WO2019114363A1 - Nfc装置的工作频率确定方法及装置 - Google Patents

Nfc装置的工作频率确定方法及装置 Download PDF

Info

Publication number
WO2019114363A1
WO2019114363A1 PCT/CN2018/107238 CN2018107238W WO2019114363A1 WO 2019114363 A1 WO2019114363 A1 WO 2019114363A1 CN 2018107238 W CN2018107238 W CN 2018107238W WO 2019114363 A1 WO2019114363 A1 WO 2019114363A1
Authority
WO
WIPO (PCT)
Prior art keywords
nfc
nfc device
frequency
antenna
module
Prior art date
Application number
PCT/CN2018/107238
Other languages
English (en)
French (fr)
Inventor
刘斌
郭帅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019114363A1 publication Critical patent/WO2019114363A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for determining an operating frequency of an NFC device.
  • NFC Near Field Communication
  • the 13.56MHz NFC technology is very mature and widely used in smart phones, and it has become one of the indispensable application functions of smart phones.
  • 13.56MHz NFC technology is promoted globally as a standard protocol, but due to the inconsistent design capabilities of various label manufacturers, there is a large difference in the optimal operating frequency range between cards of different manufacturers or cards of different batches of the same manufacturer.
  • the resonance frequency point of the NFC coil inside the tag is not at 13.56 MHz, and even the deviation is very large, so that the terminal and the tag appear, and the master device and the slave device cannot perform NFC communication.
  • the embodiments of the present invention provide a method and a device for determining an operating frequency of an NFC device, so as to at least solve the communication quality problem caused by the frequency offset of the NFC device in the related art.
  • a method for determining an operating frequency of an NFC device includes: configuring a matching network corresponding to the set frequency according to a set frequency of the NFC device; detecting antenna coupling of the NFC device An energy state; determining an operating frequency of the NFC device based on the antenna coupled energy state.
  • the setting frequency is multiple, and configuring a matching network corresponding to the set frequency according to a set frequency of the NFC device, comprising: configuring a clock parameter for the NFC device to enable the NFC
  • the devices respectively output a plurality of set frequencies; and respectively configure corresponding matching networks according to the plurality of set frequencies.
  • detecting an antenna coupling energy state of the NFC device determining an operating frequency of the NFC device according to the antenna coupling energy state, comprising: respectively detecting antenna coupling of the NFC device at each set frequency An energy state; locking one of the plurality of set frequencies to an operating frequency of the NFC device according to the antenna coupled energy state.
  • the method further includes: configuring a matching network corresponding to the working frequency.
  • configuring the clock parameters for the NFC device such that the NFC devices respectively output a plurality of frequencies comprises: configuring the different clock parameters such that the NFC device is preset based on the set center frequency The step size outputs a plurality of set frequencies respectively.
  • detecting an antenna coupling energy state of the NFC device at each set frequency including one of: separately detecting a load modulation amplitude of the NFC device at each set frequency; separately detecting each Setting a standing wave ratio of a transmission signal of the NFC device at a frequency; detecting an output voltage value of the NFC device at each set frequency.
  • locking one of the plurality of set frequencies to an operating frequency of the NFC device according to the antenna coupling energy state comprises: comparing the NFC at each set frequency The load modulation amplitude of the device locks the set frequency corresponding to the maximum load modulation amplitude to the operating frequency of the NFC device.
  • locking one of the plurality of set frequencies to an operating frequency of the NFC device according to the antenna coupling energy state comprises: comparing the NFC at each set frequency The standing wave ratio of the transmitted signal of the device locks the set frequency corresponding to the minimum standing wave ratio to the operating frequency of the NFC device.
  • locking one of the plurality of set frequencies to an operating frequency of the NFC device according to the antenna coupling energy state comprises: comparing the NFC at each set frequency The output voltage value of the device locks the set frequency corresponding to the minimum voltage value to the operating frequency of the NFC device.
  • an NFC operating frequency determining apparatus comprising: a configuration module configured to configure a matching network corresponding to the set frequency according to a set frequency of the NFC device; and the detecting module is configured to detect An antenna coupled energy state of the NFC device; a determining module configured to determine an operating frequency of the NFC device based on the antenna coupled energy state.
  • the configuration module includes: a first configuration unit configured to configure a clock parameter for the NFC device such that the NFC device outputs a plurality of set frequencies respectively; and a second configuration unit configured to be configured according to the plurality of Set the frequency to configure the corresponding matching network.
  • the setting frequency is multiple, and the detecting module is further configured to respectively detect an antenna coupling energy state of the NFC device at each set frequency; the determining module is further configured to The antenna couples an energy state, and locks one of the plurality of set frequencies to an operating frequency of the NFC device.
  • the configuration module is further configured to configure a matching network corresponding to the working frequency after the determining module locks an operating frequency of the NFC device.
  • the first configuration unit is further configured to, by configuring different clock parameters, cause the NFC device to output a plurality of set frequencies respectively in preset steps based on the set center frequency.
  • the detecting module includes at least one of: a first detecting unit configured to detect a load modulation amplitude of the NFC device at each set frequency, respectively; and a second detecting unit configured to detect each a standing wave ratio of a transmission signal of the NFC device at a set frequency; and a third detecting unit configured to detect an output voltage value of the NFC device at each set frequency.
  • the determining module comprises at least one of: a first determining unit. Set to compare the load modulation amplitude of the NFC device at each set frequency, and lock the set frequency corresponding to the maximum load modulation amplitude to the operating frequency of the NFC device; the second determining unit is configured to compare each setting a standing wave ratio of a transmission signal of the NFC device at a frequency, locking a set frequency corresponding to a minimum standing wave ratio to an operating frequency of the NFC device; and a third determining unit configured to compare the each of the set frequencies The output voltage value of the NFC device locks the set frequency corresponding to the minimum voltage value to the operating frequency of the NFC device.
  • an NFC identification device includes an NFC chip, a controller, a matching network module, and an NFC antenna module, where the NFC chip includes a clock circuit, and is configured to pass through The clock circuit is configured with different clock parameters such that the NFC device outputs a plurality of preset operating frequencies; the controller is configured to respectively configure the matching network module and the NFC antenna module according to the clock parameter The working mode corresponding to the working frequency; the matching network module is connected between the NFC chip and the NFC antenna module, and is configured to connect the NFC chip and the NFC antenna under the control of the controller The interaction signals between the modules are filtered, matched and tuned.
  • the clock source of the clock circuit is an internal clock source of the NFC chip or an external clock source.
  • the NFC identification device further includes: a detection circuit configured to detect an antenna coupling energy state of the NFC device at a plurality of preset operating frequencies, respectively.
  • the detecting circuit is one of: a detecting circuit configured to detect a load modulation amplitude in the NFC chip; a standing wave detecting circuit configured to detect a standing wave ratio of a signal transmitted by the NFC antenna module A rectification detection circuit configured to detect an output voltage value of the NFC identification device.
  • the NFC antenna module includes one of the following NFC antennas: a metal coil, a patch antenna, and a tunable antenna.
  • a storage medium comprising a stored program, wherein the program is executed to execute the method steps in the foregoing embodiments.
  • a processor configured to execute a program, wherein the program is executed to execute the method steps described in the foregoing embodiments.
  • the frequency deviation of the NFC device is solved by finally locking the operating frequency of the NFC device according to the antenna coupling energy state, and the communication quality of the NFC device is improved.
  • FIG. 1 is a flow chart of a method for determining an operating frequency of an NFC device according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the structure of an NFC identification apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an equivalent circuit of a matching network module according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an equivalent circuit of an NFC antenna module according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a standing wave detecting circuit according to an embodiment of the present invention.
  • FIG. 6 is a block diagram of a rectification detecting circuit according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of an NFC identification method according to Embodiment 1 of the present invention.
  • FIG. 10 is a block diagram showing the structure of an NFC operating frequency determining apparatus according to an embodiment of the present invention.
  • the 13.56MHz NFC technology is very mature and widely used. It provides a simple, touch-sensitive solution that allows consumers to exchange information and access content and services simply and intuitively.
  • the internal NFC coil operating frequency is not at the standard 13.56MHz.
  • the domestic authoritative ID card is not uniform, even for the same region. The ID card, when communicating with a standard NFC device, can be difficult to read or even fail.
  • the mechanism of the invention is based on the process of NFC communication, the working frequency of the NFC card is derived from the transmission frequency of the NFC mobile phone, and the working frequency is close to the optimal working frequency in the physical environment composed of the NFC card and the NFC mobile phone, and the communication performance is obtained. Improved; if the frequency of NFC mobile phone transmission deviates from the optimal operating frequency of the physical environment composed of NFC cards and NFC mobile phones, communication performance will deteriorate.
  • An embodiment of the present invention provides a method for determining an operating frequency of an NFC device. As shown in FIG. 1, the method includes the following steps:
  • Step S102 configuring a matching network corresponding to the set frequency according to a set frequency of the NFC device
  • Step S104 detecting an antenna coupling energy state of the NFC device
  • Step S106 determining an operating frequency of the NFC device according to the antenna coupling energy state.
  • the frequency deviation of the NFC device is solved by finally locking the operating frequency of the NFC device according to the antenna coupling energy state, and the communication quality of the NFC device is improved.
  • the embodiment of the present invention further provides an NFC identification device.
  • the NFC identification device performs communication scanning at a certain step size with a center frequency of 13.56 MHz at the beginning of each communication, and according to the obtained corresponding frequency.
  • the parameters such as modulation amplitude, signal-to-noise ratio, etc., by finding the truth table, determine the final frequency, and lock the matching network parameters, so that the antenna coupling energy is optimal.
  • the NFC identification device includes an NFC chip 101, a controller 102, a matching network module 103, an NFC antenna module 104, and a detection circuit 105.
  • the NFC chip 101 includes a clock circuit that can stably output a corresponding operating frequency according to different parameters of the configuration.
  • the clock circuit can be an externally adjustable clock circuit of the chip, or can be an internally adjustable clock circuit of the chip.
  • the controller 102 issues a control command according to the clock parameters set in the NFC chip 101, so that the matching network module 103 and the NFC antenna module 104 operate in respective modes.
  • the module includes filtering, matching, tuning and other circuits, so that the antenna can fully exert its performance and improve the antenna coupling quality.
  • the NFC antenna module 104 is an antenna, which may be a metal coil, and may be a patch antenna or a tunable antenna.
  • the detection circuit 105 is mainly arranged to detect the current antenna coupling quality. It can be an integrated detection module inside the NFC chip, or it can be an external detection circuit. Its function is to detect the antenna coupling quality in the current state through detection.
  • the matching network module 103 For the matching network module 103, reference may be made to the matching network equivalent schematic circuit of FIG. 3, and the specific design is not limited to the above schematic circuit. Capacitor L, capacitor C can be fixed or controllable. According to the control instruction issued by the controller 102, the design in the matching network module in the matching network module 103 can be dynamically adjusted to achieve better filtering and matching effects.
  • the antenna can be a fixed design, that is, the capacitance C, the inductance L, the resistance R is fixed, or the resonance frequency can be adjusted. That is, the capacitance C, the inductance L, and the resistance R can be changed, corresponding to the physical object. It can be realized by changing various antennas to change the length of the antenna, the wiring form, and the like. According to the control command issued by the controller 102, the antenna state in the NFC antenna module 104 can be dynamically adjusted to optimize the antenna energy coupling.
  • the detection circuit 105 may be an internal detection module of the NFC chip.
  • the antenna coupling quality is obtained by an LMA (load modulation amplitude) load modulation amplitude.
  • the antenna coupling quality of the current state can also be obtained by other methods.
  • the standing wave ratio of the signal transmitted by the NFC antenna can be detected. As shown in FIG. 5, the standing wave detecting circuit works in the case where the NFC circuit outputs a null carrier, and the coupler couples a part of the energy into the bidirectional switching switch, when the switch does not switch. The detection circuit measures the forward power. When the switch is switched, the detection circuit measures the reverse power.
  • the calculation of the two power values can obtain the standing wave ratio.
  • the detection circuit can also be in the form of rectification detection. As shown in FIG. 6, when the card is read, the circuit operates in the case where the NFC circuit outputs a null carrier, and the rectification detection circuit can detect the voltage value of the NFC output, and the smaller the voltage value is, It indicates that the coupling degree between the NFC circuit and the tag card is higher.
  • the forms are various, and are not limited to the above-mentioned ones. To simplify the description, the present invention is described by taking the LMA inside the commonly used NFC chip as an example.
  • the communication problem caused by the product frequency offset which cannot be solved in the prior art can be solved by a complete closed loop system, that is, it can be better compatible with various types of products existing on the market. Swipe device to enhance the user experience.
  • the embodiment further provides an NFC identification method. As shown in FIG. 7, the method includes the following process:
  • step S701 the system starts an NFC interaction.
  • Step S702 the system starts to configure the NFC chip clock circuit to output a set frequency, and at the same time, the controller issues an instruction to configure the matching network corresponding to the set frequency.
  • Step S703 at the set frequency, detecting whether the NFC interaction performance is optimal at this time, if not optimal, jumping to S702, resetting the clock circuit with a certain step or rule, and re-outputting another A working frequency.
  • Step S704 if it is determined in S703 that the NFC interaction performance is optimal at this time, the set frequency is recorded and locked, and the matching network corresponding to the controller is configured at the same time.
  • the controller 102 issues an instruction to cause the matching network module 103 to operate at M and the NFC antenna module 104 to operate at A, respectively.
  • Matching M and A the matching has been successfully debugged at the beginning of the product design.
  • different network matching can be realized by changing the inductance L and the capacitance C.
  • the antenna can be matched by changing the length of the antenna and the routing form through various switch switching. Thereby the antenna performance is fully utilized. How to confirm the network and antenna matching, there are many ways to achieve in the industry, not to repeat here.
  • the detecting circuit 105 can monitor the antenna coupling quality at the current frequency in real time, for example, according to the magnitude of the load modulation amplitude of the LMA (load modulation amplitude).
  • the detection circuit is in various forms and is not limited to LMA.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the system starts NFC interaction, as shown in Figure 8, the process includes the following steps:
  • step S801 the system starts to configure the NFC chip clock circuit to output a default frequency of 13.56 MHz, and the controller issues an instruction to configure the matching network module 103 to M and the NFC antenna module 104 to A.
  • step S802 the LMA value X at this time is recorded.
  • Step S803 the NFC chip clock circuit is configured to output the frequency F2, and the controller issues an instruction to configure the matching network module 103 to M2 and the NFC antenna 104 to A2.
  • step S804 the LMA value X2 at this time is recorded.
  • Step S805 the NFC chip clock circuit is configured to output the frequency F3, and the controller issues an instruction to configure the matching network module 103 to M3 and the NFC antenna 104 to A3.
  • step S806 the LMA value X3 at this time is recorded.
  • Step S807 the NFC chip clock circuit is configured to output the frequency F1, and the controller issues an instruction to configure the matching network module 103 to M1 and the NFC antenna 104 to A1.
  • step S808 the LMA value X1 at this time is recorded.
  • step S809 the NFC chip clock circuit is configured to output the frequency F4, and the controller issues an instruction to configure the matching network module 103 to M4 and the NFC antenna 104 to A4.
  • step S810 the LMA value X4 at this time is recorded. Comparing X1, X2, X, X3, and X4, the maximum value X3 is obtained.
  • step S811 the NFC chip clock circuit is locked to output the frequency F3, and the controller issues an instruction to configure the matching network module 103 to M3 and the NFC antenna 104 to A3.
  • the system first outputs a standard operating frequency of 13.56 MHz by default, and then outputs different operating frequencies centered on the frequency.
  • the output may be performed according to other rules, and is not limited to the above manner.
  • it may be F1, F2, 13.56 MHz, F3, F4, or F4, F3, 13.56 MHz, F2, and F1. These are not the core points of the present invention and will not be described here.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the system starts NFC interaction, as shown in Figure 9, the process includes the following steps:
  • step S901 the system starts to configure the NFC chip clock circuit to output a default frequency of 13.56 MHz, and the controller issues an instruction to configure the matching network module 103 to M and the matching network module 104 to A.
  • step S902 the LMA value X at this time is recorded.
  • step S903 the NFC chip clock circuit is configured to output the frequency F2, and the controller issues an instruction to configure the matching network module 103 to M2 and the matching network module 104 to A2.
  • step S904 the LMA value X2 is recorded at this time, and X2 and X are compared to obtain a maximum value X2.
  • step S905 the NFC chip clock circuit is configured to output the frequency F3, and the controller issues an instruction to configure the matching network module 103 to M3 and the matching network module 104 to A3.
  • step S906 the LMA value X3 is recorded at this time, and X3 is compared with the previous maximum value X2 to obtain a maximum value X3.
  • Step S907 the NFC chip clock circuit is configured to output the frequency F1, and the controller issues an instruction to configure the matching network module 103 to M1 and the matching network module 104 to A1.
  • step S908 the LMA value X1 is recorded at this time, and X1 is compared with the previous maximum value X3 to obtain a maximum value X3.
  • Step S909 the NFC chip clock circuit is configured to output the frequency F4, and the controller issues an instruction to configure the matching network module 103 to M4 and the matching network module 104 to A4.
  • step S910 the LMA value X4 is recorded at this time, and X4 is compared with the previous maximum value X3 to obtain a maximum value X4.
  • step S911 the NFC chip clock circuit is locked to output the frequency F4, and the controller issues an instruction to configure the matching network module 103 to M4 and the matching network module 104 to A4.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • an NFC operating frequency determining device is further provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 10 is a structural block diagram of an NFC operating frequency determining apparatus according to an embodiment of the present invention. As shown in FIG. 10, the apparatus includes: a configuration module 201, a detecting module 202, and a confirming module 203.
  • the configuration module 201 is configured to configure a matching network corresponding to the set frequency according to a set frequency of the NFC device.
  • the configuration module 201 in this embodiment is functionally equivalent to the NFC chip 101 in the previous embodiment.
  • the detecting module 202 is configured to detect an antenna coupling energy state of the NFC device.
  • the detection module 202 in this embodiment is functionally equivalent to the detection circuit 105 in the previous embodiment.
  • the determining module 203 determines an operating frequency of the NFC device according to the antenna coupling energy state.
  • the determining module 203 in this embodiment is functionally equivalent to the controller 102 in the previous embodiment.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • the embodiment of the present invention further provides a processor, which is configured to run a program, wherein the program is executed to execute the method steps in the foregoing embodiments.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be arranged to store the method steps for performing the previous embodiments.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Near-Field Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种NFC装置的工作频率确定方法及装置,所述方法包括:根据所述NFC装置的设定频率配置与所述设定频率对应的匹配网络;检测所述NFC装置的天线耦合能量状态;根据所述天线耦合能量状态确定所述NFC装置的工作频率。通过根据所述天线耦合能量状态来最终锁定所述NFC装置的工作频率,从而解决了NFC装置的频率偏差问题,提高了NFC装置的通信质量。

Description

NFC装置的工作频率确定方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种NFC装置的工作频率确定方法及装置。
背景技术
近距离通信(Near Field Communication,NFC)技术是一种基于标准的短距无线连接技术,即,非接触式识别技术和互连技术的融合。NFC能够在多个电子设备之间实现简单而安全的双向交互。目前,该技术正在被普遍应用在金融服务领域中。其中,进行手机终端支付即采用NFC技术的一种应用业务,刷公交卡,警务系统的身份证验证都可以采用NFC技术进行实现。
目前13.56MHz的NFC技术已经非常成熟,在智能手机上得到广泛应用,成为了现在智能手机一个不可缺少的应用功能之一。13.56MHz的NFC技术作为标准协议在全球推广,但是由于各个标签生产厂家的设计能力不一致,不同厂家的卡片或者同一厂家的不同批次的卡片之间的最佳工作频率范围也存在较大的差异,导致标签内部的NFC线圈谐振频率点不是在13.56MHz上,甚至偏差非常大,从而出现终端与标签,主设备与从设备无法进行NFC通信。
发明内容
本发明实施例提供了NFC装置的工作频率确定方法及装置,以至少解决相关技术中NFC装置的频偏所导致的通信质量问题。
根据本发明的一个方面,提供了一种NFC装置的工作频率确定方法,包括:根据所述NFC装置的设定频率配置与所述设定频率对应的匹配网络;检测所述NFC装置的天线耦合能量状态;根据所述天线耦合能量状态确定所述NFC装置的工作频率。
在一个实施例中,所述设定频率为多个,根据所述NFC装置的设定频率配置与所述设定频率对应的匹配网络,包括:为所述NFC装置配置时钟参数使得所述NFC装置分别输出多个设定频率;根据所述多个设定频率分别配置对应的匹配网络。
在一个实施例中,检测所述NFC装置的天线耦合能量状态,根据所述天线耦合能量状态确定所述NFC装置的工作频率,包括:分别检测每个设定频率下所述NFC装置的天线耦合能量状态;根据所述天线耦合能量状态,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率。
在一个实施例中,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频 率之后,还包括:配置与所述工作频率对应的匹配网络。
在一个实施例中,为所述NFC装置配置时钟参数使得所述NFC装置分别输出多个频率,包括:通过配置不同的时钟参数,使得所述NFC装置基于设定的中心频率,以预设的步长分别输出多个设定频率。
在一个实施例中,分别检测每个设定频率下所述NFC装置的天线耦合能量状态,包括以下之一:分别检测每个设定频率下所述NFC装置的负载调制幅度;分别检测每个设定频率下所述NFC装置的发射信号的驻波比;分别检测每个设定频率下所述NFC装置的输出电压值。
在一个实施例中,根据所述天线耦合能量状态,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率,包括:比较每个设定频率下所述NFC装置的负载调制幅度,将与最大负载调制幅度对应的设定频率锁定为述NFC装置的工作频率。
在一个实施例中,根据所述天线耦合能量状态,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率,包括:比较每个设定频率下所述NFC装置的发射信号的驻波比,将与最小驻波比对应的设定频率锁定为述NFC装置的工作频率。
在一个实施例中,根据所述天线耦合能量状态,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率,包括:比较每个设定频率下所述NFC装置的输出电压值,将与最小电压值对应的设定频率锁定为述NFC装置的工作频率。
根据本发明的另一方面,提供了一种NFC工作频率确定装置,包括:配置模块,设置为根据NFC装置的设定频率配置与所述设定频率对应的匹配网络;检测模块,设置为检测所述NFC装置的天线耦合能量状态;确定模块,设置为根据所述天线耦合能量状态确定所述NFC装置的工作频率。
在一个实施例中,配置模块包括:第一配置单元,设置为为所述NFC装置配置时钟参数使得所述NFC装置分别输出多个设定频率;第二配置单元,设置为根据所述多个设定频率分别配置对应的匹配网络。
在一个实施例中,所述设定频率为多个,所述检测模块,还设置为分别检测每个设定频率下所述NFC装置的天线耦合能量状态;所述确定模块,还设置为根据所述天线耦合能量状态,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率。
在一个实施例中,所述配置模块,还设置为在所述确定模块锁定所述NFC装置的工作频率之后,配置与所述工作频率对应的匹配网络。
在一个实施例中,所述第一配置单元,还设置为通过配置不同的时钟参数,使得所述NFC装置基于设定的中心频率,以预设的步长分别输出多个设定频率。
在一个实施例中,所述检测模块包括以下至少之一:第一检测单元,设置为分别检测每个设定频率下所述NFC装置的负载调制幅度;第二检测单元,设置为分别检测每个设定频率下所述NFC装置的发射信号的驻波比;第三检测单元,设置为分别检测每个设定频率下所述 NFC装置的输出电压值。
在一个实施例中,所述确定模块包括以下至少之一:第一确定单元。设置为比较每个设定频率下所述NFC装置的负载调制幅度,将与最大负载调制幅度对应的设定频率锁定为述NFC装置的工作频率;第二确定单元,设置为比较每个设定频率下所述NFC装置的发射信号的驻波比,将与最小驻波比对应的设定频率锁定为述NFC装置的工作频率;第三确定单元,设置为比较每个设定频率下所述NFC装置的输出电压值,将与最小电压值对应的设定频率锁定为述NFC装置的工作频率。
根据本发明实施例的又一方面,还提供了一种NFC识别装置,包括NFC芯片、控制器、匹配网络模块和NFC天线模块,其中,所述NFC芯片,包括时钟电路,设置为通过为所述时钟电路配置不同的时钟参数使得所述NFC装置输出多个预设的工作频率;所述控制器,设置为根据所述时钟参数分别将所述匹配网络模块和所述NFC天线模块配置到与所述工作频率对应的工作模式;所述匹配网络模块,连接在所述NFC芯片与所述NFC天线模块之间,设置为在所述控制器的控制下对所述NFC芯片与所述NFC天线模块之间的交互信号进行滤波、匹配和调谐。
其中,所述时钟电路的时钟源为所述NFC芯片的内部时钟源,或为外部时钟源。
在一个实施例中,该NFC识别装置还包括:检测电路,设置为分别检测多个预设的工作频率下所述NFC装置的天线耦合能量状态。
在一个实施例中,所述检测电路为以下之一:设置为检测所述NFC芯片内的负载调制幅度的检测电路;设置为检测所述NFC天线模块发射信号的驻波比的驻波检测电路;设置为检测所述NFC识别装置的输出电压值的整流检波电路。
在一个实施例中,所述NFC天线模块包括以下之一的NFC天线:金属线圈、贴片式天线、可调天线。
根据本发明实施例的又一方面,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行前文实施例中的方法步骤。
根据本发明实施例的又一方面,还提供了一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行前文实施例中所述的方法步骤。
在本发明所提供的上述实施例中,通过根据所述天线耦合能量状态来最终锁定所述NFC装置的工作频率,从而解决了NFC装置的频率偏差问题,提高了NFC装置的通信质量。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的NFC装置的工作频率确定方法的流程图;
图2是根据本发明实施例的NFC识别装置的结构框图;
图3是根据本发明实施例的匹配网络模块等效电路示意图;
图4是根据本发明实施例NFC天线模块等效电路示意图;
图5是根据本发明实施例的驻波检测电路框图;
图6是根据本发明实施例的整流检测电路框图;
图7是根据本发明实施例的NFC识别方法流程图;
图8是根据本发明实施例一的NFC识别方法流程图;
图9是根据本发明实施例二的NFC识别方法流程图;
图10是根据本发明实施例的NFC工作频率确定装置结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
目前13.56MHz的NFC技术已经非常成熟并得到广泛应用,它提供了一种简单、触控式的解决方案,可以让消费者简单直观地交换信息、访问内容与服务。其工作模式包含三种:卡模拟,点对点,读写器。通过这三种工作模式,可以实现类似刷公交,设备之间数据传输,读取身份证信息等功能。但目前市面上有众多的电子标签或者设备,其内部的NFC线圈工作频率不在标准的13.56MHz上,以国内权威的身份证举例,即使同一地区,其内部设计也不统一,对于频偏较大的身份证,在和标准的NFC设备通信时,会读取困难,甚至失败。
本发明的机制是基于NFC通讯的过程中,NFC卡片的工作频率来源于NFC手机的发射频率,这个工作频率接近NFC卡片和NFC手机组成的物理环境下最佳的工作频率,则通讯性能会得到提升;如果NFC手机发射的频率偏离NFC卡片和NFC手机组成的物理环境的最佳工作频率,则通讯性能会恶化。
本发明实施例提供了一种NFC装置的工作频率确定方法,如图1所示,该方法包括如下步骤:
步骤S102,根据所述NFC装置的设定频率配置与所述设定频率对应的匹配网络;
步骤S104,检测所述NFC装置的天线耦合能量状态;
步骤S106,根据所述天线耦合能量状态确定所述NFC装置的工作频率。
在本发明所提供的上述实施例中,通过根据所述天线耦合能量状态来最终锁定所述NFC装置的工作频率,从而解决了NFC装置的频率偏差问题,提高了NFC装置的通信质量。
本发明实施例还提供了一种NFC识别装置,在本实施例中,在NFC识别装置每次通信初始,以13.56MHz为中心频率,以一定的步长进行通信扫描,同时根据获取的相应频率下的调制幅值、信噪比等参数,通过查找真值表,确定最终频率,锁定匹配网络参数,使得天线耦合能量达到最优。如图2所示,该NFC识别装置包括NFC芯片101、控制器102、匹配网络模块103、NFC天线模块104和检测电路105。
NFC芯片101,其包含有时钟电路,该时钟电路根据配置不同的参数,可以稳定输出相应工作频率。该时钟电路可以是芯片外部可调的时钟电路,也可以是芯片内部可调的时钟电路。
控制器102,其根据NFC芯片101中设定的时钟参数,发出控制指令,使得匹配网络模块103和NFC天线模块104工作在相应的模式。
匹配网络模块103,该模块包含滤波,匹配,调谐等电路,从而让天线充分发挥性能,提升天线耦合质量。
NFC天线模块104,该模块主体是天线,可以是金属线圈,可以是贴片式天线或者可调天线。
检测电路105,主要设置为检测当前天线耦合质量。它可以是NFC芯片内部集成的检测模块,也可以是外部的检测电路,其作用是通过检测,得知当前状态下的天线耦合质量。
其中,匹配网络模块103,可以参考图3的匹配网络等效示意电路,具体设计不局限于上述示意电路。电容L,电容C可以是固定的,也可以是控制可调的。根据控制器102发出的控制指令,可以对匹配网络模块103中匹配网络模块中的设计进行动态调整,从而达到更好的滤波,匹配效果。
其中,NFC天线模块104,可以参考图4的天线等效示意图,具体设计不局限于图4。天线可以是固定设计,即电容C,电感L,电阻R的值固定,也可以是谐振频率可以调整的设计,即电容C,电感L,电阻R的值是可以变化的,对应到天线实物上,可以通过各种开关切换,来改变天线的长短,走线形式等来实现。根据控制器102发出的控制指令,可以对NFC天线模块104中的天线状态进行动态调整,从而使得天线能量耦合达到最优。
其中,检测电路105,可以是NFC芯片内部检测模块,如通过LMA(load modulation amplitude)负载调制幅度获取天线耦合质量,LMA值越大,表明NFC电路和标签卡片的耦合度越高。也可以通过其他方法得到当前状态的天线耦合质量。比如可以通过检测NFC天线发射信号的驻波比值,如图5所示,驻波检测电路工作在NFC电路输出空载波的情况下,耦合器耦合一部分能量进入双向切换开关,在开关不切换的时候,检波电路测量到的是正向的功率,开关切换的时候,检波电路测量到的是反向的功率,通过这两个功率值进行计算可以得到驻波比,驻波比越小,表明NFC电路和标签卡片的耦合度越高。检测电路也可以是整流检测形式,如图6所示,在读卡时,该电路工作在NFC电路输出空载波的情况下,整流检波电 路可以检测到NFC输出的电压值,该电压值越小,表明NFC电路和标签卡片的耦合度越高。总之,用来检测NFC电路系统与被读取对象的耦合质量的方法很多,形式也各种各样,不限于以上提到的几种。为简化说明,本发明以目前常用的NFC芯片内部的LMA为例进行说明。
在本发明所提供的上述实施例中,通过一整套闭合回路系统,可以解决现有技术中无法解决的产品频偏带来的通信问题,即可以更好的兼容市面上存在的各式各样的刷卡设备,提升用户体验。
基于上述的NFC识别装置,本实施例还提供了一种NFC识别方法,如图7所示,该方法包括如下流程:
步骤S701,系统开始进行NFC交互。
步骤S702,系统开始配置NFC芯片时钟电路,使之输出一设定频率,同时由控制器发出指令,配置该设定频率所对应的匹配网络。
步骤S703,在该设定频率下,检测判断此时NFC交互性能是否达到最优,如果不是最优,则跳转到S702,以一定步长或者规律重新设定时钟电路,使之重新输出另一工作频率。
步骤S704,如果S703判断此时NFC交互性能达到最优,记录下该设定频率并锁定,同时配置由控制器好相应的匹配网络。
下面对实施进行详细说明:
在如下实施例中,针对每一个不同工作频率,都有一套匹配网络与之对应,使得此时的天线性能在该工作频率下性能达到最优。
例如,在该识别系统中,以标准13.56MHz为中心,储存了5套配置,如表1所示:
表1
工作频率 网络匹配 天线匹配
F1 M1 A1
F2 M2 A2
13.56MHz M A
F3 M3 A3
F4 M4 A4
当NFC芯片101工作在13.56MHz工作频率下,控制器102发出指令,分别使得匹配网络模块103工作在M,NFC天线模块104工作在A。匹配M和A,在产品设计之初已经调试成功的匹配。如前所述,可以通过改变电感L,电容C等值来实现不同的网络匹配,可以通过各种开关切换,来改变天线的长短,走线形式等来实现天线匹配。从而使得天线性能得以充分发挥。如何确认网络和天线匹配,在业界有很多方法实现,不在此赘述。
检测电路105,可以实时监测当前频率下的天线耦合质量,比如可以根据LMA(load  modulation amplitude)负载调制幅度的大小来判断。当然,检测电路形式多样,并不局限LMA一种。
以上,只是举例说明,实际应用中可以是大于1套,并不局限于上述的5套配置。
实施例一:
系统开始进行NFC交互,如图8所示,该流程包括如下步骤:
步骤S801,系统开始配置NFC芯片时钟电路,使之输出默认频率13.56MHz,同时由控制器发出指令,将匹配网络模块103配置到M,将NFC天线模块104配置到A。
步骤S802,记录此时LMA值X。
步骤S803,配置NFC芯片时钟电路,使之输出频率F2,同时由控制器发出指令,将匹配网络模块103配置到M2,将NFC天线104配置到A2。
步骤S804,记录此时LMA值X2。
步骤S805,配置NFC芯片时钟电路,使之输出频率F3,同时由控制器发出指令,将匹配网络模块103配置到M3,将NFC天线104配置到A3。
步骤S806,记录此时LMA值X3。
步骤S807,配置NFC芯片时钟电路,使之输出频率F1,同时由控制器发出指令,将匹配网络模块103配置到M1,将NFC天线104配置到A1。
步骤S808,记录此时LMA值X1。
步骤S809,配置NFC芯片时钟电路,使之输出频率F4,同时由控制器发出指令,将匹配网络模块103配置到M4,将NFC天线104配置到A4。
步骤S810,记录此时LMA值X4。对比X1、X2、X、X3、X4,得到最大值X3。
步骤S811,锁定NFC芯片时钟电路,使之输出频率F3,同时由控制器发出指令,将匹配网络模块103配置到M3,将NFC天线104配置到A3。
本实施例流程结束。
该实施例中,系统首先默认输出标准工作频率13.56MHz,之后以该频率为中心输出不同的工作频率。
当然,也可以是按照其他规律进行输出,并不局限于上述方式,比如可以是F1、F2、13.56MHz、F3、F4,也可以是F4、F3、13.56MHz、F2、F1。这些并不是本发明的核心点,不在此赘述。
实施例二:
系统开始进行NFC交互,如图9所示,该流程包括如下步骤:
步骤S901,系统开始配置NFC芯片时钟电路,使之输出默认频率13.56MHz,同时由控制器发出指令,将匹配网络模块103配置到M,将匹配网络模块104配置到A。
步骤S902,记录此时LMA值X。
步骤S903,配置NFC芯片时钟电路,使之输出频率F2,同时由控制器发出指令,将匹配网络模块103配置到M2,将匹配网络模块104配置到A2。
步骤S904,记录此时LMA值X2,并将X2和X进行比较,得到最大值X2。
步骤S905,配置NFC芯片时钟电路,使之输出频率F3,同时由控制器发出指令,将匹配网络模块103配置到M3,将匹配网络模块104配置到A3。
步骤S906,记录此时LMA值X3,并将X3和之前的最大值X2进行比较,得到最大值X3。
步骤S907,配置NFC芯片时钟电路,使之输出频率F1,同时由控制器发出指令,将匹配网络模块103配置到M1,将匹配网络模块104配置到A1。
步骤S908,记录此时LMA值X1,并将X1和之前的最大值X3进行比较,得到最大值X3。
步骤S909,配置NFC芯片时钟电路,使之输出频率F4,同时由控制器发出指令,将匹配网络模块103配置到M4,将匹配网络模块104配置到A4。
步骤S910,记录此时LMA值X4,并将X4和之前的最大值X3进行比较,得到最大值X4。
步骤S911,锁定NFC芯片时钟电路,使之输出频率F4,同时由控制器发出指令,将匹配网络模块103配置到M4,将匹配网络模块104配置到A4。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种NFC工作频率确定装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图10是根据本发明实施例的NFC工作频率确定装置结构框图,如图10所示,该装置包 括:配置模块201、检测模块202和确认模块203。
配置模块201,设置为根据NFC装置的设定频率配置与所述设定频率对应的匹配网络。本实施例中的配置模块201与前文实施例中的NFC芯片101在功能上是相当。
检测模块202,设置为检测所述NFC装置的天线耦合能量状态。本实施例中的检测模块202与前文实施例中的检测电路105在功能上是相当。
确定模块203,根据所述天线耦合能量状态确定所述NFC装置的工作频率。本实施例中的确定模块203与前文实施例中的控制器102在功能上是相当。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明实施例还提供了一种处理器,该所述处理器设置为运行程序,其中,所述程序运行时执行前文实施例中的方法步骤。
本发明的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行前文实施例中的方法步骤。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种NFC装置的工作频率确定方法,包括:
    根据所述NFC装置的设定频率配置与所述设定频率对应的匹配网络;
    检测所述NFC装置的天线耦合能量状态;
    根据所述天线耦合能量状态确定所述NFC装置的工作频率。
  2. 根据权利要求1所述的方法,其中,所述设定频率为多个,根据所述NFC装置的设定频率配置与所述设定频率对应的匹配网络,包括:
    为所述NFC装置配置时钟参数使得所述NFC装置分别输出多个设定频率;
    根据所述多个设定频率分别配置对应的匹配网络。
  3. 根据权利要求2所述的方法,其中,检测所述NFC装置的天线耦合能量状态,根据所述天线耦合能量状态确定所述NFC装置的工作频率,包括:
    分别检测每个设定频率下所述NFC装置的天线耦合能量状态;
    根据所述天线耦合能量状态,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率。
  4. 根据权利要求3所述的方法,其中,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率之后,还包括:
    配置与所述工作频率对应的匹配网络。
  5. 根据权利要求2所述的方法,其中,为所述NFC装置配置时钟参数使得所述NFC装置分别输出多个频率,包括:
    通过配置不同的时钟参数,使得所述NFC装置基于设定的中心频率,以预设的步长分别输出多个设定频率。
  6. 根据权利要求5所述的方法,其中,分别检测每个设定频率下所述NFC装置的天线耦合能量状态,包括以下之一:
    分别检测每个设定频率下所述NFC装置的负载调制幅度;
    分别检测每个设定频率下所述NFC装置的发射信号的驻波比;
    分别检测每个设定频率下所述NFC装置的输出电压值。
  7. 根据权利要求5所述的方法,其中,根据所述天线耦合能量状态,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率,包括:
    比较每个设定频率下所述NFC装置的负载调制幅度,将与最大负载调制幅度对应的设定频率锁定为述NFC装置的工作频率。
  8. 根据权利要求5所述的方法,其中,根据所述天线耦合能量状态,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率,包括:
    比较每个设定频率下所述NFC装置的发射信号的驻波比,将与最小驻波比对应的设定频率锁定为述NFC装置的工作频率。
  9. 根据权利要求5所述的方法,其中,根据所述天线耦合能量状态,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率,包括:
    比较每个设定频率下所述NFC装置的输出电压值,将与最小电压值对应的设定频率锁定为述NFC装置的工作频率。
  10. 一种NFC工作频率确定装置,包括:
    配置模块,设置为根据NFC装置的设定频率配置与所述设定频率对应的匹配网络;
    检测模块,设置为检测所述NFC装置的天线耦合能量状态;
    确定模块,设置为根据所述天线耦合能量状态确定所述NFC装置的工作频率。
  11. 根据权利要求10所述的装置,其中,配置模块包括:
    第一配置单元,设置为为所述NFC装置配置时钟参数使得所述NFC装置分别输出多个设定频率;
    第二配置单元,设置为根据所述多个设定频率分别配置对应的匹配网络。
  12. 根据权利要求11所述的装置,其中,所述设定频率为多个,
    所述检测模块,还设置为分别检测每个设定频率下所述NFC装置的天线耦合能量状态;
    所述确定模块,还设置为根据所述天线耦合能量状态,将所述多个设定频率中的一个设定频率锁定为所述NFC装置的工作频率。
  13. 根据权利要求12所述的装置,其中,
    所述配置模块,还设置为在所述确定模块锁定所述NFC装置的工作频率之后,配置与所述工作频率配置对应的匹配网络。
  14. 根据权利要求11所述的装置,其中,
    所述第一配置单元,还设置为通过配置不同的时钟参数,使得所述NFC装置基于设定的中心频率,以预设的步长分别输出多个设定频率。
  15. 根据权利要求14所述的装置,所述检测模块包括以下至少之一:
    第一检测单元,设置为分别检测每个设定频率下所述NFC装置的负载调制幅度;
    第二检测单元,设置为分别检测每个设定频率下所述NFC装置的发射信号的驻波比;
    第三检测单元,设置为分别检测每个设定频率下所述NFC装置的输出电压值。
  16. 根据权利要求15所述的装置,其中,所述确定模块包括以下至少之一:
    第一确定单元。设置为比较每个设定频率下所述NFC装置的负载调制幅度,将与最大负载调制幅度对应的设定频率锁定为述NFC装置的工作频率;
    第二确定单元,设置为比较每个设定频率下所述NFC装置的发射信号的驻波比,将与最小驻波比对应的设定频率锁定为述NFC装置的工作频率;
    第三确定单元,设置为比较每个设定频率下所述NFC装置的输出电压值,将与最小电压值对应的设定频率锁定为述NFC装置的工作频率。
  17. 一种NFC识别装置,包括NFC芯片、控制器、匹配网络模块和NFC天线模块,其中,
    所述NFC芯片,包括时钟电路,设置为通过为所述时钟电路配置不同的时钟参数使得所述NFC装置输出多个预设的工作频率;
    所述控制器,设置为根据所述时钟参数分别将所述匹配网络模块和所述NFC天线模块配置到与所述工作频率对应的工作模式;
    所述匹配网络模块,连接在所述NFC芯片与所述NFC天线模块之间,设置为在所述控制器的控制下对所述NFC芯片与所述NFC天线模块之间的交互信号进行滤波、匹配和调谐。
  18. 根据权利要求17所述的装置,其中,其中,所述时钟电路的时钟源为所述NFC芯片的内部时钟源,或为外部时钟源。
  19. 根据权利要求17所述的装置,其中,还包括:
    检测电路,设置为分别检测多个预设的工作频率下所述NFC装置的天线耦合能量状态。
  20. 根据权利要求19所述的装置,其中,所述检测电路为以下之一:
    设置为检测所述NFC芯片内的负载调制幅度的检测电路;
    设置为检测所述NFC天线模块发射信号的驻波比的驻波检测电路;
    设置为检测所述NFC识别装置的输出电压值的整流检波电路。
  21. 根据权利要求17所述的装置,其中,所述NFC天线模块包括以下之一的NFC天线:金属线圈、贴片式天线、可调天线。
  22. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至9中任一项所述的方法。
  23. 一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行权利要求1至9中任一项所述的方法。
PCT/CN2018/107238 2017-12-14 2018-09-25 Nfc装置的工作频率确定方法及装置 WO2019114363A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711339663.6 2017-12-14
CN201711339663.6A CN108055089B (zh) 2017-12-14 2017-12-14 Nfc装置的工作频率确定方法及装置

Publications (1)

Publication Number Publication Date
WO2019114363A1 true WO2019114363A1 (zh) 2019-06-20

Family

ID=62132917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107238 WO2019114363A1 (zh) 2017-12-14 2018-09-25 Nfc装置的工作频率确定方法及装置

Country Status (2)

Country Link
CN (1) CN108055089B (zh)
WO (1) WO2019114363A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108055089B (zh) * 2017-12-14 2021-01-22 中兴通讯股份有限公司 Nfc装置的工作频率确定方法及装置
CN110197093B (zh) * 2019-05-14 2023-08-25 深圳市鸟鸟科技技术有限公司 移动终端nfc读卡器通信控制方法、存储介质及终端
CN112395894B (zh) * 2019-08-16 2022-09-09 华为技术有限公司 基于nfc的通信方法及装置
CN110971273B (zh) * 2019-11-28 2021-07-27 Oppo广东移动通信有限公司 一种信息处理方法、装置、电子设备和存储介质
CN111586657B (zh) * 2020-04-29 2023-02-28 Oppo(重庆)智能科技有限公司 近场通信方法、装置、存储介质及移动终端
CN111600649B (zh) * 2020-06-02 2022-06-28 中国科学院国家授时中心 一种频率信号在线监测切换设备
CN115035642B (zh) * 2021-03-03 2024-05-03 深圳市万普拉斯科技有限公司 射频参数的兼容方法、电子设备及可读存储介质
CN115242269B (zh) * 2022-04-02 2024-04-16 浙江绍兴苏泊尔生活电器有限公司 设备通信方法、装置、存储介质以及电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001670A (zh) * 2011-09-15 2013-03-27 中兴通讯股份有限公司 一种终端nfc匹配的自适应方法和装置
CN103095342A (zh) * 2011-11-01 2013-05-08 中国移动通信集团公司 近距离通信终端与读卡机之间的通信方法和装置
US20140106669A1 (en) * 2012-10-11 2014-04-17 Qualcomm Incorporated Carrier frequency variation for device detection in near-field communications
CN105811110A (zh) * 2016-03-31 2016-07-27 联想(北京)有限公司 一种匹配电路系统和阻抗匹配方法
CN108055089A (zh) * 2017-12-14 2018-05-18 中兴通讯股份有限公司 Nfc装置的工作频率确定方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001670A (zh) * 2011-09-15 2013-03-27 中兴通讯股份有限公司 一种终端nfc匹配的自适应方法和装置
CN103095342A (zh) * 2011-11-01 2013-05-08 中国移动通信集团公司 近距离通信终端与读卡机之间的通信方法和装置
US20140106669A1 (en) * 2012-10-11 2014-04-17 Qualcomm Incorporated Carrier frequency variation for device detection in near-field communications
CN105811110A (zh) * 2016-03-31 2016-07-27 联想(北京)有限公司 一种匹配电路系统和阻抗匹配方法
CN108055089A (zh) * 2017-12-14 2018-05-18 中兴通讯股份有限公司 Nfc装置的工作频率确定方法及装置

Also Published As

Publication number Publication date
CN108055089A (zh) 2018-05-18
CN108055089B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2019114363A1 (zh) Nfc装置的工作频率确定方法及装置
US9553747B2 (en) Systems and methods for switching quality factors during inductively coupled communications
WO2016011971A1 (zh) 双频多协议多功能近场通信集成系统和应用方法
US10009000B2 (en) RFID reader antenna port isolation
WO2007004010A2 (en) Rfid optimized capability negotiation
KR20150105976A (ko) 근접장 통신에서 보안 요소의 선택을 구현하기 위한 방법, 모바일 단말기, 및 pos 머신
CN105825158A (zh) Nfc设备、阅读器、系统、及配置数据传输方法
WO2011079599A1 (zh) 天线匹配电路及近距离无线通信的实现方法
CN205405533U (zh) 一种基于射频识别rfid的多天线机柜管理装置
EP2801930B1 (en) A near field communication reader adapted for NFC A anti collision and a method of NFC A anti collision
CN104794521B (zh) 一种非接触射频通信带距离控制的nfc全卡
WO2014037393A1 (en) Method and circuit for tuning an antenna circuit of an actively transmitting tag
US9419682B2 (en) Apparatus and method for providing near field communication for mobile device
US20120082963A1 (en) Antenna calculation interface
US11177838B2 (en) Communication circuit with single element antenna for multi-frequency applications
CN107659341B (zh) 近场通信-类型b设备
TWI632512B (zh) Anti-collision method between different frequency cards and dual frequency card reader
CN114024579B (zh) 谐振频率的调整方法、装置、芯片、终端和可读存储介质
CN112688720B (zh) 一种近场通信设备和发射功率的确定方法
CN204808375U (zh) 具有端口依赖功能的rfid标签
US10659087B2 (en) Communication circuit with single element antenna for multi-frequency applications
CN114648081A (zh) 双系统rfid标签
CN204087253U (zh) 一种实现备用充值功能的nfc设备
CN110099372B (zh) 一种音频设备联网方法及系统
WO2018090381A1 (zh) 接入端间的连接装置和无线通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18889885

Country of ref document: EP

Kind code of ref document: A1