WO2019117473A1 - Sioic fiber, metal-doped sioic fiber, microwave absorption and heating element comprising same metal-doped sioic fiber, and manufacturing method therefor - Google Patents

Sioic fiber, metal-doped sioic fiber, microwave absorption and heating element comprising same metal-doped sioic fiber, and manufacturing method therefor Download PDF

Info

Publication number
WO2019117473A1
WO2019117473A1 PCT/KR2018/013562 KR2018013562W WO2019117473A1 WO 2019117473 A1 WO2019117473 A1 WO 2019117473A1 KR 2018013562 W KR2018013562 W KR 2018013562W WO 2019117473 A1 WO2019117473 A1 WO 2019117473A1
Authority
WO
WIPO (PCT)
Prior art keywords
sioic
fiber
iodine
fibers
solution
Prior art date
Application number
PCT/KR2018/013562
Other languages
French (fr)
Korean (ko)
Inventor
조광연
주영준
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2019117473A1 publication Critical patent/WO2019117473A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic

Definitions

  • the present invention relates to a SiOIC fiber and a metal-doped SiOIC fiber having excellent durability due to oxidation prevention or minimization of oxidation even under an oxygen atmosphere, And a method of manufacturing the microwave absorbing and heating element.
  • Microwave heating is a method of heating an object using microwave electromagnetic radiation.
  • the molecular dipole constituting the object quickly changes the direction of its axis by the high frequency electric field. Heat is generated.
  • the microwaves used in the home microwave heating are 2.45 GHz or 915 MHz microwave.
  • the heating technology using microwave is clean because it does not use fossil fuel, and the heat conversion efficiency of the energy to be injected at the same time is high, so that rapid heat transfer, quick response speed and miniaturization can be achieved. Therefore, not only a lot of energy is consumed to increase the temperature at a high temperature, but also a heating method using an existing fossil fuel having a slow cooling rate after a high temperature heating or a heating method using an electric resistance Heating technology has been replaced by the trend.
  • SiC is used as a material to be heated by using microwaves.
  • a massive SiC block is processed into a heating body.
  • the heating rate to a high temperature of 1000 ° C or higher is not so fast and energy efficiency is not high.
  • the cooling rate after the high temperature heat is not fast, so the working time can not be shortened remarkably.
  • conductive ceramic fibers capable of absorbing microwaves for microwave heating.
  • carbon fiber is exemplified.
  • the conductive ceramic fiber exhibits a property of heating up to more than 1000 ° C and up to 2000 ° C in a few seconds. This is due to the fact that the heat generated by the microwaves rapidly radiates out of the fiber in proportion to the specific heat capacity, which is the thermal energy required to increase the material temperature of the unit mass by one degree, due to the thin diameter of the conductive ceramic fiber and the light weight thereof .
  • other conductive ceramic fibers include SiC fibers, and SiC fibers have semiconductor electrical characteristics, so that the heating temperature and heat generation rate by microwaves are not so high.
  • Patent Document 1 a method for improving the heat generation efficiency by microwave using SiC fiber having a carbon coating formed by coating carbon having excellent electrical conductivity on SiC fiber has been proposed (Patent Document 1).
  • the method disclosed in Patent Document 1 is advantageous in that the SiC fiber is manufactured in the shape of a heating body and then carbon coating is performed, thereby simplifying the process relatively.
  • the SiC fiber heating body having such a carbon coating has disadvantages of the conventional carbon fiber. That is, since the environment for use as a heating element is in the air in which oxygen exists, the carbon coating layer is oxidized and disappears at a temperature of 480 ° C or more like the carbon fiber, so that there is a serious problem in the durability of the heating element.
  • Patent Document 1 Korean Patent No. 10-1745422 (June 27, 2017)
  • a problem to be solved by the present invention is to provide a microwave oven which absorbs microwaves and rapidly generates joule heat after eddy current is generated, thereby exhibiting excellent heat generating efficiency and at the same time preventing or minimizing oxidation reaction by oxygen, And a metal-doped SiOIC fiber, a microwave absorbing and heating element including the same, and a method of manufacturing the same.
  • One embodiment of the present invention for solving the above problems is a method of manufacturing a semiconductor device comprising 30 to 50 wt% of silicon (Si), 5 to 15 wt% of oxygen (O), 3 to 15 wt% of iodine (I) To 50% by weight of the composition.
  • the SiOIC fibers may include one or more selected from ⁇ -SiC, SiO 2, graphene, SiI, SiCI, the group consisting of CIO SiOCI and crystal phase.
  • Another embodiment of the present invention is a method of manufacturing a semiconductor device comprising 3 to 30 wt% of silicon (Si), 3 to 40 wt% of oxygen (O), 5 to 50 wt% of iodine (I) % Of metal and 5 to 50 wt% of metal.
  • the metal may be selected from the group consisting of titanium, iron, zirconium, aluminum, and combinations thereof.
  • the SiOIC fiber be able to include at least one selected from ⁇ -SiC, SiO 2, graphene, SiI, SiCI, SiOCI, CIO , the group consisting of MI, MOI and MCI crystal phase, M can represent a metal .
  • Another embodiment of the present invention relates to a microwave absorbing and heating element including the SiOIC fiber according to the above embodiment.
  • a method of manufacturing a semiconductor device comprising: mixing a polycarbosilane (PCS) solution and an iodine solution to form a gel mixture; Vacuum drying the mixture to form a solid phase mixture; Melt spinning the solid phase mixture to form mixed fibers; Reacting the mixed fibers with an iodine gas to thereby infiltrate the mixed fibers and infiltrating iodine into the mixed fibers; And thermally decomposing the mixed fibers under an inert atmosphere.
  • PCS polycarbosilane
  • the amount of iodine in the iodine solution may be in the range of 0.001 to 0.02 times the weight of the polycarbosilane contained in the polycarbosilane solution, and the amount of solvent is 10 to 50 times the weight of iodine Lt; / RTI >
  • the amount of solvent in the polycarbosilane solution may range from 1 to 4 times the weight of the polycarbosilane.
  • the step of mixing the polycarbosilane (PCS) solution and the iodine solution to form a gel-state mixture may be performed by mixing the polycarbosilane solution and the iodine solution, stirring the mixture at 50 to 100 ° C for 1 to 12 ≪ / RTI > for a period of time.
  • the iodine gas may be gasified by exposing the solid phase iodine to a temperature of 100 to 200 ° C, and the solid phase iodine may be used in an amount of 0.1 to 1 times the weight of the mixture fiber.
  • a method of manufacturing a semiconductor device comprising: mixing a polycarbosilane (PCS) solution, an iodine solution, and a metal alkoxide solution to form a gel mixture; Vacuum drying the mixture to form a solid phase mixture; Melt spinning the solid phase mixture to form mixed fibers; Reacting the mixed fibers with an iodine gas to thereby infiltrate the mixed fibers and infiltrating iodine into the mixed fibers; And thermally decomposing the mixed fibers under an inert atmosphere.
  • PCS polycarbosilane
  • the step of thermally decomposing the mixture fiber reacted with the iodine gas under an inert atmosphere may include thermally treating the mixture fiber reacted with the iodine gas in a mold at a temperature of 900 to 1350 ° C.
  • the amount of the metal alkoxide in the metal alkoxide solution may be in the range of 0.001 to 0.02 times the weight of the polycarbosilane, and the amount of the solvent may be in the range of 50 to 100 times the weight of the metal alkoxide.
  • the amount of iodine in the iodine solution may be in the range of 0.001 to 0.02 times the weight of the polycarbosilane contained in the polycarbosilane solution and the amount of the solvent may be in the range of 10 to 50 times the weight of the iodine .
  • the amount of solvent in the polycarbosilane solution may range from 1 to 4 times the weight of the polycarbosilane.
  • the step of mixing the polycarbosilane (PCS) solution and the iodine solution to form a gel-state mixture may be performed by mixing the polycarbosilane solution and the iodine solution, stirring the mixture at 50 to 100 ° C for 1 to 12 ≪ / RTI > for a period of time.
  • the iodine gas may be gasified by exposing the solid phase iodine to a temperature of 100 to 200 ° C, and the solid phase iodine may be used in an amount of 0.1 to 1 times the weight of the mixture fiber.
  • the step of thermally decomposing the mixture fiber reacted with the iodine gas under an inert atmosphere may include thermally treating the mixture fiber reacted with the iodine gas in a mold at a temperature of 900 to 1350 ° C.
  • the SiOIC fiber and the metal-doped SiOIC fiber according to the present invention can generate heat up to a temperature of 1000 ° C. or higher and a maximum of 1600 ° C. within a few seconds by microwave irradiation. In the absence of a carbon coating, The oxidation is hardly occurred and the durability is very excellent.
  • the microwave heating element using the SiOIC fiber and the metal-doped SiOIC fiber is formed into a fibrous shape, the heat radiation efficiency to the outside is high, and the energy efficiency can be remarkably improved.
  • the microwave heating body having various shapes thus manufactured can be effectively applied to various fields such as a heat exchanger for a farm, a household, and an industrial use, a heating coil for a hot tower, a cook top,
  • metal-doped SiOIC fibers having various functions such as catalytic properties can be produced by doping various kinds of metal with SiOIC fibers.
  • Such metal-doped SiOIC fibers exhibit further improved heat- The requirements can be met.
  • FIG. 2 is a SEM photograph of a SiOIC fiber according to an embodiment of the present invention.
  • FIGS 3a and 3b are SEM photographs of Ti doped SiOIC fibers according to another embodiment of the present invention.
  • amorphous SiC fibers are prepared by heat treating polycrystalline polycarbosilane (PCS) fibers, which have undergone oxygen stabilization through an oxygen-stabilized atmosphere, at a temperature of 1350 ° C or lower.
  • PCS polycrystalline polycarbosilane
  • They include 38.17 to 54.61% ) 31.27 to 40.18% by weight and oxygen (O) 14.12 to 21.65% by weight.
  • the crystalline phase of the amorphous SiC fiber can be composed of nano-sized ⁇ -SiC, nano-sized SiO 2 , graphene, and the like. These SiC fibers have semiconductor electrical characteristics, so that the heating temperature and heat generation rate by microwave irradiation are not so high.
  • An embodiment of the present invention is to provide a SiOIC fiber and a metal-doped SiOIC fiber having a new composition different from that of the conventional amorphous SiC fiber, exhibiting excellent heating efficiency by microwave irradiation, excellent oxidation stability, and improved durability.
  • the SiOIC fiber according to one embodiment of the present invention comprises 30 to 50% by weight of silicon (Si), 5 to 15% by weight of oxygen (O), 3 to 15% by weight of iodine (I) Preferably from 34 to 49% by weight of silicon (Si), from 9 to 13% by weight of oxygen (O), from 5 to 12% by weight of iodine (I) and from 25 to 50% by weight of carbon (C) % ≪ / RTI > by weight.
  • SiOIC fibers effectively contain iodine, which affects the electrical conductivity and current generation inside the fiber, thereby significantly improving the heat efficiency corresponding to the irradiation of the microwave.
  • the metal-doped SiOIC fiber comprises 3 to 30 wt% of silicon (Si), 3 to 40 wt% of oxygen (O), 5 to 50 wt% of iodine (I) (I) 6 to 40% by weight of oxygen (C), 5 to 40% by weight of a metal and 5 to 50% by weight of a metal, preferably 5 to 25% To 47 wt%, carbon (C) 7 to 35 wt%, and metal 7 to 48 wt%.
  • Such a metal-doped SiOIC fiber effectively contains the metal element in the fiber in addition to the iodine, thereby exerting a positive effect on the heat-generating behavior corresponding to the irradiation with the microwave, thereby further improving the heat-generating efficiency.
  • the SiOIC fiber and the metal-doped SiOIC fiber having the new composition can exhibit a high heat generation performance in a few seconds by heating up to a temperature of more than 1000 ° C. and a maximum of 1600 ° C. by the microwave irradiation. At the same time, The oxidation hardly occurs and the durability can be remarkably improved.
  • SiOIC fiber according to the embodiment may include at least one selected from ⁇ -SiC, SiO 2, graphene, SiI, SiCI, the group consisting of SiOCI and CIO crystal phase, metal-doped SiOIC fibers, ⁇ -SiC, SiO 2 , graphene, SiI, SiCI, SiOCI, CIO, MI, MOI, and MCI.
  • M represents a doped metal.
  • the metal included in the metal doped SiOIC fibers may be selected from the group consisting of titanium, iron, zirconium, aluminum, and combinations thereof. By doping various metals into the SiOIC fiber, it is possible to further improve the heating efficiency corresponding to the microwave, to give various functions such as the catalyst characteristics, and to meet the individual characteristic requirements required in each application field.
  • the SiOIC fiber and the metal-doped SiOIC fiber may be formed into a shape randomly or isotropically arranged in a mold having various shapes according to a desired purpose after the radiation is completed, and heat-treated.
  • microwave absorbing and heating element comprising a SiOIC fiber or a metal-doped SiOIC fiber according to the above embodiment.
  • the microwave absorbing and heating element according to the embodiment of the present invention has high heat generating efficiency, high oxidation stability, excellent durability, can be easily manufactured in various forms, can be miniaturized, , And can exhibit environment-friendly characteristics.
  • a method of manufacturing a SiOIC fiber comprising: mixing a polycarbosilane (PCS) solution and an iodine solution to form a gel-like mixture; Vacuum drying the gel-like mixture to form a solid phase mixture; Melt spinning the solid phase mixture to form blended fibers; Reacting the mixed fibers with an iodine gas, infusing the mixed fibers and infiltrating iodine into the fibers; And thermally decomposing the fiber into a mold and under an inert atmosphere.
  • PCS polycarbosilane
  • the polycarbosilane solution and the iodine solution may be mixed to form a gel-like mixture.
  • the solvent used in the polycarbosilane solution may be one or more selected from the group consisting of alcohols, toluene, xylene, cyclohexane, and combinations thereof.
  • the amount of solvent in the polycarbosilane solution may range from 1 to 4 times the weight of the polycarbosilane. If the amount of the solvent is less than 1 time of the weight of the polycarbosilane, the polycarbosilane may not be completely dissolved. If the amount of the solvent is more than 4 times, the solubility of the polycarbosilane may not be increased.
  • the solvent used in the iodine solution may be one or more selected from the group consisting of alcohols, toluene, xylene, cyclohexane, and combinations thereof.
  • the amount of solvent in the iodine solution may range from 10 to 50 times the weight of iodine. If the amount of the solvent is less than 10 times the weight of the iodine, the iodine may not be completely dissolved. If the amount of the solvent is more than 50 times, the increase in the amount of the solvent is not expected to increase.
  • the amount of iodine in the iodine solution may range from 0.001 to 0.02 times the weight of the polycarbosilane contained in the mixed polycarbosilane solution. If the amount of iodine is less than 0.001 times the weight of the polycarbosilane, pyrolysis may occur during the heat treatment during the fiberization process in the subsequent process, so that the amount of iodine present in the fiber may be almost zero. The thermal inductivity of the mixture may deteriorate to such an extent that the fiber can not be formed in the drying process, so that the spinning may be difficult and the fiber shape may not be obtained.
  • the iodine may be contained in the fiber and remain in the doped state even after the heat treatment.
  • the iodine in a solution state, even a small amount of iodine can be sufficiently doped into the fiber, and the process is easy and safe.
  • a mixture of a polycarbosilane solution and an iodine solution may be added to further mix the metal alkoxide solution.
  • fibers are prepared by mixing a solution of a polycarbosilane as a raw material and a solution of a metal alkoxide containing a metal to be doped together with an iodine solution, It is possible to effectively dope the metal element in the SiOIC fiber.
  • the metal alkoxide solution includes an alkoxide of a metal to be doped and includes, for example, titanium isopropoxide, iron acetylacetonate, zirconium isopropoxide, aluminum acetyl One or more metal alkoxides selected from the group consisting of aluminum acetylacetonate and combinations thereof.
  • the solvent used in the metal alkoxide solution may be one or more selected from the group consisting of alcohols, toluene, xylene, cyclohexane, and combinations thereof.
  • the amount of solvent in the metal alkoxide solution may range from 50 to 100 times the weight of the metal alkoxide. If the amount of the solvent is less than 50 times the weight of the metal alkoxide, the concentration is too high and the mixing efficiency with the polycarbosilane solution and the iodine solution is not good. If the solvent is more than 100 times, no further uniform mixing effect will occur.
  • the amount of the metal alkoxide in the metal alkoxide solution may range from 0.001 to 0.02 times the weight of the polycarbosilane contained in the mixed polycarbosilane solution. If the amount of the metal alkoxide is less than 0.001 times the weight of the polycarbosilane, pyrolysis may occur during the heat treatment during the fiberization process in the subsequent process so that the amount of the metal element present in the fiber may be almost zero. If the amount is more than 0.02 times, And it is difficult to achieve uniform dispersion.
  • a polycarbosilane solution and an iodine solution Or a mixture of a polycarbosilane solution, an iodine solution and a metal alkoxide solution, and then maintaining the mixture at 50 to 100 DEG C for 1 to 12 hours while stirring, to form a gel-like mixture.
  • the temperature is less than 50 ° C, the drying efficiency is very low and the solvent drying time may be very slow. If the temperature exceeds 100 ° C, the mixed solution starts boiling and the process is difficult to proceed.
  • the gel-state mixture can be vacuum dried to form a solid phase mixture.
  • Vacuum drying can be done under vacuum with a degree of vacuum in the range of several to 10 -2 torr. Vacuum drying can also be performed in a temperature range of 150 to 250 ° C. If the vacuum drying temperature is lower than 150 ° C, the drying effect is not exhibited. If the vacuum drying temperature is higher than 250 ° C, the gel-state mixed solution is cured and the subsequent fiberizing process by melt spinning can not proceed.
  • the solid phase mixture can be melt spinned to form mixed fibers.
  • the fiber formation can be carried out by forming a solid mixture in an emissive block, introducing nitrogen gas or the like into the interior of the emitter block to form an inert atmosphere, heating the mixture at 200 to 300 ⁇ to melt the solid mixture, To increase the pressure inside the spinning block to allow the molten mixture to flow through the nozzle, and then to control the supply of a certain amount of molten mixture to the nozzle by the gear pump.
  • a fibrous mixture can be formed in the form of long fibers and short fibers.
  • the melt viscosity of the melted mixture is too high due to the relatively low temperature, so that the melt can not be efficiently injected into the nozzle, ° C., the viscosity of the molten mixture becomes too low due to an excessively high temperature, and flows like water, and no fibrosis is caused.
  • the mixed fibers are allowed to react with the iodine gas, and the mixed fibers are subjected to an infusibilizing treatment to infiltrate the iodine into the mixed fibers.
  • the iodine gas can be obtained by gasifying the solid phase iodine by exposing it to a temperature of 100 to 200 ° C.
  • the solid phase iodine may be 0.1 to 1 times the weight of the mixed fibers to be reacted.
  • the amount of solid iodine is less than 0.1 times the weight of the mixed fiber, the insolubilization of the mixed fiber and the iodine penetration into the fiber are difficult to occur effectively.
  • the amount of solid iodine is more than 1 time, Iodine penetration effect is not increased.
  • the mixed fibers By reacting the mixed fibers with the iodine gas, the mixed fibers are converted into thermosetting properties, and a large amount of iodine can be infiltrated into the mixed fibers. Thus, even if the temperature is increased above the softening temperature and the melting temperature in the subsequent pyrolysis step, the fibrous phase can be maintained without being softened or melted, and the pyrolysis yield can also be improved.
  • the fiber which is incompatible and has iodine impregnated therein can be pyrolyzed in an inert atmosphere.
  • the fibers which are insoluble through pyrolysis and into which iodine is impregnated can be converted into ceramics and converted into SiOIC fibers or metal-doped SiOIC fibers.
  • the pyrolysis can be carried out at a temperature of 900 to 1350 ° C.
  • the temperature is less than 900 ° C., the thermal decomposition of the fiber is not sufficiently performed, and the electrical and physical properties may be significantly deteriorated.
  • the temperature exceeds 1350 ° C., the thermal decomposition occurs sufficiently.
  • the SiOIC fiber itself may decompose and lose its fiber shape and may change into a powder.
  • the pyrolysis process is incompatible and can be made with the fiber into which the iodine has penetrated into the mold.
  • the frame may be selected according to the shape of the product to which the fiber is applied, for example, the microwave absorbing and heating element, and may be, for example, a circle, a rectangle, a square, or the like.
  • the SiOIC fiber or the metal doped SiOIC fiber can have a random or isotropically arranged shape.
  • the SiO 2 fiber and the metal-doped SiOIC fiber by thermally decomposing the unfused fiber in a mold, it can be easily applied to various shapes according to the product to be applied.
  • the polycarbosilane solution prepared above and the iodine solution were mixed and stirred by a magnetic bar on a hot plate for 10 hours. At this time, the temperature of the hot plate was maintained at 80 ⁇ . The mixed solution was heated on a hot plate until the gel state became dry while the mixed solution was gelled, and the stirring was stopped when the viscosity of the mixed solution became higher and the magnetic bar no longer rotated.
  • the gelled mixture was placed in a vacuum drier and the degree of vacuum inside the vacuum drier was adjusted to 8 x 10 -1 torr.
  • the vacuum dryer temperature was adjusted to 180 DEG C and held for 10 hours to complete vacuum drying.
  • an inert gas was further injected to raise the pressure inside the spinning block to 0.01 MPa to allow the molten mixture to flow to the nozzle, and the molten mixture pushed to the end of the nozzle hole was stretched and wound on a winder to perform fiberization .
  • the diameters of the prepared mixture fibers were about 20 to 25 ⁇ .
  • the mixture fibers were placed in a graphite sieve and placed in a vacuum dryer. Then, 3 g of solid phase iodine was placed in the lower part of the graphite body placed in the vacuum dryer. Thereafter, the inside of the vacuum dryer was adjusted to a degree of vacuum of 5 x 10 < -1 > torr, and at the same time, the temperature was raised to 180 DEG C so that solid iodine in the graphite was gasified. The formed iodine gas actively reacted with the blend fibers to insolubilize the blend fibers and at the same time actively infiltrate the blend fibers with iodine. And kept at 180 ° C for 1 hour in a vacuum dryer equipped with a vacuum to complete the infiltration and penetration of iodine.
  • Doped SiOIC silicon oxytitanium iodide
  • the polycarbosilane solution and the iodine solution were further added with a metal alkoxide solution during the formation of the (3) Carbon) fiber.
  • the metal alkoxide solution was prepared by adding 3 g of toluene (3 ml) to a beaker, adding 0.04 g of titanium isopropoxide (purchased from Aldrich Korea, purity of 99.5%) and then dissolving the titanium isopropoxide in a hot plate ≪ / RTI > for 12 hours by means of a magnetic bar.
  • FIG. 1 is a SEM photograph of a SiC fiber according to the prior art
  • FIG. 2 is a SEM photograph of a SiOIC fiber according to an embodiment of the present invention.
  • Tables 1 and 2 The results of elemental analysis measured at three spots shown in the SEM photographs of Figs. 1 and 2 are shown in Tables 1 and 2, respectively.
  • the SiC fibers according to the prior art shown in Fig. 1 are SiC fibers which have been infused with oxygen, and are composed of silicon (Si) 38.17 to 54.61 wt%, carbon (C) 31.27 to 40.18 wt % And oxygen (O) 14.12 to 21.65 wt%.
  • the SiOIC fibers according to an embodiment of the present invention shown in FIG. 2 were prepared by adding iodine, 34.37 to 48.36 wt% of silicon (Si), 27.69 to 49.2 wt% (O) 9.53 to 12.51 wt.%, And iodine (I) 5.59 to 11.44 wt.%.
  • Figures 3a and 3b are SEM images of titanium doped SiOIC fibers according to another embodiment of the present invention, The elemental analysis results measured in the three spots shown in the SEM photographs of Figs. 3A and 3B are shown in Tables 3 and 4, respectively.
  • the titanium-doped SiOIC fibers according to another embodiment of the present invention include iodine and titanium, and include 5.04 to 24.72 wt% silicon (Si), 7.28 wt% (I) 6.74 to 46.64 weight%, and titanium 7.74 to 47.93 weight%.
  • SiOIC fibers according to the embodiments of the present invention have a composition of 34.00 wt%, oxygen (O) 3.93-36.93 wt%, iodine
  • iodine By including iodine in the fiber, which affects electrical conductivity and current generation, it can positively affect microwave-responsive exothermic behavior.
  • the SiO 2 fiber or the metal-doped SiOIC fiber according to the embodiment of the present invention has a lower oxygen content than that of the SiC fiber according to the related art, and the generation of SiO 2 crystals is lowered, so that the electrical resistance can be lowered, .
  • the microwave corresponding heat generation temperature of the amorphous SiC fiber according to the prior art is measured and shown in Table 5 below.
  • the amorphous SiC fibers according to the prior art used in the experiments can be prepared according to methods known in the art, for example, polycondensation of polycarbosilane (PCS) fibers, which have undergone oxygen stabilization, in an inert atmosphere at 1350 DEG C Or less.
  • the amorphous SiC fiber according to the related art may have a composition of, for example, 38.17 to 54.61% by weight of silicon (Si), 31.27 to 40.18% by weight of carbon (C) and 14.12 to 21.65% by weight of oxygen (O).
  • the crystalline phase of the amorphous SiC fiber according to the prior art may be composed of nano-sized? -SiC, nano-sized SiO 2 , graphene, or the like.
  • the prepared conventional SiC fiber was placed in a microwave irradiation chamber equipped with an infrared thermography camera (SDS HotFind DXS), and a microwave of 2.45 GHz was irradiated to irradiate the exothermic behavior generated by the SiC fiber by microwave interaction with infrared rays And analyzed with an infrared camera.
  • SDS HotFind DXS infrared thermography camera
  • the SiC fibers according to the prior art have a semiconductor electrical characteristic, so that there is a tendency that heat generation does not occur corresponding to microwaves.
  • the amorphous SiC fibers according to the prior art had maximum heat generation temperatures corresponding to microwaves of 179 ° C.
  • the heating temperature corresponding to the microwave of the SiOIC fiber according to the embodiment of the present invention manufactured in the above example was measured in the same manner as described above and is shown in Table 6 below.
  • the SiOIC fiber according to the embodiment of the present invention has a maximum heat of 1320 ° C corresponding to the microwave. This shows that the heating effect can be remarkably improved when the microwave irradiation is performed as compared with the amorphous SiC fiber according to the prior art shown in Table 5.
  • the temperature of the Ti-doped SiOIC fiber according to another embodiment of the present invention was measured in the same manner as described above, and the results are shown in Table 7 below.
  • Ti-doped SiOIC fibers according to an embodiment of the present invention include not only iodine but also metal elements in the fibers, and thus heat generation efficiency is further improved, .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)

Abstract

An embodiment of the present invention pertains to a SiOIC fiber comprising 30-50 % by weight of silicon(Si), 5-15 % by weight of oxygen (O), 3-15 % by weight of iodine (I), and 20-50 % by weight of carbon (C), a metal-doped SiOIC fiber comprising 3-30 % by weight of silicon (Si), 3-40 % by weight of oxygen (O), 5-50 % by weight of iodine (I), 5-40 % by weight of carbon (C), and 5-50 % by weight of a metal, a microwave absorption and heating element comprising the same metal-doped SiOIC fiber, and a manufacturing method therefor. According to the present invention, heating efficiency in response to microwaves can be remarkably increased and simultaneously, a remarkable improvement of durability can be brought about in the heating element by preventing or minimizing an oxygen-induced oxidative reaction.

Description

[규칙 제26조에 의한 보정 21.12.2018] SIOIC 섬유와 금속 도핑 SIOIC 섬유, 이를 포함하는 마이크로파 흡수 및 발열체 및 그 제조방법SIOIC fiber and metal doping SIOIC fiber, microwave absorbing and heating element containing it, and manufacturing method thereof
본 발명은 새로운 조성을 갖는 SiOIC 섬유에 관한 것으로, 더욱 상세하게는 마이크로파 대응 발열 효율이 현저하게 향상되고 동시에 산소 분위기 하에서 발열하더라도 산화가 방지 또는 최소화되어 내구성이 우수한 SiOIC 섬유와 금속 도핑 SiOIC 섬유, 이를 포함하는 마이크로파 흡수 및 발열체 및 그 제조방법에 관한 것이다.More particularly, the present invention relates to a SiOIC fiber and a metal-doped SiOIC fiber having excellent durability due to oxidation prevention or minimization of oxidation even under an oxygen atmosphere, And a method of manufacturing the microwave absorbing and heating element.
마이크로파 가열(microwave heating)은 마이크로파 전자기 조사를 이용하여 물체를 가열하는 것으로, 고주파가 물체에 닿으면 물체를 구성하는 분자 쌍극자가 고주파수의 전계에 의해 그 축의 배열 방향을 급속히 변화시키고 이 때 마찰열에 의해 발열이 이루어진다. 일반적으로 가정용 마이크로파 가열에 이용되는 마이크로파는 2.45 ㎓이나, 915 ㎒의 마이크로파도 이용된다.Microwave heating is a method of heating an object using microwave electromagnetic radiation. When a high frequency hits an object, the molecular dipole constituting the object quickly changes the direction of its axis by the high frequency electric field. Heat is generated. Generally, the microwaves used in the home microwave heating are 2.45 GHz or 915 MHz microwave.
마이크로파를 이용한 가열 기술은 화석 연료를 사용하지 않아 청정하고, 동시에 주입되는 에너지의 열변환효율이 높아 신속한 열전달, 빠른 응답속도 및 소형화를 이룰 수 있는 장점이 있다. 이에, 환경에 유해한 영향을 미치며, 고온으로 온도를 상승시키기 위하여 많은 에너지가 소모될 뿐 아니라, 고온 발열 후 냉각 속도가 느린 기존의 화석 연료를 이용한 가열 방식이나 전기저항을 이용한 가열 방식이 마이크로파를 이용한 가열 기술로 대체되고 있는 추세이다.The heating technology using microwave is clean because it does not use fossil fuel, and the heat conversion efficiency of the energy to be injected at the same time is high, so that rapid heat transfer, quick response speed and miniaturization can be achieved. Therefore, not only a lot of energy is consumed to increase the temperature at a high temperature, but also a heating method using an existing fossil fuel having a slow cooling rate after a high temperature heating or a heating method using an electric resistance Heating technology has been replaced by the trend.
마이크로파를 이용한 가열에 사용되는 소재는 대표적으로 SiC가 있으며, 일반적으로 덩어리 형태의 SiC 블록을 발열체 형상으로 가공하여 사용한다. 그러나, SiC 블록으로 이루어진 발열체는 두께가 크고 무게가 무겁기 때문에 1000℃ 이상의 고온으로의 승온 속도가 그리 빠르지 않아 에너지 효율이 높지 않다. 또한, 큰 무게로 인하여 고온 발열 후 냉각 속도도 빠르지 않으므로 작업 시간을 획기적으로 단축시킬 수 없다.Typically, SiC is used as a material to be heated by using microwaves. In general, a massive SiC block is processed into a heating body. However, since a heating element made of a SiC block has a large thickness and is heavy in weight, the heating rate to a high temperature of 1000 ° C or higher is not so fast and energy efficiency is not high. Also, because of the large weight, the cooling rate after the high temperature heat is not fast, so the working time can not be shortened remarkably.
이에, 마이크로파를 흡수할 수 있는 전도성 세라믹 섬유를 마이크로파 가열에 이용하고자 하는 노력이 진행되었다. 대표적인 전도성 세라믹 섬유로는 탄소 섬유를 예로 들 수 있으며, 2.45 ㎓의 마이크로파를 조사하면 수초 내에 1000℃ 이상, 최대 2000℃까지도 발열되는 특성을 나타낸다. 이는, 전도성 세라믹 섬유가 갖는 얇은 직경 및 이에 따른 가벼운 무게로 인해, 단위 질량의 물질 온도를 1도 높이는데 드는 열에너지인 비열 용량에 비례하여 마이크로파에 의해 발열되는 열을 섬유 외부로 빠르게 방사하기 때문이다.Accordingly, efforts have been made to use conductive ceramic fibers capable of absorbing microwaves for microwave heating. As a typical conductive ceramic fiber, carbon fiber is exemplified. When a microwave of 2.45 GHz is irradiated, the conductive ceramic fiber exhibits a property of heating up to more than 1000 ° C and up to 2000 ° C in a few seconds. This is due to the fact that the heat generated by the microwaves rapidly radiates out of the fiber in proportion to the specific heat capacity, which is the thermal energy required to increase the material temperature of the unit mass by one degree, due to the thin diameter of the conductive ceramic fiber and the light weight thereof .
그러나, 마이크로파를 이용하는 발열체는 산소가 존재하는 공기 중에서 피가열체의 가열이 이루어지는 것이 대부분이다. 그러나, 탄소 섬유의 경우 발열 과정에서 480℃부터 산화가 시작되므로 고온 발열에 실질적으로 적절하게 이용될 수 없다.However, most of the heating elements using microwaves are heated with air in the presence of oxygen. However, in the case of carbon fiber, since oxidation starts from 480 ° C in the heating process, it can not be suitably used for heating at high temperature.
탄소 섬유 외에 다른 전도성 세라믹 섬유로는 SiC 섬유가 있는데, SiC 섬유는 반도체적인 전기특성을 가지고 있어서 마이크로파에 의한 발열 온도 및 발열 속도가 그리 높지 못하다.In addition to carbon fiber, other conductive ceramic fibers include SiC fibers, and SiC fibers have semiconductor electrical characteristics, so that the heating temperature and heat generation rate by microwaves are not so high.
SiC 섬유의 이러한 문제점을 해결하고자 SiC 섬유 제조 공정 중에 금속 분말을 첨가하여 발열체로 사용하려는 시도가 있었으나, 섬유화를 위한 방사 과정에서 금속 입자들이 노즐을 통과하기 어려워 금속 분말이 첨가된 SiC 섬유를 제조하기 어려운 문제점이 있었다.In order to solve these problems of SiC fibers, attempts have been made to use metal powder as a heating element by adding SiC fibers during the manufacturing process. However, since SiC fibers are difficult to pass through the nozzle during the spinning process for fiberization, There was a difficult problem.
또한, SiC 섬유에 전기전도성이 우수한 탄소를 코팅하여 형성된 탄소 코팅을 갖는 SiC 섬유를 이용하여 마이크로파에 의한 발열 효율을 향상시키고자 하는 방법도 제안되었다(특허문헌 1). 특허문헌 1에 개시된 방법은 SiC 섬유를 발열체 형상으로 제조한 후에 탄소 코팅을 실시하는 것으로, 비교적 공정이 간단하다는 장점이 있다. 그러나, 이러한 탄소 코팅을 갖는 SiC 섬유 발열체는 기존의 탄소 섬유가 갖는 단점을 그대로 갖고 있다. 즉, 발열체로서의 사용 환경이 산소가 존재하는 공기중이므로, 탄소 섬유와 마찬가지로 480℃ 이상의 온도에서 탄소 코팅층이 산화되어 없어지므로 발열체 내구성에 심각한 문제가 발생하여, 실질적인 적용이 어렵다.In addition, a method for improving the heat generation efficiency by microwave using SiC fiber having a carbon coating formed by coating carbon having excellent electrical conductivity on SiC fiber has been proposed (Patent Document 1). The method disclosed in Patent Document 1 is advantageous in that the SiC fiber is manufactured in the shape of a heating body and then carbon coating is performed, thereby simplifying the process relatively. However, the SiC fiber heating body having such a carbon coating has disadvantages of the conventional carbon fiber. That is, since the environment for use as a heating element is in the air in which oxygen exists, the carbon coating layer is oxidized and disappears at a temperature of 480 ° C or more like the carbon fiber, so that there is a serious problem in the durability of the heating element.
특허문헌 1: 대한민국 등록특허 제10-1745422호(2017.06.20.)  Patent Document 1: Korean Patent No. 10-1745422 (June 27, 2017)
본 발명이 해결하고자 하는 과제는 마이크로파를 흡수하여 와전류(eddy current) 발생 후 줄 열(Joule heat) 발생이 신속히 일어나 우수한 발열 효율을 나타내며, 동시에 산소에 의한 산화 반응을 방지 또는 최소화하여 내구성이 현저하게 향상될 수 있는 SiOIC 섬유 및 금속 도핑 SiOIC 섬유, 이를 포함하는 마이크로파 흡수 및 발열체, 및 그 제조방법을 제공하는 것이다. A problem to be solved by the present invention is to provide a microwave oven which absorbs microwaves and rapidly generates joule heat after eddy current is generated, thereby exhibiting excellent heat generating efficiency and at the same time preventing or minimizing oxidation reaction by oxygen, And a metal-doped SiOIC fiber, a microwave absorbing and heating element including the same, and a method of manufacturing the same.
상기 과제를 해결하기 위한 본 발명의 일 실시예는 실리콘(Si) 30~50 중량%, 산소(O) 5~15 중량%, 아이오다인(I) 3~15 중량% 및 탄소(C) 20~50 중량%를 포함하는 SiOIC 섬유에 관한 것이다.One embodiment of the present invention for solving the above problems is a method of manufacturing a semiconductor device comprising 30 to 50 wt% of silicon (Si), 5 to 15 wt% of oxygen (O), 3 to 15 wt% of iodine (I) To 50% by weight of the composition.
상기 실시예에서, 상기 SiOIC 섬유는 β-SiC, SiO2, 그래핀, SiI, SiCI, SiOCI 및 CIO로 이루어진 군으로부터 선택되는 일 이상의 결정상을 포함할 수 있다.In this embodiment, the SiOIC fibers may include one or more selected from β-SiC, SiO 2, graphene, SiI, SiCI, the group consisting of CIO SiOCI and crystal phase.
또한, 본 발명의 다른 일 실시예는 실리콘(Si) 3~30 중량%, 산소(O) 3~40 중량%, 아이오다인(I) 5~50 중량%, 탄소(C) 5~40 중량% 및 금속 5~50 중량%를 포함하는 금속 도핑 SiOIC 섬유에 관한 것이다.Another embodiment of the present invention is a method of manufacturing a semiconductor device comprising 3 to 30 wt% of silicon (Si), 3 to 40 wt% of oxygen (O), 5 to 50 wt% of iodine (I) % Of metal and 5 to 50 wt% of metal.
상기 실시예에서, 상기 금속은 티타늄, 철, 지르코늄, 알루미늄 및 그 조합으로 이루어진 군으로부터 선택될 수 있다. 상기 SiOIC 섬유는 β-SiC, SiO2, 그래핀, SiI, SiCI, SiOCI, CIO, MI, MOI 및 MCI로 이루어진 군으로부터 선택되는 일 이상의 결정상을 포함할 수 있으, M은 상기 금속을 나타낼 수 있다.In this embodiment, the metal may be selected from the group consisting of titanium, iron, zirconium, aluminum, and combinations thereof. The SiOIC fiber be able to include at least one selected from β-SiC, SiO 2, graphene, SiI, SiCI, SiOCI, CIO , the group consisting of MI, MOI and MCI crystal phase, M can represent a metal .
또한, 본 발명의 다른 일 실시예는 상기 실시예에 따른 SiOIC 섬유를 포함하는 마이크로파 흡수 및 발열체에 관한 것이다.Further, another embodiment of the present invention relates to a microwave absorbing and heating element including the SiOIC fiber according to the above embodiment.
또한, 본 발명의 또 다른 일 실시예는 폴리카보실란(PCS) 용액 및 아이오다인 용액을 혼합하여 겔 상태의 혼합물을 형성하는 단계; 상기 혼합물을 진공건조하여 고체상 혼합물로 형성하는 단계; 상기 고체상 혼합물을 용융방사하여 혼합 섬유를 형성하는 단계; 상기 혼합 섬유를 아이오다인 가스와 반응시켜, 상기 혼합 섬유를 불융화 처리하고, 상기 혼합 섬유 내에 아이오다인을 침투시키는 단계; 및 상기 혼합 섬유를 불활성 분위기하에서 열분해시키는 단계를 포함하는 SiOIC 섬유의 제조방법에 관한 것이다.According to another embodiment of the present invention, there is also provided a method of manufacturing a semiconductor device, comprising: mixing a polycarbosilane (PCS) solution and an iodine solution to form a gel mixture; Vacuum drying the mixture to form a solid phase mixture; Melt spinning the solid phase mixture to form mixed fibers; Reacting the mixed fibers with an iodine gas to thereby infiltrate the mixed fibers and infiltrating iodine into the mixed fibers; And thermally decomposing the mixed fibers under an inert atmosphere.
상기 실시예에서, 상기 아이오다인 용액 중 아이오다인의 양은 상기 폴리카보실란 용액에 포함된 폴리카보실란 중량의 0.001~0.02배의 범위일 수 있고, 용매의 양은 아이오다인 중량의 10~50배의 범위일 수 있다. 상기 폴리카보실란 용액 중 용매의 양은 폴리카보실란 중량의 1~4배의 범위일 수 있다. 상기 폴리카보실란(PCS) 용액 및 아이오다인 용액을 혼합하여 겔 상태의 혼합물을 형성하는 단계는, 폴리카보실란 용액 및 아이오다인 용액을 혼합한 후, 교반하면서 50~100℃에서 1~12시간동안 유지시키는 것을 포함할 수 있다. 상기 아이오다인 가스는 고체상 아이오다인을 100~200℃의 온도에 노출시켜 가스화한 것일 수 있으며, 상기 고체상 아이오다인은 상기 혼합물 섬유의 중량의 0.1~1배의 양으로 사용될 수 있다.In this embodiment, the amount of iodine in the iodine solution may be in the range of 0.001 to 0.02 times the weight of the polycarbosilane contained in the polycarbosilane solution, and the amount of solvent is 10 to 50 times the weight of iodine Lt; / RTI > The amount of solvent in the polycarbosilane solution may range from 1 to 4 times the weight of the polycarbosilane. The step of mixing the polycarbosilane (PCS) solution and the iodine solution to form a gel-state mixture may be performed by mixing the polycarbosilane solution and the iodine solution, stirring the mixture at 50 to 100 ° C for 1 to 12 ≪ / RTI > for a period of time. The iodine gas may be gasified by exposing the solid phase iodine to a temperature of 100 to 200 ° C, and the solid phase iodine may be used in an amount of 0.1 to 1 times the weight of the mixture fiber.
또한, 본 발명의 또 다른 일 실시예는 폴리카보실란(PCS) 용액, 아이오다인 용액 및 금속알콕사이드 용액을 혼합하여 겔 상태의 혼합물을 형성하는 단계; 상기 혼합물을 진공건조하여 고체상 혼합물로 형성하는 단계; 상기 고체상 혼합물을 용융방사하여 혼합 섬유를 형성하는 단계; 상기 혼합 섬유를 아이오다인 가스와 반응시켜, 상기 혼합 섬유를 불융화 처리하고, 상기 혼합 섬유 내에 아이오다인을 침투시키는 단계; 및 상기 혼합 섬유를 불활성 분위기하에서 열분해시키는 단계를 포함하는 금속 도핑 SiOIC 섬유의 제조방법에 관한 것이다. 상기 아이오다인 가스와 반응시킨 혼합물 섬유를 불활성 분위기하에서 열분해시키는 단계는, 상기 아이오다인 가스와 반응시킨 혼합물 섬유를 틀에 넣고 900~1350℃의 온도로 열처리하는 것을 포함할 수 있다.In yet another embodiment of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: mixing a polycarbosilane (PCS) solution, an iodine solution, and a metal alkoxide solution to form a gel mixture; Vacuum drying the mixture to form a solid phase mixture; Melt spinning the solid phase mixture to form mixed fibers; Reacting the mixed fibers with an iodine gas to thereby infiltrate the mixed fibers and infiltrating iodine into the mixed fibers; And thermally decomposing the mixed fibers under an inert atmosphere. The step of thermally decomposing the mixture fiber reacted with the iodine gas under an inert atmosphere may include thermally treating the mixture fiber reacted with the iodine gas in a mold at a temperature of 900 to 1350 ° C.
상기 실시예에서, 상기 금속알콕사이드 용액은 티타늄이소프로폭사이드(titanium isopropoxide), 철 아세틸아세토네이트(iron acetylacetonate), 지르코늄 이소프로폭사이드(zirconium isopropoxide), 알루미늄 아세틸아세토네이트(aluminum acetylacetonate) 및 그 조합으로 이루어진 군으로부터 선택되는 일 이상의 금속알콕사이드를 포함할 수 있다. 상기 금속알콕사이드 용액 중 금속알콕사이드의 양은 폴리카보실란 중량의 0.001~0.02배의 범위일 수 있고, 용매의 양은 금속알콕사이드 중량의 50~100배의 범위일 수 있다. 상기 아이오다인 용액 중 아이오다인의 양은 상기 폴리카보실란 용액에 포함된 폴리카보실란 중량의 0.001~0.02배의 범위일 수 있고, 용매의 양은 아이오다인 중량의 10~50배의 범위일 수 있다. 상기 폴리카보실란 용액 중 용매의 양은 폴리카보실란 중량의 1~4배의 범위일 수 있다. 상기 폴리카보실란(PCS) 용액 및 아이오다인 용액을 혼합하여 겔 상태의 혼합물을 형성하는 단계는, 폴리카보실란 용액 및 아이오다인 용액을 혼합한 후, 교반하면서 50~100℃에서 1~12시간동안 유지시키는 것을 포함할 수 있다. 상기 아이오다인 가스는 고체상 아이오다인을 100~200℃의 온도에 노출시켜 가스화한 것일 수 있으며, 상기 고체상 아이오다인은 상기 혼합물 섬유의 중량의 0.1~1배의 양으로 사용될 수 있다. 상기 아이오다인 가스와 반응시킨 혼합물 섬유를 불활성 분위기하에서 열분해시키는 단계는, 상기 아이오다인 가스와 반응시킨 혼합물 섬유를 틀에 넣고 900~1350℃의 온도로 열처리하는 것을 포함할 수 있다.In this embodiment, the metal alkoxide solution is selected from the group consisting of titanium isopropoxide, iron acetylacetonate, zirconium isopropoxide, aluminum acetylacetonate, and combinations thereof ≪ / RTI > and at least one metal alkoxide selected from the group consisting of < RTI ID = 0.0 > The amount of the metal alkoxide in the metal alkoxide solution may be in the range of 0.001 to 0.02 times the weight of the polycarbosilane, and the amount of the solvent may be in the range of 50 to 100 times the weight of the metal alkoxide. The amount of iodine in the iodine solution may be in the range of 0.001 to 0.02 times the weight of the polycarbosilane contained in the polycarbosilane solution and the amount of the solvent may be in the range of 10 to 50 times the weight of the iodine . The amount of solvent in the polycarbosilane solution may range from 1 to 4 times the weight of the polycarbosilane. The step of mixing the polycarbosilane (PCS) solution and the iodine solution to form a gel-state mixture may be performed by mixing the polycarbosilane solution and the iodine solution, stirring the mixture at 50 to 100 ° C for 1 to 12 ≪ / RTI > for a period of time. The iodine gas may be gasified by exposing the solid phase iodine to a temperature of 100 to 200 ° C, and the solid phase iodine may be used in an amount of 0.1 to 1 times the weight of the mixture fiber. The step of thermally decomposing the mixture fiber reacted with the iodine gas under an inert atmosphere may include thermally treating the mixture fiber reacted with the iodine gas in a mold at a temperature of 900 to 1350 ° C.
본 발명에 따른 SiOIC 섬유 및 금속 도핑 SiOIC 섬유는 마이크로파 조사에 의해 수초 내에 1000℃ 이상, 최대 1600℃까지 발열할 수 있으며, 탄소 코팅을 형성하지 않아 산소가 존재하는 공기 중에서 1000℃ 이상, 최대 1600℃까지 발열하여도 산화가 거의 일어나지 않아 내구성이 매우 우수하다.The SiOIC fiber and the metal-doped SiOIC fiber according to the present invention can generate heat up to a temperature of 1000 ° C. or higher and a maximum of 1600 ° C. within a few seconds by microwave irradiation. In the absence of a carbon coating, The oxidation is hardly occurred and the durability is very excellent.
따라서, 이러한 SiOIC 섬유 및 금속 도핑 SiOIC 섬유를 이용한 마이크로파 발열체는 섬유상으로 형성되므로 외부로의 열방사 효율이 높아서 에너지 효율을 현저하게 향상시킬 수 있다.Accordingly, since the microwave heating element using the SiOIC fiber and the metal-doped SiOIC fiber is formed into a fibrous shape, the heat radiation efficiency to the outside is high, and the energy efficiency can be remarkably improved.
또한, 본 발명에 따르면, 방사된 후 불융화가 완료된 섬유를 다양한 형상의 틀에 넣고 열처리하여 SiOIC 섬유 및 금속 도핑 SiOIC 섬유를 제조하기 때문에, 다양한 형상의 발열체를 용이하게 제조될 수 있다. 따라서, 이와 같이 제조된 다양한 형상의 마이크로파 발열체는 농업용, 가정용, 산업용 등의 열교환기, 열풍기, 쿡탑용 발열체 등과 같은 다양한 분야에 효과적으로 적용될 수 있어 산업적으로 매우 유용하다.In addition, according to the present invention, since the fibers that have been irradiated and then incompatible with each other are put into various molds and heat-treated to produce SiOIC fibers and metal-doped SiOIC fibers, various shapes of heating elements can be easily manufactured. Accordingly, the microwave heating body having various shapes thus manufactured can be effectively applied to various fields such as a heat exchanger for a farm, a household, and an industrial use, a heating coil for a hot tower, a cook top,
또한, 본 발명에 따르면, SiOIC 섬유에 다양한 금속 도핑을 함으로써 촉매 특성 등 다양한 기능성을 갖는 금속 도핑 SiOIC 섬유를 제조할 수 있으며, 이와 같은 금속 도핑 SiOIC 섬유는 더욱 향상된 발열 효율을 나타내며 각종 용도에 따른 다양한 요구조건을 충족시킬 수 있다.In addition, according to the present invention, metal-doped SiOIC fibers having various functions such as catalytic properties can be produced by doping various kinds of metal with SiOIC fibers. Such metal-doped SiOIC fibers exhibit further improved heat- The requirements can be met.
도 1은 종래 기술에 따른 SiC 섬유의 SEM 사진.1 is a SEM photograph of a SiC fiber according to the prior art.
도 2는 본 발명의 일 실시예에 따른 SiOIC 섬유의 SEM 사진.2 is a SEM photograph of a SiOIC fiber according to an embodiment of the present invention.
도 3a 및 3b는 본 발명의 다른 일 실시예에 따른 Ti 도핑된 SiOIC 섬유의 SEM 사진.Figures 3a and 3b are SEM photographs of Ti doped SiOIC fibers according to another embodiment of the present invention.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 도면을 참조하여 본 발명의 바람직한 실시예를 설명하기로 한다. 하기의 설명에서는 구체적인 구성요소 등과 같은 많은 특정사항들이 도시되어 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들 없이도 본 발명이 실시될 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, so that those skilled in the art can easily carry out the technical idea of the present invention. In the following description, numerous specific details are set forth, such as specific elements, which are provided to aid a more thorough understanding of the present invention, and it is to be understood that the present invention may be practiced without these specific details, It will be obvious to those who have. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.
종래 비정질 SiC 섬유는 산소 안정화를 거쳐 불융화된 폴리카보실란(PCS) 섬유를 불활성 분위기에서 1350℃ 이하의 온도로 열처리하여 제조하며, 예를 들어 실리콘(Si) 38.17~54.61 중량%, 탄소(C) 31.27~40.18 중량% 및 산소(O) 14.12~21.65 중량%로 이루어진 조성을 가질 수 있다. 비정질 SiC 섬유의 결정상은 나노 크기의 β-SiC, 나노 크기의 SiO2, 그래핀 등으로 구성될 수 있다. 이러한 SiC 섬유는 반도체적인 전기 특성을 가지고 있어서 마이크로파 조사에 의한 발열 온도 및 발열 속도가 그리 높지 못하다.Conventionally, amorphous SiC fibers are prepared by heat treating polycrystalline polycarbosilane (PCS) fibers, which have undergone oxygen stabilization through an oxygen-stabilized atmosphere, at a temperature of 1350 ° C or lower. For example, they include 38.17 to 54.61% ) 31.27 to 40.18% by weight and oxygen (O) 14.12 to 21.65% by weight. The crystalline phase of the amorphous SiC fiber can be composed of nano-sized β-SiC, nano-sized SiO 2 , graphene, and the like. These SiC fibers have semiconductor electrical characteristics, so that the heating temperature and heat generation rate by microwave irradiation are not so high.
본 발명의 실시예는 이러한 종래의 비정질 SiC 섬유와 상이한 새로운 조성을 갖고, 마이크로파 조사에 의한 우수한 발열 효율을 나타내며, 산화 안정성이 우수하여 내구성이 월등하게 향상된 SiOIC 섬유 및 금속 도핑 SiOIC 섬유를 제공하는 것이다.An embodiment of the present invention is to provide a SiOIC fiber and a metal-doped SiOIC fiber having a new composition different from that of the conventional amorphous SiC fiber, exhibiting excellent heating efficiency by microwave irradiation, excellent oxidation stability, and improved durability.
본 발명의 일 실시예에 따른 SiOIC 섬유는 실리콘(Si) 30~50 중량%, 산소(O) 5~15 중량%, 아이오다인(I) 3~15 중량% 및 탄소(C) 20~50 중량%를 포함할 수 있으며, 바람직하게는 실리콘(Si) 34~49 중량%, 산소(O) 9~13 중량%, 아이오다인(I) 5~12 중량% 및 탄소(C) 25~50 중량%를 포함할 수 있다. 이러한 SiOIC 섬유는 섬유 내부에 전기전도도 및 전류 생성에 영향을 미치는 아이오다인을 효과적으로 함유함으로써 마이크로파 조사시 이에 대응한 발열 효율을 현저하게 높일 수 있다. The SiOIC fiber according to one embodiment of the present invention comprises 30 to 50% by weight of silicon (Si), 5 to 15% by weight of oxygen (O), 3 to 15% by weight of iodine (I) Preferably from 34 to 49% by weight of silicon (Si), from 9 to 13% by weight of oxygen (O), from 5 to 12% by weight of iodine (I) and from 25 to 50% by weight of carbon (C) % ≪ / RTI > by weight. These SiOIC fibers effectively contain iodine, which affects the electrical conductivity and current generation inside the fiber, thereby significantly improving the heat efficiency corresponding to the irradiation of the microwave.
또한, 본 발명의 다른 일 실시예에 따른 금속 도핑 SiOIC 섬유는 실리콘(Si) 3~30 중량%, 산소(O) 3~40 중량%, 아이오다인(I) 5~50 중량%, 탄소(C) 5~40 중량% 및 금속 5~50 중량%를 포함할 수 있으며, 바람직하게는 실리콘(Si) 5~25 중량%, 산소(O) 3~37 중량%, 아이오다인(I) 6~47 중량%, 탄소(C) 7~35 중량% 및 금속 7~48 중량%를 포함할 수 있다. 이러한 금속 도핑 SiOIC 섬유는 아이오다인에 더하여, 금속 원소를 섬유 내부에 효과적으로 함유함으로써, 마이크로파 조사시 이에 대응한 발열 거동에 긍정적인 효과를 발휘하여, 발열 효율을 한층 더 높일 수 있다.According to another embodiment of the present invention, the metal-doped SiOIC fiber comprises 3 to 30 wt% of silicon (Si), 3 to 40 wt% of oxygen (O), 5 to 50 wt% of iodine (I) (I) 6 to 40% by weight of oxygen (C), 5 to 40% by weight of a metal and 5 to 50% by weight of a metal, preferably 5 to 25% To 47 wt%, carbon (C) 7 to 35 wt%, and metal 7 to 48 wt%. Such a metal-doped SiOIC fiber effectively contains the metal element in the fiber in addition to the iodine, thereby exerting a positive effect on the heat-generating behavior corresponding to the irradiation with the microwave, thereby further improving the heat-generating efficiency.
이와 같은 새로운 조성을 갖는 SiOIC 섬유 및 금속 도핑 SiOIC 섬유는 마이크로파 조사에 의해 수초 내에 1000℃ 이상, 최대 1600℃까지 발열하는 높은 발열 성능을 발휘할 수 있으며, 동시에 산소가 존재하는 공기 중에서 이와 같이 높은 온도로 발열하더라도 산화가 거의 일어나지 않아 내구성이 현저히 향상될 수 있다.The SiOIC fiber and the metal-doped SiOIC fiber having the new composition can exhibit a high heat generation performance in a few seconds by heating up to a temperature of more than 1000 ° C. and a maximum of 1600 ° C. by the microwave irradiation. At the same time, The oxidation hardly occurs and the durability can be remarkably improved.
상기 실시예에 따른 SiOIC 섬유는 β-SiC, SiO2, 그래핀, SiI, SiCI, SiOCI 및 CIO로 이루어진 군으로부터 선택되는 일 이상의 결정상을 포함할 수 있으며, 금속 도핑 SiOIC 섬유는 β-SiC, SiO2, 그래핀, SiI, SiCI, SiOCI, CIO, MI, MOI 및 MCI로 이루어진 군으로부터 선택되는 일 이상의 결정상을 포함할 수 있다. M은 도핑된 금속을 나타낸다.SiOIC fiber according to the embodiment may include at least one selected from β-SiC, SiO 2, graphene, SiI, SiCI, the group consisting of SiOCI and CIO crystal phase, metal-doped SiOIC fibers, β-SiC, SiO 2 , graphene, SiI, SiCI, SiOCI, CIO, MI, MOI, and MCI. M represents a doped metal.
금속 도핑 SiOIC 섬유에 포함되는 금속은 상기 금속은 티타늄, 철, 지르코늄, 알루미늄 및 그 조합으로 이루어진 군으로부터 선택될 수 있다. SiOIC 섬유에 다양한 금속을 도핑함으로써 마이크로파 대응 발열 효율을 더욱 향상시킬 수 있고, 촉매 특성 등 다양한 기능성을 부여할 수 있으며, 이에 따라 각각의 적용 분야에서 요구되는 개별적인 특성 요구 조건을 충족시킬 수 있다.The metal included in the metal doped SiOIC fibers may be selected from the group consisting of titanium, iron, zirconium, aluminum, and combinations thereof. By doping various metals into the SiOIC fiber, it is possible to further improve the heating efficiency corresponding to the microwave, to give various functions such as the catalyst characteristics, and to meet the individual characteristic requirements required in each application field.
이와 같은 SiOIC 섬유 및 금속 도핑 SiOIC 섬유는 방사된 후 불융화가 완료된 상태에서 원하는 목적에 따라 다양한 형상의 틀에 넣고 열처리됨으로써, 섬유가 무작위 또는 등방향으로 배열된 형태로 형성될 수 있다.The SiOIC fiber and the metal-doped SiOIC fiber may be formed into a shape randomly or isotropically arranged in a mold having various shapes according to a desired purpose after the radiation is completed, and heat-treated.
본 발명의 다른 일 실시예는 상기 실시예에 따른 SiOIC 섬유 또는 금속 도핑 SiOIC 섬유를 포함하는 마이크로파 흡수 및 발열체에 관한 것이다. 전술한 바와 같이, 본 발명의 실시예에 따른 마이크로파 흡수 및 발열체는 발열 효율이 높고, 산화안정성이 높아 내구성이 우수하고, 다양한 형태로 용이하게 제작될 수 있으며, 소형화를 구현할 수 있어 적용 분야가 넓고, 환경친화적인 특성을 나타낼 수 있다.Another embodiment of the present invention relates to a microwave absorbing and heating element comprising a SiOIC fiber or a metal-doped SiOIC fiber according to the above embodiment. As described above, the microwave absorbing and heating element according to the embodiment of the present invention has high heat generating efficiency, high oxidation stability, excellent durability, can be easily manufactured in various forms, can be miniaturized, , And can exhibit environment-friendly characteristics.
한편, 본 발명의 다른 일 실시예에 따른 SiOIC 섬유의 제조방법은 폴리카보실란(polycarbosilane, PCS) 용액 및 아이오다인(iodine) 용액을 혼합하여 겔 상태의 혼합물을 형성하는 단계; 겔 상태의 혼합물을 진공건조하여 고체상 혼합물로 형성하는 단계; 고체상 혼합물을 용융방사하여 혼합 섬유를 형성하는 단계; 혼합 섬유를 아이오다인 가스와 반응시켜, 혼합 섬유를 불융화 처리하고, 섬유 내에 아이오다인을 침투시키는 단계; 및 섬유를 틀에 넣고, 불활성 분위기하에서 열분해시키는 단계를 포함할 수 있다.According to another aspect of the present invention, there is provided a method of manufacturing a SiOIC fiber, comprising: mixing a polycarbosilane (PCS) solution and an iodine solution to form a gel-like mixture; Vacuum drying the gel-like mixture to form a solid phase mixture; Melt spinning the solid phase mixture to form blended fibers; Reacting the mixed fibers with an iodine gas, infusing the mixed fibers and infiltrating iodine into the fibers; And thermally decomposing the fiber into a mold and under an inert atmosphere.
먼저, 폴리카보실란 용액 및 아이오다인 용액을 혼합하여 겔 상태의 혼합물을 형성할 수 있다.First, the polycarbosilane solution and the iodine solution may be mixed to form a gel-like mixture.
폴리카보실란 용액에 이용되는 용매는 알코올, 톨루엔, 자일렌, 사이클로헥산 및 그 조합으로 이루어진 군으로부터 선택되는 일 이상일 수 있다.The solvent used in the polycarbosilane solution may be one or more selected from the group consisting of alcohols, toluene, xylene, cyclohexane, and combinations thereof.
폴리카보실란 용액 중 용매의 양은 폴리카보실란 중량의 1~4배 범위일 수 있다. 용매의 양이 폴리카보실란 중량의 1배 미만이면 폴리카보실란이 전부 용해되지 못할 수 있으며, 4배를 초과하면 용매 양 증가에 따른 용해 효과 증가를 더 이상 기대하기 어렵다.The amount of solvent in the polycarbosilane solution may range from 1 to 4 times the weight of the polycarbosilane. If the amount of the solvent is less than 1 time of the weight of the polycarbosilane, the polycarbosilane may not be completely dissolved. If the amount of the solvent is more than 4 times, the solubility of the polycarbosilane may not be increased.
아이오다인 용액에 이용되는 용매는 알코올, 톨루엔, 자일렌, 사이클로헥산 및 그 조합으로 이루어진 군으로부터 선택되는 일 이상일 수 있다.The solvent used in the iodine solution may be one or more selected from the group consisting of alcohols, toluene, xylene, cyclohexane, and combinations thereof.
아이오다인 용액 중 용매의 양은 아이오다인 중량의 10~50배 범위일 수 있다. 용매의 양이 아이오다인 중량의 10배 미만이면 아이오다인이 전부 용해되지 못할 수 있으며, 50배를 초과하면 용매 양 증가에 따른 용해 효과 증가를 더 이상 기대하기 어렵다.The amount of solvent in the iodine solution may range from 10 to 50 times the weight of iodine. If the amount of the solvent is less than 10 times the weight of the iodine, the iodine may not be completely dissolved. If the amount of the solvent is more than 50 times, the increase in the amount of the solvent is not expected to increase.
아이오다인 용액 중 아이오다인의 양은 혼합되는 폴리카보실란 용액에 포함된 폴리카보실란 중량의 0.001~0.02배 범위일 수 있다. 아이오다인의 양이 폴리카보실란 중량의 0.001배 미만이면 후속 공정에서 이루어지는 섬유화 과정 중 열처리 동안에 열분해가 일어나 섬유 내에 존재하는 아이오다인의 양이 거의 없게 될 수 있으며, 0.02배를 초과하면 후속 공정에서 이루어지는 건조 과정에서 섬유화하지 못할 정도로 혼합물의 열유도성이 저하되어 방사가 어려워져 섬유 형상을 갖지 못할 수 있다.The amount of iodine in the iodine solution may range from 0.001 to 0.02 times the weight of the polycarbosilane contained in the mixed polycarbosilane solution. If the amount of iodine is less than 0.001 times the weight of the polycarbosilane, pyrolysis may occur during the heat treatment during the fiberization process in the subsequent process, so that the amount of iodine present in the fiber may be almost zero. The thermal inductivity of the mixture may deteriorate to such an extent that the fiber can not be formed in the drying process, so that the spinning may be difficult and the fiber shape may not be obtained.
폴리카보실란 용액과 아이오다인 용액을 혼합함으로써 아이오다인이 섬유에 함유되어 열처리 후에도 섬유에 도핑된 상태로 존재할 수 있다. 용액 상태의 아이오다인을 이용함으로서 소량을 사용하더라도 섬유에 충분히 도핑될 수 있고, 공정이 편하고 안전한 장점을 갖는다.By mixing the polycarbosilane solution with the iodine solution, the iodine may be contained in the fiber and remain in the doped state even after the heat treatment. By using iodine in a solution state, even a small amount of iodine can be sufficiently doped into the fiber, and the process is easy and safe.
금속 도핑 SiOIC 섬유를 제조하기 위해서는, 폴리카보실란 용액 및 아이오다인 용액을 혼합하여 혼합물을 형성할 때, 금속알콕사이드 용액을 더 첨가하여 혼합할 수 있다.To prepare the metal-doped SiOIC fibers, a mixture of a polycarbosilane solution and an iodine solution may be added to further mix the metal alkoxide solution.
본 실시예에서는 금속 도핑 SiOIC 섬유 제조시, 원료인 폴리카보실란 용액 및 아이오다인 용액과 함께 도핑하고자 하는 금속을 함유하는 금속알콕사이드 용액을 혼합하여 섬유를 제조함으로써, 금속 분말을 첨가할 경우 섬유화를 위한 방사가 적절하게 이루어지지 못하는 문제점을 해결하여 SiOIC 섬유 내에 효과적으로 금속 원소를 도핑할 수 있다.In this embodiment, when the metal-doped SiOIC fiber is prepared, fibers are prepared by mixing a solution of a polycarbosilane as a raw material and a solution of a metal alkoxide containing a metal to be doped together with an iodine solution, It is possible to effectively dope the metal element in the SiOIC fiber.
금속알콕사이드 용액은 도핑하고자 하는 금속의 알콕사이드를 포함하는 것으로, 예를 들면, 티타늄이소프로폭사이드(titanium isopropoxide), 철 아세틸아세토네이트(iron acetylacetonate), 지르코늄 이소프로폭사이드(zirconium isopropoxide), 알루미늄 아세틸아세토네이트(aluminum acetylacetonate) 및 그 조합으로 이루어진 군으로부터 선택되는 일 이상의 금속알콕사이드를 포함할 수 있다.The metal alkoxide solution includes an alkoxide of a metal to be doped and includes, for example, titanium isopropoxide, iron acetylacetonate, zirconium isopropoxide, aluminum acetyl One or more metal alkoxides selected from the group consisting of aluminum acetylacetonate and combinations thereof.
금속알콕사이드 용액에 이용되는 용매는 알코올, 톨루엔, 자일렌, 사이클로헥산 및 그 조합으로 이루어진 군으로부터 선택되는 일 이상일 수 있다.The solvent used in the metal alkoxide solution may be one or more selected from the group consisting of alcohols, toluene, xylene, cyclohexane, and combinations thereof.
금속알콕사이드 용액 중 용매의 양은 금속알콕사이드 중량의 50~100배의 범위일 수 있다. 용매의 양이 금속알콕사이드 중량의 50배 미만이면 농도가 너무 높아서 폴리카보실란 용액 및 아이오다인 용액과의 혼합 효율이 좋지 못하며, 100배를 초과하면 더 이상의 균일한 혼합 효과가 발생하지 않는다.The amount of solvent in the metal alkoxide solution may range from 50 to 100 times the weight of the metal alkoxide. If the amount of the solvent is less than 50 times the weight of the metal alkoxide, the concentration is too high and the mixing efficiency with the polycarbosilane solution and the iodine solution is not good. If the solvent is more than 100 times, no further uniform mixing effect will occur.
금속알콕사이드 용액 중 금속알콕사이드의 양은 혼합되는 폴리카보실란 용액에 포함된 폴리카보실란 중량의 0.001~0.02배 범위일 수 있다. 금속알콕사이드 양이 폴리카보실란 중량의 0.001배 미만이면 후속 공정에서 이루어지는 섬유화 과정 중 열처리 동안에 열분해가 일어나 섬유 내에 존재하는 금속 원소의 양이 거의 없게 될 수 있으며, 0.02배를 초과하면 혼합 과정에서 엉김 현상이 일어나 균일한 분산이 이루어지기 어렵다.The amount of the metal alkoxide in the metal alkoxide solution may range from 0.001 to 0.02 times the weight of the polycarbosilane contained in the mixed polycarbosilane solution. If the amount of the metal alkoxide is less than 0.001 times the weight of the polycarbosilane, pyrolysis may occur during the heat treatment during the fiberization process in the subsequent process so that the amount of the metal element present in the fiber may be almost zero. If the amount is more than 0.02 times, And it is difficult to achieve uniform dispersion.
폴리카보실란 용액 및 아이오다인 용액; 또는 폴리카보실란 용액, 아이오다인 용액 및 금속알콕사이드 용액을 혼합한 후, 교반하면서 50~100℃에서 1~12시간 동안 유지시킴으로써 겔 상태의 혼합물을 형성할 수 있다.A polycarbosilane solution and an iodine solution; Or a mixture of a polycarbosilane solution, an iodine solution and a metal alkoxide solution, and then maintaining the mixture at 50 to 100 DEG C for 1 to 12 hours while stirring, to form a gel-like mixture.
이 때, 온도가 50℃ 미만인 경우에는 건조 효율이 매우 낮아 용매 건조 시간이 매우 느릴 수 있고, 100℃를 초과하는 경우에는 혼합된 용액이 끓기 시작하여 공정 진행이 어렵다.If the temperature is less than 50 ° C, the drying efficiency is very low and the solvent drying time may be very slow. If the temperature exceeds 100 ° C, the mixed solution starts boiling and the process is difficult to proceed.
다음으로, 겔 상태의 혼합물을 진공건조하여 고체상 혼합물로 형성할 수 있다.Next, the gel-state mixture can be vacuum dried to form a solid phase mixture.
진공건조는 수~10-2 torr 범위의 진공도를 갖는 진공하에서 이루어질 수 있다. 또한, 진공건조는 150~250℃의 온도 범위에서 이루어질 수 있다. 진공건조의 온도가 150℃ 미만인 경우에는 건조 효과가 나타나지 않으며, 250℃를 초과하는 경우에는 겔 상태의 혼합 용액이 경화되어 후속 공정인 용융 방사에 의한 섬유화 과정이 진행될 수 없다.Vacuum drying can be done under vacuum with a degree of vacuum in the range of several to 10 -2 torr. Vacuum drying can also be performed in a temperature range of 150 to 250 ° C. If the vacuum drying temperature is lower than 150 ° C, the drying effect is not exhibited. If the vacuum drying temperature is higher than 250 ° C, the gel-state mixed solution is cured and the subsequent fiberizing process by melt spinning can not proceed.
다음으로, 고체상 혼합물을 용융방사하여 혼합 섬유를 형성할 수 있다.Next, the solid phase mixture can be melt spinned to form mixed fibers.
일 예에서, 섬유 형성은, 고체상 혼합물을 방사 블럭에 넣고, 내부에 질소 가스 등을 주입하여 불활성 분위기를 조성한 후, 200~300℃로 가열하여 고체상 혼합물을 용융시킨 후, 질소 가스 등의 불활성 가스를 추가적으로 주입하여 방사 블럭 내부의 압력을 올려서 노즐로 용융된 혼합물이 흘러가도록 한 후 기어 펌프에 의해 노즐로 일정량의 용융 혼합물이 공급되도록 제어함으로써 이루어질 수 있다. 이와 같은 과정을 통하여 장섬유 및 단섬유 형태로 섬유화된 혼합물을 형성할 수 있다.In one example, the fiber formation can be carried out by forming a solid mixture in an emissive block, introducing nitrogen gas or the like into the interior of the emitter block to form an inert atmosphere, heating the mixture at 200 to 300 캜 to melt the solid mixture, To increase the pressure inside the spinning block to allow the molten mixture to flow through the nozzle, and then to control the supply of a certain amount of molten mixture to the nozzle by the gear pump. Through this process, a fibrous mixture can be formed in the form of long fibers and short fibers.
용융방사 시 가열 온도는 200~300℃의 범위일 수 있으며, 온도가 200℃ 미만인 경우에는 상대적으로 낮은 온도로 인하여 용융된 혼합물의 점도가 너무 높아 노즐로 효과적으로 투입되지 못하여 섬유화가 이루어지기 어렵고, 300℃를 초과하는 경우에는 지나치게 높은 온도로 인하여 용융된 혼합물의 점도가 너무 낮아져 물처럼 흐르게 되고, 섬유화가 이루어지지 않는다.When the temperature is lower than 200 ° C., the melt viscosity of the melted mixture is too high due to the relatively low temperature, so that the melt can not be efficiently injected into the nozzle, ° C., the viscosity of the molten mixture becomes too low due to an excessively high temperature, and flows like water, and no fibrosis is caused.
다음으로, 혼합 섬유를 아이오다인 가스와 반응시켜, 혼합 섬유를 불융화 처리하고, 혼합 섬유 내에 아이오다인을 침투시킬 수 있다.Next, the mixed fibers are allowed to react with the iodine gas, and the mixed fibers are subjected to an infusibilizing treatment to infiltrate the iodine into the mixed fibers.
아이오다인 가스는 고체상 아이오다인을 100~200℃의 온도에 노출시켜 가스화함으로써 얻어질 수 있다.The iodine gas can be obtained by gasifying the solid phase iodine by exposing it to a temperature of 100 to 200 ° C.
고체상 아이오다인은 반응하는 혼합 섬유 중량의 0.1~1배의 양일 수 있다. 고체상 아이오다인의 양이 혼합 섬유 중량의 0.1배 미만인 경우에는 혼합 섬유의 불융화 및 섬유 내부로의 아이오다인 침투가 효과적으로 일어나기 어렵고, 1배를 초과하는 경우에는 사용량 증가에 따른 더 이상의 불융화 및 아이오다인 침투 효과의 증가가 이루어지지 않는다.The solid phase iodine may be 0.1 to 1 times the weight of the mixed fibers to be reacted. When the amount of solid iodine is less than 0.1 times the weight of the mixed fiber, the insolubilization of the mixed fiber and the iodine penetration into the fiber are difficult to occur effectively. When the amount of solid iodine is more than 1 time, Iodine penetration effect is not increased.
혼합 섬유를 아이오다인 가스와 반응시킴으로써, 혼합 섬유가 열경화성으로 변환되고, 혼합 섬유 내에 아이오딘을 다량 침투시킬 수 있다. 이에 의해 후속 열분해 공정에서 연화 온도 및 용융 온도 이상으로 온도를 높이더라도 연화되거나 용융되지 않고 섬유상을 그대로 유지할 수 있으며, 열분해 수율도 향상될 수 있다.By reacting the mixed fibers with the iodine gas, the mixed fibers are converted into thermosetting properties, and a large amount of iodine can be infiltrated into the mixed fibers. Thus, even if the temperature is increased above the softening temperature and the melting temperature in the subsequent pyrolysis step, the fibrous phase can be maintained without being softened or melted, and the pyrolysis yield can also be improved.
다음으로, 불융화되고, 내부에 아이오다인이 침투된 섬유를 불활성 분위기하에서 열분해시킬 수 있다.Next, the fiber which is incompatible and has iodine impregnated therein can be pyrolyzed in an inert atmosphere.
열분해를 통하여 불융화되고, 내부에 아이오다인이 침투된 섬유가 세라믹으로 전환되어 SiOIC 섬유 또는 금속 도핑 SiOIC 섬유로 전환될 수 있다.The fibers which are insoluble through pyrolysis and into which iodine is impregnated can be converted into ceramics and converted into SiOIC fibers or metal-doped SiOIC fibers.
열분해는 900~1350℃의 온도에서 이루어질 수 있다. 열분해시 온도가 900℃ 미만인 경우에는 섬유의 열분해가 충분히 일어나지 않아 전기적 및 물리적 특성이 현저하게 떨어질 수 있으며, 1350℃를 초과하는 경우에는 열분해는 충분히 일어나지만 열처리하여 세라믹으로 전환된 SiOIC 섬유 및 금속 도핑 SiOIC 섬유 자체가 분해되어 섬유 형상을 잃고 분말상으로 변할 수 있다.The pyrolysis can be carried out at a temperature of 900 to 1350 ° C. When the temperature is less than 900 ° C., the thermal decomposition of the fiber is not sufficiently performed, and the electrical and physical properties may be significantly deteriorated. When the temperature exceeds 1350 ° C., the thermal decomposition occurs sufficiently. However, The SiOIC fiber itself may decompose and lose its fiber shape and may change into a powder.
열분해 과정은 불융화되고, 내부에 아이오다인이 침투된 섬유를 틀에 넣은 상태로 이루어질 수 있다. 틀은 섬유가 적용되는 제품, 예를 들면, 마이크로파 흡수 및 발열체의 형상에 따라 선택될 수 있으며, 예를 들면, 원형, 직사각형, 정사각형 등일 수 있다.The pyrolysis process is incompatible and can be made with the fiber into which the iodine has penetrated into the mold. The frame may be selected according to the shape of the product to which the fiber is applied, for example, the microwave absorbing and heating element, and may be, for example, a circle, a rectangle, a square, or the like.
틀에서 이루어지는 열분해 과정에 의해 SiOIC 섬유 또는 금속 도핑 SiOIC 섬유는 무작위 또는 등방향으로 배열된 형태를 가질 수 있다.By the thermal cracking process in the mold, the SiOIC fiber or the metal doped SiOIC fiber can have a random or isotropically arranged shape.
본 실시예에서는 이와 같이 불융화된 섬유를 틀에 넣고 열분해시켜 SiOIC 섬유 및 금속 도핑 SiOIC 섬유를 형성함으로써, 적용되는 제품에 맞추어 다양한 형상으로 용이하게 적용이 가능하다.In this embodiment, by forming the SiO 2 fiber and the metal-doped SiOIC fiber by thermally decomposing the unfused fiber in a mold, it can be easily applied to various shapes according to the product to be applied.
이하, 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 그러나 하기 실시예는 본 발명을 예시하는 것일 뿐이며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are illustrative of the present invention, and the scope of the present invention is not limited to the following examples.
[실시예][Example]
1. SiOIC 섬유 제조1. Manufacture of SiOIC fiber
(1) 폴리카보실란 용액 제조(1) Production of polycarbosilane solution
비이커에 톨루엔 30 g(30 ml)을 넣고, 고체상 폴리카보실란(제조사: 투비엠텍사, 분자량 Mw=3500) 10 g을 첨가한 후, 고체상 폴리카보실란이 완전히 용해되도록 핫 플레이트 상에서 12시간 동안 마그네틱 바에 의해 교반(stirring)을 수행함으로써, 폴리카보실란 용액을 수득하였다.After 30 g of toluene (30 ml) was added to the beaker, 10 g of solid polycarbosilane (manufactured by Tobiamec Co., Ltd., molecular weight Mw = 3500) was added and then magnetized on a hot plate for 12 hours to completely dissolve the solid polycarbosilane By performing stirring by means of a bar, a polycarbosilane solution was obtained.
(2) 아이오다인 용액 제조(2) Preparation of iodine solution
비이커에 톨루엔 3 g(3 ml)을 넣고, 고체상 아이오다인(구입처: 삼전순약공업주식회사, 순도: 99.8%) 0.1 g을 첨가한 후, 고체상 아이오다인이 완전히 용해되도록 핫 플레이트 상에서 12시간 동안 마그네틱 바에 의해 교반을 수행함으로써, 아이오다인 용액을 제조하였다.To the beaker was added 3 g of toluene (3 ml), and 0.1 g of solid phase iodine (purchased from Samseon Pure Chemical Industries, Ltd., purity: 99.8%) was added. Then, on a hot plate for 12 hours to completely dissolve the solid phase iodine, By performing stirring by means of a bar, an iodine solution was prepared.
(3) 혼합 용액 형성(3) Mixed solution formation
SiOIC 섬유 제조를 위하여, 상기에서 제조된 폴리카보실란 용액 및 아이오다인 용액을 혼합한 후, 10시간 동안 핫 플레이트 상에서 마그네틱 바에 의해 교반을 수행하였다. 이 때 핫 플레이트의 온도는 80℃로 유지하였다. 혼합 용액이 건조되면서 겔 상태가 될 때까지 핫 플레이트 상에서 가열하였고, 혼합 용액이 겔화되면서 점도가 상승하여 더 이상 마그네틱 바가 회전하지 못하게 되었을 때 교반을 멈추었다.For the preparation of the SiOIC fibers, the polycarbosilane solution prepared above and the iodine solution were mixed and stirred by a magnetic bar on a hot plate for 10 hours. At this time, the temperature of the hot plate was maintained at 80 캜. The mixed solution was heated on a hot plate until the gel state became dry while the mixed solution was gelled, and the stirring was stopped when the viscosity of the mixed solution became higher and the magnetic bar no longer rotated.
(4) 진공건조(4) Vacuum drying
겔화된 혼합물을 진공건조기 내에 넣고, 진공건조기 내부의 진공도를 8 × 10-1 torr로 조성하였다. 진공건조기 온도를 180℃로 조정하고 10시간 동안 유지하여 진공건조를 완료하였다.The gelled mixture was placed in a vacuum drier and the degree of vacuum inside the vacuum drier was adjusted to 8 x 10 -1 torr. The vacuum dryer temperature was adjusted to 180 DEG C and held for 10 hours to complete vacuum drying.
(5) 혼합물 섬유 형성 (5) Mixture fiber formation
진공건조에 의해 형성된 고체상 혼합물 5 g을 0.3 mm의 1개 홀을 가진 방사기에 넣고, 방사 블럭의 온도를 150℃까지 상승시켰다. 이 때, 방사 블럭 내부의 진공도는 약 3 × 10-1 torr이었으며, 150℃의 온도에서 3시간 동안 유지시킨 후, 내부에 질소 가스를 주입하여 불활성 분위기를 조성하였다. 이어서, 온도를 210℃까지 상승시켜 2시간 동안 유지하였다. 이어서, 불활성 가스를 추가적으로 주입하여 방사 블럭 내부의 압력을 0.01 MPa까지 올려서 용융된 혼합물이 노즐로 흘러가도록 한 후, 노즐 홀 끝으로 밀려나온 용융된 혼합물을 연신시켜 와인더에 감아서 섬유화를 수행하였다. 제조된 혼합물 섬유의 직경은 약 20~25 ㎛이었다.5 g of the solid phase mixture formed by vacuum drying was placed in a radiator having one hole of 0.3 mm and the temperature of the radiation block was raised to 150 캜. In this case, the degree of vacuum inside the spinning block was about 3 × 10 -1 torr, and maintained at a temperature of 150 ° C. for 3 hours. Then, an inert atmosphere was formed by injecting nitrogen gas into the spinning block. The temperature was then increased to 210 < 0 > C and held for 2 hours. Subsequently, an inert gas was further injected to raise the pressure inside the spinning block to 0.01 MPa to allow the molten mixture to flow to the nozzle, and the molten mixture pushed to the end of the nozzle hole was stretched and wound on a winder to perform fiberization . The diameters of the prepared mixture fibers were about 20 to 25 탆.
(6) 혼합물 섬유의 불융화 및 아이오다인 침투(6) Disintegration of mixture fibers and penetration of iodine
혼합물 섬유를 흑연체(graphite sieve)에 넣고, 이를 진공건조기 내에 넣었다. 그리고, 고체상 아이오다인 3 g을 진공건조기 내에 놓여 있는 흑연체 내 하단에 넣었다. 이후, 진공건조기 내부를 진공도 5 × 10-1 torr로 조성하고, 동시에 온도를 180℃로 승온시켜 흑연체 내 고체상 아이오다인이 가스화되도록 하였다. 형성된 아이오다인 가스는 혼합물 섬유와 활발히 반응하여 혼합물 섬유가 불융화되록 하였고, 동시에 혼합물 섬유 내부에 아이오다인의 침투가 활발하게 일어나도록 하였다. 진공이 조성된 진공건조기에서 180℃로 1시간 동안 유지시켜 불융화 및 아이오다인의 침투가 완료되도록 하였다.The mixture fibers were placed in a graphite sieve and placed in a vacuum dryer. Then, 3 g of solid phase iodine was placed in the lower part of the graphite body placed in the vacuum dryer. Thereafter, the inside of the vacuum dryer was adjusted to a degree of vacuum of 5 x 10 < -1 > torr, and at the same time, the temperature was raised to 180 DEG C so that solid iodine in the graphite was gasified. The formed iodine gas actively reacted with the blend fibers to insolubilize the blend fibers and at the same time actively infiltrate the blend fibers with iodine. And kept at 180 ° C for 1 hour in a vacuum dryer equipped with a vacuum to complete the infiltration and penetration of iodine.
(7) 열분해(7) Pyrolysis
불융화 및 아이오다인 침투가 완료된 혼합물 섬유 1.5 g을 지름 50 mm 원형의 흑연 몰드에 넣고 불활성 분위기 로에 장입하였다. 로의 내부에 질소 가스를 주입하여 불활성 분위기를 조성하였고, 승온 속도 10℃/min로 1350℃까지 승온시키고, 1350℃에서 1시간 동안 유지시킨 후 자연 냉각하였다. 고분자인 혼합물 섬유가 열처리에 의해 열분해되어 세라믹으로 전환된 SiOIC 섬유를 수득하였다.1.5 g of the mixture fiber having incompatibility and iodine penetration was charged into a 50 mm diameter circular graphite mold and charged into an inert atmosphere. Nitrogen gas was injected into the furnace to form an inert atmosphere. The temperature was raised to 1350 占 폚 at a heating rate of 10 占 폚 / min, maintained at 1350 占 폚 for 1 hour, and then naturally cooled. The polymer fibers were pyrolyzed by heat treatment to obtain SiOIC fibers converted into ceramics.
2. 금속 도핑 SiOIC 섬유 제조2. Manufacture of metal doped SiOIC fibers
상기 1.(3) 혼합 용액 형성 시 폴리카보실란 용액과 아이오다인 용액에 금속알콕사이드 용액을 더 첨가하여 혼합한 점을 제외하고는 상기 1과 동일한 방법에 의해 티타늄 도핑 SiOIC(실리콘옥시티타늄아이오다인카본) 섬유를 제조하였다.Doped SiOIC (silicon oxytitanium iodide) was prepared in the same manner as in (1) above except that the polycarbosilane solution and the iodine solution were further added with a metal alkoxide solution during the formation of the (3) Carbon) fiber.
금속알콕사이드 용액은 비이커에 톨루엔 3 g(3 ml)을 넣고, 티타늄이소프로폭사이드(구입처: 알드리치 코리아, 순도 99.5%) 0.04 g을 첨가한 후, 티타늄이소프로폭사이드가 완전히 용해되도록 핫 플레이트 상에서 12시간 동안 마그네틱 바에 의해 교반을 수행함으로써 제조하였다.The metal alkoxide solution was prepared by adding 3 g of toluene (3 ml) to a beaker, adding 0.04 g of titanium isopropoxide (purchased from Aldrich Korea, purity of 99.5%) and then dissolving the titanium isopropoxide in a hot plate ≪ / RTI > for 12 hours by means of a magnetic bar.
3. 결과3. Results
(1) SiOIC 섬유의 SEM 사진 및 원소분석(1) SEM photograph and elemental analysis of SiOIC fiber
도 1은 종래 기술에 따른 SiC 섬유의 SEM 사진이며, 도 2는 본 발명의 실시예에 따른 SiOIC 섬유의 SEM 사진이다. 도 1 및 도 2의 SEM 사진에 표시된 3개의 스폿(spot)에서 측정한 원소분석결과를 각각 표 1 및 2에 나타낸다.FIG. 1 is a SEM photograph of a SiC fiber according to the prior art, and FIG. 2 is a SEM photograph of a SiOIC fiber according to an embodiment of the present invention. The results of elemental analysis measured at three spots shown in the SEM photographs of Figs. 1 and 2 are shown in Tables 1 and 2, respectively.
Spot No.Spot No. SiSi CC OO
1One wt%wt% 38.1738.17 40.1840.18 21.6521.65
at%at% 22.4322.43 55.2355.23 22.3422.34
22 wt%wt% 42.5442.54 36.8336.83 20.6320.63
at%at% 25.825.8 52.2352.23 21.9721.97
33 wt%wt% 54.6154.61 31.2731.27 14.1214.12
at%at% 35.8035.80 47.9447.94 16.2616.26
상기 표 1에 나타내어진 바와 같이, 도 1에 나타내어진 종래 기술에 따른 SiC 섬유는 산소에 의한 불융화를 거친 SiC 섬유로, 실리콘(Si) 38.17~54.61 중량%, 탄소(C) 31.27~40.18 중량% 및 산소(O) 14.12~21.65 중량%의 조성을 가졌다.As shown in Table 1, the SiC fibers according to the prior art shown in Fig. 1 are SiC fibers which have been infused with oxygen, and are composed of silicon (Si) 38.17 to 54.61 wt%, carbon (C) 31.27 to 40.18 wt % And oxygen (O) 14.12 to 21.65 wt%.
Spot No.Spot No. SiSi CC OO II
1One wt%wt% 42.3942.39 38.9538.95 9.539.53 9.139.13
at%at% 27.8527.85 59.8459.84 10.9910.99 1.321.32
22 wt%wt% 34.3734.37 49.249.2 10.8410.84 5.595.59
at%at% 20.2520.25 67.867.8 11.2211.22 0.730.73
33 wt%wt% 48.3648.36 27.6927.69 12.5112.51 11.4411.44
at%at% 35.1435.14 47.0547.05 15.9615.96 1.851.85
상기 표 2에 나타내어진 바와 같이, 도 2에 나타내어진 본 발명의 일 실시예에 따른 SiOIC 섬유는 아이오다인이 첨가되었으며, 실리콘(Si) 34.37~48.36 중량%, 탄소(C) 27.69~49.2 중량%, 산소(O) 9.53~12.51 중량%, 및 아이오다인(I) 5.59~11.44 중량%의 조성을 가졌다.도 3a 및 3b는 본 발명의 다른 일 실시예에 따른 티타늄 도핑 SiOIC 섬유의 SEM 사진이며, 도 3a 및 3b의 SEM 사진에 표시된 3개의 스폿(spot)에서 측정한 원소분석결과를 각각 표 3 및 4에 나타낸다.As shown in Table 2, the SiOIC fibers according to an embodiment of the present invention shown in FIG. 2 were prepared by adding iodine, 34.37 to 48.36 wt% of silicon (Si), 27.69 to 49.2 wt% (O) 9.53 to 12.51 wt.%, And iodine (I) 5.59 to 11.44 wt.%. Figures 3a and 3b are SEM images of titanium doped SiOIC fibers according to another embodiment of the present invention, The elemental analysis results measured in the three spots shown in the SEM photographs of Figs. 3A and 3B are shown in Tables 3 and 4, respectively.
Spot No.Spot No. SiSi CC OO TiTi II
P1P1 wt%wt% 5.045.04 17.6917.69 12.6412.64 47.9347.93 16.7016.70
at%at% 5.025.02 41.2141.21 22.1122.11 28.0128.01 3.653.65
P2P2 wt%wt% 16.9316.93 28.7028.70 28.6628.66 10.3810.38 15.3315.33
at%at% 11.7711.77 46.6546.65 34.9934.99 4.234.23 2.362.36
P3P3 wt%wt% 23.4123.41 7.287.28 3.933.93 18.7418.74 46.6446.64
at%at% 34.0934.09 24.8124.81 10.0510.05 15.9715.97 15.0815.08
Spot No.Spot No. SiSi CC OO TiTi II
P1P1 wt%wt% 21.6021.60 34.0034.00 25.7125.71 7.747.74 10.9510.95
at%at% 14.1014.10 51.8951.89 29.4629.46 2.962.96 1.591.59
P2P2 wt%wt% 14.7214.72 29.1929.19 36.9336.93 12.4212.42 6.746.74
at%at% 9.409.40 43.5943.59 41.4041.40 4.654.65 0.960.96
P3P3 wt%wt% 24.7224.72 22.6022.60 27.2127.21 13.6913.69 11.7811.78
at%at% 18.1918.19 38.8738.87 35.1235.12 5.915.91 1.911.91
상기 표 3 및 4에 나타내어진 바와 같이, 본 발명의 다른 일 실시예에 따른 티타늄 도핑 SiOIC 섬유는 아이오다인 및 티타늄이 첨가되었으며, 실리콘(Si) 5.04~24.72 중량%, 탄소(C) 7.28~34.00 중량%, 산소(O) 3.93~36.93 중량%, 아이오다인(I) 6.74~46.64 중량%, 및 티타늄 7.74~47.93 중량%의 조성을 가졌다.이와 같이, 본 발명의 실시예에 따른 SiOIC 섬유는 전기전도도 및 전류 생성에 영향을 미치는 아이오다인을 섬유 내에 함유함으로써 마이크로파 대응 발열 거동에 긍정적 영향을 미칠 수 있다. 또한, 본 발명의 실시예에 따른 SiOIC 섬유 또는 금속 도핑 SiOIC 섬유는 종래 기술에 따른 SiC 섬유에 비하여 산소 함유량이 감소하여 SiO2 결정 생성이 저하되므로 전기 저항이 낮아질 수 있어 마이크로파 대응 발열 효율을 더욱 높일 수 있다.As shown in Tables 3 and 4, the titanium-doped SiOIC fibers according to another embodiment of the present invention include iodine and titanium, and include 5.04 to 24.72 wt% silicon (Si), 7.28 wt% (I) 6.74 to 46.64 weight%, and titanium 7.74 to 47.93 weight%. Thus, the SiOIC fibers according to the embodiments of the present invention have a composition of 34.00 wt%, oxygen (O) 3.93-36.93 wt%, iodine By including iodine in the fiber, which affects electrical conductivity and current generation, it can positively affect microwave-responsive exothermic behavior. In addition, the SiO 2 fiber or the metal-doped SiOIC fiber according to the embodiment of the present invention has a lower oxygen content than that of the SiC fiber according to the related art, and the generation of SiO 2 crystals is lowered, so that the electrical resistance can be lowered, .
(2) 발열 성능(2) Heating performance
실시예에 따른 SiOIC 섬유의 발열 성능과의 비교를 위하여 종래 기술에 따른 비정질 SiC 섬유의 마이크로파 대응 발열 온도를 측정하여 하기 표 5에 나타낸다. 실험에 이용된 종래 기술에 따른 비정질 SiC 섬유는 당해 기술분야에 공지된 방법에 따라 제조될 수 있으며, 예를 들어, 산소 안정화를 거쳐 불융화된 폴리카보실란(PCS) 섬유를 불활성 분위기에서 1350℃ 이하의 온도로 열처리하여 제조될 수 있다. 또한, 종래 기술에 따른 비정질 SiC 섬유는, 예를 들어 실리콘(Si) 38.17~54.61 중량%, 탄소(C) 31.27~40.18 중량% 및 산소(O) 14.12~21.65 중량%로 이루어진 조성을 가질 수 있다. 이러한 종래 기술에 따른 비정질 SiC 섬유의 결정상은 나노 크기의 β-SiC, 나노 크기의 SiO2, 그래핀 등으로 구성될 수 있다.For comparison with the exothermic performance of the SiOIC fiber according to the embodiment, the microwave corresponding heat generation temperature of the amorphous SiC fiber according to the prior art is measured and shown in Table 5 below. The amorphous SiC fibers according to the prior art used in the experiments can be prepared according to methods known in the art, for example, polycondensation of polycarbosilane (PCS) fibers, which have undergone oxygen stabilization, in an inert atmosphere at 1350 DEG C Or less. The amorphous SiC fiber according to the related art may have a composition of, for example, 38.17 to 54.61% by weight of silicon (Si), 31.27 to 40.18% by weight of carbon (C) and 14.12 to 21.65% by weight of oxygen (O). The crystalline phase of the amorphous SiC fiber according to the prior art may be composed of nano-sized? -SiC, nano-sized SiO 2 , graphene, or the like.
제조된 종래 기술에 따른 SiC 섬유를 적외선 열화상 카메라(SDS HotFind DXS)가 구비된 마이크로파 조사 챔버 내에 넣고, 2.45 ㎓의 마이크로파를 조사하여, 마이크로파 상호작용에 의한 SiC 섬유에 의해 생성되는 발열 거동을 적외선 열화상 카메라로 분석하였다.The prepared conventional SiC fiber was placed in a microwave irradiation chamber equipped with an infrared thermography camera (SDS HotFind DXS), and a microwave of 2.45 GHz was irradiated to irradiate the exothermic behavior generated by the SiC fiber by microwave interaction with infrared rays And analyzed with an infrared camera.
측정 결과Measurement result
시험편 전체 평균 온도Average temperature of the entire specimen 171℃171 DEG C
중앙 부분 온도Central part temperature 179℃179 ° C
최고 온도Maximum temperature 179℃179 ° C
최저 온도Minimum temperature 169℃169 ° C
표준편차Standard Deviation 2.3℃2.3 ℃
온도편차Temperature range 1.3%1.3%
알려진 바와 같이 종래 기술에 따른 SiC 섬유는 반도체적인 전기 특성을 가지고 있어서 마이크로파에 대응하여 발열이 잘 일어나지 않는 경향이 있다. 상기 표 5에서 확인할 수 있는 바와 같이 종래 기술에 따른 비정질 SiC 섬유는 마이크로파 대응 발열 온도가 최대 179℃이었다.As is known, the SiC fibers according to the prior art have a semiconductor electrical characteristic, so that there is a tendency that heat generation does not occur corresponding to microwaves. As can be seen in Table 5, the amorphous SiC fibers according to the prior art had maximum heat generation temperatures corresponding to microwaves of 179 ° C.
상기 실시예에서 제조된 본 발명의 실시예에 따른 SiOIC 섬유의 마이크로파 대응 발열 온도를 상기한 바와 동일한 방법으로 측정하여 하기 표 6에 나타낸다.The heating temperature corresponding to the microwave of the SiOIC fiber according to the embodiment of the present invention manufactured in the above example was measured in the same manner as described above and is shown in Table 6 below.
측정 결과Measurement result
시험편 전체 평균 온도Average temperature of the entire specimen 1307℃1307 ℃
중앙 부분 온도Central part temperature 1320℃1320 ° C
최고 온도Maximum temperature 1320℃1320 ° C
최저 온도Minimum temperature 1275℃1275 ℃
표준편차Standard Deviation 10.3℃10.3 DEG C
온도편차Temperature range 0.8%0.8%
표 6을 참조하면, 본 발명의 실시예에 따른 SiOIC 섬유는 마이크로파에 대응하여 최대 1320℃까지 발열하였음을 확인할 수 있다. 이는 표 5에 도시된 종래 기술에 따른 비정질 SiC 섬유에 비하여 마이크로파 조사시 발열 효과가 현저하게 향상될 수 있음을 보여주는 것이다.Referring to Table 6, it can be seen that the SiOIC fiber according to the embodiment of the present invention has a maximum heat of 1320 ° C corresponding to the microwave. This shows that the heating effect can be remarkably improved when the microwave irradiation is performed as compared with the amorphous SiC fiber according to the prior art shown in Table 5. [
또한, 상기 실시예에서 제조된 본 발명의 다른 실시예에 따른 Ti 도핑된 SiOIC 섬유의 마이크로파 대응 발열 온도를 상기한 바와 동일한 방법으로 측정하여 하기 표 7에 나타낸다.The temperature of the Ti-doped SiOIC fiber according to another embodiment of the present invention was measured in the same manner as described above, and the results are shown in Table 7 below.
측정 결과Measurement result
시험편 전체 평균 온도Average temperature of the entire specimen 1598℃1598 ° C
중앙 부분 온도Central part temperature 1602℃1602 DEG C
최고 온도Maximum temperature 1602℃1602 DEG C
최저 온도Minimum temperature 1549℃1549 ° C
표준편차Standard Deviation 12.6℃12.6 ° C
온도편차Temperature range 0.8%0.8%
표 7을 참조하면, 본 발명의 실시예에 따른 Ti 도핑된 SiOIC 섬유는 섬유 내에 아이오다인뿐 아니라 금속 원소도 함유함으로써, 발열 효율이 더욱 향상되어 마이크로파에 대응하여 1602℃까지 발열하였음을 확인할 수 있다.Referring to Table 7, Ti-doped SiOIC fibers according to an embodiment of the present invention include not only iodine but also metal elements in the fibers, and thus heat generation efficiency is further improved, .
상기 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments or constructions. Various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention. It will be clear to those who have knowledge.

Claims (15)

  1. 실리콘(Si) 30~50 중량%, 산소(O) 5~15 중량%, 아이오다인(I) 3~15 중량% 및 탄소(C) 20~50 중량%를 포함하는 SiOIC 섬유.A SiOIC fiber comprising 30 to 50 wt% silicon (Si), 5 to 15 wt% oxygen (O), 3 to 15 wt% iodine (I), and 20 to 50 wt% carbon (C).
  2. 제1항에 있어서,The method according to claim 1,
    상기 SiOIC 섬유는 β-SiC, SiO2, 그래핀, SiI, SiCI, SiOCI 및 CIO로 이루어진 군으로부터 선택되는 일 이상의 결정상을 포함하는SiOIC said fibers comprising at least one selected from β-SiC, SiO 2, graphene, SiI, SiCI, the group consisting of a crystalline phase and CIO SiOCI
    SiOIC 섬유.SiOIC fiber.
  3. 실리콘(Si) 3~30 중량%, 산소(O) 3~40 중량%, 아이오다인(I) 5~50 중량%, 탄소(C) 5~40 중량% 및 금속 5~50 중량%를 포함하는 금속 도핑 SiOIC 섬유.3 to 30 wt% of silicon (Si), 3 to 40 wt% of oxygen (O), 5 to 50 wt% of iodine, 5 to 40 wt% of carbon (C) and 5 to 50 wt% of metal Metal-doped SiOIC fibers.
  4. 제3항에 있어서,The method of claim 3,
    상기 금속은 티타늄, 철, 지르코늄, 알루미늄 및 그 조합으로 이루어진 군으로부터 선택되는Wherein the metal is selected from the group consisting of titanium, iron, zirconium, aluminum and combinations thereof
    금속 도핑 SiOIC 섬유.Metal doped SiOIC fiber.
  5. 제3항에 있어서,The method of claim 3,
    상기 SiOIC 섬유는 β-SiC, SiO2, 그래핀, SiI, SiCI, SiOCI, CIO, MI, MOI 및 MCI로 이루어진 군으로부터 선택되는 일 이상의 결정상을 포함하며, M은 상기 금속을 나타내는SiOIC the fiber comprises one or more selected from β-SiC, SiO 2, graphene, SiI, SiCI, SiOCI, CIO , the group consisting of MI, and MOI MCI crystal phase and, M is indicative of the metal
    금속 도핑 SiOIC 섬유.Metal doped SiOIC fiber.
  6. 제1항에 따른 SiOIC 섬유 또는 제3항에 따른 금속 도핑 SiOIC 섬유를 포함하는 마이크로파 흡수 및 발열체.A microwave absorbing and heating element comprising the SiOIC fiber according to claim 1 or the metal doped SiOIC fiber according to claim 3.
  7. 폴리카보실란(PCS) 용액 및 아이오다인 용액을 혼합하여 겔 상태의 혼합물을 형성하는 단계;Mixing a polycarbosilane (PCS) solution and an iodine solution to form a gel-like mixture;
    상기 혼합물을 진공건조하여 고체상 혼합물로 형성하는 단계;Vacuum drying the mixture to form a solid phase mixture;
    상기 고체상 혼합물을 용융방사하여 혼합 섬유를 형성하는 단계;Melt spinning the solid phase mixture to form mixed fibers;
    상기 혼합물 섬유를 아이오다인 가스와 반응시켜, 상기 혼합물 섬유를 불융화 처리하고, 상기 혼합물 섬유 내에 아이오다인을 침투시키는 단계; 및Reacting the blended fibers with an iodine gas, infiltrating the blended fibers and infiltrating iodine into the blended fibers; And
    상기 아이오다인 가스와 반응시킨 혼합물 섬유를 불활성 분위기하에서 열분해시키는 단계를 포함하는And thermally decomposing the mixture fiber reacted with the iodine gas under an inert atmosphere
    SiOIC 섬유의 제조방법.Method of making SiOIC fibers.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 폴리카보실란(PCS) 용액 및 아이오다인 용액을 혼합하여 혼합물을 형성하는 단계는, 금속알콕사이드 용액을 더 첨가하여 혼합하는 것을 포함하는The step of mixing the polycarbosilane (PCS) solution and the iodine solution to form a mixture comprises adding a metal alkoxide solution and mixing
    SiOIC 섬유의 제조방법.Method of making SiOIC fibers.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 금속알콕사이드 용액은 티타늄이소프로폭사이드(titanium isopropoxide), 철 아세틸아세토네이트(iron acetylacetonate), 지르코늄 이소프로폭사이드(zirconium isopropoxide), 알루미늄 아세틸아세토네이트(aluminum acetylacetonate) 및 그 조합으로 이루어진 군으로부터 선택되는 일 이상의 금속알콕사이드를 포함하는The metal alkoxide solution may be selected from the group consisting of titanium isopropoxide, iron acetylacetonate, zirconium isopropoxide, aluminum acetylacetonate, and combinations thereof, wherein the metal alkoxide solution is selected from the group consisting of titanium isopropoxide, iron acetylacetonate, zirconium isopropoxide, aluminum acetylacetonate, RTI ID = 0.0 > metal alkoxide < / RTI >
    SiOIC 섬유의 제조방법.Method of making SiOIC fibers.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 금속알콕사이드 용액 중 금속알콕사이드의 양은 폴리카보실란 중량의 0.001~0.02배의 범위이고, 용매의 양은 금속알콕사이드 중량의 50~100배의 범위인The amount of the metal alkoxide in the metal alkoxide solution is in the range of 0.001 to 0.02 times the weight of the polycarbosilane and the amount of the solvent is in the range of 50 to 100 times the weight of the metal alkoxide
    SiOIC 섬유의 제조방법.Method of making SiOIC fibers.
  11. 제7항에 있어서,8. The method of claim 7,
    상기 아이오다인 용액 중 아이오다인의 양은 상기 폴리카보실란 용액에 포함된 폴리카보실란 중량의 0.001~0.02배의 범위이고, 용매의 양은 아이오다인 중량의 10~50배의 범위인The amount of iodine in the iodine solution is in the range of 0.001 to 0.02 times the weight of the polycarbosilane contained in the polycarbosilane solution and the amount of the solvent is in the range of 10 to 50 times the weight of the iodine
    SiOIC 섬유의 제조방법.Method of making SiOIC fibers.
  12. 제7항에 있어서,8. The method of claim 7,
    상기 폴리카보실란 용액 중 용매의 양은 폴리카보실란 중량의 1~4배의 범위인The amount of solvent in the polycarbosilane solution is in the range of 1 to 4 times the weight of the polycarbosilane
    SiOIC 섬유의 제조방법.Method of making SiOIC fibers.
  13. 제7항에 있어서,8. The method of claim 7,
    상기 폴리카보실란(PCS) 용액 및 아이오다인 용액을 혼합하여 겔 상태의 혼합물을 형성하는 단계는, 폴리카보실란 용액 및 아이오다인 용액을 혼합한 후, 교반하면서 50~100℃에서 1~12시간동안 유지시키는 것을 포함할 수 있다.The step of mixing the polycarbosilane (PCS) solution and the iodine solution to form a gel-state mixture may be performed by mixing the polycarbosilane solution and the iodine solution, stirring the mixture at 50 to 100 ° C for 1 to 12 ≪ / RTI > for a period of time.
    SiOIC 섬유의 제조방법.Method of making SiOIC fibers.
  14. 제7항에 있어서,8. The method of claim 7,
    상기 아이오다인 가스는 고체상 아이오다인을 100~200℃의 온도에 노출시켜 가스화한 것이며, 상기 고체상 아이오다인은 상기 혼합물 섬유의 중량의 0.1~1배의 양으로 사용되는The iodine gas is obtained by gasifying solid phase iodine at a temperature of 100 to 200 DEG C and the solid phase iodine is used in an amount of 0.1 to 1 times the weight of the fiber mixture
    SiOIC 섬유의 제조방법.Method of making SiOIC fibers.
  15. 제7항에 있어서,8. The method of claim 7,
    상기 아이오다인 가스와 반응시킨 혼합물 섬유를 불활성 분위기하에서 열분해시키는 단계는, 상기 아이오다인 가스와 반응시킨 혼합물 섬유를 틀에 넣고 900~1350℃의 온도로 열처리하는 것을 포함하는The step of thermally decomposing the mixture fiber reacted with the iodine gas under an inert atmosphere comprises heat-treating the mixture fiber reacted with the iodine gas in a mold at a temperature of 900 to 1350 ° C
    SiOIC 섬유의 제조방법.Method of making SiOIC fibers.
PCT/KR2018/013562 2017-12-13 2018-11-08 Sioic fiber, metal-doped sioic fiber, microwave absorption and heating element comprising same metal-doped sioic fiber, and manufacturing method therefor WO2019117473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0171353 2017-12-13
KR1020170171353A KR102065524B1 (en) 2017-12-13 2017-12-13 SiOIC FIBER AND METAL DOPED SiOIC FIBER, MICROWAVE ABSORPTION AND HEATING ELEMENT INCLUDING THE SAME, AND METHOD FOR PREPARING THE SAME

Publications (1)

Publication Number Publication Date
WO2019117473A1 true WO2019117473A1 (en) 2019-06-20

Family

ID=66820460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013562 WO2019117473A1 (en) 2017-12-13 2018-11-08 Sioic fiber, metal-doped sioic fiber, microwave absorption and heating element comprising same metal-doped sioic fiber, and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102065524B1 (en)
WO (1) WO2019117473A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150024657A (en) * 2013-08-27 2015-03-09 한국세라믹기술원 Thermal interface material comprising ceramic composite fiber and manufacturing method thereof
KR20150072059A (en) * 2013-12-19 2015-06-29 한국세라믹기술원 Method for wet oxidation curing polycarbosilane and method for manufcaturing silicon carbide comprising the same
KR101732573B1 (en) * 2015-10-28 2017-05-24 (주)옴니세라 Fiber-type ceramic heating element and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209110B1 (en) * 2010-04-09 2012-12-06 한국세라믹기술원 Silicon carbide and method of fabricating thereof
KR101470362B1 (en) * 2012-02-29 2014-12-08 한국세라믹기술원 Heat dissipation pad using non-woven ceramic fabrics and manufacturing method thereof
KR101586820B1 (en) 2014-12-18 2016-02-03 (주) 데크카본 Method of manufacturing silicon carbide fiber having uniform property by using high-speed and continuous process
KR101745422B1 (en) 2015-09-22 2017-06-20 (주) 데크카본 Complex materials for absorbing microwave and heating and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150024657A (en) * 2013-08-27 2015-03-09 한국세라믹기술원 Thermal interface material comprising ceramic composite fiber and manufacturing method thereof
KR20150072059A (en) * 2013-12-19 2015-06-29 한국세라믹기술원 Method for wet oxidation curing polycarbosilane and method for manufcaturing silicon carbide comprising the same
KR101732573B1 (en) * 2015-10-28 2017-05-24 (주)옴니세라 Fiber-type ceramic heating element and method for manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KHISHIGBAYAR KHOS-ERDENE: "Heating Behavior of Silicon Carbide Fiber Mat under Microwave", J OURNAL OF THE KOREAN CERAMIC SOCIETY 2016, vol. 53, no. 6, 30 November 2016 (2016-11-30), pages 707 - 711, XP055618479 *
KHISHIGBAYAR KHOS-ERDENE: "Silicon Carbide Fibers Derived from Polycarbosilane Doped with Iodine as Oxygen Inducer", TEXTILE SCIENCE AND ENGINEERING 2016, vol. 53, 31 December 2016 (2016-12-31), pages 385 - 390 *

Also Published As

Publication number Publication date
KR102065524B1 (en) 2020-01-13
KR20190070636A (en) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2012108607A1 (en) Manufactured carbon nanotube fibers
WO2014204282A1 (en) Polyacrylonitrile-based precursor fiber for carbon fibre, and production method therefor
CN1168859C (en) Preparation method of high temperature resistant multi crystal silicon carbide fiber
WO2020111619A1 (en) Method for producing wholly aromatic liquid crystalline polyester fibers having improved spinning properties
WO2013100456A1 (en) Silicon carbide powder, method for manufacturing the same and method for growing single crystal
CN102605477A (en) Polyimide-based carbon fiber and preparation method thereof
WO2013100455A1 (en) Silicon carbide powder, method for manufacturing the same and silicon carbide sintered body, method for manufacturing the same
WO2018131896A1 (en) Liquid crystal composite carbon fiber and method for preparing same
WO2019117473A1 (en) Sioic fiber, metal-doped sioic fiber, microwave absorption and heating element comprising same metal-doped sioic fiber, and manufacturing method therefor
KR101103649B1 (en) Manufacturing method of electroconductive Silicon Carbide nanofiber
EP0298630B1 (en) Ceramic materials
JP2608061B2 (en) High-purity high-strength silicon nitride continuous inorganic fiber and method for producing the same
CN103074706A (en) Chemical vapor crosslinking method for polyborosilazane fiber
EP0448236B1 (en) Curing preceramic polymers by exposure to nitrogen dioxide
JPWO2006085479A1 (en) Method for producing silicon carbide nanofiber
CN109650895B (en) Preparation method of high-crystallinity SiC fibers
CN110016178B (en) Ternary organic-inorganic hybrid material composite flame retardant and application thereof
KR101873342B1 (en) METHOD FOR FABRICATING LOW TEMPERATURE INFUSIBLE PCS BY TREATMENT AND DOPING, METHOD FOR FABRICATING SiC FIBER WITH HIGH STRENGTH AND HEAT RESISTANCE USING THE SAME
WO2020036356A1 (en) Carbon fiber formed from chlorinated polyvinyl chloride, and method for preparing same
CN106916311A (en) A kind of preparation method containing beryllium ceramic precursor
CN108395253B (en) Preparation method of silicon-boron-nitrogen-carbon-beryllium ceramic fiber
CN111039678B (en) Gradient double-atmosphere non-melting method for polysilazane (borazane) fiber
CN107740205A (en) A kind of compound organic precursor method prepares BN Si3N4The method of complex phase ceramic continuous fiber
KR102266753B1 (en) Polyimide based carbon fiber with excellent flexibility and manufacturing method thereof
WO2012177098A2 (en) Method of fabricating silicon carbide powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888694

Country of ref document: EP

Kind code of ref document: A1