WO2019114707A1 - 高纯锗探测器 - Google Patents

高纯锗探测器 Download PDF

Info

Publication number
WO2019114707A1
WO2019114707A1 PCT/CN2018/120346 CN2018120346W WO2019114707A1 WO 2019114707 A1 WO2019114707 A1 WO 2019114707A1 CN 2018120346 W CN2018120346 W CN 2018120346W WO 2019114707 A1 WO2019114707 A1 WO 2019114707A1
Authority
WO
WIPO (PCT)
Prior art keywords
purity germanium
high purity
germanium crystal
detector
channel
Prior art date
Application number
PCT/CN2018/120346
Other languages
English (en)
French (fr)
Inventor
李玉兰
李红
常建平
张智
李荐民
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to US16/314,048 priority Critical patent/US20210223416A1/en
Priority to EP18819518.4A priority patent/EP3726254A1/en
Publication of WO2019114707A1 publication Critical patent/WO2019114707A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/241Electrode arrangements, e.g. continuous or parallel strips or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/366Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with semi-conductor detectors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry

Definitions

  • the invention relates to the field of nuclear detection technology, in particular to a high purity helium detector.
  • the high-purity germanium detector is a semiconductor detector made of germanium single crystal having an impurity concentration in the range of 10 9 cm -3 to 10 10 cm -3 , and is mainly used for gamma ray and X-ray measurement.
  • This type of detector has a very high energy resolution and relatively high detection efficiency, and is widely used in environmental protection, nuclear power, biomedicine, health disease control, military defense and scientific research.
  • the detection efficiency of the high-purity germanium detector is generally expressed by the relative detector efficiency, which is defined as: 60 Co point source placed 25 cm directly above the detector end face, for 1.33 MeV energy peak, high purity helium detector count rate and 3 The ratio of the count rate of the "x3" NaI(Tl) detector.
  • the relative detector efficiency is mainly determined by the volume of the high-purity germanium crystal, and is slightly different due to the crystal shape (mainly the diameter-height ratio). In the case of neglecting the latter, the relative detection efficiency and high purity
  • an embodiment of the present invention provides a high-purity germanium detector including a high-purity germanium crystal unit array including two or more high-purity germanium crystal units, wherein the two or more high purity germanium crystal units each comprise a partial electrode on the side and/or the first top surface, and the sides and/or of the two or more high purity germanium crystal units The electrodes of the first top surface are electrically connected together as a first contact electrode of the high purity germanium detector; each high purity germanium crystal unit includes a respective second contact electrode located therein such that the high purity germanium detector comprises two Or more second contact electrodes.
  • the high purity germanium detector further includes a first electrode and a second electrode, the first electrode is connected to the first contact electrode, and the second electrode is respectively connected at the second top surface of each high purity germanium crystal unit Two or more second contact electrodes are described, and a second top surface of each high purity germanium crystal unit is opposite to the first top surface.
  • the two or more high purity germanium crystal units are configured to operate at the same bias voltage.
  • the high purity helium detector further comprises:
  • each charge sensitive preamplifier configured to read and convert a charge signal generated by a corresponding high purity germanium crystal unit
  • a multi-channel digital multichannel spectrometer configured to filter a voltage signal input from each charge sensitive preamplifier, extract amplitude information and obtain a channel address of the input voltage signal while simultaneously recording the number of the channel to which the input is input i In order to derive a composite spectrum of the signals of the two or more high purity germanium crystal units.
  • the multi-channel digital multi-channel spectrometer includes a correction coefficient calibration module that separately maps each input channel i corresponding to each high-purity germanium crystal unit and automatically obtains peaks.
  • At least two single energy rays are selected as the source of incidence at the beginning of each measurement.
  • each of the charge sensitive preamplifiers uses feedback feedback, transistor feedback, or optical pulse feedback.
  • the first voltage is applied to the first electrode, the first voltage is configured to be a positive high voltage for the P-type high-purity germanium crystal array, and the first voltage is configured to a negative high voltage for the N-type high-purity germanium crystal array; the second electrode is connected The charge sensitive preamplifier, the input level of the charge sensitive preamplifier, is applied as a second voltage to the second electrode.
  • the two or more high purity germanium crystal units are held together by a cartridge.
  • the cartridge is constructed of a conductive material.
  • the high purity germanium detector consisting of the two or more high purity germanium crystal units has a symmetrical or regular shape.
  • the high-purity germanium crystal unit array includes three high-purity germanium crystal units, each high-purity germanium crystal unit including a 120-degree corner, and each high-purity germanium crystal unit has two 120-degree corner portions. Side of the corner;
  • the apex of the three 120-degree corners of the three high-purity germanium crystal units are in contact, the corner sides of the 120-degree corners of the three high-purity germanium crystal units and the 120-degree corner of the adjacent high-purity germanium crystal unit The corner sides abut each other.
  • the array of high purity germanium crystal cells comprises four high purity germanium crystal units, wherein two high purity germanium crystals comprise corners of 120 degree angles, and the other two high purity germanium crystals comprise two 120 degrees. The corners of the corners such that the sides of the corners of the four high-purity germanium crystals abut each other.
  • the high-purity germanium crystal unit array includes seven high-purity germanium crystal units, the high-purity germanium crystal unit at the center position has a regular hexagonal shape, and the other six high-purity germanium crystals include two 120-degree crystals. The angle is symmetrically distributed around the central high purity germanium crystal unit.
  • FIG. 1 is a schematic view showing the structure of a high-purity germanium crystal unit array of a high-purity germanium detector according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure and size of a high-purity germanium crystal unit of a high-purity germanium detector according to an embodiment of the present invention
  • FIG. 3 is a system block diagram of a high purity helium detector of an embodiment of the present invention.
  • FIG. 4 is a schematic view showing the structure of a high-purity germanium crystal cell array of a high-purity germanium detector according to an embodiment of the present invention
  • Fig. 5 is a view showing the structure of a high-purity germanium crystal cell array of a high-purity germanium detector according to an embodiment of the present invention.
  • top side and bottom side are orientations of the upper side and the lower side of the object which are normal with respect to the normal case.
  • Embodiments of the present invention provide a high purity germanium detector 100 comprising a high purity germanium crystal cell array comprising two or more high purity germanium crystal units 101, wherein the two
  • the one or more high-purity germanium crystal units 101 each include an electrode material on the side surface 101c and/or the first top surface 101a, and the sides 101c and/or the two or more high-purity germanium crystal units 101
  • the electrode materials of the first top surface 101a are electrically connected together as a first contact electrode of a high purity germanium detector; each high purity germanium crystal unit 101 includes a respective second contact electrode located therein such that the high purity germanium is detected
  • the device includes two or more second contact electrodes (not shown).
  • the electrode material may be a plurality of materials capable of forming a PN junction with a high purity germanium crystal or capable of preventing a high purity germanium crystal from forming a blocking contact.
  • the use of a material to form a contact electrode is generally formed by evaporating lithium or sputtering phosphorus ions on a high purity germanium crystal, or may be another deposition process. Those skilled in the art can use the existing processes of high purity helium detectors.
  • the high-purity germanium detector further includes a first electrode and a second electrode 103.
  • the first electrode is connected to the first contact electrode (the first electrode is not shown in the figure. In fact, the first electrode can be set as needed, and only needs to be A contact electrode is electrically connected, and the second electrode 103 connects the two or more second contact electrodes, respectively, at the second top surface 101b of each high-purity germanium crystal unit 101, each of the high-purity germanium crystals.
  • the second top surface 101b of the unit 101 is opposite the first top surface 101a.
  • a first voltage is applied to the first electrode, the first voltage being P-type or N-type according to the high-purity germanium crystal array, and correspondingly configured as a positive high voltage or a negative high voltage.
  • the second electrode 103 is connected to a charge sensitive preamplifier, and the input level of the charge sensitive preamplifier is applied as a second voltage to the second electrode 103.
  • the second contact electrode may, for example, be located at the center of each of the high-purity germanium crystal units 101, and is advantageous for collecting electron-hole pairs generated by excitation in the high-purity germanium crystal unit 101, however, this is not essential.
  • the limitation of small single crystal volume and low detection efficiency can be overcome, and at the same time, the use of large high-purity germanium crystals can be avoided to realize the use of inexpensive high-purity germanium crystals.
  • the work obtains a similar detection effect of a large high-purity germanium crystal, and thus reduces the product cost to some extent in the case of similar detection efficiency.
  • the first top surface 101a is used as a radiation receiving surface, and the radiation illuminates the first top surface 101a and enters the high purity germanium crystal unit 101, thereby exciting in the high purity germanium crystal unit 101. Electron-hole pairs. The electrons and holes are drifted toward the first electrode and the second electrode by the electric field force formed by the first voltage and the second voltage, thereby inputting an induced charge signal into the charge sensitive preamplifier connected to the second electrode.
  • the first contact electrode on the first top surface 101a may be formed of a transparent conductive material.
  • the two or more high purity germanium crystal units 101 in the high purity germanium detector are configured to operate at the same bias voltage.
  • the two or more high purity germanium crystal units 101 in the high purity germanium detector 100 have identical shape structures such that each crystal unit is capable of operating at the same bias voltage.
  • the two or more high-purity germanium crystal units 101 in the high-purity germanium detector 100 have a cooperating shape such that the two or more high-purity germanium crystal units 101 can They are arranged in a regular shape or a centrally symmetrical shape by abutting each other through the contact faces. It is advantageous for a helium detector composed of a plurality of high-purity germanium crystals to have a regular shape, such as a shape having a central symmetry.
  • the radiation source is generally close to the detector, and the symmetrically shaped chirp detector receives the radiation of the radiation source, and the radiation of the radiation source decreases as the propagation distance increases, so that the center of the high-purity germanium crystal detector is detected. With more radiation, the detector's edge receives less radiation, and the shape-symmetric high-purity germanium crystal detector is more efficient.
  • the high-purity germanium crystal unit array includes three high-purity germanium crystal units 101, and each high-purity germanium crystal unit 101 includes a 120-degree corner (as shown in FIG. 2).
  • the 120-degree corner has two sides 101s, and the angle between the two sides 101s is 120 degrees; wherein the vertices of the three 120-degree corners of the three high-purity germanium crystal units 101 are in contact with each The side surface 101s of the 120-degree corner of the high-purity germanium crystal unit 101 and the side surface 101s of the 120-degree corner of the adjacent high-purity germanium crystal unit 101 abut each other.
  • FIG. 1 the high-purity germanium crystal unit array
  • the high-purity germanium crystal unit array includes three high-purity germanium crystal units 101 arranged in an equilateral triangle according to the center line of the high-purity germanium crystal unit 101.
  • a second contact electrode is formed at the center of each of the high-purity germanium crystal units 101, and is respectively in communication with the second electrode 103 (readout electrode).
  • the side 101c of each high-purity germanium crystal unit 101 and the first top surface 101a are fabricated with electrodes and are electrically connected to each other to serve as a first contact electrode of the detector. It is advantageous to use three high-purity germanium crystal units 101, each of which includes a 120-degree corner to form a high-purity germanium crystal unit array, thus reducing the loss of the high-purity germanium crystal substrate.
  • each of the high-purity germanium crystal units 101 has a single-open coaxial structure with a crystal height of 40 mm and a diameter of 66 mm.
  • the sides of the crystal are machined to form two flat sides that are at an angle of 120°. That is, the side surface 101s of the corner portion serves as a splicing surface.
  • the high purity germanium crystal cell array of the high purity germanium detector 100 includes two high purity germanium crystal units 101.
  • the sides of the crystal are machined to form flat sides, and the flat sides of the two high-purity germanium crystal units 101 abut each other.
  • the high purity germanium crystal cell array of the high purity germanium detector 100 includes four high purity germanium crystal units 101.
  • Figure 4 shows a schematic cross-sectional view of four high purity germanium crystals. As shown in FIG. 4, four high-purity germanium crystal units 101 are spliced into a high-purity germanium crystal unit array in which two high-purity germanium crystals include corners of a 120-degree angle, and the other two high-purity germanium crystals include two 120-degree angles. The corners of the corners are such that the sides 101s of the corners of the four high-purity germanium crystals abut each other.
  • the high purity germanium crystal cell array of the high purity germanium detector 100 includes seven high purity germanium crystal units 101.
  • Figure 5 shows a schematic cross-sectional view of seven high purity germanium crystals. As shown in FIG. 5, seven high-purity germanium crystal units 101 are spliced into a high-purity germanium crystal unit array in which a high-purity germanium crystal unit 101 at a central position has a regular hexagonal shape, and the other six high-purity germanium crystals include two. An angle of 120 degrees is symmetrically distributed around the central high purity germanium crystal unit 101.
  • FIGs. 4 and 5 does not mean any sense of direction or the like, but only the schematic views 4 and 5 are cross-sectional views.
  • the plurality of high-purity germanium crystal units 101 have similar impurity concentrations, and advantageously, each high-purity germanium crystal unit 101 can be ensured to have an approximate depletion voltage value, thereby reducing the configuration of the high-purity germanium detector 100. Difficulty. Therefore, the detection accuracy and the detection efficiency of the detector constituted by the plurality of high-purity germanium crystal units 101 can be improved.
  • the plurality of high-purity germanium crystal units 101 in the high-purity germanium detector 100 are different in shape or similar to each other, and a part of the surface of each high-purity germanium crystal unit 101 (for example, the side 101c and/or the A top surface 101a) includes electrode materials formed by evaporation or sputtering, the surface portions being electrically connected by electrode materials to form a first contact electrode of the high purity germanium detector 100.
  • the impurity concentrations of the two or more high-purity germanium crystal units 101 in the high-purity germanium detector 100 may also be different, in other words, as long as the requirements of the high-purity germanium crystal are satisfied, or further As long as two or more high-purity germanium crystal units 101 can be operated under the same bias voltage.
  • These high purity germanium crystal units 101 are electrically connected to form a high purity germanium detector 100, each of which is capable of operating at the same bias voltage.
  • the electrode material may be disposed on a side surface of the high-purity germanium crystal unit 101, and the first top surface 101a of the high-purity germanium crystal unit 101 may be a bare surface, through the contact of the side surface, a plurality of The high purity germanium crystal unit 101 achieves electrical connection.
  • the electrode material may cover the side 101c of the high purity germanium crystal unit 101 and the first top surface 101a, and the radiation may pass through the electrode material into the high purity germanium crystal.
  • the electrode material may not cover the top surface 101a of the high purity germanium crystal unit 101.
  • the region that does not cover the electrode material is called the intrinsic region of the crystal, and the intrinsic region does not contact the first electrode (that is, the high voltage).
  • the electrical connection of the plurality of high-purity germanium crystal units 101 can be achieved by other components.
  • the plurality of high-purity germanium crystal units 101 electrically connected thus have first contact electrodes electrically connected together.
  • a plurality of high-purity germanium crystal units 101 may be fixed together by a cell 104, which is formed of a conductive material, in which case the cell 104 is fixed at a plurality of high-purity germanium crystal units 101. Together, it can be used as an electrode.
  • the cartridge 104 can be formed from a transparent, electrically conductive material.
  • the cartridge 104 is in contact with the side 101c of the plurality of high-purity germanium crystal units 101, and a portion of the side 101c or the side surface 101c of the high-purity germanium crystal unit 101 is vapor-deposited or sputtered with an electrode material.
  • the circular outer side surface 101c and the corner side surface 101s of the plurality of high-purity germanium crystal units 101 are each vapor-deposited or sputtered with an electrode material, or a portion of the circular outer side surface 101c and a corner side surface. Partial evaporation or sputtering of the 101s has an electrode material.
  • the electrode material may be a transparent conductive material.
  • a cartridge formed of a conductive material is advantageous, and the electrically conductive cartridge can not only fix a plurality of high-purity germanium crystal units 101 together, but also realize electrical connection of a plurality of high-purity germanium crystal units 101.
  • each crystal unit can work under the same bias voltage, that is, the entire detector can still be powered by a single high-voltage power source, and the structure is simple, and the operation is convenient and safe.
  • the impurity concentrations of the plurality of high-purity germanium crystal units 101 may be different, but are within a certain range. Those skilled in the art are aware of the range of impurity concentrations of high purity germanium crystals of general significance, for example, impurity concentrations up to the order of 10 10 cm -3 , or preferably up to the order of 10 9 cm -3 .
  • the concentrations of the plurality of high-purity germanium crystal units 101 may be different as long as their concentrations can be configured such that the plurality of high-purity germanium crystal units 101 can operate at the same bias voltage.
  • FIG. 3 shows a block diagram of a high purity helium detector 100 in accordance with an embodiment of the present invention.
  • the high purity germanium detector 100 can include a high purity germanium crystal cell array, a charge sensitive preamplifier, and a multi-channel digital multichannel spectrometer.
  • the high purity germanium detector 100 can include two or more charge sensitive preamplifiers, each configured to read and convert a corresponding high purity germanium crystal unit 101. Voltage signal.
  • the high-purity germanium detector 100 includes three high-purity germanium crystal units 101 corresponding to three charge-sensitive preamplifiers PreAmp1, PreAmp2, and PreAmp3.
  • the feedback method of each charge sensitive preamplifier uses resistive feedback, transistor feedback or optical pulse feedback.
  • the high purity helium detector 100 may further comprise a multi-channel digital multichannel spectrometer configured to filter the voltage signal input from each of the charge sensitive preamplifiers, extract amplitude information and obtain a channel address of the input voltage signal. The number i of the channel to which it is input is simultaneously recorded to obtain a composite spectrum of the signals of the two or more high-purity germanium crystal units 101.
  • At least two single-energy rays are selected as the incident source at the beginning of each measurement, and the correction coefficient calibration module is respectively for each input channel i corresponding to each high-purity germanium crystal unit 101.
  • the signal path generated from different crystals can be corrected online during the spectrum measurement process, and the overall energy spectrum of the detector array can be obtained in real time.
  • the radiation response of the detector is simulated by GEANT4, and the result shows that the relative detector efficiency can reach 102%.
  • the relative detector efficiency of a single cylindrical crystal substrate is about 37%.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种高纯锗探测器(100),包括高纯锗晶体单元阵列,高纯锗晶体单元阵列包括两个或更多个高纯锗晶体单元(101),其中,两个或更多个高纯锗晶体单元(101)每一个包括位于侧面(101c)和/或第一顶表面(101a)的部分电极,并且两个或更多个高纯锗晶体单元的侧面(101c)和/或第一顶表面(101a)的电极电连接共同作为高纯锗探测器(100)的第一接触电极;每个高纯锗晶体单元(101)包括位于其内的各自的第二接触电极使得高纯锗探测器(100)包括两个或更多个第二接触电极。

Description

高纯锗探测器 技术领域
本发明涉及核探测技术领域,特别涉及高纯锗探测器。
背景技术
高纯锗探测器是一种利用杂质浓度在10 9cm -3至10 10cm -3范围内的锗单晶制成的半导体探测器,主要用于γ射线和X射线测量。这一类型的探测器具有极高的能量分辨率和相对较高的探测效率,被广泛地应用于环保、核电、生物医学、卫生疾控、军队防化以及科研等多个领域。
高纯锗探测器的探测效率一般用相对探测器效率来表示,其定义为: 60Co点源放置在探测器端面正上方25cm处,对1.33MeV能量峰,高纯锗探测器计数率与3″×3″NaI(Tl)探测器计数率的比值。相对探测器效率的大小主要决定于高纯锗晶体的体积,并且因晶体形状(主要是直径-高度比)的不同而略有差别,在忽略后者的情况下,相对探测效率与高纯锗晶体体积具有如下经验关系:相对探测效率(%)=体积(cm 3)/K,其中K≈4.3。
大体积高纯锗晶体单元的生长难度极大,目前国内尚未实现此技术,国际上也仅有少数公司能够提供产品,且价格十分昂贵。在现阶段,高纯锗探测器探测效率的提升,在很大程度上受到了高纯锗晶体制备技术的限制。
发明内容
根据本发明的一方面,本发明的实施例提供一种高纯锗探测器,包括高纯锗晶体单元阵列,所述高纯锗晶体单元阵列包括两个或更多个高纯锗晶体单元,其中,所述两个或更多个高纯锗晶体单元每一个包括位于侧面和/或第一顶表面的部分电极,并且所述两个或更多个高纯锗晶体单元的侧面和/或第一顶表面的电极电连接共同作为高纯锗探测器的第一接触电极;每个高纯锗晶体单元包括位于其内的各自的第二接触电极使得所述高纯锗探测器包括两个或更多个第二接触电极。
在一个实施例中,高纯锗探测器还包括第一电极和第二电极,第一电极连接第一接触电极,第二电极分别在每个高纯锗晶体单元的第二顶表面处连接所述两个或更多个第二接触电极,每个高纯锗晶体单元的第二顶表面与第一顶表面相对。
在一个实施例中,所述两个或更多个高纯锗晶体单元配置成能够在相同偏压下工作。
在一个实施例中,高纯锗探测器还包括:
两个或更多个电荷灵敏前置放大器,每一个电荷灵敏前置放大器配置成读取和转换一个相应的高纯锗晶体单元产生的电荷信号;以及
多通道数字多道谱仪,配置成对从每个电荷灵敏前置放大器输入的电压信号滤波成型,提取幅度信息并获取所述输入的电压信号的道址h同时记录其输入的通道的编号i,以便得出所述两个或更多个高纯锗晶体单元的信号的合成谱。
在一个实施例中,多通道数字多道谱仪包括修正系数标定模块,所述修正系数标定模块针对与每个高纯锗晶体单元对应的每个输入通道i分别成谱,并自动寻峰获得峰位道址Pij,然后以第一通道为基准,分别针对每个通道i,用公式P 1=a i×P i+b i拟合数据点(P ij,P 1j)(j=1,2,...,k),获得拟合参数[a i,b i]作为通道i的道址修正系数,其中i是正整数,第一通道为任一通道,j=1,2,...,k,k为峰数目,且k≥2。
在一个实施例中,多通道数字多道谱仪包括整体谱生成模块,所述整体谱生成模块根据每个信号的输入通道编号i调取与之对应的道址修正参数[a i,b i],将道址h修正为h’=a i×h+b i,按h’累加计数,实时显示所述两个或更多个高纯锗晶体单元的合成谱。
在一个实施例中,在每次测量之初,选择至少两条单能射线作为入射源。
在一个实施例中,每一个电荷灵敏前置放大器的反馈方式采用电阻反馈、晶体管反馈或光脉冲反馈。
在一个实施例中,在第一电极施加第一电压,对于P型高纯锗晶体阵列第一电压配置成正高压,对于N型高纯锗晶体阵列第一电压配置成负高 压;第二电极连接电荷灵敏前置放大器,电荷灵敏前置放大器的输入电平即作为第二电压施加到第二电极上。
在一个实施例中,所述两个或更多个高纯锗晶体单元通过盒固定在一起。
在一个实施例中,所述盒由导电材料构成。
在一个实施例中,由所述两个或更多个高纯锗晶体单元构成的高纯锗探测器具有对称的或规则的形状。
在一个实施例中,所述高纯锗晶体单元阵列包括三个高纯锗晶体单元,每个高纯锗晶体单元包括120度角部,每个高纯锗晶体单元的120度角部具有两个角部侧面;
其中,三个高纯锗晶体单元的三个120度角部的顶点接触,三个高纯锗晶体单元的120度角部的角部侧面与相邻的高纯锗晶体单元的120度角部的角部侧面相互抵靠。
在一个实施例中,所述高纯锗晶体单元阵列包括4个高纯锗晶体单元,其中两个高纯锗晶体包括120度角的角部,另外两个高纯锗晶体包括两个120度角的角部,从而使得四个高纯锗晶体的角部的侧面相互抵接。
在一个实施例中,所述高纯锗晶体单元阵列包括7个高纯锗晶体单元,中心位置的高纯锗晶体单元具有正六边形形状,其他六个高纯锗晶体包括两个120度的角度,对称分布在中心高纯锗晶体单元周围。
附图说明
图1示出本发明的一个实施例的高纯锗探测器的高纯锗晶体单元阵列的结构示意图;
图2示出本发明实施例的高纯锗探测器的一个高纯锗晶体单元的结构及尺寸示意图;
图3示出本发明实施例的高纯锗探测器的系统框图;
图4示出本发明一个实施例的高纯锗探测器的高纯锗晶体单元阵列的结构示意图;
图5示出本发明一个实施例的高纯锗探测器的高纯锗晶体单元阵列的 结构示意图。
具体实施方式
尽管本发明容许各种修改和可替换的形式,但是它的具体的实施例通过例子的方式在附图中示出,并且将详细地在本文中描述。然而,应该理解,随附的附图和详细的描述不是为了将本发明限制到公开的具体形式,而是相反,是为了覆盖落入由随附的权利要求限定的本发明的精神和范围中的所有的修改、等同形式和替换形式。附图是为了示意,因而不是按比例地绘制的。
在本说明书中使用了“第一”、“第二”等术语,并不是为了排序或者表示重要性或主次关系,而是用于区分不同的部件。本说明书中“顶侧”和“底侧”是相对于一般情况下,物体正立的上侧和下侧的方位。
下面根据附图说明根据本发明的多个实施例。
本发明的实施例提供一种高纯锗探测器100,包括高纯锗晶体单元阵列,所述高纯锗晶体单元阵列包括两个或更多个高纯锗晶体单元101,其中,所述两个或更多个高纯锗晶体单元101每一个包括位于侧面101c和/或第一顶表面101a的电极材料,并且所述两个或更多个高纯锗晶体单元101的侧面101c和/或第一顶表面101a的电极材料电连接而共同作为高纯锗探测器的第一接触电极;每个高纯锗晶体单元101包括位于其内的各自的第二接触电极使得所述高纯锗探测器包括两个或更多个第二接触电极(图中未示出)。此处,电极材料可以是多种材料,该材料能够与高纯锗晶体形成PN结,或者能够阻止高纯锗晶体形成阻塞接触(blocking contact)。使用材料形成接触电极一般是在高纯锗晶体上蒸镀锂或溅射磷离子而形成,也可以是其他沉积工艺。本领域技术人员可以使用高纯锗探测器已有的工艺制作。
所述高纯锗探测器还包括第一电极和第二电极103,第一电极连接第一接触电极(图中未示出第一电极,实际上第一电极可以根据需要设置,只需要与第一接触电极电连接即可),第二电极103分别在每个高纯锗晶体单元101的第二顶表面101b处连接所述两个或更多个第二接触电极, 每个高纯锗晶体单元101的第二顶表面101b与第一顶表面101a相对。在测量射线的时候,在第一电极施加第一电压,第一电压根据高纯锗晶体阵列是P型或N型,相应地配置成正高压或负高压。第二电极103连接电荷灵敏前置放大器,电荷灵敏前置放大器的输入电平作为第二电压施加到第二电极103上。第二接触电极可以例如位于每个高纯锗晶体单元101的中心,有利于收集高纯锗晶体单元101中激发产生的电子空穴对,然而,这并不是必须的。
利用多个高纯锗晶体单元101拼接形成阵列,可以克服了单个晶体体积小因而探测效率低的限制,同时,避免使用大的高纯锗晶体而实现使用价格便宜的小的高纯锗晶体共同工作获得大的高纯锗晶体类似的探测效果,因而在相近的探测效率的情况下,在一定程度上降低了产品成本。
在如图1所示的实施例中,第一顶表面101a被用作射线接收面,射线照射第一顶表面101a并进入到高纯锗晶体单元101,从而在高纯锗晶体单元101中激发电子-空穴对。电子和空穴在第一电压和第二电压形成的电场力作用下,向着第一电极和第二电极漂移,从而向与第二电极相连的电荷灵敏前置放大器中输入感应电荷信号。第一顶表面101a上的第一接触电极可以是透明的导电材料形成的。
在一个实施例中,高纯锗探测器中的所述两个或更多个高纯锗晶体单元101,配置成能够在相同偏压下工作。
在另一优选的实施例中,高纯锗探测器100中的所述两个或更多个高纯锗晶体单元101具有完全相同的形状结构,使得各个晶体单元能够在相同偏压下工作。在一个实施例中,高纯锗探测器100中的所述两个或更多个高纯锗晶体单元101具有相互配合的形状,使得所述两个或更多个高纯锗晶体单元101能够相互通过接触面抵接而排布成规则的形状,或者中心对称的形状。多个高纯锗晶体组合在一起构成的锗探测器具有规则的形状是有利的,例如具有中心对称的形状。在测量时,一般将辐射源靠近探测器,形状规则对称的锗探测器接收辐射源的辐射,辐射源的辐射随传播距离增大而减小,因而高纯锗晶体探测器的中心处探测到较多的辐射,探测器的边缘接收到较少的辐射,形状对称的高纯锗晶体探测器探测效率更 高。
在一个实施例中,如图1所示,所述高纯锗晶体单元阵列包括3个高纯锗晶体单元101,每个高纯锗晶体单元101包括120度角部(如图2),所述120度角部有两个侧面101s,并且所述两个侧面101s之间的夹角为120度;其中,3个高纯锗晶体单元101的3个120度角部的顶点接触,每个高纯锗晶体单元101的120度角部的侧面101s与相邻的高纯锗晶体单元101的120度角部的侧面101s相互抵靠。如图1所示,高纯锗晶体单元阵列包含3个高纯锗晶体单元101,按高纯锗晶体单元101的中心连线呈等边三角形布置。每个高纯锗晶体单元101的中心制作第二接触电极,分别与第二电极103(读出电极)相联通。每个高纯锗晶体单元101的侧面101c以及第一顶表面101a制作电极,并相互保持电连接,共同作为探测器的第一接触电极。采用3个高纯锗晶体单元101,每个高纯锗晶体单元101包括120度角部构成高纯锗晶体单元阵列是有利的,这样减少高纯锗晶体基材的损耗。在本实施例中,每个高纯锗晶体单元101采用单开端同轴型结构,晶体高度为40mm,直径为66mm,晶体的侧面经机械加工形成两个互成120°夹角的平的侧面,即角部的侧面101s作为拼接面。
在本发明的另一实施例中,高纯锗探测器100的高纯锗晶体单元阵列包括2个高纯锗晶体单元101。晶体的侧面经机械加工形成平的侧面,两个高纯锗晶体单元101的平的侧面相互抵接。
在本发明的另一实施例中,高纯锗探测器100的高纯锗晶体单元阵列包括4个高纯锗晶体单元101。图4示出4个高纯锗晶体的横截面示意图。如图4所示,4个高纯锗晶体单元101拼接为高纯锗晶体单元阵列,其中两个高纯锗晶体包括120度角的角部,另外两个高纯锗晶体包括两个120度角的角部,从而使得四个高纯锗晶体的角部的侧面101s相互抵接。
在本发明的另一实施例中,高纯锗探测器100的高纯锗晶体单元阵列包括七个高纯锗晶体单元101。图5示出七个高纯锗晶体的横截面示意图。如图5所示,七个高纯锗晶体单元101拼接为高纯锗晶体单元阵列,其中位于中心位置的高纯锗晶体单元101具有正六边形的形状,其他六个高纯锗晶体包括两个120度的角度,对称分布在中心高纯锗晶体单元101周围。
图4和图5中的剖面线不表示任何有关方向等意义,仅为了示意图4和5是横截面图。
进一步,多个高纯锗晶体单元101具有类似的杂质浓度,有利地,可以保证各个高纯锗晶体单元101具有接近的耗尽电压值,进而可以降低为高纯锗探测器100配置工作偏压的难度。因而,可以提高多个高纯锗晶体单元101构成的探测器的探测准确度和探测效率。
在本发明的其他实施例中,高纯锗探测器100中的多个高纯锗晶体单元101的形状不相同或相近,各个高纯锗晶体单元101的部分表面(例如侧面101c和/或第一顶表面101a)上包括通过蒸镀或溅射形成的电极材料,这些表面部分通过电极材料实现电连接,从而形成高纯锗探测器100的第一接触电极。此外,高纯锗探测器100中的所述两个或更多个高纯锗晶体单元101的杂质浓度也可以不相同,换句话说,只要满足高纯锗晶体的要求即可,或者,进一步,只要使得两个或多个高纯锗晶体单元101能够在相同偏压下工作即可。这些高纯锗晶体单元101被电连接构成高纯锗探测器100,各个晶体单元能够在相同偏压下工作。
根据本发明的实施例,电极材料可以布置在高纯锗晶体单元101的侧表面上,而高纯锗晶体单元101的第一顶表面101a可以是裸露的表面,通过侧表面的接触,多个高纯锗晶体单元101实现电连接。然而,在另一实施例,电极材料可以覆盖高纯锗晶体单元101的侧面101c和第一顶表面101a,射线可以透过电极材料进入高纯锗晶体。
在本发明的实施例中,电极材料可以不用覆盖高纯锗晶体单元101的顶表面101a。没有覆盖电极材料的区域称为晶体本征区,本征区不接触第一电极的(也就是高压)。可以通过其他部件实现多个高纯锗晶体单元101的电连接。被电连接的多个高纯锗晶体单元101因而具有电连接在一起的第一接触电极。例如,在本发明的一个实施例中,多个高纯锗晶体单元101可以通过盒104固定在一起,盒104是导电材料形成,此时盒104在将多个高纯锗晶体单元101固定在一起的同时可以作为电极使用。盒104可以是透明的导电材料形成。
例如如图1所示的盒,盒104与多个高纯锗晶体单元101的侧面101c 接触,而高纯锗晶体单元101的侧面101c或侧面101c的部分蒸镀或溅射有电极材料。在图1的实施例中,多个高纯锗晶体单元101的圆形外侧面101c和角部侧面101s均蒸镀或溅射有电极材料,或者,圆形外侧面101c的部分和角部侧面101s的部分蒸镀或溅射有电极材料。电极材料可以是透明导电材料。导电材料形成的盒是有利的,可以导电的盒不但能够将多个高纯锗晶体单元101固定在一起,而且可以实现多个高纯锗晶体单元101的电连接。
通过合理选择高纯锗晶体单元101的杂质浓度参数,使得各个晶体单元能够在相同偏压下工作,即整个探测器仍然可以采用单一高压电源供电,结构简单,操作方便安全。此处要说明的是,多个高纯锗晶体单元101的杂质浓度可以不相同,而是处于一定范围内。本领域技术人员了解一般意义的高纯锗晶体的杂质浓度的范围,例如,杂质浓度达到10 10cm -3量级,或者优选达到10 9cm -3量级。在本发明的实施例中,多个高纯锗晶体单元101的浓度可以不相同,只要它们的浓度能够配置成所述多个高纯锗晶体单元101能够在相同偏压下工作即可。
图3示出本发明实施例的高纯锗探测器100的框图。高纯锗探测器100可以包括高纯锗晶体单元阵列、电荷灵敏前置放大器以及多通道数字多道谱仪。
在一个实施例中,高纯锗探测器100可以包括两个或更多个电荷灵敏前置放大器,每一个电荷灵敏前置放大器配置成读取和转换一个相应的高纯锗晶体单元101产生的电压信号。图3示出的实施例中,高纯锗探测器100包括3个高纯锗晶体单元101,对应设置3个电荷灵敏前置放大器PreAmp1,PreAmp2,PreAmp3。每一个电荷灵敏前置放大器的反馈方式采用电阻反馈、晶体管反馈或光脉冲反馈。
高纯锗探测器100还可以包括多通道数字多道谱仪,配置成对从每个电荷灵敏前置放大器输入的电压信号滤波成型,提取幅度信息并获取所述输入的电压信号的道址h同时记录其输入的通道的编号i,以便得出所述两个或更多个高纯锗晶体单元101的信号的合成谱。
在本发明的实施例中,多通道数字多道谱仪包括修正系数标定模块, 所述修正系数标定模块针对与每个高纯锗晶体单元101对应的每个输入通道i分别成谱,并自动寻峰获得峰位道址Pij,然后以第一通道为基准,分别针对每个通道i,用公式P 1=a i×P i+b i拟合数据点(P ij,P 1j)(j=1,2,...,k),获得拟合参数[a i,b i]作为通道i的道址修正系数,其中i是正整数,第一通道为任一通道,j=1,2,...,k,k为峰数目,且k≥2。
在本发明的实施例中,多通道数字多道谱仪包括整体谱生成模块,所述整体谱生成模块根据每个信号的输入通道编号i调取与之对应的道址修正参数[a i,b i],将道址h修正为h’=a i×h+b i,按h’累加计数,实时显示所述两个或更多个高纯锗晶体单元101的合成谱。
在本发明的实施例中,在每次测量之初,选择至少两条单能射线作为入射源,所述修正系数标定模块针对与每个高纯锗晶体单元101对应的每个输入通道i分别成谱,并自动寻峰获得峰位道址Pij,然后以第一通道为基准,分别针对每个通道i,用公式P 1=a i×P i+b i拟合数据点(P ij,P 1j)(j=1,2,...,k),获得拟合参数[a i,b i]作为通道i的道址修正系数,其中i是正整数,第一通道为任一通道,j=1,2,...,k,k为峰数目,且k≥2。要说明的是,第一通道没有排序的意义。
通过预标定获得各个晶体单元对应的修正系数,能够在能谱测量过程中对产生自不同晶体的信号道址进行在线修正,实时获得探测器阵列的整体能谱。
依照本发明实施例的高纯锗探测器100的结构,通过GEANT4对探测器的辐射响应进行模拟计算,结果显示,其相对探测器效率可达到102%。对比地,单个圆柱形晶体基材的相对探测器效率约为37%。因而,本发明的实施例可以使用较小的高纯锗晶体单元101实现大的高纯锗晶体单元101的探测效率,使得高纯锗探测器100的成本大大降低。
虽然本总体专利构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体专利构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (15)

  1. 一种高纯锗探测器,包括高纯锗晶体单元阵列,所述高纯锗晶体单元阵列包括两个或更多个高纯锗晶体单元,其中,所述两个或更多个高纯锗晶体单元每一个包括位于侧面和/或第一顶表面的部分电极,并且所述两个或更多个高纯锗晶体单元的侧面和/或第一顶表面的电极电连接共同作为高纯锗探测器的第一接触电极;每个高纯锗晶体单元包括位于其内的各自的第二接触电极使得所述高纯锗探测器包括两个或更多个第二接触电极。
  2. 如权利要求1所述的高纯锗探测器,还包括第一电极和第二电极,第一电极连接第一接触电极,第二电极分别在每个高纯锗晶体单元的第二顶表面处连接所述两个或更多个第二接触电极,每个高纯锗晶体单元的第二顶表面与第一顶表面相对。
  3. 如权利要求1所述的高纯锗探测器,其中所述两个或更多个高纯锗晶体单元配置成能够在相同偏压下工作。
  4. 如权利要求1所述的高纯锗探测器,还包括:
    两个或更多个电荷灵敏前置放大器,每一个电荷灵敏前置放大器配置成读取和转换一个相应的高纯锗晶体单元产生的电荷信号;以及
    多通道数字多道谱仪,配置成对从每个电荷灵敏前置放大器输入的电压信号滤波成型,提取幅度信息并获取所述输入的电压信号的道址h同时记录其输入的通道的编号i,以便得出所述两个或更多个高纯锗晶体单元的信号的合成谱。
  5. 如权利要求4所述的高纯锗探测器,其中多通道数字多道谱仪包括修正系数标定模块,所述修正系数标定模块针对与每个高纯锗晶体单元对应的每个输入通道i分别成谱,并自动寻峰获得峰位道址Pij,然后以第一通道为基准,分别针对每个通道i,用公式P 1=a i×P i+b i拟合数据点(P ij,P 1j)(j=1,2,...,k),获得拟合参数[a i,b i]作为通道i的道址修正系数,其中i是正整数,第一通道为任一通道,j=1,2,...,k,k为峰数目,且k≥2。
  6. 如权利要求5所述的高纯锗探测器,其中多通道数字多道谱仪包括 整体谱生成模块,所述整体谱生成模块根据每个信号的输入通道编号i调取与之对应的道址修正参数[a i,b i],将道址h修正为h’=a i×h+b i,按h’累加计数,实时显示所述两个或更多个高纯锗晶体单元的合成谱。
  7. 如权利要求6所述的高纯锗探测器,其中在每次测量之初,选择至少两条单能射线作为入射源。
  8. 如权利要求4所述的高纯锗探测器,其中每一个电荷灵敏前置放大器的反馈方式采用电阻反馈、晶体管反馈或光脉冲反馈。
  9. 如权利要求2所述的高纯锗探测器,其中在第一电极施加第一电压,对于P型高纯锗晶体阵列第一电压配置成正高压,对于N型高纯锗晶体阵列第一电压配置成负高压;第二电极连接电荷灵敏前置放大器,电荷灵敏前置放大器的输入电平即作为第二电压施加到第二电极上。
  10. 如权利要求1所述的高纯锗探测器,其中所述两个或更多个高纯锗晶体单元通过盒固定在一起。
  11. 如权利要求10所述的高纯锗探测器,其中所述盒由导电材料构成。
  12. 如权利要求1所述的高纯锗探测器,其中由所述两个或更多个高纯锗晶体单元构成的高纯锗探测器具有对称的或规则的形状。
  13. 如权利要求12所述的高纯锗探测器,其中所述高纯锗晶体单元阵列包括三个高纯锗晶体单元,每个高纯锗晶体单元包括120度角部,每个高纯锗晶体单元的120度角部具有两个角部侧面;
    其中,三个高纯锗晶体单元的三个120度角部的顶点接触,三个高纯锗晶体单元的120度的角部的角部侧面与相邻的高纯锗晶体单元的120度角部的角部侧面相互抵靠。
  14. 如权利要求12所述的高纯锗探测器,其中所述高纯锗晶体单元阵列包括4个高纯锗晶体单元,其中两个高纯锗晶体包括120度角的角部,另外两个高纯锗晶体包括两个120度角的角部,从而使得四个高纯锗晶体的角部的侧面相互抵接。
  15. 如权利要求12所述的高纯锗探测器,其中所述高纯锗晶体单元阵列包括7个高纯锗晶体单元,中心位置的高纯锗晶体单元具有正六边形形状,其他六个高纯锗晶体包括两个120度的角度,对称分布在中心高纯锗 晶体单元周围。
PCT/CN2018/120346 2017-12-11 2018-12-11 高纯锗探测器 WO2019114707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/314,048 US20210223416A1 (en) 2017-12-11 2018-12-11 High purity germanium detector
EP18819518.4A EP3726254A1 (en) 2017-12-11 2018-12-11 High-purity germanium detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711315636.5 2017-12-11
CN201711315636.5A CN107831525A (zh) 2017-12-11 2017-12-11 高纯锗探测器

Publications (1)

Publication Number Publication Date
WO2019114707A1 true WO2019114707A1 (zh) 2019-06-20

Family

ID=61642439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120346 WO2019114707A1 (zh) 2017-12-11 2018-12-11 高纯锗探测器

Country Status (4)

Country Link
US (1) US20210223416A1 (zh)
EP (1) EP3726254A1 (zh)
CN (1) CN107831525A (zh)
WO (1) WO2019114707A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831525A (zh) * 2017-12-11 2018-03-23 清华大学 高纯锗探测器
CN115453609A (zh) * 2022-10-10 2022-12-09 兰州理工大学 一种基于Pt100的高纯锗探测器保护系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297506B1 (en) * 2000-03-23 2001-10-02 John W. Young System and method for reducing pile-up errors in multi-crystal gamma ray detector applications
CN101539630A (zh) * 2009-05-08 2009-09-23 上海生物医学工程研究中心 一种复合式高能射线探测和定位的方法
CN101799554A (zh) * 2010-04-14 2010-08-11 成都理工大学 数字式对数γ能谱仪
CN101833106A (zh) * 2010-05-11 2010-09-15 刘继国 一种用于射线位置和能量测量的闪烁体探测器
CN203965630U (zh) * 2014-03-19 2014-11-26 新奥气化采煤有限公司 一种测氡仪
CN104749606A (zh) * 2013-12-27 2015-07-01 同方威视技术股份有限公司 高纯锗探测器
CN107831525A (zh) * 2017-12-11 2018-03-23 清华大学 高纯锗探测器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205450297U (zh) * 2015-12-29 2016-08-10 清华大学 慢中子转换体及慢中子探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297506B1 (en) * 2000-03-23 2001-10-02 John W. Young System and method for reducing pile-up errors in multi-crystal gamma ray detector applications
CN101539630A (zh) * 2009-05-08 2009-09-23 上海生物医学工程研究中心 一种复合式高能射线探测和定位的方法
CN101799554A (zh) * 2010-04-14 2010-08-11 成都理工大学 数字式对数γ能谱仪
CN101833106A (zh) * 2010-05-11 2010-09-15 刘继国 一种用于射线位置和能量测量的闪烁体探测器
CN104749606A (zh) * 2013-12-27 2015-07-01 同方威视技术股份有限公司 高纯锗探测器
CN203965630U (zh) * 2014-03-19 2014-11-26 新奥气化采煤有限公司 一种测氡仪
CN107831525A (zh) * 2017-12-11 2018-03-23 清华大学 高纯锗探测器

Also Published As

Publication number Publication date
US20210223416A1 (en) 2021-07-22
EP3726254A1 (en) 2020-10-21
CN107831525A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN110687583B (zh) 一种基于czt探测器的位置能量时间测试系统及装置
US10976450B2 (en) Combined scintillation crystal, combined scintillation detector and radiation detection device
EP2762924B1 (en) Radiation detectors
WO2019114707A1 (zh) 高纯锗探测器
Bolotnikov et al. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras
CN207611150U (zh) 高纯锗探测器
CN203037860U (zh) 辐射探测器及辐射探测装置
JPH0546709B2 (zh)
Tuts The CUSB-II BGO calorimeter
US9793419B2 (en) Silicon photoelectric multiplier with multiple read-out
Caroli et al. A focal plane detector design for a wide-band Laue-lens telescope
Wang et al. New concepts for scintillator/HgI/sub 2/gamma ray spectroscopy
Bolotnikov et al. CdZnTe position-sensitive drift detectors for spectroscopy and imaging of gamma-ray sources
Caroli et al. Development of a 3D CZT Spectrometer System with Digital Readout for Hard X/Gamma-Ray Astronomy
CN220171262U (zh) 一种位置分辨的闪烁体探测器
Del Sordo et al. Recent trends in the development of CdTe and CdZnTe semiconductor detectors for astrophysical applications
Cozzi et al. A SiPM-Based Detection Module for 2” LaBr 3: Ce Readout for Nuclear Physics Applications
Tronchin et al. Tuning of the BGO anti-Compton shield in the GALILEO array
JPH0476509B2 (zh)
Ocampo Design and Performance Testing of a Linear Array of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors for Uranium Enrichment Measurements
Bolotnikov et al. An array of virtual Frisch-grid CdZnTe detectors and a front-end ASIC for large-area position-sensitive gamma-ray cameras
Lee et al. Development of CZT detectors for x-ray and gamma-ray astronomy
Seifert et al. Simulated performance of the Gamma Tracker CdZnTe handheld radioisotope identifier
CN117618797A (zh) 一种瞬发伽马成像方法、控制装置、电子设备及存储介质
Hull et al. A Germanium Orthogonal Strip Detector System for Gamma‐Ray Imaging

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018819518

Country of ref document: EP

Effective date: 20190121

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE