WO2019114630A1 - Method and device for obtaining coordinates of tcp of robot - Google Patents

Method and device for obtaining coordinates of tcp of robot Download PDF

Info

Publication number
WO2019114630A1
WO2019114630A1 PCT/CN2018/119787 CN2018119787W WO2019114630A1 WO 2019114630 A1 WO2019114630 A1 WO 2019114630A1 CN 2018119787 W CN2018119787 W CN 2018119787W WO 2019114630 A1 WO2019114630 A1 WO 2019114630A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate
coordinates
coordinate system
tcp
robot arm
Prior art date
Application number
PCT/CN2018/119787
Other languages
French (fr)
Chinese (zh)
Inventor
宫明波
刘达
Original Assignee
北京柏惠维康科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京柏惠维康科技有限公司 filed Critical 北京柏惠维康科技有限公司
Publication of WO2019114630A1 publication Critical patent/WO2019114630A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant

Definitions

  • Embodiments of the present invention relate to the field of artificial intelligence, and in particular, to a method and apparatus for acquiring TCP coordinates of a robot.
  • dimensional errors usually occur during the processing of the tool according to the design drawings. Assembly errors may occur during the assembly of the tool to the end of the robot arm. The tool may be affected by the environment and may also cause deformation errors. The measurement process may also occur. Generate measurement errors, etc. These errors will cause the actual coordinates of TCP in the end coordinate system of the arm to deviate from the theoretical coordinates of TCP. If the TCP is calibrated with the theoretical coordinates of TCP, it will inevitably result in the position of the calibrated TCP. There is an error between the actual TCP positions, which affects the working accuracy of the robot.
  • One of the technical problems solved by the embodiments of the present application is to provide a method and apparatus for acquiring TCP coordinates of a robot.
  • the theoretical coordinates of the TCP are adjusted, and all The adjustment coordinate with the smallest error range in the adjustment coordinates is used as the actual coordinate of TCP, which reduces the range of errors generated by the robot during the execution of the work task and improves the working precision of the robot.
  • the embodiment of the present application provides a method for acquiring a TCP coordinate of a robot, including:
  • the point on the tool marking the end of the arm that can be recognized by the sensor is TCP, and the X-axis coordinate of the theoretical coordinate of TCP is separately adjusted to obtain i adjustment coordinates TCP xi (x+ ⁇ xi , y, z), the theory of TCP
  • the Y-axis coordinates of the coordinates are individually adjusted to obtain j adjustment coordinates TCP yj (x, y + ⁇ yj , z)
  • the Z-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain k adjustment coordinates TCP zk (x, y, z+) ⁇ zk ), where i, j, k are integers and i ⁇ 1, j ⁇ 1, k ⁇ 1, ⁇ xi , ⁇ yj , ⁇ zk are the theoretical coordinates of TCP on the X-axis, the Y-axis, and the Z-axis, respectively. Adjustment value on
  • the robot arm coordinate system and the sensor coordinate system are established according to the coordinate conversion relationship between TCP xi , TCP yj , TCP zk and the robot arm end coordinate system and the robot arm coordinate system, and the coordinates of the marked points in the sensor coordinate system. Coordinate transformation relationship with among them, The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted, The coordinate conversion relationship obtained when the Y coordinate of the theoretical coordinate of TCP is individually adjusted, The coordinate conversion relationship obtained when the Z coordinate of the theoretical coordinate of TCP is adjusted separately;
  • the coordinates are converted according to the marked points.
  • the maximum conversion error and/or the average error of m conversion errors in the conversion errors of the m locations where m is an integer and m ⁇ 1;
  • the smallest of the i maximum conversion errors and/or the minimum of the i average errors x + ⁇ xi , the minimum of the j maximum conversion errors and/or the minimum of the j average errors are respectively taken as the X-axis coordinate of the actual coordinate of the TCP, and the Y-axis coordinate And Z-axis coordinates.
  • the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system is established according to the coordinate conversion relationship between the TCP xi and the robot arm end coordinate system and the robot arm coordinate system.
  • the steps include:
  • the coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system is established according to the coordinate conversion relationship between the TCP yj and the robot arm end coordinate system and the robot arm coordinate system.
  • the steps include:
  • the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system is established according to the coordinate transformation relationship between the TCP zk and the robot arm end coordinate system and the robot arm coordinate system.
  • the steps include:
  • a coordinate conversion relationship is obtained according to the m positions in the sensor identification range of the marked points.
  • the steps of the maximum conversion error in the conversion errors of the m locations include:
  • Conversion relationship according to coordinates with The conversion error at each position m p respectively obtains the coordinate conversion relationship Maximum conversion error in the conversion error of m positions, coordinate conversion relationship Maximum conversion error and coordinate conversion relationship among conversion errors at m positions Maximum conversion error in conversion errors at m locations;
  • the conversion error is the Euclidean distance after the coordinate Rm p of the marked point in the robot arm coordinate system and the coordinate Sm p in the sensor coordinate system are converted to the same coordinate system, where m is an integer and m ⁇ 1, 1 ⁇ P ⁇ m.
  • the embodiment of the present application further provides an apparatus for acquiring TCP coordinates of a robot, including:
  • the point on the tool at the end of the robot arm that can be recognized by the sensor is TCP
  • the X coordinate of the theoretical coordinate of TCP is separately adjusted to obtain i adjustment coordinates TCP xi (x+ ⁇ xi , y , z)
  • the Y coordinate of the theoretical coordinate of TCP is separately adjusted to obtain j adjustment coordinates TCP yj (x, y + ⁇ yj , z)
  • the Z coordinate of the theoretical coordinate of TCP is separately adjusted to obtain k adjustment coordinates TCP Zk (x, y, z + ⁇ zk )
  • i, j, k are integers and i ⁇ 1, j ⁇ 1, k ⁇ 1, ⁇ xi , ⁇ yj , ⁇ zk are the theoretical coordinates of TCP respectively Adjustment values on the X axis, Y axis, and Z axis;
  • a coordinate transformation relationship establishing module is used for establishing coordinate conversion between the robot arm coordinate system and the sensor coordinate system according to the coordinate conversion relationship between TCP xi , TCP yj and TCP zk and the robot arm end coordinate system and the robot arm coordinate system, respectively. relationship with among them, The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted, The coordinate conversion relationship obtained when the Y coordinate of the theoretical coordinate of TCP is individually adjusted, The coordinate conversion relationship obtained when the Z coordinate of the theoretical coordinate of TCP is adjusted separately;
  • a deviation obtaining module configured to respectively obtain a coordinate conversion relationship according to the m positions in the sensor identification range of the marked points with The maximum conversion error and/or the average error of m conversion errors in the conversion errors of the m locations, where m is an integer and m ⁇ 1;
  • the coordinate transformation relationship establishing module is specifically configured to:
  • the coordinate transformation relationship establishing module is further configured to:
  • the coordinate transformation relationship establishing module is further configured to:
  • the deviation obtaining module is specifically configured to:
  • Conversion relationship according to coordinates with The conversion error at each position m p respectively obtains the coordinate conversion relationship Maximum conversion error in the conversion error of m positions, coordinate conversion relationship Maximum conversion error and coordinate conversion relationship among conversion errors at m positions
  • the maximum conversion error among the conversion errors of m positions wherein the conversion error is the conversion of the coordinates Rm p of the marked point in the robot arm coordinate system and the coordinate Sm p in the sensor coordinate system to the same coordinate system Euclidean distance, m is an integer and m ⁇ 1,1 ⁇ p ⁇ m.
  • the method and device for acquiring the TCP coordinates of the robot provided by the embodiment of the present application, by adjusting the theoretical coordinates of the TCP, obtain the actual coordinates of the TCP that can cause the robot to minimize the error during the execution of the task. To the greatest extent, it avoids the machining error of the tool during the machining process, the assembly error of the tool assembly to the end of the robot arm, and the influence of the deformation error caused by the environment on the coordinates of the TCP, which reduces the robot's work task. The range of errors generated in the process improves the working accuracy of the robot.
  • FIG. 1 is a schematic flowchart of a method for acquiring a TCP coordinate of a robot according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an apparatus for acquiring a TCP coordinate of a robot according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a mechanical arm and a sensor according to an embodiment of the present application.
  • the embodiment of the present application provides a method for acquiring TCP coordinates of a robot, including steps S100-S400, specifically:
  • Step S100 the point on the tool at the end of the robot arm that can be recognized by the sensor is TCP, and the X coordinate of the theoretical coordinate of the TCP is separately adjusted to obtain i adjustment coordinates TCP xi (x+ ⁇ xi , y, z),
  • the Y-axis coordinates of the theoretical coordinates of TCP are individually adjusted to obtain j adjustment coordinates TCP yj (x, y + ⁇ yj , z)
  • the Z-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain k adjustment coordinates TCP zk (x, y , z+ ⁇ zk ), where i, j, k are integers and i ⁇ 1, j ⁇ 1, k ⁇ 1, ⁇ xi , ⁇ yj , ⁇ zk are the theoretical coordinates of TCP on the X-axis and the Y-axis, respectively. , the adjustment value on the Z axis.
  • the dot is marked as TCP.
  • the marked point can be set as an optical marker point; when the sensor is an electromagnetic sensor, the marked point can be set as an electromagnetic marker point; when the sensor is an ultrasound probe, it can be set
  • the marked points are ultrasonic marking points; when the sensor is an infrared sensor, the marked points can be set as infrared marking points, or other sensors and corresponding marking points.
  • the actual coordinates of the TCP in the robot arm end coordinate system are not determined in step S100. The embodiment of the present application determines the actual coordinates of the TCP according to the marked points.
  • the theoretical coordinates (x, y, z) of the TCP are calculated by the measuring tool or according to the coarse calibration algorithm, and the coordinates on one of the calculated theoretical coordinates are calculated.
  • the first adjustment coordinate TCP xi (x+ ⁇ xi , y, z) is firstly adjusted by separately adjusting the X-axis coordinate of the theoretical coordinate of the TCP, where i is an integer, and I ⁇ 1, ⁇ xi is the adjustment value of the theoretical coordinate of TCP on the X-axis.
  • the adjustment values ⁇ xi , ⁇ yj , ⁇ zk can both be 0, and the coordinates TCP xi (x+ ⁇ xi , y are adjusted). , z) can be equal to the theoretical coordinates of TCP.
  • the method of adjusting the X coordinate of the theoretical coordinate of TCP to obtain i adjustment coordinates TCP xi can be various.
  • an adjustment value can be set, and then the X coordinate of the theoretical coordinate of TCP is Basically, the X-axis coordinate of the theoretical coordinate of TCP is adjusted successively according to the adjusted value to obtain TCP xi ; on the other hand, the adjustment range of one coordinate value can also be defined, and some points or all points in the adjustment range are used as adjustment coordinates.
  • TCP xi In addition to the above two adjustment methods, the adjustment coordinate TCP xi can also be obtained by randomly adjusting the X-axis coordinates of the theoretical coordinates of the TCP. In summary, the manner in which the coordinate TCP xi is adjusted is various, and the present application will not be described in detail herein.
  • the Y-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain j adjustment coordinates TCP yj (x, y + ⁇ yj , z) and the Z-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain k adjustment coordinates TCP zk (x , y, z + ⁇ zk ) method steps and the above-mentioned X-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain TCP xi (x + ⁇ xi , y, z) method steps and implementation are generally consistent, here is not Let me repeat.
  • S200 establishing a robot arm coordinate system and a sensor according to coordinates conversion relationship between TCP xi , TCP yj , TCP zk, and a robot arm end coordinate system and a robot arm coordinate system, and coordinates of the marked point in the sensor coordinate system, respectively.
  • Coordinate transformation relationship between coordinate systems with among them The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted, The coordinate conversion relationship obtained when the Y coordinate of the theoretical coordinate of TCP is individually adjusted, The coordinate conversion relationship obtained when the Z-axis coordinate of the theoretical coordinates of TCP is adjusted separately.
  • step S200 the robot arm coordinate system and the sensor coordinate system are still established according to the coordinate conversion relationship between the TCP xi and the arm end coordinate system and the robot arm coordinate system, and the coordinates of the marked point in the sensor coordinate system.
  • Coordinate transformation relationship As an example, where The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted.
  • the robot arm coordinate system and the sensor coordinate system are established by using the coordinates conversion relationship between the TCP xi and the robot arm end coordinate system and the robot arm coordinate system, and the coordinates of the marked points in the sensor coordinate system.
  • the coordinate conversion relationship between the two is first, according to the movement of the marked point within the sensor recognition range, at least three non-collinear spatial references for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system may be obtained.
  • each of the spatial reference points is obtained i coordinates in the robot arm coordinate system; finally, according to the i coordinates of each of the spatial reference points in the robot arm coordinate system, and the coordinates of each of the spatial reference points in the sensor coordinate system, the robot arm is obtained i coordinate transformation relationship between coordinate system and sensor coordinate system
  • the moving point of the robot arm can be used to move the marked point on the tool at the end of the arm to at least three non-collinear positions, and at least a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system can be obtained.
  • the coordinate conversion relationship between the end coordinate system of the arm and the coordinate system of the robot arm can be calculated by the DH parameter.
  • the coordinate system between the end of the arm and the coordinate system of the arm is obtained.
  • the coordinate conversion relationship is combined with each adjustment coordinate TCP xi to obtain the i coordinates of the marked point in the robot arm coordinate system, and in the embodiment of the present application, the marked point is recorded as TCP, and The position of the marked point in the real space to obtain the spatial reference point, so the coordinates of the marked point in the robot arm coordinate system can be used as the coordinates of the spatial reference point in the robot arm coordinate system, and the marked point moves.
  • At least three non-collinear positions are obtained, and at least three non-collinear spatial reference points are obtained.
  • the obtained i-coordinates of the marked points in the robot arm coordinate system at least three can be obtained.
  • the i coordinate of each of the spatial reference points in the non-collinear spatial reference point in the robot arm coordinate system is obtained.
  • the coordinates of each of the at least three non-collinear spatial reference points in the sensor coordinate system can be obtained, and then according to each of the spatial reference points
  • the i coordinates in the robot arm coordinate system and the coordinates of each of the spatial reference points in the sensor coordinate system can obtain the i coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system.
  • the three non-collinear spatial reference points for establishing the coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system are taken as an example to move according to the marked points moving within the sensor recognition range.
  • the robot arm When the mobile robot arm obtains three non-collinear spatial reference points, the robot arm is in the three poses of pose 1, pose 2, and pose 3.
  • the coordinate conversion relationship between the end coordinate system of the arm and the coordinate system of the robot arm can be obtained by the DH parameter, and the coordinate p1 of the origin of the end coordinate system of the arm in the robot arm coordinate system is passed.
  • the machining drawing of the tool can obtain the theoretical coordinate of TCP in the end coordinate system of the arm, and adjust the X coordinate of the theoretical coordinate separately to obtain the adjusted coordinate TCP x1 . Therefore, the current TCP is represented by p1+TCP x1 .
  • the coordinates in the coordinate system. (It should be noted that the coordinates of the current TCP in the robot arm coordinate system are not the sum of the coordinates of p1 and the coordinates of TCP x1 .
  • the coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system and the coordinate p2 of the robot arm end coordinate system origin in the robot arm coordinate system can be obtained by the DH parameter.
  • the coordinates of TCP in the robot arm coordinate system are represented by p2+TCP x1 .
  • the coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system and the coordinate p3 of the robot arm end coordinate system origin in the robot arm coordinate system can be obtained by the DH parameter.
  • the coordinates of TCP in the robot arm coordinate system are represented by p3+TCP x1 .
  • the coordinates of the three non-collinear spatial reference points of the p1+TCP x1 and s1, p2+TCP x1 and s2, p3+TCP x1 and s3 in the robot arm coordinate system and the sensor coordinate system can be utilized.
  • the coordinates below establish the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system
  • the coordinates of the three non-collinear spatial reference points of the p1+TCP x2 and s1, p2+TCP x2 and s2, p3+TCP x2 and s3 in the robot arm coordinate system and the sensor coordinate system can be utilized.
  • the coordinates below establish the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system
  • the adjustment coordinates of the TCP are obtained by separately adjusting the X-axis coordinates of the theoretical coordinates of the TCP
  • the coordinates of the above TCP in the end coordinate system of the arm are TCP x1 and TCP x2 and TCP are mechanical.
  • the amount of change in the Y-axis coordinate and the Z-axis coordinate is 0 compared to the theoretical coordinate in the arm end coordinate system.
  • the coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system may be calculated without using the theoretical coordinate of TCP; when the adjusted coordinate of TCP can be equal to TCP In theoretical coordinates, the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system can be calculated using the theoretical coordinates of TCP.
  • the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system is established according to the TCP yj and the coordinate transformation relationship between the robot arm end coordinate system and the robot arm coordinate system.
  • the steps are:
  • the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system is established according to the coordinate transformation relationship between the TCP zk and the robot arm end coordinate system and the robot arm coordinate system.
  • the steps include:
  • the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system is established according to the coordinate transformation relationship between TCP yj and TCP zk and the robot arm end coordinate system and the robot arm coordinate system.
  • the method and the above-mentioned coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system are established according to the coordinate conversion relationship between the TCP xi and the robot arm end coordinate system and the robot arm coordinate system.
  • the implementation and method steps are generally the same, and will not be described here.
  • S300 obtaining a coordinate conversion relationship according to the m positions in the sensor recognition range of the marked points with The maximum conversion error and/or the average error of m conversion errors in the conversion errors of the m positions, where m is an integer and m ⁇ 1.
  • the coordinate conversion relationship is obtained according to the m positions in the sensor recognition range of the marked points.
  • the steps of the maximum conversion error in the conversion errors of the m locations include:
  • Conversion relationship according to coordinates with The conversion error at each position m p respectively obtains the coordinate conversion relationship Maximum conversion error in the conversion error of m positions, coordinate conversion relationship Maximum conversion error and coordinate conversion relationship among conversion errors at m positions
  • the maximum conversion error among the conversion errors of m positions wherein the conversion error is the conversion of the coordinates Rm p of the marked point in the robot arm coordinate system and the coordinate Sm p in the sensor coordinate system to the same coordinate system Euclidean distance, m is an integer and m ⁇ 1,1 ⁇ p ⁇ m.
  • the coordinates are converted according to the marked points.
  • the steps of the average error of the conversion errors at the m locations include:
  • the coordinate transformation relationship is still obtained by m positions within the sensor recognition range according to the marked points.
  • the step S300 will be described by taking the maximum conversion error and/or the average error of m conversion errors among the conversion errors of the m positions as an example.
  • the robot arm coordinates Rm p of the marked points at the 10 positions can be obtained by the conversion relationship of the joints of the robot arm, and the marked points and the movement of the marked points can be recognized by the sensor.
  • the sensor coordinates Sm p of the marked points at the 10 positions are obtained, where 1 ⁇ p ⁇ 10. Further through the previously established coordinate transformation relationship You can find the conversion error at these 10 positions. or From these 10 conversion errors, the largest conversion error can be selected as err xmax_1 , and the average error of the conversion errors at these 10 positions can be calculated as err xaver_1 .
  • the coordinates are converted according to the marked points.
  • the implementation method and method steps of the maximum conversion error and/or the average error of the m conversion errors in the conversion errors of the m positions and the above-described coordinate conversion relationship The maximum conversion error of the conversion error at m positions and/or the average error of the m conversion errors are substantially identical, and will not be described herein.
  • a movement program may be set for the robot arm, so that the robot arm automatically moves to m positions within the sensor recognition range, and the number of movements, the movement path, and the movement distance can be Implemented using existing methods, and is looking for each coordinate transformation relationship with In the case of conversion errors at m positions, the same m positions can be utilized.
  • S400 will get the coordinate conversion relationship
  • the minimum of the k maximum conversion errors and/or the minimum of the k average errors, z + ⁇ zk are the X-axis coordinates, the Y-axis coordinates, and the Z-axis coordinates of the actual coordinates of the TCP.
  • the coordinate corresponding to the minimum value of the maximum conversion error of the coordinate conversion relationship is exemplified, and the coordinate conversion relationship obtained by adjusting the coordinates TCP x1 , TCP x2 and TCP x3 is obtained.
  • the minimum of the three maximum conversion errors is err xmax_2 , then x+ ⁇ x2 is taken as the X-axis coordinate of the actual coordinates of TCP; similarly, there are adjustment coordinates TCP y1 , TCP y2 , TCP y3 and TCP y4 , if the coordinates are converted relationship
  • the minimum of the four maximum conversion errors is err ymax_4 , then y+ ⁇ y4 is taken as the Y-axis coordinate of the actual coordinates of TCP; likewise, there are adjustment coordinates TCP z1 , TCP z2 , TCP z3 , TCP z4 and TCP z5 , If the coordinate conversion relationship
  • the minimum of the five maximum conversion errors is
  • the embodiment of the present application first marks a point on the tool at the end of the robot arm that can be recognized by the sensor as TCP.
  • the theoretical coordinate of the TCP can be obtained by the design drawing of the tool combined with the coordinate system of the end of the arm, but the actual coordinates of the TCP are It is not determined that in the process of determining the actual coordinates of the TCP, i coordinate adjustments are obtained by separately adjusting the X-axis coordinates of the theoretical coordinates of the TCP, and i adjustment coordinates and the arm end coordinate system and the robot arm coordinate system are used.
  • the coordinate transformation relationship and the coordinates of the marked point in the sensor coordinate system establish i coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system, and further move the marked point to m positions within the sensor recognition range.
  • Obtaining the maximum conversion error and/or the average error of the conversion error of each coordinate transformation relationship at m positions that is, obtaining an error between the mechanical arm coordinates and the corresponding sensor coordinates converted by each coordinate adjustment relationship via the coordinate transformation relationship
  • the X-axis coordinate of the TCP adjustment coordinate corresponding to the minimum value of the small value and/or the i average error is set to the X-axis coordinate of the actual coordinate of the TCP, and similarly, the Y-axis coordinate of the theoretical coordinate of the TCP is separately adjusted.
  • the Y-axis coordinate of the actual coordinate of TCP is adjusted by the Z-axis coordinate of the theoretical coordinate of TCP alone, and the Z-axis coordinate of the actual coordinate of TCP is obtained, and the X-axis coordinate of the actual coordinate of TCP obtained separately is obtained, and the Y-axis
  • the coordinates and the Z-axis coordinates are used to obtain the actual coordinates of the TCP.
  • the embodiment of the present application reduces the range of errors generated by the robot when performing tasks, and improves the working accuracy of the robot.
  • the embodiment of the present application further provides an apparatus for acquiring TCP coordinates of a robot, as shown in FIG. 2, including:
  • the marking and adjusting coordinate module 201 is configured to mark the point on the tool end of the robot arm that can be recognized by the sensor as TCP, and separately adjust the X-axis coordinate of the theoretical coordinate of the TCP to obtain i adjustment coordinates TCP xi (x+ ⁇ xi , y, z), the Y coordinate of the theoretical coordinate of TCP is separately adjusted to obtain j adjustment coordinates TCP yj (x, y + ⁇ yj , z), and the Z coordinate of the theoretical coordinate of TCP is separately adjusted to obtain k adjustment coordinates.
  • TCP zk (x, y, z + ⁇ zk ), where i, j, k are integers and i ⁇ 1, j ⁇ 1, k ⁇ 1, ⁇ xi , ⁇ yj , ⁇ zk are theoretical coordinates of TCP, respectively Adjustment values on the X-axis, Y-axis, and Z-axis;
  • the coordinate transformation relationship establishing module 202 is configured to establish a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the coordinate conversion relationship between the TCP xi , the TCP yj , the TCP zk, and the robot arm end coordinate system and the robot arm coordinate system, respectively. with among them, The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted, The coordinate conversion relationship obtained when the Y coordinate of the theoretical coordinate of TCP is individually adjusted, The coordinate conversion relationship obtained when the Z coordinate of the theoretical coordinate of TCP is adjusted separately;
  • the deviation obtaining module 203 is configured to obtain a coordinate conversion relationship according to the m positions in the sensor identification range of the marked points. with The maximum conversion error and/or the average error of m conversion errors in the conversion errors of the m locations, where m is an integer and m ⁇ 1;
  • the actual coordinate determining module 204 of the TCP is configured to use the minimum value of the obtained i maximum conversion errors and/or the minimum value of the minimum values among the i average errors x + ⁇ xi , the minimum of the j maximum conversion errors And the coordinate y + ⁇ yj corresponding to the minimum value of the mean errors and the minimum value of the k maximum conversion errors and/or the coordinate z + ⁇ zk corresponding to the minimum value of the k average errors respectively as TCP
  • the tag and adjustment coordinate module 201, the coordinate conversion relationship establishing module 202, the deviation obtaining module 203, and the actual coordinate determining module 204 of the TCP are used to execute the corresponding preferred steps in the foregoing method embodiments.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be processed separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional units described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Abstract

A method for obtaining the coordinates of a TCP of a robot, comprising: firstly, marking a point, capable of being recognized by a sensor, on a tool at the end of a robot arm as a TCP; separately adjusting the X-axis coordinate, Y-axis coordinate, and Z-axis coordinate of theoretical coordinates of the TCP, to obtain a total of three coordinate transformation relationships of the marked point between a robot arm coordinate system and a sensor coordinate system in the three adjusting modes; according to multiple positions of the marked point in a recognition range of the sensor, obtaining a maximum transformation error among transformation errors corresponding to each coordinate transformation relationship at the multiple positions and/or an average error of the transformation errors; and setting the X-axis coordinate, Y-axis coordinate, and Z-axis coordinate corresponding to the minimum values in maximum transformation error sets of and/or the minimum values in average error sets of the three coordinate transformation relationships as the X-axis coordinate, Y-axis coordinate, and Z-axis coordinate of the actual coordinates of the TCP.

Description

一种获取机器人TCP坐标的方法和装置Method and device for acquiring robot TCP coordinates 技术领域Technical field
本发明实施例涉及人工智能领域,尤其涉及一种获取机器人TCP坐标的方法和装置。Embodiments of the present invention relate to the field of artificial intelligence, and in particular, to a method and apparatus for acquiring TCP coordinates of a robot.
背景技术Background technique
随着科技的发展,机器人的应用领域越来越广泛。对于高精度加工领域和手术领域这两个应用领域中的机器人来说,其需要完成的工作任务对精度有很高的要求。With the development of technology, the field of application of robots has become more and more extensive. For the robots in the two application fields of high-precision machining and surgery, the tasks that need to be completed have high requirements for precision.
一般来说,高精度加工机器人和手术机器人在执行工作任务时,均需要在其自身机械臂上加装工具才能完成相关工作。由于机械臂末端坐标系与机械臂坐标系中之间的坐标转换关系可以通过DH参数计算得出,其中的误差很小,那么,如何准确得到工具自身坐标系原点(Tool Center Point,TCP)在机械臂末端坐标系中的坐标是影响其工作精度的关键因素。目前,TCP在机械臂末端坐标系中的坐标可以通过机械臂末端坐标系结合工具自身的理论尺寸计算或测量得到,其称作TCP的理论坐标。也就是说,当工具装配到机械臂末端后,只能利用TCP的理论坐标来执行工作任务。In general, high-precision machining robots and surgical robots need to add tools to their own robotic arms to perform related tasks when performing work tasks. Since the coordinate conversion relationship between the end coordinate system of the arm and the coordinate system of the arm can be calculated by the DH parameter, and the error is small, how to accurately obtain the tool's own coordinate system origin (Tool Center Point, TCP) The coordinates in the end coordinate system of the arm are the key factors that affect the accuracy of its work. At present, the coordinates of TCP in the end coordinate system of the robot arm can be calculated or measured by the theoretical size of the robot arm end coordinate system in combination with the tool itself, which is called the theoretical coordinate of TCP. That is to say, when the tool is assembled to the end of the robot arm, the theoretical coordinates of TCP can only be used to perform the work task.
但是在根据设计图纸对工具进行加工的过程中一般会产生尺寸误差,将工具装配到机械臂末端的过程中可能会产生装配误差,工具受环境的影响也可能产生形变误差,测量过程中也可能产生测量误差等,这些误差均会使TCP在机械臂末端坐标系中的实际坐标与TCP的理论坐标产生偏差,若以TCP的理论坐标对TCP进行标定,那么必然造成所标定的TCP的位置和实际的TCP位置之间产生误差,从而影响机器人的工作 精度。However, dimensional errors usually occur during the processing of the tool according to the design drawings. Assembly errors may occur during the assembly of the tool to the end of the robot arm. The tool may be affected by the environment and may also cause deformation errors. The measurement process may also occur. Generate measurement errors, etc. These errors will cause the actual coordinates of TCP in the end coordinate system of the arm to deviate from the theoretical coordinates of TCP. If the TCP is calibrated with the theoretical coordinates of TCP, it will inevitably result in the position of the calibrated TCP. There is an error between the actual TCP positions, which affects the working accuracy of the robot.
发明内容Summary of the invention
本申请实施例解决的技术问题之一在于提供一种获取机器人TCP坐标的方法和装置,在测量或计算TCP在机械臂末端坐标系中的坐标时,对TCP的理论坐标进行调整,并将所有的调整坐标中产生误差范围最小的调整坐标作为TCP的实际坐标,缩小了机器人在执行工作任务过程中产生误差的范围,提高了机器人的工作精度。One of the technical problems solved by the embodiments of the present application is to provide a method and apparatus for acquiring TCP coordinates of a robot. When measuring or calculating the coordinates of TCP in the coordinate system of the end of the arm, the theoretical coordinates of the TCP are adjusted, and all The adjustment coordinate with the smallest error range in the adjustment coordinates is used as the actual coordinate of TCP, which reduces the range of errors generated by the robot during the execution of the work task and improves the working precision of the robot.
一方面,本申请实施例提供了一种获取机器人TCP坐标的方法,包括:In one aspect, the embodiment of the present application provides a method for acquiring a TCP coordinate of a robot, including:
标记机械臂末端的工具上能够被传感器识别的点为TCP,并对TCP的理论坐标的X轴坐标单独调整得到i个调整坐标TCP xi(x+Δ xi,y,z),对TCP的理论坐标的Y轴坐标单独调整得到j个调整坐标TCP yj(x,y+Δ yj,z),对TCP的理论坐标的Z轴坐标单独调整得到k个调整坐标TCP zk(x,y,z+Δ zk),其中,i,j,k均为整数且i≧1,j≧1,k≧1,Δ xi,Δ yj,Δ zk分别为TCP的理论坐标在X轴,Y轴,Z轴上的调整值; The point on the tool marking the end of the arm that can be recognized by the sensor is TCP, and the X-axis coordinate of the theoretical coordinate of TCP is separately adjusted to obtain i adjustment coordinates TCP xi (x+Δ xi , y, z), the theory of TCP The Y-axis coordinates of the coordinates are individually adjusted to obtain j adjustment coordinates TCP yj (x, y + Δ yj , z), and the Z-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain k adjustment coordinates TCP zk (x, y, z+) Δ zk ), where i, j, k are integers and i≧1, j≧1, k≧1, Δ xi , Δ yj , Δ zk are the theoretical coordinates of TCP on the X-axis, the Y-axis, and the Z-axis, respectively. Adjustment value on
分别根据TCP xi,TCP yj,TCP zk和机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,以及所标记的点在传感器坐标系中的坐标,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000001
Figure PCTCN2018119787-appb-000002
其中,
Figure PCTCN2018119787-appb-000003
为单独对TCP的理论坐标的X轴坐标调整时得到的坐标转换关系,
Figure PCTCN2018119787-appb-000004
为单独对TCP的理论坐标的Y轴坐标调整时得到的坐标转换关系,
Figure PCTCN2018119787-appb-000005
单独对TCP的理论坐标的Z轴坐标调整时得到的坐标转换关系;
The robot arm coordinate system and the sensor coordinate system are established according to the coordinate conversion relationship between TCP xi , TCP yj , TCP zk and the robot arm end coordinate system and the robot arm coordinate system, and the coordinates of the marked points in the sensor coordinate system. Coordinate transformation relationship
Figure PCTCN2018119787-appb-000001
with
Figure PCTCN2018119787-appb-000002
among them,
Figure PCTCN2018119787-appb-000003
The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted,
Figure PCTCN2018119787-appb-000004
The coordinate conversion relationship obtained when the Y coordinate of the theoretical coordinate of TCP is individually adjusted,
Figure PCTCN2018119787-appb-000005
The coordinate conversion relationship obtained when the Z coordinate of the theoretical coordinate of TCP is adjusted separately;
根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000006
Figure PCTCN2018119787-appb-000007
在所述m个位置的转换误差中的最大转换误差和/或m个转换误差的平均误差,其中,m为整数且m≧1;
According to the m points in the sensor recognition range, the coordinates are converted according to the marked points.
Figure PCTCN2018119787-appb-000006
with
Figure PCTCN2018119787-appb-000007
The maximum conversion error and/or the average error of m conversion errors in the conversion errors of the m locations, where m is an integer and m ≧ 1;
将得到的i个最大转换误差中的最小值和/或i个平均误差中的最小值对应的坐标x+Δ xi,j个最大转换误差中的最小值和/或j个平均误差中的最小值对应的坐标y+Δ yj和k个最大转换误差中的最小值和/或k个平均误差中的最小值对应的坐标z+Δ zk分别作为TCP的实际坐标的X轴坐标,Y轴坐标和Z轴坐标。 The smallest of the i maximum conversion errors and/or the minimum of the i average errors x + Δ xi , the minimum of the j maximum conversion errors and/or the minimum of the j average errors The coordinate y + Δ yj corresponding to the value and the minimum value among the k maximum conversion errors and/or the coordinate z + Δ zk corresponding to the minimum value of the k average errors are respectively taken as the X-axis coordinate of the actual coordinate of the TCP, and the Y-axis coordinate And Z-axis coordinates.
可选地,根据TCP xi以及机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000008
的步骤包括:
Optionally, the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system is established according to the coordinate conversion relationship between the TCP xi and the robot arm end coordinate system and the robot arm coordinate system.
Figure PCTCN2018119787-appb-000008
The steps include:
根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range;
将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP xi相结合,得到每个所述空间参考点在机械臂坐标系中的i个坐标; Combining the coordinate conversion relationship between the robot arm end coordinate system corresponding to the position of each of the spatial reference points and the robot arm coordinate system with each adjustment coordinate TCP xi , and obtaining the coordinates of each of the spatial reference points in the robot arm i coordinates in the system;
根据每个所述空间参考点在机械臂坐标系中的i个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的i个坐标转换关系
Figure PCTCN2018119787-appb-000009
Obtaining i coordinates between the robot arm coordinate system and the sensor coordinate system according to i coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
Figure PCTCN2018119787-appb-000009
可选地,根据TCP yj以及机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000010
的步骤包括:
Optionally, the coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system is established according to the coordinate conversion relationship between the TCP yj and the robot arm end coordinate system and the robot arm coordinate system.
Figure PCTCN2018119787-appb-000010
The steps include:
根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range;
将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP yj相结合,得到每个所述空间参考点在机械臂坐标系中的j个坐标; Combining the coordinate conversion relationship between the robot arm end coordinate system corresponding to the position of each of the spatial reference points and the robot arm coordinate system with each adjustment coordinate TCP yj to obtain the coordinates of each of the spatial reference points in the arm j coordinates in the system;
根据每个所述空间参考点在机械臂坐标系中的j个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的j个坐标转换关系
Figure PCTCN2018119787-appb-000011
Obtaining j coordinates between the robot arm coordinate system and the sensor coordinate system according to j coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
Figure PCTCN2018119787-appb-000011
可选地,根据TCP zk以及机械臂末端坐标系与机械臂坐标系之间的坐 标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000012
的步骤包括:
Optionally, the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system is established according to the coordinate transformation relationship between the TCP zk and the robot arm end coordinate system and the robot arm coordinate system.
Figure PCTCN2018119787-appb-000012
The steps include:
根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range;
将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP zk相结合,得到每个所述空间参考点在机械臂坐标系中的k个坐标; Combining the coordinate conversion relationship between the robot arm end coordinate system corresponding to the position of each of the spatial reference points and the robot arm coordinate system with each adjustment coordinate TCP zk , and obtaining the coordinates of each of the spatial reference points in the robot arm k coordinates in the system;
根据每个所述空间参考点在机械臂坐标系中的k个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的k个坐标转换关系
Figure PCTCN2018119787-appb-000013
Obtaining k coordinates between the robot arm coordinate system and the sensor coordinate system according to k coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
Figure PCTCN2018119787-appb-000013
可选地,根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000014
Figure PCTCN2018119787-appb-000015
在所述m个位置的转换误差中的最大转换误差的步骤包括:
Optionally, a coordinate conversion relationship is obtained according to the m positions in the sensor identification range of the marked points.
Figure PCTCN2018119787-appb-000014
with
Figure PCTCN2018119787-appb-000015
The steps of the maximum conversion error in the conversion errors of the m locations include:
根据m个位置中每个位置m p下所标记的点在机械臂坐标系中的坐标Rm p和在传感器坐标系中的坐标Sm p,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000016
在每个位置m p下的转换误差,坐标转换关系
Figure PCTCN2018119787-appb-000017
在每个位置m p下的转换误差和坐标转换关系
Figure PCTCN2018119787-appb-000018
在每个位置m p下的转换误差;
According to the coordinates Rm p in the robot arm coordinate system and the coordinates Sm p in the sensor coordinate system, the coordinates of the points marked under each position m p in the m positions are respectively obtained.
Figure PCTCN2018119787-appb-000016
Conversion error at each position m p , coordinate conversion relationship
Figure PCTCN2018119787-appb-000017
Conversion error and coordinate transformation relationship at each position m p
Figure PCTCN2018119787-appb-000018
Conversion error at each position m p ;
根据坐标转换关系
Figure PCTCN2018119787-appb-000019
在每个位置m p下的转换误差,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000021
在m个位置的转换误差中的最大转换误差,坐标转换关系
Figure PCTCN2018119787-appb-000022
在m个位置的转换误差中的最大转换误差和坐标转换关系
Figure PCTCN2018119787-appb-000023
在m个位置的转换误差中的最大转换误差;
Conversion relationship according to coordinates
Figure PCTCN2018119787-appb-000019
with The conversion error at each position m p respectively obtains the coordinate conversion relationship
Figure PCTCN2018119787-appb-000021
Maximum conversion error in the conversion error of m positions, coordinate conversion relationship
Figure PCTCN2018119787-appb-000022
Maximum conversion error and coordinate conversion relationship among conversion errors at m positions
Figure PCTCN2018119787-appb-000023
Maximum conversion error in conversion errors at m locations;
其中,转换误差为将所标记的点在机械臂坐标系中的坐标Rm p和在传感器坐标系中的坐标Sm p转换到同一坐标系后的欧式距离,m为整数且m≧1,1≦p≦m。 The conversion error is the Euclidean distance after the coordinate Rm p of the marked point in the robot arm coordinate system and the coordinate Sm p in the sensor coordinate system are converted to the same coordinate system, where m is an integer and m≧1, 1≦ P≦m.
另一方面,本申请实施例还提供了一种获取机器人TCP坐标的装置,包括:On the other hand, the embodiment of the present application further provides an apparatus for acquiring TCP coordinates of a robot, including:
标记和调整坐标模块,用于标记机械臂末端的工具上能够被传感器识别的点为TCP,并对TCP的理论坐标的X轴坐标单独调整得到i个调整坐标TCP xi(x+Δ xi,y,z),对TCP的理论坐标的Y轴坐标单独调整得到j个调整坐标TCP yj(x,y+Δ yj,z),对TCP的理论坐标的Z轴坐标单独调整得到k个调整坐标TCP zk(x,y,z+Δ zk),其中,i,j,k均为整数且i≧1,j≧1,k≧1,Δ xi,Δ yj,Δ zk分别为TCP的理论坐标在X轴,Y轴,Z轴上的调整值; Marking and adjusting coordinate module, the point on the tool at the end of the robot arm that can be recognized by the sensor is TCP, and the X coordinate of the theoretical coordinate of TCP is separately adjusted to obtain i adjustment coordinates TCP xi (x+Δ xi , y , z), the Y coordinate of the theoretical coordinate of TCP is separately adjusted to obtain j adjustment coordinates TCP yj (x, y + Δ yj , z), and the Z coordinate of the theoretical coordinate of TCP is separately adjusted to obtain k adjustment coordinates TCP Zk (x, y, z + Δ zk ), where i, j, k are integers and i ≧ 1, j ≧ 1, k ≧ 1, Δ xi , Δ yj , Δ zk are the theoretical coordinates of TCP respectively Adjustment values on the X axis, Y axis, and Z axis;
坐标转换关系建立模块,用于分别根据TCP xi,TCP yj和TCP zk以及机 械臂末端坐标系与机械臂坐标系之间的坐标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000024
Figure PCTCN2018119787-appb-000025
其中,
Figure PCTCN2018119787-appb-000026
为单独对TCP的理论坐标的X轴坐标调整时得到的坐标转换关系,
Figure PCTCN2018119787-appb-000027
为单独对TCP的理论坐标的Y轴坐标调整时得到的坐标转换关系,
Figure PCTCN2018119787-appb-000028
单独对TCP的理论坐标的Z轴坐标调整时得到的坐标转换关系;
A coordinate transformation relationship establishing module is used for establishing coordinate conversion between the robot arm coordinate system and the sensor coordinate system according to the coordinate conversion relationship between TCP xi , TCP yj and TCP zk and the robot arm end coordinate system and the robot arm coordinate system, respectively. relationship
Figure PCTCN2018119787-appb-000024
with
Figure PCTCN2018119787-appb-000025
among them,
Figure PCTCN2018119787-appb-000026
The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted,
Figure PCTCN2018119787-appb-000027
The coordinate conversion relationship obtained when the Y coordinate of the theoretical coordinate of TCP is individually adjusted,
Figure PCTCN2018119787-appb-000028
The coordinate conversion relationship obtained when the Z coordinate of the theoretical coordinate of TCP is adjusted separately;
偏差获取模块,用于根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000029
Figure PCTCN2018119787-appb-000030
在所述m个位置的转换误差中的最大转换误差和/或m个转换误差的平均误差,其中,m为整数且m≧1;
a deviation obtaining module, configured to respectively obtain a coordinate conversion relationship according to the m positions in the sensor identification range of the marked points
Figure PCTCN2018119787-appb-000029
with
Figure PCTCN2018119787-appb-000030
The maximum conversion error and/or the average error of m conversion errors in the conversion errors of the m locations, where m is an integer and m ≧ 1;
TCP的实际坐标确定模块,用于将得到的i个最大转换误差中的最小值和/或i个平均误差中的最小值对应的坐标x+Δ xi,j个最大转换误差中的最小值和/或j个平均误差中的最小值对应的坐标y+Δ yj和k个最大转换误差中的最小值和/或k个平均误差中的最小值对应的坐标z+Δ zk分别作为TCP的实际坐标的X轴坐标,Y轴坐标和Z轴坐标。 Determining actual coordinates of the TCP module, a minimum value for the i-th maximum conversion obtained in error and / or a minimum value corresponding to the coordinates x + Δ xi i th average error of the minimum value of the j-th and the maximum conversion error / or the coordinate y + Δ yj corresponding to the minimum of the j average errors and the minimum of the k maximum conversion errors and / or the coordinate z + Δ zk corresponding to the minimum of the k average errors respectively as the actual TCP The X-axis coordinates of the coordinates, the Y-axis coordinates, and the Z-axis coordinates.
可选地,坐标转换关系建立模块具体用于:Optionally, the coordinate transformation relationship establishing module is specifically configured to:
根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考 点;Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range;
将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP xi相结合,得到每个空间参考点在机械臂坐标系中的i个坐标; Combining the coordinate conversion relationship between the robot arm end coordinate system corresponding to the position of each of the spatial reference points and the robot arm coordinate system with each adjustment coordinate TCP xi , and obtaining each spatial reference point in the robot arm coordinate system i coordinates;
根据每个所述空间参考点在机械臂坐标系中的i个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的i个坐标转换关系
Figure PCTCN2018119787-appb-000031
Obtaining i coordinates between the robot arm coordinate system and the sensor coordinate system according to i coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
Figure PCTCN2018119787-appb-000031
可选地,坐标转换关系建立模块还用于:Optionally, the coordinate transformation relationship establishing module is further configured to:
根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range;
将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP yj相结合,得到每个空间参考点在机械臂坐标系中的j个坐标; Combining the coordinate conversion relationship between the robot arm end coordinate system corresponding to the position of each of the spatial reference points and the robot arm coordinate system with each adjustment coordinate TCP yj , and obtaining each spatial reference point in the robot arm coordinate system j coordinates;
根据每个所述空间参考点在机械臂坐标系中的j个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的j个坐标转换关系
Figure PCTCN2018119787-appb-000032
Obtaining j coordinates between the robot arm coordinate system and the sensor coordinate system according to j coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
Figure PCTCN2018119787-appb-000032
可选地,坐标转换关系建立模块还用于:Optionally, the coordinate transformation relationship establishing module is further configured to:
根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range;
将每个所述空间参考点所在位置对应的机机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP zk相结合,得到每个所述空间参考点在机械臂坐标系中的k个坐标; Combining the coordinate conversion relationship between the robot arm end coordinate system corresponding to the position of each of the spatial reference points and the robot arm coordinate system with each adjustment coordinate TCP zk , and obtaining each of the spatial reference points on the robot arm k coordinates in the coordinate system;
根据每个所述空间参考点在机械臂坐标系中的k个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的k个坐标转换关系
Figure PCTCN2018119787-appb-000033
Obtaining k coordinates between the robot arm coordinate system and the sensor coordinate system according to k coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
Figure PCTCN2018119787-appb-000033
可选地,偏差获取模块具体用于:Optionally, the deviation obtaining module is specifically configured to:
根据m个位置中每个位置m p下所标记的点在机械臂坐标系中的坐标Rm p和在传感器坐标系中的坐标Sm p,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000034
在每个位置m p下的转换误差,坐标转换关系
Figure PCTCN2018119787-appb-000035
在每个位置m p下的转换误差和坐标转换关系
Figure PCTCN2018119787-appb-000036
在每个位置m p下的转换误差;
According to the coordinates Rm p in the robot arm coordinate system and the coordinates Sm p in the sensor coordinate system, the coordinates of the points marked under each position m p in the m positions are respectively obtained.
Figure PCTCN2018119787-appb-000034
Conversion error at each position m p , coordinate conversion relationship
Figure PCTCN2018119787-appb-000035
Conversion error and coordinate transformation relationship at each position m p
Figure PCTCN2018119787-appb-000036
Conversion error at each position m p ;
根据坐标转换关系
Figure PCTCN2018119787-appb-000037
Figure PCTCN2018119787-appb-000038
在每个位置m p下的转换误差,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000039
在m个位置的转换误差中的最大转换误差,坐标转换关系
Figure PCTCN2018119787-appb-000040
在m个位置的转换误差中的最大转换误差和坐标转换关系
Figure PCTCN2018119787-appb-000041
在m个位置的转换误差中的最大转换误差;其中,转换误差为将所标记的点在机械臂坐标系中的坐标Rm p和在传感 器坐标系中的坐标Sm p转换到同一坐标系后的欧式距离,m为整数且m≧1,1≦p≦m。
Conversion relationship according to coordinates
Figure PCTCN2018119787-appb-000037
with
Figure PCTCN2018119787-appb-000038
The conversion error at each position m p respectively obtains the coordinate conversion relationship
Figure PCTCN2018119787-appb-000039
Maximum conversion error in the conversion error of m positions, coordinate conversion relationship
Figure PCTCN2018119787-appb-000040
Maximum conversion error and coordinate conversion relationship among conversion errors at m positions
Figure PCTCN2018119787-appb-000041
The maximum conversion error among the conversion errors of m positions; wherein the conversion error is the conversion of the coordinates Rm p of the marked point in the robot arm coordinate system and the coordinate Sm p in the sensor coordinate system to the same coordinate system Euclidean distance, m is an integer and m≧1,1≦p≦m.
由以上技术方案可见,本申请实施例提供的一种获取机器人TCP坐标的方法和装置,通过对TCP的理论坐标进行调整,得到能够使得机器人在执行任务过程中产生误差最小的TCP的实际坐标,最大程度上避免了工具在加工过程中的加工误差,工具装配到机械臂末端过程中的装配误差以及工具受环境影响产生的形变误差对TCP的坐标产生的误差影响,缩小了机器人执行工作任务的过程中产生误差的范围,提高了机器人的工作精度。It can be seen from the above technical solution that the method and device for acquiring the TCP coordinates of the robot provided by the embodiment of the present application, by adjusting the theoretical coordinates of the TCP, obtain the actual coordinates of the TCP that can cause the robot to minimize the error during the execution of the task. To the greatest extent, it avoids the machining error of the tool during the machining process, the assembly error of the tool assembly to the end of the robot arm, and the influence of the deformation error caused by the environment on the coordinates of the TCP, which reduces the robot's work task. The range of errors generated in the process improves the working accuracy of the robot.
附图说明DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the description of the prior art will be briefly described below. Obviously, the drawings in the following description are only It is a few embodiments described in the embodiments of the present invention, and other drawings can be obtained according to the drawings for those skilled in the art.
图1为本申请实施例提供的一种获取机器人TCP坐标的方法流程示意图;FIG. 1 is a schematic flowchart of a method for acquiring a TCP coordinate of a robot according to an embodiment of the present application;
图2为本申请实施例提供的一种获取机器人TCP坐标的装置结构示意图;2 is a schematic structural diagram of an apparatus for acquiring a TCP coordinate of a robot according to an embodiment of the present application;
图3为本申请实施例提供的机械臂和传感器的示意图。FIG. 3 is a schematic diagram of a mechanical arm and a sensor according to an embodiment of the present application.
具体实施方式Detailed ways
当然,实施本发明实施例的任一技术方案不一定需要同时达到以上 的所有优点。Of course, implementing any of the embodiments of the embodiments of the present invention does not necessarily require all of the above advantages.
为了使本领域的人员更好地理解本发明实施例中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明实施例一部分实施例,而不是全部的实施例。基于本发明实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本发明实施例保护的范围。For a better understanding of the technical solutions in the embodiments of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described in conjunction with the accompanying drawings in the embodiments of the present invention. The embodiments are only a part of the embodiments of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art should be within the scope of protection of the embodiments of the present invention based on the embodiments in the embodiments of the present invention.
针对已有技术中,通过机械臂末端坐标系结合工具自身的理论尺寸计算或者测量工具自身坐标系原点(Tool Center Point,TCP)在机械臂末端坐标系中的坐标时存在误差的问题,如图1所示,本申请实施例提供了一种获取机器人TCP坐标的方法,包括步骤S100-S400,具体地:In the prior art, there is a problem in the calculation of the theoretical size of the tool arm end coordinate system or the coordinate of the tool's own coordinate system origin (Tool Center Point, TCP) in the end coordinate system of the arm, as shown in the figure. As shown in FIG. 1 , the embodiment of the present application provides a method for acquiring TCP coordinates of a robot, including steps S100-S400, specifically:
步骤S100:标记机械臂末端的工具上能够被传感器识别的点为TCP,并对TCP的理论坐标的X轴坐标单独调整得到i个调整坐标TCP xi(x+Δ xi,y,z),对TCP的理论坐标的Y轴坐标单独调整得到j个调整坐标TCP yj(x,y+Δ yj,z),对TCP的理论坐标的Z轴坐标单独调整得到k个调整坐标TCP zk(x,y,z+Δ zk),其中,i,j,k均为整数且i≧1,j≧1,k≧1,Δ xi,Δ yj,Δ zk分别为TCP的理论坐标在X轴,Y轴,Z轴上的调整值。 Step S100: the point on the tool at the end of the robot arm that can be recognized by the sensor is TCP, and the X coordinate of the theoretical coordinate of the TCP is separately adjusted to obtain i adjustment coordinates TCP xi (x+Δ xi , y, z), The Y-axis coordinates of the theoretical coordinates of TCP are individually adjusted to obtain j adjustment coordinates TCP yj (x, y + Δ yj , z), and the Z-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain k adjustment coordinates TCP zk (x, y , z+Δ zk ), where i, j, k are integers and i≧1, j≧1, k≧1, Δ xi , Δ yj , Δ zk are the theoretical coordinates of TCP on the X-axis and the Y-axis, respectively. , the adjustment value on the Z axis.
在实际操作过程中,在机器人末端的工具上找到一个可被传感器识别到的点,或者从机械臂末端的工具上很多可被传感器识别到的点中选择一个点,并将找到或者选择的这个点标记为TCP。需要说明的是,当 传感器为摄像头时,可以将所标记的点设置为光学标记点;当传感器为电磁传感器时,可设置所标记的点为电磁标记点;当传感器为超声探头时,可设置所标记的点为超声标记点;当传感器为红外传感器时,可设置所标记的点为红外标记点,亦或是其他传感器及相应的标记点。且这里的TCP在机械臂末端坐标系中的实际坐标在步骤S100中并没有确定,本申请实施例是根据该所标记的点来确定TCP的实际坐标。In the actual operation, find a point on the tool at the end of the robot that can be recognized by the sensor, or select a point from the points on the tool at the end of the arm that can be recognized by the sensor, and will find or select this The dot is marked as TCP. It should be noted that when the sensor is a camera, the marked point can be set as an optical marker point; when the sensor is an electromagnetic sensor, the marked point can be set as an electromagnetic marker point; when the sensor is an ultrasound probe, it can be set The marked points are ultrasonic marking points; when the sensor is an infrared sensor, the marked points can be set as infrared marking points, or other sensors and corresponding marking points. Moreover, the actual coordinates of the TCP in the robot arm end coordinate system are not determined in step S100. The embodiment of the present application determines the actual coordinates of the TCP according to the marked points.
根据工具自身的理论尺寸和机械臂末端坐标系,利用测量工具或者根据粗标定算法计算出TCP的理论坐标(x,y,z),并对计算出的理论坐标的某一个坐标轴上的坐标进行调整,本申请实施例中首先以单独对TCP的理论坐标的X轴坐标进行调整得到i个调整坐标TCP xi(x+Δ xi,y,z)为例进行说明,其中i为整数,且i≧1,Δ xi为TCP的理论坐标在X轴上的调整值,需要说明的是,调整值Δ xi,Δ yj,Δ zk均可为0,调整坐标TCP xi(x+Δ xi,y,z)可以等于TCP的理论坐标。 According to the theoretical size of the tool itself and the coordinate system of the end of the arm, the theoretical coordinates (x, y, z) of the TCP are calculated by the measuring tool or according to the coarse calibration algorithm, and the coordinates on one of the calculated theoretical coordinates are calculated. In the embodiment of the present application, the first adjustment coordinate TCP xi (x+Δ xi , y, z) is firstly adjusted by separately adjusting the X-axis coordinate of the theoretical coordinate of the TCP, where i is an integer, and I≧1, Δ xi is the adjustment value of the theoretical coordinate of TCP on the X-axis. It should be noted that the adjustment values Δ xi , Δ yj , Δ zk can both be 0, and the coordinates TCP xi (x+Δ xi , y are adjusted). , z) can be equal to the theoretical coordinates of TCP.
在实际操作过程中,由TCP的理论坐标的X轴坐标调整得到i个调整坐标TCP xi的方式可以有多种,一方面,可以设置一个调整数值,然后以TCP的理论坐标的X轴坐标为基础,逐次按照该调整数值对TCP的理论坐标的X轴坐标进行调整得到TCP xi;另一方面,也可以限定一个坐标值的调整范围,将这个调整范围内的部分点或者所有点作为调整坐标TCP xi。除了上述两种调整方式,还可以通过对TCP的理论坐标的X轴坐 标进行随机调整得到调整坐标TCP xi。总而言之,得到调整坐标TCP xi的方式多种多样,本申请在此不再做详细介绍。 In the actual operation process, the method of adjusting the X coordinate of the theoretical coordinate of TCP to obtain i adjustment coordinates TCP xi can be various. On the one hand, an adjustment value can be set, and then the X coordinate of the theoretical coordinate of TCP is Basically, the X-axis coordinate of the theoretical coordinate of TCP is adjusted successively according to the adjusted value to obtain TCP xi ; on the other hand, the adjustment range of one coordinate value can also be defined, and some points or all points in the adjustment range are used as adjustment coordinates. TCP xi . In addition to the above two adjustment methods, the adjustment coordinate TCP xi can also be obtained by randomly adjusting the X-axis coordinates of the theoretical coordinates of the TCP. In summary, the manner in which the coordinate TCP xi is adjusted is various, and the present application will not be described in detail herein.
对TCP的理论坐标的Y轴坐标单独调整得到j个调整坐标TCP yj(x,y+Δ yj,z)以及对对TCP的理论坐标的Z轴坐标单独调整得到k个调整坐标TCP zk(x,y,z+Δ zk)的方法步骤和前述对TCP的理论坐标的X轴坐标进行单独调整得到TCP xi(x+Δ xi,y,z)的方法步骤和实现方式大体一致,此处不再赘述。 The Y-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain j adjustment coordinates TCP yj (x, y + Δ yj , z) and the Z-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain k adjustment coordinates TCP zk (x , y, z + Δ zk ) method steps and the above-mentioned X-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain TCP xi (x + Δ xi , y, z) method steps and implementation are generally consistent, here is not Let me repeat.
S200:分别根据TCP xi,TCP yj,TCP zk和机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,以及所标记的点在传感器坐标系中的坐标,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000042
Figure PCTCN2018119787-appb-000043
Figure PCTCN2018119787-appb-000044
其中,
Figure PCTCN2018119787-appb-000045
为单独对TCP的理论坐标的X轴坐标调整时得到的坐标转换关系,
Figure PCTCN2018119787-appb-000046
为单独对TCP的理论坐标的Y轴坐标调整时得到的坐标转换关系,
Figure PCTCN2018119787-appb-000047
单独对TCP的理论坐标的Z轴坐标调整时得到的坐标转换关系。在步骤S200中,依然以根据TCP xi和机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,以及所标记的点在传感器坐标系中的坐标,建立机械臂坐标系和传感器坐标系之间的坐 标转换关系
Figure PCTCN2018119787-appb-000048
为例进行说明,其中,
Figure PCTCN2018119787-appb-000049
为单独对TCP的理论坐标的X轴坐标调整时得到的坐标转换关系。
S200: establishing a robot arm coordinate system and a sensor according to coordinates conversion relationship between TCP xi , TCP yj , TCP zk, and a robot arm end coordinate system and a robot arm coordinate system, and coordinates of the marked point in the sensor coordinate system, respectively. Coordinate transformation relationship between coordinate systems
Figure PCTCN2018119787-appb-000042
Figure PCTCN2018119787-appb-000043
with
Figure PCTCN2018119787-appb-000044
among them,
Figure PCTCN2018119787-appb-000045
The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted,
Figure PCTCN2018119787-appb-000046
The coordinate conversion relationship obtained when the Y coordinate of the theoretical coordinate of TCP is individually adjusted,
Figure PCTCN2018119787-appb-000047
The coordinate conversion relationship obtained when the Z-axis coordinate of the theoretical coordinates of TCP is adjusted separately. In step S200, the robot arm coordinate system and the sensor coordinate system are still established according to the coordinate conversion relationship between the TCP xi and the arm end coordinate system and the robot arm coordinate system, and the coordinates of the marked point in the sensor coordinate system. Coordinate transformation relationship
Figure PCTCN2018119787-appb-000048
As an example, where
Figure PCTCN2018119787-appb-000049
The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted.
利用同一点在两个坐标系中的坐标来建立两个坐标系之间的坐标转换关系方式很多,下面介绍一种优选的方案。There are many ways to establish a coordinate transformation relationship between two coordinate systems by using the coordinates of the same point in two coordinate systems. A preferred solution is described below.
在实际操作过程中,在利用TCP xi和机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,以及所标记的点在传感器坐标系中的坐标,建立机械臂坐标系和传感器坐标系之间的坐标转换关系时,可以首先根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;然后根据每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,与i个调整坐标TCP xi相结合,得到每个所述空间参考点在机械臂坐标系中的i个坐标;最后根据每个所述空间参考点在机械臂坐标系中的i个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的i个坐标转换关系
Figure PCTCN2018119787-appb-000050
In the actual operation process, the robot arm coordinate system and the sensor coordinate system are established by using the coordinates conversion relationship between the TCP xi and the robot arm end coordinate system and the robot arm coordinate system, and the coordinates of the marked points in the sensor coordinate system. When the coordinate conversion relationship between the two is first, according to the movement of the marked point within the sensor recognition range, at least three non-collinear spatial references for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system may be obtained. Point; then, according to the coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system corresponding to the position of each of the spatial reference points, combined with i adjustment coordinates TCP xi , each of the spatial reference points is obtained i coordinates in the robot arm coordinate system; finally, according to the i coordinates of each of the spatial reference points in the robot arm coordinate system, and the coordinates of each of the spatial reference points in the sensor coordinate system, the robot arm is obtained i coordinate transformation relationship between coordinate system and sensor coordinate system
Figure PCTCN2018119787-appb-000050
具体地,可以通过移动机械臂来带动机械臂末端的工具上所标记的点移动到至少三个非共线的位置,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点。Specifically, the moving point of the robot arm can be used to move the marked point on the tool at the end of the arm to at least three non-collinear positions, and at least a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system can be obtained. Three non-collinear spatial reference points.
机械臂末端坐标系与机械臂坐标系之间的坐标转换关系可以通过DH参数计算得出,按照图3所示的机械臂和传感器的示意图,将机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP xi 相结合,就可以得到所标记的点在机械臂坐标系中的i个坐标,而本申请实施例中将所标记的点记为TCP,并通过所标记的点在实际空间中的位置来得到空间参考点,因此可将所标记的点在机械臂坐标系中的坐标作为空间参考点在机械臂坐标系中的坐标,而由于所标记的点移动到了至少三个非共线的位置,也就得到了至少三个非共线的空间参考点,利用得到的所标记的点在机械臂坐标系中的i个坐标的方法,就可以得到至少三个非共线空间参考点中每个所述空间参考点在机械臂坐标系中的i个坐标。 The coordinate conversion relationship between the end coordinate system of the arm and the coordinate system of the robot arm can be calculated by the DH parameter. According to the schematic diagram of the robot arm and the sensor shown in FIG. 3, the coordinate system between the end of the arm and the coordinate system of the arm is obtained. The coordinate conversion relationship is combined with each adjustment coordinate TCP xi to obtain the i coordinates of the marked point in the robot arm coordinate system, and in the embodiment of the present application, the marked point is recorded as TCP, and The position of the marked point in the real space to obtain the spatial reference point, so the coordinates of the marked point in the robot arm coordinate system can be used as the coordinates of the spatial reference point in the robot arm coordinate system, and the marked point moves. At least three non-collinear positions are obtained, and at least three non-collinear spatial reference points are obtained. By using the obtained i-coordinates of the marked points in the robot arm coordinate system, at least three can be obtained. The i coordinate of each of the spatial reference points in the non-collinear spatial reference point in the robot arm coordinate system.
由于所标记的点能够被传感器识别到,因此可以得到上述至少三个非共线的空间参考点中,每个空间参考点在传感器坐标系中的坐标,进而根据每个所述空间参考点在机械臂坐标系中的i个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,便可以得到机械臂坐标系和传感器坐标系之间的i个坐标转换关系
Figure PCTCN2018119787-appb-000051
Since the marked points can be recognized by the sensor, the coordinates of each of the at least three non-collinear spatial reference points in the sensor coordinate system can be obtained, and then according to each of the spatial reference points The i coordinates in the robot arm coordinate system and the coordinates of each of the spatial reference points in the sensor coordinate system can obtain the i coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system.
Figure PCTCN2018119787-appb-000051
以根据所标记的点在传感器识别范围内移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的三个非共线的空间参考点为例进行说明。The three non-collinear spatial reference points for establishing the coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system are taken as an example to move according to the marked points moving within the sensor recognition range.
移动机械臂得到三个非共线的空间参考点时,机械臂位于位姿1,位姿2,位姿3这三个位姿。When the mobile robot arm obtains three non-collinear spatial reference points, the robot arm is in the three poses of pose 1, pose 2, and pose 3.
当机械臂移动到位姿1下时,通过DH参数能够得到机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,及机械臂末端坐标系原点在机械臂坐标系下的坐标p1,通过工具的加工图纸可以得到TCP在机械臂末端坐标系中的理论坐标,并对理论坐标中的X轴坐标单独进行调整得到 调整坐标TCP x1,因此这里以p1+TCP x1来表示当前TCP在机械臂坐标系下的坐标,(需要说明的是,当前TCP在机械臂坐标系下的坐标,并不是将p1的坐标与TCP x1的坐标进行相加,此处仅仅是利用“p1+TCP x1”这个表现形式来对机械臂位于位姿1时当前TCP在机械臂坐标系下的坐标进行解释说明,下面类似描述中同样如此)通过传感器识别所标记的点,还能够得到机械臂位于位姿1时所标记的点在传感器坐标系下的坐标s1。 When the arm moves to the posture 1, the coordinate conversion relationship between the end coordinate system of the arm and the coordinate system of the robot arm can be obtained by the DH parameter, and the coordinate p1 of the origin of the end coordinate system of the arm in the robot arm coordinate system is passed. The machining drawing of the tool can obtain the theoretical coordinate of TCP in the end coordinate system of the arm, and adjust the X coordinate of the theoretical coordinate separately to obtain the adjusted coordinate TCP x1 . Therefore, the current TCP is represented by p1+TCP x1 . The coordinates in the coordinate system. (It should be noted that the coordinates of the current TCP in the robot arm coordinate system are not the sum of the coordinates of p1 and the coordinates of TCP x1 . Here, only the "p1+TCP x1 " is used. The expression is used to explain the coordinates of the current TCP in the manipulator coordinate system when the manipulator is in the pose 1, as in the similar description below. By identifying the marked points by the sensor, it is also possible to obtain that the arm is in the pose 1 The marked point is the coordinate s1 in the sensor coordinate system.
当机械臂移动到位姿2下时,通过DH参数能够得到机械臂末端坐标系和机械臂坐标系之间的坐标转换关系及机械臂末端坐标系原点在机械臂坐标系下的坐标p2,由于已经得到TCP在机械臂末端坐标系中的坐标TCP x1,这里以p2+TCP x1来表示TCP在机械臂坐标系下的坐标,通过传感器识别所标记的点,还能够得到机械臂位于位姿2时所标记的点在传感器坐标系下的坐标s2。 When the arm moves to the posture 2, the coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system and the coordinate p2 of the robot arm end coordinate system origin in the robot arm coordinate system can be obtained by the DH parameter. Obtain the coordinates TCP x1 of TCP in the end coordinate system of the arm. Here, the coordinates of TCP in the robot arm coordinate system are represented by p2+TCP x1 . By identifying the marked points by the sensor, it is also possible to obtain that the arm is in the posture 2 The marked point is the coordinate s2 in the sensor coordinate system.
当机械臂移动到位姿3下时,通过DH参数能够得到机械臂末端坐标系和机械臂坐标系之间的坐标转换关系及机械臂末端坐标系原点在机械臂坐标系下的坐标p3,由于已经得到TCP在机械臂末端坐标系中的坐标TCP x1,这里以p3+TCP x1来表示TCP在机械臂坐标系下的坐标,通过传感器识别所标记的点,还能够得到机械臂位于位姿3时所标记的点在传感器坐标系下的坐标s3。 When the arm moves to the posture 3, the coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system and the coordinate p3 of the robot arm end coordinate system origin in the robot arm coordinate system can be obtained by the DH parameter. Obtain the coordinates TCP x1 of TCP in the end coordinate system of the arm. Here, the coordinates of TCP in the robot arm coordinate system are represented by p3+TCP x1 . By identifying the marked points by the sensor, it is also possible to obtain that the arm is in the posture 3 The marked point is the coordinate s3 in the sensor coordinate system.
本申请实施例中可利用p1+TCP x1与s1,p2+TCP x1与s2,p3+TCP x1与s3这3个非共线的空间参考点在机械臂坐标系下的坐标和在传感器坐标系下的坐标建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000052
In the embodiment of the present application, the coordinates of the three non-collinear spatial reference points of the p1+TCP x1 and s1, p2+TCP x1 and s2, p3+TCP x1 and s3 in the robot arm coordinate system and the sensor coordinate system can be utilized. The coordinates below establish the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system
Figure PCTCN2018119787-appb-000052
同样地,当对TCP在机械臂末端坐标系中的理论坐标中的X轴坐标单独进行调整得到TCP在机械臂末端坐标系中的坐标TCP x2后,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000053
的过程为:
Similarly, when the X-axis coordinate in the theoretical coordinate of the TCP in the end coordinate system of the arm is separately adjusted to obtain the coordinate TCP x2 of the TCP in the end coordinate system of the arm, the robot arm coordinate system and the sensor coordinate system are established. Coordinate transformation relationship
Figure PCTCN2018119787-appb-000053
The process is:
当机械臂移动到位姿1下,得到所标记的点在机械臂坐标系下的坐标p1+TCP x2,以及所标记的点在传感器坐标系下的坐标s1。 When the robot arm moves to the pose 1, the coordinates p1+TCP x2 of the marked point in the robot arm coordinate system and the coordinate s1 of the marked point in the sensor coordinate system are obtained.
当机械臂移动到位姿2下,得到所标记的点在机械臂坐标系下的坐标p2+TCP x2,以及所标记的点在传感器坐标系下的坐标s2。 When the arm moves to the pose 2, the coordinates p2+TCP x2 of the marked point in the robot arm coordinate system and the coordinate s2 of the marked point in the sensor coordinate system are obtained.
当机械臂移动到位姿3下,得到所标记的点在机械臂坐标系下的坐标p3+TCP x2,以及所标记的点在传感器坐标系下的坐标s3。 When the robot arm moves to the pose 3, the coordinates p3+TCP x2 of the marked point in the robot arm coordinate system and the coordinate s3 of the marked point in the sensor coordinate system are obtained.
本申请实施例中可利用p1+TCP x2与s1,p2+TCP x2与s2,p3+TCP x2与s3这3个非共线的空间参考点在机械臂坐标系下的坐标和在传感器坐标系下的坐标建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000054
In the embodiment of the present application, the coordinates of the three non-collinear spatial reference points of the p1+TCP x2 and s1, p2+TCP x2 and s2, p3+TCP x2 and s3 in the robot arm coordinate system and the sensor coordinate system can be utilized. The coordinates below establish the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system
Figure PCTCN2018119787-appb-000054
需要说明的是,因为此处是以对TCP的理论坐标的X轴坐标单独进行调整得到TCP的调整坐标,因此,上述TCP在机械臂末端坐标系中的坐标TCP x1及TCP x2和TCP在机械臂末端坐标系中的理论坐标相比,Y轴坐标和Z轴坐标的变化量为0。 It should be noted that since the adjustment coordinates of the TCP are obtained by separately adjusting the X-axis coordinates of the theoretical coordinates of the TCP, the coordinates of the above TCP in the end coordinate system of the arm are TCP x1 and TCP x2 and TCP are mechanical. The amount of change in the Y-axis coordinate and the Z-axis coordinate is 0 compared to the theoretical coordinate in the arm end coordinate system.
依此类推,可得到机械臂坐标系和传感器坐标系之间的i个坐标转换关系
Figure PCTCN2018119787-appb-000055
需要说明的是,当TCP的调整坐标不等于TCP的理论坐标时,可以不利用TCP的理论坐标计算机械臂坐标系和传感器坐标系之间的坐标转换关系;当TCP的调整坐标可以等于TCP的理论坐标时,可利用TCP的理论坐标计算机械臂坐标系和传感器坐标系之间的坐标转换关系。
And so on, can obtain the i coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system.
Figure PCTCN2018119787-appb-000055
It should be noted that when the adjusted coordinate of TCP is not equal to the theoretical coordinate of TCP, the coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system may be calculated without using the theoretical coordinate of TCP; when the adjusted coordinate of TCP can be equal to TCP In theoretical coordinates, the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system can be calculated using the theoretical coordinates of TCP.
同样地,根据TCP yj以及机械臂末端坐标系与机械臂坐标系之间的坐标转换关系建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000056
的步骤为:
Similarly, the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system is established according to the TCP yj and the coordinate transformation relationship between the robot arm end coordinate system and the robot arm coordinate system.
Figure PCTCN2018119787-appb-000056
The steps are:
根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range;
将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP yj相结合,得到每个所述空间参考点在机械臂坐标系中的j个坐标; Combining the coordinate conversion relationship between the robot arm end coordinate system corresponding to the position of each of the spatial reference points and the robot arm coordinate system with each adjustment coordinate TCP yj to obtain the coordinates of each of the spatial reference points in the arm j coordinates in the system;
根据每个所述空间参考点在机械臂坐标系中的j个坐标,以及每个 所述在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的j个坐标转换关系
Figure PCTCN2018119787-appb-000057
Obtaining j coordinate transformation relations between the robot arm coordinate system and the sensor coordinate system according to j coordinates of each of the spatial reference points in the robot arm coordinate system and each of the coordinates in the sensor coordinate system
Figure PCTCN2018119787-appb-000057
依然同样地,根据TCP zk以及机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000058
的步骤包括:
In the same way, the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system is established according to the coordinate transformation relationship between the TCP zk and the robot arm end coordinate system and the robot arm coordinate system.
Figure PCTCN2018119787-appb-000058
The steps include:
根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range;
将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP zk相结合,得到每个所述空间参考点在机械臂坐标系中的至少三个非共线的坐标; Combining the coordinate conversion relationship between the robot arm end coordinate system corresponding to the position of each of the spatial reference points and the robot arm coordinate system with each adjustment coordinate TCP zk , and obtaining the coordinates of each of the spatial reference points in the robot arm At least three non-collinear coordinates in the system;
根据每个所述空间参考点在机械臂坐标系中的k个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的k个坐标转换关系
Figure PCTCN2018119787-appb-000059
Obtaining k coordinates between the robot arm coordinate system and the sensor coordinate system according to k coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
Figure PCTCN2018119787-appb-000059
需要说明的是,分别根据TCP yj和TCP zk以及机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000060
Figure PCTCN2018119787-appb-000061
的方式和上述根据TCP xi以及机械臂末端坐标系与机械臂坐标系之间的坐标转换关系建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000062
的实现方式和方法步骤大体 一致,此处不再赘述。
It should be noted that the coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system is established according to the coordinate transformation relationship between TCP yj and TCP zk and the robot arm end coordinate system and the robot arm coordinate system.
Figure PCTCN2018119787-appb-000060
with
Figure PCTCN2018119787-appb-000061
The method and the above-mentioned coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system are established according to the coordinate conversion relationship between the TCP xi and the robot arm end coordinate system and the robot arm coordinate system.
Figure PCTCN2018119787-appb-000062
The implementation and method steps are generally the same, and will not be described here.
另外,在建立坐标转换关系
Figure PCTCN2018119787-appb-000063
Figure PCTCN2018119787-appb-000064
时,可以使用相同的空间参考点来建立坐标转换关系,如上述在建立坐标转换关系
Figure PCTCN2018119787-appb-000065
时使用了三个非共线的空间参考点,在建立坐标转换关系
Figure PCTCN2018119787-appb-000066
Figure PCTCN2018119787-appb-000067
时依然可以利用这三个空间参考点,只要带入不同的调整坐标值TCP yj和TCP zk即可,这样可以减少机械臂的移动,节省建立坐标转换关系的时间;例如利用p1+TCP y1与s1,p2+TCP y1与s2,p3+TCP y1与s3这3个非共线的空间参考点在机械臂坐标系下的坐标和在传感器坐标系下的坐标建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000068
利用p1+TCP z2与s1,p2+TCP z2与s2,p3+TCP z2与s3这3个非共线的空间参考点在机械臂坐标系下的坐标和在传感器坐标系下的坐标建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000069
In addition, in the establishment of coordinate transformation relationship
Figure PCTCN2018119787-appb-000063
with
Figure PCTCN2018119787-appb-000064
When you use the same spatial reference point to establish a coordinate transformation relationship, as described above in establishing a coordinate transformation relationship
Figure PCTCN2018119787-appb-000065
Three non-collinear spatial reference points are used to establish the coordinate transformation relationship
Figure PCTCN2018119787-appb-000066
with
Figure PCTCN2018119787-appb-000067
You can still use these three spatial reference points, as long as you bring in different adjustment coordinate values TCP yj and TCP zk , which can reduce the movement of the arm and save the time to establish the coordinate transformation relationship; for example, using p1+TCP y1 and S1, p2+TCP y1 and s2, p3+TCP y1 and s3 three non-collinear spatial reference points in the robot arm coordinate system and coordinates in the sensor coordinate system to establish the robot arm coordinate system and sensor coordinate system Coordinate transformation relationship
Figure PCTCN2018119787-appb-000068
Using the coordinates of p1+TCP z2 and s1, p2+TCP z2 and s2, p3+TCP z2 and s3, the non-collinear spatial reference points in the robot arm coordinate system and the coordinates in the sensor coordinate system Coordinate transformation relationship between coordinate system and sensor coordinate system
Figure PCTCN2018119787-appb-000069
S300:根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000070
Figure PCTCN2018119787-appb-000071
在所述m个位置的转换误差中的最大转换误差和/或m个转换误差的平均误差,其中,m为整数且m≧1。
S300: obtaining a coordinate conversion relationship according to the m positions in the sensor recognition range of the marked points
Figure PCTCN2018119787-appb-000070
with
Figure PCTCN2018119787-appb-000071
The maximum conversion error and/or the average error of m conversion errors in the conversion errors of the m positions, where m is an integer and m ≧ 1.
实际操作中,根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000072
Figure PCTCN2018119787-appb-000073
在所述m个位置的转 换误差中的最大转换误差的步骤包括:
In actual operation, the coordinate conversion relationship is obtained according to the m positions in the sensor recognition range of the marked points.
Figure PCTCN2018119787-appb-000072
with
Figure PCTCN2018119787-appb-000073
The steps of the maximum conversion error in the conversion errors of the m locations include:
根据m个位置中每个位置m p下所标记的点在机械臂坐标系中的坐标Rm p和在传感器坐标系中的坐标Sm p,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000074
在每个位置m p下的转换误差,坐标转换关系
Figure PCTCN2018119787-appb-000075
在每个位置m p下的转换误差和坐标转换关系
Figure PCTCN2018119787-appb-000076
在每个位置m p下的转换误差;
According to the coordinates Rm p in the robot arm coordinate system and the coordinates Sm p in the sensor coordinate system, the coordinates of the points marked under each position m p in the m positions are respectively obtained.
Figure PCTCN2018119787-appb-000074
Conversion error at each position m p , coordinate conversion relationship
Figure PCTCN2018119787-appb-000075
Conversion error and coordinate transformation relationship at each position m p
Figure PCTCN2018119787-appb-000076
Conversion error at each position m p ;
根据坐标转换关系
Figure PCTCN2018119787-appb-000077
Figure PCTCN2018119787-appb-000078
在每个位置m p下的转换误差,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000079
在m个位置的转换误差中的最大转换误差,坐标转换关系
Figure PCTCN2018119787-appb-000080
在m个位置的转换误差中的最大转换误差和坐标转换关系
Figure PCTCN2018119787-appb-000081
在m个位置的转换误差中的最大转换误差;其中,转换误差为将所标记的点在机械臂坐标系中的坐标Rm p和在传感器坐标系中的坐标Sm p转换到同一坐标系后的欧式距离,m为整数且m≧1,1≦p≦m。
Conversion relationship according to coordinates
Figure PCTCN2018119787-appb-000077
with
Figure PCTCN2018119787-appb-000078
The conversion error at each position m p respectively obtains the coordinate conversion relationship
Figure PCTCN2018119787-appb-000079
Maximum conversion error in the conversion error of m positions, coordinate conversion relationship
Figure PCTCN2018119787-appb-000080
Maximum conversion error and coordinate conversion relationship among conversion errors at m positions
Figure PCTCN2018119787-appb-000081
The maximum conversion error among the conversion errors of m positions; wherein the conversion error is the conversion of the coordinates Rm p of the marked point in the robot arm coordinate system and the coordinate Sm p in the sensor coordinate system to the same coordinate system Euclidean distance, m is an integer and m≧1,1≦p≦m.
根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000082
Figure PCTCN2018119787-appb-000083
在所述m个位置的转换误差的平均误差的步骤包括:
According to the m points in the sensor recognition range, the coordinates are converted according to the marked points.
Figure PCTCN2018119787-appb-000082
with
Figure PCTCN2018119787-appb-000083
The steps of the average error of the conversion errors at the m locations include:
根据m个位置中每个位置m p下所标记的点在机械臂坐标系中的坐标 Rm p和在传感器坐标系中的坐标Sm p,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000084
在每个位置m p下的转换误差,坐标转换关系
Figure PCTCN2018119787-appb-000085
在每个位置m p下的转换误差和坐标转换关系
Figure PCTCN2018119787-appb-000086
在每个位置m p下的转换误差;
According to the coordinates Rm p in the robot arm coordinate system and the coordinates Sm p in the sensor coordinate system, the coordinates of the points marked under each position m p in the m positions are respectively obtained.
Figure PCTCN2018119787-appb-000084
Conversion error at each position m p , coordinate conversion relationship
Figure PCTCN2018119787-appb-000085
Conversion error and coordinate transformation relationship at each position m p
Figure PCTCN2018119787-appb-000086
Conversion error at each position m p ;
根据坐标转换关系
Figure PCTCN2018119787-appb-000087
Figure PCTCN2018119787-appb-000088
在每个位置m p下的转换误差,根据平均误差计算公式,分别得到每个坐标转换关系
Figure PCTCN2018119787-appb-000089
Figure PCTCN2018119787-appb-000090
Figure PCTCN2018119787-appb-000091
在m个位置的平均误差。
Conversion relationship according to coordinates
Figure PCTCN2018119787-appb-000087
with
Figure PCTCN2018119787-appb-000088
The conversion error at each position m p is obtained according to the average error calculation formula, and each coordinate transformation relationship is obtained.
Figure PCTCN2018119787-appb-000089
Figure PCTCN2018119787-appb-000090
with
Figure PCTCN2018119787-appb-000091
The average error at m locations.
仍然以根据所标记的点在传感器识别范围内的m个位置,得到坐标转换关系
Figure PCTCN2018119787-appb-000092
在所述m个位置的转换误差中的最大转换误差和/或m个转换误差的平均误差为例对步骤S300进行说明。
The coordinate transformation relationship is still obtained by m positions within the sensor recognition range according to the marked points.
Figure PCTCN2018119787-appb-000092
The step S300 will be described by taking the maximum conversion error and/or the average error of m conversion errors among the conversion errors of the m positions as an example.
举例来说,假设所标记的点在传感器的识别范围内移动到了10个位置,即m等于10。在本申请实施例中,能够通过机械臂各个关节的转换关系得到所标记的点在这10个位置上的机械臂坐标Rm p,且能够通过传感器识别所标记的点以及所标记的点的移动,进而得到所标记的点在这10个位置上的传感器坐标Sm p,其中1≦p≦10。进而通过之前建立的坐标转换关系
Figure PCTCN2018119787-appb-000093
可以求得这10个位置上的转换误差
Figure PCTCN2018119787-appb-000094
或者
Figure PCTCN2018119787-appb-000095
从这10个 转换误差中可以选出最大的转换误差记作err xmax_1,且可以算出这10个位置上的转换误差的平均误差记作err xaver_1
For example, assume that the marked point moves to 10 positions within the sensor's identification range, ie m equals 10. In the embodiment of the present application, the robot arm coordinates Rm p of the marked points at the 10 positions can be obtained by the conversion relationship of the joints of the robot arm, and the marked points and the movement of the marked points can be recognized by the sensor. In turn, the sensor coordinates Sm p of the marked points at the 10 positions are obtained, where 1 ≦ p ≦ 10. Further through the previously established coordinate transformation relationship
Figure PCTCN2018119787-appb-000093
You can find the conversion error at these 10 positions.
Figure PCTCN2018119787-appb-000094
or
Figure PCTCN2018119787-appb-000095
From these 10 conversion errors, the largest conversion error can be selected as err xmax_1 , and the average error of the conversion errors at these 10 positions can be calculated as err xaver_1 .
同样地,通过之前建立的坐标转换关系
Figure PCTCN2018119787-appb-000096
可以求得这10个位置上的转换误差
Figure PCTCN2018119787-appb-000097
或者
Figure PCTCN2018119787-appb-000098
Figure PCTCN2018119787-appb-000099
从这10个转换误差中可以选出最大的转换误差记作err xmax_2,且可以算出这10个位置上的转换误差的平均误差记作err xaver_2
Similarly, through the previously established coordinate transformation relationship
Figure PCTCN2018119787-appb-000096
You can find the conversion error at these 10 positions.
Figure PCTCN2018119787-appb-000097
or
Figure PCTCN2018119787-appb-000098
Figure PCTCN2018119787-appb-000099
From these 10 conversion errors, the largest conversion error can be selected as err xmax_2 , and the average error of the conversion errors at these 10 positions can be calculated as err xaver_2 .
如果共有3个调整坐标TCP x1,TCP x2和TCP x3,那么,依据上述求取最大转换误差和平均误差的方法,可以得到三个最大转换误差err xmax_1,err xmax_2,err xmax_3和三个平均误差err xaver_1,err xaver_2,err xaver_3If there are 3 adjustment coordinates TCP x1 , TCP x2 and TCP x3 , then according to the above method of obtaining the maximum conversion error and the average error, three maximum conversion errors err xmax_1 , err xmax_2 , err xmax_3 and three average errors can be obtained. Err xaver_1 , err xaver_2 , err xaver_3 .
根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000100
Figure PCTCN2018119787-appb-000101
在所述m个位置的转换误差中的最大转换误差和/或m个转换误差的平均误差的实现方式和方法步骤和上述根据坐标转换关系
Figure PCTCN2018119787-appb-000102
在m个位置的转换误差的最大转换误差和/或m个转换误差的平均误差大体一致,此处不再赘述。
According to the m points in the sensor recognition range, the coordinates are converted according to the marked points.
Figure PCTCN2018119787-appb-000100
with
Figure PCTCN2018119787-appb-000101
The implementation method and method steps of the maximum conversion error and/or the average error of the m conversion errors in the conversion errors of the m positions and the above-described coordinate conversion relationship
Figure PCTCN2018119787-appb-000102
The maximum conversion error of the conversion error at m positions and/or the average error of the m conversion errors are substantially identical, and will not be described herein.
需要说明的是,在本申请实施例中,还可以为机械臂设定移动程序,让机械臂自动在传感器识别范围内移动到m个位置,移动次数,移动路径以及每次的移动距离均可以采用已有方法实现,并且在求取每个坐标 转换关系
Figure PCTCN2018119787-appb-000103
Figure PCTCN2018119787-appb-000104
在m个位置上的转换误差时,可以利用的是相同的m个位置。
It should be noted that, in the embodiment of the present application, a movement program may be set for the robot arm, so that the robot arm automatically moves to m positions within the sensor recognition range, and the number of movements, the movement path, and the movement distance can be Implemented using existing methods, and is looking for each coordinate transformation relationship
Figure PCTCN2018119787-appb-000103
with
Figure PCTCN2018119787-appb-000104
In the case of conversion errors at m positions, the same m positions can be utilized.
S400:将得到坐标转换关系
Figure PCTCN2018119787-appb-000105
的i个最大转换误差中的最小值和/或i个平均误差中的最小值对应的坐标x+Δ xi,坐标转换关系
Figure PCTCN2018119787-appb-000106
的j个最大转换误差中的最小值和/或j个平均误差中的最小值对应的坐标y+Δ yj和坐标转换关系
Figure PCTCN2018119787-appb-000107
的k个最大转换误差中的最小值和/或k个平均误差中的最小值对应的坐标z+Δ zk,分别作为TCP的实际坐标的X轴坐标,Y轴坐标和Z轴坐标。
S400: will get the coordinate conversion relationship
Figure PCTCN2018119787-appb-000105
The minimum of the i maximum conversion errors and/or the coordinate of the minimum of the i average errors x + Δ xi , coordinate transformation relationship
Figure PCTCN2018119787-appb-000106
The minimum of the j maximum conversion errors and/or the coordinate of the minimum of the j average errors y + Δ yj and the coordinate conversion relationship
Figure PCTCN2018119787-appb-000107
The minimum of the k maximum conversion errors and/or the minimum of the k average errors, z + Δ zk , respectively, are the X-axis coordinates, the Y-axis coordinates, and the Z-axis coordinates of the actual coordinates of the TCP.
通过上述的步骤S100,S200和S300可以得到每个坐标转换关系
Figure PCTCN2018119787-appb-000108
在m个位置的转换误差的最大转换误差和平均误差,那么对于i个坐标转换关系
Figure PCTCN2018119787-appb-000109
就能得到i个最大转换误差和i个平均误差,同样,对于j个坐标转换关系
Figure PCTCN2018119787-appb-000110
也能得到j个最大转换误差和j个平均误差,k个坐标转换关系
Figure PCTCN2018119787-appb-000111
也能得到k个最大转换误差和k个平均误差,然后分别从
Figure PCTCN2018119787-appb-000112
的i个最大转换误差,
Figure PCTCN2018119787-appb-000113
的j个最大转换误差和
Figure PCTCN2018119787-appb-000114
的k个最大转换误差中找到对应的最大转换误差的最小值,以及分别从
Figure PCTCN2018119787-appb-000115
的i个平均误差,
Figure PCTCN2018119787-appb-000116
的j个平均误 差和
Figure PCTCN2018119787-appb-000117
的k个平均误差中找到对应的最小值,然后将坐标转换关系
Figure PCTCN2018119787-appb-000118
i个最大转换误差中的最小值和/或i个平均误差中的最小值对应的坐标x+Δ xi,坐标转换关系
Figure PCTCN2018119787-appb-000119
的j个最大转换误差中的最小值和/或j个平均误差中的最小值对应的坐标y+Δ yj和坐标转换关系
Figure PCTCN2018119787-appb-000120
的k个最大转换误差中的最小值和/或k个平均误差中的最小值对应的坐标z+Δ zk,分别作为TCP的实际坐标的X轴坐标,Y轴坐标和Z轴坐标。
Through the above step S100, S200 and S300 can obtain each coordinate conversion relationship.
Figure PCTCN2018119787-appb-000108
The maximum conversion error and the average error of the conversion error at m positions, then for i coordinate transformation relationships
Figure PCTCN2018119787-appb-000109
You can get i maximum conversion error and i average error. Similarly, for j coordinate transformation relationships
Figure PCTCN2018119787-appb-000110
Can also get j maximum conversion error and j average error, k coordinate transformation relationship
Figure PCTCN2018119787-appb-000111
Can also get k maximum conversion error and k average error, and then from
Figure PCTCN2018119787-appb-000112
i maximum conversion error,
Figure PCTCN2018119787-appb-000113
J maximum conversion error and
Figure PCTCN2018119787-appb-000114
Find the minimum value of the corresponding maximum conversion error among the k maximum conversion errors, and
Figure PCTCN2018119787-appb-000115
i average error,
Figure PCTCN2018119787-appb-000116
J average error sum
Figure PCTCN2018119787-appb-000117
Find the corresponding minimum value among the k average errors, and then convert the coordinates
Figure PCTCN2018119787-appb-000118
The minimum value of the i maximum conversion errors and/or the coordinate of the minimum of the i average errors x + Δ xi , coordinate transformation relationship
Figure PCTCN2018119787-appb-000119
The minimum of the j maximum conversion errors and/or the coordinate of the minimum of the j average errors y + Δ yj and the coordinate conversion relationship
Figure PCTCN2018119787-appb-000120
The minimum of the k maximum conversion errors and/or the minimum of the k average errors, z + Δ zk , respectively, are the X-axis coordinates, the Y-axis coordinates, and the Z-axis coordinates of the actual coordinates of the TCP.
这里以坐标转换关系的最大转换误差中的最小值对应的坐标进行示例,有调整坐标TCP x1,TCP x2和TCP x3,得到的坐标转换关系
Figure PCTCN2018119787-appb-000121
的3个最大转换误差中的最小值为err xmax_2,那么将x+Δ x2作为TCP的实际坐标的X轴坐标;同样,有调整坐标TCP y1,TCP y2,TCP y3和TCP y4,若坐标转换关系
Figure PCTCN2018119787-appb-000122
的4个最大转换误差中的最小值为err ymax_4,那么将y+Δ y4作为TCP的实际坐标的Y轴坐标;同样,有调整坐标TCP z1,TCP z2,TCP z3,TCP z4和TCP z5,若坐标转换关系
Figure PCTCN2018119787-appb-000123
的5个最大转换误差中的最小值为err zmax_3,那么将z+Δ z3作为TCP的实际坐标的Y轴坐标;那么最终得到TCP的实际坐标(x+Δ x2,y+Δ y4,z+Δ z3)。
Here, the coordinate corresponding to the minimum value of the maximum conversion error of the coordinate conversion relationship is exemplified, and the coordinate conversion relationship obtained by adjusting the coordinates TCP x1 , TCP x2 and TCP x3 is obtained.
Figure PCTCN2018119787-appb-000121
The minimum of the three maximum conversion errors is err xmax_2 , then x+Δ x2 is taken as the X-axis coordinate of the actual coordinates of TCP; similarly, there are adjustment coordinates TCP y1 , TCP y2 , TCP y3 and TCP y4 , if the coordinates are converted relationship
Figure PCTCN2018119787-appb-000122
The minimum of the four maximum conversion errors is err ymax_4 , then y+Δ y4 is taken as the Y-axis coordinate of the actual coordinates of TCP; likewise, there are adjustment coordinates TCP z1 , TCP z2 , TCP z3 , TCP z4 and TCP z5 , If the coordinate conversion relationship
Figure PCTCN2018119787-appb-000123
The minimum of the five maximum conversion errors is err zmax_3 , then z + Δ z3 is taken as the Y coordinate of the actual coordinates of TCP; then the actual coordinates of TCP are finally obtained (x + Δ x2 , y + Δ y4 , z + Δ z3 ).
本申请实施例首先将机械臂末端的工具上能够被传感器识别到的一个点标记为TCP,此时可通过工具的设计图纸结合机械臂末端坐标系得到TCP的理论坐标,但是TCP的实际坐标并没有确定,在确定TCP的实际坐标的过程中,通过单独对TCP的理论坐标的X轴坐标进行调整得到i个调整坐标,并利用i个调整坐标和机械臂末端坐标系与机械臂坐标系的坐标转换关系以及所标记的点在传感器坐标系中的坐标,建立机械臂坐标系和传感器坐标系之间的i个坐标转换关系,进一步通过在传感器识别范围内移动所标记的点到m个位置,得到每个坐标转换关系在m个位置的转换误差的最大转换误差和/或平均误差,即得到了每个调整坐标经由坐标转换关系转换后的机械臂坐标和对应的传感器坐标之间产生误差的最大范围和/或产生误差之间的离散程度,最后将i个最大转换误差中的最小值和/或i个平均误差中的最小值对应的TCP调整坐标的X轴坐标设置为TCP的实际坐标的X轴坐标,同样地,通过单独对TCP的理论坐标的Y轴坐标进行调整得到TCP的实际坐标的Y轴坐标,通过单独对TCP的理论坐标的Z轴坐标进行调整,得到TCP的实际坐标的Z轴坐标,进一步通过单独求出的TCP的实际坐标的X轴坐标,Y轴坐标和Z轴坐标,得到TCP的实际坐标,本申请实施例缩小了机器人在执行任务时产生误差的范围,提高了机器人的工作精度。The embodiment of the present application first marks a point on the tool at the end of the robot arm that can be recognized by the sensor as TCP. At this time, the theoretical coordinate of the TCP can be obtained by the design drawing of the tool combined with the coordinate system of the end of the arm, but the actual coordinates of the TCP are It is not determined that in the process of determining the actual coordinates of the TCP, i coordinate adjustments are obtained by separately adjusting the X-axis coordinates of the theoretical coordinates of the TCP, and i adjustment coordinates and the arm end coordinate system and the robot arm coordinate system are used. The coordinate transformation relationship and the coordinates of the marked point in the sensor coordinate system establish i coordinate transformation relationship between the robot arm coordinate system and the sensor coordinate system, and further move the marked point to m positions within the sensor recognition range. Obtaining the maximum conversion error and/or the average error of the conversion error of each coordinate transformation relationship at m positions, that is, obtaining an error between the mechanical arm coordinates and the corresponding sensor coordinates converted by each coordinate adjustment relationship via the coordinate transformation relationship The maximum range and/or the degree of dispersion between the errors, and finally the maximum of the i conversion errors The X-axis coordinate of the TCP adjustment coordinate corresponding to the minimum value of the small value and/or the i average error is set to the X-axis coordinate of the actual coordinate of the TCP, and similarly, the Y-axis coordinate of the theoretical coordinate of the TCP is separately adjusted. The Y-axis coordinate of the actual coordinate of TCP is adjusted by the Z-axis coordinate of the theoretical coordinate of TCP alone, and the Z-axis coordinate of the actual coordinate of TCP is obtained, and the X-axis coordinate of the actual coordinate of TCP obtained separately is obtained, and the Y-axis The coordinates and the Z-axis coordinates are used to obtain the actual coordinates of the TCP. The embodiment of the present application reduces the range of errors generated by the robot when performing tasks, and improves the working accuracy of the robot.
基于同样的发明构思,本申请实施例还提供了一种获取机器人TCP坐标的装置,如图2所示,包括:Based on the same inventive concept, the embodiment of the present application further provides an apparatus for acquiring TCP coordinates of a robot, as shown in FIG. 2, including:
标记和调整坐标模块201,用于标记机械臂末端的工具上能够被传感器识别的点为TCP,并对TCP的理论坐标的X轴坐标单独调整得到i 个调整坐标TCP xi(x+Δ xi,y,z),对TCP的理论坐标的Y轴坐标单独调整得到j个调整坐标TCP yj(x,y+Δ yj,z),对TCP的理论坐标的Z轴坐标单独调整得到k个调整坐标TCP zk(x,y,z+Δ zk),其中,i,j,k均为整数且i≧1,j≧1,k≧1,Δ xi,Δ yj,Δ zk分别为TCP的理论坐标在X轴,Y轴,Z轴上的调整值; The marking and adjusting coordinate module 201 is configured to mark the point on the tool end of the robot arm that can be recognized by the sensor as TCP, and separately adjust the X-axis coordinate of the theoretical coordinate of the TCP to obtain i adjustment coordinates TCP xi (x+Δ xi , y, z), the Y coordinate of the theoretical coordinate of TCP is separately adjusted to obtain j adjustment coordinates TCP yj (x, y + Δ yj , z), and the Z coordinate of the theoretical coordinate of TCP is separately adjusted to obtain k adjustment coordinates. TCP zk (x, y, z + Δ zk ), where i, j, k are integers and i ≧ 1, j ≧ 1, k ≧ 1, Δ xi , Δ yj , Δ zk are theoretical coordinates of TCP, respectively Adjustment values on the X-axis, Y-axis, and Z-axis;
坐标转换关系建立模块202,用于分别根据TCP xi,TCP yj,TCP zk以及机械臂末端坐标系与机械臂坐标系的坐标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
Figure PCTCN2018119787-appb-000124
Figure PCTCN2018119787-appb-000125
其中,
Figure PCTCN2018119787-appb-000126
为单独对TCP的理论坐标的X轴坐标调整时得到的坐标转换关系,
Figure PCTCN2018119787-appb-000127
为单独对TCP的理论坐标的Y轴坐标调整时得到的坐标转换关系,
Figure PCTCN2018119787-appb-000128
单独对TCP的理论坐标的Z轴坐标调整时得到的坐标转换关系;
The coordinate transformation relationship establishing module 202 is configured to establish a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the coordinate conversion relationship between the TCP xi , the TCP yj , the TCP zk, and the robot arm end coordinate system and the robot arm coordinate system, respectively.
Figure PCTCN2018119787-appb-000124
with
Figure PCTCN2018119787-appb-000125
among them,
Figure PCTCN2018119787-appb-000126
The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted,
Figure PCTCN2018119787-appb-000127
The coordinate conversion relationship obtained when the Y coordinate of the theoretical coordinate of TCP is individually adjusted,
Figure PCTCN2018119787-appb-000128
The coordinate conversion relationship obtained when the Z coordinate of the theoretical coordinate of TCP is adjusted separately;
偏差获取模块203,用于根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
Figure PCTCN2018119787-appb-000129
Figure PCTCN2018119787-appb-000130
在所述m个位置的转换误差中的最大转换误差和/或m个转换误差的平均误差,其中,m为整数且m≧1;
The deviation obtaining module 203 is configured to obtain a coordinate conversion relationship according to the m positions in the sensor identification range of the marked points.
Figure PCTCN2018119787-appb-000129
with
Figure PCTCN2018119787-appb-000130
The maximum conversion error and/or the average error of m conversion errors in the conversion errors of the m locations, where m is an integer and m ≧ 1;
TCP的实际坐标确定模块204,用于将得到的i个最大转换误差中 的最小值和/或i个平均误差中的最小值对应的坐标x+Δ xi,j个最大转换误差中的最小值和/或j个平均误差中的最小值对应的坐标y+Δ yj和k个最大转换误差中的最小值和/或k个平均误差中的最小值对应的坐标z+Δ zk分别作为TCP的实际坐标的X轴坐标,Y轴坐标和Z轴坐标。 The actual coordinate determining module 204 of the TCP is configured to use the minimum value of the obtained i maximum conversion errors and/or the minimum value of the minimum values among the i average errors x + Δ xi , the minimum of the j maximum conversion errors And the coordinate y + Δ yj corresponding to the minimum value of the mean errors and the minimum value of the k maximum conversion errors and/or the coordinate z + Δ zk corresponding to the minimum value of the k average errors respectively as TCP The X coordinate of the actual coordinate, the Y coordinate and the Z coordinate.
标记和调整坐标模块201,坐标转换关系建立模块202,偏差获取模块203,TCP的实际坐标确定模块204用于执行上述方法实施例中对应的优选步骤。The tag and adjustment coordinate module 201, the coordinate conversion relationship establishing module 202, the deviation obtaining module 203, and the actual coordinate determining module 204 of the TCP are used to execute the corresponding preferred steps in the foregoing method embodiments.
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present application, it should be understood that the disclosed system, apparatus, and method may be implemented in other manners. For example, the device embodiments described above are merely illustrative. For example, the division of cells is only a logical function division. In actual implementation, there may be another division manner. For example, multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed. In addition, the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理 单元中,也可以是各个单元单独处理,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be processed separately, or two or more units may be integrated into one unit. The above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。The above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium. The software functional units described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of various embodiments of the present invention. The foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.
最后应说明的是:以上实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to explain the technical solutions of the embodiments of the present application, and are not limited thereto; although the present application is described in detail with reference to the foregoing embodiments, those skilled in the art should understand that The technical solutions described in the foregoing embodiments may be modified, or some of the technical features may be equivalently replaced; and the modifications or substitutions do not deviate from the spirit of the technical solutions of the embodiments of the present application. range.

Claims (10)

  1. 一种获取机器人TCP坐标的方法,其特征在于,包括以下步骤:A method for acquiring TCP coordinates of a robot, comprising the steps of:
    标记机械臂末端的工具上能够被传感器识别的点为TCP,并对TCP的理论坐标的X轴坐标单独调整得到i个调整坐标TCP xi(x+Δ xi,y,z),对TCP的理论坐标的Y轴坐标单独调整得到j个调整坐标TCP yj(x,y+Δ yj,z),对TCP的理论坐标的Z轴坐标单独调整得到k个调整坐标TCP zk(x,y,z+Δ zk),其中,i,j,k均为整数且i≧1,j≧1,k≧1,Δ xi,Δ yj,Δ zk分别为TCP的理论坐标在X轴,Y轴,Z轴上的调整值; The point on the tool marking the end of the arm that can be recognized by the sensor is TCP, and the X-axis coordinate of the theoretical coordinate of TCP is separately adjusted to obtain i adjustment coordinates TCP xi (x+Δ xi , y, z), the theory of TCP The Y-axis coordinates of the coordinates are individually adjusted to obtain j adjustment coordinates TCP yj (x, y + Δ yj , z), and the Z-axis coordinates of the theoretical coordinates of TCP are separately adjusted to obtain k adjustment coordinates TCP zk (x, y, z+) Δ zk ), where i, j, k are integers and i≧1, j≧1, k≧1, Δ xi , Δ yj , Δ zk are the theoretical coordinates of TCP on the X-axis, the Y-axis, and the Z-axis, respectively. Adjustment value on
    分别根据TCP xi,TCP yj,TCP zk和机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,以及所标记的点在传感器坐标系中的坐标,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
    Figure PCTCN2018119787-appb-100001
    Figure PCTCN2018119787-appb-100002
    其中,
    Figure PCTCN2018119787-appb-100003
    为单独对TCP的理论坐标的X轴坐标调整时得到的坐标转换关系,
    Figure PCTCN2018119787-appb-100004
    为单独对TCP的理论坐标的Y轴坐标调整时得到的坐标转换关系,
    Figure PCTCN2018119787-appb-100005
    为单独对TCP的理论坐标的Z轴坐标调整时得到的坐标转换关系;
    The robot arm coordinate system and the sensor coordinate system are established according to the coordinate conversion relationship between TCP xi , TCP yj , TCP zk and the robot arm end coordinate system and the robot arm coordinate system, and the coordinates of the marked points in the sensor coordinate system. Coordinate transformation relationship
    Figure PCTCN2018119787-appb-100001
    with
    Figure PCTCN2018119787-appb-100002
    among them,
    Figure PCTCN2018119787-appb-100003
    The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted,
    Figure PCTCN2018119787-appb-100004
    The coordinate conversion relationship obtained when the Y coordinate of the theoretical coordinate of TCP is individually adjusted,
    Figure PCTCN2018119787-appb-100005
    a coordinate conversion relationship obtained when the Z coordinate of the theoretical coordinate of the TCP is individually adjusted;
    根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
    Figure PCTCN2018119787-appb-100006
    Figure PCTCN2018119787-appb-100007
    在所述m个位置的转换误差中的最大转换 误差和/或m个转换误差的平均误差,其中,m为整数且m≧1;
    According to the m points in the sensor recognition range, the coordinates are converted according to the marked points.
    Figure PCTCN2018119787-appb-100006
    with
    Figure PCTCN2018119787-appb-100007
    The maximum conversion error and/or the average error of m conversion errors in the conversion errors of the m locations, where m is an integer and m ≧ 1;
    将得到的i个最大转换误差中的最小值和/或i个平均误差中的最小值对应的坐标x+Δ xi,j个最大转换误差中的最小值和/或j个平均误差中的最小值对应的坐标y+Δ yj和k个最大转换误差中的最小值和/或k个平均误差中的最小值对应的坐标z+Δ zk分别作为TCP的实际坐标的X轴坐标,Y轴坐标和Z轴坐标。 The smallest of the i maximum conversion errors and/or the minimum of the i average errors x + Δ xi , the minimum of the j maximum conversion errors and/or the minimum of the j average errors The coordinate y + Δ yj corresponding to the value and the minimum value among the k maximum conversion errors and/or the coordinate z + Δ zk corresponding to the minimum value of the k average errors are respectively taken as the X-axis coordinate of the actual coordinate of the TCP, and the Y-axis coordinate And Z-axis coordinates.
  2. 根据权利要求1所述的一种获取机器人TCP坐标的方法,其特征在于,根据TCP xi以及机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
    Figure PCTCN2018119787-appb-100008
    的步骤包括:
    The method for acquiring TCP coordinates of a robot according to claim 1, wherein the robot arm coordinate system and the sensor coordinate system are established according to a coordinate conversion relationship between the TCP xi and the robot arm end coordinate system and the robot arm coordinate system. Coordinate transformation relationship
    Figure PCTCN2018119787-appb-100008
    The steps include:
    根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCPxi相结合,得到每个所述空间参考点在机械臂坐标系中的i个坐标;Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range; each of the spatial reference points is The coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system corresponding to the position is combined with each adjustment coordinate TCPxi to obtain i coordinates of each of the spatial reference points in the robot arm coordinate system;
    根据每个所述空间参考点在机械臂坐标系中的i个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的i个坐标转换关系
    Figure PCTCN2018119787-appb-100009
    Obtaining i coordinates between the robot arm coordinate system and the sensor coordinate system according to i coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
    Figure PCTCN2018119787-appb-100009
  3. 根据权利要求1所述的一种获取机器人TCP坐标的方法,其特征在于,根据TCP yj以及机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
    Figure PCTCN2018119787-appb-100010
    的步骤包括:
    The method for acquiring TCP coordinates of a robot according to claim 1, wherein the robot arm coordinate system and the sensor coordinate system are established according to a coordinate conversion relationship between the TCP yj and the robot arm end coordinate system and the robot arm coordinate system. Coordinate transformation relationship
    Figure PCTCN2018119787-appb-100010
    The steps include:
    根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP yj相结合,得到每个所述空间参考点在机械臂坐标系中的j个坐标; Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range; each of the spatial reference points is The coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system corresponding to the position is combined with each adjustment coordinate TCP yj to obtain j coordinates of each of the spatial reference points in the robot arm coordinate system;
    根据每个所述空间参考点在机械臂坐标系中的j个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的j个坐标转换关系
    Figure PCTCN2018119787-appb-100011
    Obtaining j coordinates between the robot arm coordinate system and the sensor coordinate system according to j coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
    Figure PCTCN2018119787-appb-100011
  4. 根据权利要求1所述的一种获取机器人TCP坐标的方法,其特征在于,根据TCP zk以及机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
    Figure PCTCN2018119787-appb-100012
    的步骤包括:
    The method for acquiring TCP coordinates of a robot according to claim 1, wherein the robot arm coordinate system and the sensor coordinate system are established according to a coordinate transformation relationship between the TCP zk and the robot arm end coordinate system and the robot arm coordinate system. Coordinate transformation relationship
    Figure PCTCN2018119787-appb-100012
    The steps include:
    根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标 系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP zk相结合,得到每个所述空间参考点在机械臂坐标系中的k个坐标; Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range; each of the spatial reference points is The coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system corresponding to the position is combined with each adjustment coordinate TCP zk to obtain k coordinates of each of the spatial reference points in the robot arm coordinate system;
    根据每个所述空间参考点在机械臂坐标系中的k个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的k个坐标转换关系
    Figure PCTCN2018119787-appb-100013
    Obtaining k coordinates between the robot arm coordinate system and the sensor coordinate system according to k coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
    Figure PCTCN2018119787-appb-100013
  5. 根据权利要求1所述的一种获取机器人TCP坐标的方法,其特征在于,所述根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
    Figure PCTCN2018119787-appb-100014
    Figure PCTCN2018119787-appb-100015
    在所述m个位置的转换误差中的最大转换误差的步骤包括:
    The method for acquiring TCP coordinates of a robot according to claim 1, wherein the coordinate conversion relationship is respectively obtained according to m positions in the sensor recognition range of the marked points.
    Figure PCTCN2018119787-appb-100014
    with
    Figure PCTCN2018119787-appb-100015
    The steps of the maximum conversion error in the conversion errors of the m locations include:
    根据m个位置中每个位置m p下所标记的点在机械臂坐标系中的坐标Rm p和在传感器坐标系中的坐标Sm p,分别得到坐标转换关系
    Figure PCTCN2018119787-appb-100016
    在每个位置m p下的转换误差,坐标转换关系
    Figure PCTCN2018119787-appb-100017
    在每个位置m p下的转换误差和坐标转换关系
    Figure PCTCN2018119787-appb-100018
    在每个位置m p下的转换误差;
    According to the coordinates Rm p in the robot arm coordinate system and the coordinates Sm p in the sensor coordinate system, the coordinates of the points marked under each position m p in the m positions are respectively obtained.
    Figure PCTCN2018119787-appb-100016
    Conversion error at each position m p , coordinate conversion relationship
    Figure PCTCN2018119787-appb-100017
    Conversion error and coordinate transformation relationship at each position m p
    Figure PCTCN2018119787-appb-100018
    Conversion error at each position m p ;
    根据坐标转换关系
    Figure PCTCN2018119787-appb-100019
    Figure PCTCN2018119787-appb-100020
    在每个位置m p下的转换误差,分别得到坐标转换关系
    Figure PCTCN2018119787-appb-100021
    在m个位置的转换误差中的最大转 换误差,坐标转换关系
    Figure PCTCN2018119787-appb-100022
    在m个位置的转换误差中的最大转换误差和坐标转换关系
    Figure PCTCN2018119787-appb-100023
    在m个位置的转换误差中的最大转换误差;
    Conversion relationship according to coordinates
    Figure PCTCN2018119787-appb-100019
    with
    Figure PCTCN2018119787-appb-100020
    The conversion error at each position m p respectively obtains the coordinate conversion relationship
    Figure PCTCN2018119787-appb-100021
    Maximum conversion error in the conversion error of m positions, coordinate conversion relationship
    Figure PCTCN2018119787-appb-100022
    Maximum conversion error and coordinate conversion relationship among conversion errors at m positions
    Figure PCTCN2018119787-appb-100023
    Maximum conversion error in conversion errors at m locations;
    其中,转换误差为将所标记的点在机械臂坐标系中的坐标Rm p和在传感器坐标系中的坐标Sm p转换到同一坐标系后的欧式距离,m为整数且m≧1,1≦p≦m。 The conversion error is the Euclidean distance after the coordinate Rm p of the marked point in the robot arm coordinate system and the coordinate Sm p in the sensor coordinate system are converted to the same coordinate system, where m is an integer and m≧1, 1≦ P≦m.
  6. 一种获取机器人TCP坐标的装置,其特征在于,包括:An apparatus for acquiring TCP coordinates of a robot, comprising:
    标记和调整坐标模块,用于标记机械臂末端的工具上能够被传感器识别的点为TCP,并对TCP的理论坐标的X轴坐标单独调整得到i个调整坐标TCP xi(x+Δ xi,y,z),对TCP的理论坐标的Y轴坐标单独调整得到j个调整坐标TCP yj(x,y+Δ yj,z),对TCP的理论坐标的Z轴坐标单独调整得到k个调整坐标TCP zk(x,y,z+Δ zk),其中,i,j,k均为整数且i≧1,j≧1,k≧1,Δ xi,Δ yj,Δ zk分别为TCP的理论坐标在X轴,Y轴,Z轴上的调整值; Marking and adjusting coordinate module, the point on the tool at the end of the robot arm that can be recognized by the sensor is TCP, and the X coordinate of the theoretical coordinate of TCP is separately adjusted to obtain i adjustment coordinates TCP xi (x+Δ xi , y , z), the Y coordinate of the theoretical coordinate of TCP is separately adjusted to obtain j adjustment coordinates TCP yj (x, y + Δ yj , z), and the Z coordinate of the theoretical coordinate of TCP is separately adjusted to obtain k adjustment coordinates TCP Zk (x, y, z + Δ zk ), where i, j, k are integers and i ≧ 1, j ≧ 1, k ≧ 1, Δ xi , Δ yj , Δ zk are the theoretical coordinates of TCP respectively Adjustment values on the X axis, Y axis, and Z axis;
    坐标转换关系建立模块,用于分别根据TCP xi,TCP yj和TCP zk以及机械臂末端坐标系与机械臂坐标系之间的坐标转换关系,建立机械臂坐标系和传感器坐标系之间的坐标转换关系
    Figure PCTCN2018119787-appb-100024
    Figure PCTCN2018119787-appb-100025
    其中,
    Figure PCTCN2018119787-appb-100026
    为单独对TCP的理论坐标的X轴坐标调整时得到的坐标转换关系,
    Figure PCTCN2018119787-appb-100027
    为单独对TCP的理论坐标的Y轴坐标调整时得到的坐标转换关系,
    Figure PCTCN2018119787-appb-100028
    单独对TCP的理论坐标的Z轴坐标调整时得到的坐标转换关系;
    A coordinate transformation relationship establishing module is used for establishing coordinate conversion between the robot arm coordinate system and the sensor coordinate system according to the coordinate conversion relationship between TCP xi , TCP yj and TCP zk and the robot arm end coordinate system and the robot arm coordinate system, respectively. relationship
    Figure PCTCN2018119787-appb-100024
    with
    Figure PCTCN2018119787-appb-100025
    among them,
    Figure PCTCN2018119787-appb-100026
    The coordinate conversion relationship obtained when the X-axis coordinates of the theoretical coordinates of TCP are individually adjusted,
    Figure PCTCN2018119787-appb-100027
    The coordinate conversion relationship obtained when the Y coordinate of the theoretical coordinate of TCP is individually adjusted,
    Figure PCTCN2018119787-appb-100028
    The coordinate conversion relationship obtained when the Z coordinate of the theoretical coordinate of TCP is adjusted separately;
    偏差获取模块,用于根据所标记的点在传感器识别范围内的m个位置,分别得到坐标转换关系
    Figure PCTCN2018119787-appb-100029
    Figure PCTCN2018119787-appb-100030
    在所述m个位置的转换误差中的最大转换误差和/或m个转换误差的平均误差,其中,m为整数且m≧1;
    a deviation obtaining module, configured to respectively obtain a coordinate conversion relationship according to the m positions in the sensor identification range of the marked points
    Figure PCTCN2018119787-appb-100029
    with
    Figure PCTCN2018119787-appb-100030
    The maximum conversion error and/or the average error of m conversion errors in the conversion errors of the m locations, where m is an integer and m ≧ 1;
    TCP的实际坐标确定模块,用于将得到的i个最大转换误差中的最小值和/或i个平均误差中的最小值对应的坐标x+Δ xi,j个最大转换误差中的最小值和/或j个平均误差中的最小值对应的坐标y+Δ yj和k个最大转换误差中的最小值和/或k个平均误差中的最小值对应的坐标z+Δ zk分别作为TCP的实际坐标的X轴坐标,Y轴坐标和Z轴坐标。 Determining actual coordinates of the TCP module, a minimum value for the i-th maximum conversion obtained in error and / or a minimum value corresponding to the coordinates x + Δ xi i th average error of the minimum value of the j-th and the maximum conversion error / or the coordinate y + Δ yj corresponding to the minimum of the j average errors and the minimum of the k maximum conversion errors and / or the coordinate z + Δ zk corresponding to the minimum of the k average errors respectively as the actual TCP The X-axis coordinates of the coordinates, the Y-axis coordinates, and the Z-axis coordinates.
  7. 根据权利要求6所述的一种获取机器人TCP坐标的装置,其特征在于,所述坐标转换关系建立模块具体用于:The apparatus for acquiring the TCP coordinates of the robot according to claim 6, wherein the coordinate transformation relationship establishing module is specifically configured to:
    根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标 系之间的坐标转换关系与每个调整坐标TCP xi相结合,得到每个空间参考点在机械臂坐标系中的i个坐标; Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range; each of the spatial reference points is The coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system corresponding to the position is combined with each adjustment coordinate TCP xi to obtain i coordinates of each spatial reference point in the robot arm coordinate system;
    根据每个所述空间参考点在机械臂坐标系中的i个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的i个坐标转换关系
    Figure PCTCN2018119787-appb-100031
    Obtaining i coordinates between the robot arm coordinate system and the sensor coordinate system according to i coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
    Figure PCTCN2018119787-appb-100031
  8. 根据权利要求6所述的一种获取机器人TCP坐标的装置,其特征在于,所述坐标转换关系建立模块具体还用于:The apparatus for acquiring the TCP coordinates of the robot according to claim 6, wherein the coordinate transformation relationship establishing module is further configured to:
    根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点;将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP yj相结合,得到每个空间参考点在机械臂坐标系中的j个坐标; Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range; each of the spatial reference points is The coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system corresponding to the position is combined with each adjustment coordinate TCP yj to obtain j coordinates of each spatial reference point in the robot arm coordinate system;
    根据每个所述空间参考点在机械臂坐标系中的j个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的j个坐标转换关系
    Figure PCTCN2018119787-appb-100032
    Obtaining j coordinates between the robot arm coordinate system and the sensor coordinate system according to j coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
    Figure PCTCN2018119787-appb-100032
  9. 根据权利要求6所述的一种获取机器人TCP坐标的装置,其特征在于,所述坐标转换关系建立模块具体还用于:The apparatus for acquiring the TCP coordinates of the robot according to claim 6, wherein the coordinate transformation relationship establishing module is further configured to:
    根据所标记的点在传感器识别范围内的移动,得到用于建立机械臂坐标系和传感器坐标系之间坐标转换关系的至少三个非共线的空间参考点; 将每个所述空间参考点所在位置对应的机械臂末端坐标系与机械臂坐标系之间的坐标转换关系与每个调整坐标TCP zk相结合,得到每个所述空间参考点在机械臂坐标系中的k个坐标; Obtaining at least three non-collinear spatial reference points for establishing a coordinate conversion relationship between the robot arm coordinate system and the sensor coordinate system according to the movement of the marked point within the sensor recognition range; each of the spatial reference points is The coordinate conversion relationship between the robot arm end coordinate system and the robot arm coordinate system corresponding to the position is combined with each adjustment coordinate TCP zk to obtain k coordinates of each of the spatial reference points in the robot arm coordinate system;
    根据每个所述空间参考点在机械臂坐标系中的k个坐标,以及每个所述空间参考点在传感器坐标系中的坐标,得到机械臂坐标系和传感器坐标系之间的k个坐标转换关系
    Figure PCTCN2018119787-appb-100033
    Obtaining k coordinates between the robot arm coordinate system and the sensor coordinate system according to k coordinates of each of the spatial reference points in the robot arm coordinate system and coordinates of each of the spatial reference points in the sensor coordinate system Conversion relationship
    Figure PCTCN2018119787-appb-100033
  10. 根据权利要求6所述的一种获取机器人TCP坐标的装置,其特征在于,所述偏差获取模块具体用于:The device for acquiring the TCP coordinates of the robot according to claim 6, wherein the deviation obtaining module is specifically configured to:
    根据m个位置中每个位置m p下所标记的点在机械臂坐标系中的坐标Rm p和在传感器坐标系中的坐标Sm p,分别得到坐标转换关系
    Figure PCTCN2018119787-appb-100034
    在每个位置m p下的转换误差,坐标转换关系
    Figure PCTCN2018119787-appb-100035
    在每个位置m p下的转换误差和坐标转换关系
    Figure PCTCN2018119787-appb-100036
    在每个位置m p下的转换误差;
    According to the coordinates Rm p in the robot arm coordinate system and the coordinates Sm p in the sensor coordinate system, the coordinates of the points marked under each position m p in the m positions are respectively obtained.
    Figure PCTCN2018119787-appb-100034
    Conversion error at each position m p , coordinate conversion relationship
    Figure PCTCN2018119787-appb-100035
    Conversion error and coordinate transformation relationship at each position m p
    Figure PCTCN2018119787-appb-100036
    Conversion error at each position m p ;
    根据坐标转换关系
    Figure PCTCN2018119787-appb-100037
    Figure PCTCN2018119787-appb-100038
    在每个位置m p下的转换误差,分别得到坐标转换关系
    Figure PCTCN2018119787-appb-100039
    在m个位置的转换误差中的最大转换误差,坐标转换关系
    Figure PCTCN2018119787-appb-100040
    在m个位置的转换误差中的最大转换误差和坐标转换关系
    Figure PCTCN2018119787-appb-100041
    在m个位置的转换误差中的最大转换误差; 其中,转换误差为所标记的点在机械臂坐标系中的坐标
    Figure PCTCN2018119787-appb-100042
    和在传感器坐标系中的坐标
    Figure PCTCN2018119787-appb-100043
    之间的欧式距离,m为整数且m≧1,1≦p≦m。
    Conversion relationship according to coordinates
    Figure PCTCN2018119787-appb-100037
    with
    Figure PCTCN2018119787-appb-100038
    The conversion error at each position m p respectively obtains the coordinate conversion relationship
    Figure PCTCN2018119787-appb-100039
    Maximum conversion error in the conversion error of m positions, coordinate conversion relationship
    Figure PCTCN2018119787-appb-100040
    Maximum conversion error and coordinate conversion relationship among conversion errors at m positions
    Figure PCTCN2018119787-appb-100041
    The maximum conversion error in the conversion error of m positions; where the conversion error is the coordinate of the marked point in the robot arm coordinate system
    Figure PCTCN2018119787-appb-100042
    And coordinates in the sensor coordinate system
    Figure PCTCN2018119787-appb-100043
    The Euclidean distance between them, m is an integer and m≧1,1≦p≦m.
PCT/CN2018/119787 2017-12-13 2018-12-07 Method and device for obtaining coordinates of tcp of robot WO2019114630A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711332893.X 2017-12-13
CN201711332893.XA CN109916352B (en) 2017-12-13 2017-12-13 Method and device for acquiring TCP (Transmission control protocol) coordinates of robot

Publications (1)

Publication Number Publication Date
WO2019114630A1 true WO2019114630A1 (en) 2019-06-20

Family

ID=66818973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119787 WO2019114630A1 (en) 2017-12-13 2018-12-07 Method and device for obtaining coordinates of tcp of robot

Country Status (2)

Country Link
CN (1) CN109916352B (en)
WO (1) WO2019114630A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152680B (en) * 2021-11-26 2022-06-21 中国科学院合肥物质科学研究院 TCP calibration method and device for six-axis mechanical arm ultrasonic detection system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679925A (en) * 2012-05-24 2012-09-19 上海飞机制造有限公司 Method for measuring positioning error of robot
CN103322953A (en) * 2013-05-22 2013-09-25 北京配天大富精密机械有限公司 Method and device for calibration of workpiece coordinate system, and method and device for workpiece processing
CN205734940U (en) * 2016-05-25 2016-11-30 南京工程学院 A kind of online fast calibration device of TCP being applied to industrial robot
CN106426172A (en) * 2016-10-27 2017-02-22 深圳元启智能技术有限公司 Calibration method and system for industrial robot tool coordinate system
CN106502208A (en) * 2016-09-23 2017-03-15 佛山华数机器人有限公司 A kind of industrial robot TCP scaling methods
GB2547200A (en) * 2016-02-09 2017-08-16 Honda Motor Co Ltd Tool center point setting method for articulated robot
CN107121108A (en) * 2017-06-06 2017-09-01 湖北工业大学 It is a kind of fast to sentence robot tool coordinate system scaling method by mistake certainly

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125207A (en) * 1984-07-12 1986-02-04 Fanuc Ltd Setting system of tool coordinate system
JP3083706B2 (en) * 1994-05-30 2000-09-04 本田技研工業株式会社 Error detection method for offline teaching data
JPH08272425A (en) * 1995-03-29 1996-10-18 Fanuc Ltd Method to teach coordinate system to robot in non-contact
JPH0997106A (en) * 1995-10-02 1997-04-08 Honda Motor Co Ltd Teaching data production method
US6812665B2 (en) * 2002-04-19 2004-11-02 Abb Ab In-process relative robot workcell calibration
JP3950805B2 (en) * 2003-02-27 2007-08-01 ファナック株式会社 Teaching position correction device
CN1867074A (en) * 2005-05-19 2006-11-22 扬智科技股份有限公司 Mobile estimation method for adaptive dynamic searching range
CN101630409B (en) * 2009-08-17 2011-07-27 北京航空航天大学 Hand-eye vision calibration method for robot hole boring system
CN102909728B (en) * 2011-08-05 2015-11-25 鸿富锦精密工业(深圳)有限公司 The vision correction methods of robot tooling center points
CN102689118A (en) * 2012-02-03 2012-09-26 昆山工研院工业机器人研究所有限公司 Method and system realizing automatic deviation of tool center point of welding robot
CN102848388A (en) * 2012-04-05 2013-01-02 上海大学 Service robot locating and grabbing method based on multiple sensors
CN104827480A (en) * 2014-02-11 2015-08-12 泰科电子(上海)有限公司 Automatic calibration method of robot system
CN203929047U (en) * 2014-06-30 2014-11-05 中南大学 A kind of track displacement monitoring device based on radio communication
CN104457645B (en) * 2014-11-27 2017-08-04 中南大学 A kind of robot tooling center points scaling method of utilization two-dimensional measurement function flat board
CN104729455B (en) * 2014-12-04 2017-01-11 北京航空航天大学 Pipeline flexible welding and assembling robot posture calculation method based on measurement data
CN106338990B (en) * 2016-08-12 2018-12-14 杭州亿恒科技有限公司 Industrial robot DH parameter calibration and Zero positioning method based on laser tracker

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679925A (en) * 2012-05-24 2012-09-19 上海飞机制造有限公司 Method for measuring positioning error of robot
CN103322953A (en) * 2013-05-22 2013-09-25 北京配天大富精密机械有限公司 Method and device for calibration of workpiece coordinate system, and method and device for workpiece processing
GB2547200A (en) * 2016-02-09 2017-08-16 Honda Motor Co Ltd Tool center point setting method for articulated robot
CN205734940U (en) * 2016-05-25 2016-11-30 南京工程学院 A kind of online fast calibration device of TCP being applied to industrial robot
CN106502208A (en) * 2016-09-23 2017-03-15 佛山华数机器人有限公司 A kind of industrial robot TCP scaling methods
CN106426172A (en) * 2016-10-27 2017-02-22 深圳元启智能技术有限公司 Calibration method and system for industrial robot tool coordinate system
CN107121108A (en) * 2017-06-06 2017-09-01 湖北工业大学 It is a kind of fast to sentence robot tool coordinate system scaling method by mistake certainly

Also Published As

Publication number Publication date
CN109916352B (en) 2020-09-25
CN109916352A (en) 2019-06-21

Similar Documents

Publication Publication Date Title
CN107738254B (en) Conversion calibration method and system for mechanical arm coordinate system
WO2018090323A1 (en) Method, system, and device for calibrating coordinate system
CN109153125B (en) Method for orienting an industrial robot and industrial robot
Zhan et al. Hand–eye calibration and positioning for a robot drilling system
CN110553600B (en) Method for generating simulated laser line of structured light sensor for workpiece detection
WO2019114631A1 (en) Method and device for acquiring tcp coordinates of robot
CN113379849A (en) Robot autonomous recognition intelligent grabbing method and system based on depth camera
Wang et al. A vision-based fully-automatic calibration method for hand-eye serial robot
CN116277035B (en) Robot control method and device, processor and electronic equipment
WO2019114629A1 (en) Method and device for acquiring tcp coordinates of robot
Xiao et al. A new fixed axis-invariant based calibration approach to improve absolute positioning accuracy of manipulators
Li Kinematic calibration of an active head-eye system
US20220383547A1 (en) Hand-eye calibration of camera-guided apparatuses
CN115284292A (en) Mechanical arm hand-eye calibration method and device based on laser camera
Mao et al. Separable nonlinear least squares algorithm for robust kinematic calibration of serial robots
US20220152818A1 (en) Apparatus and method for training a machine learning model to recognize an object topology of an object from an image of the object
Sun et al. A high-accuracy positioning method for mobile robotic grasping with monocular vision and long-distance deviation
WO2019114630A1 (en) Method and device for obtaining coordinates of tcp of robot
CN112958960A (en) Robot hand-eye calibration device based on optical target
Ðurović et al. Visual servoing for low-cost SCARA robots using an RGB-D camera as the only sensor
CN117017495A (en) CKF-based high-precision automatic hand-eye calibration method and system for surgical robot
WO2020010625A1 (en) Method and system for optimizing kinematic model of robot, and storage device.
CN114083530B (en) Workpiece coordinate system calibration system and method
US11964400B2 (en) Device and method for controlling a robot to pick up an object in various positions
Dong et al. GA-based modified DH method calibration modelling for 6-DOFs serial robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887625

Country of ref document: EP

Kind code of ref document: A1