WO2019116427A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2019116427A1
WO2019116427A1 PCT/JP2017/044385 JP2017044385W WO2019116427A1 WO 2019116427 A1 WO2019116427 A1 WO 2019116427A1 JP 2017044385 W JP2017044385 W JP 2017044385W WO 2019116427 A1 WO2019116427 A1 WO 2019116427A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
power
solar cell
power conversion
conversion device
Prior art date
Application number
PCT/JP2017/044385
Other languages
French (fr)
Japanese (ja)
Inventor
友樹 吉住
伸広 高橋
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2017/044385 priority Critical patent/WO2019116427A1/en
Priority to JP2019559431A priority patent/JP6729817B2/en
Publication of WO2019116427A1 publication Critical patent/WO2019116427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • H02S40/12Means for removing snow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a power converter.
  • a snow melting apparatus for melting snow accumulated on the surface of a solar cell is known.
  • the snow melting apparatus according to the above publication is mounted on a solar power generation system.
  • the solar power generation system includes a solar cell panel and a power conversion device that converts direct current power generated by the solar cell panel into alternating current power.
  • the conventional snow melting apparatus operates the solar cell as a heating element by applying a DC reverse voltage to the solar cell. By heating the solar cell by applying power, snow accumulated on the surface of the solar cell can be melted.
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a power converter improved so as to be able to suppress snow damage.
  • the power converter disclosed in the present application is A housing with a roof, A power conversion circuit built in the housing; A heat generating portion disposed on the roof and converting at least a part of the sunlight energy received by the surface into heat energy; Equipped with
  • the snow accumulated on the roof of the housing can be melted, the snow damage of the power conversion device can be suppressed.
  • FIG. 1 is a front view of a power converter according to a first embodiment.
  • FIG. 1 is a top view of a power converter according to a first embodiment. It is a figure which shows the power converter device concerning the modification of Embodiment 1, and the electric power system using the same. It is a figure which shows the power converter device concerning Embodiment 2, and the electric power system using the same.
  • FIG. 7 is a front view of a power conversion device according to a second embodiment.
  • FIG. 7 is a top view of a power conversion device according to a second embodiment. It is a figure which shows the power converter device concerning the modification of Embodiment 2, and the electric power system using the same.
  • FIG. 1 is a diagram showing a power conversion device 20 according to a first embodiment and a power system 1 using the same.
  • the power system 1 includes a solar cell array 10 configured of a plurality of solar cell modules 12, a power converter 20, and a transformer 18 that receives AC power from the power converter 20 via the output wiring 16. There is.
  • the power conversion device 20 converts DC power received from the solar cell array 10 via the input wiring 14 into AC power.
  • the power system 1 is a so-called distributed power source. Instead of the solar cell array 10, another DC power supply may be provided.
  • Other DC power sources include storage batteries, fuel cells, or wind power generators that output DC power.
  • the power converter 20 of the power system 1 is connected to the power system 19 via the transformer 18.
  • the power system 1 operates in conjunction with the power system 19.
  • the power conversion device 20 includes one control device 22a and four inverter devices 22b, 22c, 22d and 22e.
  • the inverter devices 22b, 22c, 22d, 22e incorporate an inverter circuit board. Circuit elements such as semiconductor switching elements are mounted on the inverter circuit board.
  • the controller 22a incorporates an inverter control circuit board. Various control circuits and the like are provided on the inverter control circuit board. The various control circuits generate PWM signals for driving the semiconductor switching elements of the inverter circuit board.
  • the power conversion device 20 is installed on a housing 21 having a roof portion 21a and a storage portion 21b, a power conversion circuit built in the storage portion 21b of the housing 21, and the roof portion 21a. And the solar heat generation unit 30.
  • the roof 21 a includes a canopy 24. The eaves portion 24 protrudes outward beyond the storage portion 21 b.
  • the solar heat generation unit 30 is a solar cell panel.
  • the solar cell panel is disposed on the back sheet for back surface protection, the lower sealing material stacked on the back sheet, the solar battery cell disposed on the lower sealing material, and the solar battery cell An upper sealing material, a glass stacked on the upper sealing material, and a frame provided on the glass.
  • Solar cells are elements that convert sunlight energy into electrical energy. However, not all of the solar energy that has entered the solar cell is converted to electrical energy, but some is converted to thermal energy.
  • the solar battery cell is formed of a semiconductor material such as silicon.
  • the solar cell panel of the solar heat generation unit 30 is connected to the load 39.
  • the load 39 is for promoting heat generation of the solar cell panel by supplying an electric current to the solar cell panel of the solar light heating unit 30.
  • the load 39 is schematically connected to the outer periphery of the housing 21 in FIG. 1, the load 39 may be disposed inside the housing 21, and like the solar light heating unit 30, the load 39 is on the roof 21 a. It may be located at
  • the solar cell panel which comprises the sunlight heating part 30 in Embodiment 1 is not connected to the inverter circuit and inverter control circuit which the power conversion device 20 incorporates. In this point, the solar cell panel used for the solar light heating unit 30 according to the first embodiment is used differently from the solar cell array 10.
  • the solar light heating unit 30 is grounded via the grounding cable in order to prevent electric shock.
  • the solar cell array 10 and the solar cell panel of the solar heat generation part 30 are compared, while the solar cell array 10 supplies electric power to the power conversion device 20, the solar cell panel of the solar heat generation part 30 is power conversion There is a difference in that power is not supplied to the device 20.
  • FIG. 2 is a front view of the power conversion device 20 according to the first embodiment.
  • FIG. 3 is a top view of the power conversion device 20 according to the first embodiment.
  • the control device 22a and the inverter devices 22b, 22c, 22d, and 22e each include a housing 21.
  • Each of the inverter devices 22 b to 22 e includes an inverter circuit board inside the housing 21.
  • the inverter circuit board is provided with a semiconductor switching element such as an IGBT or a MOSFET and a flywheel diode.
  • the control device 22 a includes an inverter control circuit board inside the housing 21.
  • the inverter control circuit board generates a PWM signal for turning on and off the semiconductor switching element provided in the inverter circuit board.
  • the photoelectric conversion efficiency of the whole solar cell panel is generally around 20%. Therefore, about 80% at the time of power generation becomes heat as loss.
  • the heat causes the temperature of the solar cell panel to rise 30 ° C. to 40 ° C. above the ambient temperature.
  • the heat can melt the snow accumulated on the roof 21a of the housing.
  • a current flows in the solar cell panel due to the generation by solar light.
  • the heat generated by the solar cell panel by this current can melt snow accumulated on the solar cell panel.
  • the solar light heating unit 30 according to the first embodiment only melts snow using heat generated from the solar cell panel, and does not apply a DC reverse voltage to the solar cell panel from the outside.
  • the solar heat generation part 30 concerning Embodiment 1 can melt
  • the snow melting apparatus in the conventional solar power generation system and the said Embodiment 1 have a difference in the intrinsic purpose.
  • the conventional snow melting apparatus aims to melt all the snow on the solar cell panel as much as possible in order to perform solar power generation smoothly.
  • the solar light heating unit 30 according to the first embodiment prevents the excessive snow load from being applied to the casing 21 of the power conversion device 20 or prevents the damage due to the snowfall from the roof 21a.
  • the purpose is that. Therefore, the solar light heating unit 30 in the first embodiment is not required to melt all the snow accumulated on the surface.
  • snow may remain on the roof 21 a as long as the load on the housing 21 can be suppressed or the snow fall damage can be prevented.
  • FIG. 4 is a diagram showing a power conversion device 20 according to a modification of the first embodiment and a power system using the same.
  • the power system 1 includes a storage battery 40 instead of the load 39.
  • the power generated by the solar heat generation unit 30 may be stored in the storage battery 40.
  • the electrical energy stored in the storage battery 40 may be consumed by the power conversion device 20 or may be supplied to other electronic devices other than the power conversion device 20.
  • a DC / DC converter device may be provided between the solar heat generating unit 30 and the storage battery 40.
  • the solar cell panel constituting the solar heat generating unit 30 may be replaced by a film type solar cell. If it is a film type solar cell, since it has the property which can be bent, a film type solar cell may be installed in the curved surface by making the upper surface of roof part 21a into the convex curve shape, for example.
  • a film type solar cell may be installed in the curved surface by making the upper surface of roof part 21a into the convex curve shape, for example.
  • the solar light heating part 30 is horizontally installed on the roof part 21a, as a modification, the solar light heating part 30 may be inclinedly arranged.
  • FIG. 5 is a diagram showing a power conversion apparatus 120 according to a second embodiment and a power system using the same.
  • the second embodiment and the first embodiment have the same configuration except that the solar heat generating unit 30 is replaced with the solar heat generating unit 130.
  • the solar heat generation unit 130 is a solar heat collector.
  • FIG. 6 is a front view of the power conversion device 120 according to the second embodiment.
  • FIG. 7 is a top view of the power conversion device 120 according to the second embodiment.
  • the flat plate type heat collector comprises a heat collecting flat body to which a heat collecting paint having a solar heat collecting effect is applied, a water channel provided on the heat collecting flat body and heated by the heat collecting flat body, and And a storage tank connected to the water channel for storing water.
  • the vacuum glass tube collector comprises a glass tube comprising an inner glass and an outer glass covering the inner glass spaced from the inner glass.
  • a plurality of glass tubes are arranged on a plane to constitute a heat collecting portion having a planar spread.
  • a support fitting is provided between the outer glass and the inner glass to form a gap between the two.
  • a vacuum layer is provided in the gap provided between the inner glass and the outer glass.
  • a selective absorption film is provided on the surface of the inner glass. The selective absorption film can efficiently convert solar energy into heat.
  • casing can be melted.
  • the load on the housing 21 by snow melting it is possible to suppress the snow damage of the power conversion device 120.
  • the solar light heating unit 130 according to the second embodiment since the snow is melted using the heat collected by the solar light collector, power is not consumed. Therefore, compared with the case where a snow melting machine is used, the running cost can be reduced. Since the temperature range for collecting heat is 40 to 60 ° C., the heat can be used to melt the snow accumulated on the roof of the power conversion device 120.
  • the energy conversion efficiency by solar heat collection is 50% to 60%, and has an advantage that it is higher than solar power generation.
  • FIG. 8 is a diagram showing a power conversion apparatus 120 according to a modification of the second embodiment and a power system using the same.
  • the heat pump device 140 may store heat.
  • the solar light heating part 130 is horizontally installed on the roof part 21a, the solar light heating part 130 may be inclined and arranged as a modification.
  • the solar cell panel is the solar heat generating unit 130
  • the solar heat collector is the solar heat generating unit 130
  • a part of the solar heat generating unit 130 is A solar cell panel may be used, and the remaining part may be used as a solar heat collector.
  • SYMBOLS 1 power system 10 solar cell array, 12 solar cell module, 14 input wiring, 16 output wiring, 18 transformer, 19 electric power system, 20, 120 power converter, 21 housings, 21a roof part, 21b storage part, 22a Control device, 22b, 22c, 22d, 22e Inverter device, 24 eaves, 30, 130, solar heat generating part, 40 battery, 140 heat pump device

Abstract

This power conversion device is provided with: a housing that has a roof section; a power conversion circuit built in the housing; and a heat generation part that is disposed on the roof section and converts at least a portion of solar energy into heat energy. The heat generation part may include a solar cell panel and may include a solar heat collector. By reducing the load on the housing due to melting snow, damage from snow accumulation to the power conversion device can be suppressed. In the solar heat generation part, heat generated from the solar cell panel is just used for melting snow, and no direct current reverse voltage is applied to the solar cell panel from the outside.

Description

電力変換装置Power converter
 本発明は、電力変換装置に関するものである。 The present invention relates to a power converter.
 従来、日本特開2002-16279号公報に開示されているように、太陽電池の表面に積もった雪を融かすための融雪装置が知られている。上記公報にかかる融雪装置は、太陽光発電システムに搭載されている。太陽光発電システムは、太陽電池パネルと、この太陽電池パネルで発電した直流電力を交流電力に変換する電力変換装置を備えている。上記従来の融雪装置は、太陽電池に直流の逆電圧を印加することで太陽電池を発熱体として動作させる。電力印加により太陽電池を発熱させることで、太陽電池の表面に積もった雪を溶かすことができる。 Conventionally, as disclosed in Japanese Patent Laid-Open Publication No. 2002-16279, a snow melting apparatus for melting snow accumulated on the surface of a solar cell is known. The snow melting apparatus according to the above publication is mounted on a solar power generation system. The solar power generation system includes a solar cell panel and a power conversion device that converts direct current power generated by the solar cell panel into alternating current power. The conventional snow melting apparatus operates the solar cell as a heating element by applying a DC reverse voltage to the solar cell. By heating the solar cell by applying power, snow accumulated on the surface of the solar cell can be melted.
日本特開2002-16279号公報Japanese Patent Application Laid-Open No. 2002-16279
 従来、日本国においては、電力変換装置を屋外に設置することは少なく、建屋を設置してその中に電力変換装置を設置することが多かった。しかしながら、近年では屋外設置用の電力変換装置も普及している。電力変換装置を屋外に設置する場合、降雪地域では積雪によって電力変換装置の筐体に過度の荷重がかかることがある。上記従来の技術は、太陽光発電のための太陽電池パネルについての融雪を行うものであり、電力変換装置への積雪については何ら配慮されていない。この点に関し、従来の技術は未だ改善の余地を残すものであった。 Heretofore, in Japan, it has been rare to install a power conversion device outdoors, and in many cases, a building is installed and the power conversion device is installed therein. However, in recent years, power converters for outdoor installation have also become widespread. When the power conversion device is installed outdoors, excessive load may be applied to the housing of the power conversion device due to snow accumulation in a snowfall area. The above-mentioned prior art performs snow melting on a solar cell panel for photovoltaic power generation, and no consideration is given to snow accumulation on a power conversion device. In this regard, the prior art still leaves room for improvement.
 本発明は、上述のような課題を解決するためになされたもので、積雪被害を抑制することができるように改善された電力変換装置を提供することを目的とする。 The present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a power converter improved so as to be able to suppress snow damage.
 本願で開示される電力変換装置は、
 屋根部を持つ筐体と、
 前記筐体に内蔵された電力変換回路と、
 前記屋根部の上に設置され、表面で受光した太陽光エネルギの少なくとも一部を熱エネルギに変換する発熱部と、
 を備える。
The power converter disclosed in the present application is
A housing with a roof,
A power conversion circuit built in the housing;
A heat generating portion disposed on the roof and converting at least a part of the sunlight energy received by the surface into heat energy;
Equipped with
 筐体の屋根部に積もった雪を溶かすことができるので、電力変換装置の積雪被害を抑制することができる。 Since the snow accumulated on the roof of the housing can be melted, the snow damage of the power conversion device can be suppressed.
実施の形態1にかかる電力変換装置およびこれを用いた電力システムを示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the power converter device concerning Embodiment 1, and the electric power system using the same. 実施の形態1にかかる電力変換装置の正面図である。FIG. 1 is a front view of a power converter according to a first embodiment. 実施の形態1にかかる電力変換装置の上面図である。FIG. 1 is a top view of a power converter according to a first embodiment. 実施の形態1の変形例にかかる電力変換装置およびこれを用いた電力システムを示す図である。It is a figure which shows the power converter device concerning the modification of Embodiment 1, and the electric power system using the same. 実施の形態2にかかる電力変換装置およびこれを用いた電力システムを示す図である。It is a figure which shows the power converter device concerning Embodiment 2, and the electric power system using the same. 実施の形態2にかかる電力変換装置の正面図である。FIG. 7 is a front view of a power conversion device according to a second embodiment. 実施の形態2にかかる電力変換装置の上面図である。FIG. 7 is a top view of a power conversion device according to a second embodiment. 実施の形態2の変形例にかかる電力変換装置およびこれを用いた電力システムを示す図である。It is a figure which shows the power converter device concerning the modification of Embodiment 2, and the electric power system using the same.
実施の形態1.
 図1は、実施の形態1にかかる電力変換装置20およびこれを用いた電力システム1を示す図である。電力システム1は、複数の太陽電池モジュール12で構成された太陽電池アレイ10と、電力変換装置20と、出力配線16を介して電力変換装置20から交流電力を受け取る変圧器18と、を備えている。電力変換装置20は、入力配線14を介して太陽電池アレイ10から受け取った直流電力を交流電力に変換する。電力システム1は、いわゆる分散型電源である。太陽電池アレイ10の代わりに、他の直流電源を設けてもよい。他の直流電源は、蓄電池、燃料電池、あるいは直流電力を出力する風力発電装置を含む。
Embodiment 1
FIG. 1 is a diagram showing a power conversion device 20 according to a first embodiment and a power system 1 using the same. The power system 1 includes a solar cell array 10 configured of a plurality of solar cell modules 12, a power converter 20, and a transformer 18 that receives AC power from the power converter 20 via the output wiring 16. There is. The power conversion device 20 converts DC power received from the solar cell array 10 via the input wiring 14 into AC power. The power system 1 is a so-called distributed power source. Instead of the solar cell array 10, another DC power supply may be provided. Other DC power sources include storage batteries, fuel cells, or wind power generators that output DC power.
 電力システム1が持つ電力変換装置20は、変圧器18を介して電力系統19と接続している。電力システム1は、電力系統19と連系運転している。電力変換装置20は、一つの制御装置22aと、四つのインバータ装置22b、22c、22d、22eと、を備えている。インバータ装置22b、22c、22d、22eは、インバータ回路基板を内蔵している。インバータ回路基板には、半導体スイッチング素子などの回路素子が実装されている。制御装置22aは、インバータ制御回路基板を内蔵している。インバータ制御回路基板には、各種の制御回路などが設けられている。この各種の制御回路は、インバータ回路基板の半導体スイッチング素子を駆動するためのPWM信号を生成する。 The power converter 20 of the power system 1 is connected to the power system 19 via the transformer 18. The power system 1 operates in conjunction with the power system 19. The power conversion device 20 includes one control device 22a and four inverter devices 22b, 22c, 22d and 22e. The inverter devices 22b, 22c, 22d, 22e incorporate an inverter circuit board. Circuit elements such as semiconductor switching elements are mounted on the inverter circuit board. The controller 22a incorporates an inverter control circuit board. Various control circuits and the like are provided on the inverter control circuit board. The various control circuits generate PWM signals for driving the semiconductor switching elements of the inverter circuit board.
 図1に示すように、電力変換装置20は、屋根部21aおよび収納部21bを持つ筐体21と、筐体21の収納部21bに内蔵された電力変換回路と、屋根部21aの上に設置された太陽光発熱部30と、を備える。屋根部21aは、ひさし部24を備えている。ひさし部24は、収納部21bよりも外側に突き出ている。 As shown in FIG. 1, the power conversion device 20 is installed on a housing 21 having a roof portion 21a and a storage portion 21b, a power conversion circuit built in the storage portion 21b of the housing 21, and the roof portion 21a. And the solar heat generation unit 30. The roof 21 a includes a canopy 24. The eaves portion 24 protrudes outward beyond the storage portion 21 b.
 太陽光発熱部30は、太陽電池パネルである。太陽電池パネルは、裏面保護用のバックシートと、バックシートの上に重ねられた下部封止材と、下部封止材の上に配置された太陽電池セルと、太陽電池セルの上に配置された上部封止材と上部封止材の上に重ねられたガラスと、ガラスの上に設けられたフレームと、を備えている。太陽電池セルは、太陽光エネルギを電気エネルギに変換する素子である。しかし、太陽電池セルに入射した太陽光エネルギの全てが電気エネルギに変換されるのではなく、一部は熱エネルギに変換される。太陽電池セルは、シリコンなどの半導体材料で形成されている。 The solar heat generation unit 30 is a solar cell panel. The solar cell panel is disposed on the back sheet for back surface protection, the lower sealing material stacked on the back sheet, the solar battery cell disposed on the lower sealing material, and the solar battery cell An upper sealing material, a glass stacked on the upper sealing material, and a frame provided on the glass. Solar cells are elements that convert sunlight energy into electrical energy. However, not all of the solar energy that has entered the solar cell is converted to electrical energy, but some is converted to thermal energy. The solar battery cell is formed of a semiconductor material such as silicon.
 太陽光発熱部30の太陽電池パネルは、負荷39と接続している。負荷39は、太陽光発熱部30の太陽電池パネルに電流を流すことで太陽電池パネルの発熱を促すためのものである。図1では模式的に負荷39が筐体21の外部周辺に接地されているが、負荷39は筐体21の内部に配置されてもよく、太陽光発熱部30と同様に屋根部21aの上に配置されてもよい。実施の形態1において太陽光発熱部30を構成する太陽電池パネルは、電力変換装置20が内蔵するインバータ回路およびインバータ制御回路に接続されていない。この点において、実施の形態1にかかる太陽光発熱部30に使用される太陽電池パネルは、太陽電池アレイ10とは異なる使い方がされている。 The solar cell panel of the solar heat generation unit 30 is connected to the load 39. The load 39 is for promoting heat generation of the solar cell panel by supplying an electric current to the solar cell panel of the solar light heating unit 30. Although the load 39 is schematically connected to the outer periphery of the housing 21 in FIG. 1, the load 39 may be disposed inside the housing 21, and like the solar light heating unit 30, the load 39 is on the roof 21 a. It may be located at The solar cell panel which comprises the sunlight heating part 30 in Embodiment 1 is not connected to the inverter circuit and inverter control circuit which the power conversion device 20 incorporates. In this point, the solar cell panel used for the solar light heating unit 30 according to the first embodiment is used differently from the solar cell array 10.
 実施の形態1においても、感電防止のために太陽光発熱部30が接地ケーブルを介して接地されている。太陽電池アレイ10と太陽光発熱部30の太陽電池パネルとを比較すると、太陽電池アレイ10が電力変換装置20に電力供給をするのに対して、太陽光発熱部30の太陽電池パネルは電力変換装置20への電力供給を行わない点で違いがある。 Also in the first embodiment, the solar light heating unit 30 is grounded via the grounding cable in order to prevent electric shock. When the solar cell array 10 and the solar cell panel of the solar heat generation part 30 are compared, while the solar cell array 10 supplies electric power to the power conversion device 20, the solar cell panel of the solar heat generation part 30 is power conversion There is a difference in that power is not supplied to the device 20.
 図2は、実施の形態1にかかる電力変換装置20の正面図である。図3は、実施の形態1にかかる電力変換装置20の上面図である。制御装置22aと、インバータ装置22b、22c、22d、22eは、それぞれ、筐体21を備えている。インバータ装置22bからインバータ装置22eのそれぞれは、筐体21の内部に、インバータ回路基板を備えている。インバータ回路基板は、IGBTあるいはMOSFETなどの半導体スイッチング素子と、フライホイールダイオードと、を備えている。制御装置22aは、筐体21の内部に、インバータ制御回路基板を備えている。インバータ制御回路基板は、インバータ回路基板が備える半導体スイッチング素子をオンオフするPWM信号を生成する。 FIG. 2 is a front view of the power conversion device 20 according to the first embodiment. FIG. 3 is a top view of the power conversion device 20 according to the first embodiment. The control device 22a and the inverter devices 22b, 22c, 22d, and 22e each include a housing 21. Each of the inverter devices 22 b to 22 e includes an inverter circuit board inside the housing 21. The inverter circuit board is provided with a semiconductor switching element such as an IGBT or a MOSFET and a flywheel diode. The control device 22 a includes an inverter control circuit board inside the housing 21. The inverter control circuit board generates a PWM signal for turning on and off the semiconductor switching element provided in the inverter circuit board.
 太陽電池パネル全体の光電変換効率は、一般的に20%前後である。そのため発電時の80%程度が損失として熱になる。この熱により太陽電池パネルの温度は、周囲温度より30℃~40℃高くなる。この熱で、筐体の屋根部21aに積もった雪を溶かすことができる。太陽光による発電により、太陽電池パネルに電流が流れる。この電流で太陽電池パネルが発熱することで、太陽電池パネルに積もった雪を溶かすことができる。融雪により筐体21への荷重を減らすことで、電力変換装置20の積雪被害を抑制することができる。実施の形態1にかかる太陽光発熱部30では、太陽電池パネルから発生する熱を利用して雪を溶かすだけであり、外部から太陽電池パネルに直流逆電圧を印加するものではない。したがって、実施の形態1にかかる太陽光発熱部30は、外部からエネルギを投入することなく太陽光から発生させた熱で自然に雪を溶かすことができるので、融雪のために電力を消費しない。よって、融雪機を使用した場合と比較して、ランニングコストを低減できる。 The photoelectric conversion efficiency of the whole solar cell panel is generally around 20%. Therefore, about 80% at the time of power generation becomes heat as loss. The heat causes the temperature of the solar cell panel to rise 30 ° C. to 40 ° C. above the ambient temperature. The heat can melt the snow accumulated on the roof 21a of the housing. A current flows in the solar cell panel due to the generation by solar light. The heat generated by the solar cell panel by this current can melt snow accumulated on the solar cell panel. By reducing the load on the housing 21 by snow melting, it is possible to suppress the snow damage of the power conversion device 20. The solar light heating unit 30 according to the first embodiment only melts snow using heat generated from the solar cell panel, and does not apply a DC reverse voltage to the solar cell panel from the outside. Therefore, since the solar heat generation part 30 concerning Embodiment 1 can melt | dissolve snow naturally with the heat | fever which generate | occur | produced from sunlight without injecting energy from the outside, it does not consume electric power for snow melting. Therefore, compared with the case where a snow melting machine is used, the running cost can be reduced.
 なお、従来の太陽光発電システムにおける融雪装置と上記実施の形態1は、本質的な目的において違いがある。従来の融雪装置は、太陽光発電を円滑に行うために、太陽電池パネルの上の雪をなるべく全て溶かしきることを目的としている。これに対し、実施の形態1における太陽光発熱部30は、電力変換装置20の筐体21に過大な積雪荷重がかかることを防止したり、屋根部21aからの落雪による被害を防止したりすることを目的としている。したがって、実施の形態1における太陽光発熱部30は、表面に積もった雪をすべて溶かすことを要求されていない。実施の形態1では、筐体21への荷重を抑制したり、落雪被害を防止したりできる程度であれば、屋根部21aの上に雪が残っていてもよい。 In addition, the snow melting apparatus in the conventional solar power generation system and the said Embodiment 1 have a difference in the intrinsic purpose. The conventional snow melting apparatus aims to melt all the snow on the solar cell panel as much as possible in order to perform solar power generation smoothly. On the other hand, the solar light heating unit 30 according to the first embodiment prevents the excessive snow load from being applied to the casing 21 of the power conversion device 20 or prevents the damage due to the snowfall from the roof 21a. The purpose is that. Therefore, the solar light heating unit 30 in the first embodiment is not required to melt all the snow accumulated on the surface. In the first embodiment, snow may remain on the roof 21 a as long as the load on the housing 21 can be suppressed or the snow fall damage can be prevented.
 図4は、実施の形態1の変形例にかかる電力変換装置20およびこれを用いた電力システムを示す図である。電力システム1は、負荷39の代わりに、蓄電池40を備えている。太陽光発熱部30で発電された電力を、蓄電池40に蓄えてもよい。蓄電池40に蓄えられた電気エネルギは、電力変換装置20によって消費されてもよいし、電力変換装置20以外の他の電子機器に供給されてもよい。さらなる変形例として、太陽光発熱部30と蓄電池40との間にDC/DCコンバータ装置を設けてもよい。 FIG. 4 is a diagram showing a power conversion device 20 according to a modification of the first embodiment and a power system using the same. The power system 1 includes a storage battery 40 instead of the load 39. The power generated by the solar heat generation unit 30 may be stored in the storage battery 40. The electrical energy stored in the storage battery 40 may be consumed by the power conversion device 20 or may be supplied to other electronic devices other than the power conversion device 20. As a further modification, a DC / DC converter device may be provided between the solar heat generating unit 30 and the storage battery 40.
 太陽光発熱部30を構成する太陽電池パネルは、フィルム型の太陽電池に置換されてもよい。フィルム型太陽電池であれば撓むことが可能な性質があるので、屋根部21aの上面を例えば凸曲面形状としてその曲面にフィルム型太陽電池を設置してもよい。実施の形態1では太陽光発熱部30が屋根部21aの上に水平に設置されているが、変形例として太陽光発熱部30が傾斜配置されてもよい。 The solar cell panel constituting the solar heat generating unit 30 may be replaced by a film type solar cell. If it is a film type solar cell, since it has the property which can be bent, a film type solar cell may be installed in the curved surface by making the upper surface of roof part 21a into the convex curve shape, for example. In Embodiment 1, although the solar light heating part 30 is horizontally installed on the roof part 21a, as a modification, the solar light heating part 30 may be inclinedly arranged.
実施の形態2.
 図5は、実施の形態2にかかる電力変換装置120およびこれを用いた電力システムを示す図である。太陽光発熱部30を太陽光発熱部130に置換した点を除いて、実施の形態2と実施の形態1は同様の構成を備えている。太陽光発熱部130は、太陽光集熱器である。
Second Embodiment
FIG. 5 is a diagram showing a power conversion apparatus 120 according to a second embodiment and a power system using the same. The second embodiment and the first embodiment have the same configuration except that the solar heat generating unit 30 is replaced with the solar heat generating unit 130. The solar heat generation unit 130 is a solar heat collector.
 図6は、実施の形態2にかかる電力変換装置120の正面図である。図7は、実施の形態2にかかる電力変換装置120の上面図である。太陽光集熱器の具体的な構造は問わないが、例えば平板型集熱器と真空ガラス管型集熱器とが普及している。 FIG. 6 is a front view of the power conversion device 120 according to the second embodiment. FIG. 7 is a top view of the power conversion device 120 according to the second embodiment. Although there is no limitation on the specific structure of the solar collector, for example, flat plate collectors and vacuum glass tube collectors are in widespread use.
 平板型集熱器は、太陽光集熱効果を持つ集熱塗料が塗布された集熱平面体と、集熱平面体の上に設けられ集熱平面体により加熱される水路と、水路の上に設けられた保護ガラスと、水路と接続して水を貯留する貯留タンクと、を備えている。 The flat plate type heat collector comprises a heat collecting flat body to which a heat collecting paint having a solar heat collecting effect is applied, a water channel provided on the heat collecting flat body and heated by the heat collecting flat body, and And a storage tank connected to the water channel for storing water.
 真空ガラス管型集熱器は、内ガラスと内ガラスから離間しつつ内ガラスを覆う外ガラスとを備えるガラス管を備えている。複数のガラス管が平面上に並べられることで、平面的な広がりを持つ集熱部を構成している。外ガラスと内ガラスの間には、両者の間に隙間を形成するための支持金具が備えられている。内ガラスと外ガラスの間に設けられた隙間に、真空層が設けられている。内ガラスの表面には、選択吸収膜が設けられている。選択吸収膜が太陽光エネルギを効率よく熱に変換することができる。 The vacuum glass tube collector comprises a glass tube comprising an inner glass and an outer glass covering the inner glass spaced from the inner glass. A plurality of glass tubes are arranged on a plane to constitute a heat collecting portion having a planar spread. A support fitting is provided between the outer glass and the inner glass to form a gap between the two. A vacuum layer is provided in the gap provided between the inner glass and the outer glass. A selective absorption film is provided on the surface of the inner glass. The selective absorption film can efficiently convert solar energy into heat.
 実施の形態2にかかる太陽光発熱部130によれば、筐体の屋根部21aに積もった雪を溶かすことができる。融雪により筐体21への荷重を減らすことで、電力変換装置120の積雪被害を抑制することができる。実施の形態2にかかる太陽光発熱部130では、太陽光集熱器が集めた熱を利用して雪を溶かすので、電力が消費されない。よって、融雪機を使用した場合と比較して、ランニングコストを低減できる。集熱による温度範囲は40~60℃となるため、この熱を利用して電力変換装置120の屋根に積もった雪を溶かすことができる。太陽熱集熱によるエネルギ変換効率は、50%~60%であり、太陽光発電に比べて高いという利点もある。 According to the sunlight heating part 130 concerning Embodiment 2, the snow accumulated on the roof part 21a of a housing | casing can be melted. By reducing the load on the housing 21 by snow melting, it is possible to suppress the snow damage of the power conversion device 120. In the solar light heating unit 130 according to the second embodiment, since the snow is melted using the heat collected by the solar light collector, power is not consumed. Therefore, compared with the case where a snow melting machine is used, the running cost can be reduced. Since the temperature range for collecting heat is 40 to 60 ° C., the heat can be used to melt the snow accumulated on the roof of the power conversion device 120. The energy conversion efficiency by solar heat collection is 50% to 60%, and has an advantage that it is higher than solar power generation.
 図8は、実施の形態2の変形例にかかる電力変換装置120およびこれを用いた電力システムを示す図である。ヒートポンプ装置140に、熱を蓄えてもよい。実施の形態2では太陽光発熱部130が屋根部21aの上に水平に設置されているが、変形例として太陽光発熱部130が傾斜配置されてもよい。 FIG. 8 is a diagram showing a power conversion apparatus 120 according to a modification of the second embodiment and a power system using the same. The heat pump device 140 may store heat. In the second embodiment, although the solar light heating part 130 is horizontally installed on the roof part 21a, the solar light heating part 130 may be inclined and arranged as a modification.
 実施の形態1では太陽電池パネルを太陽光発熱部130とし、実施の形態2では太陽光集熱器を太陽光発熱部130としたが、さらなる変形例として、太陽光発熱部130の一部を太陽電池パネルとし残部を太陽光集熱器としてもよい。 In the first embodiment, the solar cell panel is the solar heat generating unit 130, and in the second embodiment, the solar heat collector is the solar heat generating unit 130. However, as a further modification, a part of the solar heat generating unit 130 is A solar cell panel may be used, and the remaining part may be used as a solar heat collector.
1 電力システム、10 太陽電池アレイ、12 太陽電池モジュール、14 入力配線、16 出力配線、18 変圧器、19 電力系統、20、120 電力変換装置、21 筐体、21a 屋根部、21b 収納部、22a 制御装置、22b、22c、22d、22e インバータ装置、24 ひさし部、30、130 太陽光発熱部、40 蓄電池、140 ヒートポンプ装置 DESCRIPTION OF SYMBOLS 1 power system, 10 solar cell array, 12 solar cell module, 14 input wiring, 16 output wiring, 18 transformer, 19 electric power system, 20, 120 power converter, 21 housings, 21a roof part, 21b storage part, 22a Control device, 22b, 22c, 22d, 22e Inverter device, 24 eaves, 30, 130, solar heat generating part, 40 battery, 140 heat pump device

Claims (4)

  1.  屋根部を持つ筐体と、
     前記筐体に内蔵された電力変換回路と、
     前記屋根部の上に設置され、表面で受光した太陽光エネルギの少なくとも一部を熱エネルギに変換する発熱部と、
     を備える電力変換装置。
    A housing with a roof,
    A power conversion circuit built in the housing;
    A heat generating portion disposed on the roof and converting at least a part of the sunlight energy received by the surface into heat energy;
    Power converter comprising:
  2.  前記発熱部は、太陽電池パネルを含む請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the heat generating unit includes a solar cell panel.
  3.  前記電力変換装置は、太陽電池アレイと接続し前記太陽電池アレイからの直流電力を交流電力に変換して出力するインバータ回路を含み、
     前記太陽電池パネルは、前記インバータ回路と接続されていない請求項2に記載の電力変換装置。
    The power converter includes an inverter circuit connected to a solar cell array to convert DC power from the solar cell array into AC power and output the AC power.
    The power converter according to claim 2, wherein the solar cell panel is not connected to the inverter circuit.
  4.  前記発熱部は、太陽光集熱器を含む請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the heat generating portion includes a solar heat collector.
PCT/JP2017/044385 2017-12-11 2017-12-11 Power conversion device WO2019116427A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/044385 WO2019116427A1 (en) 2017-12-11 2017-12-11 Power conversion device
JP2019559431A JP6729817B2 (en) 2017-12-11 2017-12-11 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044385 WO2019116427A1 (en) 2017-12-11 2017-12-11 Power conversion device

Publications (1)

Publication Number Publication Date
WO2019116427A1 true WO2019116427A1 (en) 2019-06-20

Family

ID=66820855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044385 WO2019116427A1 (en) 2017-12-11 2017-12-11 Power conversion device

Country Status (2)

Country Link
JP (1) JP6729817B2 (en)
WO (1) WO2019116427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993834A (en) * 1995-09-26 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> Uninterruptible power supply
JP2015018699A (en) * 2013-07-11 2015-01-29 大和ハウス工業株式会社 Installation structure for storage battery system
JP2015089308A (en) * 2013-11-01 2015-05-07 株式会社日立産機システム Distribution board
EP3046215A1 (en) * 2015-01-15 2016-07-20 ABB Technology AG An uninterruptible power supply device for outdoor medium voltage electric installations.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993834A (en) * 1995-09-26 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> Uninterruptible power supply
JP2015018699A (en) * 2013-07-11 2015-01-29 大和ハウス工業株式会社 Installation structure for storage battery system
JP2015089308A (en) * 2013-11-01 2015-05-07 株式会社日立産機システム Distribution board
EP3046215A1 (en) * 2015-01-15 2016-07-20 ABB Technology AG An uninterruptible power supply device for outdoor medium voltage electric installations.

Also Published As

Publication number Publication date
JPWO2019116427A1 (en) 2020-04-16
JP6729817B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
KR101796045B1 (en) Photovoltaic module
KR101820376B1 (en) Photovoltaic module
KR100563687B1 (en) Photovoltaic power generating apparatus, method of producing same and photovoltaic power generating system
US20100236608A1 (en) Photovoltaic module with heater
JP2002141540A (en) Solar cell module integrated with power converter
US8933324B2 (en) Thermally mounting electronics to a photovoltaic panel
JP2002141541A (en) Solarlight power generator and construction
KR100996242B1 (en) Solar ac power generation device
KR20150098103A (en) Power converting apparatus, and photovoltaic module
CN103715981B (en) A kind of Intelligent photovoltaic light-heat integration assembly
ITVI20090122A1 (en) STRUCTURAL MODULE FOR PHOTOVOLTAIC GENERATION WITH HIGH CONCENTRATION
KR101954194B1 (en) Power converting apparatus, and photovoltaic module
KR101824983B1 (en) Photovoltaic module, photovoltaic system and method for controlling the same
KR20120140023A (en) Photovoltaic module
KR20130011689A (en) Photovoltaic module
US20150288188A1 (en) Parallel-Connected Solar Electric System
CN202585479U (en) Improved structure of insulation portion of crystalline silicon photovoltaic component
WO2019116427A1 (en) Power conversion device
JP2004047585A (en) Solar generator system
JP3053025U (en) Solar energy electrical converter
CN210579330U (en) Solar energy frequency conversion fan lamp control system
CN104362195A (en) Photovoltaic panel
KR101959302B1 (en) Photovoltaic module, and photovoltaic system
KR20150086765A (en) Power converting apparatus, and photovoltaic module
KR20150085411A (en) Power converting apparatus, and photovoltaic module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934743

Country of ref document: EP

Kind code of ref document: A1