WO2019116509A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019116509A1
WO2019116509A1 PCT/JP2017/044939 JP2017044939W WO2019116509A1 WO 2019116509 A1 WO2019116509 A1 WO 2019116509A1 JP 2017044939 W JP2017044939 W JP 2017044939W WO 2019116509 A1 WO2019116509 A1 WO 2019116509A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
temperature
relay
unit
air conditioner
Prior art date
Application number
PCT/JP2017/044939
Other languages
French (fr)
Japanese (ja)
Inventor
貴寛 平田
宏昭 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019559500A priority Critical patent/JP6925448B2/en
Priority to PCT/JP2017/044939 priority patent/WO2019116509A1/en
Publication of WO2019116509A1 publication Critical patent/WO2019116509A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an air conditioner provided with an inrush current limiting circuit.
  • an inrush current limiting circuit composed of an inrush current limiting resistor and a relay has been conventionally used as a circuit for limiting inrush current when power is supplied from a commercial AC power supply.
  • Patent Document 1 the inrush current limiting circuit is operated with reliability by opening the relay contact in the standby state of the device, thereby eliminating the problem that the device does not operate due to the failure of the relay.
  • relay control is used which eliminates the power loss which generate
  • the resistance value of the inrush current limiting resistor for limiting the inrush current is set so as to satisfy the pulse limit power without imposing an excessive load on the elements and devices inside the rectifying and smoothing circuit.
  • the resistance is selected so as not to destroy itself and to satisfy the rated power.
  • the inrush current limiting resistor generates heat if an abnormal voltage is applied to the inrush current limiting circuit.
  • the resistance value of the inrush current limiting resistor may not return to the normal value. In that case, there is a problem that the rush current limiting circuit does not operate normally when starting operation from the standby time, and the air conditioner does not operate and can not be operated.
  • the present invention has been made in view of the above, and it is an object of the present invention to obtain an air conditioner that can realize stable operation even when the resistance that constitutes the inrush current limiting circuit generates heat.
  • the present invention has first and second input terminals, and the second input terminal is connected to a commercial AC power supply, and the first and second input terminals are connected.
  • an inverter unit that converts a DC voltage output from the converter unit into a second AC voltage and supplies the second AC voltage to the motor.
  • the temperature detection unit for detecting the temperature of the resistor, and the temperature and the threshold are compared before the converter unit and the inverter unit are operated after receiving the signal related to the operation of the motor.
  • a control unit is provided to execute control of the relay on the basis of the control unit.
  • the air conditioner concerning this invention has an effect that it becomes possible to implement
  • Block diagram of an air conditioner provided with an inrush current limiting circuit according to an embodiment of the present invention
  • Block diagram showing the configuration of a microcomputer according to the embodiment
  • FIG. 1 is a block diagram of an air conditioner 100 provided with an inrush current limiting circuit 8 according to an embodiment of the present invention.
  • the air conditioner 100 includes an inrush current limiting circuit 8 for limiting inrush current, a temperature detection unit 9 for detecting the temperature of the inrush current limiting resistor of the inrush current limiting circuit 8, and a third supplied from the commercial AC power supply 1.
  • a drive circuit 15, a microcomputer 50 which is a control unit, and a power supply circuit 22 are provided.
  • Inrush current limiting circuit 8 includes resistors 2 and 5 connected in series for inrush current limiting, and relays 4 and 7.
  • the resistors 2 and 5 are resistors for limiting the inrush current applied instantaneously at the time of power input from the commercial AC power supply 1.
  • the relay 4 that is the first relay includes a relay contact 30 connected in parallel to the resistor 2 that is the first resistor, and a relay excitation coil 3 that controls the opening and closing of the relay contact 30. Both ends of the relay contact 30 are respectively connected to both ends of the resistor 2.
  • a state in which the relay contact 30 is closed and the both ends of the resistor 2 are shorted is referred to as a closed state of the relay 4, and a state in which the relay contact 30 is opened and both ends of the resistor 2 are open is referred to as an open state of the relay 4.
  • the relay 7 which is a second relay includes a relay contact 60 connected in parallel to the resistor 5 which is a second resistor, and a relay excitation coil 6 which controls the opening and closing of the relay contact 60. Both ends of the relay contact 60 are respectively connected to both ends of the resistor 5.
  • a state in which the relay contact 60 is closed and the both ends of the resistor 5 are shorted is referred to as a closed state of the relay 7, and a state in which the relay contact 60 is opened and both ends of the resistor 5 are open is referred to as an open state of the relay 7.
  • the relay coil drive circuit 15 drives the relay excitation coils 3 and 6 to control the open / close state of the relays 4 and 7.
  • the number of resistors provided in the inrush current limiting circuit 8 is not limited as long as it is plural, and it may not be series connection but may be parallel connection or combination of series connection and parallel connection.
  • the temperature detection unit 9 detects the temperatures of the resistor 2 and the resistor 5, respectively.
  • An example of the resistor 2 and the resistor 5 is a thermistor having a positive temperature coefficient, that is, a positive temperature coefficient (PTC) thermistor. Having a positive temperature coefficient is a resistance change characteristic in which the resistance value increases with an increase in temperature.
  • the PTC thermistor is a thermistor whose resistance value rapidly increases with the rise in temperature when the temperature exceeds the Curie temperature determined for each thermistor, and the current does not flow.
  • At least one of the plurality of resistors provided in the inrush current limiting circuit 8 may be a thermistor having a positive temperature coefficient.
  • the converter unit 13 includes a first input terminal 131, a second input terminal 132, a first output terminal 133, a second output terminal 134, a booster circuit 10, a diode bridge 11, and a smoothing capacitor 12.
  • the resistor 2 and the resistor 5 are connected between the first input terminal 131 and the commercial AC power supply 1, and the second input terminal 132 is connected to the commercial AC power supply 1.
  • the resistor 2 and the resistor 5 may be connected between the second input terminal 132 and the commercial AC power supply 1, and the first input terminal 131 may be connected to the commercial AC power supply 1.
  • Converter unit 13 converts the first AC voltage supplied from first input terminal 131 and second input terminal 132 into DC voltage and outputs the DC voltage to first output terminal 133 and second output terminal 134.
  • the inverter unit 14 converts the DC voltage output from the first output terminal 133 and the second output terminal 134 of the converter unit 13 into a second AC voltage, and supplies the second AC voltage to the motor 21.
  • the microcomputer 50 is driven by a dedicated power supply circuit 22.
  • the user can operate a remote controller (hereinafter referred to as a remote control) not shown, and the microcomputer 50 maintains the remote control standby state until a remote control operation from the user is input.
  • the microcomputer 50 includes a relay control unit 16 for controlling the relay coil drive circuit 15, a remote control control unit 17 for receiving a remote control signal which is a signal from a remote control by the user's remote control operation, and a detected temperature detected by the temperature detection unit 9. And a temperature determination unit 18 that executes the temperature determination based on The remote control signal is a signal related to the operation of the motor 21 such as operation start, operation stop, heating start, and cooling start. In the remote control standby state, the microcomputer 50 can receive the remote control signal.
  • the inrush current limiting circuit 8 limits the current by the resistor corresponding to the relay in the open state.
  • the resistance value of the resistor 2 may increase due to heat generation when an abnormal voltage is applied, and the current may not flow.
  • the air conditioner 100 starts operation from the stop state while the relay 4 is open, no voltage is applied from the inrush current limiting circuit 8 to the circuit at the subsequent stage.
  • the air conditioner 100 when the remote control signal is input to the remote control control unit 17 by the user's remote control operation, based on the temperature of the resistor 2 detected by the temperature detection unit 9
  • the temperature determination unit 18 of the microcomputer 50 executes the temperature determination. Then, when the temperature determination unit 18 determines that the temperature of the resistor 2 detected by the temperature detection unit 9 is higher than the first threshold set for the resistor 2, the relay coil drive circuit 15 from the relay control unit 16 A signal instructing to drive the relay excitation coil 3 is output to the relay coil drive circuit 15.
  • the relay coil drive circuit 15 controls the relay 4 to be in a closed state.
  • the relay 4 is controlled to be closed, so the rush current Since the limiting circuit 8 uses only the resistor 5, the operation of the air conditioner 100 can be started with the inrush current limited.
  • FIG. 2 is a flowchart for explaining the operation of the air conditioner 100 according to the embodiment. Hereinafter, the operation of the air conditioner 100 will be described with reference to FIG.
  • the microcomputer 50 driven by the dedicated power supply circuit 22 is in the remote control standby state (step S11).
  • the remote control control unit 17 of the microcomputer 50 determines whether or not the remote control signal by the user's remote control operation has been received (step S12). If the remote control signal has not been received (step S12: No), the process returns to step S11.
  • the temperature determination unit 18 determines whether the temperature of the resistor 2 detected by the temperature detection unit 9 is less than or equal to the first threshold. (Step S13).
  • the first threshold value is a value determined by the element temperature characteristic of the resistor 2, the operable temperature data of the resistor 2, the breakdown temperature of the resistor 2, etc. There is.
  • step S13: No When it is determined that the temperature of the resistor 2 which is the first resistor is higher than the first threshold (step S13: No), the relay control unit 16 sends a signal to the relay coil drive circuit 15 to perform the first relay.
  • the relay 4 is controlled to be in the closed state (step S14).
  • step S13: Yes when the temperature of the resistor 2 is determined to be equal to or lower than the first threshold (step S13: Yes), and after step S14, the received remote control signal instructs "start operation" after step S14. It is determined whether it is a signal (step S15).
  • step S15 If it is determined in step S15 that the received remote control signal is a signal instructing "start of operation" (step S15: Yes), the air conditioner 100 starts operation (step S16). Specifically, the microcomputer 50 operates the converter unit 13 and the inverter unit 14. After step S16, the temperature determination unit 18 determines whether or not both the temperatures of the resistors 2 and 5 which are the first and second resistors detected by the temperature detection unit 9 are less than or equal to the second threshold (see FIG. Step S17).
  • the second threshold is a value determined by the element temperature characteristics of the resistors 2 and 5, the operable temperature data of the resistors 2 and 5, the breakdown temperature of the resistors 2 and 5, etc. It is held in advance by the department. The second threshold may be the same as or different from the first threshold.
  • step S15 determines whether the received remote control signal is a signal instructing "start of operation” as in the case of a signal instructing "stop operation” (step S15: No).
  • the relay control unit A signal 16 is sent to the relay coil drive circuit 15 to control the relays 4 and 7, which are the first and second relays, to be open (step S19).
  • the air conditioner 100 stops the operation (step S20), and returns to the remote control standby state (step S11).
  • step S17 When it is determined in step S17 that the temperatures of both the resistors 2 and 5 are both equal to or less than the second threshold (step S17: Yes), the relay control unit 16 sends a signal to the relay coil drive circuit 15 to The relays 4 and 7, which are the second relays, are controlled to be closed (step S18). If the relay 4 is already in the closed state via step S14, the relay 7 is further controlled to be in the closed state. After step S18, the process returns to the remote control standby state (step S11).
  • step S14 when it is determined that the temperature detected by the resistor 2 is higher than the first threshold (step S13: No), the relay 4 is closed (step S14). As a result, since the inrush current limiting circuit 8 uses only the resistor 5, the operation of the air conditioner 100 can be started with the inrush current limited (step S16). Then, after the start of operation of the air conditioner 100, when it is determined that the temperature of both the resistors 2 and 5 is less than or equal to the second threshold (step S17: Yes), the relays 4 and 7 are both closed. It controls so that it becomes (step S18). As a result, power from the commercial AC power supply 1 can be supplied to the converter unit 13 without passing through the resistors 2, 5 which are inrush current limiting resistors, so the air conditioner 100 is operated at maximum efficiency. It will be possible to
  • step S17 when it is determined in step S17 that one of the temperatures of the resistors 2 and 5 is higher than the second threshold (step S17: No), the relay control unit 16 sends a signal to the relay coil drive circuit 15.
  • the relays 4 and 7, which are the first and second relays, are controlled to be in the open state (step S19).
  • step S19 the air conditioner 100 stops the operation (step S20), and returns to the remote control standby state (step S11).
  • step S13 the temperature determination unit 18 determines whether the temperature of the resistor 2 is lower than or equal to the first threshold, but if the temperature of the resistor 5 is larger than the threshold by comparing with the threshold.
  • the relay 7 may be controlled to be closed.
  • the resistor which is determined in step S13 that the temperature is larger than the threshold value and which is the target of the short circuit in step S14 may be selected because the resistance value is larger than that of the other resistor. This is because if the resistance value is larger than that of the other resistor, it is considered that the temperature is likely to rise by energization.
  • the microcomputer 50 may be provided with an operation control unit instead of the remote control unit 17, and the operation control unit may be configured to determine in step S12 whether or not the signal related to the operation of the motor 21 is received. .
  • the relay based on the temperature of the resistors 2 and 5 constituting the inrush current limiting circuit 8 when the user operates the remote control Control 4, 7
  • the operation failure at the start of operation caused by the heat generation of the inrush current limiting resistance at the time of the relay contact opening is avoided to prevent the inrush current. It becomes possible to limit the In addition, it is possible to prevent a failure due to element heating during operation, and stable operation can be realized.
  • FIG. 3 is a block diagram showing the configuration of the microcomputer 50 according to the embodiment.
  • the microcomputer 50 includes a central processing unit (CPU) 51 that executes computations and control, a random access memory (RAM) 52 that the CPU 51 uses for a work area, and a read only memory (ROM) 53 that stores programs and data. It includes an I / O (Input / Output) 54 which is hardware for exchanging signals with the outside, and a peripheral device 55 including an oscillator for generating a clock.
  • the control that the relay control unit 16 of the microcomputer 50, the remote control unit 17 and the temperature determination unit 18 execute according to the flowchart shown in FIG. 2 is realized by the CPU 51 executing a program that is software stored in the ROM 53.
  • the ROM 53 may be a non-volatile memory such as a rewritable flash memory. Therefore, the storage unit of the microcomputer 50 storing the first and second threshold values is realized by the ROM 53 or the like.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner (100) comprising: a converter unit (13), which has a first and a second input terminal (131, 132), the second input terminal being connected to a commercial AC power supply (1), and which converts a first AC voltage input from the first and second input terminals to DC voltage, which is then output; an inrush current limiting circuit (8), which has a plurality of resistors (2, 5) connected between the commercial AC power supply and the first input terminal, and a plurality of relays (4, 7) capable of short-circuiting or opening both ends of the respective resistors; an inverter unit (14), which converts the DC voltage output by the converter unit to a second AC voltage, which is then supplied to a motor (21); a temperature detection unit (9) for detecting the temperature of the resistors; and a microcomputer (50) which, after a signal related to operation of the motor is received and before operating the converter unit and the inverter unit, controls the relays on the basis of a comparison between the temperature and a threshold value.

Description

空気調和機Air conditioner
 本発明は、突入電流制限回路を備えた空気調和機に関する。 The present invention relates to an air conditioner provided with an inrush current limiting circuit.
 空気調和機においては、従来から、商用交流電源からの電力投入時における突入電流を制限する回路として、突入電流制限抵抗およびリレーで構成される突入電流制限回路が用いられてきた。 In an air conditioner, an inrush current limiting circuit composed of an inrush current limiting resistor and a relay has been conventionally used as a circuit for limiting inrush current when power is supplied from a commercial AC power supply.
 例えば、特許文献1においては、機器の待機状態でリレー接点をオープンさせた状態とすることで突入電流制限回路を確実に動作させることにより、リレーの故障によって機器が動作しないといった不具合を解消している。そして、特許文献1においては、商用交流電源からの電力投入後から一定時間経過するとリレー接点をショートすることにより機器運転後の運転電流によって発生する電力損失をなくすようなリレー制御を用いている。 For example, in Patent Document 1, the inrush current limiting circuit is operated with reliability by opening the relay contact in the standby state of the device, thereby eliminating the problem that the device does not operate due to the failure of the relay. There is. And in patent document 1, relay control is used which eliminates the power loss which generate | occur | produces with the driving current after apparatus operation by short-circuiting a relay contact when predetermined time passes after the electric power supply from commercial alternating current power supply.
 特許文献1では、突入電流を制限するための突入電流制限抵抗の抵抗値を、整流平滑回路内部の素子および機器に過大な負荷を負わせず、パルス限界電力を満足させるようにして突入電流制限抵抗自身を破壊せず、さらに定格電力を満足するような値となるように選定してある。 In Patent Document 1, the resistance value of the inrush current limiting resistor for limiting the inrush current is set so as to satisfy the pulse limit power without imposing an excessive load on the elements and devices inside the rectifying and smoothing circuit. The resistance is selected so as not to destroy itself and to satisfy the rated power.
特開2010-104109号公報JP, 2010-104109, A
 しかしながら、上記のように機器の待機時にリレー接点が開状態となるようなリレー制御方法を採用している場合、突入電流制限回路に異常電圧がかかってしまった場合に、突入電流制限抵抗が発熱したままとなり突入電流制限抵抗の抵抗値が正常値に戻らないことがある。その場合、待機時から運転開始する場合に突入電流制限回路が正常に動作せず、空気調和機が動作しないで運転ができないといった不具合が発生するという問題があった。 However, if the relay control method is adopted such that the relay contact is opened when the device is on standby as described above, the inrush current limiting resistor generates heat if an abnormal voltage is applied to the inrush current limiting circuit. The resistance value of the inrush current limiting resistor may not return to the normal value. In that case, there is a problem that the rush current limiting circuit does not operate normally when starting operation from the standby time, and the air conditioner does not operate and can not be operated.
 本発明は、上記に鑑みてなされたものであって、突入電流制限回路を構成する抵抗が発熱した場合でも安定した運転を実現することができる空気調和機を得ることを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to obtain an air conditioner that can realize stable operation even when the resistance that constitutes the inrush current limiting circuit generates heat.
 上述した課題を解決し、目的を達成するために、本発明は、第1および第2の入力端子を有し、第2の入力端子は商用交流電源に接続されていて、第1および第2の入力端子から入力される第1の交流電圧を直流電圧に変換して出力するコンバータ部と、商用交流電源と第1の入力端子との間に接続された複数の抵抗器と、複数の抵抗器それぞれの両端の短絡または開放が可能な複数のリレーとを有する突入電流制限回路と、コンバータ部が出力する直流電圧を第2の交流電圧に変換してモータに供給するインバータ部を備える。さらに、本発明は、抵抗器の温度を検出する温度検出部と、モータの運転にかかる信号を受け付けた後であって、コンバータ部およびインバータ部を動作させる前に、温度と閾値との比較に基づいてリレーの制御を実行する制御部を備える。 In order to solve the problems described above and to achieve the object, the present invention has first and second input terminals, and the second input terminal is connected to a commercial AC power supply, and the first and second input terminals are connected. A converter unit for converting a first alternating voltage input from the input terminal of the switch into a direct voltage and outputting the same, a plurality of resistors connected between the commercial alternating current power supply and the first input terminal, and a plurality of resistors And an inverter unit that converts a DC voltage output from the converter unit into a second AC voltage and supplies the second AC voltage to the motor. Furthermore, according to the present invention, the temperature detection unit for detecting the temperature of the resistor, and the temperature and the threshold are compared before the converter unit and the inverter unit are operated after receiving the signal related to the operation of the motor. A control unit is provided to execute control of the relay on the basis of the control unit.
 本発明にかかる空気調和機は、突入電流制限回路を構成する抵抗が発熱した場合でも安定した運転を実現することが可能になるという効果を奏する。 ADVANTAGE OF THE INVENTION The air conditioner concerning this invention has an effect that it becomes possible to implement | achieve a stable driving | operation, even when the resistance which comprises a rush current restriction circuit heat | fever-generates.
本発明の実施の形態にかかる突入電流制限回路を備えた空気調和機のブロック図Block diagram of an air conditioner provided with an inrush current limiting circuit according to an embodiment of the present invention 実施の形態にかかる空気調和機の動作を説明するフローチャートFlow chart for explaining the operation of the air conditioner according to the embodiment 実施の形態にかかるマイクロコンピュータの構成を示すブロック図Block diagram showing the configuration of a microcomputer according to the embodiment
 以下に、本発明の実施の形態にかかる空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Below, the air conditioner concerning embodiment of this invention is demonstrated in detail based on drawing. The present invention is not limited by the embodiment.
実施の形態.
 図1は、本発明の実施の形態にかかる突入電流制限回路8を備えた空気調和機100のブロック図である。空気調和機100は、突入電流を制限するための突入電流制限回路8と、突入電流制限回路8の突入電流制限抵抗の温度を検出する温度検出部9と、商用交流電源1から供給される第1の交流電力を直流電力に変換するコンバータ部13と、コンバータ部13から供給される直流電力を第2の交流電力に変換してモータ21に供給するインバータ部14と、モータ21と、リレーコイル駆動回路15と、制御部であるマイクロコンピュータ50と、電源回路22と、を備える。
Embodiment.
FIG. 1 is a block diagram of an air conditioner 100 provided with an inrush current limiting circuit 8 according to an embodiment of the present invention. The air conditioner 100 includes an inrush current limiting circuit 8 for limiting inrush current, a temperature detection unit 9 for detecting the temperature of the inrush current limiting resistor of the inrush current limiting circuit 8, and a third supplied from the commercial AC power supply 1. 1, converter unit 13 for converting AC power into DC power, inverter unit 14 for converting DC power supplied from converter unit 13 into second AC power and supplying it to motor 21, motor 21, relay coil A drive circuit 15, a microcomputer 50 which is a control unit, and a power supply circuit 22 are provided.
 突入電流制限回路8は、突入電流制限のために直列接続された抵抗器2および抵抗器5と、リレー4およびリレー7とを備える。抵抗器2および抵抗器5は、商用交流電源1からの電力投入時に瞬時的に印加される突入電流を制限するための抵抗器である。第1のリレーであるリレー4は、第1の抵抗器である抵抗器2に並列接続されたリレー接点30、およびリレー接点30の開閉を制御するリレー励磁コイル3から構成される。リレー接点30の両端は、抵抗器2の両端にそれぞれ接続される。リレー接点30が閉じて抵抗器2の両端が短絡した状態をリレー4の閉状態とし、リレー接点30が開いて抵抗器2の両端が開放した状態をリレー4の開状態とする。第2のリレーであるリレー7は、第2の抵抗器である抵抗器5に並列接続されたリレー接点60およびリレー接点60の開閉を制御するリレー励磁コイル6から構成される。リレー接点60の両端は、抵抗器5の両端にそれぞれ接続される。リレー接点60が閉じて抵抗器5の両端が短絡した状態をリレー7の閉状態とし、リレー接点60が開いて抵抗器5の両端が開放した状態をリレー7の開状態とする。リレーコイル駆動回路15がリレー励磁コイル3,6を駆動することにより、リレー4,7の開閉状態が制御される。なお、突入電流制限回路8が備える抵抗器は複数であれば個数に制限はなく、また直列接続ではなくて、並列接続または直列接続と並列接続の併用であってもかまわない。 Inrush current limiting circuit 8 includes resistors 2 and 5 connected in series for inrush current limiting, and relays 4 and 7. The resistors 2 and 5 are resistors for limiting the inrush current applied instantaneously at the time of power input from the commercial AC power supply 1. The relay 4 that is the first relay includes a relay contact 30 connected in parallel to the resistor 2 that is the first resistor, and a relay excitation coil 3 that controls the opening and closing of the relay contact 30. Both ends of the relay contact 30 are respectively connected to both ends of the resistor 2. A state in which the relay contact 30 is closed and the both ends of the resistor 2 are shorted is referred to as a closed state of the relay 4, and a state in which the relay contact 30 is opened and both ends of the resistor 2 are open is referred to as an open state of the relay 4. The relay 7 which is a second relay includes a relay contact 60 connected in parallel to the resistor 5 which is a second resistor, and a relay excitation coil 6 which controls the opening and closing of the relay contact 60. Both ends of the relay contact 60 are respectively connected to both ends of the resistor 5. A state in which the relay contact 60 is closed and the both ends of the resistor 5 are shorted is referred to as a closed state of the relay 7, and a state in which the relay contact 60 is opened and both ends of the resistor 5 are open is referred to as an open state of the relay 7. The relay coil drive circuit 15 drives the relay excitation coils 3 and 6 to control the open / close state of the relays 4 and 7. The number of resistors provided in the inrush current limiting circuit 8 is not limited as long as it is plural, and it may not be series connection but may be parallel connection or combination of series connection and parallel connection.
 また、温度検出部9は、具体的には、抵抗器2および抵抗器5の温度をそれぞれ検出する。 Further, specifically, the temperature detection unit 9 detects the temperatures of the resistor 2 and the resistor 5, respectively.
 抵抗器2および抵抗器5の具体例は、正の温度係数を有するサーミスタ、即ちPTC(Positive Temperature Coefficient)サーミスタである。正の温度係数を有するとは、温度の上昇に対して抵抗値が上昇する抵抗変化特性である。PTCサーミスタは、温度がサーミスタごとに定まるキュリー温度を超えると温度の上昇に対して急激に抵抗値が増大して電流が流れなくなるサーミスタである。突入電流制限回路8が備える複数の抵抗器のうちの少なくとも1つが正の温度係数を有するサーミスタであってもよい。 An example of the resistor 2 and the resistor 5 is a thermistor having a positive temperature coefficient, that is, a positive temperature coefficient (PTC) thermistor. Having a positive temperature coefficient is a resistance change characteristic in which the resistance value increases with an increase in temperature. The PTC thermistor is a thermistor whose resistance value rapidly increases with the rise in temperature when the temperature exceeds the Curie temperature determined for each thermistor, and the current does not flow. At least one of the plurality of resistors provided in the inrush current limiting circuit 8 may be a thermistor having a positive temperature coefficient.
 コンバータ部13は、第1の入力端子131、第2の入力端子132、第1の出力端子133、第2の出力端子134、昇圧回路10、ダイオードブリッジ11および平滑化コンデンサ12を備える。第1の入力端子131と商用交流電源1との間に抵抗器2および抵抗器5が接続されていて、第2の入力端子132は商用交流電源1に接続されている。なお、抵抗器2および抵抗器5が第2の入力端子132と商用交流電源1との間に接続されて、第1の入力端子131が商用交流電源1に接続されていてもかまわない。コンバータ部13は、第1の入力端子131および第2の入力端子132から与えられる第1の交流電圧を直流電圧に変換して第1の出力端子133および第2の出力端子134に出力する。インバータ部14は、コンバータ部13の第1の出力端子133および第2の出力端子134が出力する直流電圧を第2の交流電圧に変換して、モータ21に供給する。 The converter unit 13 includes a first input terminal 131, a second input terminal 132, a first output terminal 133, a second output terminal 134, a booster circuit 10, a diode bridge 11, and a smoothing capacitor 12. The resistor 2 and the resistor 5 are connected between the first input terminal 131 and the commercial AC power supply 1, and the second input terminal 132 is connected to the commercial AC power supply 1. The resistor 2 and the resistor 5 may be connected between the second input terminal 132 and the commercial AC power supply 1, and the first input terminal 131 may be connected to the commercial AC power supply 1. Converter unit 13 converts the first AC voltage supplied from first input terminal 131 and second input terminal 132 into DC voltage and outputs the DC voltage to first output terminal 133 and second output terminal 134. The inverter unit 14 converts the DC voltage output from the first output terminal 133 and the second output terminal 134 of the converter unit 13 into a second AC voltage, and supplies the second AC voltage to the motor 21.
 マイクロコンピュータ50は、専用の電源回路22によって駆動される。使用者は、図示していないリモートコントローラ(以下、リモコンと呼ぶ)を操作することができ、マイクロコンピュータ50は、使用者からのリモコン操作が入力されるまでリモコン待機状態を維持する。マイクロコンピュータ50は、リレーコイル駆動回路15を制御するリレー制御部16と、使用者のリモコン操作によるリモコンからの信号であるリモコン信号を受け付けるリモコン制御部17と、温度検出部9が検出した検出温度に基づいて温度判定を実行する温度判定部18とを備える。リモコン信号は、運転開始、運転停止、暖房開始、冷房開始といったモータ21の運転にかかる信号である。リモコン待機状態は、マイクロコンピュータ50がリモコン信号を受け付け可能な状態である。 The microcomputer 50 is driven by a dedicated power supply circuit 22. The user can operate a remote controller (hereinafter referred to as a remote control) not shown, and the microcomputer 50 maintains the remote control standby state until a remote control operation from the user is input. The microcomputer 50 includes a relay control unit 16 for controlling the relay coil drive circuit 15, a remote control control unit 17 for receiving a remote control signal which is a signal from a remote control by the user's remote control operation, and a detected temperature detected by the temperature detection unit 9. And a temperature determination unit 18 that executes the temperature determination based on The remote control signal is a signal related to the operation of the motor 21 such as operation start, operation stop, heating start, and cooling start. In the remote control standby state, the microcomputer 50 can receive the remote control signal.
 突入電流制限回路8は、空気調和機100の運転開始時に商用交流電源1からの電力が供給されると、開状態になっているリレーに対応する抵抗器によって電流を制限する。しかし、空気調和機100の停止状態において、リレー4,7は開状態であるため、異常電圧が印加された場合に抵抗器2は発熱により抵抗値が増大して電流が流れなくなることがある。この場合、リレー4が開状態のまま、空気調和機100が停止状態から運転を開始すると、突入電流制限回路8から後段の回路に電圧が印加されない状態になってしまう。 When the power from the commercial AC power supply 1 is supplied at the start of operation of the air conditioner 100, the inrush current limiting circuit 8 limits the current by the resistor corresponding to the relay in the open state. However, since the relays 4 and 7 are open in the stopped state of the air conditioner 100, the resistance value of the resistor 2 may increase due to heat generation when an abnormal voltage is applied, and the current may not flow. In this case, when the air conditioner 100 starts operation from the stop state while the relay 4 is open, no voltage is applied from the inrush current limiting circuit 8 to the circuit at the subsequent stage.
 そこで、本実施の形態にかかる空気調和機100においては、使用者のリモコン操作によってリモコン制御部17にリモコン信号が入力されたときに、温度検出部9が検出した抵抗器2の温度に基づいて、マイクロコンピュータ50の温度判定部18が温度判定を実行する。そして、温度検出部9が検出した抵抗器2の温度が抵抗器2に対して設定された第1の閾値より大きいと温度判定部18が判定したとき、リレー制御部16からリレーコイル駆動回路15にリレー励磁コイル3を駆動させるように指示する信号が出力され、リレーコイル駆動回路15によりリレー4が閉状態となるように制御される。 Therefore, in the air conditioner 100 according to the present embodiment, when the remote control signal is input to the remote control control unit 17 by the user's remote control operation, based on the temperature of the resistor 2 detected by the temperature detection unit 9 The temperature determination unit 18 of the microcomputer 50 executes the temperature determination. Then, when the temperature determination unit 18 determines that the temperature of the resistor 2 detected by the temperature detection unit 9 is higher than the first threshold set for the resistor 2, the relay coil drive circuit 15 from the relay control unit 16 A signal instructing to drive the relay excitation coil 3 is output to the relay coil drive circuit 15. The relay coil drive circuit 15 controls the relay 4 to be in a closed state.
 すなわち、空気調和機100の停止中に異常電圧が印加され、抵抗器2が発熱した状態で停止状態から運転が開始される場合には、リレー4が閉状態に制御されているので、突入電流制限回路8は抵抗器5のみを使用した状態になるので、突入電流を制限した状態で空気調和機100の運転を開始することができる。 That is, when the abnormal voltage is applied while the air conditioner 100 is stopped and the operation is started from the stopped state with the resistor 2 generating heat, the relay 4 is controlled to be closed, so the rush current Since the limiting circuit 8 uses only the resistor 5, the operation of the air conditioner 100 can be started with the inrush current limited.
 図2は、実施の形態にかかる空気調和機100の動作を説明するフローチャートである。以下、図2を参照して空気調和機100の動作について説明する。 FIG. 2 is a flowchart for explaining the operation of the air conditioner 100 according to the embodiment. Hereinafter, the operation of the air conditioner 100 will be described with reference to FIG.
 まず、専用の電源回路22によって駆動されているマイクロコンピュータ50はリモコン待機状態になっている(ステップS11)。マイクロコンピュータ50のリモコン制御部17は、使用者のリモコン操作によるリモコン信号を受信したか否かを判定する(ステップS12)。リモコン信号を受信していない場合(ステップS12:No)、ステップS11に戻る。 First, the microcomputer 50 driven by the dedicated power supply circuit 22 is in the remote control standby state (step S11). The remote control control unit 17 of the microcomputer 50 determines whether or not the remote control signal by the user's remote control operation has been received (step S12). If the remote control signal has not been received (step S12: No), the process returns to step S11.
 リモコン制御部17がリモコン信号を受信したと判定すると(ステップS12:Yes)、温度検出部9が検出した抵抗器2の温度が第1の閾値以下であるか否かを温度判定部18が判定する(ステップS13)。第1の閾値は、抵抗器2の素子温度特性、抵抗器2の動作可能な温度データおよび抵抗器2の破壊温度などによって定められた値であり、マイクロコンピュータ50の記憶部に予め保持されている。 If the remote control control unit 17 determines that the remote control signal has been received (step S12: Yes), the temperature determination unit 18 determines whether the temperature of the resistor 2 detected by the temperature detection unit 9 is less than or equal to the first threshold. (Step S13). The first threshold value is a value determined by the element temperature characteristic of the resistor 2, the operable temperature data of the resistor 2, the breakdown temperature of the resistor 2, etc. There is.
 第1の抵抗器である抵抗器2の温度が第1の閾値より大きいと判定された場合(ステップS13:No)、リレー制御部16がリレーコイル駆動回路15に信号を送って第1のリレーであるリレー4が閉状態となるように制御する(ステップS14)。一方、抵抗器2の温度が第1の閾値以下と判定された場合(ステップS13:Yes)、およびステップS14の後は、リモコン制御部17は、受信したリモコン信号が「運転開始」を指示する信号か否かの判定を行う(ステップS15)。 When it is determined that the temperature of the resistor 2 which is the first resistor is higher than the first threshold (step S13: No), the relay control unit 16 sends a signal to the relay coil drive circuit 15 to perform the first relay. The relay 4 is controlled to be in the closed state (step S14). On the other hand, when the temperature of the resistor 2 is determined to be equal to or lower than the first threshold (step S13: Yes), and after step S14, the received remote control signal instructs "start operation" after step S14. It is determined whether it is a signal (step S15).
 ステップS15において、受信されたリモコン信号が「運転開始」を指示する信号であると判定された場合(ステップS15:Yes)、空気調和機100は運転を開始する(ステップS16)。具体的には、マイクロコンピュータ50がコンバータ部13およびインバータ部14を動作させる。ステップS16の後、温度検出部9が検出した第1,第2の抵抗器である抵抗器2,5の温度が共に第2の閾値以下であるか否かを温度判定部18が判定する(ステップS17)。第2の閾値は、抵抗器2,5の素子温度特性、抵抗器2,5の動作可能な温度データおよび抵抗器2,5の破壊温度などによって定められた値であり、マイクロコンピュータ50の記憶部に予め保持されている。第2の閾値は第1の閾値と同じ値であっても異なる値であってもかまわない。 If it is determined in step S15 that the received remote control signal is a signal instructing "start of operation" (step S15: Yes), the air conditioner 100 starts operation (step S16). Specifically, the microcomputer 50 operates the converter unit 13 and the inverter unit 14. After step S16, the temperature determination unit 18 determines whether or not both the temperatures of the resistors 2 and 5 which are the first and second resistors detected by the temperature detection unit 9 are less than or equal to the second threshold (see FIG. Step S17). The second threshold is a value determined by the element temperature characteristics of the resistors 2 and 5, the operable temperature data of the resistors 2 and 5, the breakdown temperature of the resistors 2 and 5, etc. It is held in advance by the department. The second threshold may be the same as or different from the first threshold.
 一方、ステップS15において、受信されたリモコン信号が「運転停止」を指示する信号であるときのように「運転開始」を指示する信号でないと判定された場合(ステップS15:No)、リレー制御部16がリレーコイル駆動回路15に信号を送って第1,第2のリレーであるリレー4,7が共に開状態となるように制御する(ステップS19)。ステップS19の後は、空気調和機100は運転を停止し(ステップS20)、リモコン待機状態(ステップS11)に戻る。 On the other hand, if it is determined in step S15 that the received remote control signal is not a signal instructing "start of operation" as in the case of a signal instructing "stop operation" (step S15: No), the relay control unit A signal 16 is sent to the relay coil drive circuit 15 to control the relays 4 and 7, which are the first and second relays, to be open (step S19). After step S19, the air conditioner 100 stops the operation (step S20), and returns to the remote control standby state (step S11).
 ステップS17において、抵抗器2,5の温度が共に第2の閾値以下であると判定された場合(ステップS17:Yes)、リレー制御部16がリレーコイル駆動回路15に信号を送って第1,第2のリレーであるリレー4,7が共に閉状態となるように制御する(ステップS18)。ステップS14を経由していて、既にリレー4が閉状態になっている場合は、さらにリレー7が閉状態となるように制御することになる。ステップS18の後は、リモコン待機状態(ステップS11)に戻る。 When it is determined in step S17 that the temperatures of both the resistors 2 and 5 are both equal to or less than the second threshold (step S17: Yes), the relay control unit 16 sends a signal to the relay coil drive circuit 15 to The relays 4 and 7, which are the second relays, are controlled to be closed (step S18). If the relay 4 is already in the closed state via step S14, the relay 7 is further controlled to be in the closed state. After step S18, the process returns to the remote control standby state (step S11).
 上述したように、抵抗器2の検出された温度が第1の閾値より大きいと判定された場合(ステップS13:No)は、リレー4を閉状態(ステップS14)にしておく。これにより、突入電流制限回路8は抵抗器5のみを使用した状態になるので、突入電流を制限した状態で空気調和機100の運転を開始する(ステップS16)ことができる。そして、空気調和機100の運転の開始後は、抵抗器2,5の温度が共に第2の閾値以下であると判定された場合(ステップS17:Yes)に、リレー4,7が共に閉状態となるように制御する(ステップS18)。これにより、突入電流制限抵抗である抵抗器2,5を介さずに、商用交流電源1からの電力をコンバータ部13に供給することが可能となるので、空気調和機100を最大の効率で運転させることが可能になる。 As described above, when it is determined that the temperature detected by the resistor 2 is higher than the first threshold (step S13: No), the relay 4 is closed (step S14). As a result, since the inrush current limiting circuit 8 uses only the resistor 5, the operation of the air conditioner 100 can be started with the inrush current limited (step S16). Then, after the start of operation of the air conditioner 100, when it is determined that the temperature of both the resistors 2 and 5 is less than or equal to the second threshold (step S17: Yes), the relays 4 and 7 are both closed. It controls so that it becomes (step S18). As a result, power from the commercial AC power supply 1 can be supplied to the converter unit 13 without passing through the resistors 2, 5 which are inrush current limiting resistors, so the air conditioner 100 is operated at maximum efficiency. It will be possible to
 一方、ステップS17において、抵抗器2,5の温度のいずれかが第2の閾値より大きいと判定された場合(ステップS17:No)、リレー制御部16がリレーコイル駆動回路15に信号を送って第1,第2のリレーであるリレー4,7が共に開状態となるように制御する(ステップS19)。ステップS19の後は、空気調和機100は運転を停止し(ステップS20)、リモコン待機状態(ステップS11)に戻る。 On the other hand, when it is determined in step S17 that one of the temperatures of the resistors 2 and 5 is higher than the second threshold (step S17: No), the relay control unit 16 sends a signal to the relay coil drive circuit 15. The relays 4 and 7, which are the first and second relays, are controlled to be in the open state (step S19). After step S19, the air conditioner 100 stops the operation (step S20), and returns to the remote control standby state (step S11).
 なお、ステップS13において、温度判定部18は、抵抗器2の温度が第1の閾値以下であるか否かを判定するとしたが、抵抗器5の温度を閾値と比較して閾値より大きい場合にリレー7を閉状態に制御するようにしてもかまわない。ステップS13で温度が閾値より大きいと判定されてステップS14で短絡される対象となる抵抗器は、他方の抵抗器よりも抵抗値が大きいといった理由で選択してもよい。他方の抵抗器よりも抵抗値が大きければ、通電により温度が上昇しやすいと考えられるからである。 In step S13, the temperature determination unit 18 determines whether the temperature of the resistor 2 is lower than or equal to the first threshold, but if the temperature of the resistor 5 is larger than the threshold by comparing with the threshold. The relay 7 may be controlled to be closed. The resistor which is determined in step S13 that the temperature is larger than the threshold value and which is the target of the short circuit in step S14 may be selected because the resistance value is larger than that of the other resistor. This is because if the resistance value is larger than that of the other resistor, it is considered that the temperature is likely to rise by energization.
 なお、上記説明においては、使用者がリモコンを介して操作を行うとして説明したが、空気調和機100のコントローラは空気調和機100本体に設置されていてもよい。したがって、マイクロコンピュータ50がリモコン制御部17の代りに運転制御部を備えていて、運転制御部がモータ21の運転にかかる信号を受信したか否かをステップS12において判定する構成にしてもかまわない。 In the above description, it has been described that the user performs the operation through the remote control, but the controller of the air conditioner 100 may be installed in the air conditioner 100 main body. Therefore, the microcomputer 50 may be provided with an operation control unit instead of the remote control unit 17, and the operation control unit may be configured to determine in step S12 whether or not the signal related to the operation of the motor 21 is received. .
 以上、説明したように、突入電流制限回路8を備えた空気調和機100において、使用者がリモコンを操作したときの、突入電流制限回路8を構成する抵抗器2,5の温度に基づいてリレー4,7を制御する。これにより、空気調和機100の運転停止時に異常電圧が印加された場合であっても、リレー接点開放時の突入電流制限抵抗の発熱に起因する運転開始時の動作不良を回避して、突入電流を制限することが可能になる。また、運転時の素子加熱による故障も防ぐことが可能となり、安定した運転を実現することができる。 As described above, in the air conditioner 100 provided with the inrush current limiting circuit 8, the relay based on the temperature of the resistors 2 and 5 constituting the inrush current limiting circuit 8 when the user operates the remote control Control 4, 7 Thus, even if an abnormal voltage is applied when the air conditioner 100 is stopped, the operation failure at the start of operation caused by the heat generation of the inrush current limiting resistance at the time of the relay contact opening is avoided to prevent the inrush current. It becomes possible to limit the In addition, it is possible to prevent a failure due to element heating during operation, and stable operation can be realized.
 図3は、実施の形態にかかるマイクロコンピュータ50の構成を示すブロック図である。マイクロコンピュータ50は、演算および制御を実行するCPU(Central Processing Unit)51と、CPU51がワークエリアに用いるRAM(Random Access Memory)52と、プログラムおよびデータを記憶するROM(Read Only Memory)53と、外部と信号をやりとりするハードウェアであるI/O(Input/Output)54と、クロックを生成する発振子を含む周辺装置55と、を備える。マイクロコンピュータ50のリレー制御部16、リモコン制御部17および温度判定部18が図2に示したフローチャートに従って実行する制御は、ROM53に記憶されるソフトウェアであるプログラムをCPU51が実行することにより実現される。ROM53は、書き換え可能なフラッシュメモリといった不揮発性のメモリであってもよい。したがって、第1,第2の閾値を記憶するマイクロコンピュータ50の記憶部は、ROM53などにより実現される。 FIG. 3 is a block diagram showing the configuration of the microcomputer 50 according to the embodiment. The microcomputer 50 includes a central processing unit (CPU) 51 that executes computations and control, a random access memory (RAM) 52 that the CPU 51 uses for a work area, and a read only memory (ROM) 53 that stores programs and data. It includes an I / O (Input / Output) 54 which is hardware for exchanging signals with the outside, and a peripheral device 55 including an oscillator for generating a clock. The control that the relay control unit 16 of the microcomputer 50, the remote control unit 17 and the temperature determination unit 18 execute according to the flowchart shown in FIG. 2 is realized by the CPU 51 executing a program that is software stored in the ROM 53. . The ROM 53 may be a non-volatile memory such as a rewritable flash memory. Therefore, the storage unit of the microcomputer 50 storing the first and second threshold values is realized by the ROM 53 or the like.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
 1 商用交流電源、2,5 抵抗器、3,6 リレー励磁コイル、4,7 リレー、8 突入電流制限回路、9 温度検出部、10 昇圧回路、11 ダイオードブリッジ、12 平滑化コンデンサ、13 コンバータ部、14 インバータ部、15 リレーコイル駆動回路、16 リレー制御部、17 リモコン制御部、18 温度判定部、21 モータ、22 電源回路、30,60 リレー接点、50 マイクロコンピュータ、51 CPU、52 RAM、53 ROM、54 I/O、55 周辺装置、100 空気調和機、131 第1の入力端子、132 第2の入力端子、133 第1の出力端子、134 第2の出力端子。 DESCRIPTION OF SYMBOLS 1 commercial alternating current power supply, 2,5 resistor, 3,6 relay exciting coil, 4,7 relay, 8 rush current limiting circuit, 9 temperature detection part, 10 boost circuit, 11 diode bridge, 12 smoothing capacitor, 13 converter part 14 inverter unit 15 relay coil drive circuit 16 relay control unit 17 remote control control unit 18 temperature determination unit 21 motor 22 power supply circuit 30 60 relay contact 50 microcomputer 51 CPU 52 RAM 53 ROM, 54 I / O, 55 peripheral devices, 100 air conditioner, 131 first input terminal, 132 second input terminal, 133 first output terminal, 134 second output terminal.

Claims (3)

  1.  第1および第2の入力端子を有し、前記第2の入力端子は商用交流電源に接続されていて、前記第1および第2の入力端子から入力される第1の交流電圧を直流電圧に変換して出力するコンバータ部と、
     前記商用交流電源と前記第1の入力端子との間に接続された複数の抵抗器と、前記複数の抵抗器それぞれの両端の短絡または開放が可能な複数のリレーとを有する突入電流制限回路と、
     前記コンバータ部が出力する直流電圧を第2の交流電圧に変換してモータに供給するインバータ部と、
     前記抵抗器の温度を検出する温度検出部と、
     前記モータの運転にかかる信号を受け付けた後であって、前記コンバータ部および前記インバータ部を動作させる前に、前記温度と閾値との比較に基づいて前記リレーの制御を実行する制御部と、
     を備える空気調和機。
    It has first and second input terminals, and the second input terminal is connected to a commercial AC power supply, and converts the first AC voltage input from the first and second input terminals into DC voltage. A converter unit that converts and outputs,
    An inrush current limiting circuit having a plurality of resistors connected between the commercial AC power supply and the first input terminal, and a plurality of relays capable of shorting or opening both ends of each of the plurality of resistors; ,
    An inverter unit that converts a DC voltage output from the converter unit into a second AC voltage and supplies the second AC voltage to the motor;
    A temperature detection unit that detects the temperature of the resistor;
    A control unit that executes control of the relay based on a comparison between the temperature and a threshold after receiving a signal related to the operation of the motor and before operating the converter unit and the inverter unit;
    An air conditioner equipped with
  2.  前記複数の抵抗器は、直列接続された第1の抵抗器および第2の抵抗器であり、
     前記制御部は、前記信号を受け付けた後であって、前記コンバータ部および前記インバータ部を動作させる前に、前記第1の抵抗器の温度が第1の閾値より大きい場合に、前記第1の抵抗器の両端を短絡するように前記リレーを制御する請求項1に記載の空気調和機。
    The plurality of resistors are a first resistor and a second resistor connected in series,
    The control unit is configured to receive the signal, and before the converter unit and the inverter unit are operated, when the temperature of the first resistor is higher than a first threshold value. The air conditioner according to claim 1, wherein the relay is controlled to short-circuit both ends of a resistor.
  3.  前記複数の抵抗器のうちの少なくとも1つは、正の温度係数を有するサーミスタである請求項1または2に記載の空気調和機。 The air conditioner according to claim 1, wherein at least one of the plurality of resistors is a thermistor having a positive temperature coefficient.
PCT/JP2017/044939 2017-12-14 2017-12-14 Air conditioner WO2019116509A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019559500A JP6925448B2 (en) 2017-12-14 2017-12-14 Air conditioner
PCT/JP2017/044939 WO2019116509A1 (en) 2017-12-14 2017-12-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044939 WO2019116509A1 (en) 2017-12-14 2017-12-14 Air conditioner

Publications (1)

Publication Number Publication Date
WO2019116509A1 true WO2019116509A1 (en) 2019-06-20

Family

ID=66819085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044939 WO2019116509A1 (en) 2017-12-14 2017-12-14 Air conditioner

Country Status (2)

Country Link
JP (1) JP6925448B2 (en)
WO (1) WO2019116509A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228330A1 (en) * 2022-05-25 2023-11-30 三菱電機株式会社 Switch and switch control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028792A (en) * 2005-07-15 2007-02-01 Yamatake Corp Converter
JP2007129867A (en) * 2005-11-07 2007-05-24 Hanshin Electric Co Ltd Relay control method and relay controller for inrush current limiting circuit
JP2017034800A (en) * 2015-07-30 2017-02-09 富士電機株式会社 Charge control device and power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028792A (en) * 2005-07-15 2007-02-01 Yamatake Corp Converter
JP2007129867A (en) * 2005-11-07 2007-05-24 Hanshin Electric Co Ltd Relay control method and relay controller for inrush current limiting circuit
JP2017034800A (en) * 2015-07-30 2017-02-09 富士電機株式会社 Charge control device and power conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228330A1 (en) * 2022-05-25 2023-11-30 三菱電機株式会社 Switch and switch control method

Also Published As

Publication number Publication date
JP6925448B2 (en) 2021-08-25
JPWO2019116509A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP4097034B2 (en) Power saving motor starter
WO2006019024A1 (en) Switching power supply apparatus
AU2017431039B2 (en) Air conditioner
CN110959092B (en) Air conditioner
US11486600B2 (en) Air conditioner
US10944350B2 (en) Motor drive device
KR100983932B1 (en) Controller
CN113711485A (en) Inverter device
WO2019116509A1 (en) Air conditioner
JP6203126B2 (en) Hermetic compressor drive
JP6831379B2 (en) Air conditioner
JP2019126236A (en) Rush current suppression device of power supply circuit and image display unit using rush current suppression device
KR102022977B1 (en) Apparatus and method for controlling inverter
JP5999141B2 (en) Power converter
JPH09170562A (en) Control device for compressor
KR102658605B1 (en) Circuitry for preventing in-rush current of power supply circuit for driving motor, and method for preventing in-rush current
WO2019043857A1 (en) Air conditioner comprising inrush current limiter circuit
JP7168854B2 (en) Air conditioner and preheating operation method
JP5189458B2 (en) Air conditioner with inrush current limiting circuit
WO2019155620A1 (en) Air conditioner
JP2003174778A (en) Relay failure to operate detection circuit and motor controller provided therewith
CN116998106A (en) Motor control device
JPH02106174A (en) Rectifier and smoothing circuit
JPH0219312B2 (en)
JP2007282414A (en) Method and device for limiting rush current

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935033

Country of ref document: EP

Kind code of ref document: A1