminescence detecting device and luminescence detecting microarray plate
WO2017200225A1 (en) Biosensor and method for analyzing specimen by using same
WO2017003126A1 (en) Bio-sensor and bio-sensor array
US6537828B1 (en) Immunoassay apparatus
WO2019117648A1 (en) Biosensor
WO2013051790A2 (en) Biosensor using a field effect transistor
JP4096118B2 (en) Protein chip
JP2001510564A (en) Microsystem for biological analysis and method for manufacturing the same
WO2013147388A1 (en) High sensitivity biosensor using pixel analysis of cmos image sensor
US20190242889A1 (en) Biosensor
US7851202B2 (en) Biosensor and method for operating the latter
KR102253033B1 (en) Biosensor
WO2010140773A2 (en) Biosensor for measuring biomaterial
US6096172A (en) Method of bonding bio-molecules to a test site
US20190391142A1 (en) Surface and diffusion enhanced biosensor
WO2014181896A1 (en) Organic substance analysis apparatus including membrane based multiple tubes
WO2010140772A2 (en) Apparatus for measuring biomaterial and method for manufacturing same
WO2023075517A1 (en) Prussian blue nanoparticle-based optical and electrochemical biosensor
WO2022080994A1 (en) Covid diagnostic test kit
Hartman et al. Rapid response biosensor for detection and identification of common foodborne pathogens
EP4317976A1 (en) Inspection device and inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888850

Country of ref document: EP

Kind code of ref document: A1