WO2019114709A1 - 一种纤维增强树脂基复合材料三维打印成形方法 - Google Patents

一种纤维增强树脂基复合材料三维打印成形方法 Download PDF

Info

Publication number
WO2019114709A1
WO2019114709A1 PCT/CN2018/120390 CN2018120390W WO2019114709A1 WO 2019114709 A1 WO2019114709 A1 WO 2019114709A1 CN 2018120390 W CN2018120390 W CN 2018120390W WO 2019114709 A1 WO2019114709 A1 WO 2019114709A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
printing
resin
wire
fibers
Prior art date
Application number
PCT/CN2018/120390
Other languages
English (en)
French (fr)
Inventor
单忠德
范聪泽
战丽
刘丰
Original Assignee
北京机科国创轻量化科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京机科国创轻量化科学研究院有限公司 filed Critical 北京机科国创轻量化科学研究院有限公司
Priority to AU2018383793A priority Critical patent/AU2018383793B2/en
Publication of WO2019114709A1 publication Critical patent/WO2019114709A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to the field of 3D printing (additive manufacturing), and in particular to a three-dimensional printing forming method capable of realizing a continuous fiber and short fiber composite reinforced resin-based composite material.
  • 3D printing (additive manufacturing) technology is a "bottom-up" manufacturing of solid parts using material layer by layer.
  • 3D printing technology combines the existing industrial automation and computer-aided design, and has the advantages of high automation, fast forming speed and high utilization rate of raw materials, which can realize the digitization of design and manufacturing process.
  • all countries in the world are increasing their investment in 3D printing technology, and have developed a variety of 3D printing methods, which are widely used in electronic products, automotive, aerospace, medical, military, art design and other fields.
  • Continuous fiber reinforced composites have high specific strength, fatigue strength, excellent wear resistance and corrosion resistance, and high dimensional stability, and have been widely used in aerospace and automotive manufacturing. Therefore, the use of 3D printing methods to achieve continuous fiber reinforced composite materials has become the research direction of many research institutions.
  • the main application is similar to the FDM (Fused Deposition Modeling) method in which continuous fibers and resin wires are melt-mixed and deposited layer by layer on a printing platform.
  • the molded part produced by the method has excellent mechanical properties in the direction of fiber spreading, and has surpassed the conventional three-dimensional braided and knitted continuous fiber composite parts.
  • the performance in the Z direction (the normal direction of the printing layer) is poor, and there is poor interlaminar shear strength and poor interface performance.
  • the external force tends to cause the layer to fall off or break.
  • the object of the present invention is to solve the above-mentioned shortcomings existing in the prior art, and to provide a composite material forming method capable of realizing continuous fiber and short fiber composite Z-direction reinforcement, and improving interlayer shear strength and interface performance of a molded article, High printing precision and high fiber content of molded parts.
  • the long fiber is cut into short fibers of a predetermined length by using the fiber cutter 1, and is added to the premixer 2 together with a predetermined type of resin, and is drawn into the premixed short fiber resin wire 5 by the wire forming machine 3, For subsequent printing.
  • the plurality of wire feeding mechanisms 4 will premix the premixed short fiber resin wires 5 and the continuous fibers 6 of different short fiber fibers in the impregnation chamber 7 respectively, and fully contact the infiltration so that the resin is wrapped as much as possible in each Filament.
  • a heating mechanism 8 which controls the temperature field of the entire continuous fiber printing system, especially the length of the heating section, enabling rapid melting of the premixed short fiber resin strands 5.
  • a printing nozzle 9 having a special shape is attached below the impregnation chamber 7, and the mixture of continuous fibers and resin can be extruded without damaging the fibers.
  • the above impregnation chamber 7, the heating mechanism 8 and the nozzle 9 are combined and placed on the three-dimensional motion platform 10 to achieve three-dimensional precise movement.
  • the signal acquisition and control section 11 includes a control card 12, a plurality of temperature sensors 13, an image sensor 14, and a computer 15.
  • the three-dimensional model is drawn by the computer 15, and the G code is generated after slicing, and the control card 12 is controlled to control the state of the different mechanisms of the respective printing links, for example, the wire feeding speed, the heating temperature, the head moving speed, and the like.
  • a plurality of temperature sensors 13 collect the temperatures of the printing platform, the heating mechanism 8, and the nozzles 9, and upload them in the computer 15 in real time.
  • the image sensor 14 can monitor the printing effect in real time and upload it to the computer to correct the printing parameters for forming a closed loop system.
  • the short fiber having a continuous fiber cut using the fiber cutter 1 has a size of 2 mm to 50 mm, and may be carbon fiber or glass fiber or organic fiber.
  • the continuous fiber printing system may have a plurality of wire feeding mechanisms 4, respectively, to realize a plurality of premixed short fiber resin wires 5 and continuous fibers of continuous fibers.
  • a plurality of resins mainly refer to PLA (polylactic acid), ABS (acrylonitrile-butadiene-styrene copolymer), PI (polyimide), PEEK (polyether ether ketone), continuous fiber can be a variety of specifications such as 1K, 3K, 6K, 11K carbon fiber or Glass fiber, organic fiber.
  • the invention has the beneficial effects that the invention introduces short fibers into the continuous fiber printing technology, and there are randomly oriented short fibers in the two printing layers 16, and the short fibers are closely combined with the upper and lower layers through the resin, and the plurality of layers are interposed between the layers.
  • the Z-direction reinforcing short fibers 17 are used for pinning.
  • the short fibers are resistant to delamination between the layers.
  • the bonding strength between the single pass and the single pass is greatly increased.
  • the premixed short fiber resin wire 5 contains a fiber having a higher volume fraction, in combination with the continuous fiber added during the deposition process, the fiber content in the molded article can be greatly improved, and more excellent mechanical properties can be obtained.
  • Figure 1 is a schematic view showing the printing of the method of the present invention
  • Figure 2 is a schematic diagram of the Z-direction interlayer bonding strength enhancement of the composite molded part
  • Figure 3 is a schematic diagram showing the bonding strength enhancement between single-pass and single-passage of composite molded parts
  • Figure 4 is a diagram of the type of print nozzle through hole.
  • a long fiber is cut into a short fiber of a predetermined length using a fiber cutter 1, and is added to a premixer 2 together with a resin of a predetermined type, and is drawn into a premixed short fiber resin by a wire forming machine 3.
  • Wire 5 for subsequent printing.
  • the plurality of wire feeding mechanisms 4 will premix the premixed short fiber resin wires 5 and the continuous fibers 6 of different short fiber fibers in the impregnation chamber 7 respectively, and fully contact the infiltration so that the resin is wrapped as much as possible in each Filament.
  • a heating mechanism 8 which controls the temperature field of the entire continuous fiber printing system, especially the length of the heating section, enabling rapid melting of the premixed short fiber resin strands 5.
  • a printing nozzle 9 having a special shape is attached below the impregnation chamber 7, and the mixture of continuous fibers and resin can be extruded without damaging the fibers.
  • the above impregnation chamber 7, the heating mechanism 8 and the nozzle 9 are combined and placed on the three-dimensional motion platform 10 to achieve three-dimensional precise movement.
  • the signal acquisition and control section 11 includes a control card 12, a plurality of temperature sensors 13, an image sensor 14, and a computer 15.
  • the three-dimensional model is drawn by the computer 15, and the G code is generated after slicing, and the control card 12 is controlled to control the state of the different mechanisms of the respective printing links, for example, the wire feeding speed, the heating temperature, the head moving speed, and the like.
  • a plurality of temperature sensors 13 collect the temperatures of the printing platform, the heating mechanism 8, and the nozzles 9, and upload them in the computer 15 in real time.
  • the image sensor 14 can monitor the printing effect in real time and upload it to the computer to correct the printing parameters for forming a closed loop system.
  • the short fibers cut into long fibers using the fiber cutter 1 have a size of 2 mm to 50 mm, and may be carbon fibers or glass fibers or organic fibers.
  • the printing system has a plurality of wire feeding mechanisms 4, which respectively realize a plurality of premixed short fiber resin wires 5 and continuous fibers of continuous fibers.
  • the plurality of resins mainly refer to PLA (polylactic acid) and ABS (acrylonitrile).
  • Butadiene-styrene copolymer), PI (polyimide), PEEK (polyether ether ketone), continuous fiber can be carbon fiber or glass fiber, organic fiber of various specifications such as 1K, 3K, 6K, 11K .
  • the short fibers are tightly bonded to the upper and lower layers through the resin, and have various positional forms between the layers, when the short fibers are lapped
  • the Z-direction reinforcing short fibers 17 serve as a pinning action.
  • the short fibers are resistant to delamination between the layers.
  • an embodiment of the present invention provides a three-dimensional printing forming method for a fiber-reinforced resin-based composite material, comprising: a continuous fiber printing portion, a wire forming portion, a signal collecting and controlling portion 11; and continuous fiber printing.
  • the part comprises a wire feeding mechanism 4, a premixed short fiber resin wire 5, a continuous fiber 6, an impregnation chamber 7, a heating mechanism 8, a nozzle 9, a three-dimensional motion platform 10, and the wire-making part comprises a fiber cutter 1, a premixer 2.
  • the line machine 3 the signal acquisition and control section includes a signal acquisition and control section 11, a control card 12, a temperature sensor 13, an image sensor 14, and a computer 15.
  • the fiber cutter 1 is used for making chopped fibers, and may be carbon fiber or glass fiber or organic fiber.
  • the short fibers are mixed with a predetermined type of resin in the premixer 2, and the short fiber resin strands 5 are premixed by a threading mechanism.
  • the continuous fibers are fed into the short fiber cutter 1 and mechanically cut to form short fibers having a length of 2 mm to 50 mm, and the short fiber size range conforms to a normal distribution.
  • the premixer 2 sufficiently mixes the fixed proportion of the short fibers and the continuous resin particles uniformly to prevent the fiber agglomeration.
  • the mixture material is formed into a uniform resin wire having a size of 1 mm to 3 mm by the wire forming machine 3, and the wire diameter and the fiber content of the formed resin wire can be adjusted according to requirements.
  • the continuous fiber printing part is designed, mainly to realize the wire feeding of the premixed short fiber resin wire 5, the wire feeding of the continuous fiber 6, and the two materials.
  • the impregnation chamber is heated and thoroughly mixed and infiltrated, and continuously printed on the formed three-dimensional motion platform 10 having a heating function, in which there is a short fiber reinforcement between the continuous fiber printing layers and between the single fibers, and is connected together by a resin.
  • a plurality of wire feeding mechanisms 4 can premix the premixed short fiber resin wires 5 and the continuous fibers 6 of different short fiber sizes and contents in the impregnation chamber 7, respectively, and fully contact the infiltration to make the resin Wrap as much as possible on each filament.
  • a heating mechanism 8 which controls the temperature field of the entire continuous fiber printing system, especially the length of the heating section, enabling rapid melting of the premixed short fiber resin strands 5.
  • a printing nozzle 9 having a special shape is attached below the impregnation chamber 7, and the mixture of continuous fibers and resin can be extruded without damaging the fibers.
  • the above impregnation chamber 7, the heating mechanism 8 and the nozzle 9 are combined and placed on the three-dimensional motion platform 10 to achieve three-dimensional precise movement.
  • the signal collecting and controlling portion 11 includes the control card 12, the plurality of temperature sensors 13, the image sensor 14, and the computer 15.
  • the three-dimensional model is drawn by the computer 15, and the G code is generated after slicing, and the control card 12 controls the state of the different mechanisms of the respective printing links.
  • a plurality of temperature sensors 13 collect the temperature of the printing platform, the nozzles, and the heating mechanism and upload them in the computer in real time.
  • the image sensor 14 can monitor the printing effect in real time, upload data to the computer, correct the printing parameters, and form a closed loop system.
  • the three-dimensional motion platform 10 has a heating function to prevent defects such as warpage during printing, and the heating method may be resistance wire heating or laser heating or roll heating.
  • the resistance wire is located inside the molding platform and distributed in a certain way to control the surface of the platform to reach a preset temperature.
  • laser heating or roll heating is employed, the laser or roll preheats the formed layer and then prints the composite on the preheated layer.
  • the through-hole size and shape of the printing nozzle 9 have great flexibility, as shown in FIG. 4, which may be circular, having a diameter of 0.1-2 mm; and may be an elliptical or chamfered rectangle, thereby Spray deposition of a particular shape of resin and fiber mixture is achieved, which also limits the orientation of the staple fibers in a certain dimension.
  • the short fibers are closely combined with the upper and lower layers through the resin, and have a plurality of positional forms between the layers, when the short fibers are lapped on the upper and lower layers continuously.
  • the Z-direction reinforcing short fibers 17 serve as a pinning action.
  • the short fibers are resistant to delamination between the layers.
  • the continuous fiber reinforced composite material includes a continuous fiber and a resin matrix, wherein the resin matrix comprises PLA (polylactic acid), ABS (acrylonitrile-butadiene-styrene copolymer), PI ( A thermoplastic resin made of polyimide) or PEEK (polyetheretherketone), the continuous fibers include carbon fibers, glass fibers or organic fibers, and the continuous fibers may be of various specifications such as 1K, 3K, 6K or 12K.
  • PLA polylactic acid
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PI A thermoplastic resin made of polyimide
  • PEEK polyetheretherketone
  • the continuous fibers include carbon fibers, glass fibers or organic fibers, and the continuous fibers may be of various specifications such as 1K, 3K, 6K or 12K.
  • the short fibers and the resin can be thoroughly mixed in the impregnation chamber 7, and by adjusting the wire feeding speed, mixing in different proportions can be realized, and the fiber volume fraction in the deposited layer can be precisely controlled. Since the premixed short fiber resin wire 5 contains a relatively high volume fraction of fibers, in combination with the continuous fibers 6 added during the deposition process, the fiber content in the molded article can be greatly improved, and more excellent mechanical properties can be obtained.
  • orientations such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” and the like are indicated. Or the positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the invention and the simplification of the description, which are not intended to indicate or imply the indicated device or component. It must be constructed and operated in a specific orientation or in a specific orientation, and thus is not to be construed as limiting the scope of the invention; the orientations “inside and outside” refer to the inside and outside of the contour of the components themselves.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations) and the corresponding description of the space used herein is interpreted accordingly.

Abstract

本发明公开了一种可实现纤维增强树脂基复合材料三维打印成形方法,该方法通过在树脂材料中预混不同含量和规格的短纤维,实现了连续纤维和短纤维复合作用增强的复合材料件的三维打印成形,改善其整体机械性能。该方法中包括连续纤维打印部分、制线部分、信号采集和控制部分。通过制线部分提前将不同规格的短纤维加入到树脂线材中,打印过程中预混短纤维树脂线材5与多种规格的连续纤维6在浸渍腔室7中实现充分混合浸渍,在送丝机构4的控制下实现连续挤出,层层堆积于成型平台10。本方法具有打印精度高、成型件纤维含量高的优点,解决了三维打印连续纤维增强复合材料Z向力学性能差的问题,改善层间结合和单道间结合质量。

Description

一种纤维增强树脂基复合材料三维打印成形方法 技术领域
本发明涉及3D打印(增材制造)领域,具体而言,涉及一种可实现连续纤维、短纤维复合作用增强树脂基复合材料三维打印成形方法。
背景技术
相较于传统的切削加工技术,3D打印(增材制造)技术是一种采用材料逐层累加的“自下而上”的制造实体零件的技术。3D打印技术结合了现有的工业自动化和计算机辅助设计等,具有自动化程度高、成形速度快和原材料利用率高的优点,可实现设计和制造过程的数字化。目前,世界各国均在加大3D打印技术的投入,并研制出多种3D打印方法,在电子产品、汽车、航天航空、医疗、军工、艺术设计等领域得到广泛应用。
连续纤维增强复合材料具有高的比强度、疲劳强度,优异的耐磨性和耐蚀性,以及高的尺寸稳定性,已被广泛应用于航空航天和汽车制造等领域。因此,使用3D打印方法实现连续纤维增强复合材料的成型已成为多家科研机构的研究方向。目前,主要应用类似于FDM(熔融沉积成型)的方法,将连续纤维和树脂丝材熔化混合,并层层沉积于打印平台。该方法制作的成型件在纤维铺展方向的力学性能优异,已超过传统三维编织、针织成型的连续纤维复合件。但是,在Z向(打印层的法线方向)上的性能较差,具有较差的层间剪切强度和较差的界面性能。在成型件的工作过程中,外力作用往往会导致层间脱落或断裂的情况发生。
发明内容
本发明的目的是解决现有技术上存在的上述缺点,提供一种可实现连续纤维、短纤维复合作用Z向增强的复合材料形方法,提高成型件的层间剪切强度和界面性能,具有打印精度高、成型件纤维含量高的特点。
为了达到上述目的,本发明采用如下技术方案:
使用纤维切断器1将长纤维切成预设长度的短纤维,与预设型号的树脂一起加入到预混机2中,通过制线机3将其拉成预混短纤维树脂线材5,用于后续打印。多个送丝机构4将可分别将不同短纤维纤维尺寸和含量的预混短纤维树脂线材5与连续纤维6在浸渍腔室7中预混合,充分接触浸润,使树脂尽可能包裹于每根纤维丝。浸渍腔室7外为加热机构8,其控制整个连续纤维打印系统的温度场,尤其是加热段长度,可实现预混短纤维树脂线材5的快速熔化。浸渍腔室7下方连接具有特殊形状的打印喷嘴9,可在不损坏纤维的情况下使连续纤维和树脂的混合物挤出。以上浸渍腔室7、加热机构8和喷嘴9结合后置于三维运动平台10,可实现三维精确移动。
信号采集和控制部分11包括控制卡12、多个温度传感器13、图像传感器14、计算机15。通过计算机15绘制三维模型、经切片后生成G代码,交由控制卡12控制各个打印环节不同机构的状态,例如,送丝速度、加热温度、喷头移动速度等。多个温度传感器13采集打印平台、加热机构8、喷嘴9的温度并实时上传于计算机15中。图像传感器14可实时监控打印效果,上传于计算机修正打印参数,用于形成闭环系统。
所述的使用纤维切断器1将连续纤维切成的短纤维尺寸为2mm-50mm,可以为碳纤维或玻璃纤维或有机纤维。
所述的连续纤维打印系统可具有多个送丝机构4,分别实现多种预混短纤维树脂线材5和连续纤维的定速送丝,此处,多种树脂主要指PLA(聚乳酸)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、PI(聚酰亚胺)、PEEK(聚醚醚酮),连续纤维可以为多种规格的如1K、3K、6K、11K等碳纤维或玻璃纤维、有机纤维。
本发明的有益效果:本发明创造性的将短纤维引入连续纤维打印技术中,两个打印层16中存在随机取向的短纤维,短纤维通过树脂与上下两层紧密结合,其在层间具有多种位置形态,当短纤维搭接于上下两层连续纤维增强树脂层中时,即为Z向增强短纤维17,起钉扎作用。当外力施加于成型件Z向时,短纤维可抵抗层间脱落。当短纤维搭接于相邻几个成型单道18间时,即为单道间结合增强短纤维20,单道与单道间垂直方向的结合强度大大增加。此外,本发明中,由于预混短纤维树脂线材5中包含较高体积分数的纤维,结合沉积过程中加入的连续纤维,可大大提高成型件中的纤维含量,获得更优异的力学性能。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明方法的打印示意图;
图2是复合材料成型件Z向层间结合强度增强原理图;
图3是复合材料成型件单道和单道间结合强度增强原理图;以及
图4是打印喷嘴通孔类型图。
其中,上述附图包括以下附图标记:
1、纤维切断器,2、预混机,3、制线机,4、送丝机构,5、预混短纤维树脂线材,6、长纤维,7、浸渍腔室,8、加热机构,9、喷嘴,10、三维运动平台,11、信号采集和控制部分,12、控制卡,13、温度传感器,14、图像传感器,15、计算机,16、打印层,17、Z向增强短纤维,18、成型单道,20、单道间结合增强短纤维。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合附图对本发明作进一步详细说明。
参照图1,使用纤维切断器1将长纤维切成预设长度的短纤维,与预设型号的树脂一起加入到预混机2中,通过制线机3将其拉成预混短纤维树脂线材5,用于后续打印。多个送丝机构4将可分别将不同短纤维纤维尺寸和含量的预混短纤维树脂线材5与连续纤维6在浸渍腔室7中预混合,充分接触浸润,使树脂尽可能包裹于每根纤维丝。浸渍腔室7外为加热机构8,其控制整个连续纤维打印系统的温度场,尤其是加热段长度,可实现预混短纤维树脂线材5的快速熔化。浸渍腔室7下方连接具有特殊形状的打印喷嘴9,可在不损坏纤维的情况下使连续纤维和树脂的混合物挤出。以上浸渍腔室7、加热机构8和喷嘴9结合后置于三维运动平台10,可实现三维精确移动。
信号采集和控制部分11包括控制卡12、多个温度传感器13、图像传感器14、计算机15。通过计算机15绘制三维模型、经切片后生成G代码,交由控制卡12控制各个打印环节不同机构的状态,例如,送丝速度、加热温度、喷头移动速度等。多个温度传感器13采集打印平台、加热机构8、喷嘴9的温度并实时上传于计算机15中。图像传感器14可实时监控打印效果,上传于计算机修正打印参数,用于形成闭环系统。
使用纤维切断器1将长纤维切成的短纤维尺寸为2mm-50mm,可以为碳纤维或玻璃纤维或有机纤维。该打印系统具有多个送丝机构4,分别实现多种预混短纤维树脂线材5和连续纤维的定速送丝,此处,多种树脂主要指PLA(聚乳酸)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、PI(聚酰亚胺)、PEEK(聚醚醚酮),连续纤维可以为多种规格的如1K、3K、6K、11K等碳纤维或玻璃纤维、有机纤维。将短纤维引入连续纤维打印技术中,两个打印层16中存在随机取向的短纤维,短纤维通过树脂与上下两层紧密结合,其在层间具有多种位置形态,当短纤维搭接于上下两层连续纤维增强树脂层中时,即为Z向增强短纤维17,起钉扎作用。当外力施加于成型件Z向时,短纤维可可抵抗层间脱落。当短纤维搭接于相邻几个成型单道18间时,即为单道间结合增强短纤维20,单道与单道间垂直方向的结合强度大大增加。
如图1至图4所示,本发明的实施例提供了一种纤维增强树脂基复合材料三维打印成形方法,包括:连续纤维打印部分、制线部分、信号采集和控制部分11;连续纤维打印部分包括送丝机构4、预混短纤维树脂线材5、连续纤维6、浸渍腔室7、加热机构8、喷嘴9、三维运动平台10,制线部分包括纤维切断器1、预混机2、制线机3,信号采集和控制部分包括信号采集和控制部分11、控制卡12、温度传感器13、图像传感器14、计算机15。
应用本实施例的技术方案,在纤维增强树脂基复合材料三维打印成形方法中,包括制线部分,主要为实现预混短纤维树脂线材5的成型,其包括纤维切断器1、预混机2、制线机3, 纤维切断器1用于制作短切纤维,可以为碳纤维或玻璃纤维或有机纤维。将短纤维与预设型号的树脂在预混机2混合,并通过制线机制得预混短纤维树脂线材5。
如图1所示,连续纤维送入短纤维切断器1后被机械切断,成型长度为2mm-50mm的短纤维,短纤维尺寸范围符合正态分布。经预混机2将固定比例的短纤维和连续树脂颗粒充分均匀混合,可防止纤维团聚现象产生。混合物料经制线机3成型尺寸1mm-3mm的均匀树脂线材,所成型树脂线材中线材直径和纤维含量可根据需求调节。
应用本实施例的技术方案,在纤维增强树脂基复合材料三维打印成形方法中,设计连续纤维打印部分,主要实现预混短纤维树脂线材5的送丝,连续纤维6的送丝,两种材料在浸渍腔室加热并充分混合浸润,连续打印于具有加热功能的成型三维运动平台10,在成型件中连续纤维打印层间、单道间存在短纤维增强,并通过树脂连接在一起。
如图1所示,多个送丝机构4将可分别将不同短纤维纤维尺寸和含量的预混短纤维树脂线材5与连续纤维6在浸渍腔室7中预混合,充分接触浸润,使树脂尽可能包裹于每根纤维丝。浸渍腔室7外为加热机构8,其控制整个连续纤维打印系统的温度场,尤其是加热段长度,可实现预混短纤维树脂线材5的快速熔化。浸渍腔室7下方连接具有特殊形状的打印喷嘴9,可在不损坏纤维的情况下使连续纤维和树脂的混合物挤出。以上浸渍腔室7、加热机构8和喷嘴9结合后置于三维运动平台10,可实现三维精确移动。
应用本实施例的技术方案,在纤维增强树脂基复合材料三维打印成形方法中,信号采集和控制部分11包括控制卡12、多个温度传感器13、图像传感器14、计算机15。通过计算机15绘制三维模型、经切片后生成G代码,交由控制卡12控制各个打印环节不同机构的状态。多个温度传感器13采集打印平台、喷嘴、加热机构的温度并实时上传于计算机中。图像传感器14可实时监控打印效果,上传数据于计算机,修正打印参数,形成闭环系统。
在本实施例中,三维运动平台10具有加热功能,可防止打印过程中产生翘曲等缺陷,加热方式可以为电阻丝加热或激光加热或轧辊加热。当采用电阻丝加热时,电阻丝位于成型平台内部,以一定方式分布,控制平台表面达到预设温度。当采用激光加热或轧辊加热时,激光或轧辊对已成型层进行预热,然后打印复合材料于预热层上。
在本实施例中,打印喷嘴9的通孔尺寸和形状具有很大灵活性,如图4所示,可以为圆形,直径从0.1-2mm;可以为椭圆形或带倒角的长方形,从而实现特定形状树脂和纤维混合物的喷射沉积,该方式也可以在某一维度上限制短纤维的取向。
如图2所示,两个打印层16中存在随机取向的短纤维,短纤维通过树脂与上下两层紧密结合,其在层间具有多种位置形态,当短纤维搭接于上下两层连续纤维增强树脂层中时,即为Z向增强短纤维17,起钉扎作用。当外力施加于成型件Z向时,短纤维可抵抗层间脱落。
如图3所示,两个打印的连续纤维增强树脂成型单道18中存在自由取向的短纤维,短纤维在单道间具有多种位置形态,当短纤维搭接于相邻几个成型单道18间时,即为单道间结合增强短纤维20,单道与单道间垂直方向的结合强度大大增加。
需要说明的是,本申请涉及的连续纤维增强复合材料包括连续纤维和树脂基体,其中,树脂基体包括由PLA(聚乳酸)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、PI(聚酰亚胺)或PEEK(聚醚醚酮)制成的热塑性树脂,连续纤维包括碳纤维、玻璃纤维或有机纤维,且连续纤维可以为多种规格,例如1K、3K、6K或12K。
应用本实施例的技术方案,短纤维和树脂可在浸渍腔室7中充分混合,通过调节送丝速度,可实现不同比例的混合,精确控制沉积层中的纤维体积分数。由于预混短纤维树脂线材5中包含较高体积分数的纤维,结合沉积过程中加入的连续纤维6,可大大提高成型件中的纤维含量,获得更优异的力学性能。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。

Claims (10)

  1. 一种纤维增强树脂基复合材料三维打印成形方法,其特征在于,为实现该方法的打印效果,需设计连续纤维打印部分、制线部分、信号采集和控制部分(11);所述的连续纤维打印部分主要实现预混短纤维树脂线材(5)的送丝,连续纤维(6)的送丝,两种材料在浸渍腔室加热并充分混合浸润,连续打印于具有加热功能的成型三维运动平台(10),在成型件中连续纤维打印层间、单道间存在短纤维增强,并通过树脂连接在一起;制线部分主要用于成形所述预混短纤维树脂线材(5);所述信号采集和控制部分(11)系统辅助连续纤维打印部分,通过参数采集和分析实时控制打印过程中各个环节的工作状态。
  2. 根据权利要求1所述的一种纤维增强树脂基复合材料三维打印成形方法,其特征在于,制线部分包括纤维切断器(1)、预混机(2)、制线机(3),所述纤维切断器(1)用于制作长度为2mm-50mm的短切纤维,所述短切纤维可以为碳纤维或玻璃纤维或有机纤维;将短纤维与预设型号的树脂在所述预混机(2)混合,并通过所述制线机(3)制得所述预混短纤维树脂线材5。
  3. 根据权利要求1所述的一种纤维增强树脂基复合材料三维打印成形方法,其特征在于,连续纤维打印部分包括多个送丝机构(4)、浸渍腔室(7)、加热机构(8)、打印喷嘴(9)、三维运动平台(10);所述加热机构(8)控制整个连续纤维打印部分的温度场,控制加热段长度、实现预混短纤维树脂线材(5)的快速熔化;所述预混短纤维树脂线材(5)和所述连续纤维(6)在浸渍腔室中预混合,充分接触浸润,使树脂尽可能包裹于每根纤维丝,并以一定速度通过特定结构打印喷嘴(9)挤出;该打印喷嘴(9)可减少纤维束损坏,并控制成型单道的形状和尺寸。
  4. 根据权利要求1所述的一种纤维增强树脂基复合材料三维打印成形方法,其特征在于,所述信号采集和控制部分(11)包括控制卡(12)、多个温度传感器(13)、图像传感器(14)、计算机(15);通过计算机(15)绘制三维模型、经切片后生成G代码,交由控制卡(12)控制各个打印环节不同机构的状态;多个温度传感器(13)采集打印平台、喷嘴、加热机构的温度并实时上传于所述计算机(15)中;所述图像传感器(14)可实时监控打印效果,上传数据于计算机,修正打印参数,形成闭环系统。
  5. 根据权利要求1或3所述的一种纤维增强树脂基复合材料三维打印成形方法,其特征在于,所述的成型三维运动平台(10)具有加热功能,可防止打印过程中产生翘曲等缺陷,加热方式可以为电阻丝加热或激光加热或轧辊加热;当采用电阻丝加热时,电阻丝位于成型平台内部,以一定方式分布,控制平台表面达到预设温度;当采用激光加热或轧辊加热时,激光或轧辊对已成型层进行预热,然后打印复合材料于预热层上。
  6. 根据权利要求1或3所述的一种纤维增强树脂基复合材料三维打印成形方法,其特征在于,打印喷嘴(9)的通孔尺寸和形状具有很大灵活性,所述通孔可以为圆形,直径从0.1-2mm;可以为椭圆形或带倒角的长方形,从而实现特定形状树脂和纤维混合物的喷射沉积,该方式也可以在某一维度上限制短纤维的取向。
  7. 根据权利要求1所述的一种纤维增强树脂基复合材料三维打印成形方法,其特征在于,两个打印层(16)中存在随机取向的短纤维,短纤维通过树脂与上下两层紧密结合,其在层间具有多种位置形态,当短纤维搭接于上下两层连续纤维增强树脂层中时,即为Z向增强短纤维(17),起钉扎作用;当外力施加于成型件Z向时,短纤维可抵抗层间脱落。
  8. 根据权利要求1所述的一种纤维增强树脂基复合材料三维打印成形方法,其特征在于,两个打印的连续纤维增强树脂成型单道(18)中存在自由取向的短纤维,短纤维在单道间具有多种位置形态,当短纤维搭接于相邻几个成型单道(18)间时,即为单道间结合增强短纤维(20),单道与单道间垂直方向的结合强度大大增加。
  9. 根据权利要求1或3所述的一种纤维增强树脂基复合材料三维打印成形方法,其特征在于,所述的连续纤维打印部分可具有多个送丝机构(4),分别实现预混短纤维树脂线材(5)和连续纤维(6)的定速送丝,此处,多种树脂主要指PLA(聚乳酸)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、PI(聚酰亚胺)、PEEK(聚醚醚酮),连续纤维可以为多种规格的如1K、3K、6K、11K等碳纤维或玻璃纤维、有机纤维。
  10. 根据权利要求1或3所述的一种纤维增强树脂基复合材料三维打印成形方法,其特征在于,所述的浸渍腔室(7)内长短纤维和树脂可充分混合,并通过调节送丝速度,实现不同的混合配比,从而精确控制沉积层中的纤维体积分数;由于预混短纤维树脂线材(5)中包含较高体积分数的纤维,结合沉积过程中加入的连续纤维(6),可大大提高成型件中的纤维含量,获得更优异的力学性能。
PCT/CN2018/120390 2017-12-15 2018-12-11 一种纤维增强树脂基复合材料三维打印成形方法 WO2019114709A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018383793A AU2018383793B2 (en) 2017-12-15 2018-12-11 Three-dimensional printing and forming method for fiber reinforced resin-based composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711345896.7 2017-12-15
CN201711345896.7A CN108189386A (zh) 2017-12-15 2017-12-15 一种纤维增强树脂基复合材料三维打印成形方法

Publications (1)

Publication Number Publication Date
WO2019114709A1 true WO2019114709A1 (zh) 2019-06-20

Family

ID=62574479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120390 WO2019114709A1 (zh) 2017-12-15 2018-12-11 一种纤维增强树脂基复合材料三维打印成形方法

Country Status (3)

Country Link
CN (1) CN108189386A (zh)
AU (1) AU2018383793B2 (zh)
WO (1) WO2019114709A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063158A (zh) * 2020-08-21 2020-12-11 湖南创瑾科技有限公司 一种3d打印材料及其制备方法
CN112497732A (zh) * 2020-11-26 2021-03-16 哈尔滨工业大学 基于连续纤维增强树脂基预浸料的空间桁架3d打印方法
CN113320143A (zh) * 2021-06-29 2021-08-31 华中科技大学 聚合物连续纤维复合层的连续3d打印方法及质量评估方法
CN113798633A (zh) * 2021-10-11 2021-12-17 中国石油大学(华东) 一种基于电弧增材制造的复合材料制造装置
CN113968022A (zh) * 2021-11-22 2022-01-25 宁波大学科学技术学院 一种三维打印机的混合供料装置
CN114248437A (zh) * 2021-11-30 2022-03-29 吉林大学 一种连续纤维编织体增强纤维复合材料3d打印方法
CN114274511A (zh) * 2021-12-02 2022-04-05 乐金显示光电科技(中国)有限公司 掩膜的制备方法
CN114778700A (zh) * 2021-04-01 2022-07-22 北京航空航天大学 一种热塑性复合材料结构的损伤监测及在线维修系统
CN115042434A (zh) * 2021-02-26 2022-09-13 精工爱普生株式会社 三维造型物的制造方法及三维造型装置
CN115972579A (zh) * 2023-01-09 2023-04-18 南京航空航天大学 一种用于纤维增材制造的带有随行超声滚压的打印机构
CN116141677A (zh) * 2023-03-31 2023-05-23 中国船舶集团有限公司第七一六研究所 用于连续纤维复合材料3d打印的张力联合控制装置
CN116638751A (zh) * 2023-05-20 2023-08-25 南京航空航天大学 一种基于高、低温双材料空间分布的打印方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108189386A (zh) * 2017-12-15 2018-06-22 北京机科国创轻量化科学研究院有限公司 一种纤维增强树脂基复合材料三维打印成形方法
CN109049682A (zh) * 2018-10-23 2018-12-21 郝文峰 一种纤维增强复合材料3d打印丝材制造装置及方法
CN109536946A (zh) * 2018-12-03 2019-03-29 北京机科国创轻量化科学研究院有限公司 一种激光熔融多金属双相围堰式增材制造方法
CN112008976B (zh) * 2019-05-31 2023-01-31 西门子股份公司 增材制造装置及方法
CN110722791A (zh) * 2019-07-30 2020-01-24 北京机科国创轻量化科学研究院有限公司 一种提高熔融沉积增材制造层间紧实性能的装置及结构设计
CN111069603A (zh) * 2020-01-16 2020-04-28 南昌航空大学 一种选区熔化成形纤维增强复合材料的增材制造方法
CN112092238B (zh) * 2020-07-16 2022-06-03 宁波诺丁汉新材料研究院有限公司 回收碳纤维增强聚酰胺的3d打印线材及制备方法与应用
CN113386354B (zh) * 2021-07-19 2022-08-05 西安交通大学 一种连续纤维与短纤维共增强树脂的3d打印装置
CN113601836B (zh) * 2021-07-22 2022-02-11 浙江大学 机器人辅助大尺度纤维增强异质多材料原位增材制造系统
CN114147833B (zh) * 2021-11-29 2022-12-09 深圳大学 用于纤维植插的3d打印方法、3d打印装置及3d打印系统
CN114683534A (zh) * 2021-12-28 2022-07-01 南京航空航天大学 一种增减材复合的连续纤维复合材料成形方法及所用装置
CN114474721A (zh) * 2022-01-10 2022-05-13 中车工业研究院有限公司 可实现z向增强的连续纤维增强复合材料的打印设备及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170015059A1 (en) * 2015-07-17 2017-01-19 Lawrence Livermore National Securty, Llc High performance, rapid thermal/uv curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites
CN106915079A (zh) * 2017-04-18 2017-07-04 中国科学院宁波材料技术与工程研究所 一种连续碳纤维3d打印装置
WO2017124085A1 (en) * 2016-01-15 2017-07-20 Markforged, Inc. Continuous and random reinforcement in a 3d printed part
CN108189386A (zh) * 2017-12-15 2018-06-22 北京机科国创轻量化科学研究院有限公司 一种纤维增强树脂基复合材料三维打印成形方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099741A1 (ja) * 2011-12-26 2013-07-04 東レ株式会社 炭素繊維基材、プリプレグおよび炭素繊維強化複合材料
US20170173868A1 (en) * 2013-03-22 2017-06-22 Markforged, Inc. Continuous and random reinforcement in a 3d printed part
CN104097326B (zh) * 2014-07-09 2016-08-24 西安交通大学 一种纤维增强复合材料多自由度3d打印机及其打印方法
CN106738891A (zh) * 2017-03-01 2017-05-31 机械科学研究总院先进制造技术研究中心 一种层间增强的连续纤维复合材料增材制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170015059A1 (en) * 2015-07-17 2017-01-19 Lawrence Livermore National Securty, Llc High performance, rapid thermal/uv curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites
WO2017124085A1 (en) * 2016-01-15 2017-07-20 Markforged, Inc. Continuous and random reinforcement in a 3d printed part
CN106915079A (zh) * 2017-04-18 2017-07-04 中国科学院宁波材料技术与工程研究所 一种连续碳纤维3d打印装置
CN108189386A (zh) * 2017-12-15 2018-06-22 北京机科国创轻量化科学研究院有限公司 一种纤维增强树脂基复合材料三维打印成形方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063158A (zh) * 2020-08-21 2020-12-11 湖南创瑾科技有限公司 一种3d打印材料及其制备方法
CN112497732A (zh) * 2020-11-26 2021-03-16 哈尔滨工业大学 基于连续纤维增强树脂基预浸料的空间桁架3d打印方法
CN112497732B (zh) * 2020-11-26 2022-07-15 哈尔滨工业大学 基于连续纤维增强树脂基预浸料的空间桁架3d打印方法
CN115042434A (zh) * 2021-02-26 2022-09-13 精工爱普生株式会社 三维造型物的制造方法及三维造型装置
US11964423B2 (en) 2021-02-26 2024-04-23 Seiko Epson Corporation Method for manufacturing three-dimensional shaped object and three-dimensional shaping apparatus
CN114778700B (zh) * 2021-04-01 2024-04-09 北京航空航天大学 一种热塑性复合材料结构的损伤监测及在线维修系统
CN114778700A (zh) * 2021-04-01 2022-07-22 北京航空航天大学 一种热塑性复合材料结构的损伤监测及在线维修系统
CN113320143A (zh) * 2021-06-29 2021-08-31 华中科技大学 聚合物连续纤维复合层的连续3d打印方法及质量评估方法
CN113320143B (zh) * 2021-06-29 2022-03-29 华中科技大学 聚合物连续纤维复合层的连续3d打印方法及质量评估方法
CN113798633A (zh) * 2021-10-11 2021-12-17 中国石油大学(华东) 一种基于电弧增材制造的复合材料制造装置
CN113968022A (zh) * 2021-11-22 2022-01-25 宁波大学科学技术学院 一种三维打印机的混合供料装置
CN113968022B (zh) * 2021-11-22 2023-07-25 宁波大学科学技术学院 一种三维打印机的混合供料装置
CN114248437A (zh) * 2021-11-30 2022-03-29 吉林大学 一种连续纤维编织体增强纤维复合材料3d打印方法
CN114274511A (zh) * 2021-12-02 2022-04-05 乐金显示光电科技(中国)有限公司 掩膜的制备方法
CN115972579A (zh) * 2023-01-09 2023-04-18 南京航空航天大学 一种用于纤维增材制造的带有随行超声滚压的打印机构
CN116141677A (zh) * 2023-03-31 2023-05-23 中国船舶集团有限公司第七一六研究所 用于连续纤维复合材料3d打印的张力联合控制装置
CN116638751A (zh) * 2023-05-20 2023-08-25 南京航空航天大学 一种基于高、低温双材料空间分布的打印方法
CN116638751B (zh) * 2023-05-20 2024-03-01 南京航空航天大学 一种基于高、低温双材料空间分布的打印方法

Also Published As

Publication number Publication date
AU2018383793A1 (en) 2020-07-30
CN108189386A (zh) 2018-06-22
AU2018383793B2 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2019114709A1 (zh) 一种纤维增强树脂基复合材料三维打印成形方法
JP6490544B2 (ja) 繊維強化ポリマーの押し出し堆積法
EP3395527B1 (en) Method and apparatus for the extruded deposition of fiber reinforced polymers
Ferreira et al. A review on fibre reinforced composite printing via FFF
TWI448596B (zh) Random felt and reinforced fiber composites
TWI515239B (zh) Reinforced fibrous composite material formed by the body
US20190022935A1 (en) 3d printing system nozzle assembly for printing of fiber reinforced parts
Li et al. Mechanical performances of continuous carbon fiber reinforced PLA composites printed in vacuum
US20140004308A1 (en) Molded Product Having Thickness Gradient, and Method for Manufacturing the Same
KR101886537B1 (ko) Sls 방식 3d 프린터를 이용한 물성이 균등한 3차원 입체 형상 제품의 제조 방법
Hu et al. Recent patents in additive manufacturing of continuous fiber reinforced composites
JP2012246428A (ja) 熱可塑等方性プリプレグ
US20170334132A1 (en) Printing method and device, composite material
CN114030179A (zh) 双通道进料连续纤维增强复合材料3d打印机及控制方法
CN114292115A (zh) 一种基于机器人激光增材制造的增强SiC复合材料制备方法
US20190322057A1 (en) Three dimensional printed fibrous interlocking interlayers
Domm Printing of three-dimensional polymer composite structures with continuous fiber reinforcement
JP2007152718A (ja) Frp成形品とその成形方法
JP2016065349A (ja) 複合物における透過性及び繊維体積率を制御するためのポリマーナノ粒子
US20210206024A1 (en) Blended fiber mat formation for structural applications
EP3548260B1 (en) Fiber mat formation for structural applications
JPS5962112A (ja) 炭素繊維補強熱可塑性樹脂成形品の製造方法
CN116373292A (zh) 基于双连续纤维编织局部增强的增材制造方法
Krajangsawasdi et al. Open Hole Tension of 3D Printed Aligned Discontinuous Composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018383793

Country of ref document: AU

Date of ref document: 20181211

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18889611

Country of ref document: EP

Kind code of ref document: A1