WO2019114744A1 - 一种重金属防控系统以及采用其的重金属防控方法 - Google Patents

一种重金属防控系统以及采用其的重金属防控方法 Download PDF

Info

Publication number
WO2019114744A1
WO2019114744A1 PCT/CN2018/120542 CN2018120542W WO2019114744A1 WO 2019114744 A1 WO2019114744 A1 WO 2019114744A1 CN 2018120542 W CN2018120542 W CN 2018120542W WO 2019114744 A1 WO2019114744 A1 WO 2019114744A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
filler
layer
wetland
constructed wetland
Prior art date
Application number
PCT/CN2018/120542
Other languages
English (en)
French (fr)
Inventor
王雷
席北斗
王金生
李翔
刘慧�
李彤彤
吕宁磬
檀文柄
张亚丽
吴锋
张倩
Original Assignee
中国环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国环境科学研究院 filed Critical 中国环境科学研究院
Priority to US16/770,773 priority Critical patent/US11174182B2/en
Publication of WO2019114744A1 publication Critical patent/WO2019114744A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the field of water resources recycling, in particular to a heavy metal prevention and control system in an extremely water-deficient farmland irrigation process and a heavy metal prevention and control method using the same.
  • the inventors conducted intensive research to provide a method and system for preventing and controlling heavy metals in an extremely water-deficient farmland irrigation process, which effectively solves the problem of excessive heavy metals in irrigation water, and is not affected by the negative effect of water treatment in winter.
  • the invention can complete the uninterrupted treatment of water throughout the year, thereby reducing the serious enrichment of heavy metals in plants, maintaining the good condition of farmland, ensuring agricultural safety and human safety, thereby completing the present invention.
  • a heavy metal prevention and control system which comprises a constructed wetland 3, in which a plurality of layers of filler are laid in the constructed wetland 3, and the heavy metal is removed by flowing the water through the layers of the filler, the system is suitable for the irrigation process of extremely water-deficient farmland. Heavy metal prevention and control;
  • the constructed wetland 3 is provided with four layers of filler from top to bottom:
  • the first layer of filler 13 is a mixed filler of soil and functional biochar, the mixing ratio is 3: (6-8), preferably the filler particle size is 0.10-0.30cm;
  • the second layer of filler 14 is a mixed filler of soil, natural zeolite, limestone, the mixing ratio is 1: (2 ⁇ 3): (0.5 ⁇ 1), preferably the particle size of the filler is 0.08-0.1cm;
  • the third layer of filler 15 is a mixed filler of fly ash molecular sieve, Floris diatomaceous earth and biochar, and the mixing ratio is 1: (3 to 4): (1 to 1.5), preferably the filler particle diameter is 0.05-0.08 cm. ;
  • the fourth layer of filler 16 is a mixed filler of cobblestone and biochar, the mixing ratio is 1: (1 ⁇ 2), preferably the particle size of the filler is 0.30 - 0.50 cm;
  • the sandwich wall is constructed on the periphery of the constructed wetland 3, and the constructed wetland is closed by the sandwich wall for 3 weeks, and the interior of the sandwiched wall is hollow, and the artificial wetland is supplied by fermenting and producing heat by loading the organic matter 12 which is fermented and heated therein. heat.
  • a heavy metal prevention and control system and a heavy metal prevention and control method using the same according to the present invention have the following
  • the artificial wetland in the present invention is laid with a plurality of layers of fillers, and the filler type, the dosage ratio, the particle size and the filling height in each layer of the filler are specifically selected, and the heavy metal can be effectively realized in the constructed wetland. Adsorption, suspension filtration, organic matter degradation and dephosphorization and denitrification.
  • Planting specific wetland plants in the constructed wetland of the present invention is beneficial to the enrichment of heavy metals, and the obtained wetland plants enriched with heavy metals can be reused to prepare photocatalytic and electrochemical redox reactions. Functional biochar.
  • Adding denitrifying bacteria and polyphosphate bacteria to the constructed wetland can not only remove nitrogen and phosphorus in the water, but also produce biofilm on the surface of the filler, and reduce the amount of heavy metals through biofilm flocculation;
  • the insertion of the middle airway facilitates the entry of air into the aerobic layer of the constructed wetland and promotes the proliferation of aerobic microorganisms.
  • the prevention and control system of the present invention further comprises an ablation sedimentation tank and a nano-aeration tank, and the introduced aquatic plants are converted into short carbon chain carbon sources by acidification, degradation of the ablation sedimentation tank and oxidative degradation of the nano-aeration tank.
  • the carbon source is provided for the microorganisms in the constructed wetland to promote reproduction.
  • FIG. 1 is a schematic view showing the structure of a heavy metal prevention and control system in a preferred embodiment of the present invention.
  • the prevention and control system includes a constructed wetland 3 in which a plurality of layers of filler are laid, and the received water is passed through each layer of the filler to remove heavy metals.
  • the constructed wetland 3 is provided with three to six layers of filler from top to bottom, and each layer of filler may be selected from the group consisting of soil, biochar, functional biochar, ore particles such as gravel, natural zeolite, volcanic stone, calcite, limestone.
  • each layer of filler may be selected from the group consisting of soil, biochar, functional biochar, ore particles such as gravel, natural zeolite, volcanic stone, calcite, limestone.
  • pebbles diatomaceous earth or Floris diatomaceous earth.
  • the constructed wetland 3 is provided with four layers of filler from top to bottom:
  • the first layer of filler 13 is a mixed filler of soil and functional biochar
  • the second layer of filler 14 is a mixed filler of soil, natural zeolite, and limestone;
  • the third layer of filler 15 is a mixed filler of fly ash molecular sieve, Floris diatomaceous earth and biochar;
  • the fourth layer of filler 16 is a mixed filler of cobblestone and biochar.
  • a first layer of filler 13 is laid at 0-500 cm, and the first layer of filler 13 is a mixed filler of soil and functional biochar in a mixing ratio of 3: (6-8), preferably 3:7.
  • biochar is a high carbon content material obtained by high temperature and deoiling of biomass under anoxic conditions.
  • Functional biochar is biochar loaded with transition metals.
  • Functional biochar has the following characteristics of biochar:
  • Microstructure with porous characteristics, large pores can ensure the aeration and water retention capacity of the soil used in combination with functional biochar, and also provide a place for microorganisms to survive and reproduce, thereby increasing the activity of microorganisms. Speed of reproduction; micro and small pores affect the adsorption and transfer of biochar to molecules.
  • the pore structure of biochar can reduce the penetration rate of water and enhance the adsorption capacity of soil for nutrients that are highly mobile and easily leached;
  • the porous structure facilitates the growth of wetland plants on the first layer of filler;
  • the porous property of biochar determines that it has a large surface area, and can adsorb a large amount of organic matter in the water in the region, which is beneficial to the degradation of the organic matter after adsorption, and reduces the content of organic matter in the long carbon chain in the water;
  • the surface of the biochar has a carboxyl group, a phenolic hydroxyl group, and a carbonyl oxygen-containing functional group, and the surface negative charge generated by the above functional group makes the biochar have a high cation exchange amount, and can effectively adsorb heavy metal ions in the water;
  • functional biochar can be adsorbed by the photocatalysis of transition metals in the presence of oxygen, because it is loaded with transition metals (such as nickel, copper, zinc, iron).
  • transition metals such as nickel, copper, zinc, iron.
  • the supported transition metal reduces the dissolved metal ions to insoluble metal atoms by electrochemical redox reaction and catalysis, and is plated on the surface of the functional biochar medium to realize heavy metal removal.
  • the functional biochar is mainly used to assist the addition of the soil, and the addition of the soil facilitates the planting of the plant on the first layer of the filler 13. It has been found through experiments that when soil and functional biochar are mixed at 3:(6-8), due to the fixation of activated carbon to the soil, good growth of plants can be achieved, and functional biochar-based fillers can adsorb a large amount of organic matter. The degradation of organic matter is effectively achieved by the photocatalysis of transition metal ions, and the removal effect of heavy metals is also remarkable.
  • the ratio of soil to functional biochar is less than 3:8, the proportion of soil is reduced, and the plant growth situation is affected by the lack of necessary nutrients from the soil; if the ratio of soil and functional biochar is higher than 3:6, the ratio is lower.
  • the effect of photocatalytic or electrochemical redox reaction is reduced, the porous structure is reduced, and the degradation of organic matter and the adsorption amount of heavy metals are decreased.
  • the first layer of filler 13, in particular the functional biochar has a particle size of 0.10-0.30 cm, in which the functional biochar supports the soil and facilitates air entry into the filler.
  • the layer, the root of the plant is in effective contact with the air, facilitating the growth of wetland plants planted on the first layer of filler 13.
  • the functional biochar has a particle size of less than 0.10 cm, it is unfavorable for air to enter the filler layer. The lack of oxygen is not conducive to plant growth and organic pollutant degradation; if the functional biochar has a particle size greater than 0.30 cm, the larger particle size is more The small surface area is not conducive to the efficiency of photocatalysis and electrochemical redox reaction.
  • wetland plants 6, such as canna and reed are planted on the first layer of filler 13. It is noteworthy that canna and reed have a very high enrichment ability for heavy metals. The heavy metals accumulated in the two plants are more than 100 times that of ordinary aquatic plants, but their normal growth is not affected. By harvesting plants, heavy metals can be completely removed from the water body. Therefore, the selection of these two wetland plants for planting is an effective ecological method for reducing heavy metals. At the same time, wetland plants can grow normally in eutrophic waters, showing good water purification effects. Through the absorption, evaporation, root filtration, degradation and stabilization of plants, the suspended solids in water can be effectively reduced.
  • the functional biochar in the constructed wetland 3 is prepared by using the enriched heavy metal biomass.
  • the functional biochar can be obtained by carbonization, activation, degreasing, reduction, and drying of the wetland plants 6 (canna and reed) grown in the constructed wetland 3.
  • the wetland plant 6 having a heavy metal enrichment function is cultured in a high content heavy metal culture solution, wherein the culture solution contains copper chloride, zinc chloride and nickel chloride in a molar ratio of chlorination.
  • Copper: Zinc chloride: Nickel chloride 32:9:9.
  • a wetland plant 6 enriched in copper, zinc and nickel is obtained, which is carbonized at 900-1600 ° C, deactivated by zinc chloride, reduced by sodium borohydride, and dried to obtain functional biochar.
  • plants continuously absorb heavy metals into the body, and the plant biomass that absorbs heavy metals is burned into activated carbon.
  • the heavy metals are not bonded to the carbon structure, but are embedded in the plant carbon fiber.
  • the joint structure is incomparably stable, and the heavy metal in the biochar The load is much higher than the existing load mode, with higher capacitance and photocatalytic ability.
  • the second layer of filler 14 is laid at 500-1000 cm, and the second layer of filler 14 is a mixed filler of soil, natural zeolite and limestone, and the mixing ratio is 1: (2 to 3): (0.5 to 1), preferably It is 1:2:0.5.
  • Zeolite is a general term for aqueous porous aluminosilicates, and its crystal structure is mainly composed of a (SiO) tetrahedron.
  • Al 3+ and Si 4+ together form the overall framework of the zeolite molecule as a framework ion and an oxygen atom.
  • Part of Si 4+ is Al 3+ substituted, resulting in excess negative charge, and a certain pore size cavity and pore in the zeolite framework. It has the properties of adsorption and ion exchange, and its adsorption of ammonia nitrogen and adsorption of heavy metals have greater advantages than other ore raw materials.
  • Limestone also has more pore structure, so it can effectively adsorb heavy metals. At the same time, limestone can effectively regulate the acidity and alkalinity of water, and play a vital role in plant growth in the upper layer. If microbes are added to the constructed wetlands to simultaneously remove other pollutants such as nitrogen and phosphorus, the limestone also plays a vital role in the reproduction of microorganisms in the water. Polyphosphates multiply at pH 5 to pH 9, and nitrifying bacteria and counters Nitrifying bacteria mostly multiply at pH 6.0 to pH 8.5).
  • the mixing ratio of soil, natural zeolite and limestone in the second layer of filler 14 is 1: (2 ⁇ 3): (0.5-1), in which most heavy metals can be realized.
  • the adsorption is fixed and the pH of the water is regulated. If the proportion of soil increases, the adsorption of heavy metals is weaker than that of natural zeolite and limestone, which reduces the adsorption capacity of heavy metals; on the contrary, it may affect the nutrient reserve of plant growth. If the natural zeolite is increased, the adsorption of heavy metals is enhanced, and the corresponding amount of soil or limestone is reduced, which also poses a threat to plant growth or water pH regulation. Similarly, the increase in the specific gravity of limestone is beneficial to the regulation of water pH, but the effectiveness of other components is correspondingly reduced. Conversely, the regulation of water pH can not be carried out quickly and effectively, thereby affecting plant growth or microbial functional activities.
  • the filler of the second layer has a particle size of from 0.08 to 0.1 cm.
  • the choice of this particle size range takes into account the coordination of both gas flow and total metal adsorption; when the particle size is below 0.08 cm, although the adsorption of heavy metals is promoted, the air flow is reduced due to the increased bulk density, and the oxygen content in the water.
  • the corresponding heavy metal adsorption capacity is significantly lower than 0.08 cm.
  • a third layer of filler 15 is laid at 1000-1500 cm, and the third layer of filler 15 is a mixed filler of fly ash molecular sieve, Floris diatomaceous earth and biochar, and the mixing ratio is 1: (3 to 4). : (1 to 1.5), preferably 1:3:1.
  • three kinds of porous fillers such as fly ash molecular sieve, Floris diatomaceous earth and biochar, are used for heavy metal adsorption in the deep layer of the constructed wetland.
  • the common feature of the three is the high porosity, which facilitates the adsorption of heavy metals and the growth of microorganisms in the water.
  • fly ash as molecular sieve is based on the main component of fly ash and the main components of molecular sieve, and fly ash is currently treated as waste, because it contains heavy metal ions such as Cr, Hg, As and Pb, to air
  • the water source, the soil and the like all cause pollution.
  • the cation exchange property and the pore structure can realize the adsorption of heavy metals, and the waste pollution source can be effectively utilized.
  • Biochar also has excellent heavy metal adsorption capacity due to its large surface area.
  • Flory diatomaceous earth has higher pore volume, larger specific surface area, and stronger adsorption of heavy metals and organic pollutants than ordinary diatomaceous earth.
  • Flory diatomaceous earth has a deep effect, that is, in deep filtration, the separation process only occurs in the "inside" of the medium, and the relatively small impurity particles partially passing through the surface of Floris diatomaceous earth are diatomized
  • the internal micro-porous structure of the soil and the finer pores inside are retained.
  • Flory diatomaceous earth is beneficial to bacterial microorganisms.
  • the long-term retention of the area facilitates the release of microorganisms. If microorganisms are added to the water body, a large amount of bioflocculant is produced by the microbial membrane, and the heavy metals are fully flocculated.
  • fly ash molecular sieve, Floris diatomite and biochar have different adsorption advantages for different heavy metals
  • the mixing ratio of fly ash molecular sieve, Flory diatomite and biochar is set to 1: (3 ⁇ 4): (1 ⁇ 1.5)
  • biofilm can be produced by microbial release to promote the removal of heavy metals.
  • the particle size of the fly ash molecular sieve, Floris diatomaceous earth, and biochar is 0.05-0.08 cm. Due to the high porosity of the above three fillers, in the small particle size range, the adsorption of heavy metal ions is facilitated, and the growth of microorganisms is facilitated.
  • a fourth layer of filler 16 is laid at 1500-2000 cm, and the fourth layer of filler 16 is a mixed filler of cobblestone and biochar, and the mixing ratio is 1: (1 to 2), preferably 1:1.
  • Cobblestones also have the ability to adsorb heavy metals, and cooperate with biochar to synergistically adsorb heavy metals.
  • the fourth layer of filler 16 has a particle size of 0.30-0.50 cm, and the larger particle size filler has a larger gap between the fillers, facilitating fluid flow, collection, and transport to the artificial wetland.
  • the first layer of filler 13, the second layer of filler 14, the third layer of filler 15 and the fourth layer of filler 16 each have a thickness of 500 cm and a total filler thickness of 2000 cm; which is a preferred thickness of each filler layer to effectively implement the layers.
  • the first layer of filler 13 may have a thickness of 100 to 700 cm
  • the second layer of filler 14 may have a thickness of 300 to 700 cm
  • the third layer of filler 15 may have a thickness of 200 to 600 cm
  • the fourth layer of filler 16 may have a thickness of 100 to 600 cm. 600cm.
  • the artificial wetland can achieve the efficient removal of heavy metals in the water in the spring, summer and autumn, but with the decrease of winter temperature, the removal efficiency of heavy metals in the constructed wetland is obviously reduced or even unable to operate. This is mainly due to the partial or large freezing of artificial wetland caused by low temperature in winter. The water body can not absorb heavy metals through multi-layer packing. At the same time, the low temperature causes the microbial enzyme activity in the constructed wetland to decrease, the growth and reproduction are inhibited, and the heavy metal cannot pass through the biofilm. Remove and remove.
  • the inventors conducted a large amount of research, and by constructing a heating device, on the basis of realizing the winter operation of the constructed wetland, the operation difficulty is small and the cost is low.
  • a sandwich wall is constructed on the periphery of the constructed wetland 3, and the artificial wetland is closed by a sandwich wall for 3 weeks.
  • the interior of the sandwich wall is hollow, and the fermented organic matter 12 can be filled therein to be fermented into a constructed wetland in winter. Heating.
  • the fermented organic matter 12 is a crop straw, and while heating the artificial wetland, the nutritional value and palatability of the straw are improved by fermentation, and the fermentation product can be used as a basic feed or feed component of the animal. Used in animal farming.
  • the fermented organic matter 12 is a uniformly mixed fecal, wetland plant, and activated sludge mixture.
  • the wetland plant can be collected from the constructed wetland, the raw material source is convenient, and a large number of microorganisms are added after adding the feces and the activated sludge. There is an efficient process that promotes fermentation.
  • the height of the fermented organic matter 12 is slightly higher than the height of the second layer of filler 14 in the constructed wetland, not exceeding the height of the first layer of filler 13.
  • the height in this range can ensure the concentrated transfer of heat into the constructed wetland 3, and the heat will not be directly transferred to the air while increasing the amount of organic matter 12 produced by the fermentation due to the height exceeding the first layer of filler 13;
  • the amount of heat-producing organic matter 12 is low and the heat supply is insufficient to reduce the removal efficiency of heavy metals.
  • the top of the sandwich wall is open or sealed.
  • the top of the sandwich wall is sealed, and an exhaust pipe is opened at the top of the sandwich wall, and the exhaust pipe is connected to the water tank to allow hot air in the sandwich wall to pass into the water tank, and the water body in the water tank is transferred to the artificial wetland 3, that is, The artificial wetland 3 is supplied with heat by heating the water in the water tank, which effectively utilizes the heat entrained in the fermentation-generated gas.
  • the top of the sandwich wall is covered by a wetland plant such as reed covering 0.1-0.2 m thick to achieve the effect of heat preservation; the wetland plant is convenient to take, and does not need to be closed by construction, and can be changed at the top open or closed state at any time. ,easy to use.
  • a wetland plant such as reed covering 0.1-0.2 m thick to achieve the effect of heat preservation; the wetland plant is convenient to take, and does not need to be closed by construction, and can be changed at the top open or closed state at any time. ,easy to use.
  • the constructed wetland 3 is provided with a water pipe and a water receiving pipe on both sides along the longitudinal direction thereof, the water pipe is located at the top of the packing layer, the water receiving pipe is located at the bottom of the packing layer, and the water collecting pipe passes through the sandwich wall
  • the water body outputs the constructed wetland 3.
  • the water outlet of the water collection pipe is higher than the height of the packing layer in the artificial wetland 3.
  • the water When the constructed wetland is operated in winter, the water is supplied from the water outlet of the water receiving pipe, and when the water pipe is about 1 m, the water is stopped from entering the water pipe. At this time, the outer layer of the wetland 3 is formed with an ice layer of 0.4-0.6 m and an insulating layer of the air layer. (The height of the fermented organic matter 12 is set so that the ice layer does not melt); when the water is treated by the water pipe to be treated, the water body will not freeze, and the water body temperature is maintained, which is beneficial to the life activity of the microorganism.
  • the water outlet is higher than the height of the filler layer of the constructed wetland, and the length of the water collecting pipe passing through the sandwich wall can be increased, the temperature of the water passing through the water collecting pipe is increased, and it is not easy to freeze; and when the water is fed through the water collecting pipe, the water inlet is Highly conducive to water flowing into the constructed wetland 3 .
  • the PVC pipe and the water collecting pipe are all made of PVC (polyvinyl chloride) pipe, the PVC material is hard, stable to organic acid, inorganic acid, alkali and salt, and has long service life in water treatment environment, and is suitable for artificial wetland 3 .
  • the water pipe and the water receiving pipe are DN100mm-DN120mm PVC pipe (DN refers to the nominal diameter); the water pipe is uniformly distributed with water, one hole is laid every 10-20cm, the hole diameter is 1-3cm; the water receiving pipe is along the artificial wetland 3 In the longitudinal direction, a water receiving hole is arranged corresponding to the middle section packing, and a hole is arranged every 5-10 cm, and the hole diameter is 1-3 cm.
  • the position of the water receiving hole in the water receiving pipe is used to receive water flowing through the long path in the packing, and the collected heavy metal in the water is largely removed.
  • the above-mentioned pipe diameter, hole density and pore size of the water pipe and the water pipe can realize the smooth circulation and conversion of the water body.
  • the installation of the sandwich wall, the water distribution pipe, the water receiving pipe and the water outlet can effectively ensure the effective operation of the constructed wetland in winter, and the water can be continuously treated.
  • the multi-layered filler of the constructed wetland 3 can carry out layer adsorption on heavy metals, suspended solids and organic matter, and the functional biochar in the first layer of filler 13 can degrade the long carbon chain organic matter by photocatalysis, thereby reducing Organic pollution of farmland.
  • nitrogen and phosphorus are essential growth elements of plants, the growth of plants requires an appropriate amount of phosphate and nitrogen fertilizers. In the phosphorus and nitrogen fertilizers, nitrogen is absorbed by plants in the form of acid ions, but the excess fertilizer applied to the soil is only partially Seasonal crops are absorbed and utilized, and the rest are fixed by the soil, forming a large amount of acid deposits, causing soil compaction.
  • the inventors have conducted extensive research to determine that aerobic zone (first, second and third layer filler zones) and anaerobic zone (fourth layer of filler zone 16) are disposed in the constructed wetland 3, by placing phosphorus accumulating bacteria and Denitrifying bacteria further effectively solve the problem of excessive nitrogen and phosphorus.
  • a polar high polymer polyaniline film is filled between the third layer filler 15 and the fourth layer filler 16.
  • the polar polymer polyaniline film has the unique function of water-tightness and gas-tightness, allowing water and microbial flow between the third layer of filler 15 and the fourth layer of filler 16 to achieve and maintain the oxygen deficiency or anoxia of the fourth layer of filler 16. Oxygen environment.
  • the phosphorus-concentrating bacteria are placed in the third layer of the filler 15 to reduce the phosphorus content of the water to be purified.
  • the polyphosphate bacteria are selected from one or more of the group consisting of Acinetobacter, Aeromonas, and pseudomonas, preferably Pseudomonas pseudomonas alcaligenes.
  • polyphosphate bacteria Under aerobic conditions, polyphosphate bacteria oxidize ⁇ -hydroxybutyric acid (PHB) stored in cells with free oxygen as an electron acceptor, and use the energy generated by the reaction to excessively take up phosphate from the water to synthesize high-energy substance adenosine triphosphate (ATP). ), some of which supply bacterial synthesis and life-sustaining activities, and some of which synthesize polyphosphates to accumulate in bacterial cells.
  • PHB ⁇ -hydroxybutyric acid
  • ATP adenosine triphosphate
  • polyphosphate bacteria produce ATP while decomposing polyphosphate in the body, and polyphosphate bacteria release phosphorus under anaerobic conditions, and the amount of aerobic phosphorus is greater than that of anaerobic phosphorus release. The release can effectively control the phosphorus content in water.
  • the fourth layer of filler 16 is in an anoxic or anaerobic environment, and an anaerobic denitrifying bacteria, preferably a heterotrophic anaerobic denitrifying bacterium, is added to the fourth layer of filler 16.
  • Denitrifying bacteria can gradually convert NO 3 - to NO 2 - , NO, N 2 O and N 2 , and deviate from the water system to achieve the purpose of denitrification.
  • the addition of a set amount of denitrifying bacteria in the present invention can further promote the efficiency of nitrogen removal in water.
  • the fourth layer of filler 16 is further doped with a polyphosphate bacteria, and the phosphorus accumulating bacteria release phosphorus under anaerobic conditions, and the phosphorus release under the condition can promote the third layer filler. Better phosphorus accumulation under aerobic conditions in the 15 area. The setting and isolation of the anaerobic environment ensure the life activities of anaerobic denitrifying bacteria and polyphosphate bacteria in this interval.
  • a plurality of air guiding tubes 17 are longitudinally inserted in the artificial wetland 3, and a vent hole is arranged in the wall of the air guiding tube 17, and the air guiding tube 17 is inserted into the region of the first layer of filler 13 to the third layer of filler 15
  • the gas in the packing layer is exchanged with the outside of the packing layer; the oxygen-containing gas can also be introduced into the region of the first layer of the packing 13 to the third layer of the packing 15 through the air guiding tube 17, which is beneficial to the living activities of the aerobic bacteria.
  • polyphosphate bacteria and denitrifying bacteria are introduced into the constructed wetland 3.
  • the growth of microorganisms requires a carbon source, and in particular, a short-chain carbon source is more convenient for the absorption and utilization of microorganisms.
  • a short-chain carbon source is more convenient for the absorption and utilization of microorganisms.
  • there is less short-chain carbon in the water body so that the growth and reproduction of microorganisms placed in the constructed wetland 3 are inevitably affected.
  • the prevention and control system of the present invention further comprises an ablation sedimentation tank 1 and a nano-aeration tank 2 for supplying short-chain carbon organic substances to the constructed wetland 3, wherein the ablation sedimentation tank 1 and the nano-aeration tank 2 are sequentially connected with the artificial wetland 3 ;
  • the ablation sedimentation tank 1 is provided with aquatic plants such as duckweed, algae and water to be treated, acidifying and digesting the aquatic plants, and transferring the supernatant to the nano-aeration tank 2, which can be salvaged and purified.
  • aquatic plants such as duckweed, algae and water to be treated, acidifying and digesting the aquatic plants, and transferring the supernatant to the nano-aeration tank 2, which can be salvaged and purified.
  • the nano-aeration tank 2 receives the supernatant of the ablation sedimentation tank 1, degrades the organic matter in the supernatant, degrades the long-chain organic matter into a short-chain organic substance, and transmits the degraded supernatant to the constructed wetland 3, Providing a short carbon chain carbon source for microorganisms in the constructed wetland 3;
  • the artificial wetland 3 receives the supernatant liquid and the water body to be treated which are transported by the nano-aeration tank 2, and mixes and removes the pollutants in the artificial wetland.
  • the ablation sedimentation tank 1 obtains an internal temperature through the temperature sensing probe 5 in the temperature control device 4; preferably, the ablation sedimentation tank 1 is a sandwiched container device, and a heat transfer medium is passed through the interlayer, and the temperature is passed through the interlayer.
  • the temperature sensing probe 5 in the control device 4 measures the temperature of the heat transfer medium to control the temperature in the ablation sedimentation tank 1.
  • the bottom of the ablation sedimentation tank 1 is provided with a sludge discharge hole 7. Since the aquatic plant is degraded by the water body to be treated, the sediment in the water body is inevitably brought into the ablation sedimentation tank 1, and duckweed or algae are used. Aquatic plants, as raw materials for the growth of nutrients in bacteria, inevitably produce waste residue, and the arrangement of the sludge discharge holes 7 facilitates the discharge of sediments and waste residues.
  • the ablation sedimentation tank 1 is further provided with a mixer 8 to allow the duckweed or algae to be pulverized, thereby accelerating the acidification decomposition process.
  • the supernatant COD outputted in the ablation sedimentation tank 1 is controlled to be higher than 200 mg/L. At this time, it is considered that the degree of decomposition of duckweed and algae in the ablation sedimentation tank 1 is good.
  • an aeration disk 10 is disposed in the lower portion of the nano-aeration tank 2, and an oxygen-containing fluid is introduced into the nano-aeration tank 2 through the aeration disk 10. Further, the oxygen-containing fluid that is introduced is nano-bubble water.
  • the nanobubble water is water or an aqueous solution containing fine bubbles of a size of 100 to 500 nm, and the dissolved oxygen amount thereof is 10 to 25 mg/L.
  • the bubble in the nanobubble water and the large specific surface area Due to the small size of the bubble in the nanobubble water and the large specific surface area, it can exhibit characteristics different from ordinary bubbles. For example, due to the small volume, the residence time is long in the device, and after slowly rising, the zeta potential increases and the specific surface area increases (ordinary During the rising of the bubble, the volume increases and the specific surface area decreases; while the nanobubble is affected by the surface tension, the internal gas generates a self-pressurizing effect, and during the ascending process, the specific surface area increases), and the collapse occurs to generate active oxygen radicals, such as hydroxyl groups. Free radicals, which efficiently degrade the long carbon chain organic matter in the water; and the high temperature generated by the collapse is also beneficial to the degradation of long carbon chain organic matter.
  • the aperture on the aeration disk 10 is a nano-aperture, that is, the aeration disk 10 is a nano-aeration disk, and the arrangement of the nano-aeration disk can further ensure the oxygen entering the nano-aeration tank 2 Nano-sized bubbles.
  • the aeration disk 10 is in communication with the nano-aerator 11 through a line, and the nano-aerator 11 supplies an aeration fluid to the aeration disk 10.
  • the bottom of the nano-aeration tank 2 is provided with a secondary sludge discharge hole 9 to further remove the sludge brought by the water body to avoid clogging the pipeline when it is transferred to the artificial wetland 3.
  • microorganisms are added to the nano-aeration tank 2, the microorganism is Stenotrophomonas sp., and Stenotrophomonas sp. is a genus of Stenotrophomonas.
  • Stenotrophomonas has unique biochemical activity and metabolic properties, which can decompose refractory and high-residue organic pesticides.
  • the bacteria in Stenotrophomonas sp. can use long carbon chain organics as a carbon source for growth, so their addition can promote the degradation of long carbon chain organic matter.
  • the nano-aeration tank 2 can realize the effective degradation of the long carbon chain organic matter, so that the average molecular weight of the organic matter in the effluent of the aeration tank 2 is lower than 308.24 Da, preferably lower than 254.50 Da.
  • Another object of the present invention is to provide a method for controlling heavy metals in an extremely water-deficient farmland irrigation process, by which the heavy metal content in the water introduced into the farmland is effectively controlled.
  • the water to be treated in addition to the setting of the ablation sedimentation tank 1, the nano-aeration tank 2 and the artificial wetland 3, the water to be treated may be pretreated, and the pretreatment is to add denitrifying bacteria to the water body.
  • the pretreatment is to add denitrifying bacteria to the water body.
  • it is a solid aerobic denitrifying bacteria such as Alicaligenes faecalis or Thiosphaera pantotropha.
  • the concentration of solid denitrifying bacteria in the water body is 5-10 billion pieces/g, and it can be inoculated only once when water is used for irrigation.
  • the addition of denitrifying bacteria, especially aerobic denitrifying bacteria, will inevitably further purify the treated water (biofilm flocculation and denitrification of heavy metals).
  • the wetland plant 6 since the wetland plant 6 is planted in the constructed wetland 3, it has an extremely excellent enrichment effect on heavy metals, and thus the functional biochar can be prepared by preparing the functional biochar through the wetland plant 6. Used as a filler for artificial wetlands.
  • the functional biochar is cultured in a high-content heavy metal culture solution by containing a heavy metal enrichment function of wetland plants 6 (such as canna and reed), wherein the culture solution contains copper chloride, zinc chloride, and nickel chloride.
  • a heavy metal enrichment function of wetland plants 6 such as canna and reed
  • the culture solution contains copper chloride, zinc chloride, and nickel chloride.
  • the preparation of the functional biochar comprises the following steps:
  • Step 1) crushing the plant body, performing carbonization to obtain activated carbon
  • Step 2) the activated carbon is activated to obtain activated carbon after activation
  • Step 3 the activated carbon is subjected to reduction treatment to obtain functional biochar.
  • step 1) the whole plant body is broken into 3-5 mm length as needed.
  • the heating vessel such as a tubular muffle furnace
  • the heating vessel is filled with argon gas to make it inert, and the temperature in the heating vessel is raised to a set temperature, and the broken plant particles are placed in a tubular muffle furnace to maintain the set temperature.
  • the biomass was carbonized at a reduced temperature from 20 ° C to 20 ° C in 200 min; wherein the set temperature was 900-1600 ° C.
  • step 2) the activated carbon is washed with distilled water until the water is cleaned to the cleaning standard. Adding 30-50% by weight of zinc chloride to the washed activated carbon to the liquid level higher than the activated carbon, stirring, microwave irradiation for a set time, soaking at 25 ° C overnight, that is, activation. The activated carbon is washed to neutrality, dried, and ready for use.
  • the activation causes the bio-oil produced by carbonization in step 1) to be separated from the internal pores of the activated carbon, preventing the bio-oil from clogging the internal pores of the activated carbon, and reducing the adsorption and photocatalytic effects.
  • 300W-700W microwave radiation is used for 20-30 minutes.
  • the activated carbon is dried, and the sodium borohydride solution is added dropwise to reduce the metal ions in the activated carbon to a low-valent state, such as reducing the ferrous ions to zero-valent iron.
  • the dropwise addition is simultaneously shaken with an oscillator at 100 to 140 rpm to promote the progress of the activation reaction.
  • the concentration of the sodium borohydride solution is from 10 mmol/L to 30 mmol/L.
  • the activated carbon After washing the activated carbon with distilled water, it is dried. After cooling to room temperature, the activated carbon after reduction is filled, sealed and placed in an oven, heated at 180-680 ° C for 10 to 60 minutes, and cooled to room temperature.
  • Functional biochar also known as in situ self-reducing supported activated carbon.
  • plants continuously absorb heavy metals into the body, and the plant biomass that absorbs heavy metals is burned into activated carbon.
  • the heavy metals are not bonded to the carbon structure, but are embedded in the plant carbon fiber.
  • the joint structure is incomparably stable, and the heavy metal in the biochar
  • the load is far more than the existing load mode.
  • the surface ash tar is removed, the metal ions are exposed, and the sodium borohydride is reduced to become a heavy metal-loaded activated carbon, which not only has the activated carbon itself regulating urban hydraulic power and increasing the soil. Fertilizer efficiency, nutrient retention and improved microbial habitat performance, with capacitive and catalytic functions.
  • the heavy metal prevention and control system shown in Fig. 1 is set, and the system is used to control the heavy metal in the water body, and the ablation sedimentation tank, the nano-aeration tank and the artificial wetland connected in sequence are arranged, and the water body to be treated is introduced into the ablation sedimentation tank and
  • the algae after acidification digestion, transport the supernatant (COD higher than 200mg/L) to the nano-aeration tank, the nano-aeration tank is filled with nano-bubble water of dissolved oxygen 10 ⁇ 25mg/L, dissolved oxygen in the nano-aeration tank
  • the amount is kept at 4-6 mg/L, and further organic matter degradation treatment is carried out in an aerobic environment of the nano-aeration tank; the aqueous supernatant is treated into the artificial wetland after being treated by the nano-aeration tank.
  • the first layer of filler at 0-500cm is a mixed filler of soil and functional biochar.
  • the mixing ratio is 3:7, the particle size of the filler is 0.10-0.30cm, and the wetland plant canna is planted on it.
  • the second layer of filler at 500-1000cm is mixed filler of soil, natural zeolite and limestone, the mixing ratio is 1:2:0.5, the particle size of the filler is 0.08-0.1cm; the third layer is added at 1000-1500cm.
  • the third layer of filler is fly ash molecular sieve (Henan Mingze Environmental Technology Co., Ltd., 13X molecular sieve), Floris diatomaceous earth and biochar mixed filler, mixing ratio of 1:3:1, filler
  • the particle size is 0.05-0.08cm; the fourth layer is added with anaerobic denitrifying bacteria and the polyphosphate bacteria pseudomona alcaligenes, and the fourth layer is mixed with pebbles and biochar, the mixing ratio is 1:1, the filler
  • the particle size is 0.30-0.50cm; the polar polymer polyaniline film is filled between the third layer filler and the fourth layer filler (according to "Wang Hui. Electrochemical synthesis of polyaniline film photoelectric properties" [J]. Xi'an Traffic University Journal, 1999, (08): 107-108 "synthesized”).
  • the heavy metal prevention and control system has been set in the same manner as in the first embodiment, and the difference is as shown in Table 1 below.
  • Example number Difference from Embodiment 1 (proportional order is the same as Embodiment 1)
  • Example 2 The first layer of filler is soil
  • Example 3 The proportion of filler in the first layer of filler is 1:1
  • Example 4 The first layer of filler has a particle size of 0.01 to 0.08 cm.
  • Example 5 The first layer of filler has a particle size of 5 to 30 mm.
  • Example 6 The second layer of filler is the original proportion of soil and limestone
  • Example 7 The second layer of filler is the original proportion of soil and natural zeolite
  • Example 8 The proportion of filler in the second layer of packing is 1:1:2
  • Example 9 The second layer of filler has a particle size of 0.01-0.05 cm
  • Example 10 The second layer of filler has a particle size of 1 to 10 mm.
  • Example 11 The third layer of filler is the original proportion of fly ash molecular sieve and biochar
  • the third layer of filler is the original proportion of fly ash molecular sieve and Flory diatomaceous earth
  • Example 13 The proportion of filler in the third layer of packing is 1:1:1
  • Example 14 The third layer of filler has a particle size of 0.005-0.03cm
  • Example 15 The fourth layer of filler is pebbles
  • Example 16 The fourth layer of filler has a particle size of 0.001 to 0.30 cm
  • Example 17 Phosphorus-free bacteria are not placed in the third and fourth layers of filler
  • Example 18 No anaerobic denitrifying bacteria are placed in the fourth layer of filler
  • the evaluation water was collected from the water in Qingshuihe (Baoding City), and Pb(NO 3 ) 2 , Zn(NO 3 ) 2 , Na 3 PO 4 and NaNO 3 were added to the water to make the concentration of Pb in the water 1.56 mg/L, Zn.
  • the concentration is 3.48mg / L
  • the total P content is 8.36mg / L
  • the total N content is 23.30mg / L
  • COD Cr is 242mg / L
  • the pH 7.22
  • the water to be treated is passed into the constructed wetland for treatment, into The water rate was 2.5 L/min
  • the water output rate was 2.5 L/min
  • the treatment time was 12 h.
  • the effluent quality was measured after 12 h.
  • the decrease of the proportion of functional biochar in the first layer of filler mainly affects the reduction of heavy metals and COD values; while the size of the filler becomes smaller, which is beneficial to the adsorption of heavy metals, which may affect the entry of air into the water and reduce the microbial desorption.
  • Phosphorus and denitrification capacity the size of the filler becomes larger, which promotes dephosphorization and denitrification of microorganisms, and decreases the content of phosphorus and nitrogen; however, it also has certain adverse effects on the adsorption of heavy metals.
  • the decrease of the proportion of natural zeolite mainly affects the adsorption and fixation of heavy metals, so that the content of heavy metals in the system is higher after treatment; the decrease of the proportion of limestone makes the pH adjustment in the system be affected, and the dephosphorization and denitrification efficiency of microorganisms Lowering, the total nitrogen and total phosphorus content in the water is higher; while the decrease of the particle size of the filler can significantly enhance the adsorption of heavy metals, but the regulation of COD and total nitrogen and total phosphorus is unfavorable due to the obstruction of gas circulation.
  • Flori diatomite is beneficial to the presence of microorganisms, and promotes dephosphorization and denitrification of microorganisms. With the decrease of the proportion, the dephosphorization and denitrification effect is reduced; and the biochar is excellent in adsorption performance. After removal, it has a certain influence on the level of heavy metals; and the decrease of the particle size of the filler can significantly enhance the adsorption of heavy metals.
  • activated carbon has higher heavy metal adsorption than pebbles. Therefore, replacing the activated carbon with pebbles will slightly increase the level of heavy metals.
  • the decrease of the particle size of the filler enhances the adsorption performance, but the accumulation is tight, which is not conducive to microorganisms. Dephosphorization and denitrification activities, so the total phosphorus and total nitrogen levels increased slightly with the decrease of the particle size of the fourth layer of filler.
  • the anaerobic denitrifying bacteria and the polyphosphate bacteria have the functions of denitrification and dephosphorization respectively. After the two bacteria are not added to the water, the total nitrogen and total phosphorus in the water body are obviously improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Water Treatment By Sorption (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Cultivation Of Plants (AREA)

Abstract

本发明公开了一种重金属防控系统以及采用其的重金属防控方法,该系统包括人工湿地(3),人工湿地(3)中铺设有多层填料,通过使水体流经各层填料进行重金属脱除。优选在人工湿地(3)外围建造夹层墙体,通过向其中装填发酵产热的有机物(12)可在冬季通过发酵为人工湿地(3)供热;夹层墙体的建造难度极低,且发酵物料廉价易得,为行之有效的解决人工湿地冬季运行困难的方法。本发明系统可常年不间断处理灌溉用水,有效实现重金属吸附有效避免重金属积累危害人类健康,可维护农田良好状况,促进农业的持续健康发展。

Description

一种重金属防控系统以及采用其的重金属防控方法 技术领域
本发明涉及水资源循环利用领域,特别涉及一种极度缺水农田灌溉过程中重金属防控系统以及采用其的重金属防控方法。
背景技术
水资源短缺已经成为制约中国社会经济发展的重要因素之一。农业专家认为,在未来25年当中,农业用水,尤其是灌溉用水必须增加15%到20%,才能维持逐渐增多的世界人口的粮食安全,并且减少饥荒和农村贫穷的现象。由于水资源的短缺,一般直接由水源中抽取未经预处理的水引入农田,这种做法虽然操作简单,引水量大,但水源受到污染时会直接对引水的农田造成污染。农田是植物生长的重要载体,农田土壤的健康状态如何直接决定了食品安全与绿色程度的水平高低。农田土壤如果受到污染,人们赖以生活的“米袋子”、“菜篮子”必然会受到严重影响。
农田土壤重金属含量是否超标或者造成污染,直接关系到农产品质量安全、人类和动物的健康。有效地防控农田土壤重金属污染,无疑是耕地土壤质量的内容,也是一个重要的评价指标。对于极度缺水地区灌溉水质的把控是当今农业和环保业的主导问题,而重金属含量在灌溉水质的各项指标中至关重要,极度缺水农田灌溉过程重金属防控技术是现今食品安全的必要手段。
发明内容
为了解决上述问题,本发明人进行了锐意研究,提供了一种极度缺水农田灌溉过程中重金属防控方法和系统,有效解决灌溉水重金属超标问题,同时不受冬季对水处理效果降低的负面影响,可全年进行水的不间断处理,从而降低重金属在植物中严重富集,维护农田良好状况,保证农业安全和人体安全,从而完成本发明。
本发明的目的在于提供以下技术方案:
(1)一种重金属防控系统,该系统包括人工湿地3,人工湿地3中铺设有多层填料,通过使水体流经各层填料进行重金属脱除,该系统适用于极度缺水农田灌溉过程中的重金属防控;
优选地,人工湿地3由上至下铺设有四层填料:
第一层填料13为土壤和功能型生物炭的混合填料,混合比例为3:(6~8),优选填料粒径为0.10-0.30cm;
第二层填料14为土壤、天然沸石、石灰石的混合填料,混合比例为1:(2~3):(0.5~1),优选填料粒径为0.08-0.1cm;
第三层填料15为粉煤灰分子筛、弗洛里硅藻土和生物炭的混合填料,混合比例为 1:(3~4):(1~1.5),优选填料粒径为0.05-0.08cm;
第四层填料16为鹅卵石、生物炭的混合填料,混合比例为1:(1~2),优选填料粒径为0.30-0.50cm;
更优选地,在人工湿地3外围建造夹层墙体,用夹层墙体封闭人工湿地3四周,夹层墙体的内部中空,通过向其中装填发酵产热的有机物12采用发酵产热方式为人工湿地供热。
(2)一种重金属防控方法,通过上述(1)所述防控系统进行重金属防控。
根据本发明提供的一种重金属防控系统以及采用其的重金属防控方法,具有以下
有益效果:
(1)本发明中的人工湿地为多层填料铺设而成,且对每层填料中的填料种类、用量配比、粒径大小和填充高度进行特定的选择,可在人工湿地中有效实现重金属吸附、悬浮物滤除、有机物降解和脱磷脱氮。
(2)本发明中的人工湿地中种植特定的湿地植物,有利于重金属的富集,且得到的富集有重金属的湿地植物可再利用,制备得到具有光催化作用和进行电化学氧化还原反应的功能型生物炭。
(3)人工湿地中投加反硝化细菌和聚磷菌,不仅可对水体中氮磷进行脱除,同时微生物在填料表面产生生物膜,还可通过生物膜絮集降低重金属量;而人工湿地中导气管的插入,利于空气进入人工湿地好氧层,促进好氧微生物繁殖。
(4)人工湿地外围建造夹层墙体,通过向其中装填发酵产热的有机物可在冬季通过发酵为人工湿地供热;夹层墙体的建造难度极低,且发酵物料廉价易得,为行之有效的解决人工湿地冬季运行困难的方法。
(5)人工湿地中布水管、收水管和出水口的设置,便于冬季保温层(冰层-空气层)的形成,且布水管、收水管管径、孔密度和孔径可实现水体的顺利流通和转换。
(6)本发明中防控系统还包括消融沉淀池和纳米曝气池,通过消融沉淀池的酸化、降解和纳米曝气池的氧化降解将引入的水生植物转化为短碳链碳源,在人工湿地处理后水质满足灌溉要求的前提下,为人工湿地中微生物提供碳源,促进繁殖。
附图说明
图1示出本发明中一种优选实施方式中重金属防控系统结构示意图。
附图标号说明:
1-消融沉淀池;
2-纳米曝气池;
3-人工湿地;
4-温控装置;
5-感温探头;
6-湿地植物
7-排泥孔;
8-搅拌机;
9-二次排泥孔;
10-曝气盘;
11-纳米曝气机;
12-发酵产热有机物;
13-第一层填料;
14-第二层填料;
15-第三层填料;
16-第四层填料;
17-导气管。
具体实施方式
下面通过具体实施方式对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
针对我国极度缺水农田灌溉过程中水源污染影响农田的问题,本发明人进行了大量研究,提供了一种极度缺水农田灌溉过程中重金属防控系统,如图1所示,以有效控制引入农田中水的重金属含量。
本发明中,该防控系统包括人工湿地3,人工湿地3中铺设有多层填料,通过使接收的水体流经各层填料脱除重金属。
在本发明中,人工湿地3由上至下铺设有三层至六层填料,每层填料可选自土壤、生物炭、功能型生物炭、矿石颗粒如砾石、天然沸石、火山石、方解石、石灰石、鹅卵石等、硅藻土或弗洛里硅藻土中的一种或多种。
在一种优选的实施方式中,人工湿地3由上至下铺设有四层填料:
第一层填料13为土壤和功能型生物炭的混合填料;
第二层填料14为土壤、天然沸石、石灰石的混合填料;
第三层填料15为粉煤灰分子筛、弗洛里硅藻土和生物炭的混合填料;
第四层填料16为鹅卵石、生物炭的混合填料。
在本发明中,0-500cm处铺设有第一层填料13,第一层填料13为土壤和功能型生物炭的混合填料,混合比例为3:(6~8),优选为3:7。
其中,生物炭是在缺氧的条件下生物质经高温、脱油后得到的高碳含量的材料。 功能型生物炭则是负载有过渡金属的生物炭。功能型生物炭具有生物炭的以下特点:
(1)微观结构上,具有多孔性特征,大孔隙可以保证与功能型生物炭配合使用的土壤的通气性和保水能力,同时也为微生物提供了生存和繁殖的场所,从而提高微生物的活性和繁衍速度;微、小孔隙影响生物炭对分子的吸附和转移,生物炭的孔隙结构能减小水分的渗透速度,增强了土壤对移动性很强和容易淋失的养分元素的吸附能力;因而其多孔结构利于第一层填料上湿地植物的生长;
(2)生物炭的多孔性能决定其具有较大的表面积,对区域水中的有机物可进行大量吸附,利于对有机物的吸附后降解,降低水中长碳链有机物含量;
(3)生物炭表面具有羧基﹑酚羟基﹑羰基含氧官能团,上述官能团所产生的表面负电荷使得生物炭具有较高的阳离子交换量,可有效吸附水中重金属离子;
(4)功能型生物炭除了具有生物炭所具有的上述特点外,由于其负载有过渡金属(如镍、铜、锌、铁),可利用过渡金属的光催化作用,在氧气存在下将吸附在功能型生物炭表面的水分子或氢氧根氧化生成活性氧,如羟基自由基·OH,使其对有机污染物进行降解、脱硫(S)、脱氯(Cl),降低有机污染物毒性及臭味;同时,负载的过渡金属通过电化学氧化还原反应和催化作用将溶解的金属离子还原为不溶性的金属原子,镀覆于功能型生物炭介质的表面,实现重金属去除。
本发明中,在第一层填料13中以功能型生物炭为主,辅助加入土壤,土壤的加入有利于第一层填料13上植物的种植。经过试验发现,土壤和功能型生物炭以3:(6~8)混合时,由于活性炭对土壤的固定,可实现植物的良好生长,且以功能型生物炭为主的填料,可吸附大量有机物,通过过渡金属离子的光催化作用有效实现对有机物的降解,重金属去除效果同样显著。若土壤和功能型生物炭的比例低于3:8,土壤比例降低,由于缺少土壤带来的必要养分,植物生长态势受影响;若土壤和功能型生物炭的比例高于3:6,降低了光催化或电化学氧化还原反应的效果,多孔性结构减少,对有机物降解和重金属吸附量下降。
在一种优选地实施方式中,第一层填料13特别是功能型生物炭的粒径为0.10-0.30cm,在此粒径范围内,功能型生物炭对土壤起支撑作用,便于空气进入填料层,植物根部与空气得到有效接触,利于种植在第一层填料13上的湿地植物的生长。如果功能型生物炭的粒径小于0.10cm,对空气进入填料层不利,缺少氧气不利于植物生长和有机污染物降解;如果功能型生物炭的粒径大于0.30cm,大粒径的颗粒由于较小的表面积,不利于光催化和电化学氧化还原反应效率。
在一种优选地实施方式中,第一层填料13上种植湿地植物6,如美人蕉和芦苇。值得关注的是,美人蕉和芦苇对重金属表现出极高的富集能力,两种植物在体内积累的重金属是普通水生植物的100倍以上,但其正常生长不受影响。通过收获植物可将重金属从水体中彻底除去,因而,选用此两种湿地生植物进行种植,为行之有效的降低重金属的生态方法。同时,湿地植物可以在富营养化的水体中正常生长,表现出很 好的水体净化效果,通过植物的吸收、挥发、根滤、降解、稳定等作用,可有效降低水中悬浮物。
本发明中,人工湿地3内的功能型生物炭是使用富集重金属生物质制备。在一种实施方式中,功能型生物炭可通过人工湿地3中种植的湿地植物6(美人蕉和芦苇)经碳化、活化除油、还原、干燥得到。
在另一种实施方式中,将具有重金属富集功能的湿地植物6在高含量重金属培养液中培养,其中培养液中含有氯化铜、氯化锌和氯化镍,其摩尔比为氯化铜:氯化锌:氯化镍=32:9:9。得到富集铜、锌和镍的湿地植物6,经900-1600℃碳化、氯化锌活化除油、硼氢化钠还原、干燥得到功能型生物炭。
植物在生长过程中源源不断吸收重金属至体内,吸收重金属的植物生物质烧制为活性炭,重金属不是粘结在碳结构上,而是镶嵌在植物碳纤维内,其联结结构无比稳固,生物炭内重金属负载量远远超过现有负载方式,具备更高的电容和光催化能力。
在本发明中,500-1000cm处铺设第二层填料14,第二层填料14为土壤、天然沸石、石灰石的混合填料,混合比例为1:(2~3):(0.5~1),优选为1:2:0.5。
沸石是含水多孔硅铝酸盐的总称,其结晶构造主要由(SiO)四面体组成。Al 3+和Si 4+作为构架离子和氧原子一起构成了沸石分子的整体框架,部分Si 4+为Al 3+取代,导致负电荷过剩,同时沸石构架中有一定孔径的空腔和孔道,决定了其具有吸附和离子交换的性质,其对氨氮的吸附和重金属的吸附固定相较于其他矿石原料有更大的优势。
石灰石同样存在较多的孔隙结构,因而可对重金属起到有效的吸附,同时石灰石可对水体的酸碱性起到有效的调节作用,对上层填料中植物生长起到至关重要的作用。若人工湿地中投加微生物以同时去除其他污染物如氮磷含量等,石灰石还对水体中微生物的繁殖起到至关重要的作用(聚磷菌多在pH5~pH9下繁殖,硝化细菌和反硝化细菌多在pH6.0~pH8.5下繁殖)。
土壤的存在同样为人工湿地中湿地植物6提供支撑;同时,研究表明,由于土壤中存在黏粒矿物、氧化物和土壤有机质等,土壤对重金属有富集倾向,使得其对重金属离子的吸附能力不容小觑。
经过大量的实验研究,本发明中选择第二层填料14中土壤、天然沸石、石灰石的混合比例为1:(2~3):(0.5~1),在此范围内,可实现大部分重金属的吸附固定和对水体的酸碱度调节。如果土壤比例增加,由于其吸附重金属吸附效果弱于天然沸石和石灰石,降低了重金属吸附能力;反之,可能影响植物生长的营养储备。如果天然沸石增加,对重金属的吸附增强,相应的土壤或石灰石量下降,同样对植物生长或水体酸碱度调控造成威胁。同样地,石灰石比重的增加对水体酸碱度调控有利,但相应降低了其他组分的效力;反之,水体酸碱度的调控不能迅速有效进行,进而影响植物生长或微生物的功能活动。
在进一步优选地实施方式中,第二层的填料的粒径为0.08-0.1cm。此粒径范围的选 择考虑到气体流通和总金属吸附两者的协调;粒径低于0.08cm时,虽然促进了对重金属的吸附,但由于堆积密度增大,空气流通降低,水体中氧气含量小,不利于植物生长,且若水体中存在有益的好氧微生物(如聚磷菌),利于好氧微生物的繁殖和对重金属等的去除;粒径高于0.1cm时,促进了空气流通,但相应的重金属吸附能力较0.08cm时有明显的降低。
在本发明中,1000-1500cm处铺设第三层填料15,第三层填料15为粉煤灰分子筛、弗洛里硅藻土和生物炭的混合填料,混合比例为1:(3~4):(1~1.5),优选为1:3:1。
本发明中以粉煤灰分子筛、弗洛里硅藻土和生物炭此三种具有多孔隙的填料在人工湿地深层进行重金属吸附。三者的共同特点是孔隙度高,便于重金属的吸附和水体中微生物的挂膜生长。其中,采用粉煤灰作为分子筛是基于粉煤灰的主要成分与分子筛的主要成分相近,且粉煤灰目前是作为废弃物处理,由于其包含Cr、Hg、As和Pb等重金属离子,对空气、水源、土壤等都造成了污染,将其作为分子筛,利用其阳离子交换特性和孔道结构,可实现重金属的吸附,且使得废弃污染源可得到有效利用。
生物炭由于大表面积,同样具有优异的重金属吸附能力。
弗洛里硅藻土相较于普通硅藻土孔容大、比表面积大、重金属和有机污染物的吸附性更强。特别地,弗洛里硅藻土具有深度效应,即在深层过滤时,分离过程只发生在介质的“内部”,部分穿过弗洛里硅藻土表面的比较小的杂质粒子,被硅藻土内部曲折的微孔构造和内部更细小的孔隙所阻留,当微粒撞到通道的壁上时,才有可能脱离液流;弗洛里硅藻土的这种性质有利于细菌微生物在此区域的较长时间滞留,便于微生物的投放。若在水体中投加微生物,通过微生物挂膜产生大量的生物絮凝剂,将重金属充分絮集。
由于粉煤灰分子筛、弗洛里硅藻土和生物炭对不同的重金属具有不同的吸附优势,设定粉煤灰分子筛、弗洛里硅藻土和生物炭的混合比例为1:(3~4):(1~1.5),在提高各重金属离子吸附的同时,可通过微生物投放产生生物膜促进重金属去除。
在一种优选的实施方式中,粉煤灰分子筛、弗洛里硅藻土和生物炭的粒径为0.05-0.08cm。由于上述三种填料孔隙度高,在此小粒径范围内,有利于对重金属离子的吸附,且便于微生物的挂膜生长。
在本发明中,1500-2000cm处铺设第四层填料16,第四层填料16为鹅卵石、生物炭的混合填料,混合比例为1:(1~2),优选为1:1。鹅卵石同样具有重金属吸附能力,与生物炭配合,对重金属进行协同吸附作用。优选地,第四层填料16的粒径为0.30-0.50cm,较大粒径的填料使得填料间具有较大的间隙,便于流体流动、汇集,传输至人工湿地外。
上述第一层填料13、第二层填料14、第三层填料15和第四层填料16的厚度均为500cm,填料总厚度为2000cm;其为各填料层的优选厚度,以有效实施各层的功能。第一层填料13的厚度可以为100~700cm,第二层填料14的厚度可以为300~700cm, 第三层填料15的厚度可以为200~600cm,第四层填料16的厚度可以为100~600cm。
我们还发现,人工湿地在春夏秋三季可实现水体中重金属的高效脱除,但是随冬季气温降低,人工湿地重金属去除效率明显降低甚至不能运行。这主要是因为冬季低温造成人工湿地内局部或大部冰冻,水体无法经过多层填料实现对重金属的吸附;同时低温造成人工湿地内微生物酶活性降低,生长繁衍受抑制,重金属无法通过生物膜的絮集而脱除。
基于上述问题,本发明人进行了大量的研究,通过构建供暖装置,在实现人工湿地冬季运行的基础上,保证操作难度小,成本低廉。
本发明中,在人工湿地3外围建造夹层墙体,以夹层墙体封闭人工湿地3四周,夹层墙体的内部中空,可以通过向其中装填发酵产热的有机物12,在冬季通过发酵为人工湿地供热。
在一种实施方式中,所述发酵产热的有机物12为农作物秸秆,在为人工湿地供热的同时,通过发酵提高秸秆的营养价值和适口性,发酵产物可作为动物的基础饲料或饲料成分用于动物养殖。或者,所述发酵产热的有机物12为混合均匀的粪便、湿地植物、活性污泥混合物,湿地植物可采集自人工湿地内,原料来源方便,且加入粪便和活性污泥后大量多种类微生物的存在可促进发酵的高效进行。
在一种优选的实施方式中,发酵产热的有机物12的高度略高于人工湿地内第二层填料14的高度,不超过第一层填料13的高度。此范围内的高度可保证热量集中传输至人工湿地3内,不会由于高度超过第一层填料13,在增加发酵产热的有机物12用量的同时热量直接传递至空气中;也不会由于发酵产热的有机物12用量低而热量供给不足降低重金属脱除效率。
本发明中,夹层墙体顶部开放或密闭。优选地,夹层墙体顶部密闭,在夹层墙体顶部开设有排气管,将排气管连接至水槽使夹层墙体中热气通入至水槽,并传输该水槽中水体至人工湿地3,即通过加热水槽中水的方式向人工湿地3提供热量,该方式有效利用了发酵产生气体中夹带的热量。更优选地,夹层墙体顶部通过覆盖0.1-0.2米厚的湿地植物如芦苇以达到保温的效果;湿地植物取材方便,且不需通过建筑施工实施封闭,可随时进行顶部开放或密闭状态的转变,操作简单。
在本发明中,人工湿地3在沿其长度方向的两侧设置有布水管和收水管,布水管位于填料层中的顶部,收水管位于填料层中的底部,收水管穿过夹层墙体将水体输出人工湿地3。
在一种优选的实施方式中,收水管的出水口高于人工湿地3中填料层高度。
在冬季运行人工湿地时,由收水管的出水口进水,漫过布水管1m左右时,停止收水管进水,此时人工湿地3填料层外部形成0.4-0.6m冰层和空气层保温层(发酵产热的有机物12高度设置使冰层不融化);再由布水管输入待处理水体进行水处理时不会造成水体结冰,且利于维持水体温度,利于微生物的生命活动。
可知,出水口高于人工湿地的填料层高度,可增大穿过夹层墙体的收水管长度,经过收水管出水的温度提高,不易结冰;且当通过收水管进水时,此进水口高度利于水流入人工湿地3。
本发明中,布水管和收水管均采用PVC(聚氯乙烯)管,PVC材质坚硬,对有机酸、无机酸、碱和盐均稳定,在水处理环境中使用寿命长,适用于人工湿地3。优选地,布水管和收水管为DN100mm-DN120mm PVC管(DN指公称直径);布水管均匀布水,每隔10-20cm布一个孔,孔直径为1-3cm;收水管在沿人工湿地3的长度方向上对应中间段填料处设有收水孔,每隔5-10cm布一个孔,孔直径为1-3cm。收水管中收水孔位置的设定,用于接收在填料中流经路径较长的水,收集到的水中重金属得到较大程度去除。同时,上述管径、孔密度和孔径的布水管和收水管,可实现水体的顺利流通和转换。
本发明中通过夹层墙体、布水管、收水管和出水口的设置,有效保证冬季人工湿地的有效运行,水可得到不间断处理。
我们知道,除重金属污染外,生活污水的排放会造成水体中氮、磷含量和悬浮物的增加,工业排放造成难降解有机污染物的增加,这些污染物随水流入农田,可造成农田板结、恶臭并影响农作物生长。
本发明中,人工湿地3的多层填料可对重金属、悬浮物和有机物进行层层吸附,且第一层填料13中功能型生物炭可通过光催化作用对长碳链有机物进行降解,降低了有机物对农田的污染。虽然氮磷是植物的必须生长元素,植物的生长需要适当量的磷肥和氮肥,磷肥中磷和氮肥中氮以酸根离子形式被植物吸收,但是施入土壤中的肥料过量,则只有部分被当季作物吸收利用,其余被土壤固定,形成大量酸盐沉积,造成土壤板结。因而,本发明人经过大量研究,确定了在人工湿地3中设置好氧区(第一、二和三层填料区)和厌氧区(第四层填料16区),通过投放聚磷菌和反硝化细菌,进一步有效解决氮、磷过量的问题。
本发明中,第三层填料15与第四层填料16之间填充极性高聚物聚苯胺膜。极性高聚物聚苯胺膜具有透水不透气的独特功能,可使得第三层填料15和第四层填料16间进行水和微生物的流通,实现和保持第四层填料16的缺氧或厌氧环境。
第三层填料15区域内投放聚磷菌以其聚磷能力降低待净化水中磷含量。所述聚磷菌选自不动杆菌属(Acinetobacter)、气单胞菌属(Aeromonas)、假单胞菌属(pseudomonas)中一种或多种,优选为假单胞菌pseudomona alcaligenes。
在需氧条件下,聚磷菌以游离氧为电子受体氧化细胞内贮存的β-羟丁酸(PHB),利用该反应产生的能量,过量地从水中摄取磷酸盐合成高能物质三磷酸腺苷(ATP),其中一部分供给细菌合成和维持生命活动,一部分则合成聚磷酸盐蓄积在细菌细胞内。在厌氧条件下,聚磷菌在分解体内聚磷酸盐的同时产生ATP,聚磷菌在厌氧条件下释放出磷,其好氧聚磷量大于厌氧释磷量,故通过聚磷菌的投放可有效控制水中磷含量。
第四层填料16为缺氧或厌氧环境,在第四层填料16中投加有厌氧反硝化细菌,优选为异养厌氧反硝化细菌。反硝化细菌能够使NO 3 -逐步转变为NO 2 -、NO、N 2O和N 2,脱离水体体系,从而达到脱氮的目的。水体如流域水中本身存在一定的硝化细菌和反硝化细菌,本发明中加入设定量的反硝化细菌,可进一步促进水中脱氮效率。
在一种优选的实施方式中,所述第四层填料16中还投加有聚磷菌,聚磷菌在厌氧条件下释磷,此条件下的释磷可促进其在第三层填料15区域的好氧条件下更好的聚磷。厌氧环境的设置和隔离,保证了厌氧反硝化细菌和聚磷菌在此区间的生命活动。
在一种优选的实施方式中,人工湿地3中纵向插有多根导气管17,导气管17壁上设置通气孔,该导气管17插入第一层填料13区域至第三层填料15区域范围内,使填料层内与填料层外进行气体交换;还可通过该导气管17向第一层填料13区域至第三层填料15区域内通入含氧气体,利于好氧细菌的生命活动。
在本发明中,人工湿地3中引入了聚磷菌和反硝化细菌,微生物的生长需要碳源,尤其是短链碳源更便于微生物的吸收利用。然而,水体中短链碳较少,这样,投放入人工湿地3的微生物的生长繁殖必然受影响。
因而,本发明中防控系统还包括向人工湿地3中提供短链碳有机物的消融沉淀池1和纳米曝气池2,其中,消融沉淀池1和纳米曝气池2与人工湿地3依次连接;
所述消融沉淀池1中加有浮萍、水藻等水生植物和待处理水体,对水生植物进行酸化消解,并传输上清液至纳米曝气池2中,所述水生植物可以打捞自待净化水体中;
纳米曝气池2接收消融沉淀池1的上清液,对上清液中的有机物进行降解,将长碳链有机物降解为短碳链有机物,并传输降解后的上清液至人工湿地3,为人工湿地3中微生物提供短碳链碳源;
此时,人工湿地3接收纳米曝气池2传输的上清液和待处理水体,混合后进行人工湿地内污染物脱除。
在一种优选的实施方式中,消融沉淀池1通过温控装置4中的感温探头5获得内部温度;优选消融沉淀池1为带夹层的容器设备,夹层中通有传热介质,通过温控装置4中的感温探头5测定传热介质的温度以控制消融沉淀池1中的温度。
本发明中,消融沉淀池1的底部设置排泥孔7,由于采用待处理水体对水生植物进行降解,水体中的沉积物不可避免的带入消融沉淀池1中,且采用浮萍或水藻等水生植物作为细菌生长养分的原材料必然产生废渣,排泥孔7的设置便于沉积物和废渣的排出。
在一种优选的实施方式中,消融沉淀池1内还装有搅拌机8,使得浮萍或水藻等得以粉碎,加快酸化分解过程。优选地,控制消融沉淀池1中输出的上清液COD高于200mg/L,此时,认为消融沉淀池1中浮萍和水藻的分解程度较好。
本发明中,在纳米曝气池2下部设置曝气盘10,通过曝气盘10向纳米曝气池2中通 入含氧气流体。进一步的,通入的含氧气流体为纳米气泡水。所述纳米气泡水为含有100~500nm尺寸的微小气泡的水或水溶液,其溶氧量达到10~25mg/L。
由于纳米气泡水中气泡尺寸小,比表面积大,能表现出有别于普通气泡的特性,如由于体积很小在装置中停留时间长,缓慢上升后,zeta电位升高,比表面积增大(普通气泡上升过程中体积增大,比表面积减小;而纳米气泡由于表面张力影响,内部气体产生自增压效果,上升过程中,比表面积增大),发生溃灭产生活性氧自由基,如羟基自由基,从而对水中的长碳链有机物进行高效降解;而溃灭瞬间产生的高温同样利于长碳链有机物的降解。
在一种优选的实施方式中,曝气盘10上的孔径为纳米孔径,即曝气盘10为纳米曝气盘,纳米曝气盘的设置可进一步保障进入纳米曝气池2中的氧气为纳米尺寸的气泡。曝气盘10通过管路与纳米曝气机11连通,所述纳米曝气机11向曝气盘10提供含氧气流体。
在一种优选的实施方式中,纳米曝气池2的底部设置二次排泥孔9,以进一步去除水体中带来的淤泥,避免传输至人工湿地3时堵塞管道。
在一种优选的实施方式中,纳米曝气池2内投加有微生物,所述微生物为Stenotrophomonas sp.,Stenotrophomonas sp.为寡养单胞菌属。寡养单胞菌具有独特的生物化学活性、代谢特性,可对难降解、高残留的有机农药进行分解。Stenotrophomonas sp.中细菌可以以长碳链有机物作为生长的碳源,因而其加入可促进对长碳链有机物的降解。
本发明中,纳米曝气池2可实现长碳链有机物的有效降解,使得曝气池2出水中有机物平均分子量低于308.24Da,优选低于254.50Da。
本发明的另一目的在于提供一种极度缺水农田灌溉过程中重金属控制方法,通过上述防控系统以有效控制引入农田的水中的重金属含量。
在一种优选的实施方式中,除了消融沉淀池1、纳米曝气池2和人工湿地3的设置以外,还可对待处理水体进行预处理,所述预处理为向水体中投加反硝化细菌,优选为固态好氧反硝化细菌,如Alicaligenes faecalis或Thiosphaera pantotropha等。
优选地,水体中固态反硝化细菌浓度为50-100亿个/g,仅在采用水灌溉时接种一次即可。反硝化细菌特别是好氧反硝化细菌的加入必然会对待处理的水体起到进一步的净化作用(重金属的生物膜絮集和脱氮)。
本发明中,由于在人工湿地3中种植了湿地植物6,其对重金属有极为优异的富集效果,因而可通过该湿地植物6进行功能型生物炭的制备,制得的功能型生物炭可作为填料回用于人工湿地。
或者,功能型生物炭通过将具有重金属富集功能的湿地植物6(如美人蕉和芦苇)在高含量重金属培养液中培养,其中培养液中含有氯化铜、氯化锌和氯化镍,其摩尔 比为氯化铜:氯化锌:氯化镍=32:9:9,得到富集铜、锌和镍的湿地植物6。
本发明的一种优选的实施方式中,功能型生物炭的制备包括以下步骤:
步骤1),破碎植物体,进行碳化,得到活性炭;
步骤2),将活性炭进行活化处理,得到活化后活性炭;
步骤3),将活化后活性炭进行还原处理,得到功能型生物炭。
在步骤1)中,根据需要将整株植物体破碎成3-5mm长度。
在加热容器如管式马弗炉内充满氩气,使之成惰性环境,升高加热容器内温度至设定温度,将破碎的植物体颗粒放置入管式马弗炉中,保持设定温度120min,200min内从设定温度降低至20℃,将生物质碳化;其中,所述设定温度为900-1600℃。
在步骤2)中,用蒸馏水对活性炭进行清洗,至洗后水清亮为清洗标准。向洗后的活性炭中加入30-50%重量浓度的氯化锌至液面高过活性炭,搅拌,微波辐射设定时间后,25℃浸泡过夜,即为活化。对活化后活性炭进行清洗至中性,干燥,备用。
活化使得步骤1)碳化生成的生物油脱离活性炭内部孔隙,防止生物油堵塞活性炭内部孔隙,降低吸附和光催化效果。
活化过程中,采用300W-700W微波辐射20~30min。
在步骤3)中,将活化后活性炭烘干,在低温的环境下滴加硼氢化钠溶液还原活性炭中金属离子至低价态,如还原亚铁离子为零价铁。优选地,滴加的同时用振荡器以100~140转/分振摇,促进活化反应的进行。硼氢化钠溶液的浓度为10mmol/L~30mmol/L。
用蒸馏水清洗活性炭后烘干,待冷却至室温后将还原处理后的活性炭,装满容器并密封,置于烘箱中,在180~680℃温度下加热10~60分钟,冷却至室温即制得功能型生物炭(也即原位自还原负载型活性炭)。
植物在生长过程中源源不断吸收重金属至体内,吸收重金属的植物生物质烧制为活性炭,重金属不是粘结在碳结构上,而是镶嵌在植物碳纤维内,其联结结构无比稳固,生物炭内重金属负载量远远超过现有负载方式,生物炭活化后,其表面灰分焦油被清除,金属离子暴露出来,经过硼氢化钠还原,成为负载重金属的活性炭,不但具备活性炭本身调控城市水力、为土壤增加肥效、养分固持以及改善微生物生境的性能,同时具备电容、催化的功能。
实施例
实施例1
设置如图1所示的重金属防控系统,并利用该系统进行水体中重金属控制,设置依次连接的消融沉淀池、纳米曝气池和人工湿地,向消融沉淀池中通入待处理的水体和水藻,经酸化消解后传输上清液(COD高于200mg/L)至纳米曝气池,纳米曝气池中通有溶氧10~25mg/L的纳米气泡水,纳米曝气池中溶氧量保持在4~6mg/L,在纳米曝 气池的好氧环境下进行进一步有机物降解处理;将经纳米曝气池处理后水上清液引入人工湿地。
人工湿地中设置四层填料,0-500cm处第一层填料为土壤和功能型生物炭的混合填料,混合比例为3:7,填料粒径为0.10-0.30cm,其上种植有湿地植物美人蕉和芦苇;500-1000cm处第二层填料为土壤、天然沸石、石灰石的混合填料,混合比例为1:2:0.5,填料粒径为0.08-0.1cm;1000-1500cm处第三层投加聚磷菌pseudomona alcaligenes,第三层填料为粉煤灰分子筛(河南铭泽环保科技有限公司,13X分子筛)、弗洛里硅藻土和生物炭的混合填料,混合比例为1:3:1,填料粒径为0.05-0.08cm;1500-2000cm处第四层投加厌氧反硝化细菌及聚磷菌pseudomona alcaligenes,第四层填料为鹅卵石、生物炭的混合填料,混合比例为1:1,填料粒径为0.30-0.50cm;第三层填料与第四层填料之间填充极性高聚物聚苯胺膜(根据“王辉.电化学合成聚苯胺薄膜光电性能的研究[J].西安交通大学学报,1999,(08):107-108”合成得到)。
实施例2~18
已与实施例1相同的方式设置重金属防控系统,区别如下表1所示。
表1
实施例编号 与实施例1的区别(比例顺序同实施例1)
实施例2 第一层填料为土壤
实施例3 第一层填料中填料比例为1:1
实施例4 第一层填料粒径为0.01~0.08cm
实施例5 第一层填料粒径为5~30mm
实施例6 第二层填料为原比例的土壤和石灰石
实施例7 第二层填料为原比例的土壤和天然沸石
实施例8 第二层填料中填料比例为1:1:2
实施例9 第二层填料粒径为0.01-0.05cm
实施例10 第二层填料粒径为1~10mm
实施例11 第三层填料为原比例的粉煤灰分子筛和生物炭
实施例12 第三层填料为原比例的粉煤灰分子筛和弗洛里硅藻土
实施例13 第三层填料中填料比例为1:1:1
实施例14 第三层填料粒径为0.005-0.03cm
实施例15 第四层填料为鹅卵石
实施例16 第四层填料粒径0.001~0.30cm
实施例17 第三、四层填料区域不投放聚磷菌
实施例18 第四层填料区域不投放厌氧反硝化细菌
实验例
通过测定处理前后水中重金属、COD Cr、总磷、总氮含量、pH值,对实施例1~18中污染物控制方法的效果进行评价,结果如表2所示。
评价用水采集自清水河(保定市)中水,向水中加入Pb(NO 3) 2、Zn(NO 3) 2、Na 3PO 4、NaNO 3,使得水中Pb的浓度为1.56mg/L,Zn的浓度为3.48mg/L,总P含量为8.36mg/L,总N含量为23.30mg/L,COD Cr为242mg/L,pH为7.22;将待处理水通入人工湿地中进行处理,进水速率为2.5L/min,出水速率为2.5L/min,处理时间为12h,测定12h后出水水质。
表2
Figure PCTCN2018120542-appb-000001
Figure PCTCN2018120542-appb-000002
由表2可知,第一层填料中功能型生物炭比例的下降,主要影响对重金属和COD值的降低;而填料尺寸变小,利于重金属的吸附,可能因为影响空气进入水中,降低了微生物脱磷、脱氮能力;填料尺寸变大,促进微生物脱磷、脱氮,磷、氮含量下降;但对重金属的吸附也产生了一定的不利影响。
第二层填料中,天然沸石比例的下降,主要影响对重金属的吸附和固定,使得处理后体系中重金属含量较高;石灰石比例的下降使得体系中pH调节受到影响,微生物的脱磷脱氮效率降低,使得水中总氮、总磷含量较高;而填料粒径的下降,可明显提升的对重金属的吸附,但是由于气体流通受阻,对COD和总氮、总磷的调控不利。
第三层填料中,弗洛里硅藻土有利于微生物存在,且促进微生物脱磷、脱氮,随着其比例的下降,脱磷脱氮效果有所下降;而生物炭由于优异的吸附性能,去除后对重金属水平有一定影响;而填料粒径的下降,可明显提升的对重金属的吸附。
第四层填料中,活性炭相较于鹅卵石具有更高的重金属吸附性,因而用鹅卵石取代活性炭会使重金属水平略有升高;填料粒径的降低增强了吸附性能,但是堆积紧密,不利于微生物脱磷脱氮活动,因而随第四层填料粒径下降,总磷、总氮水平略有升高。
厌氧反硝化细菌和聚磷菌分别有脱氮和脱磷功能,向水中不投加该两种细菌后,水体中总氮、总磷量分别有明显的提升。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”“前”“后”等指示的方位或位置关系为基于本发明工作状态下的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上结合具体实施方式和/或范例性实例以及附图对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。

Claims (10)

  1. 一种重金属防控系统,该系统包括人工湿地(3),人工湿地(3)中铺设有多层填料,通过使水体流经各层填料进行重金属脱除,该系统适用于极度缺水农田灌溉过程中的重金属防控。
  2. 根据权利要求1所述的系统,其特征在于,人工湿地(3)由上至下铺设有四层填料:
    第一层填料(13)为土壤和功能型生物炭的混合填料,混合重量比例为3:(6~8),优选填料粒径为0.10-0.30cm;
    第二层填料(14)为土壤、天然沸石、石灰石的混合填料,混合重量比例为1:(2~3):(0.5~1),优选填料粒径为0.08-0.1cm;
    第三层填料(15)为粉煤灰分子筛、弗洛里硅藻土和生物炭的混合填料,混合重量比例为1:(3~4):(1~1.5),优选填料粒径为0.05-0.08cm;
    第四层填料(16)为鹅卵石、生物炭的混合填料,混合重量比例为1:(1~2),优选填料粒径为0.30-0.50cm。
  3. 根据权利要求2所述的系统,其特征在于,在人工湿地(3)外围建造夹层墙体,用夹层墙体封闭人工湿地(3)四周,夹层墙体的内部中空,通过向其中装填发酵产热的有机物(12)采用发酵产热方式为人工湿地供热。
  4. 根据权利要求3所述的系统,其特征在于,夹层墙体中发酵产热的有机物(12)的高度略高于人工湿地内第二层填料(14)的高度,不超过第一层填料(13)的高度。
  5. 根据权利要求3所述的系统,其特征在于,夹层墙体顶部开放或密闭;
    优选地,夹层墙体顶部密闭,在夹层墙体顶部开设排气管,将排气管连接至水槽使夹层墙体中热气通入至水槽,并传输该水槽中水体至人工湿地(3),通过加热水槽中水的方式向人工湿地(3)提供热量。
  6. 根据权利要求1所述的系统,其特征在于,人工湿地(3)在沿其长度方向的两侧设置有布水管和收水管,布水管位于填料层中的顶部,收水管位于填料层中的底部,收水管穿过夹层墙体将水体输出人工湿地(3);
    优选地,布水管和收水管均采用PVC(聚氯乙烯)管;
    更优选地,布水管和收水管为DN100mm-DN120mm PVC管;布水管均匀布水,每 隔10-20cm布一个孔,孔直径为1-3cm;收水管在沿人工湿地(3)的长度方向上对应中间段填料处设有收水孔,每隔5-10cm布一个收水孔,收水孔直径为1-3cm。
  7. 根据权利要求6所述的系统,其特征在于,收水管的出水口高于人工湿地(3)中填料层高度;
    在冬季运行人工湿地(3)时,由收水管的出水口进水,漫过布水管约1m高度时,停止收水管进水,使人工湿地(3)填料层外部形成0.4-0.6m冰层和空气层保温层;再由布水管输入待处理水体,进行水处理。
  8. 根据权利要求2所述的系统,其特征在于,第三层填料(15)与第四层填料(16)之间填充极性高聚物聚苯胺膜,使第四层填料(16)成缺氧或厌氧环境;
    第三层填料(15)区域内投放聚磷菌,用于水体脱磷;
    第四层填料(16)区域内投放聚磷菌和反硝化菌,用于水体脱磷和脱氮;
    人工湿地(3)中纵向插有多根导气管(17),导气管(17)壁上设置通气孔,该导气管(17)插入第一层填料(13)区域至第三层填料(15)区域范围内,使填料层内与填料层外进行气体交换。
  9. 根据权利要求2所述的系统,其特征在于,第一层填料(13)中功能型生物炭以富集有重金属的湿地植物制备得到,制备方法包括以下步骤:
    步骤1),在高含量重金属培养液中培养湿地植物,培养液中含有氯化铜、氯化锌和氯化镍,其摩尔比为氯化铜:氯化锌:氯化镍=32:9:9,得到富集铜、锌和镍的湿地植物;
    步骤2),破碎植物体,在惰性环境下于900-1600℃保持120min,200min内降低温度至20℃,进行碳化,得到活性炭;
    步骤3),用蒸馏水对活性炭进行清洗,至洗后水清亮,向洗后的活性炭中加入30-50%重量浓度的氯化锌至液面高过活性炭,搅拌,300W-700W微波辐射20~30min,25℃浸泡过夜,得到活化后活性炭;
    步骤4),将活化后活性炭烘干,在低温的环境下滴加10mmol/L~30mmol/L硼氢化钠溶液还原活性炭中金属离子至低价态,蒸馏水清洗活性炭后烘干,得到功能型生物炭。
  10. 一种重金属防控方法,通过权利要求1至9之一所述防控系统进行重金属防控。
PCT/CN2018/120542 2017-12-13 2018-12-12 一种重金属防控系统以及采用其的重金属防控方法 WO2019114744A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/770,773 US11174182B2 (en) 2017-12-13 2018-12-12 System for preventing and controlling heavy metals and method for preventing and controlling heavy metals using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711330935.6 2017-12-13
CN201711330935.6A CN108033566B (zh) 2017-12-13 2017-12-13 一种重金属防控系统以及采用其的重金属防控方法

Publications (1)

Publication Number Publication Date
WO2019114744A1 true WO2019114744A1 (zh) 2019-06-20

Family

ID=62102763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120542 WO2019114744A1 (zh) 2017-12-13 2018-12-12 一种重金属防控系统以及采用其的重金属防控方法

Country Status (3)

Country Link
US (1) US11174182B2 (zh)
CN (1) CN108033566B (zh)
WO (1) WO2019114744A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330175A (zh) * 2019-07-08 2019-10-15 广西碧清源环保投资有限公司 多级渗滤系统及渗滤方法
CN110655276A (zh) * 2019-10-17 2020-01-07 中国电建集团华东勘测设计研究院有限公司 溢流式光催化型人工湿地污水处理装置及方法
CN115818823A (zh) * 2022-11-22 2023-03-21 北京建筑大学 污水修复装置及应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107892441B (zh) * 2017-12-13 2018-11-23 中国科学院地理科学与资源研究所 金属矿山水资源循环利用中污染物控制装置及控制方法
CN108033566B (zh) * 2017-12-13 2018-12-07 中国科学院地理科学与资源研究所 一种重金属防控系统以及采用其的重金属防控方法
CN108059241B (zh) * 2017-12-13 2019-01-18 中国科学院地理科学与资源研究所 一种极度缺水地区流域水灌溉农田污染物控制方法与装置
CN109179662B (zh) * 2018-08-15 2021-10-29 桂林理工大学 一种复合人工湿地基质及铁锰污水净化方法
CN109133350A (zh) * 2018-08-29 2019-01-04 华中农业大学 基于人工湿地的污水处理系统、污水处理方法及运转方法
CN111018120A (zh) * 2019-11-27 2020-04-17 广州市龙运博环保技术有限公司 一种多孔生态填料系统在重金属和/或氮磷污染养殖废水修复中的应用
CN113185068B (zh) * 2021-06-10 2022-08-09 桂林理工大学 一种复合式有机废水处理系统
CN113652233A (zh) * 2021-09-22 2021-11-16 河南省地质矿产勘查开发局第一地质矿产调查院 一种方解石钝化剂及其应用
CN113735390A (zh) * 2021-09-29 2021-12-03 深圳艾萨科技有限公司 一种小区生活污水处理设备及其工艺
CN114349277A (zh) * 2021-12-31 2022-04-15 新疆水处理工程技术研究中心有限公司 一种农村生活污水处理方法及处理装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481194A (zh) * 2008-04-26 2009-07-15 张政权 集镇生活污水处理工艺
CN102531185A (zh) * 2012-01-09 2012-07-04 中国环境科学研究院 一种设有冬季保温增温装置的可变流人工湿地
CN102531179A (zh) * 2011-11-18 2012-07-04 北京东溪柳环保工程有限公司 一种稳定高效的人工湿地污水处理系统及方法
CN102633362A (zh) * 2012-01-09 2012-08-15 中国环境科学研究院 一种低温连续运行的人工湿地污水处理装置
US8252182B1 (en) * 2008-09-11 2012-08-28 University Of Central Florida Research Foundation, Inc. Subsurface upflow wetland system for nutrient and pathogen removal in wastewater treatment systems
CN104118940A (zh) * 2014-01-10 2014-10-29 中国科学院城市环境研究所 一种针对矿山废水重金属污染修复的红壤基人工湿地装置
CN104150692A (zh) * 2014-07-25 2014-11-19 张列宇 一种垃圾渗滤液深度处理装置和方法
CN205011567U (zh) * 2015-08-13 2016-02-03 惠州市兴牧环保科技有限公司 一种生活污水生物湿地处理系统
CN105540854A (zh) * 2015-12-28 2016-05-04 岭南新科生态科技研究院(北京)有限公司 一种强化型潜流垂直流人工湿地处理系统
CN205501053U (zh) * 2016-03-11 2016-08-24 深圳文科园林股份有限公司 一种可移动组合的矿山废水处理装置
CN106111062A (zh) * 2016-07-30 2016-11-16 华南理工大学 一种基于人工湿地系统的旱伞竹生物碳制备方法及其应用
CN107892442A (zh) * 2017-12-13 2018-04-10 中国科学院地理科学与资源研究所 一种流域水资源利用污染物防控方法与装置
CN107892441A (zh) * 2017-12-13 2018-04-10 中国科学院地理科学与资源研究所 金属矿山水资源循环利用中污染物控制装置及控制方法
CN108033566A (zh) * 2017-12-13 2018-05-15 中国科学院地理科学与资源研究所 一种重金属防控系统以及采用其的重金属防控方法
CN108059241A (zh) * 2017-12-13 2018-05-22 中国科学院地理科学与资源研究所 一种极度缺水地区流域水灌溉农田污染物控制方法与装置
CN108059242A (zh) * 2017-12-13 2018-05-22 中国科学院地理科学与资源研究所 一种极度缺水农业活动区中水回用污染物防控方法及装置
CN108083560A (zh) * 2017-12-13 2018-05-29 中国科学院地理科学与资源研究所 一种农业活动区流域水资源循环利用污染物控制方法与装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652743B2 (en) * 1997-06-23 2003-11-25 North American Wetland Engineering, Inc. System and method for removing pollutants from water
AUPR012400A0 (en) * 2000-09-13 2000-10-05 Rootzone Australia Pty Ltd Polluted water treatment system
US7037423B2 (en) * 2002-08-15 2006-05-02 Isg Technologies Inc. Method for removal and detoxication of dissolved metals in a rainwater discharge
CA2677765C (en) * 2006-02-09 2012-10-09 Alcoa Inc. Methods, apparatus and systems for polishing wastewater utilizing natural media filtration
CN104743674B (zh) * 2015-03-24 2017-07-07 苏州市清泽环境技术有限公司 模块化人工湿地处理装置
CN204569635U (zh) * 2015-04-27 2015-08-19 中国环境科学研究院 一种富营养化湖泊水华快速分离、抑制的装置
CN105967328A (zh) * 2016-06-19 2016-09-28 绍兴文理学院 稻草-生物炭-生物集成的人工湿地处理养殖废水的方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481194A (zh) * 2008-04-26 2009-07-15 张政权 集镇生活污水处理工艺
US8252182B1 (en) * 2008-09-11 2012-08-28 University Of Central Florida Research Foundation, Inc. Subsurface upflow wetland system for nutrient and pathogen removal in wastewater treatment systems
CN102531179A (zh) * 2011-11-18 2012-07-04 北京东溪柳环保工程有限公司 一种稳定高效的人工湿地污水处理系统及方法
CN102531185A (zh) * 2012-01-09 2012-07-04 中国环境科学研究院 一种设有冬季保温增温装置的可变流人工湿地
CN102633362A (zh) * 2012-01-09 2012-08-15 中国环境科学研究院 一种低温连续运行的人工湿地污水处理装置
CN104118940A (zh) * 2014-01-10 2014-10-29 中国科学院城市环境研究所 一种针对矿山废水重金属污染修复的红壤基人工湿地装置
CN104150692A (zh) * 2014-07-25 2014-11-19 张列宇 一种垃圾渗滤液深度处理装置和方法
CN205011567U (zh) * 2015-08-13 2016-02-03 惠州市兴牧环保科技有限公司 一种生活污水生物湿地处理系统
CN105540854A (zh) * 2015-12-28 2016-05-04 岭南新科生态科技研究院(北京)有限公司 一种强化型潜流垂直流人工湿地处理系统
CN205501053U (zh) * 2016-03-11 2016-08-24 深圳文科园林股份有限公司 一种可移动组合的矿山废水处理装置
CN106111062A (zh) * 2016-07-30 2016-11-16 华南理工大学 一种基于人工湿地系统的旱伞竹生物碳制备方法及其应用
CN107892442A (zh) * 2017-12-13 2018-04-10 中国科学院地理科学与资源研究所 一种流域水资源利用污染物防控方法与装置
CN107892441A (zh) * 2017-12-13 2018-04-10 中国科学院地理科学与资源研究所 金属矿山水资源循环利用中污染物控制装置及控制方法
CN108033566A (zh) * 2017-12-13 2018-05-15 中国科学院地理科学与资源研究所 一种重金属防控系统以及采用其的重金属防控方法
CN108059241A (zh) * 2017-12-13 2018-05-22 中国科学院地理科学与资源研究所 一种极度缺水地区流域水灌溉农田污染物控制方法与装置
CN108059242A (zh) * 2017-12-13 2018-05-22 中国科学院地理科学与资源研究所 一种极度缺水农业活动区中水回用污染物防控方法及装置
CN108083560A (zh) * 2017-12-13 2018-05-29 中国科学院地理科学与资源研究所 一种农业活动区流域水资源循环利用污染物控制方法与装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330175A (zh) * 2019-07-08 2019-10-15 广西碧清源环保投资有限公司 多级渗滤系统及渗滤方法
CN110655276A (zh) * 2019-10-17 2020-01-07 中国电建集团华东勘测设计研究院有限公司 溢流式光催化型人工湿地污水处理装置及方法
CN115818823A (zh) * 2022-11-22 2023-03-21 北京建筑大学 污水修复装置及应用

Also Published As

Publication number Publication date
CN108033566A (zh) 2018-05-15
CN108033566B (zh) 2018-12-07
US11174182B2 (en) 2021-11-16
US20200399157A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2019114744A1 (zh) 一种重金属防控系统以及采用其的重金属防控方法
WO2019114743A1 (zh) 金属矿山水资源循环利用中污染物控制装置及控制方法
US11174184B2 (en) Method and device for controlling pollutants in basin water used for irrigating farmland in extremely water-scarce areas
US11352281B2 (en) Method and device for preventing and controlling pollutants in the reuse of reclaimed water in agricultural activity areas with extreme water shortage
WO2019114742A1 (zh) 一种流域水资源利用污染物防控方法与装置
WO2019114745A1 (zh) 一种农业活动区流域水资源循环利用污染物控制方法与装置
WO2013007174A1 (zh) 立体生态除臭除磷脱氮方法及装置和应用
CN108558141B (zh) 低温条件下农村污水生物—生态组合处理系统及处理方法
CN203768124U (zh) 一种用于微污染水处理的生态滤池
CN104787975B (zh) 一种低温季节运行的复合生态水处理系统
CN103951064A (zh) 一种用于微污染水处理的生态滤池
CN205088059U (zh) 一种农村低污染水深度净化系统
Liu et al. Current problems and countermeasures of constructed wetland for wastewater treatment: A review
CN104150599B (zh) 一种陆生植物和微生物结合的生物浮岛
CN210764893U (zh) 一种新型污水处理系统
CN105502801B (zh) 季冻区高速公路服务区组合污水处理系统装置及其方法
CN103880184B (zh) 一种无污泥生物球超净污水处理方法及系统
CN109879536B (zh) 一种农村生活污水净化系统及净化方法
Mao et al. Research on perfermance improvement of constructed wetland wastewater treatment system
KR101177560B1 (ko) 경사판 접촉 바실러스 생물막법을 이용한 오, 폐수의 고도처리방법
CN116354511A (zh) 脱氮除磷湿地系统及其应用
CN110550831A (zh) 一种新型污水处理系统及工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887641

Country of ref document: EP

Kind code of ref document: A1