WO2019117099A1 - Fragrance quality identification system, high performance portable terminal, and program - Google Patents
Fragrance quality identification system, high performance portable terminal, and program Download PDFInfo
- Publication number
- WO2019117099A1 WO2019117099A1 PCT/JP2018/045363 JP2018045363W WO2019117099A1 WO 2019117099 A1 WO2019117099 A1 WO 2019117099A1 JP 2018045363 W JP2018045363 W JP 2018045363W WO 2019117099 A1 WO2019117099 A1 WO 2019117099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adjective
- noun
- information
- search
- scent
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
Definitions
- the present invention relates to an aroma quality identification system, an intelligent portable terminal, and a program for identifying an object having an aroma based on data in which noun information, adjective information, and aroma numerical information are associated with each other.
- Patent Document 1 a technique as disclosed in Patent Document 1 which records information related to a detected scent together with captured image data.
- Patent Document 1 includes a RAM that detects a scent component and records a detection value of the scent component as scent information, and a CPU that performs image processing on an imaging signal obtained by imaging subject light and generates an image file.
- the invention regarding the camera which links and records fragrance information and an image file is disclosed.
- the fragrance name corresponding to the scent information, the name of the scent component included in the fragrance name corresponding to the scent information, and the image file are associated. Then, when the image file is reproduced, the fragrance is sprayed by selecting the displayed fragrance name. From this, according to the invention described in Patent Document 1, "image file” and "name of scent component" are recorded together.
- a scent quality specification system that can improve the certainty of the association between "object” and "aroma” more than before and make it easier to identify the object that emits a scent Intended to provide.
- the scent quality specification system of the present invention comprises a noun of an object, an input unit capable of inputting an adjective representing the noun, and a measuring unit for measuring a numerical value based on a scent component emitted from the object
- a data storage unit configured to combine and store at least two of the noun input to the input unit, the adjective, and the numerical value measured by the measurement unit, and a search noun for an object to be searched,
- the search pronoun, the search object adjective and the search object numerical value are combined Data for matching with data and identifying the object having the search pronoun indicating the quality of the search object adjective and the smell of the search object value based on the combination data Characterized in that it comprises a verification unit.
- FIG. 5 is a diagram for explaining a recursive neural network in which an input layer is a noun, an intermediate layer is a scent numerical value, and an output layer is an adjective.
- FIG. 5 is a diagram for explaining a recursive neural network in which an input layer is an adjective, an intermediate layer is a scent numerical value, and an output layer is a noun.
- FIG. 5 is a diagram for explaining a recursive neural network in which an input layer is a noun, an intermediate layer is an adjective, and an output layer is a scent value. It is a figure for demonstrating a recurrent neural network in which an input layer is an aroma numerical value, an intermediate layer is an adjective, and an output layer is a noun.
- the scent quality identification system 100 includes a scent component transfer device 10, a measurement unit 30, an artificial intelligence unit 50, and an input / output unit 70.
- the scent component transfer device 10 includes a housing 11 capable of containing the object 1 having a scent, a tube 12 connecting the measurement unit 30, and a pump 13 disposed in the middle of the tube 12.
- the scent component transfer device 10 is a device capable of transferring the gas inside the housing 11 to the measurement unit 30.
- the aroma component transfer device 10 moves the gas to the measurement unit 30 by reducing the pressure inside the measurement unit 30.
- the measurement unit 30 is a part that measures a numerical value based on the scent component emitted from the object 1 and includes a plurality of gas sensors 31, a plurality of quartz crystal vibrator sensors 32, and a scent numerical value calculation unit 33.
- Each of the plurality of gas sensors 31 is a sensor that detects a gas released from the object 1 such as carbon dioxide, carbon monoxide, methane, butane, or ammonia. When animals and plants release these gases, some may emit a scent while others may not emit a scent, but a plurality of gas sensors 31 are provided in order to be able to detect a scent containing any gas component. It is done. Each gas sensor 31 detects a different gas such that one of the gas sensors 31 detects ammonia (with odor) and one of the gas sensors 31 detects carbon dioxide (no odor). These gas sensors 31 detect the gas released together with the scent molecules emitted from the object 1. For example, an electrochemical sensor is used as the gas sensor 31.
- An electrochemical sensor has a detection electrode, a counter electrode, and an ion conductor provided between the detection electrode and the counter electrode, and is configured to measure a short circuit current in which the detection electrode and the counter electrode are electrically connected. When it is exposed to the gas to be detected, it detects a change in current value. The data of this current value change is used for gas detection.
- Each of the plurality of quartz oscillator sensors 32 is a sensor that detects a scent component emitted from the object 1.
- Each of the quartz oscillator sensors 32a to 32g has a quartz oscillator 34 (see FIG. 1B) formed of a thin film having nonspecific adsorption.
- Each of the plurality of quartz oscillator sensors 32 detects a change in resonant frequency with respect to time from when the scent component is not attached to the quartz oscillator 34 to when the scent component is attached to the quartz oscillator 34.
- each of the quartz oscillators 34 included in the quartz oscillator sensors 32a to 32g a specific compound capable of detecting a plurality of scent components is vapor deposited.
- the compounds deposited on each of the quartz oscillators 34 included in the quartz oscillator sensors 32a to 32g are different from each other. Therefore, the scent components that can be detected by each of the quartz oscillator sensors 32a to 32g are also different from one another.
- Examples of the compound deposited on each of the quartz oscillators 34 included in the quartz oscillator sensors 32 a to 32 g include D phenylalanine, D-tyrosine, DL-sethidine, D glucose, adenine, and polyethylene.
- the quartz crystal sensor 32a detects the scent components "A, B, C, D, E”
- the quartz crystal sensor 32b detects the scent components "A, B, F, G, H”
- the quartz crystal is vibrated.
- the child sensor 32c detects the scent components "A, B” will be described.
- the scent component of the rose variety “Rouge royal” is "A, B”
- the scent component of the rose variety “Rosemary” is "C, D, E”
- the rose variety "Denti Bes” It is assumed that the scent component of “F, G, H”.
- the aroma components "A, B” of "rouge royal” can be detected by the quartz crystal sensors 32a, 32b, 32c.
- the aroma components "C, D, E” of “rosemary” can be detected by the quartz oscillator sensor 32a, they can not be detected by the quartz oscillator sensors 32b and 32c.
- the scent components "F, G, H” of "Denti Beth” can be detected by the quartz oscillator sensor 32b, but can not be detected by the quartz oscillator sensors 32a, 32c.
- the quartz crystal sensors 32a to 32c may detect the same scent component or may not detect the same scent component.
- each of the quartz crystal sensors 32a to 32c is detected at different resonance frequencies. Further, even if the same scent component can not be detected, each of the quartz crystal sensors 32a to 32c will detect different scent components.
- the odor numerical value calculation unit 33 receives current value signals based on the gas detected by the plurality of gas sensors 31, and holds numerical values based on the current value signals as current value data.
- the scent numerical value calculation unit 33 receives a resonant frequency signal based on the scent component detected by the plurality of crystal oscillator sensors 32, and a numerical value based on the resonant frequency signal (hereinafter sometimes referred to as "scent number") is a resonant frequency It is held as data (hereinafter sometimes referred to as "scent numerical value information").
- the resonance frequency data indicates the change in resonance frequency with respect to the time from the state in which the scent molecules are not attached to the quartz oscillator 34 to the state in which the scent molecules are attached to the quartz oscillator 34.
- the input / output unit 70 is a portion to which the user can input the noun of the object 1 and the adjective represented by the noun, and the user can use the noun, the adjective, the aroma numerical value, or the noun, the adjective, the aroma numerical value of the object 1 It is also a portion capable of outputting an image or the like of the object 1 having a feature.
- the odor numerical value calculation unit 33 calculates resonant frequency data (data indicating a change in resonant frequency with respect to time) shown in graphs K1 to K5 based on the detection result detected by the quartz crystal sensor 32a. Possess. As shown in FIG. 2B, the scent numerical value calculation unit 33 calculates resonant frequency data (data indicating a change in resonant frequency with respect to time) shown in graphs K1 to K5 based on the detection result detected by the quartz crystal sensor 32b. Possess. As shown in FIG.
- the scent numerical value calculation unit 33 calculates resonant frequency data (data indicating a change in resonant frequency with respect to time) shown in graphs K1 to K5 based on the detection result detected by the quartz oscillator sensor 32c. Possess.
- K1 is data of the scent component of Rouge Royal
- K2 is data of the scent component of Jeanne d'Arc
- K3 is data of the scent component of Shedrachable
- K4 is data of the scent component of Sadark lady
- K5 is It is data of the scent component of wishing.
- Rouge Roway, Jeanne d'Arc, Shedradable, Sadark Lady, and Wishing are varieties of roses. The data of the scent component was similarly measured for the quartz oscillator sensors 32c to 32g (see FIG. 4).
- FIG. 4 is a table showing reference values of graphs K1 to K5 of FIGS. 2A and 2B and graphs K1 to K3 of FIG.
- a numerical value that stably indicates the resonance frequency after 100 seconds is referred to as a reference value.
- the reference value of the resonant frequency of the rouge royal detected by the quartz oscillator sensor 32a is 1990760 Hz.
- the reference value of the resonant frequency of the rouge royal detected by the quartz oscillator sensor 32b is 1977230 Hz.
- the reference value of the resonant frequency of the rouge royal detected by the quartz oscillator sensor 32c is 1994785 Hz.
- the odor numerical value calculation unit 33 holds the detection results detected by the quartz oscillator sensors 32a to 32g as an aroma numerical value represented by a vector.
- the table in FIG. 4 looks similarly for Jeanne d'Arc, Shedrachable, Sadark Lady, and Wishing.
- the artificial intelligence unit 50 includes a data storage unit 51 and a data collating unit 52.
- the data storage unit 51 includes information on nouns (noun labels) of an object input from the input / output unit 70 (input unit / output unit), information on adjectives (adjective expressions) representing the nouns, and scents measured by the measurement unit 30. Receive numerical information. Then, the data storage unit 51 combines the information of these nouns, the information of adjectives, and the information of scent value, and stores them as combination data (see FIG. 6).
- the data storage unit 51 learns nouns, adjectives and scent values with a recursive neural network among nouns, adjectives and scent values, and creates and accumulates combination data. In many cases, the data storage unit 51 combines all the nouns and adjectives input to the input / output unit 70 and the scent value measured by the measurement unit 30 and stores them as combination data, but two of them are combined and combined In some cases, data may be accumulated (see ID3 and ID4 in FIG. 6). This is because not all nouns, adjectives and scent values are always consistent.
- Noun information includes, for example, cooking name (curry), varieties such as flowers (rose, rose), producer's name ( ⁇ ⁇ ⁇ ), lot number (product number), confectionery name (Pringles sour cream & onion), etc. Is the case.
- Information of adjectives includes information of olfactory senses, tastes, and expressions obtained by sight on noun objects.
- Data storage unit On deep learning between noun information and adjective information
- the data storage unit 51 creates combination data combining the noun information and the adjective information.
- the data storage unit 51 uses the noun information in the input layer, uses the adjective information in the output layer, and performs odor learning using a recursive neural network using the aroma numerical information in the intermediate layer when the aroma numerical information is received.
- the data accumulation unit 51 accumulates data obtained by deep learning by the recursive neural network as combination data as needed.
- the data storage unit 51 receives the noun information "rouge royale” and the adjective information "fruity” described in ID1 of FIG.
- the data storage unit 51 creates combination data from the noun information "rouge royal” and the adjective information "fruity”.
- the data storage unit 51 uses the noun “Rouge Royal” in the input layer, uses the adjective “Fruity” in the output layer, and uses the aroma numerical information in the middle layer when the aroma numerical information is received, and the noun information Conduct deep learning from "Rouge royal" to adjective information "Fruity”.
- the probability of the adjective expressing the noun is improved between the noun and the adjective by performing deep learning by the flow of the noun ⁇ the numerical value of the aroma ⁇ the adjective.
- the data storage unit 51 uses the noun "rose, fresh flower, love” in the input layer, uses the adjective “fruity, good smell, sweet, thick, good smell” in the output layer, and smell value information in the middle layer. Deep learning is performed using noun information to adjective information. In this way, deep learning is performed by the flow of noun ⁇ aroma numerical value ⁇ adjective.
- the data storage unit 51 performs deep learning by means of a recursive neural network having a noun as an input unit, an adjective as an output unit, and an aroma value as an intermediate layer (FIG. 8A). Deep learning is performed by a recursive neural network having a part, a noun as an output part, and an aroma value as an intermediate layer (FIG. 8B), and the relationship between the noun and the adjective is learned.
- the data storage unit 51 receives the noun of the object 1 and receives the noun information, and when receiving the aroma numerical information measured by the measuring unit 30, creates the combination data combining the noun information and the aroma numerical information Do.
- the data storage unit 51 performs deep learning by means of a recursive neural network using noun information in the input layer, using odor numerical information in the output layer, and using adjective information in the middle layer when adjective information is received.
- the data accumulation unit 51 accumulates data obtained by deep learning by the recurrent neural network as needed as combination data.
- the data storage unit 51 receives the input information of the noun information "rouge royale” described in the ID1 of FIG. 6, and receives the aroma numerical value information "1990760".
- the data storage unit 51 creates combination data from the noun information "rouge royal” and the aroma numerical value information "1990760”.
- the data storage unit 51 uses noun “Rouge royal” in the input layer, uses aroma numerical value information "1990760” in the output layer, and adjective information in the middle layer when adjective information is received, noun information We perform deep learning from "Rouge royal” to aroma numerical value information "1990760".
- the probability that the scent numerical value expresses the noun is improved between the noun and the scent numerical value.
- the data storage unit 51 uses the noun "rose, fresh flower, love” in the input layer, and the scent numerical value information "1977230, 1977230, 1994785, ... 1996620, 1988760" in the output layer (here, id1 in FIG. 6).
- the middle layer adjective information is used, and deep learning from noun information to adjective information is performed using the following numerical value information of scent).
- odor numerical value information provided in the output layer id2 and id3 in FIG. 6 may be used.
- the output layer is the ID1 of the scent numerical value information, but the same applies to ID2, ID3 and ID4.
- the data storage unit 51 performs deep learning by means of a recursive neural network having a noun as an input unit, an aroma value as an output unit, and an adjective as an intermediate layer (FIG. 8C). Deep learning is performed by a recursive neural network having an input unit, a noun as an output unit, and an adjective as an intermediate layer (FIG. 8D), and the relationship between the noun and the scent value is learned.
- the data storage unit 51 receives combined odor numerical information measured by the measurement unit, and when the adjective information of the object 1 is input and receives the adjective information, creates combined data combining the aroma numerical value information and the adjective information .
- the data storage unit 51 performs deep learning using a recurrence neural network by using aroma numerical value information in the input layer, using adjective information in the output layer, and using noun information in the intermediate layer when noun information is received.
- the data accumulation unit 51 accumulates data obtained by deep learning by the recursive neural network as combination data as needed.
- the data storage unit 51 receives the aroma numerical value information “1990760” (see FIG. 6) described in the ID1 of FIG. 6, and receives the adjective information “fruity” (see FIG. 6).
- the data storage unit 51 creates combination data from the scent numerical value information "1990760” and the adjective information "Fruity”.
- the data storage unit 51 uses the scent numerical value information "1990760” in the input layer, uses the adjective information "Fruity" in the output layer, and uses noun information in the middle layer when the noun information is received.
- the data storage unit 51 uses the scent numerical value information “1977230, 1977230, 1994785,... 1996620, 1988760” (here, the scent numerical value information of id1 in FIG. 6 is illustrated) for the input layer, and Using adjective information “fruity, good smell, sweet, thick, good smell” and using noun information in the middle layer, we perform deep learning from scent numerical information to adjective information. In this way, deep learning is performed by the flow of the numerical value information of the scent ⁇ noun information ⁇ adjective information.
- odor numerical value information provided in the input layer id2 and id3 in FIG. 6 may be used.
- the input layer is the description about ID1 of the scent numerical value information, but the same goes for ID2, ID3 and ID4.
- the data storage unit 51 performs deep learning by means of a recursive neural network having an aroma value as an input unit, an adjective as an output unit, and a noun as an intermediate layer (FIG. 8E) and, conversely, inputs an adjective Deep learning is performed by a recursive neural network in which the part, the scent value is an output part, and the noun is an intermediate layer (FIG. 8F), and the relationship between the scent value and the adjective is learned.
- the data storage unit 51 collects the information between the nouns, the adjectives and the scent value as described above from the Internet information, creates combination data, and stores the combination data as needed.
- the data storage unit 51 collects combination information of noun information and adjective information from combinations searched by Twitter (registered trademark), texts tweeted by Twitter, etc. There is.
- the data storage unit 51 is based on the information from the noun, the adjective and the scent value as described above, and from the system starting from the response history of the scent quality identification system 100 including the auto answer system (chatbot) in others. collect.
- FIGS. 5A to 5C the operation of the scent quality identification system 100 will be described using FIGS. 5A to 5C.
- the user inserts the object 1 whose aroma information is to be measured into the aroma component transfer device 10, and the aroma of the object 1 fills the inside of the housing 11 (M1).
- the user drives the pump 13 (M2), and sends the air containing the aroma component in the aroma component transfer device 10 to the measurement unit 30.
- the gas sensor 31 detects carbon monoxide, carbon dioxide, ammonia and the like in the air (M31 of M3).
- the quartz oscillator sensor 32 detects the resonance frequency of the scent component in the air (M32 of M3).
- the quartz oscillator sensor 32 detects a rouge royal as a scent component.
- nouns and adjectives are transmitted to the data storage unit 51 of the artificial intelligence unit 50 through the Internet (M5), and a feature learning model (LSTM which is a recurrent neural network) is executed (M6) ).
- LSTM feature learning model
- the user transmits the noun of the object 1 and the adjective (M4) to the data storage unit 51 of the artificial intelligence unit 50 using the input / output unit 70 of the high-performance mobile terminal (smartphone etc.), Execute the recursive neural network (LSTM) (M6).
- the relationship between the noun of the learned object 1 and the adjective is sent to the data collating unit 52 of the artificial intelligence unit 50 (M7).
- the artificial intelligence unit 50 causes the data storage unit 51 to store combination data in which noun information, adjective information and odor numerical value information are combined.
- the data storage unit 51 of the artificial intelligence unit 50 of FIG. 5A uses the noun (M11) for the language input layer (M12) and the adjective represented by the adjective for the language output layer (M16).
- the relationship between a noun and an adjective is deep-learned by a feature learning model (LSTM which is a recursive neural network) (M17) using information (M15).
- LSTM feature learning model
- the data storage unit 51 uses an adjective (M13) in the language input layer (M14) and information (M15) of an object represented by a noun in the language output layer (M16) to provide a feature learning model (recursive neural network Deeply learn the relationship between nouns and adjectives by LSTM (M17) which is a network.
- the data storage unit 51 of the artificial intelligence unit 50 of FIG. 5A uses nouns (M21) for the language input layer (M22) and is represented by odor numerical values for the scent numerical value output layer (M26).
- object information M25
- deep learning is performed on the relationship between the noun and the scent value by a feature learning model (LSTM which is a recursive neural network) (M27).
- the data storage unit 51 uses the scent numerical value (M23) for the scent numerical value input layer (M24), uses the information (M25) of the object represented by the noun for the language output layer (M26), Deep learning of the relationship between scent value and noun by LSTM (M 27), which is a neural network.
- the combination data is information in which a plurality of noun information, a plurality of adjective information, and a plurality of scent numerical value information are combined.
- the noun information of ID 1 includes “rouge royal”, “rose”, “flower” and “love”.
- the data storage unit 51 classifies “Rouge royal”, “rose”, “floral flower”, and “love” as being strongly associated with each other according to the frequency of use. This relationship arises because “Rouge royal” is a variety of "rose”, is used for "fresh flowers”, and has the flower language of "love”.
- the input noun information is related to each other according to the frequency of the input for each input content of the noun information or the adjective information or the aroma numerical information input to the data storage unit 51, the adjectives are related to each other, and the aroma numerical value information Relationships arise between one another.
- “Rouge royale, roses” that may be frequently presented as combination data are deeply learned to have a strong relationship
- for combination data with a low frequency of input such as "rouge royale, rice” Deep learning is performed so as to have only a weak relationship.
- the adjective information of ID 1 includes “fruity”, “good smell”, “sweet”, “rich” and “good smell”.
- the data storage unit 51 determines that “fruity”, “good smell”, “sweet”, “rich”, “good smell” is used as an adjective that expresses “rouge royal”.
- adjective information "fruity” and “good smell” are expressed by the first expressor, "sweet” and “rich” are expressed by the second expressor, and "good smell” by the third expressor It is also recorded that it was expressed.
- s1 corresponds to the quartz crystal sensor 32a
- s2 corresponds to the quartz crystal sensor 32b
- s3 corresponds to the quartz crystal sensor 32c
- s4 corresponds to the quartz crystal sensor 32d
- S5 corresponds to the quartz oscillator sensor 32e
- s6 corresponds to the quartz oscillator sensor 32f
- s7 corresponds to the quartz oscillator sensor 32g.
- the data collating unit 52 receives input information of the noun of the object 1 for which the user has searched for the object 1 (searching noun) and the adjective representing this noun (searching adjective), and the user measures it to search the object 1
- the scent value (the search item value) of the object 1 measured by the unit 30 is received.
- the data collating unit 52 receives input information of the noun “rose” and the adjective “fruity” searched by the user, and the measuring unit 30 receives the scent value “1990760”.
- the data collating unit 52 collates the noun, the adjective and the aroma value of the retrieved object with the stored combination data.
- the data collating unit 52 specifies the object 1 having the noun of the search object indicating the adjective of the search object and the scent value of the search object based on the combination data. For example, in the above example, it is as follows.
- the data collating unit 52 collates the noun "rose” of the search object with the noun information "rose" of ID 1 and the noun information "rose” of ID 2 in FIG. Further, the data collating unit 52 collates the adjective "fruity” of the search object with the adjective "fruity” of ID 1 and the adjective “fruity” of ID 2 in FIG. Furthermore, the data collating unit 52 collates the scent value “1990760” of the search item with the average value “1990760” of the scent values of FIG.
- the data collating unit 52 can determine that it is “rose” from the noun and the adjective of the search object, it can not determine whether it is “rouge royal” or “Janne d'arc”. However, the data collating unit 52 determines that it is "rouge royal” from the average value of the scent value. The data collating unit 52 outputs the rouge royal roses to the input / output unit 70.
- Example 1 Next, the user went to the flower shop to find "something that has a good smell", but it is assumed that a new soap that has the same smell as this smell goes to a general store and searches for a scent quality specification system The usage mode of the user regarding 100 and the operation of the scent quality specification system 100 will be described. Also, in reality, if it is a general store, the soap component is often described in the packaging paper of the soap, so "a scent equivalent to a good smell" is specified in the packaging paper, Here, it is assumed that soaps in which the content of “a scent equivalent to a good scent” is not described in the packaging sheet are lined up in the store.
- the user As the user walks through the florist, find something that smells like yours.
- the user activates the "scent application” on the screen of the input / output unit 70 of the smartphone 80.
- the user stores the scented component in the casing 11 of the scent component transfer device 10.
- the user drives the pump 13 to flow the air of the housing 11 into the measurement unit 30.
- the measuring unit 30 detects the scent of soap by the gas sensor 31 and the quartz crystal sensor 32, measures the scent value of the soap by the scent value calculating unit 33, and transmits the scent value information "1990760" to the data storage unit 51.
- the data storage unit 51 creates combination data of the adjective information “fruity, good smell, sweet, thick, good smell” and the numerical value information of aroma “1990760”.
- the user goes to the grocery store and looks at the soap.
- FIG. 7A the user has the sentences "What are you looking for?" And “What is the smell like that? Are there other features?" Is displayed.
- FIG. 7B the user inputs the noun “soap” in the "What are you looking for?" Input field, and "What is the smell like that? Is there any other feature?" Enter the adjective "fruity sweet” in the entry field of.
- the input / output unit 70 transmits the noun information “soap” and the adjective information “fruity sweet” to the data collating unit 52.
- the data collating section 52 is a part of combination data of adjective information “fruity, good smell, sweet, rich, good smell” collated by florist and numerical value information of smell “1990760”, and noun information “soap” searched by general store And the adjective information "Fruity Sweet” and the combination data part is further combined. Then, the data collating unit 52 derives the noun information “soap”, the adjective information “fruity, sweet”, and the aroma numerical value information “1990760”. The data collating unit 52 specifies from the noun information that the noun is "soap” and from the adjective information and the numerical value information that the smell is "rouge royal”.
- the artificial intelligence unit 50 displays the soap of “Rouge Royale's Soap” on the screen, and also displays the soap with the word “Rouge Royale” written on the packaging sheet. The user recognizes that the soap is "rouge royal soap”.
- Example 2 Next, the user goes to a general store to find “something that smells good” and finds out what it is, but explains the usage pattern of the user and the operation of the scent quality specification system 100 regarding the scent quality identification system 100 To go.
- an object is identified because something with a good smell is often described on the packaging paper in practice, but here, it is not packaged in the packaging paper I will explain assuming the case where is lined up in the store.
- the measuring unit 30 detects what smell is detected by the gas sensor 31 and the quartz crystal sensor 32, measures the odor numerical value of the smell with the aroma numerical value calculating unit 33, and detects the odor numerical value information “1990760 Send ".
- the user activates the "scent application” on the screen of the input / output unit 70 of the smartphone.
- the sentences “What are you looking for?" And “What is the smell like, what other features do you have?” Is displayed.
- FIG. 7B the user inputs the noun “unknown” in the "What are you looking for?" Input field, and "What is the smell like that? Is there any other feature?" Enter “Fruity” in the entry field of.
- the input / output unit 70 transmits the noun information “unknown” and the adjective information “fruity” to the data collating unit 52.
- the data collating unit 52 collates the noun information “unknown”, the adjective information “fruity”, and the scent numerical information “1990760” with the combination data of the data storage unit 51. Then, the artificial intelligence unit 50 determines that the noun is not specified from the noun information, the smell is not specified from the adjective information, and the smell is “rouge royal” from the smell numerical information. Although the noun information is not known at the search stage, if the data collating unit 52 has the combination data of the noun information “soap”, the adjective information “fruity”, and the aroma numerical information “1990760”, It may be concluded that it is a "roial soap”. However, it may also conclude that it is a "Rouge royal rose”.
- the data comparison unit 52 assumes that there is data in which adjective information and odor numerical value information are combined in combination data but there is no combination data in which these are combined with noun information To explain. In this case, in order to identify the noun information, "is it a square?", “Is it hard?", “Is it slippery?”, “It is white,” on the screen The sentence is displayed.
- the scent quality identification system 100 it is possible to improve the certainty of the association between the "object” and the "aroma” more than in the past and to easily identify the object 1 that emits the scent.
- the certainty of the association between the noun “soap” and the aroma number "1990760” is improved by the adjective “fruity, good smell, sweet, thick, good smell” etc.
- An object 1 to be emitted can be easily identified.
- the crystal oscillator sensor is used to detect the scent component.
- the present invention is not limited to this, a configuration in which even scent molecules are finely detected, or a semiconductor sensor, contact combustion type A sensor, an electrochemical sensor, or an optical sensor may be used to detect a gas emitted from an odor component or an odor molecule or an object having an odor.
- the semiconductor sensor detects a change in the resistance value of the oxide semiconductor because the electric resistance of the oxide semiconductor changes.
- the data of this resistance value change is used for detection of the scent molecule.
- the contact combustion type sensor is a bridge by raising the resistance of only the detection piece among the detection piece that reacts to the combustible gas and the compensation piece that does not react to the combustible gas when exposed to the flammable gas. The balance of the circuit is broken and a change in the unbalanced voltage value is detected. The data of this voltage value change is used for detection of the scent molecule.
- the data storage unit 51 is a unique system developed by the applicant named IINIOI AI but may be a system based on other deep learning or database.
- the scent data has a seven-dimensional configuration, but the present invention is not limited to the above embodiment. That is, a configuration of eight or more dimensions in which eight or more quartz oscillator sensors 32 are used may be used.
- the data storage unit 51 can hold the scent numerical value information more finely.
- the data collating unit 52 can collate the odor numerical value more finely as the number of types of the quartz oscillator sensor 32 increases.
- the data storage unit 51 is configured to use noun information in the input layer, adjective information in the output layer, and scent numerical value information in the intermediate layer, but the configuration is not limited to this configuration.
- a learned network between scent numerical information and noun information is used for transfer learning, or a learned network between scent numerical information and adjective information is used for transfer. You may learn it. This is the same even if the input layer uses adjective information, the output layer uses noun information, and the middle layer uses scent numerical information.
- the data storage unit 51 is configured to use noun information in the input layer, scent numerical value information in the output layer, and adjective information in the middle layer, but the configuration is not limited to this.
- a learned network between adjective information and noun information is used for transfer learning, or a learned network between adjective information and odor numerical information is used for transfer learning You may do it.
- the numerical value information of the scent is used for the input layer, the noun information for the output layer, and the adjective information for the intermediate layer.
- the data storage unit 51 is configured to use the scent numerical value information for the input layer, the adjective information for the output layer, and the noun information for the intermediate layer, but the configuration is not limited to this configuration.
- the middle layer training a learned network between noun information and scent numerical information is used for transfer learning, or a learned network between noun information and adjective information is used for transfer learning You may do it.
- the fragrance quality identification system 100 was a structure which has the fragrance component transfer apparatus 10, it may not be limited to this structure.
- the scent quality specifying system 100 may be provided with a scent suction mechanism for sucking a scent.
- the scent quality specification system 100 has the configuration in which the scent component transfer device 10, the scent measurement unit 30, the artificial intelligence unit 50, and the input / output unit 70 are separately configured, but the present invention is limited to this configuration. It does not have to be. All configurations may be built in high-performance communication terminals such as smartphones.
- the data collating unit 52 collates the scent numerical value information of the object 1 to be searched with the average value of the scent numerical value information of the data storage unit 51 in the above embodiment
- the present invention is not limited to this configuration.
- a value obtained by adding a weighted numerical value to the aroma value detected by each of the quartz crystal sensors 32a to 32g each quartz oscillator sensor 32a to A value obtained by multiplying the scent value detected by 32 g by a weighted value may be used.
- the scent quality identification system 100 learns the relationship between nouns, adjectives and scent values of the object 1, and object identification processing in which the object 1 is identified using combination data created by deep layer learning Although two processes were performed, the scent quality specification system 100 may be configured as a server / client system in which the server apparatus and the client perform the two processes. Specifically, the server device performs deep learning to create combination data, distributes the "scent application" (program) and combination data to the user's high-performance portable terminal via a public communication network such as the Internet, and installs the combination.
- a public communication network such as the Internet
- the high-performance portable terminal receives an input of nouns and adjectives of the object 1 to be searched from the user, receives an aroma value of the object 1 to be searched from the measuring unit 30, and collates it with combination data to specify the object 1 .
- the hardware for performing deep learning (the data storage unit 51) and the hardware for identifying the object 1 (the data collating unit 52) may be different.
- the server device holds the combination data without installing the combination data in the high-performance mobile terminal, and the high-performance mobile terminal accesses the server device when the object 1 is specified to perform collation with the combination data. Of course it is also good.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Electrochemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Provided is a fragrance quality identification system that, for an object that emits a fragrance, can make it easy to identify the object emitting the fragrance by improving, beyond the conventional, the certainty of an association between an "object" and a "fragrance". A fragrance quality identification system (100) comprises: an input/output unit (70) which accepts input of a noun for an object (1) and an adjective representing the noun; a measurement unit (30) that measures a numerical value based on a fragrance component released from the object (1); a data accumulation unit (51) that accumulates, as combination data, a combination of the noun and the adjective input to the input/output unit (70) and the numerical value measured by the measurement unit (30); and a data collation unit (52) that, when a retrieval object noun for an object (1) to be retrieved and a retrieval object adjective representing the retrieval object noun are input, and a retrieval object numerical value for the object (1) to be retrieved is received, collates the retrieval object noun, the retrieval object adjective and the retrieval object numerical value against the combination data, and on the basis of the combination data, identifies the object (1) having the retrieval object noun indicating the fragrance quality of the retrieval object adjective and the retrieval object numerical value.
Description
本発明は、香りを放つ物体に関する名詞情報、形容詞情報、香り数値情報を相互に関連付けたデータに基づいて香りを有する物体を特定する香り品質特定システム、高機能携帯端末及びプログラムに関する。
The present invention relates to an aroma quality identification system, an intelligent portable terminal, and a program for identifying an object having an aroma based on data in which noun information, adjective information, and aroma numerical information are associated with each other.
従来、撮影した画像データと共に検知した香りに関する情報を記録する特許文献1のような技術が開示されている。特許文献1には、香り成分を検知して香り成分の検出値を香り情報として記録するRAMと、被写体光を撮像した撮像信号を画像処理して画像ファイルを生成するCPUと、を備え、CPUが、香り情報と画像ファイルとを関連付けて記録するカメラに関する発明が開示されている。
2. Description of the Related Art Conventionally, a technique as disclosed in Patent Document 1 is disclosed which records information related to a detected scent together with captured image data. Patent Document 1 includes a RAM that detects a scent component and records a detection value of the scent component as scent information, and a CPU that performs image processing on an imaging signal obtained by imaging subject light and generates an image file. However, the invention regarding the camera which links and records fragrance information and an image file is disclosed.
特に、特許文献1に記載の発明では、香り情報に相当する芳香剤名称と、香り情報に相当する芳香剤名称に含まれる香り成分の名称と、画像ファイルとが関連付けられている。そして、画像ファイルを再生するときに、表示された芳香剤名称を選択することによって芳香剤を噴霧する。このことから、特許文献1に記載の発明は、「画像ファイル」と「香り成分の名称」とが一緒に記録されることになる。
In particular, in the invention described in Patent Document 1, the fragrance name corresponding to the scent information, the name of the scent component included in the fragrance name corresponding to the scent information, and the image file are associated. Then, when the image file is reproduced, the fragrance is sprayed by selecting the displayed fragrance name. From this, according to the invention described in Patent Document 1, "image file" and "name of scent component" are recorded together.
しかしながら、このような技術では、画像ファイルの画像中のどの物体が香りを放つのかまでは特定することができない場合がある。例えば、香りを放つ物体が画像中にある場合には、香りを放つ物体を視覚により特定することができるかもしれないが、香りを放つ物体が画像中にない場合には、香りを放つ物体を視覚により特定することができない。この場合に、「この香りを放つ物体が何」であるかがまず分からない。また、この場合に、芳香剤名称が分かっていても「香りを放つ物体とは無関係の画像データ」と「芳香剤名称」との関連付けが記録されるだけであり、「香りを放つ物体」と「芳香剤名称」との関連付けがされないことになる。この結果、前述のように香りを放つ物体が特定されないことになる。
However, with such a technique, it may not be possible to identify which object in the image of the image file releases the scent. For example, if there is an object that emits a scent in the image, it may be possible to visually identify the object that emits a scent, but if there is no object that emits a scent in the image, the object that emits a scent is It can not be identified visually. In this case, it is not clear at first what "an object that emits this scent". Also, in this case, even if the fragrance name is known, only the association between "image data unrelated to the object that emits the aroma" and "the name of the fragrance" is recorded, and "the object that emits the aroma" It will not be associated with "the fragrance name". As a result, as described above, an object that emits a scent is not identified.
この一方で、香りを放つ物体がある場合に、「この物体が何」であって「この物体の香りが何」であるかを知りたいニーズもある。例えば、雑貨屋に行って良い香りのエリアを通ったときに、この香りのする物体を手に取って良く見たとして、「この香りのする物体が石鹸」であって「この物体の香りがバラの品種のルージュロワイアル」であるということが分からない場合がある。この場合に、ユーザは、「この物体が何」というのが「石鹸」であり、「この物体の香りが何」というのが「ルージュロワイアルの香り」であるという情報を知りたくなるはずである。
On the other hand, when there is an object that emits a scent, there is also a need to know what this object is and what the scent of this object is. For example, when you go to a general store and pass through a good scented area, if you pick up the scented object and look at it well, "this scented object is a soap" and "the scent of this object is It may not be known that it is "Rouge royal" of the rose variety. In this case, the user should want to know the information that “what is this object” is “soap” and “what is the smell of this object” is “the rouge royal scent” .
そこで、本発明は、香りを放つ物体がある場合に、従来よりも「物体」と「香り」の関連付けの確実性を向上させて香りを放つ物体を特定し易くすることができる香り品質特定システムを提供することを目的とする。
Therefore, in the present invention, when there is an object that emits a scent, a scent quality specification system that can improve the certainty of the association between "object" and "aroma" more than before and make it easier to identify the object that emits a scent Intended to provide.
上記目的を達成するため、本発明の香り品質特定システムは、物体の名詞、前記名詞を表す形容詞が入力可能な入力部と、前記物体から放たれる香り成分に基づく数値を測定する測定部と、前記入力部に入力された前記名詞、前記形容詞、および前記測定部が測定した数値のうちの少なくとも2つを組み合わせて組合せデータとして蓄積させるデータ蓄積部と、検索される物体の検索物名詞、前記検索物名詞を表す検索物形容詞が入力されると共に、検索される物体の前記数値である検索物数値を受信したときに、前記検索物名詞、前記検索物形容詞および前記検索物数値を前記組合せデータと照合し、前記組合せデータに基づいて、前記検索物形容詞および前記検索物数値の香りの品質を示す前記検索物名詞を有する物体を特定するデータ照合部と、を備えることを特徴とする。
In order to achieve the above object, the scent quality specification system of the present invention comprises a noun of an object, an input unit capable of inputting an adjective representing the noun, and a measuring unit for measuring a numerical value based on a scent component emitted from the object A data storage unit configured to combine and store at least two of the noun input to the input unit, the adjective, and the numerical value measured by the measurement unit, and a search noun for an object to be searched, When a search object adjective representing the search pronoun is input and a search object numerical value which is the numerical value of the object to be searched is received, the search pronoun, the search object adjective and the search object numerical value are combined Data for matching with data and identifying the object having the search pronoun indicating the quality of the search object adjective and the smell of the search object value based on the combination data Characterized in that it comprises a verification unit.
本発明によれば、従来よりも「物体」と「香り」の関連付けの確実性を向上させて香りを放つ物体を特定し易くすることができる。
According to the present invention, it is possible to improve the certainty of the association between the "object" and the "aroma" more than in the past, and to make it easier to identify the object that emits the aroma.
以下、本発明の香り品質特定システムについて、図面を参照しながら詳細に説明していく。なお、以下に示す実施形態は本発明の実施形態の一例であって、本発明は、以下の実施形態に限定して解釈されるものではない。また、本実施形態で参照する図面において、同一の構成または機能を有する部分には同一の符号を付し、説明を省略する場合がある。
Hereinafter, the scent quality identification system of the present invention will be described in detail with reference to the drawings. The embodiment described below is an example of the embodiment of the present invention, and the present invention is not construed as being limited to the following embodiment. Further, in the drawings referred to in the present embodiment, parts having the same configuration or function may be given the same reference numerals and descriptions thereof may be omitted.
図1Aに示されるように、香り品質特定システム100は、香り成分移動装置10と、測定部30と、人工知能部50と、入出力部70と、を備える。
As shown in FIG. 1A, the scent quality identification system 100 includes a scent component transfer device 10, a measurement unit 30, an artificial intelligence unit 50, and an input / output unit 70.
(香り成分移動装置)
香り成分移動装置10は、香りを有する物体1を収納可能な筐体11と、測定部30との間を繋ぐチューブ12と、チューブ12の途中に配置されるポンプ13と、を備える。香り成分移動装置10は、筐体11の内部の気体を測定部30に移動させることができる装置である。例えば、香り成分移動装置10は、測定部30の内部の圧力を低下させることにより、気体を測定部30に移動させる。 (Scent component transfer device)
The scentcomponent transfer device 10 includes a housing 11 capable of containing the object 1 having a scent, a tube 12 connecting the measurement unit 30, and a pump 13 disposed in the middle of the tube 12. The scent component transfer device 10 is a device capable of transferring the gas inside the housing 11 to the measurement unit 30. For example, the aroma component transfer device 10 moves the gas to the measurement unit 30 by reducing the pressure inside the measurement unit 30.
香り成分移動装置10は、香りを有する物体1を収納可能な筐体11と、測定部30との間を繋ぐチューブ12と、チューブ12の途中に配置されるポンプ13と、を備える。香り成分移動装置10は、筐体11の内部の気体を測定部30に移動させることができる装置である。例えば、香り成分移動装置10は、測定部30の内部の圧力を低下させることにより、気体を測定部30に移動させる。 (Scent component transfer device)
The scent
(測定部)
測定部30は、物体1から放たれる香り成分に基づく数値を測定する部分であり、複数のガスセンサ31と、複数の水晶振動子センサ32と、香り数値算出部33と、を備える。 (Measurement section)
Themeasurement unit 30 is a part that measures a numerical value based on the scent component emitted from the object 1 and includes a plurality of gas sensors 31, a plurality of quartz crystal vibrator sensors 32, and a scent numerical value calculation unit 33.
測定部30は、物体1から放たれる香り成分に基づく数値を測定する部分であり、複数のガスセンサ31と、複数の水晶振動子センサ32と、香り数値算出部33と、を備える。 (Measurement section)
The
複数のガスセンサ31の各々は、二酸化炭素、一酸化炭素、メタン、ブタン、アンモニア等の物体1から放たれるガスを検知するセンサである。動植物等がこれらのガスを放出するときには香り放つものもあれば香りを放たないものもあるが、どのようなガス成分が入った香りでも検知できるようにするために、複数のガスセンサ31が設けられている。ガスセンサ31のいずれかはアンモニア(匂いあり)を検知し、ガスセンサ31のいずれかは二酸化炭素(無臭)を検知するというように、各々のガスセンサ31は異なるガスを検知する。これらのガスセンサ31は、物体1から放たれる香り分子と共に放出される気体を検知する。ガスセンサ31としては、例えば、電気化学式センサが用いられる。電気化学式センサは、検知極と、対極と、検知極と対極との間に設けられたイオン伝導体と、を有し、検知極と対極とが電気的に接続された短絡電流を測定する構成になっており、検知対象ガスに曝されたときに、電流値の変化を検知する。この電流値変化のデータがガスの検知に用いられる。
Each of the plurality of gas sensors 31 is a sensor that detects a gas released from the object 1 such as carbon dioxide, carbon monoxide, methane, butane, or ammonia. When animals and plants release these gases, some may emit a scent while others may not emit a scent, but a plurality of gas sensors 31 are provided in order to be able to detect a scent containing any gas component. It is done. Each gas sensor 31 detects a different gas such that one of the gas sensors 31 detects ammonia (with odor) and one of the gas sensors 31 detects carbon dioxide (no odor). These gas sensors 31 detect the gas released together with the scent molecules emitted from the object 1. For example, an electrochemical sensor is used as the gas sensor 31. An electrochemical sensor has a detection electrode, a counter electrode, and an ion conductor provided between the detection electrode and the counter electrode, and is configured to measure a short circuit current in which the detection electrode and the counter electrode are electrically connected. When it is exposed to the gas to be detected, it detects a change in current value. The data of this current value change is used for gas detection.
複数の水晶振動子センサ32の各々は、物体1から放たれる香り成分を検知するセンサである。各々の水晶振動子センサ32a~32gは、非特異的吸着性を有する薄膜により形成された水晶振動子34(図1B参照)を有する。複数の水晶振動子センサ32の各々は、香り成分が水晶振動子34に付着していない状態から香り成分が水晶振動子34に付着した状態になるまでの時間に対する共振周波数の変化を検知する。
Each of the plurality of quartz oscillator sensors 32 is a sensor that detects a scent component emitted from the object 1. Each of the quartz oscillator sensors 32a to 32g has a quartz oscillator 34 (see FIG. 1B) formed of a thin film having nonspecific adsorption. Each of the plurality of quartz oscillator sensors 32 detects a change in resonant frequency with respect to time from when the scent component is not attached to the quartz oscillator 34 to when the scent component is attached to the quartz oscillator 34.
水晶振動子センサ32a~32gが有する水晶振動子34の各々には、複数の香り成分を検知することができる特定の化合物が蒸着されている。水晶振動子センサ32a~32gが有する水晶振動子34の各々に蒸着されている化合物は、互いに異なる化合物である。従って、水晶振動子センサ32a~32gの各々が検知することができる香り成分も互いに異なる。水晶振動子センサ32a~32gが有する水晶振動子34の各々に蒸着される化合物には、例えば、Dフェニルアラニン、D-チロシン、DL-セスチジン、Dグルコース、アデニン、ポリエチレンがある。
On each of the quartz oscillators 34 included in the quartz oscillator sensors 32a to 32g, a specific compound capable of detecting a plurality of scent components is vapor deposited. The compounds deposited on each of the quartz oscillators 34 included in the quartz oscillator sensors 32a to 32g are different from each other. Therefore, the scent components that can be detected by each of the quartz oscillator sensors 32a to 32g are also different from one another. Examples of the compound deposited on each of the quartz oscillators 34 included in the quartz oscillator sensors 32 a to 32 g include D phenylalanine, D-tyrosine, DL-sethidine, D glucose, adenine, and polyethylene.
例えば、水晶振動子センサ32aが香り成分「A、B、C、D、E」を検知し、水晶振動子センサ32bが香り成分「A、B、F、G、H」を検知し、水晶振動子センサ32cが香り成分「A、B」を検知する例を説明する。そして、バラの品種「ルージュロワイアル」の香り成分が「A、B」であり、バラの品種「ローズマリー」の香り成分が「C、D、E」であり、バラの品種「デンティ・ベス」の香り成分が「F、G、H」であるとする。
For example, the quartz crystal sensor 32a detects the scent components "A, B, C, D, E", and the quartz crystal sensor 32b detects the scent components "A, B, F, G, H", and the quartz crystal is vibrated. An example in which the child sensor 32c detects the scent components "A, B" will be described. And the scent component of the rose variety "Rouge royal" is "A, B", the scent component of the rose variety "Rosemary" is "C, D, E" and the rose variety "Denti Bes" It is assumed that the scent component of “F, G, H”.
この場合に、「ルージュロワイアル」の香り成分「A、B」は、水晶振動子センサ32a、32b、32cによって検知することができる。しかし、「ローズマリー」の香り成分「C、D、E」は、水晶振動子センサ32aにより検知することができるが、水晶振動子センサ32b、32cでは検知することができない。また、「デンティ・ベス」の香り成分「F、G、H」は、水晶振動子センサ32bにより検知することができるが、水晶振動子センサ32a、32cでは検知することができない。このように、水晶振動子センサ32a~32cは、同じ香り成分を検知できることもあれば、同じ香り成分を検知できないこともある。なお、同じ香り成分を検知するとしても、各々の水晶振動子センサ32a~32cは、異なる共振周波数で検知することになる。また、同じ香り成分を検知できないとしても、各々の水晶振動子センサ32a~32cは、異なる香り成分を検知することになる。
In this case, the aroma components "A, B" of "rouge royal" can be detected by the quartz crystal sensors 32a, 32b, 32c. However, although the aroma components "C, D, E" of "rosemary" can be detected by the quartz oscillator sensor 32a, they can not be detected by the quartz oscillator sensors 32b and 32c. Also, the scent components "F, G, H" of "Denti Beth" can be detected by the quartz oscillator sensor 32b, but can not be detected by the quartz oscillator sensors 32a, 32c. As described above, the quartz crystal sensors 32a to 32c may detect the same scent component or may not detect the same scent component. In addition, even if the same scent component is detected, each of the quartz crystal sensors 32a to 32c is detected at different resonance frequencies. Further, even if the same scent component can not be detected, each of the quartz crystal sensors 32a to 32c will detect different scent components.
香り数値算出部33は、複数のガスセンサ31が検知したガスに基づく電流値信号を受信すると共に、電流値信号に基づいた数値を電流値データとして保有する。香り数値算出部33は、複数の水晶振動子センサ32が検知した香り成分に基づく共振周波数信号を受信し、共振周波数信号に基づいた数値(以下、「香り数値」という場合もある)を共振周波数データ(以下、「香り数値情報」という場合もある)として保有する。この共振周波数データは、水晶振動子34に香り分子が付着していない状態から水晶振動子34に香り分子が付着する状態までの時間に対する共振周波数の変化を示す。
The odor numerical value calculation unit 33 receives current value signals based on the gas detected by the plurality of gas sensors 31, and holds numerical values based on the current value signals as current value data. The scent numerical value calculation unit 33 receives a resonant frequency signal based on the scent component detected by the plurality of crystal oscillator sensors 32, and a numerical value based on the resonant frequency signal (hereinafter sometimes referred to as "scent number") is a resonant frequency It is held as data (hereinafter sometimes referred to as "scent numerical value information"). The resonance frequency data indicates the change in resonance frequency with respect to the time from the state in which the scent molecules are not attached to the quartz oscillator 34 to the state in which the scent molecules are attached to the quartz oscillator 34.
(入出力部)
入出力部70は、ユーザが物体1の名詞とその名詞が表す形容詞を入力可能な部分であり、ユーザが香りを有する物体1の名詞、形容詞、香り数値、あるいは、名詞、形容詞、香り数値の特徴を有する物体1の画像等を出力可能な部分でもある。 (I / O unit)
The input /output unit 70 is a portion to which the user can input the noun of the object 1 and the adjective represented by the noun, and the user can use the noun, the adjective, the aroma numerical value, or the noun, the adjective, the aroma numerical value of the object 1 It is also a portion capable of outputting an image or the like of the object 1 having a feature.
入出力部70は、ユーザが物体1の名詞とその名詞が表す形容詞を入力可能な部分であり、ユーザが香りを有する物体1の名詞、形容詞、香り数値、あるいは、名詞、形容詞、香り数値の特徴を有する物体1の画像等を出力可能な部分でもある。 (I / O unit)
The input /
図2Aに示されるように、香り数値算出部33は、水晶振動子センサ32aが検知する検知結果に基づいてグラフK1~K5に示される共振周波数データ(時間に対する共振周波数の変化を示すデータ)を保有する。図2Bに示されるように、香り数値算出部33は、水晶振動子センサ32bが検知する検知結果に基づいてグラフK1~K5に示される共振周波数データ(時間に対する共振周波数の変化を示すデータ)を保有する。図3に示されるように、香り数値算出部33は、水晶振動子センサ32cが検知する検知結果に基づいてグラフK1~K5に示される共振周波数データ(時間に対する共振周波数の変化を示すデータ)を保有する。
As shown in FIG. 2A, the odor numerical value calculation unit 33 calculates resonant frequency data (data indicating a change in resonant frequency with respect to time) shown in graphs K1 to K5 based on the detection result detected by the quartz crystal sensor 32a. Possess. As shown in FIG. 2B, the scent numerical value calculation unit 33 calculates resonant frequency data (data indicating a change in resonant frequency with respect to time) shown in graphs K1 to K5 based on the detection result detected by the quartz crystal sensor 32b. Possess. As shown in FIG. 3, the scent numerical value calculation unit 33 calculates resonant frequency data (data indicating a change in resonant frequency with respect to time) shown in graphs K1 to K5 based on the detection result detected by the quartz oscillator sensor 32c. Possess.
K1は、ルージュロワイアルの香り成分のデータであり、K2はジャンヌダルクの香り成分のデータであり、K3はシェドラーブルの香り成分のデータであり、K4はサダークレディの香り成分のデータであり、K5はウィッシングの香り成分のデータである。ルージュロワイア、ジャンヌダルク、シェドラーブル、サダークレディ、ウィッシングは、バラの品種である。水晶振動子センサ32c~32gについても同様に香り成分のデータが計測された(図4参照)。
K1 is data of the scent component of Rouge Royal, K2 is data of the scent component of Jeanne d'Arc, K3 is data of the scent component of Shedrachable, K4 is data of the scent component of Sadark lady, K5 is It is data of the scent component of wishing. Rouge Roway, Jeanne d'Arc, Shedradable, Sadark Lady, and Wishing are varieties of roses. The data of the scent component was similarly measured for the quartz oscillator sensors 32c to 32g (see FIG. 4).
図4は、図2A及び図2BのグラフK1~K5と図3のグラフK1~K3の基準値を示す表である。ここでは、100秒経過後に共振周波数を安定して示す数値を、基準値と呼ぶ。例えば、水晶振動子センサ32aが検知したルージュロワイアルの共振周波数の基準値は、1990760Hzである。水晶振動子センサ32bが検知したルージュロワイアルの共振周波数の基準値は、1977230Hzである。水晶振動子センサ32cが検知したルージュロワイアルの共振周波数の基準値は、1994785Hzである。香り数値算出部33は、これらの水晶振動子センサ32a~32gが検知した検知結果をベクトルで表現される香り数値として保有する。図4の表は、ジャンヌダルク、シェドラーブル、サダークレディ、ウィッシングについても同様に見る。
FIG. 4 is a table showing reference values of graphs K1 to K5 of FIGS. 2A and 2B and graphs K1 to K3 of FIG. Here, a numerical value that stably indicates the resonance frequency after 100 seconds is referred to as a reference value. For example, the reference value of the resonant frequency of the rouge royal detected by the quartz oscillator sensor 32a is 1990760 Hz. The reference value of the resonant frequency of the rouge royal detected by the quartz oscillator sensor 32b is 1977230 Hz. The reference value of the resonant frequency of the rouge royal detected by the quartz oscillator sensor 32c is 1994785 Hz. The odor numerical value calculation unit 33 holds the detection results detected by the quartz oscillator sensors 32a to 32g as an aroma numerical value represented by a vector. The table in FIG. 4 looks similarly for Jeanne d'Arc, Shedrachable, Sadark Lady, and Wishing.
(人工知能部)
ここで、図1Aの説明に戻る。図1Aに示されるように、人工知能部50は、データ蓄積部51と、データ照合部52と、を有する。データ蓄積部51は、入出力部70(入力部・出力部)から入力された物体の名詞(名詞ラベル)の情報、その名詞を表す形容詞(形容表現)の情報、測定部30が測定した香り数値の情報を受信する。そして、データ蓄積部51は、これらの名詞の情報、形容詞の情報、香り数値の情報を組み合わせて組合せデータ(図6参照)として蓄積させる。データ蓄積部51は、名詞、形容詞および香り数値の間で、名詞、形容詞および香り数値を再帰型ニューラルネットワークにより学習し、組合せデータを作成して蓄積させる。データ蓄積部51は、入出力部70に入力された名詞、形容詞、および測定部30が測定した香り数値の全てを組み合わせて組合せデータとして蓄積させる場合が多いが、そのうちの2つを組み合わせて組合せデータとして蓄積させる場合もある(図6のID3、ID4参照)。名詞、形容詞、香り数値の全てが常に揃うとは限らないからである。 (Artificial Intelligence Department)
Here, it returns to the explanation of FIG. 1A. As shown in FIG. 1A, theartificial intelligence unit 50 includes a data storage unit 51 and a data collating unit 52. The data storage unit 51 includes information on nouns (noun labels) of an object input from the input / output unit 70 (input unit / output unit), information on adjectives (adjective expressions) representing the nouns, and scents measured by the measurement unit 30. Receive numerical information. Then, the data storage unit 51 combines the information of these nouns, the information of adjectives, and the information of scent value, and stores them as combination data (see FIG. 6). The data storage unit 51 learns nouns, adjectives and scent values with a recursive neural network among nouns, adjectives and scent values, and creates and accumulates combination data. In many cases, the data storage unit 51 combines all the nouns and adjectives input to the input / output unit 70 and the scent value measured by the measurement unit 30 and stores them as combination data, but two of them are combined and combined In some cases, data may be accumulated (see ID3 and ID4 in FIG. 6). This is because not all nouns, adjectives and scent values are always consistent.
ここで、図1Aの説明に戻る。図1Aに示されるように、人工知能部50は、データ蓄積部51と、データ照合部52と、を有する。データ蓄積部51は、入出力部70(入力部・出力部)から入力された物体の名詞(名詞ラベル)の情報、その名詞を表す形容詞(形容表現)の情報、測定部30が測定した香り数値の情報を受信する。そして、データ蓄積部51は、これらの名詞の情報、形容詞の情報、香り数値の情報を組み合わせて組合せデータ(図6参照)として蓄積させる。データ蓄積部51は、名詞、形容詞および香り数値の間で、名詞、形容詞および香り数値を再帰型ニューラルネットワークにより学習し、組合せデータを作成して蓄積させる。データ蓄積部51は、入出力部70に入力された名詞、形容詞、および測定部30が測定した香り数値の全てを組み合わせて組合せデータとして蓄積させる場合が多いが、そのうちの2つを組み合わせて組合せデータとして蓄積させる場合もある(図6のID3、ID4参照)。名詞、形容詞、香り数値の全てが常に揃うとは限らないからである。 (Artificial Intelligence Department)
Here, it returns to the explanation of FIG. 1A. As shown in FIG. 1A, the
名詞の情報には、例えば、料理名(カレー)、花などの品種(ローズ、バラ)、生産者名(有佳子さん)、ロット番号(製品番号)、菓子名(プリングルスのサワークリーム&オニオン)等が該当する。形容詞の情報には、名詞の物体に対して嗅覚、味覚、視覚によって得られる表現の情報が含まれる。
Noun information includes, for example, cooking name (curry), varieties such as flowers (rose, rose), producer's name (有 佳 子), lot number (product number), confectionery name (Pringles sour cream & onion), etc. Is the case. Information of adjectives includes information of olfactory senses, tastes, and expressions obtained by sight on noun objects.
(データ蓄積部)(名詞情報と形容詞情報との間の深層学習について)
データ蓄積部51は、物体1の名詞と形容詞とが同時に入力されて名詞情報と形容詞情報とを受信したときに、名詞情報と形容詞情報とを組み合わせた組合せデータを作成する。データ蓄積部51は、入力層に名詞情報を用い、出力層に形容詞情報を用い、香り数値情報を受信した場合には中間層に香り数値情報を用いて、再帰型ニューラルネットワークにより深層学習する。データ蓄積部51は、この再帰型ニューラルネットワークにより深層学習して得られたデータを組合せデータとして随時蓄積していく。 (Data storage unit) (On deep learning between noun information and adjective information)
When the noun of theobject 1 and the adjective are simultaneously input and the noun information and the adjective information are received, the data storage unit 51 creates combination data combining the noun information and the adjective information. The data storage unit 51 uses the noun information in the input layer, uses the adjective information in the output layer, and performs odor learning using a recursive neural network using the aroma numerical information in the intermediate layer when the aroma numerical information is received. The data accumulation unit 51 accumulates data obtained by deep learning by the recursive neural network as combination data as needed.
データ蓄積部51は、物体1の名詞と形容詞とが同時に入力されて名詞情報と形容詞情報とを受信したときに、名詞情報と形容詞情報とを組み合わせた組合せデータを作成する。データ蓄積部51は、入力層に名詞情報を用い、出力層に形容詞情報を用い、香り数値情報を受信した場合には中間層に香り数値情報を用いて、再帰型ニューラルネットワークにより深層学習する。データ蓄積部51は、この再帰型ニューラルネットワークにより深層学習して得られたデータを組合せデータとして随時蓄積していく。 (Data storage unit) (On deep learning between noun information and adjective information)
When the noun of the
図6、図8A、図8Bを用いながら、この内容を説明する。例えば、データ蓄積部51は、図6のID1に記載される名詞情報「ルージュロワイアル」と形容詞情報「フルーティ」を受信する。この場合に、データ蓄積部51は、名詞情報「ルージュロワイアル」と形容詞情報「フルーティ」とにより組合せデータを作成する。そして、データ蓄積部51は、入力層に名詞「ルージュロワイアル」を用い、出力層に形容詞「フルーティ」を用い、香り数値情報を受信した場合には中間層に香り数値情報を用いて、名詞情報「ルージュロワイアル」から形容詞情報「フルーティ」に至る深層学習を行う。このように名詞→香り数値→形容詞の流れで深層学習することにより名詞と形容詞との間で、その形容詞がその名詞を表現する確率が向上するようにされている。
This content will be described with reference to FIGS. 6, 8A and 8B. For example, the data storage unit 51 receives the noun information "rouge royale" and the adjective information "fruity" described in ID1 of FIG. In this case, the data storage unit 51 creates combination data from the noun information "rouge royal" and the adjective information "fruity". Then, the data storage unit 51 uses the noun "Rouge Royal" in the input layer, uses the adjective "Fruity" in the output layer, and uses the aroma numerical information in the middle layer when the aroma numerical information is received, and the noun information Conduct deep learning from "Rouge royal" to adjective information "Fruity". In this way, the probability of the adjective expressing the noun is improved between the noun and the adjective by performing deep learning by the flow of the noun → the numerical value of the aroma → the adjective.
また、データ蓄積部51は、入力層に名詞「バラ、生花、愛」を用い、出力層に形容詞「フルーティ、いい香り、甘い、濃厚な、いい匂い」を用い、中間層に香り数値情報を用いて、名詞情報から形容詞情報に至る深層学習を行う。このように名詞→香り数値→形容詞の流れで深層学習をする。前述の例は、中間層が香り数値情報のID1についての説明であるが、ID2、ID3、ID4に関しても同様に行っていく。
In addition, the data storage unit 51 uses the noun "rose, fresh flower, love" in the input layer, uses the adjective "fruity, good smell, sweet, thick, good smell" in the output layer, and smell value information in the middle layer. Deep learning is performed using noun information to adjective information. In this way, deep learning is performed by the flow of noun → aroma numerical value → adjective. Although the above-mentioned example is an explanation about ID1 of middle class being scent numerical value information, it carries out similarly about ID2, ID3, and ID4.
データ蓄積部51は、前述のように名詞を入力部、形容詞を出力部、香り数値を中間層とした再帰型ニューラルネットワークにより深層学習をする(図8A)と共に、これとは反対に形容詞を入力部、名詞を出力部、香り数値を中間層とした再帰型ニューラルネットワークにより深層学習をし(図8B)、名詞と形容詞との関係を学習していく。
As described above, the data storage unit 51 performs deep learning by means of a recursive neural network having a noun as an input unit, an adjective as an output unit, and an aroma value as an intermediate layer (FIG. 8A). Deep learning is performed by a recursive neural network having a part, a noun as an output part, and an aroma value as an intermediate layer (FIG. 8B), and the relationship between the noun and the adjective is learned.
(データ蓄積部)(名詞情報と香り数値情報との間の深層学習について)
データ蓄積部51は、物体1の名詞が入力されて名詞情報を受信すると共に、測定部30が測定した香り数値情報を受信したときに、名詞情報と香り数値情報とを組み合わせた組合せデータを作成する。データ蓄積部51は、入力層に名詞情報を用い、出力層に香り数値情報を用い、形容詞情報を受信した場合には中間層に形容詞情報を用いて、再帰型ニューラルネットワークにより深層学習する。データ蓄積部51は、この再起型ニューラルネットワークにより深層学習して得られたデータを組合せデータとして随時蓄積していく。 (Data storage unit) (About deep learning between noun information and scent numerical information)
Thedata storage unit 51 receives the noun of the object 1 and receives the noun information, and when receiving the aroma numerical information measured by the measuring unit 30, creates the combination data combining the noun information and the aroma numerical information Do. The data storage unit 51 performs deep learning by means of a recursive neural network using noun information in the input layer, using odor numerical information in the output layer, and using adjective information in the middle layer when adjective information is received. The data accumulation unit 51 accumulates data obtained by deep learning by the recurrent neural network as needed as combination data.
データ蓄積部51は、物体1の名詞が入力されて名詞情報を受信すると共に、測定部30が測定した香り数値情報を受信したときに、名詞情報と香り数値情報とを組み合わせた組合せデータを作成する。データ蓄積部51は、入力層に名詞情報を用い、出力層に香り数値情報を用い、形容詞情報を受信した場合には中間層に形容詞情報を用いて、再帰型ニューラルネットワークにより深層学習する。データ蓄積部51は、この再起型ニューラルネットワークにより深層学習して得られたデータを組合せデータとして随時蓄積していく。 (Data storage unit) (About deep learning between noun information and scent numerical information)
The
図6、図8C、図8Dを用いながら、この内容を説明する。例えば、データ蓄積部51は、図6のID1に記載される名詞情報「ルージュロワイアル」の入力情報を受信すると共に、香り数値情報「1990760」を受信する。この場合に、データ蓄積部51は、名詞情報「ルージュロワイアル」と香り数値情報「1990760」とにより組合せデータを作成する。そして、データ蓄積部51は、入力層に名詞「ルージュロワイアル」を用い、出力層に香り数値情報「1990760」を用い、形容詞情報を受信した場合には中間層に形容詞情報を用いて、名詞情報「ルージュロワイアル」から香り数値情報「1990760」に至る深層学習を行う。このように名詞→形容詞→香り数値の流れで深層学習することにより名詞と香り数値との間で、その香り数値がその名詞を表現する確率が向上するようにされている。
This content will be described with reference to FIGS. 6, 8C, and 8D. For example, the data storage unit 51 receives the input information of the noun information "rouge royale" described in the ID1 of FIG. 6, and receives the aroma numerical value information "1990760". In this case, the data storage unit 51 creates combination data from the noun information "rouge royal" and the aroma numerical value information "1990760". Then, the data storage unit 51 uses noun "Rouge royal" in the input layer, uses aroma numerical value information "1990760" in the output layer, and adjective information in the middle layer when adjective information is received, noun information We perform deep learning from "Rouge royal" to aroma numerical value information "1990760". As described above, by performing deep learning with the flow of noun → adjective → scent numerical value, the probability that the scent numerical value expresses the noun is improved between the noun and the scent numerical value.
また、データ蓄積部51は、入力層に名詞「バラ、生花、愛」を用い、出力層に香り数値情報「1977230、1977230、1994785、・・・1996620、1988760」(ここでは、図6のid1の香り数値情報を例示))を用い、中間層に形容詞情報を用いて、名詞情報から形容詞情報に至る深層学習をする。出力層に設ける香り数値情報は、図6のid2、id3が用いられても良い。また、前述の例は、出力層が香り数値情報のID1についての説明であるが、ID2、ID3、ID4に関しても同様に行っていく。
Also, the data storage unit 51 uses the noun "rose, fresh flower, love" in the input layer, and the scent numerical value information "1977230, 1977230, 1994785, ... 1996620, 1988760" in the output layer (here, id1 in FIG. 6). In the middle layer, adjective information is used, and deep learning from noun information to adjective information is performed using the following numerical value information of scent). As odor numerical value information provided in the output layer, id2 and id3 in FIG. 6 may be used. In the above example, the output layer is the ID1 of the scent numerical value information, but the same applies to ID2, ID3 and ID4.
データ蓄積部51は、前述のように名詞を入力部、香り数値を出力部、形容詞を中間層とした再帰型ニューラルネットワークにより深層学習をする(図8C)と共に、これとは反対に香り数値を入力部、名詞を出力部、形容詞を中間層とした再帰型ニューラルネットワークにより深層学習をし(図8D)、名詞と香り数値との関係を学習していく。
As described above, the data storage unit 51 performs deep learning by means of a recursive neural network having a noun as an input unit, an aroma value as an output unit, and an adjective as an intermediate layer (FIG. 8C). Deep learning is performed by a recursive neural network having an input unit, a noun as an output unit, and an adjective as an intermediate layer (FIG. 8D), and the relationship between the noun and the scent value is learned.
(データ蓄積部)(香り数値情報と形容詞情報との間の深層学習について)
データ蓄積部51は、測定部が測定した香り数値情報を受信すると共に、物体1の形容詞が入力されて形容詞情報を受信したときに、香り数値情報と形容詞情報とを組み合わせた組合せデータを作成する。データ蓄積部51は、入力層に香り数値情報を用い、出力層に形容詞情報を用い、名詞情報を受信した場合には中間層に名詞情報を用いて、再起型ニューラルネットワークにより深層学習をする。データ蓄積部51は、この再帰型ニューラルネットワークにより深層学習して得られたデータを組合せデータとして随時蓄積していく。 (Data storage unit) (About deep learning between scent numerical information and adjective information)
Thedata storage unit 51 receives combined odor numerical information measured by the measurement unit, and when the adjective information of the object 1 is input and receives the adjective information, creates combined data combining the aroma numerical value information and the adjective information . The data storage unit 51 performs deep learning using a recurrence neural network by using aroma numerical value information in the input layer, using adjective information in the output layer, and using noun information in the intermediate layer when noun information is received. The data accumulation unit 51 accumulates data obtained by deep learning by the recursive neural network as combination data as needed.
データ蓄積部51は、測定部が測定した香り数値情報を受信すると共に、物体1の形容詞が入力されて形容詞情報を受信したときに、香り数値情報と形容詞情報とを組み合わせた組合せデータを作成する。データ蓄積部51は、入力層に香り数値情報を用い、出力層に形容詞情報を用い、名詞情報を受信した場合には中間層に名詞情報を用いて、再起型ニューラルネットワークにより深層学習をする。データ蓄積部51は、この再帰型ニューラルネットワークにより深層学習して得られたデータを組合せデータとして随時蓄積していく。 (Data storage unit) (About deep learning between scent numerical information and adjective information)
The
図6、図8E、図8Fを用いながら、この内容を説明する。例えば、データ蓄積部51は、図6のID1に記載される香り数値情報「1990760」(図6参照)を受信すると共に、形容詞情報「フルーティ」(図6参照)を受信する。この場合に、データ蓄積部51は、香り数値情報「1990760」と形容詞情報「フルーティ」とにより組合せデータを作成する。そして、データ蓄積部51は、入力層に香り数値情報「1990760」を用い、出力層に形容詞情報「フルーティ」を用い、名詞情報を受信した場合には中間層に名詞情報を用いて、香り数値情報「1990760」から形容詞情報「フルーティ」に至る深層学習を行う。このように香り数値→名詞→形容詞の流れで深層学習をすることにより香り数値と形容詞との間で、その形容詞がその香り数値を表現する確率が向上するようにされている。
This content will be described with reference to FIGS. 6, 8E, and 8F. For example, the data storage unit 51 receives the aroma numerical value information “1990760” (see FIG. 6) described in the ID1 of FIG. 6, and receives the adjective information “fruity” (see FIG. 6). In this case, the data storage unit 51 creates combination data from the scent numerical value information "1990760" and the adjective information "Fruity". Then, the data storage unit 51 uses the scent numerical value information "1990760" in the input layer, uses the adjective information "Fruity" in the output layer, and uses noun information in the middle layer when the noun information is received. We perform deep learning from information "1990760" to adjective information "fruity". In this way, by performing deep learning with the flow of the scent value → noun → adjective, the probability that the adjective expresses the scent value between the scent value and the adjective is improved.
また、データ蓄積部51は、入力層に香り数値情報「1977230、1977230、1994785、・・・1996620、1988760」(ここでは、図6のid1の香り数値情報を例示))を用い、出力層に形容詞情報「フルーティ、いい香り、甘い、濃厚な、いい匂い」を用い、中間層に名詞情報を用いて、香り数値情報から形容詞情報に至る深層学習を行う。このように、香り数値情報→名詞情報→形容詞情報の流れで深層学習をする。入力層に設ける香り数値情報は、図6のid2、id3が用いられても良い。また、前述の例は、入力層が香り数値情報のID1についての説明であるが、ID2、ID3、ID4に関しても同様に行っていく。
Further, the data storage unit 51 uses the scent numerical value information “1977230, 1977230, 1994785,... 1996620, 1988760” (here, the scent numerical value information of id1 in FIG. 6 is illustrated) for the input layer, and Using adjective information “fruity, good smell, sweet, thick, good smell” and using noun information in the middle layer, we perform deep learning from scent numerical information to adjective information. In this way, deep learning is performed by the flow of the numerical value information of the scent → noun information → adjective information. As odor numerical value information provided in the input layer, id2 and id3 in FIG. 6 may be used. In the above-mentioned example, the input layer is the description about ID1 of the scent numerical value information, but the same goes for ID2, ID3 and ID4.
データ蓄積部51は、前述のように香り数値を入力部、形容詞を出力部、名詞を中間層とした再帰型ニューラルネットワークにより深層学習をする(図8E)と共に、これとは反対に形容詞を入力部、香り数値を出力部、名詞を中間層とした再帰型ニューラルネットワークにより深層学習をし(図8F)、香り数値と形容詞との関係を学習していく。
As described above, the data storage unit 51 performs deep learning by means of a recursive neural network having an aroma value as an input unit, an adjective as an output unit, and a noun as an intermediate layer (FIG. 8E) and, conversely, inputs an adjective Deep learning is performed by a recursive neural network in which the part, the scent value is an output part, and the noun is an intermediate layer (FIG. 8F), and the relationship between the scent value and the adjective is learned.
データ蓄積部51は、前述のような名詞、形容詞および香り数値の間の情報をインターネット情報から収集して、組合せデータを作成して随時蓄積させている。データ蓄積部51は、名詞情報と形容詞情報との組み合わせ情報を、ツイッター(登録商標)で検索される組み合わせや、ツイッターでツイートされる文章等から収集して深層学習してデータ化し、蓄積している。データ蓄積部51は、前述のような名詞、形容詞および香り数値の間の情報を、その他では、自動応答システム(チャットボット)をはじめとする香り品質特定システム100の応答履歴を起点としたシステムから収集する。
The data storage unit 51 collects the information between the nouns, the adjectives and the scent value as described above from the Internet information, creates combination data, and stores the combination data as needed. The data storage unit 51 collects combination information of noun information and adjective information from combinations searched by Twitter (registered trademark), texts tweeted by Twitter, etc. There is. The data storage unit 51 is based on the information from the noun, the adjective and the scent value as described above, and from the system starting from the response history of the scent quality identification system 100 including the auto answer system (chatbot) in others. collect.
次に、図5A~Cを用いながら、香り品質特定システム100の動作を説明する。図5Aに示されるように、ユーザが、香り成分移動装置10の中に、香り情報を測定する物体1を入れ、物体1の香りが筐体11内に充満する(M1)。ユーザは、ポンプ13を駆動させ(M2)、香り成分移動装置10内の香り成分が含まれた空気を測定部30に送り込む。
Next, the operation of the scent quality identification system 100 will be described using FIGS. 5A to 5C. As shown in FIG. 5A, the user inserts the object 1 whose aroma information is to be measured into the aroma component transfer device 10, and the aroma of the object 1 fills the inside of the housing 11 (M1). The user drives the pump 13 (M2), and sends the air containing the aroma component in the aroma component transfer device 10 to the measurement unit 30.
測定部30の中では、ガスセンサ31が空気内の一酸化炭素、二酸化炭素、アンモニア等を検知する(M3のM31)。同時に、水晶振動子センサ32が空気内の香り成分の共振周波数を検知する(M3のM32)。ここでは、水晶振動子センサ32が香り成分としてルージュロワイアルを検知した場合を想定する。
In the measuring unit 30, the gas sensor 31 detects carbon monoxide, carbon dioxide, ammonia and the like in the air (M31 of M3). At the same time, the quartz oscillator sensor 32 detects the resonance frequency of the scent component in the air (M32 of M3). Here, it is assumed that the quartz oscillator sensor 32 detects a rouge royal as a scent component.
この一方で、名詞と形容詞(M4)は、インターネットを通じて(M5)、人工知能部50のデータ蓄積部51に送信され、特徴学習モデル(再起型のニューラルネットワークであるLSTM)が実行される(M6)。または、ユーザが物体1の名詞と形容詞(M4)を高機能携帯端末(スマートフォン等)の入出力部70を用いて(M5)人工知能部50のデータ蓄積部51に送信し、特徴学習モデル(再帰型ニューラルネットワークであるLSTM)を実行させる(M6)。学習した物体1の名詞と形容詞との関係は、人工知能部50のデータ照合部52に送信される(M7)。
On the other hand, nouns and adjectives (M4) are transmitted to the data storage unit 51 of the artificial intelligence unit 50 through the Internet (M5), and a feature learning model (LSTM which is a recurrent neural network) is executed (M6) ). Alternatively, the user transmits the noun of the object 1 and the adjective (M4) to the data storage unit 51 of the artificial intelligence unit 50 using the input / output unit 70 of the high-performance mobile terminal (smartphone etc.), Execute the recursive neural network (LSTM) (M6). The relationship between the noun of the learned object 1 and the adjective is sent to the data collating unit 52 of the artificial intelligence unit 50 (M7).
人工知能部50は、名詞情報、形容詞情報、香り数値情報を組み合わせた組合せデータをデータ蓄積部51に蓄積させる。
The artificial intelligence unit 50 causes the data storage unit 51 to store combination data in which noun information, adjective information and odor numerical value information are combined.
図5Aの人工知能部50のデータ蓄積部51は、図5Bに示されるように、言語入力層(M12)に名詞(M11)を用い、言語出力層(M16)に形容詞で表される物体の情報(M15)を用い、特徴学習モデル(再帰型ニューラルネットワークであるLSTM)(M17)により名詞と形容詞との関係性を深層学習する。また、データ蓄積部51は、言語入力層(M14)に形容詞(M13)を用い、言語出力層(M16)に名詞で表される物体の情報(M15)を用い、特徴学習モデル(再帰型ニューラルネットワークであるLSTM)(M17)により名詞と形容詞との関係性を深層学習する。
As shown in FIG. 5B, the data storage unit 51 of the artificial intelligence unit 50 of FIG. 5A uses the noun (M11) for the language input layer (M12) and the adjective represented by the adjective for the language output layer (M16). The relationship between a noun and an adjective is deep-learned by a feature learning model (LSTM which is a recursive neural network) (M17) using information (M15). In addition, the data storage unit 51 uses an adjective (M13) in the language input layer (M14) and information (M15) of an object represented by a noun in the language output layer (M16) to provide a feature learning model (recursive neural network Deeply learn the relationship between nouns and adjectives by LSTM (M17) which is a network.
図5Aの人工知能部50のデータ蓄積部51は、図5Cに示されるように、言語入力層(M22)に名詞(M21)を用い、香り数値出力層(M26)に香り数値で表される物体の情報(M25)を用い、特徴学習モデル(再帰型ニューラルネットワークであるLSTM)(M27)により名詞と香り数値との関係性を深層学習する。また、データ蓄積部51は、香り数値入力層(M24)に香り数値(M23)を用い、言語出力層(M26)に名詞で表される物体の情報(M25)を用い、特徴学習モデル(再帰型ニューラルネットワークであるLSTM)(M27)により香り数値と名詞との関係性を深層学習する。
As shown in FIG. 5C, the data storage unit 51 of the artificial intelligence unit 50 of FIG. 5A uses nouns (M21) for the language input layer (M22) and is represented by odor numerical values for the scent numerical value output layer (M26). Using the object information (M25), deep learning is performed on the relationship between the noun and the scent value by a feature learning model (LSTM which is a recursive neural network) (M27). In addition, the data storage unit 51 uses the scent numerical value (M23) for the scent numerical value input layer (M24), uses the information (M25) of the object represented by the noun for the language output layer (M26), Deep learning of the relationship between scent value and noun by LSTM (M 27), which is a neural network.
図6に示されるように、組合せデータは、複数の名詞情報と、複数の形容詞情報と、複数の香り数値情報と、を組み合わせた情報である。ID1の名詞情報には、「ルージュロワイアル」「バラ」「生花」「愛」が含まれている。データ蓄積部51は、「ルージュロワイアル」「バラ」「生花」「愛」が使用頻度により互いに関連付けが強いものとして分類している。「ルージュロワイアル」は、「バラ」の品種であり、「生花」に用いられ、「愛」という花言葉を持つので、この関係が生じる。また、データ蓄積部51に入力される名詞情報または形容詞情報または香り数値情報の入力内容ごとの入力の頻度によって、入力された名詞情報同士に関係が生じ、形容詞同士に関係が生じ、香り数値情報同士に関係が生じる。深層学習を行うに際して、組合せデータとして頻出される可能性のある「ルージュロワイアル、バラ」は強い関係をもつように深層学習され、「ルージュロワイアル、ご飯」のような入力の頻度が低い組合せデータについては、弱い関係しか有さないように深層学習が行われる。
As shown in FIG. 6, the combination data is information in which a plurality of noun information, a plurality of adjective information, and a plurality of scent numerical value information are combined. The noun information of ID 1 includes "rouge royal", "rose", "flower" and "love". The data storage unit 51 classifies “Rouge royal”, “rose”, “floral flower”, and “love” as being strongly associated with each other according to the frequency of use. This relationship arises because "Rouge royal" is a variety of "rose", is used for "fresh flowers", and has the flower language of "love". Further, the input noun information is related to each other according to the frequency of the input for each input content of the noun information or the adjective information or the aroma numerical information input to the data storage unit 51, the adjectives are related to each other, and the aroma numerical value information Relationships arise between one another. When performing deep learning, "Rouge royale, roses" that may be frequently presented as combination data are deeply learned to have a strong relationship, and for combination data with a low frequency of input such as "rouge royale, rice" Deep learning is performed so as to have only a weak relationship.
次に、ID1の形容詞情報には、「フルーティ」「いい香り」「甘い」「濃厚な」「いい匂い」が含まれている。データ蓄積部51は、「ルージュロワイアル」を表現する形容詞として「フルーティ」「いい香り」「甘い」「濃厚な」「いい匂い」が用いられると判断する。形容詞情報としては、「フルーティ」「いい香り」は1番の表現者により表現され、「甘い」「濃厚な」は2番の表現者により表現され、「いい匂い」は3番の表現者により表現されたことも記録されている。
Next, the adjective information of ID 1 includes "fruity", "good smell", "sweet", "rich" and "good smell". The data storage unit 51 determines that “fruity”, “good smell”, “sweet”, “rich”, “good smell” is used as an adjective that expresses “rouge royal”. As adjective information, "fruity" and "good smell" are expressed by the first expressor, "sweet" and "rich" are expressed by the second expressor, and "good smell" by the third expressor It is also recorded that it was expressed.
次に、ID1の香り形容詞情報には、IDと、timestamp(香り測定時間)、水晶振動子センサ32a~32gが検知した共振周波数、average(共振周波数の平均値)、ondition_id(気温、湿度等の環境分類を示すid)が含まれている。図6中のs1は、水晶振動子センサ32aに対応し、s2は、水晶振動子センサ32bに対応し、s3は、水晶振動子センサ32cに対応し、s4は、水晶振動子センサ32dに対応し、s5は、水晶振動子センサ32eに対応し、s6は、水晶振動子センサ32fに対応し、s7は、水晶振動子センサ32gに対応する。
Next, in the aroma adjective information of ID1, ID, time stamp (aroma measurement time), resonance frequency detected by the quartz crystal sensors 32a to 32g, average (average value of resonance frequency), ondition_id (air temperature, humidity, etc.) An id indicating an environmental classification is included. In FIG. 6, s1 corresponds to the quartz crystal sensor 32a, s2 corresponds to the quartz crystal sensor 32b, s3 corresponds to the quartz crystal sensor 32c, and s4 corresponds to the quartz crystal sensor 32d. S5 corresponds to the quartz oscillator sensor 32e, s6 corresponds to the quartz oscillator sensor 32f, and s7 corresponds to the quartz oscillator sensor 32g.
(データ照合部)
データ照合部52は、ユーザが物体1を検索した物体1の名詞(検索物名詞)、この名詞を表す形容詞(検索物形容詞)の入力情報を受信し、ユーザが物体1を調査するために測定部30が測定した物体1の香り数値(検索物数値)を受信する。例えば、データ照合部52は、ユーザが検索する名詞「バラ」、形容詞「フルーティ」の入力情報を受信し、測定部30が香り数値「1990760」を受信する。 (Data collation unit)
Thedata collating unit 52 receives input information of the noun of the object 1 for which the user has searched for the object 1 (searching noun) and the adjective representing this noun (searching adjective), and the user measures it to search the object 1 The scent value (the search item value) of the object 1 measured by the unit 30 is received. For example, the data collating unit 52 receives input information of the noun “rose” and the adjective “fruity” searched by the user, and the measuring unit 30 receives the scent value “1990760”.
データ照合部52は、ユーザが物体1を検索した物体1の名詞(検索物名詞)、この名詞を表す形容詞(検索物形容詞)の入力情報を受信し、ユーザが物体1を調査するために測定部30が測定した物体1の香り数値(検索物数値)を受信する。例えば、データ照合部52は、ユーザが検索する名詞「バラ」、形容詞「フルーティ」の入力情報を受信し、測定部30が香り数値「1990760」を受信する。 (Data collation unit)
The
そして、データ照合部52は、検索された物体の名詞、形容詞および香り数値を、蓄積されている組合せデータと照合する。データ照合部52は、その組合せデータに基づいて、検索物の形容詞および検索物の香り数値を示す検索物の名詞を有する物体1を特定する。例えば、前述の例で考えると、以下のようになる。データ照合部52は、検索物の名詞「バラ」を、図6のID1の名詞情報「バラ」およびID2の名詞情報「バラ」と照合する。また、データ照合部52は、検索物の形容詞「フルーティ」を、図6のID1の形容詞「フルーティ」およびID2の形容詞「フルーティ」と照合する。さらに、データ照合部52は、検索物の香り数値「1990760」を、図6の香り数値の平均値「1990760」と照合する。
Then, the data collating unit 52 collates the noun, the adjective and the aroma value of the retrieved object with the stored combination data. The data collating unit 52 specifies the object 1 having the noun of the search object indicating the adjective of the search object and the scent value of the search object based on the combination data. For example, in the above example, it is as follows. The data collating unit 52 collates the noun "rose" of the search object with the noun information "rose" of ID 1 and the noun information "rose" of ID 2 in FIG. Further, the data collating unit 52 collates the adjective "fruity" of the search object with the adjective "fruity" of ID 1 and the adjective "fruity" of ID 2 in FIG. Furthermore, the data collating unit 52 collates the scent value “1990760” of the search item with the average value “1990760” of the scent values of FIG.
データ照合部52は、検索物の名詞と形容詞から「バラ」であることを判断できても「ルージュロワイアル」であるか「ジャンヌダルク」であるかを判断できない。しかし、データ照合部52は、香り数値の平均値から「ルージュロワイアル」であると判断する。データ照合部52は、ルージュロワイアルのバラを入出力部70に出力する。
Although the data collating unit 52 can determine that it is “rose” from the noun and the adjective of the search object, it can not determine whether it is “rouge royal” or “Janne d'arc”. However, the data collating unit 52 determines that it is "rouge royal" from the average value of the scent value. The data collating unit 52 outputs the rouge royal roses to the input / output unit 70.
(実施例1)
次に、ユーザが「良い香りがするもの」を花屋に行って見つけたが、「この香りと同等の香りがする新しい石鹸」を雑貨屋に行って探す場合を想定して、香り品質特定システム100に関するユーザの使用態様と香り品質特定システム100の動作を説明していく。また、実際には、雑貨屋であれば、石鹸の成分が石鹸の包装用紙に記載されている場合が多いため、「良い香りと同等の香り」が包装用紙で特定されるものであるが、ここでは、包装用紙に「良い香りと同等の香り」の内容が記載されていない石鹸が店内に並んでいる場合を想定して説明していく。 Example 1
Next, the user went to the flower shop to find "something that has a good smell", but it is assumed that a new soap that has the same smell as this smell goes to a general store and searches for a scent quality specification system The usage mode of the user regarding 100 and the operation of the scentquality specification system 100 will be described. Also, in reality, if it is a general store, the soap component is often described in the packaging paper of the soap, so "a scent equivalent to a good smell" is specified in the packaging paper, Here, it is assumed that soaps in which the content of “a scent equivalent to a good scent” is not described in the packaging sheet are lined up in the store.
次に、ユーザが「良い香りがするもの」を花屋に行って見つけたが、「この香りと同等の香りがする新しい石鹸」を雑貨屋に行って探す場合を想定して、香り品質特定システム100に関するユーザの使用態様と香り品質特定システム100の動作を説明していく。また、実際には、雑貨屋であれば、石鹸の成分が石鹸の包装用紙に記載されている場合が多いため、「良い香りと同等の香り」が包装用紙で特定されるものであるが、ここでは、包装用紙に「良い香りと同等の香り」の内容が記載されていない石鹸が店内に並んでいる場合を想定して説明していく。 Example 1
Next, the user went to the flower shop to find "something that has a good smell", but it is assumed that a new soap that has the same smell as this smell goes to a general store and searches for a scent quality specification system The usage mode of the user regarding 100 and the operation of the scent
ユーザが花屋を歩いているときに、自分の気に入った香りがするものを見つける。ユーザは、スマートフォン80の入出力部70の画面上で「香りアプリ」を起動させる。ユーザは、香り成分移動装置10の筐体11に良い香りがするものを収納する。ユーザが、ポンプ13を駆動させて筐体11の空気を測定部30に流入させる。測定部30は、ガスセンサ31と水晶振動子センサ32により石鹸の香りを検知し、香り数値算出部33により石鹸の香り数値を測定し、データ蓄積部51に香り数値情報「1990760」を送信する。データ蓄積部51は、形容詞情報「フルーティ、いい香り、甘い、濃厚な、いい匂い」と香り数値情報「1990760」との組合せデータを作成する。
As the user walks through the florist, find something that smells like yours. The user activates the "scent application" on the screen of the input / output unit 70 of the smartphone 80. The user stores the scented component in the casing 11 of the scent component transfer device 10. The user drives the pump 13 to flow the air of the housing 11 into the measurement unit 30. The measuring unit 30 detects the scent of soap by the gas sensor 31 and the quartz crystal sensor 32, measures the scent value of the soap by the scent value calculating unit 33, and transmits the scent value information "1990760" to the data storage unit 51. The data storage unit 51 creates combination data of the adjective information “fruity, good smell, sweet, thick, good smell” and the numerical value information of aroma “1990760”.
それから、ユーザは、雑貨屋に行って石鹸を見ている。ユーザは、図7Aに示されるように、画面中には、「何をお探しですか?」という文章と「その香りはどのような香りですか?その他に特徴はありますか?」という文章が表示される。図7Bに示されるように、ユーザが「何をお探しですか?」の入力欄に名詞「石鹸」を入力し、「その香りはどのような香りですか?その他に特徴はありますか?」の入力欄に形容詞「フルーティ 甘い」を入力する。入出力部70は、名詞情報「石鹸」と形容詞情報「フルーティ 甘い」をデータ照合部52に送信する。
Then, the user goes to the grocery store and looks at the soap. As shown in FIG. 7A, the user has the sentences "What are you looking for?" And "What is the smell like that? Are there other features?" Is displayed. As shown in FIG. 7B, the user inputs the noun "soap" in the "What are you looking for?" Input field, and "What is the smell like that? Is there any other feature?" Enter the adjective "fruity sweet" in the entry field of. The input / output unit 70 transmits the noun information “soap” and the adjective information “fruity sweet” to the data collating unit 52.
データ照合部52は、花屋で照合した形容詞情報「フルーティ、いい香り、甘い、濃厚な、いい匂い」と香り数値情報「1990760」との組合せデータの部分と、雑貨屋で検索した名詞情報「石鹸」と形容詞情報「フルーティ 甘い」との組合せデータの部分とを更に組み合わせる。そして、データ照合部52は、名詞情報「石鹸」、形容詞情報「フルーティ、甘い」、香り数値情報「1990760」を導出する。データ照合部52は、名詞情報から名詞が「石鹸」であり、形容詞情報と香り数値情報から香りが「ルージュロワイアル」であることを特定する。人工知能部50は、画面上に、「ルージュロワイアルの石鹸」を表示しつつ、ルージュロワイアルという文字が包装用紙に記載された石鹸を表示する。ユーザは、石鹸が「ルージュロワイアルの石鹸」であることを認識する。
The data collating section 52 is a part of combination data of adjective information “fruity, good smell, sweet, rich, good smell” collated by florist and numerical value information of smell “1990760”, and noun information “soap” searched by general store And the adjective information "Fruity Sweet" and the combination data part is further combined. Then, the data collating unit 52 derives the noun information “soap”, the adjective information “fruity, sweet”, and the aroma numerical value information “1990760”. The data collating unit 52 specifies from the noun information that the noun is "soap" and from the adjective information and the numerical value information that the smell is "rouge royal". The artificial intelligence unit 50 displays the soap of “Rouge Royale's Soap” on the screen, and also displays the soap with the word “Rouge Royale” written on the packaging sheet. The user recognizes that the soap is "rouge royal soap".
(実施例2)
次に、ユーザが「良い香りがするもの」を雑貨屋に行って見つけたが、それが何かわからない場合の香り品質特定システム100に関するユーザの使用態様と香り品質特定システム100の動作を説明していく。この場合は、実際には、良い香りがするものが何かは包装用紙に記載されている場合が多いため、物体が特定されるものであるが、ここでは、包装用紙で包装されていないものが店内に並んでいる場合を想定して説明していく。 (Example 2)
Next, the user goes to a general store to find “something that smells good” and finds out what it is, but explains the usage pattern of the user and the operation of the scentquality specification system 100 regarding the scent quality identification system 100 To go. In this case, an object is identified because something with a good smell is often described on the packaging paper in practice, but here, it is not packaged in the packaging paper I will explain assuming the case where is lined up in the store.
次に、ユーザが「良い香りがするもの」を雑貨屋に行って見つけたが、それが何かわからない場合の香り品質特定システム100に関するユーザの使用態様と香り品質特定システム100の動作を説明していく。この場合は、実際には、良い香りがするものが何かは包装用紙に記載されている場合が多いため、物体が特定されるものであるが、ここでは、包装用紙で包装されていないものが店内に並んでいる場合を想定して説明していく。 (Example 2)
Next, the user goes to a general store to find “something that smells good” and finds out what it is, but explains the usage pattern of the user and the operation of the scent
ユーザが雑貨屋を歩いているときに、自分の気に入った香りがするものを見つける。ユーザは、香り成分移動装置10の筐体11に自分の気に入った香りがするものを収納する。ユーザが、ポンプ13を駆動させて筐体11の空気を測定部30に流入させる。測定部30は、ガスセンサ31と水晶振動子センサ32によりその香りがするものを検知し、香り数値算出部33によりその香りがするものの香り数値を測定し、データ蓄積部51に香り数値情報「1990760」を送信する。
While the user is walking in the grocery store, find something that smells like yours. The user stores in the casing 11 of the scent component transfer device 10 what smells his / her favorite. The user drives the pump 13 to flow the air of the housing 11 into the measurement unit 30. The measuring unit 30 detects what smell is detected by the gas sensor 31 and the quartz crystal sensor 32, measures the odor numerical value of the smell with the aroma numerical value calculating unit 33, and detects the odor numerical value information “1990760 Send ".
この一方で、ユーザは、スマートフォンの入出力部70の画面上で「香りアプリ」を起動させる。図7Aに示されるように、画面中には、「何をお探しですか?」という文章と、「その香りはどのような香りですか?その他に特徴はありますか?」という文章と、が表示される。図7Bに示されるように、ユーザが「何をお探しですか?」の入力欄に名詞「不明」を入力し、「その香りはどのような香りですか?その他に特徴はありますか?」の入力欄に「フルーティ」を入力する。入出力部70は、名詞情報「不明」、形容詞情報「フルーティ」をデータ照合部52に送信する。
On the other hand, the user activates the "scent application" on the screen of the input / output unit 70 of the smartphone. As shown in FIG. 7A, on the screen, the sentences "What are you looking for?" And "What is the smell like, what other features do you have?" Is displayed. As shown in FIG. 7B, the user inputs the noun "unknown" in the "What are you looking for?" Input field, and "What is the smell like that? Is there any other feature?" Enter "Fruity" in the entry field of. The input / output unit 70 transmits the noun information “unknown” and the adjective information “fruity” to the data collating unit 52.
データ照合部52は、名詞情報「不明」、形容詞情報「フルーティ」、香り数値情報「1990760」をデータ蓄積部51の組合せデータと照合する。そして、人工知能部50は、名詞情報からは名詞が特定されず、形容詞情報からも香りが特定されず、香り数値情報から香りが「ルージュロワイアル」であることを特定する。名詞情報は検索の段階では分からないが、データ照合部52は、名詞情報「石鹸」、形容詞情報「フルーティ」、香り数値情報「1990760」の組合せデータに該当するものを有するのであれば、「ルージュロワイアルの石鹸」であると結論を出す可能性がある。ただし、「ルージュロワイアルのバラ」であると結論を出す可能性もある。
The data collating unit 52 collates the noun information “unknown”, the adjective information “fruity”, and the scent numerical information “1990760” with the combination data of the data storage unit 51. Then, the artificial intelligence unit 50 determines that the noun is not specified from the noun information, the smell is not specified from the adjective information, and the smell is “rouge royal” from the smell numerical information. Although the noun information is not known at the search stage, if the data collating unit 52 has the combination data of the noun information “soap”, the adjective information “fruity”, and the aroma numerical information “1990760”, It may be concluded that it is a "roial soap". However, it may also conclude that it is a "Rouge royal rose".
(実施例3)
実施例3では、実施例2の事例において、データ照合部52は、組合せデータに形容詞情報と香り数値情報とを組み合わせたデータがあるもののこれらと名詞情報とを組み合わせた組合せデータが無い場合を想定して説明する。この場合には、名詞情報を特定するために、画面中に、「それは、四角いですか?」、「それは、固いですか?」、「それは、すべり易いですか?」、「それは、白いですか?」という文章が表示される。データ蓄積部51は、「それは四角いですか?」に対するユーザの回答「四角い」、「それは固いですか?」に対するユーザの回答「固い」、「それは、すべり易いですか?」に対する回答「すべり易い」、「それは、白いですか?」に対するユーザの回答「白い」といった形容詞情報を中間層、香り数値情報「1990760」を入力層、名詞情報「不明」を出力層として、再帰型ニューラルネットワークにより名詞「石鹸」を特定する。ユーザは、知りたかったものが「ルージュロワイアルの石鹸」であることを認識する。 (Example 3)
In the third embodiment, in the case of the second embodiment, thedata comparison unit 52 assumes that there is data in which adjective information and odor numerical value information are combined in combination data but there is no combination data in which these are combined with noun information To explain. In this case, in order to identify the noun information, "is it a square?", "Is it hard?", "Is it slippery?", "It is white," on the screen The sentence is displayed. In the data storage unit 51, the user's answer "Square" to "Is it a square?" The user's answer to "Is it hard?" The answer "Hard" or "Is it slippery?"", Is it white?" The user's answer to the adjective information such as "white" is the middle layer, the scent numerical information "1990760" is the input layer, the noun information "unknown" is the output layer, and the noun by the recursive neural network Identify "soap". The user recognizes that what he wanted to know is "Rouge Royale's Soap".
実施例3では、実施例2の事例において、データ照合部52は、組合せデータに形容詞情報と香り数値情報とを組み合わせたデータがあるもののこれらと名詞情報とを組み合わせた組合せデータが無い場合を想定して説明する。この場合には、名詞情報を特定するために、画面中に、「それは、四角いですか?」、「それは、固いですか?」、「それは、すべり易いですか?」、「それは、白いですか?」という文章が表示される。データ蓄積部51は、「それは四角いですか?」に対するユーザの回答「四角い」、「それは固いですか?」に対するユーザの回答「固い」、「それは、すべり易いですか?」に対する回答「すべり易い」、「それは、白いですか?」に対するユーザの回答「白い」といった形容詞情報を中間層、香り数値情報「1990760」を入力層、名詞情報「不明」を出力層として、再帰型ニューラルネットワークにより名詞「石鹸」を特定する。ユーザは、知りたかったものが「ルージュロワイアルの石鹸」であることを認識する。 (Example 3)
In the third embodiment, in the case of the second embodiment, the
前述してきた香り品質特定システム100によれば、従来よりも「物体」と「香り」の関連付けの確実性を向上させて香りを放つ物体1を特定し易くすることができる。例えば、ルージュロワイアルの石鹸がある場合に、名詞「石鹸」と香り数値「1990760」の関連付けの確実性が、形容詞「フルーティ、いい香り、甘い、濃厚な、いい匂い」等により向上し、香りを放つ物体1が特定され易くなる。
According to the scent quality identification system 100 described above, it is possible to improve the certainty of the association between the "object" and the "aroma" more than in the past and to easily identify the object 1 that emits the scent. For example, when there is a rouge royale soap, the certainty of the association between the noun "soap" and the aroma number "1990760" is improved by the adjective "fruity, good smell, sweet, thick, good smell" etc. An object 1 to be emitted can be easily identified.
(変形例)
なお、上記実施形態では、水晶振動子センサが用いられて香り成分が検知される構成であったが、これに限定されず、香り分子まで細かく検知される構成、または半導体式センサ、接触燃焼式センサ、電気化学式センサ、光センサが用いられて香り成分または香り分子または香りを有する物体が発するガスが検知される構成であっても良い。 (Modification)
In the above embodiment, the crystal oscillator sensor is used to detect the scent component. However, the present invention is not limited to this, a configuration in which even scent molecules are finely detected, or a semiconductor sensor, contact combustion type A sensor, an electrochemical sensor, or an optical sensor may be used to detect a gas emitted from an odor component or an odor molecule or an object having an odor.
なお、上記実施形態では、水晶振動子センサが用いられて香り成分が検知される構成であったが、これに限定されず、香り分子まで細かく検知される構成、または半導体式センサ、接触燃焼式センサ、電気化学式センサ、光センサが用いられて香り成分または香り分子または香りを有する物体が発するガスが検知される構成であっても良い。 (Modification)
In the above embodiment, the crystal oscillator sensor is used to detect the scent component. However, the present invention is not limited to this, a configuration in which even scent molecules are finely detected, or a semiconductor sensor, contact combustion type A sensor, an electrochemical sensor, or an optical sensor may be used to detect a gas emitted from an odor component or an odor molecule or an object having an odor.
半導体式センサは、酸化物半導体の表面が可燃性ガスに曝されると、酸化物半導体の電気抵抗が変化するので、その抵抗値の変化を検知する。この抵抗値変化のデータが香り分子の検知に用いられる。接触燃焼式センサは、可燃性ガスに曝されると、可燃性ガスに対して反応する検知片と可燃性ガスに対して反応しない補償片のうち、検知片の方のみ抵抗上昇することでブリッジ回路のバランスが崩れて、不均衡電圧値の変化を検知する。この電圧値変化のデータが香り分子の検知に用いられる。
When the surface of the oxide semiconductor is exposed to a flammable gas, the semiconductor sensor detects a change in the resistance value of the oxide semiconductor because the electric resistance of the oxide semiconductor changes. The data of this resistance value change is used for detection of the scent molecule. The contact combustion type sensor is a bridge by raising the resistance of only the detection piece among the detection piece that reacts to the combustible gas and the compensation piece that does not react to the combustible gas when exposed to the flammable gas. The balance of the circuit is broken and a change in the unbalanced voltage value is detected. The data of this voltage value change is used for detection of the scent molecule.
上記実施形態では、データ蓄積部51は、IINIOI AI と名付けられた出願人が開発する独自のシステムであるが、その他の深層学習またはデータベースによるシステムであっても良い。
In the above embodiment, the data storage unit 51 is a unique system developed by the applicant named IINIOI AI but may be a system based on other deep learning or database.
上記実施形態では、水晶振動子センサ32が7つ用いられていたので香りデータが7次元の構成であったが、上記実施形態に限定されなくても良い。すなわち、水晶振動子センサ32が8つ以上用いられた8次元以上の構成であっても良い。データ蓄積部51は、水晶振動子センサ32の種類が多くなればなる程、香り数値情報を細かく保有できることになる。また、データ照合部52は、水晶振動子センサ32の種類が多くなればなる程、香り数値を細かく照合できることになる。
In the above embodiment, seven crystal oscillator sensors 32 are used, so the scent data has a seven-dimensional configuration, but the present invention is not limited to the above embodiment. That is, a configuration of eight or more dimensions in which eight or more quartz oscillator sensors 32 are used may be used. As the number of types of the quartz oscillator sensor 32 increases, the data storage unit 51 can hold the scent numerical value information more finely. In addition, the data collating unit 52 can collate the odor numerical value more finely as the number of types of the quartz oscillator sensor 32 increases.
上記実施形態では、データ蓄積部51は、入力層に名詞情報、出力層に形容詞情報、中間層に香り数値情報を用いる構成であったが、この構成に限定されなくても良い。この場合に、中間層の訓練に、香り数値情報と名詞情報との間の学習済みネットワークが用いられて転移学習させたり、香り数値情報と形容詞情報との間の学習済みネットワークが用いられて転移学習させたりしても良い。これは、入力層に形容詞情報、出力層に名詞情報、中間層に香り数値情報を用いる構成であっても同様である。
In the above embodiment, the data storage unit 51 is configured to use noun information in the input layer, adjective information in the output layer, and scent numerical value information in the intermediate layer, but the configuration is not limited to this configuration. In this case, in the middle layer training, a learned network between scent numerical information and noun information is used for transfer learning, or a learned network between scent numerical information and adjective information is used for transfer. You may learn it. This is the same even if the input layer uses adjective information, the output layer uses noun information, and the middle layer uses scent numerical information.
上記実施形態では、データ蓄積部51は、入力層に名詞情報、出力層に香り数値情報、中間層に形容詞情報を用いる構成であったが、この構成に限定されなくても良い。この場合に、中間層の訓練に、形容詞情報と名詞情報との間の学習済みネットワークが用いられて転移学習させたり、形容詞情報と香り数値情報との間の学習済みネットワークが用いられて転移学習させたりしても良い。これは、入力層に香り数値情報、出力層に名詞情報、中間層に形容詞情報を用いる構成でも同様である。
In the above embodiment, the data storage unit 51 is configured to use noun information in the input layer, scent numerical value information in the output layer, and adjective information in the middle layer, but the configuration is not limited to this. In this case, in the training of the middle layer, a learned network between adjective information and noun information is used for transfer learning, or a learned network between adjective information and odor numerical information is used for transfer learning You may do it. The same applies to a configuration in which the numerical value information of the scent is used for the input layer, the noun information for the output layer, and the adjective information for the intermediate layer.
上記実施形態では、データ蓄積部51は、入力層に香り数値情報、出力層に形容詞情報、中間層に名詞情報を用いる構成であったが、この構成に限定されなくても良い。この場合に、中間層の訓練に、名詞情報と香り数値情報との間の学習済みネットワークが用いられて転移学習させたり、名詞情報と形容詞情報との間の学習済みネットワークが用いられて転移学習させたりしても良い。これは、入力層に形容詞情報、出力層に香り数値情報、中間層に名詞情報を用いる構成でも同様である。
In the above embodiment, the data storage unit 51 is configured to use the scent numerical value information for the input layer, the adjective information for the output layer, and the noun information for the intermediate layer, but the configuration is not limited to this configuration. In this case, in the middle layer training, a learned network between noun information and scent numerical information is used for transfer learning, or a learned network between noun information and adjective information is used for transfer learning You may do it. The same applies to a configuration using adjective information in the input layer, scent numerical information in the output layer, and noun information in the middle layer.
上記実施形態では、香り品質特定システム100が香り成分移動装置10を有する構成であったが、この構成に限定されなくても良い。香り品質特定システム100に香りを吸入する香り吸入機構が設けられれば良い。
In the said embodiment, although the fragrance quality identification system 100 was a structure which has the fragrance component transfer apparatus 10, it may not be limited to this structure. The scent quality specifying system 100 may be provided with a scent suction mechanism for sucking a scent.
上記実施形態では、香り品質特定システム100が、香り成分移動装置10、香り測定部30、人工知能部50、入出力部70が別体で構成される構成であったが、この構成に限定されなくても良い。全ての構成がスマートフォン等の高機能通信端末に内蔵される構成であっても良い。
In the above embodiment, the scent quality specification system 100 has the configuration in which the scent component transfer device 10, the scent measurement unit 30, the artificial intelligence unit 50, and the input / output unit 70 are separately configured, but the present invention is limited to this configuration. It does not have to be. All configurations may be built in high-performance communication terminals such as smartphones.
上記実施形態では、データ照合部52は、検索する物体1の香り数値情報を、データ蓄積部51の香り数値情報の平均値と照合していたが、この構成に限定されなくても良い。例えば、データ蓄積部51の香り数値情報の平均値の代わりに、各々の水晶振動子センサ32a~32gが検知した香り数値に重み付けをした数値を足し合わせた数値、各々の水晶振動子センサ32a~32gが検知した香り数値に重み付けをした数値を掛け合わせた数値、が用いられても良い。
Although the data collating unit 52 collates the scent numerical value information of the object 1 to be searched with the average value of the scent numerical value information of the data storage unit 51 in the above embodiment, the present invention is not limited to this configuration. For example, instead of the average value of the odor numerical value information of the data storage unit 51, a value obtained by adding a weighted numerical value to the aroma value detected by each of the quartz crystal sensors 32a to 32g, each quartz oscillator sensor 32a to A value obtained by multiplying the scent value detected by 32 g by a weighted value may be used.
上記実施形態では、香り品質特定システム100が物体1の名詞、形容詞及び香り数値の関係性を学習する深層学習処理、及び深層学習により作成した組み合わせデータを用いて物体1を特定する物体特定処理の2つの処理を行ったが、香り品質特定システム100は、2つの処理をそれぞれサーバ装置及びクライアントが行うサーバ/クライアントシステムとして構成されても良い。具体的には、サーバ装置が深層学習を行って組合せデータを作成し、インターネット等の公衆通信網を介してユーザの高機能携帯端末に「香りアプリ」(プログラム)及び組合せデータを配信し、インストールさせる。高機能携帯端末は、ユーザから検索対象の物体1の名詞、形容詞の入力を受け付けると共に、検索対象の物体1の香り数値を測定部30から受信して組合せデータと照合し、物体1を特定する。このように、深層学習を行うハードウェア(データ蓄積部51)と、物体1を特定するハードウェア(データ照合部52)とは異なっていても良い。
In the above embodiment, deep layer learning processing in which the scent quality identification system 100 learns the relationship between nouns, adjectives and scent values of the object 1, and object identification processing in which the object 1 is identified using combination data created by deep layer learning Although two processes were performed, the scent quality specification system 100 may be configured as a server / client system in which the server apparatus and the client perform the two processes. Specifically, the server device performs deep learning to create combination data, distributes the "scent application" (program) and combination data to the user's high-performance portable terminal via a public communication network such as the Internet, and installs the combination. Let The high-performance portable terminal receives an input of nouns and adjectives of the object 1 to be searched from the user, receives an aroma value of the object 1 to be searched from the measuring unit 30, and collates it with combination data to specify the object 1 . As described above, the hardware for performing deep learning (the data storage unit 51) and the hardware for identifying the object 1 (the data collating unit 52) may be different.
なお、高機能携帯端末には組合せデータをインストールせず、サーバ装置が組合せデータを保持し、高機能携帯端末は物体1の特定時にサーバ装置にアクセスして組合せデータとの照合を行うようにしても良いことは勿論である。
It should be noted that the server device holds the combination data without installing the combination data in the high-performance mobile terminal, and the high-performance mobile terminal accesses the server device when the object 1 is specified to perform collation with the combination data. Of course it is also good.
1 物体
10 香り成分移動装置
100 香り品質特定システム
11 筐体
12 チューブ
13 ポンプ
30 測定部
31 ガスセンサ
32 水晶振動子センサ
32a~32g 水晶振動子センサ
33 数値算出部
34 水晶振動子
50 人工知能部
51 データ蓄積部
52 データ照合部
70 入出力部
K1~K5 グラフ DESCRIPTION OFSYMBOLS 1 object 10 aroma component movement apparatus 100 aroma quality identification system 11 housing | casing 12 tube 13 pump 30 measurement part 31 gas sensor 32 quartz oscillator sensor 32a-32g quartz oscillator sensor 33 numerical calculation part 34 quartz oscillator 50 artificial intelligence part 51 data Storage unit 52 Data collation unit 70 Input / output unit K1 to K5 graph
10 香り成分移動装置
100 香り品質特定システム
11 筐体
12 チューブ
13 ポンプ
30 測定部
31 ガスセンサ
32 水晶振動子センサ
32a~32g 水晶振動子センサ
33 数値算出部
34 水晶振動子
50 人工知能部
51 データ蓄積部
52 データ照合部
70 入出力部
K1~K5 グラフ DESCRIPTION OF
Claims (5)
- 物体の名詞、前記名詞を表す形容詞が入力可能な入力部と、
前記物体から放たれる香り成分に基づく数値を測定する測定部と、
前記入力部に入力された前記名詞、前記形容詞、および前記測定部が測定した数値のうちの少なくとも2つを組み合わせて組合せデータとして蓄積させるデータ蓄積部と、検索される物体の検索物名詞、前記検索物名詞を表す検索物形容詞が入力されると共に、検索される物体の前記数値である検索物数値を受信したときに、前記検索物名詞、前記検索物形容詞および前記検索物数値を前記組合せデータと照合し、前記組合せデータに基づいて、前記検索物形容詞および前記検索物数値の香りの品質を示す前記検索物名詞を有する物体、または前記検索物数値の香りの品質を示す前記検索物名詞を有する物体を特定するデータ照合部と、
を備えることを特徴とする香り品質特定システム。 An input part to which an object noun and an adjective representing the noun can be input;
A measurement unit that measures a numerical value based on the scent component emitted from the object;
A data storage unit for combining and storing at least two of the noun input to the input unit, the adjective, and the numerical value measured by the measurement unit; When a search object adjective representing a search pronoun is input and a search object numerical value which is the numerical value of the object to be searched is received, the search pronoun, the search object adjective and the search object numerical value are combined data An object having the search pronoun indicating the quality of the search object adjective and the smell of the search object value based on the combination data, or the search pronoun indicating the quality of the smell of the search object value A data collating unit for specifying an object to be possessed;
Aroma quality identification system characterized in that it comprises. - 前記データ蓄積部は、前記名詞、前記形容詞および前記数値の間で、前記名詞、前記形容詞および前記数値を再帰型ニューラルネットワークにより学習し、前記組合せデータを作成して蓄積させることを特徴とする請求項1に記載の香り品質特定システム。 The data storage unit is characterized in that the noun, the adjective and the numerical value are learned by a recursive neural network among the noun, the adjective and the numerical value, and the combination data is created and accumulated. The scent quality identification system according to Item 1.
- 前記データ蓄積部は、前記名詞、前記形容詞および前記数値を、インターネット情報又は自動応答システムの応答履歴から収集して、前記組合せデータを作成して蓄積させることを特徴とする請求項1又は請求項2に記載の香り品質特定システム。 The data storage unit collects the noun, the adjective and the numerical value from Internet information or a response history of an automatic response system, and creates and stores the combination data. Aroma quality identification system described in 2.
- 請求項1乃至請求項3のいずれか1項に記載の香り品質特定システムを備える高機能携帯端末。 The high functional portable terminal provided with the fragrance quality identification system of any one of Claim 1 thru | or 3.
- 検索される物体の検索物名詞、前記検索物名詞を表す検索物形容詞の入力を受け付け、
検索される前記物体から放たれる香り成分に基づく数値である検索物数値を受信し、
前記検索物名詞、前記検索物形容詞および前記検索物数値を、前記物体の名詞、前記名詞を表す形容詞、および前記数値のうちの少なくとも2つを組み合わせた組合せデータと照合し、前記組合せデータに基づいて、前記検索物形容詞および前記検索物数値の香りの品質を示す前記検索物名詞を有する物体、または前記検索物数値の香りの品質を示す前記検索物名詞を有する物体を特定する
処理をコンピュータに実行させるプログラム。 Accept input of a search pronoun of an object to be searched and a search adjective representing the search pronoun,
Receiving a search item numerical value that is a numerical value based on a scent component emitted from the object to be searched;
The search pronoun, the search object adjective, and the search object numerical value are collated with combination data combining at least two of the object noun, the adjective representing the noun, and the numerical value, and based on the combination data Identifying the object having the search pronoun indicating the quality of the search object adjective and the smell of the search object value, or the object having the search pronoun indicating the quality of the search object value The program to run.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019559633A JP7074365B2 (en) | 2017-12-11 | 2018-12-10 | Fragrance quality identification system, high-performance mobile terminal and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017236603 | 2017-12-11 | ||
JP2017-236603 | 2017-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019117099A1 true WO2019117099A1 (en) | 2019-06-20 |
Family
ID=66819275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/045363 WO2019117099A1 (en) | 2017-12-11 | 2018-12-10 | Fragrance quality identification system, high performance portable terminal, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7074365B2 (en) |
WO (1) | WO2019117099A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021064275A (en) * | 2019-10-16 | 2021-04-22 | 株式会社コードミー | Fragrance information provision device, fragrance information provision method, and fragrance provision container |
WO2021256460A1 (en) | 2020-06-17 | 2021-12-23 | 株式会社レボーン | System, information processing device, and program |
WO2022097655A1 (en) | 2020-11-04 | 2022-05-12 | 株式会社レボーン | Measuring device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005242657A (en) * | 2004-02-26 | 2005-09-08 | Aki Enterprise:Kk | Aroma retrieval system, aroma sample order system, and aroma coordination system |
JP2006275862A (en) * | 2005-03-30 | 2006-10-12 | Yokohama Tlo Co Ltd | Odor measuring instrument |
JP2007309752A (en) * | 2006-05-17 | 2007-11-29 | Toppan Printing Co Ltd | Smell sensing system and elastic surface wave element |
JP2014085114A (en) * | 2012-10-19 | 2014-05-12 | Nikon Corp | Substance identification system, substance identification device, substance identification method, and program |
US20160132482A1 (en) * | 2014-11-10 | 2016-05-12 | Oracle International Corporation | Automatic ontology generation for natural-language processing applications |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5195245B2 (en) * | 2008-10-01 | 2013-05-08 | 株式会社ニコン | camera |
-
2018
- 2018-12-10 WO PCT/JP2018/045363 patent/WO2019117099A1/en active Application Filing
- 2018-12-10 JP JP2019559633A patent/JP7074365B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005242657A (en) * | 2004-02-26 | 2005-09-08 | Aki Enterprise:Kk | Aroma retrieval system, aroma sample order system, and aroma coordination system |
JP2006275862A (en) * | 2005-03-30 | 2006-10-12 | Yokohama Tlo Co Ltd | Odor measuring instrument |
JP2007309752A (en) * | 2006-05-17 | 2007-11-29 | Toppan Printing Co Ltd | Smell sensing system and elastic surface wave element |
JP2014085114A (en) * | 2012-10-19 | 2014-05-12 | Nikon Corp | Substance identification system, substance identification device, substance identification method, and program |
US20160132482A1 (en) * | 2014-11-10 | 2016-05-12 | Oracle International Corporation | Automatic ontology generation for natural-language processing applications |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021064275A (en) * | 2019-10-16 | 2021-04-22 | 株式会社コードミー | Fragrance information provision device, fragrance information provision method, and fragrance provision container |
WO2021256460A1 (en) | 2020-06-17 | 2021-12-23 | 株式会社レボーン | System, information processing device, and program |
WO2022097655A1 (en) | 2020-11-04 | 2022-05-12 | 株式会社レボーン | Measuring device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019117099A1 (en) | 2021-01-14 |
JP7074365B2 (en) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019117099A1 (en) | Fragrance quality identification system, high performance portable terminal, and program | |
US20200218415A1 (en) | Device and method for sharing olfactory data between real world and online world | |
CN107908619B (en) | Public opinion monitoring-based processing method, device, terminal and computer storage medium | |
KR102150282B1 (en) | Apparatus and method for generation of olfactory information related to multimedia contents | |
JP7544379B2 (en) | Information processing device, information processing method, trained model generation method and program | |
US8626797B2 (en) | Information processing apparatus, text selection method, and program | |
Davide et al. | 12 Virtual olfactory interfaces: electronic noses and olfactory displays | |
CN108351992A (en) | It is experienced according to the enhanced computer of active prediction | |
CN106255866A (en) | Communication system, control method and storage medium | |
CN108351870A (en) | According to the Computer Distance Education and semantic understanding of activity pattern | |
CN106682090A (en) | Active interaction implementing device, active interaction implementing method and intelligent voice interaction equipment | |
JP6472573B2 (en) | Data analysis method candidate decision device | |
CN103793446A (en) | Music video generation method and system | |
US20230160861A1 (en) | Portable fluid sensory device with learning capabilities | |
KR20150086441A (en) | Connecting people based on content and relational distance | |
Yang et al. | A model transfer learning framework with back-propagation neural network for wine and Chinese liquor detection by electronic nose | |
JP6665899B2 (en) | Scent presentation information output system | |
JP2010262436A (en) | Information processing apparatus and method, and program | |
CN109783656A (en) | Recommended method, system and the server and storage medium of audio, video data | |
JP2019036191A (en) | Determination device, method for determination, and determination program | |
CN106124695A (en) | For controlling method and the electronic equipment thereof of gas | |
CN103218440A (en) | Media file recommendation method and device based on identity recognition | |
JP2019036201A (en) | Output controller, output control method, and output control program | |
CN114661895A (en) | Commodity classification method and device, storage medium and electronic equipment | |
JP2018036756A (en) | Message classification system, message classification method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18889500 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019559633 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18889500 Country of ref document: EP Kind code of ref document: A1 |