WO2019113797A1 - Driving chip, touch display apparatus, and electronic device - Google Patents

Driving chip, touch display apparatus, and electronic device Download PDF

Info

Publication number
WO2019113797A1
WO2019113797A1 PCT/CN2017/115729 CN2017115729W WO2019113797A1 WO 2019113797 A1 WO2019113797 A1 WO 2019113797A1 CN 2017115729 W CN2017115729 W CN 2017115729W WO 2019113797 A1 WO2019113797 A1 WO 2019113797A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
touch
driving
circuit
common
Prior art date
Application number
PCT/CN2017/115729
Other languages
French (fr)
Chinese (zh)
Inventor
林峰
Original Assignee
深圳深微创芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳深微创芯科技有限公司 filed Critical 深圳深微创芯科技有限公司
Priority to PCT/CN2017/115729 priority Critical patent/WO2019113797A1/en
Priority to CN201790000301.1U priority patent/CN209803753U/en
Publication of WO2019113797A1 publication Critical patent/WO2019113797A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the utility model relates to the field of integrated circuit technology, in particular to a driving chip for driving a touch display panel to perform image display and touch sensing.
  • touch display devices especially touch display devices that perform touch sensing by multiplexing common electrodes, in order to reduce interference between touch sensing and image display refresh
  • manufacturers generally adopt a method of controlling touch display panel to perform touch sense in a time-sharing manner.
  • the measurement and image display refresh For example, in one embodiment, the touch sensing of the touch display panel is driven during a line gap or frame gap of the image display.
  • the resolution of the touch display panel is gradually increased, for example, the resolution of the liquid crystal display panel of the mobile phone gradually adopts a resolution of 2K (eg, 2560 ⁇ 1440), or even higher resolution, and the display refresh frequency is generally adopted. 60HZ, the line gap and the frame gap are obviously compressed. If the touch sensing is performed by driving the touch sensing electrodes only in the line gap or the frame gap, the touch sensing may not be fully performed due to the obvious time. problem. When the refresh rate of the touch display device is increased to 120 Hz, less time is available for touch sensing.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention needs to provide a driving chip, a touch display device, and an electronic device capable of driving a touch display panel while performing image display and touch sensing.
  • the present invention provides a driving chip for driving a touch display panel to perform image display and touch sensing, wherein the touch display panel includes a plurality of common electrodes; the driving chip is configured to drive the plurality of common electrodes Performing image display, further for intermittently driving the plurality of common electrodes to perform touch sensing, defining that a period in which the common electrode performs touch sensing is a first time period, and defining that the plurality of common electrodes are not performing touch sensing The time period is the second time period; the driving chip includes:
  • a voltage signal output by the driving chip to the touch display panel is based on a voltage signal on the first ground end
  • a modulation circuit configured to generate a modulation signal to the first ground end during a first time period, and generate a constant voltage signal to the first ground end during a second time period;
  • a touch driving circuit configured to simultaneously perform image display and self-capacitive touch sensing while driving the same common electrode in a first time period
  • a common voltage generating circuit for driving the plurality of common electrodes to perform image display in a second period of time.
  • the touch driving circuit can further drive the same common electrode to perform image display while driving the common electrode to perform touch sensing, thereby The normal image display of the touch display panel is not affected. Therefore, the time during which the driving chip drives the common electrode to perform touch sensing is not limited to the line gap of the image display, the frame gap, or may be during the image display refresh period. Accordingly, even when the resolution of the touch display panel is increased, the time during which the driving chip is used to drive the touch display panel to perform touch sensing is not shortened. Thereby, the user experience is improved.
  • the modulation circuit and the touch driving circuit are all located in the same driving chip, instead of being respectively located in two chips, thereby saving the pin connecting between the chip and the chip, and reducing the volume of the electronic device occupied by the chip.
  • it is also conducive to production management, improve production efficiency, and thus reduce product production costs.
  • the voltage signal of the driving chip to the touch display panel is synchronously modulated by the modulation signal, and the driving chip further drives the public while driving the touch display panel to perform image display.
  • the electrodes perform self-capacitive touch sensing.
  • the touch driving circuit is configured to drive the plurality of common electrodes to perform touch sensing in a time division manner, and when the touch driving circuit is electrically connected to a part of the common electrode, the common voltage generating circuit and the remaining common electrode Electrically connected, the touch drive signal provided by the touch drive circuit to the common electrode is the same as the first common voltage supplied to the common electrode by the common voltage generating circuit.
  • a touch sensing signal from the common electrode output is further received.
  • the touch driving circuit provided by the touch driving circuit to the common electrode and the first common voltage provided by the common voltage generating circuit to the common electrode are both signals modulated by the modulated signal.
  • the touch display panel further includes a plurality of pixel electrodes for forming a fringe electric field or a parallel electric field with the plurality of common electrodes; during the first time period, the driving chip passes Providing a first gray scale voltage to the plurality of pixel electrodes, providing the same first common voltage and a touch driving signal to the plurality of common electrodes to drive the touch display panel to perform image display refreshing, further driving the common electrode Performing self-capacitive touch sensing, wherein the first gray scale voltage, the first common voltage, and the touch drive signal both increase with an increase of the modulation signal, and decrease with the modulation signal reduce.
  • the pixel electrode provided by the driving chip to the first gray scale voltage is spaced apart from the common electrode provided to the touch driving signal by at least one row of the common electrode.
  • the first time period and the second time period alternate.
  • the constant voltage signal is a ground signal.
  • the driving chip further includes a signal processing circuit, the signal processing circuit is connected to the touch driving circuit, and the signal processing circuit is configured to obtain a touch bit according to the touch sensing signal received by the touch driving circuit. Set the information.
  • the voltage signal on the signal processing circuit is referenced to a voltage signal on the first ground.
  • the common voltage generating circuit and the touch driving circuit are selectively connectable to the plurality of common electrodes by a data selecting circuit.
  • the driver chip comprises the data selection circuit.
  • the data selection circuit includes a first data selector and a plurality of second data selectors, wherein the first data is selected to be connected to the common voltage generating circuit, and further used to a common electrode connection; the plurality of second data selectors are coupled to the touch drive circuit, and each of the second data selectors is configured to connect a portion of the common electrode.
  • the driving chip further includes a second ground end, wherein the second ground end is used to connect to the device ground, and receives a ground signal; the modulation circuit is connected to the first ground end and the second ground Between the ends, the modulation signal is generated according to the ground signal and a driving signal.
  • the level of the drive signal is higher than the level of the ground signal.
  • the driving chip further includes a display driving circuit, a display processing circuit, and a level converting unit, wherein the display processing circuit is configured to receive display data from a main control chip, and store and solve the display data. Compressing, and color-adjusting, and outputting the adjusted display data to the level converting unit for converting, the level converting unit level-converting the display data, and outputting the converted display data to the display a driving circuit, wherein the display driving circuit generates a corresponding gray scale voltage corresponding to the plurality of pixel electrodes according to the received display data.
  • the voltage signal on the display driving circuit is based on a voltage signal on the first ground
  • the voltage signal on the display processing circuit is based on a voltage signal on the second ground.
  • the modulation signal includes a first reference signal and a second reference signal, the level of the first reference signal being lower than a level of the second reference signal, wherein the first reference signal continues The time is greater than or equal to the duration of the second reference signal.
  • the duration of the first reference signal is twice the duration of the second reference signal.
  • the modulated signal is a periodically varying square wave signal.
  • the present invention further provides a touch display device including a touch display panel and a driving chip, wherein the driving chip is configured to drive the touch display panel to perform image display and touch sensing, wherein the driving chip is any one of the above The driver chip described in the item.
  • the present invention also provides an electronic device comprising the above touch display device.
  • FIG. 1 is a schematic diagram showing the structure of an electronic device of the present application.
  • FIG. 2 is a waveform diagram of an embodiment of a partial signal of the electronic device shown in FIG. 1.
  • FIG. 3 is a schematic diagram showing the circuit structure of an embodiment of the electronic device shown in FIG. 1.
  • FIG. 3 is a schematic diagram showing the circuit structure of an embodiment of the electronic device shown in FIG. 1.
  • FIG. 4 is a schematic diagram showing the circuit structure of an embodiment of the modulation circuit shown in FIG.
  • FIG. 5 is a schematic circuit diagram of a specific embodiment of the electronic device shown in FIG. 1.
  • FIG. 5 is a schematic circuit diagram of a specific embodiment of the electronic device shown in FIG. 1.
  • FIG. 6 is an exploded perspective view of an embodiment of the touch display panel of FIG. 5.
  • FIG. 7 is a cross-sectional structural view of the touch display panel shown in FIG. 6.
  • FIG. 8 is a cross-sectional structural view showing another embodiment of the touch display panel shown in FIG. 5.
  • FIG. 8 is a cross-sectional structural view showing another embodiment of the touch display panel shown in FIG. 5.
  • FIG. 9 is a top plan view of the touch display panel of FIG. 8.
  • Figure 10 is a block diagram showing the structure of an embodiment of the signal processing circuit shown in Figure 3.
  • FIG. 11 is a block diagram showing an embodiment of a signal processing unit of the signal processing circuit shown in FIG.
  • FIG. 12 is a schematic structural diagram of still another embodiment of an electronic device according to the present application.
  • FIG. 13 is a schematic diagram showing the circuit structure of an embodiment of the protection circuit shown in FIG.
  • FIG. 14 is a schematic diagram showing the circuit structure of another embodiment of a protection circuit.
  • Figure 15 is a schematic diagram of an embodiment of the display processing circuit of Figure 12;
  • a plurality includes two or more, “multiple” includes two or more, and “multiple” includes two and two or more, “ “Multiple rows” include two rows and two or more rows, and “multiple columns” includes two columns and two or more columns unless otherwise specifically defined by the present application.
  • the words “first”, “second”, “third”, “fourth” and the like appearing in each component name and signal name are not intended to limit the order in which the components or signals appear, but to facilitate the naming of the components. Clearly distinguish the components to make the description more concise and understandable.
  • the display device typically includes a display panel and a drive circuit.
  • the driving circuit is configured to drive the display panel to perform image display.
  • the display panel typically includes a plurality of pixel points, each pixel point including a first electrode and a second electrode.
  • the driving circuit provides different voltages to the second electrodes of the respective pixels by supplying the same voltage (for example, 0 volts) to the first electrodes of the respective pixel points, thereby realizing image display of different gray levels.
  • the first electrode is generally referred to as a common electrode
  • the second electrode is generally referred to as a pixel electrode.
  • the driving circuit drives the liquid crystal display panel to perform image display refresh by supplying a common voltage to the first electrode, supplying a gray scale voltage to the second electrode.
  • the display device may be other suitable types of display devices, such as an electronic paper display device (EPD), an organic electroluminescent diode display device (OLED), and the like.
  • the first electrode may also be referred to as a cathode and the second electrode may also be referred to as an anode.
  • its image display state generally includes an image display refresh state and an image display hold state.
  • the driving circuit supplies a gray scale voltage to the second electrode and supplies a common voltage to the first electrode
  • the pixel starts to perform image display refresh, when the gray scale voltage is written to the first
  • the supply of the gray scale voltage to the second electrode is stopped, and the image display refresh is completed.
  • the pixel enters the image display hold state until the pixel point receives the gray scale voltage next time.
  • the plurality of pixel points are arranged, for example, in a matrix.
  • the drive circuit typically performs image display refreshes by driving pixel points row by row.
  • the names of the first electrode and the second electrode in different types of display devices are different.
  • the first electrode is collectively referred to as a common electrode
  • the second electrode is collectively referred to as a second.
  • the electrode is a pixel electrode.
  • the display voltage signal supplied to the common electrode by the driving chip of the present application is a common voltage
  • the display voltage signal supplied to the pixel electrode is a gray scale voltage.
  • Touch screens generally include resistive, capacitive, infrared, and other types of touch screens, of which capacitive touch screens are more widely used.
  • the capacitive touch screen includes a mutual capacitive touch screen and a self-capacitive touch screen.
  • the touch screen may include, for example, a driving area and a sensing area such as a driving line and a sensing line.
  • the drive lines may form multiple rows, while the sense lines may form multiple columns (eg, orthogonal).
  • Touch pixels can be placed at the intersection of rows and columns.
  • the rows may be energized with an alternating current (AC) waveform, and mutual capacitance may be formed between the rows and columns of the touch pixels.
  • AC alternating current
  • some of the charge coupled between the rows and columns of the touch pixel can instead be coupled to the object.
  • This reduction in charge coupled to the touch pixel can result in a net decrease in mutual capacitance between the rows and columns and a decrease in the AC waveform coupled to the touch pixel.
  • This reduction in the charge coupled AC waveform can be detected and measured by the touch system to determine the location of the target object as it touches the touch screen.
  • each touch pixel can be formed by an individual electrode that forms a self-capacitance to ground.
  • another capacitance to ground may be formed between the target object and the touch pixel.
  • the other pair of ground capacitances can result in a net increase in self-capacitance experienced by the touch pixel.
  • This self-capacitance increase can be detected and measured by the touch system to determine the location of the target object as it touches the touch screen.
  • FIG. 1 is a schematic structural diagram of an embodiment of an electronic device according to the present application.
  • 2 is a waveform diagram of an embodiment of a partial signal of the electronic device shown in FIG. 1.
  • the electronic device 100 is a variety of suitable types of products, such as a portable electronic product, a smart home electronic product, and an in-vehicle electronic product.
  • the portable electronic product is, for example, a mobile phone, a tablet computer, a notebook computer, a wearable device, or the like.
  • the smart home electronic products are, for example, desktop computers, refrigerators, washing machines, televisions, and the like.
  • the in-vehicle electronic products are, for example, navigators, car DVDs, and the like.
  • the electronic device 100 includes a touch display device 1.
  • the touch display device 1 is used to implement image display and touch sensing.
  • the touch display device 1 is, for example but not limited to, an In-Cell (in-box or in-line) type of touch display device.
  • the touch display device 1 is, for example, a liquid crystal display device.
  • the touch display device 1 can also be other suitable types of display devices, such as an electronic paper display device (EPD), an organic electroluminescent diode display device (OLED), and the like.
  • the touch display device 1 includes a touch display panel 10 and a driving chip 20.
  • the driving chip 20 is configured to drive the touch display panel 10 to perform image display and touch sensing.
  • the touch display panel 10 includes a plurality of common electrodes 101.
  • the plurality of common electrodes 101 function as display electrodes and touch sensing electrodes.
  • the driving chip 20 and the plurality of common electrodes 101 are respectively connected to provide a common voltage to the plurality of common electrodes 101 to drive the plurality of common electrodes 101 to perform image display.
  • the driving chip 20 is further configured to provide a touch driving signal to the plurality of common electrodes 101 to drive the plurality of common electrodes 101 to perform touch sensing.
  • the driving chip 20 is configured to drive the plurality of common electrodes 101 to perform self-capacitive touch sensing.
  • the plurality of common electrodes 101 are arranged, for example, in a two-dimensional array. Specifically, the plurality of common electrodes 101 are arranged in a plurality of rows and columns in the X direction and the Y direction, wherein the X direction is a row direction. The Y direction is the column direction. However, in other embodiments, the plurality of common electrodes 101 may also be arranged in other regular or irregular manners. This application does not limit this.
  • the shape of each common electrode 101 is, for example but not limited to, a rectangle.
  • the driving chip 20 is configured to generate a modulation signal MGND, and realize driving the touch display panel 10 by synchronously modulating all voltage signals output by the driving chip 20 to the touch display panel 10 by using the modulation signal MGND.
  • the common electrode 101 can be further driven to perform self-capacitance touch sensing. Therefore, even when the display resolution of the touch display panel 10 is improved, the time of the touch sensing is not shortened, thereby breaking the technical bottleneck that the touch sensing time caused by the increase in the display resolution is insufficient. Accordingly, the user experience of the electronic device 100 is better.
  • the driving chip 20 can further drive the common electrode 101 to perform self-capacitance touch sensing while driving the touch display panel 10 to perform image display refreshing.
  • the touch sensing of the touch display device 1 is not limited to the line gap I (see FIG. 2) of the image display, and the frame gap is performed.
  • the modulation signal MGND is a square wave signal that changes periodically.
  • the modulation signal MGND may be, for example, another suitable waveform such as a sine wave signal or a staircase wave signal.
  • the modulation signal MGND may also be a signal that changes non-periodically.
  • the driving chip 20 drives the touch display panel 10 while performing image display and touch sensing
  • elements on the touch display panel 10 are directly driven by the driving chip 20 or indirectly by the driving chip 20 drive.
  • the voltage signal on the element is a signal output from the driving chip 20; when the element When not directly driven by the driving chip 20, it is indirectly driven by the driving chip 20, for example, by capacitive coupling, and the capacitive coupling exists, for example, in an element directly driven by the driving chip 20 and indirectly driven by the driving chip 20.
  • the signal of the component is superimposed by the modulation signal MGND due to capacitive coupling. Therefore, all voltage signals on the touch display panel 10 are signals modulated by the modulation signal MGND.
  • elements in the touch display panel 10 can also be indirectly driven by the drive chip 20, for example, by components such as resistors.
  • all voltage signals on the touch display panel 10 are signals modulated by the modulation signal MGND.
  • the voltage signals on the touch display panel 10 all change with the change of the modulation signal MGND.
  • each voltage signal on the touch display panel 10 rises as the modulation signal MGND rises, and decreases as the modulation signal MGND decreases.
  • the driving chip 20 can realize the common electrode 101 simultaneously in any process of driving the touch display panel 10 to perform normal image display by synchronously or approximately synchronously modulating all voltage signals of the touch display panel 10. Perform touch sensing. Further, the touch driving signal may be raised due to being modulated by the modulation signal MGND, and therefore, the touch sensing signal output by the common electrode 101 to the driving chip 20 may be raised accordingly, thereby being The signal-to-noise ratio of the touch sensing of the touch display device 1 is increased, thereby improving the accuracy of the touch sensing of the touch display device 1.
  • the driving chip 20 is configured to drive the plurality of common electrodes 101 to perform touch sensing in a time division manner.
  • the driving chip 20 performs touch sensing each time the partial common electrode 101 is driven, and performs touch sensing for all the common electrodes 101 by multiple driving.
  • the driving chip 20 may perform image display and touch sensing, for example, driving the common electrode 101 row by row, or may simultaneously drive the plurality of rows of common electrodes 101 to perform image display and touch sensing.
  • the driving chip 20 drives the common electrode 101 to perform self-capacitance touch sensing in a time division (eg, in a row or row by row), the output pin of the driving chip 20 drives all the common electrodes 101 simultaneously.
  • the chip that performs self-capacitance touch sensing has fewer output pins, so that the area of the driving chip 20 can be reduced, thereby achieving cost saving.
  • the driving chip 20 can simultaneously drive all the common electrodes 101 to perform touch sensing.
  • the driving chip 20 may also perform touch sensing on the plurality of common electrodes 101 in a manner of combining time-division driving and simultaneous driving.
  • the driving chip 20 may drive one row of the common electrodes 101 to perform touch sensing at a time, or may drive the plurality of rows of common electrodes 101 to perform touch sensing at one time, and simultaneously drive all the common electrodes 101 to perform touch simultaneously. Sensing. In addition, the driving chip 20 may not perform touch sensing by the row driving common electrode 101, for example, performing driving touch by the column driving common electrode 101 or driving the common electrode 101 to perform touch sensing or the like in an irregular driving manner. Wait.
  • the driving chip 20 realizes time-division driving of the plurality of common electrodes 101 to perform self-capacitance touch sensing.
  • the driving chip 20 performs image display and touch sensing to the partial common electrode 101, for example, each time providing a touch driving signal, and the driving chip 20 correspondingly supplies a common voltage to the remaining common electrodes 101.
  • the touch driving signal is the same as the common voltage, and is a signal modulated by the modulation signal MGND.
  • the driving chip 20 further receives a touch sensing signal output from the common electrode 101 to acquire touch position information of the target object on the touch display panel 10.
  • the target object is, for example, a user's finger, a stylus, or the like.
  • the common electrode 101 to which the touch driving signal is supplied can perform normal image display while performing touch sensing. Accordingly, the touch sensing and image display of the touch display device 1 can be performed simultaneously.
  • the driving chip 20 drives the touch display panel 10 to perform image display refreshing
  • the common electrode 101 may be further driven to perform self-capacitive touch sensing.
  • the driving chip 20 is used to intermittently drive the touch display panel 10 to perform touch sensing.
  • the driving chip 20 drives the touch display panel 10 while performing touch sensing and image display for a first predetermined time, and then drives the touch display panel 10 to perform image display. Stop execution The touch sensing device 1 achieves a second predetermined time, and thus the touch display device 1 realizes image display and touch sensing.
  • the driving chip 20 drives the touch display panel 10 while performing touch sensing and image display, all voltage signals on the touch display panel 10 or all of the driving chip 20 output to the touch display panel 10
  • the voltage signals are all based on the modulation signal MGND.
  • the driving chip 20 drives the touch display panel 10 to perform image display instead of simultaneously performing touch sensing, instead of generating the modulation signal MGND, the driving chip 20 generates a constant voltage signal, and the touch display device 1 All voltage signals on are referenced to the constant voltage signal.
  • the constant voltage signal is a ground signal GND
  • the ground signal GND is, for example, a constant voltage signal of 0 V (volts), but is not limited to a constant voltage signal of 0 V, and may be a constant voltage signal close to 0 V.
  • the ground signal GND is typically a voltage signal on the ground of the device of the electronic device 100.
  • the device is also referred to as a system, for example, a negative pole of a power supply of the electronic device 100, and the power supply is a battery.
  • the ground signal GND is also referred to as a system ground voltage, a system ground signal, a device ground voltage, or a device ground signal.
  • the device is not earthy or absolutely earthy. However, when the electronic device 100 is connected to the earth through a conductor, the device ground may also be the earth's earth.
  • the modulation signal MGND is a signal that changes with respect to the ground signal GND.
  • the driving chip 20 may also perform image display and touch sensing while driving the touch display panel 10 at the same time.
  • each of the first predetermined times may be the same or different, and each of the second predetermined times may be the same or different.
  • the touch drive signal is simultaneously used as a common voltage.
  • the common voltage supplied to the plurality of common electrodes 101 by the driving chip 20 is different, and the touch display device 1 is defined to perform a touch feeling.
  • the common voltage supplied to the plurality of common electrodes 101 by the driving chip 20 is a first common voltage Vcl, which is defined when the touch display device 1 performs image display instead of simultaneously performing touch sensing.
  • the common voltage supplied from the chip 20 to the plurality of common electrodes 101 is the second common voltage Vc2.
  • the voltage difference between the first common voltage Vc1 and the modulation signal MGND remains unchanged. That is, the first common voltage Vc1 remains unchanged with respect to the modulation signal MGND.
  • the first common voltage Vc1 is a signal that changes with respect to the ground signal GND.
  • the second common voltage Vc2 remains unchanged compared to the ground signal GND.
  • the second common voltage Vc2 may be a changed signal compared to the ground signal GND, for example, a square wave signal.
  • the frequency of the second common voltage Vc2 is smaller than the frequency of the first common voltage Vc1.
  • the first common voltage Vc1 supplied to the common electrode 101 is simultaneously Used as a display driving signal and a touch driving signal; when the driving chip 20 drives the common electrode 101, only the image is executed When displayed, the first common voltage Vc1 supplied to the common electrode 101 is used only as a display driving signal.
  • the first common voltage Vc1 that the driving chip 20 simultaneously supplies to the plurality of common electrodes 101 is not Both are used as touch drive signals.
  • the driving chip 20 drives the plurality of common electrodes 101 while performing touch sensing, the first common voltage Vc1 supplied to the plurality of common electrodes 101 is simultaneously used as a touch driving signal.
  • the driving chip 20 drives the plurality of common electrodes 101 to perform touch sensing in a time division manner
  • the driving chip 20 simultaneously supplies the same first common voltage Vc1 to the plurality of common electrodes 101
  • the circuit structure in which the driving electrode 20 drives the common electrode 101 while performing image display and touch sensing is different from the circuit structure in which the driving common electrode 101 performs only image display.
  • the present application will be specifically described below.
  • the modulated display driving signals among all the voltage signals can drive the touch display panel 10 to execute a normal image.
  • the display and the modulated display driving signal for example, the first common voltage Vc1
  • the driving chip 20 can simultaneously drive the touch display panel 10 to perform touch sensing in any process of driving the touch display panel 10 to perform image display, and the touch sensing does not affect normal image display. Further, even when the display resolution of the touch display device 1 is increased, the time of the touch sensing is not shortened, thereby improving the user experience of the electronic device 100.
  • the touch display panel 10 includes a plurality of pixel points 11, each of which includes a common electrode 101 and a pixel electrode 103.
  • the absolute value of the voltage difference between the common electrode 101 and the pixel electrode 103 determines the display gradation level of the pixel point 11.
  • the driving chip 20 drives the touch display panel 10 to perform touch sensing, the display between the common electrode 101 and the pixel electrode 103 after the signals on the common electrode 101 and the pixel electrode 103 are synchronously modulated by the modulation signal MGND The pressure difference does not change, and therefore, the display panel 10 is touched to perform normal image display.
  • the first common voltage Vc1 modulated by the modulation signal MGND can be further used as a touch drive signal. Therefore, in ensuring that the touch display panel 10 performs a normal display image, the driving chip 20 can further drive the common electrode 101 to perform self-capacitance touch sensing.
  • the signal on the pixel electrode 103 of the pixel point 11 performing the image display refresh is the modulation supplied from the driving chip 20. After the signal, the signal on the pixel electrode 103 of the pixel 11 where the image display is held is superimposed by the capacitive coupling MGND.
  • the touch display device 1 is, for example, various types of display devices such as a high definition (HD) display device, a full high definition (FHD) display device, and an ultra high definition (UHD) display device, and correspondingly, the display resolution is, for example, 1280 ⁇ 720, 1920 ⁇ 1080, 3840x2160.
  • the display resolution is not limited thereto.
  • 2K may be 1920x1080, or may be 2560X1440 or the like.
  • the display resolution is 4K, 8K, a variety of situations can also be included.
  • Touch sensing can be further performed, and touch sensing does not affect normal image display.
  • the touch display device 1 Image display refresh and self-capacitive touch sensing can be performed simultaneously, and there is no interference or less interference between image display and touch sensing of the touch display device 1.
  • the driving chip 20 is also The self-capacitive touch sensing can be performed by driving the common electrode 101 together.
  • the touch display panel 10 as a whole is in a state in which the image display is maintained, and since the signal output from the driving chip 20 to the touch display panel 10 is synchronously modulated by the modulation signal MGND, the touch sensing is not changed.
  • the display voltage difference between the two electrodes 101, 103 of the pixel 11 (see FIG. 5), correspondingly, the quality of the image display and touch sensing of the touch display panel 10 is better.
  • the driving chip 20 can drive the common electrode 101 to perform touch sensing together in any process of driving the touch display panel 10 to perform image display, the manufacturer can set the driving chip 20 to drive the public as needed.
  • the electrode 101 performs a period of touch sensing. Specifically, for example, touch sensing is performed during the entire process or part of the image display. More specifically, for example, during image display refresh and/or line gap I, frame gap, touch sensing is performed, and the like.
  • the driving chip 20 simultaneously drives the plurality of common electrodes 101 to perform image display, and time-divisionally drives the plurality of common electrodes 101 to perform self-capacitive touch sensing.
  • the driving chip 20 drives the plurality of common electrodes 101 to perform self-capacitance touch sensing.
  • the driving chip 20 may perform touch sensing for simultaneously driving the partial common electrodes 101.
  • the driving chip 20 simultaneously drives a part of the common electrodes 101 of the plurality of common electrodes 101 to perform touch sensing, and one-time sensing of all the common electrodes 101 is completed by multiple driving.
  • the touch sensing of the plurality of common electrodes 101 is completed by the driving chip 20 by multiple driving, that is, the driving of the driving chip 20 for time-division driving of the plurality of common electrodes 101 is performed. Touch sensing.
  • the driving chip 20 may perform self-capacitive touch sensing by driving the common electrode 101 in a row. Measurement.
  • the driving chip 20 supplies the first common voltage Vc1 to perform self-capacitance touch sensing and image display for one row of the common electrodes 101, the first common voltage Vc1 is also supplied to perform image display to the common electrodes 101 of the remaining rows.
  • the driving chip 20 drives a row of common electrodes 101 to perform self-capacitive touch sensing, next, driving another row of common electrodes 101 to perform self-capacitance touch sensing and image display, and driving the remaining rows of common electrodes 101 to perform image display .
  • one touch sensing drive for all of the common electrodes 101 is completed by multiple driving.
  • the driving chip 20 sequentially drives the common electrodes 101 that perform touch sensing to partially overlap. Or not overlapping.
  • defining a period in which the common electrode 101 performs touch sensing is the first time period W1, and the plurality of public are defined.
  • the period in which the electrodes 101 perform image display instead of simultaneously performing touch sensing is the second period W2.
  • a second time period W2 is included between adjacent first time periods W1. For example, the first time period W1 and the second time period W2 alternate.
  • the driving chip 20 In the first period W1, the driving chip 20 generates the modulation signal MGND, and synchronously modulates an input signal of the touch display panel 10 by using the modulation signal MGND. Correspondingly, the driving chip 20 simultaneously outputs the first common voltage Vcl to perform image display on the plurality of common electrodes 101, and time-receives touch sensing signals from the plurality of common electrodes 101 to obtain Touch the message.
  • the voltage signals outputted to the touch display panel 10 by the driving chip 20 during the first time period W1 are all first signals, and the driving chip 20 is defined.
  • the voltage signals output to the touch display panel 10 during the second period W2 are all second signals.
  • the first signal comprises the first common voltage Vc1.
  • the driving chip 20 In each of the second time periods W2, the driving chip 20 outputs a second signal to the touch display panel 10 to perform image display.
  • the driving chip 20 does not synchronously modulate the input signal of the touch display panel 10 by using the modulation signal MGND.
  • the first signal is, for example, a signal modulated by the second signal via the modulation signal MGND.
  • the driving chip 20 outputs the first signal to the touch display panel 10 while performing image display and self-capacitive touch sensing.
  • the second signal includes the second common voltage Vc2.
  • the driving chip 20 outputs a second common voltage Vc2 to perform image display on the plurality of common electrodes 101.
  • the first common voltage Vc1 is, for example, a signal obtained by the second common voltage Vc2 modulated by the modulation signal MGND.
  • the second common voltage Vc2 is, for example, (-1)V.
  • the second common voltage Vc2 may also be voltage signals of other sizes.
  • the amplitude of the modulation signal MGND is, for example, a signal between 0.15V and 0.3V.
  • the amplitude of the modulation signal MGND is, for example, a signal of 0.2V.
  • the present invention is not limited thereto, and the signals such as the modulation signal MGND and the second common voltage Vc2 may also be other suitable types of signals.
  • the driving chip 20 does not synchronously modulate the input signal of the touch display panel 10 by using the modulation signal MGND during the second time period W2, for example, the driving chip 20 still adopts an existing display driving manner.
  • the touch display panel 10 is driven, and therefore, the touch display device 1 relatively reduces power consumption in the second period W2 compared to the technical scheme in which modulation is employed in the first period W1.
  • the driving chip 20 employs a method of intermittently driving the plurality of common electrodes 101 to perform touch sensing.
  • the touch display device 1 can further perform self-capacitance touch sensing not only in any process of performing image display, but also avoids the problem of large power consumption due to the adoption of the modulation scheme.
  • the driving chip 20 drives the plurality of rows of common electrodes 101 to perform touch sensing, for example, or drives all of the common electrodes 101 to perform one touch sensing, or drives all of the common electrodes 101 to perform the most. Secondary touch sensing.
  • the case where the driving chip 20 drives all the common electrodes 101 to perform a plurality of touch sensing can be divided into various cases, for example, the driving chip 20 drives all the common electrodes 101 to perform the same number of touch sensing times.
  • the driving chip 20 drives the part of the common electrode 101 to perform the same number of touch sensing times, and drives the other part of the common electrode 101 to perform the same number of times of the touch sensing.
  • the driving chip 20 drives the two parts of the common electrode. 101 The number of times the touch sensing is performed is different.
  • the duration setting of the second time period W2 does not affect the overall touch operation of the touch display device 1 , and vice versa.
  • the duration of each of the first time periods W1 is, for example, the same, and the duration of each of the second time periods W2 is, for example, the same.
  • the durations of the first time periods W1 may not be identical or different from each other, and the durations of the second time periods W2 may not be identical or different from each other.
  • the first time period W1 and the second time period W2 of the touch display device 1 having different materials may also be correspondingly different.
  • the durations of the first time period W1 and the second time period W2 may also be different to reduce power consumption. .
  • the touch display device 1 and its operation principle will be described mainly in such a manner that the driving chip 20 intermittently and time-divisionally drives the plurality of common electrodes 101 to perform touch sensing.
  • FIG. 3 is a schematic diagram of a circuit structure of a specific implementation of the electronic device 100 .
  • the driving chip 20 includes a modulation circuit 21, a common voltage generating circuit 22, a touch driving circuit 23, a data selecting circuit 24, a control circuit 25, and a signal processing circuit 26.
  • the common voltage generating circuit 22 and the touch driving circuit 23 are connected to the data selecting circuit 24.
  • the data selection circuit 24 connects the plurality of common electrodes 101.
  • the control circuit 25 is connected to the data selection circuit 24.
  • the common voltage generating circuit 22 and the touch driving circuit 23 are selectively connectable to the corresponding common electrode 101 through the data selecting circuit 24.
  • the common voltage generating circuit 22 is for driving the common electrode 101 to perform image display.
  • the touch driving circuit 23 is configured to drive the same common electrode 101 while performing image display and self-capacitance touch sensing.
  • the signal processing circuit 26 is configured to perform touch coordinate calculation according to the touch sensing signal output by the touch driving circuit 23 to acquire touch position information.
  • the generated signal performs image display and self-capacitance touch sensing to the corresponding common electrode 101.
  • the control circuit 25 correspondingly controls the signal output timing of the data selection circuit 24, for example, according to a control signal of the main control chip 3.
  • the modulation circuit 21 is configured to generate the modulation signal MGND.
  • the modulation signal MGND includes a first reference signal and a second reference signal.
  • the voltage condition of the first reference signal and the second reference signal may be any one of the following five cases:
  • the voltage of the first reference signal is a positive voltage, and the voltage of the second reference signal is 0V;
  • the voltage of the first reference signal is 0V, and the voltage of the second reference signal is a negative voltage
  • the voltage of the first reference signal is a positive voltage
  • the voltage of the second reference signal is a negative voltage
  • the absolute value of the voltage of the first reference signal is equal to or not equal to the absolute value of the voltage of the second reference signal
  • the voltages of the first reference signal and the second reference signal are positive voltages of different sizes
  • the voltages of the first reference signal and the second reference signal are negative voltages of different sizes.
  • the modulation signal MGND is a periodically varying square wave pulse signal in which the first reference signal and the second reference signal alternately appear.
  • the first reference signal of the modulation signal MGND is the ground signal GND
  • the second reference signal is a driving signal higher than the first reference signal.
  • the ground signal GND is 0V
  • the driving signal is 0.2V
  • the grounding signal is 0V
  • the driving signal is 0.2V.
  • the manufacturer can adjust the amplitude of the modulation signal MGND according to the product, which is not limited in this application.
  • the duration of the first reference signal of the modulation signal MGND is the second reference signal 2 times the duration.
  • the duration of the first reference signal of the modulation signal MGND may be the same as the duration of the second reference signal.
  • the driving chip 20 When the duration of the first reference signal of the modulation signal MGND is twice the duration of the second reference signal, the driving chip 20 performs a reset operation during the first half of the first reference signal, at the first reference The sensing of the touch sensing signal is performed separately during the second half of the signal and during the presence of the second reference signal. In this way, the accuracy of touch sensing can be improved.
  • the driving chip 20 When the duration of the first reference signal of the modulation signal MGND is the same as the duration of the second reference signal, the driving chip 20 performs a reset operation, for example, during the presence of the first reference signal, during the presence of the second reference signal Sampling of the touch sensing signals is performed separately.
  • the present invention is not limited thereto, and the durations of the first reference signal and the second reference signal of the modulation signal MGND may also be other suitable types.
  • the driving chip 20 further includes a voltage generating circuit 27.
  • the voltage generating circuit 27 is configured to generate the second reference signal.
  • the modulation circuit 21 is connected to the device ground of the electronic device 100 and the voltage is generated.
  • the circuit 22 receives the ground signal GND on the ground of the device and the second reference signal generated by the voltage generating circuit 22, and generates the modulation signal MGND correspondingly. To distinguish the ground signal GND, the modulation signal is labeled MGND.
  • the driving chip 20 synchronously modulates all the voltage signals on the touch display panel 10 by providing the modulation signal MGND to a part of the driving chip 20, thereby driving the touch display panel 10 at the same time.
  • the driving chip 20 when the driving chip 20 drives the touch display panel 10 while performing image display and touch sensing, the driving chip 20 includes two parts, wherein a part of the driving signal MGND is loaded. Partially used to load the ground signal GND.
  • the ground to which the modulation signal MGND is applied in the first period W1 is defined as a modulation ground to distinguish the device ground to which the ground signal GND is applied.
  • the electronic device 100 is based on two domains as a voltage reference. The two fields are shown as a domain 80 referenced to the ground signal GND and a domain 90 referenced to the modulation signal MGND.
  • the ground terminal of the circuit in the domain 80 with reference to the ground signal GND is used to load the ground signal GND
  • the ground terminal of the circuit in the domain 90 with reference to the modulation signal MGND is used to load the modulation signal MGND.
  • its reference ground potential is a modulated signal MGND loaded
  • for a device grounded circuit its reference ground potential is a device ground. Loaded ground signal GND.
  • the electronic device 100 uses a domain as a voltage reference reference, and both use the ground signal GND as a voltage reference.
  • the ground of the circuit in the electronic device 100 is connected to the device ground, and receives the ground signal GND. That is, in the second period W2, the modulation ground corresponds to the device ground for transmitting the ground signal GND instead of the modulation signal MGND.
  • the common voltage generating circuit 22, the touch driving circuit 23, the signal processing circuit 26, the data selecting circuit 24, and the control circuit 25 are located in the field 90 in the first period W1.
  • the touch display panel 10 is also located in the field 90; the modulation circuit 21 and the voltage generating circuit 27 are located in the domain 80.
  • the modulation circuit 21 includes a modulation terminal M.
  • the modulation circuit 21 outputs the modulation signal MGND to the ground of each circuit in the domain 90 through the modulation terminal M, so that the circuit output in the domain 90 with the modulation signal MGND as the voltage reference is modulated.
  • the voltage signal modulated by the signal MGND is supplied to the touch display panel 10.
  • the modulation terminal M is connected to the modulation ground or as one end of the modulation ground.
  • a signal on the touch display panel 10 for example, an element in a floating state (for example, a pixel electrode 103 for performing image display holding, which will be described later, see FIG. 5) superimposes the modulation signal MGND by capacitive coupling. Therefore, in the first period W1, all of the voltage electrical signals on the touch display panel 10 become signals modulated by the modulation signal MGND.
  • Circuits in the field 90 for example, the common voltage generating circuit 22, the touch driving circuit 23, and the signal processing power
  • the circuit 26, the data selection circuit 24, and the control circuit 25, if included with the ground terminal, can be directly connected to the modulation ground.
  • the electronic device 100 as a whole is based on the ground signal GND as a voltage reference.
  • the modulation circuit 21 generates the modulation signal MGND according to the ground signal GND on the device ground and the driving signal from the voltage generating circuit 27, and provides the modulation signal MGND to the Modulated ground.
  • the common voltage generating circuit 22 correspondingly generates the first common voltage Vc1, and supplies the image display to the corresponding common electrode 101 through the data selecting circuit 24.
  • the touch driving circuit 23 correspondingly generates the first common voltage Vc1, and provides image display and self-capacitance touch sensing to the corresponding common electrode 101 through the data selection circuit 24.
  • the signal processing circuit 26 receives a touch sensing signal output from the touch driving circuit 23 to acquire touch information.
  • the first common voltage Vc1 outputted to the common electrode 101 by the touch driving circuit 23 is simultaneously used as a display driving signal and a touch driving signal, and the first common voltage Vc1 outputted by the common voltage generating circuit 22 to the common electrode 101 is used only. Display drive signal.
  • the first common voltage Vc1 outputted by the touch driving circuit 23 and the common voltage generating circuit 22 to the plurality of common electrodes 101 is the same signal modulated by the modulation signal MGND, and the touch driving circuit 23 can The touch sensing signal sensed from the common electrode 101 is further transmitted to the signal processing circuit 26 to acquire touch information. Therefore, the driving chip 20 can drive the touch display panel 10 while performing image display and self-capacitive touch sensing.
  • the common voltage generating circuit 22 drives the partial common electrode 101 to perform image display.
  • the touch driving circuit 23 can drive the remaining common electrodes 101 together to perform image display and self-capacitance touch sensing. Therefore, the touch display device 1 of the present invention can perform touch sensing simultaneously in any process of performing image display, and there is no interference between the touch sensing and the image display or less interference to the image display.
  • the touch display device 1 occupies the The space of the electronic device 100 is small.
  • a single chip is more advantageous for assembly and production management of the touch display device 1 than a plurality of chips, thereby improving production efficiency, thereby reducing the manufacturing cost of the electronic device 100.
  • the common voltage generating circuit 22 supplies the second common voltage Vc2 through the data selecting circuit 24 to perform image display on the plurality of common electrodes 101.
  • the data selection circuit 24 is controlled by the control circuit 25, and the second common voltage Vc2 on the plurality of common electrodes 101 is derived from the common voltage generating circuit 22.
  • the touch drive circuit 23 may further output a second common voltage Vc2 to the data selection circuit 24, for example, but the data selection circuit 24 selectively outputs a second common voltage Vc2 from the common voltage generation circuit 22 to the plurality of common electrodes 101.
  • the touch display device 1 is caused to perform image display at the second time period W2 to stop performing touch sensing.
  • the first time period W1 and the second time period W2 are alternately performed, and the touch display device 1 implements an image Display and touch sensing.
  • the touch display device 1 may include a first time period W1, a plurality of first time periods W1, a portion of a first time period W1, a first time period W1, and a portion of the first time period W1. Or a plurality of portions of the first time period W1 and the first time period W1.
  • the touch drive circuit 23 is different from the circuit configuration of the common voltage generating circuit 22.
  • the touch drive circuit 23 is capable of further receiving a touch sensing signal output from the common electrode 101.
  • the signal processing circuit 26 acquires touch location information based on the touch sensing signal.
  • the common electrode 101 electrically connected to the touch driving circuit 23 may correspondingly output different touch sensing signals to the touch sensing in response to a touch or proximity of a target object (eg, a suitable object such as a finger)
  • the drive circuit 23, correspondingly, the signal processing circuit 26 can obtain touch position information from the touch sensing signal.
  • the common voltage generating circuit 22 does not receive a signal from the common electrode 101.
  • the common voltage generating circuit 22 and the touch driving circuit 23 share the same signal source 221, and the signal source 221 is modulated by the modulation signal MGND to generate a first reference voltage signal.
  • the common voltage generating circuit 22 and the touch driving circuit 23 respectively output the same first common voltage Vc1 as the first reference voltage signal to the plurality of common electrodes 101, wherein the common voltage generating circuit 22 is electrically
  • the connected common electrode 101 performs only image display, and the common electrode 101 electrically connected to the touch drive circuit 23 simultaneously performs image display and self-capacitance touch sensing.
  • the touch driving circuit 23 supplies the same signal to the common electrode 101 as the common voltage generating circuit 22, the touch driving circuit 23 does not affect the execution while driving the common electrode 101 to perform self-capacitive touch sensing.
  • the self-capacitive touch-sensing common electrode 101 simultaneously performs normal image display.
  • the common voltage generating circuit 22 and the touch driving circuit 23 share the same signal source 221, the common voltage generating circuit 22 and the signal that the touch driving circuit 23 outputs to the plurality of common electrodes 101 The same or substantially the same can be achieved to ensure the quality of touch sensing and image display.
  • the common voltage generating circuit 22 includes, for example, a signal source 221, a follower 222, and a voltage stabilizing circuit 223.
  • the signal source 221 is coupled to the follower 222, and the follower 222 is further coupled to the data selection circuit 24.
  • One end of the voltage stabilizing circuit 223 is connected between the follower 222 and the data selection circuit 24, and the other end is connected to the modulation ground.
  • the signal source 221 includes a ground terminal a and an output terminal b.
  • the ground terminal a is connected to the modulation ground.
  • the output terminal b is connected to the follower 222.
  • the signal source 221 is, for example, a DC source.
  • the present invention is not limited thereto, and the signal source 221 may also be other suitable circuit structures.
  • the follower 222 transmits a signal output from the signal source 221 to the data selection circuit 24, and is supplied to the corresponding common electrode 101 through the data selection circuit 24 to perform image display.
  • the follower 222 is, for example, a first amplifier.
  • the present invention is not limited thereto, and the follower 222 may be other suitable circuit structures, and It is not limited to the first amplifier.
  • the follower 222 is taken as an example of the first amplifier.
  • the first amplifier 222 includes a third power terminal c1, a third ground terminal d1, a first in-phase terminal e1, a first inverting terminal f1, and a first output terminal g1.
  • the third power terminal c1 is used to load the power voltage VDD1.
  • the third ground terminal d1 is used to connect the modulation ground.
  • the first in-phase end e1 is for connecting to the output end b of the signal source 221.
  • the first inverting terminal f1 is shorted to the first output end g1.
  • the first output terminal g1 is connected to the data selection circuit 24.
  • the voltage stabilizing circuit 223 is connected between the first output terminal g1 and the modulation ground for regulating the voltage between the follower 222 and the data selection circuit 24.
  • the regulator circuit 223 includes, for example, a voltage stabilizing capacitor Cw.
  • the voltage stabilizing capacitor Cw is connected between the first output terminal g1 and the modulation ground.
  • the grounding terminal a and the third grounding terminal d1 receive the modulation signal MGND, and the signal source 221 correspondingly outputs the first reference voltage signal to the output terminal b.
  • the first amplifier 222 is in a virtual short state, and correspondingly outputs a first common voltage Vc1 identical to the first reference voltage signal to the data selection circuit 24 through the data selection circuit 24 Image display is performed for the corresponding common electrode 101.
  • the ground terminal a and the third ground terminal d1 both receive the ground signal GND, and the signal source 221 correspondingly outputs a second reference voltage signal to the first amplifier 222 through the output terminal b.
  • the first amplifier 222 is in a virtual short state, and correspondingly transmits a second common voltage Vc2 that is the same as the second reference voltage signal to the data selection circuit 24, and is provided by the data selection circuit 24 to the The plurality of common electrodes 101 perform image display.
  • the touch drive circuit 23 includes, for example, the signal source 221 and a plurality of operational amplifiers 231.
  • Each operational amplifier 231 includes a second amplifier 232 and a feedback branch 233.
  • the second amplifier 232 includes a fourth power terminal c2, a fourth ground terminal d2, a second in-phase terminal e2, a second inverting terminal f2, and a second output terminal g2.
  • the fourth power terminal c2 is used to load the power voltage VDD2.
  • the fourth ground terminal d2 is used to connect the modulation ground.
  • the second in-phase end e2 is for connecting to the output end b of the signal source 221.
  • the second inverting terminal f2 is connected to the data selection circuit 24 and further connected to the second output terminal g2 through the feedback branch 233.
  • the second output terminal g2 is further connected to the signal processing circuit 26.
  • the feedback branch 233 includes, for example, a feedback capacitor 233a and a reset switch 233b.
  • the feedback capacitor 233a and the reset switch 233b are connected in parallel between the second inverting terminal f2 and the second output terminal g2.
  • the fourth ground terminal d2 receives the modulation signal MGND.
  • the second amplifier 232 is in a virtual short state, receives a first reference voltage signal from the signal source 221, and correspondingly outputs the first common voltage Vc1 to the data selection circuit 24, through the data selection circuit 24 It is supplied to the corresponding common electrode 101.
  • the feedback branch 233 is configured to transmit a touch sensing signal sensed by the common electrode 101 to the signal processing circuit 26.
  • the number of the plurality of operational amplifiers 231 is, for example, the same as the number of columns of the plurality of common electrodes 101.
  • Each of the operational amplifiers 231 corresponds to a common electrode 101 that can be selectively connected to one column through the data selection circuit 24.
  • the number of the plurality of operational amplifiers 231 may be the same as the number of rows of the plurality of common electrodes 101.
  • the present invention is not limited thereto.
  • the common electrode 101 of each column may also be connected to the second operational amplifier 231, and the like.
  • the touch driving circuit 23 of the present invention supplies the same touch driving signal to the common electrode 101 as the first common voltage Vc1 generated by the common voltage generating circuit 22, so that the touch driving signal can drive the common electrode 101 to perform both image display and execution.
  • Self-capacitive touch sensing therefore, the plurality of common electrodes 101 of the touch display device 1 can further perform touch sensing while performing image display.
  • each of the touch driving circuit 23 and the common voltage generating circuit 22 respectively uses a signal source, and the touch driving circuit 23 and the common voltage generating circuit 22 share the same signal source 221 of the present application. Therefore, the first common voltage Vc1 outputted by the touch drive circuit 23 and the common voltage generating circuit 22 to the plurality of common electrodes 101 through the data selection circuit 24 may be more the same or may be the same, thereby ensuring The image of the touch display device 1 is displayed with the quality of touch sensing.
  • the modulation ground becomes a device ground
  • the signal source 221 outputs a second reference voltage signal to the follower 222 and the plurality of operational amplifiers 231
  • the control circuit 25 controls the data selection circuit 24 selectively outputs a second common voltage Vc2 from the common voltage generating circuit 22 to perform image display on the plurality of common electrodes 101.
  • a first switch (not shown) may be disposed between the signal source 221 and the follower 222, and a second switch is disposed between the signal source 221 and the operational amplifier 231 (not shown)
  • the first time period W1 both the first switch and the second switch are in a closed state
  • the second time period W2 the first switch is in a closed state
  • the second switch is in an open state.
  • the data selection circuit 24 includes, for example, a first data selector 241 and a plurality of second data selectors 242.
  • the follower 222 is connected to the first data selector 241, and the first data selector 241 is connected to the plurality of common electrodes 101, respectively.
  • Each of the operational amplifiers 231 is connected to a second data selector 242, and each of the second data selectors 242 is connected to a column of common electrodes 101.
  • the first data selector 241 and the plurality of second data selectors 242 are respectively connected to the control circuit 25.
  • the control circuit 25 controls signal output timings of the first data selector 241 and the plurality of second data selectors 242.
  • the plurality of common electrodes 101 are arranged in a matrix of 26 rows and 40 columns.
  • the number of the plurality of operational amplifiers 231 is 40
  • the number of the second data selectors 242 is 40.
  • the first data selector 241 includes a first output port O1 for outputting a signal from the common voltage generating circuit 22 to the corresponding common electrode 101.
  • the number of the first output ports O1 is the same as the number of rows of the plurality of common electrodes 101, that is, 26.
  • Each second data selector 242 includes a second output port O2 for outputting from the touch drive circuit 23 The signal is given to the corresponding common electrode 101.
  • the number of the second output ports O2 is the same as the number of rows of the plurality of common electrodes 101, that is, 26. It should be noted that, in FIG. 2, limited to the illustrated size, only part of the circuit structure is actually shown. For example, only two operational amplifiers 231, two second data selectors 242, and a portion of the common electrode 101 are shown. .
  • each second data selector 242 is respectively connected to a common electrode 101.
  • Each of the first output ports O1 is connected to a second output port O2 of each of the second data selectors 242 and the common electrode 101, thereby saving the number of the connection lines L, and the different first output ports O1 are connected to each other.
  • the number of the first data selectors 241 may also be multiple, not limited to one, and correspondingly, the first of the plurality of first data selectors 241
  • the connection relationship between the output port O1 and the second output port O2 of the plurality of second data selectors 242 can be adjusted accordingly.
  • each first data selector 241 is connected to a portion of the second data selector 242.
  • the first output port O1 of each first data selector 241 is connected to a part of the second output port O2 of the plurality of second data selectors 242, and so on.
  • the plurality of second data selectors 242 are 26-selected data selectors under the control of the control circuit 25, and correspondingly, each second data selector 242 outputs the touch drive circuit each time.
  • the first common voltage Vc1 of 23 is given to a common electrode 101, and the plurality of second data selectors 242 drive all of the common electrodes 101 to perform one touch sensing.
  • the first data selector 241 is a 26-select 25 data selector under the control of the control circuit 25, and when the plurality of second data selectors 242 output the first common voltage Vc1 to the common electrode 101 of the same row, The first data selector 241 outputs the first common voltage Vc1 from the common voltage generating circuit 22 to the respective common electrodes 101 of the remaining rows. It should be noted that the 26 touch driving may be completed in one or more first time periods W1.
  • the first data selector 241 becomes a 26-select 26 data selector under the control of the control circuit 25, and outputs a second common voltage Vc2 from the common voltage generating circuit 22 to all the common electrodes. 101.
  • the second data selector 242 stops outputting signals to the common electrode 101 under the control of the control circuit 25, for example.
  • the touch driving circuit 23 and the common voltage generating circuit 22 of the touch display device 1 are not limited to the above-described circuit configuration, and may be other suitable circuit configurations.
  • the data selection circuit 24 is not limited to the first data selector 241 and the second data selector 242, but may be other suitable switching circuit configurations.
  • the data selection circuit 24 on the one hand, the number of connection lines L between the driving chip 20 and the plurality of common electrodes 101 can be reduced, and on the other hand, image display for driving the plurality of common electrodes 101 can be achieved. At the same time, the time-division driving common electrode 101 performs touch sensing.
  • the touch display device 1 may also continue to perform both image display and touch sensing, for example, in time, the common voltage generating circuit 22 and the touch driving
  • the circuit 23 continuously supplies the first common voltage Vc1 to the common electrode 101, spatially, the common voltage generating circuit 22 and the The touch drive circuit 23 cooperates to drive the plurality of common electrodes 101.
  • the control circuit 25 correspondingly controls the first data selector 241 to always hold 26 select 25, and controls the plurality of second data selectors 242 to always keep 26 select 1.
  • the data selection circuit 24, the common voltage generating circuit 22, the touch driving circuit 23, and the plurality of common electrodes can be adjusted accordingly.
  • the corresponding circuit information can be reasonably estimated, and therefore, no further details are provided herein.
  • the driving chip 20 may further include, for example, a fingerprint driving circuit that selectively connects the plurality of common electrodes 101 when the driving chip 20 is at the driving portion common electrode 101
  • the fingerprint driving circuit can also drive the partial common electrode 101 to simultaneously perform fingerprint sensing and image display
  • the common voltage generating circuit 22 drives the partial common electrode to perform image display. Therefore, in the present application, the operation of driving the common electrode 101 is not limited to the common voltage generating circuit 22 and the touch driving circuit 23, and may include other circuits of a suitable type or suitable function, and the corresponding driving common electrode 101 performs a corresponding function.
  • FIG. 4 is a schematic diagram showing the circuit structure of an embodiment of the modulation circuit 21.
  • the modulation circuit 21 includes a first active switch 211, a second active switch 213, and a control unit 215.
  • the first active switch 211 includes a control terminal K1, a first transmission terminal T1, and a second transmission terminal T2.
  • the second active switch 213 includes a control terminal K2, a first transmission terminal T3, and a second transmission terminal T4.
  • the control terminals K1, K2 are all connected to the control unit 215.
  • the second transmission end T2 of the first active switch 211 is connected to the first transmission end T3 of the second active switch 213, and defines an output node N on the connection line, and the first transmission end T1 of the first active switch 211 Receiving the first reference signal, the second transmission end T4 of the second active switch 213 receives the second reference signal, and the control unit 215 controls the output correspondingly by controlling the first and second active switches 211, 213
  • the node N alternately outputs the first reference signal and the second reference signal to form a modulation signal MGND.
  • the first reference signal is a ground signal GND
  • the second reference signal is a driving signal.
  • the second transmission end T4 is connected to the voltage generating circuit 27, the first transmission end T1 is connected to the device ground for receiving the ground signal GND, and the node N is for outputting the modulation signal MGND. Give modulation.
  • the first active switch 211 and the second active switch 213 are, for example, suitable switches of a thin film transistor, a triode, a metal oxide semiconductor field effect transistor, or the like.
  • the working principle of the modulation circuit 21 is that, in the first time period W1, the control unit 215 is configured to control the modulation circuit 21 to output the modulation signal MGND to the ground in the domain 90, and the ground in the domain 90 is modulated. In the second time period W2, the control unit 215 is configured to control the modulation circuit 21 to output the ground signal GND to the modulation ground, at which time the modulation ground becomes the same as the device ground.
  • the electronic device 100 has a reference domain 80 referenced to the ground signal GND and a reference domain 90 referenced to the modulation signal MGND.
  • the touch driving circuit 23 supplies the touch driving signal to the common electrode 101
  • the touch sensing signal output from the common electrode 101 itself is further received to acquire touch information, and therefore, the touch driving circuit 23 is at the driving station.
  • the principle when the touch display panel 10 performs touch sensing is the self-capacitance touch sensing principle.
  • FIG. 5 is a schematic diagram of a circuit structure of a specific implementation of the electronic device 100.
  • the touch display device 1 is described by taking a liquid crystal display device as an example.
  • the circuit structure of the touch display device 1 may be different for all the different types of display devices, and the circuit configurations of different liquid crystal display devices may also be different.
  • the structure that can be easily derived by a person of ordinary skill in the art should fall within the protection scope of the present application.
  • the touch display panel 10 of the touch display device 1 includes a plurality of pixel dots 11. Each pixel 11 is driven by the drive chip 20 for performing image display and touch sensing.
  • Each pixel 11 includes the common electrode 101, the pixel electrode 103, and a control switch 105.
  • the control switch 105 includes a control electrode G, a first transfer electrode S, and a second transfer electrode D.
  • the control electrode G and the first transfer electrode S are connected to the drive chip 20.
  • the second transfer electrode D is connected to the pixel electrode 103.
  • the driving chip 20 is configured to drive the control switch 105 to be turned on and off.
  • the control switch 105 is, for example, a thin film transistor switch.
  • the thin film transistor switch is, for example, a low temperature polysilicon thin film transistor switch, an amorphous silicon thin film transistor switch, an indium gallium zinc oxide (IGZO) thin film transistor switch, a high temperature polysilicon thin film transistor switch, or the like.
  • the present invention is not limited thereto, and the control switch 105 can also be other suitable types of switches.
  • the control switch 105 is a thin film transistor switch
  • the control electrode G is a gate of a thin film transistor switch
  • the first transfer electrode S is a source of a thin film transistor switch
  • the second transfer electrode D is a thin film transistor The drain of the switch.
  • each pixel 11 includes a pixel electrode 103 and a control switch 105, respectively. Since the size of the common electrode 101 is generally larger than the size of the pixel electrode 103, correspondingly, several pixel points 11 can share the same common electrode 101. However, in other modified embodiments, a common electrode 101 may be included for each pixel point 11 respectively. In addition, for other types of display devices such as OLEDs, each pixel 11 may include a plurality of switches and components such as capacitors.
  • the driving chip 20 drives the control switch 105 to turn on by providing the first scan enable signal Vg1, and provides the first gray scale voltage Vd1 to the pixel through the turned-on control switch 105.
  • the electrode 103 supplies a first common voltage Vc1 to the common electrode 101 to drive the pixel point 11 to perform image display refresh.
  • the first scan enable signal Vg1, the first gray scale voltage Vd1, and the first common voltage Vc1 are both signals that are synchronously modulated by the modulation signal MGND.
  • the driving chip 20 drives the plurality of pixel dots 11 in rows to perform image display refresh.
  • the driving chip 20 supplies the first scan cutoff signal Vg2 to the control switch 105 of the pixel point 11 of the remaining row. Making the remaining rows The control switch 105 of the pixel 11 is turned off, thereby causing the pixel dots 11 of the remaining rows to be in the image display holding state.
  • the first scan cutoff signal Vg2 is a signal modulated by the modulation signal MGND.
  • the plurality of pixel dots 11 are arranged in a plurality of rows and columns. However, the plurality of pixel points 11 may also be arranged in other regular or irregular manners.
  • the driving chip 20 simultaneously drives the pixel point 11 performing the touch sensing without overlapping with the pixel point 11 performing the image display refreshing, for example, executing the image.
  • the pixels 11 of the display refreshed pixel point 11 and the common electrode 101 performing touch sensing are spaced apart at a pixel point 11 where image display retention is performed.
  • the pixel point 11 that performs touch sensing and the pixel point 11 that performs image display refresh can be maintained by a predetermined distance without being overlapped by software or hardware or hardware and software control.
  • the driving chip 20 supplies, for example, a second scan enable signal Vg3 to the control switch 105, activates the control switch 105, and supplies the second gray scale voltage Vd2 to the pixel electrode 103 through the activated control switch 105.
  • the driving chip 20 drives the pixel point 11 of a certain row to perform image display refreshing, the second scan cutoff signal Vg4 is supplied to the control switch 105 of the pixel row 11 of the remaining row, thereby turning off the pixel points 11 of the remaining rows. In the image display hold state.
  • the first scan enable signal Vg1 is, for example, a signal modulated by the second scan enable signal Vg3 via the modulation signal MGND.
  • the first scan cutoff signal Vg2 is, for example, a signal modulated by the second scan cutoff signal Vg4 via the modulation signal MGND.
  • the first gray scale voltage Vd1 is a signal modulated by the corresponding second gray scale voltage Vd2 via the modulation signal MGND.
  • a first gray scale voltage Vd1 is a signal modulated by the modulation signal MGND by the second gray scale voltage Vd2
  • the voltage difference between the second gray scale voltage Vd2 and the second common voltage Vc2 is equal to the first A pressure difference between the gray scale voltage Vd1 and the first common voltage Vc1.
  • the voltage difference between the first pixel electrode 103 and the common electrode 101 determines the display gradation level of each pixel point 11 .
  • the gray scale voltage can be classified into a positive gray scale voltage and a negative polarity gray scale voltage for the same display gray level.
  • the touch display panel 10 may further include a plurality of scan lines 281 and a plurality of data lines 291.
  • the plurality of scan lines 281 and the plurality of data lines 291 are, for example, insulated cross-distributions.
  • the plurality of scanning lines 281 extend, for example, in the X direction and are arranged in the Y direction.
  • the plurality of data lines 291 extend, for example, in the Y direction and are arranged in the X direction.
  • Each of the scanning lines 281 is connected to the control electrode G of the control switch 105 of one row of pixel points 11, respectively.
  • Each of the data lines 291 is connected to a first transmission electrode S of a control switch of a column of pixel points 11, respectively.
  • the plurality of scan lines 281 are configured to transmit the first scan enable signal Vg1, the second scan enable signal Vg3, the first scan cutoff signal Vg2, or the second scan cutoff signal Vg4 from the driving chip 20 to the control switch 105.
  • the plurality of data lines 291 are used to transmit the first gray scale voltage Vd1 or the second gray scale voltage Vd2 from the driving chip 20 to the first transfer electrode S of the control switch 105.
  • the drive chip 20 further includes a display drive circuit 20a.
  • the display driving circuit 20a is configured to drive the touch display panel 10 to perform image display.
  • the display driving circuit 20a includes a scan driving circuit 28, a scan signal generating circuit 28a, a data driving circuit 29, and the common voltage generating circuit 22.
  • the scan driving circuit 28 connects the plurality of scan lines 281.
  • the data driving circuit 29 connects the plurality of data lines 291.
  • the scan driving circuit 28 and the data driving circuit 29 are both connected to the control circuit 25.
  • the control circuit 25 is further configured to control the scan timing of the scan drive circuit 28 and provide corresponding display data to the data drive circuit 29.
  • the scan signal generating circuit 28a is connected to the scan driving circuit 28.
  • the scan signal generating circuit 28a is configured to generate the first scan enable signal Vg1, the second scan enable signal Vg3, the first scan cutoff signal Vg2, or the second scan cutoff signal Vg4, and provide the first scan enable signal Vg1, the second scan enable signal Vg3, the first scan cutoff signal Vg2, or the second scan cutoff signal Vg4 are supplied to the scan driving circuit 28.
  • the scan driving circuit 28 includes, for example, a circuit structure of a shift register, receives a scan enable signal and a scan cutoff signal from the scan signal generating circuit 28a, and correspondingly provides a scan enable signal and a scan cutoff signal to the corresponding control under the control of the control circuit 25. Scan line 281.
  • the scan signal generating circuit 28a, the scan driving circuit 28, and the data driving circuit 29 are also located in the field 90.
  • the scan signal generating circuit 28a is modulated by the modulation signal MGND of the modulation circuit 21 to output the first scan enable signal Vg1, the first scan cutoff signal Vg2 to the scan drive circuit 28, and the scan drive circuit 28 correspondingly outputting the first scan enable signal Vg1 and the first scan cutoff signal Vg2 to the corresponding scan line 281 under the timing control of the control circuit 25, and the data drive circuit 29 is modulated by the modulation circuit 21.
  • the modulation of the signal MGND outputs the first gray scale voltage Vd1 to the plurality of data lines 291 to be supplied to the corresponding pixel electrode 103 through the activated control switch 105 to perform image display refresh.
  • the common voltage generating circuit 22 and the touch driving circuit 23 supply the first common voltage Vc1 to the plurality of common electrodes 101 through the data selecting circuit 24.
  • the signal on the pixel electrode 103 of the pixel point 11 held by the image display becomes a signal modulated by the modulation signal MGND by capacitive coupling. Therefore, the signals on the pixel electrode 103 and the common electrode 101 of each pixel 11 of the touch display panel 10 become signals that are synchronously modulated by the modulation signal MGND. Thereby, the drive chip 20 can simultaneously drive the common electrode 101 to perform touch sensing in any process of driving the touch display panel 10 to perform normal image display.
  • the scan driving circuit 28 supplies the first scan enable signal Vg1 to a scan line 281
  • the common voltage generating circuit 22 provides the first common voltage Vc1 to perform image display on the partial common electrode 101.
  • the touch driving circuit 23 supplies the first common voltage Vc1 to perform image display and self-capacitance touch sensing to the remaining common electrodes 101.
  • the touch display device 1 of the present application synchronously modulates the input signal of the touch display panel 10 by using the modulation signal MGND, compared to the touch display device of the Incell type that performs touch sensing with the existing multiplexing common electrode, thereby
  • the signal for driving the common electrode 101 to perform image display can be further used as a touch driving signal. Therefore, when the driving chip 20 supplies the first scan-on signal Vg1 to the scan line 281, the common electrode 101 can also be executed.
  • Capacitive touch sensing correspondingly, the touch display device 1 is not necessarily limited to driving the common electrode 101 to perform touch sensing in the line gap I, the frame gap, and thus, there is no touch feeling for the display device with improved display resolution. A technical problem that is not enough time to measure.
  • the touch display device 1 performs touch sensing in any process of displaying an image, and has no influence or influence on normal display of the image.
  • the first common voltage Vc1 outputted by the driving chip 20 to the plurality of common electrodes 101 are the same, and the first common voltage Vc1 is a changed signal compared to the ground signal GND, and thus, The first common voltage Vc1 may be further used as a touch driving signal, and accordingly, the driving chip 20 may further drive the common electrode 101 to perform self-capacitance touch sensing while driving the common electrode 101 to perform normal image display.
  • the scan signal generating circuit 28a outputs the second scan enable signal Vg3 and the second scan cutoff signal Vg4 to the scan driving circuit 28, and the scan driving circuit 28 is in the control circuit.
  • the second scan enable signal Vg3 is outputted to the corresponding scan line 281, and the data drive circuit 29 outputs the second gray scale voltage Vd2 to the plurality of data lines 291.
  • the common voltage generating circuit 22 supplies a second common voltage Vc2 to the plurality of common electrodes 101. Thereby, the touch display panel 10 is driven to perform image display.
  • the second common voltage Vc2 generally selects a constant voltage signal that is constant with respect to the ground signal GND, for example, (-1)V.
  • the modulation signal MGND is, for example, a periodically varying signal
  • the frequency is, for example, 200 kHz and the amplitude is 0.2 V
  • the first reference signal of the modulation signal MGND is 0 V
  • the second reference signal is 0.2 V.
  • the first common voltage Vc1 is a signal in which a voltage signal of (-1) V and a voltage signal of (-0.8) V are alternately output.
  • the modulation circuit 21 outputs the modulation signal MGND to the touch drive circuit 23, and the modulation circuit 21 outputs the modulation signal MGND to other circuits having the ground terminal in the field 90, such as a common voltage generation circuit. 22. Scanning signal generating circuit 28a and the like. However, those skilled in the art can clearly know from the above description that the modulating circuit 21 has an output modulated signal MGND to other circuits in the field 90 having a ground terminal.
  • the driver chip 20 may also not drive all of the common electrodes 101 to perform self-capacitance touch sensing.
  • the scan driving circuit 28 is formed on the touch display panel 10 by, for example, GIP (Gate In Panel) technology, and is not integrated in the driving chip 20.
  • GIP Gate In Panel
  • the data selection circuit 24 can also be formed on the touch display panel 10, such as by GIP technology, rather than being integrated into the driver chip 20.
  • FIG. 6 is an exploded perspective view of an embodiment of the touch display panel 10 of FIG.
  • FIG. 7 is a cross-sectional structural view of the touch display panel 10 of FIG. 6.
  • the touch display panel 10 includes a A substrate 106, a second substrate 107, and a display medium layer 108.
  • the display medium layer 108 is a liquid crystal layer in this embodiment, but may be modified, and in other embodiments, may correspond to other display media.
  • the pixel electrode 103 of the plurality of pixel points 11 and the control switch 105, the plurality of scanning lines 281, and the plurality of data lines 291 are all disposed on the second substrate 107.
  • the display medium layer 108 and the plurality of common electrodes 101 are disposed between the first substrate 106 and the second substrate 107.
  • the first substrate 106 and the second substrate 107 are, for example, transparent insulating substrates.
  • the transparent insulating substrate is, for example, a glass substrate, a film substrate, or the like.
  • the second substrate 107, and the pixel electrode 103 disposed on the second substrate 107, the control switch 105, the plurality of scan lines 281, and the plurality of data lines 291 are generally collectively referred to as an Array substrate.
  • a color filter (not shown) is disposed on the first substrate 106 to implement color image display.
  • the first substrate 106 and the color filter are generally collectively referred to as a color filter (CF) substrate.
  • One side of the first substrate 106 facing away from the second substrate 107 is used for image display and receiving touch sensing.
  • the color filter may also be placed on the second substrate 107.
  • the color filters may also be omitted, and alternatively, light sources of three colors of red, green, and blue may be used for illumination.
  • the side of the second substrate 107 facing away from the first substrate 106 can also be used for image display and receiving touch sensing.
  • the touch display panel 10 is again a double-sided touch display panel. The present invention does not impose any specific limitation on whether the touch display panel 10 is a single-sided touch display panel or a double-sided touch display panel.
  • the plurality of common electrodes 101 are disposed between the display medium layer 108 and the second substrate 107.
  • the plurality of common electrodes 101 are located between the display medium layer 108 and the plurality of pixel electrodes 103.
  • the plurality of common electrodes 101 are located in the same layer, and the plurality of pixel electrodes 103 are located on the same layer, and the two are stacked.
  • the touch display device 1 is an example of a liquid crystal display device
  • the liquid crystal display device is a liquid crystal display device of a Fringe Field Switching (FFS).
  • the plurality of common electrodes 101 are respectively provided with slits 101a. Thereby, a fringe electric field is formed with the pixel electrode 103.
  • the plurality of pixel electrodes 103 may not be provided with slits, and each is a whole piece of electrodes. However, the plurality of pixel electrodes 103 may be provided with slits to improve the edge. Electric field strength.
  • FIG. 8 is a cross-sectional structural diagram of another embodiment of the touch display panel 10 shown in FIG. 5.
  • FIG. 9 is a top plan view of the touch display panel 10 of FIG. 8.
  • the plurality of common electrodes 101 may also be disposed between the pixel electrode 103 and the second substrate 107.
  • the plurality of common electrodes 101 and the plurality of pixel electrodes 103 are stacked one on another.
  • the plurality of pixel electrodes 103 are respectively provided with slits 103a to form a fringe electric field with the common electrode 101.
  • the plurality of common electrodes 101 may not be provided with slits, each of which is a whole piece of electrodes. However, the plurality of common electrodes 101 may be provided with slits to improve the edges. Electric field strength.
  • the touch display panel 10 may be an In-Plane Switching (IPS) liquid crystal display panel, or the touch display panel 10 may be a twisted nematic type (Twisted Nematic, TN) LCD
  • IPS In-Plane Switching
  • TN twisted nematic type
  • the electric field formed between the pixel electrode 103 and the common electrode 101 is a parallel electric field.
  • the electronic device 100 further includes the main control chip 3.
  • the main control chip 3 is connected to the touch display device 1.
  • the main control chip 3 is used for data communication with the touch display device 1.
  • the main control chip 3 is further used to supply a power supply voltage to the touch display device 1.
  • the main control chip 3 can be a single chip or a chipset.
  • the chipset includes an application processor (AP) and a power chip.
  • the chipset may further include a memory chip.
  • the application processor may also be a central processing unit (CPU).
  • the main control chip 3 includes a power supply terminal 31 and a ground terminal 33.
  • the power supply terminal 31 is connected to the driving chip 20 for supplying power to the driving chip 20.
  • the ground terminal 33 is connected to the device ground and receives the ground signal GND of the device ground. In the first period W1 and the second period W2, the main control chip 3 is based on the ground signal GND as a voltage reference.
  • the main control chip 3 supplies display data and associated control signals to the display drive circuit 20a, for example.
  • the display driving circuit 20a correspondingly drives the touch display panel 10 to perform corresponding image display according to the signal provided by the main control chip 3.
  • the main control chip 3 further supplies, for example, a power supply voltage signal (VDD1, VDD2) to circuits such as the touch drive circuit 23 and the common voltage generation circuit 22.
  • the touch drive circuit 23 provides a touch drive signal to the common electrode 101 to perform touch sensing
  • the master control chip 3 receives a signal output from the signal processing circuit 26, corresponding to whether the control electronic device 100 performs a corresponding function.
  • the main control chip 3 controls the data selection circuit 24 by controlling the control circuit 25 to control the timing at which the driving chip 20 drives the common electrode 101 to perform touch sensing, for example, by providing a control signal to the control circuit 25.
  • the circuit such as the display driving circuit 20a and the touch driving circuit 23 is located in the domain 90. Therefore, the master located in the domain 80
  • the signal transmission between the chip 3 and the circuits such as the display driving circuit 20a and the touch driving circuit 23 in the field 90 is subjected to, for example, level shift processing to satisfy the withstand voltage requirement of the electronic component.
  • level conversion processing is performed if the level is not required. In the conversion processing, the level conversion processing is not performed.
  • FIG. 10 is a structural block diagram of an embodiment of the signal processing circuit 26 shown in FIG.
  • FIG. 11 is a schematic structural diagram of an embodiment of a signal processing unit 261 of the signal processing circuit 26 shown in FIG.
  • the signal processing circuit 26 includes a plurality of signal processing units 261. Each of the signal processing units 261 is connected to an operational amplifier 231 for processing and calculating the sensing signals output from the operational amplifier 231 to obtain touch information.
  • the signal processing unit 261 includes an analog-digital signal conversion unit 263 and a calculation unit 265.
  • the analog-digital signal conversion unit 263 performs analog-to-digital conversion on the signal output from the second output terminal g2 of the operational amplifier 231, and outputs the converted digital signal to the calculation unit 265.
  • the calculating unit 265 is based on the digital signal Calculate the touch coordinates.
  • the computing unit 265 is connected to the main control chip 3 for outputting a signal indicating touch coordinates to the main control chip 3.
  • the main control chip 3 controls the electronic device 100 to perform a corresponding function according to the signal indicating the touch coordinates.
  • the configuration of the signal processing circuit 26 is not limited to the configuration shown in FIG. 10.
  • the plurality of operational amplifiers 231 may share a signal processing unit 261 instead of each of the operational amplifiers 231.
  • a signal processing unit 261 is connected.
  • a filtering unit is further included between the analog-digital signal converting unit 263 and the second output terminal g2, and the filtering unit performs filtering processing on the signal outputted by the second output terminal g2, and then outputs the filtered signal to Analog-to-digital signal conversion unit 263.
  • the driving chip 20 may further include a level converting unit 264.
  • the level shifting unit 264 spans two domains 80,90.
  • the calculation unit 265 connects the main control chip 3 through the level conversion unit 264.
  • the level converting unit 264 is configured to level-convert the signal indicating the touch coordinates output by the calculating unit 265, and then output the level-converted signal to the main control chip 3.
  • the touch display panel 10 may further include a ground element, such as a ground line L1.
  • the ground line L1 is disposed, for example, around the plurality of pixel points 11.
  • the grounding element is not limited to the ground line L1.
  • the scan driving circuit 28 can be integrated, for example, on the touch display panel 10 (Gate In Panel, GIP). Accordingly, the ground element can also be a ground element in the scan driving circuit 28.
  • the ground line L1 may also be omitted in other embodiments.
  • the driving chip 20 may further include a first ground end 201 and a second ground end 203.
  • the modulation circuit 21 is connected between the first ground end 201 and the second ground end 203.
  • the first ground end 201 is connected to the ground element on the touch display panel 10.
  • the first ground end 201 is connected to the ground line L1.
  • the second ground end 203 is connected to the device ground and receives the ground signal GND.
  • the modulation circuit 21 outputs the modulation signal MGND to the touch display panel 10 through the first ground terminal 201; in the second time period W2, the modulation circuit 21 passes the first ground
  • the terminal 201 outputs the ground signal GND to the touch display panel 10.
  • each circuit located in the field 90 is connected between the modulation circuit 21 and the first ground terminal 201, and the ground terminal of each circuit located in the domain 80 is connected to the modulation circuit 21, for example. Between the second ground ends 203.
  • the driving chip 20 may further include, for example, a slope controller 204 coupled to the modulation circuit 21 for controlling a slope of a modulation signal output by the modulation circuit 21 to reduce electromagnetic interference (EMI).
  • a slope controller 204 coupled to the modulation circuit 21 for controlling a slope of a modulation signal output by the modulation circuit 21 to reduce electromagnetic interference (EMI).
  • EMI electromagnetic interference
  • the slope controller 204 is disposed, for example, in a domain 80 referenced to GND. However, in other embodiments, the slope controller 204 can also be omitted.
  • the driver chip 20 may further include a display processing circuit 205.
  • the display processing circuit 205 is connected between the main control chip 3 and the level conversion unit 264.
  • the level converting unit 264 is further connected to the control circuit 25.
  • the display processing circuit 205 is configured to perform corresponding processing (eg, storage, decompression, color adjustment, etc.) on the display data from the main control chip 3.
  • the level converting unit 264 is disposed between the display processing circuit 205 and the control circuit 25 for level-converting the display data processed by the display processing circuit 205, and outputting the level-converted display data.
  • the control circuit 25 is given.
  • the control circuit 25 outputs corresponding display data and timing signals to the display driving circuit 20a.
  • the display driving circuit 20a converts the received display data into a gray scale voltage, and outputs a first gray scale voltage Vd1 to the corresponding pixel electrode 103 to perform image display refresh in the first period W1 according to the timing signal, in the second period W2 outputs the second gray scale voltage Vd2 to perform image display refresh on the corresponding pixel electrode 103.
  • the display data is preferably a digital signal.
  • the display processing circuit 205 and the control circuit 25 when the modulation ground scheme is not adopted, if the signal between the display processing circuit 205 and the control circuit 25 does not need level conversion, the display processing circuit 205 and the control circuit are The signal between 25 may not be level-converted, but in the first period W1, a modulation scheme is employed, since the domain 80 is different from the voltage reference of the domain 90, level conversion is required.
  • each of the circuit modules or circuit units in the drive chip 20 in the two domains 80, 90 is: display drive circuit 20a, touch drive circuit 23, signal processing circuit 26, data selection circuit 24, And the control circuit 25 are both divided into the domain 90 with reference to MGND.
  • the touch display panel 10 is also divided into the domain 90; the modulation circuit 21, the display processing circuit 205, the voltage generating circuit 27, and the slope controller 204 are all divided.
  • level shifting unit 264 spans two domains, i.e., a portion is in domain 80 and a portion is in domain 90, as is known to those of ordinary skill in the art in view of the present application and The circuit principle is that the level conversion unit 264 can be determined to be located in the domain 80 and the domain 90, respectively, and details are not described herein.
  • the partitioning manner of the driving chip 20 in the two domains 80 and 90 may be other suitable conditions, and is not limited to the partitioning described in the above embodiment.
  • the signal output from the domain 80 to the domain 90 is modulated by the modulation signal MGND, and correspondingly, the signal output from the domain 90 to the domain 80 is also modulated accordingly, for example, the modulation opposite to the modulation signal MGND. Wait.
  • the amplitude of the modulation signal MGND is changed to about 0.2V, so as not to affect the normal operation of the level conversion unit 264, the level of the signal according to the incoming chip 3 and the device type of the level conversion unit 264 are required. Changed.
  • Level shifting, or the level shifting unit 264 may be set, for example, only in the field 80 to level shift the signal output from the signal processing circuit 26.
  • the driving chip 20 supplies the display driving signal for performing image display to the common electrode 101, that is, a common voltage, such as The second common voltage Vc2, after being modulated by the modulation signal MGND, can be simultaneously applied to the driving common electrode 101 to perform touch sensing, thereby further driving the common electrode 101 while ensuring that the touch display panel 10 performs normal image display.
  • the touch sensing is performed, and the signal-to-noise ratio of the touch display device 1 can also be improved, thereby improving the touch sensing accuracy.
  • the electronic device 100 may further include a protection circuit 15 disposed between the domain 80 and the domain 90.
  • the driving chip 20 further includes a first power terminal 206 and a second power terminal 207.
  • the first power terminal 206 is located in the domain 90.
  • the second power terminal 207 is connected to the power supply terminal 31 of the main control chip 3.
  • the main control chip 3 outputs a power voltage to the second power terminal 207 through the power supply terminal 31.
  • the protection circuit 15 is connected between the second power terminal 207 and the first power terminal 206.
  • the protection circuit 15 When the modulation signal MGND is a driving signal (ie, a second reference signal), the protection circuit 15 correspondingly disconnects the connection between the first power terminal 206 and the second power terminal 207; When the modulation signal MGND is the ground signal GND (ie, the first reference signal), the protection circuit 15 correspondingly closes the connection between the first power terminal 206 and the second power terminal 207.
  • the protection circuit 15 may be integrated in the driving chip 20 or may be disposed outside the driving chip 20.
  • FIG. 13 is a schematic diagram showing the circuit structure of an embodiment of the protection circuit 15.
  • the protection circuit 15 includes a diode J1.
  • the anode of the diode J1 is connected to the second power terminal 207, and the cathode of the diode J1 is connected to the first power terminal 206.
  • the protection circuit 15 further includes a first capacitor Q1 and a second capacitor Q2.
  • the first capacitor Q1 is connected between the anode of the diode J1 and the device ground loaded with the ground signal GND
  • the second capacitor Q2 is connected to the cathode of the diode J1 and the modulation loaded with the modulation signal MGND. Between the ground.
  • the first capacitor Q1 and the diode J1 are disposed in the domain 80, and the second capacitor Q2 is disposed in the domain 90.
  • the protection circuit 15 is not limited to the above embodiments.
  • FIG. 14 is a schematic diagram of a circuit structure of another embodiment of the protection circuit 15.
  • the protection capacitor 15a includes a third active switch 151 and a control unit 153.
  • Place The third active switch 151 includes a control terminal K3, a first transmission terminal T5, and a second transmission terminal T6.
  • the control terminal K3 of the third active switch 151 is connected to the control unit 153, the first transmission terminal T5 is connected to the second power terminal 207, and the second transmission terminal T6 is connected to the first power terminal 206. .
  • the third active switch 151 is a thin film transistor, a triode, or a metal oxide semiconductor field effect transistor.
  • the protection circuit 15a further includes a first capacitor Q1 and a second capacitor Q2.
  • the first capacitor Q1 is connected between the first transmission terminal T5 and the device ground loaded with the ground signal GND
  • the second capacitor Q2 is connected between the second transmission terminal T6 and the modulation ground loaded with the modulation signal MGND.
  • the modulation circuit 21 can also modulate all the signals of the touch display panel 10 by modulating the power supply or the reference power in the driving chip 20, without limitation. Modulate the equipment ground.
  • the modulation terminal M of the modulation circuit 21 can be connected or used as the aforementioned first power terminal 206 (when modulating the power supply), in addition to being connectable or used as the aforementioned first ground terminal 201 (when modulating the ground) ).
  • the modulation circuit 21 is connected between the first power terminal 206 and the second power terminal 207 when connected or used as the first power terminal 206.
  • the first power terminal 206 is also referred to as a power supply terminal with respect to the first ground terminal 201, and the voltages applied by the two are kept constant.
  • the driving chip 20 generally includes a reference power terminal (not shown), when the first power terminal 206 is used to load the first power voltage, When a ground terminal 201 is used to load a second power voltage, the reference power terminal is used to load a third power voltage, and the height of the third power voltage is between the first power voltage and the second power voltage. Meanwhile, the voltage difference between the first power voltage and the second power voltage is kept constant, and the voltage difference between the first power voltage and the third power voltage is kept constant.
  • the reference power supply terminal can also be used or connected to the modulation terminal. That is, one of the power supply terminal, the reference power terminal, and the first ground terminal is used as or connected to the modulation terminal, and correspondingly, the power supply voltage used as or connected to the modulation terminal includes a modulation signal.
  • the modulation terminal M is loaded with a constant voltage
  • the driving chip 20 supplies the second gray scale voltage Vd2 to the pixel electrode 103, provides the second common voltage Vc2 to the common electrode 101, and drives the Touching the display panel 10 to perform image display
  • the modulation terminal M loads a modulation signal
  • the driving chip 20 supplies the first gray scale voltage Vd1 to the pixel electrode 103, and supplies the first common voltage Vc1 to the common electrode 101.
  • the common electrode 101 is further driven to perform self-capacitance touch sensing.
  • FIG. 15 is a schematic structural diagram of an embodiment of the display processing circuit 205.
  • the display processing circuit 205 includes, for example, a storage circuit 2051, a decompression circuit 2053, and a color adjustment circuit 2055.
  • the deposit The storage circuit 2051, the decompression circuit 2053, and the color adjustment circuit 2055 are sequentially connected.
  • the storage circuit 2051 is further connected to the main control chip 3.
  • the color adjustment circuit 2055 is further connected to the control circuit 25 by a level conversion unit 264.
  • the storage circuit 2051 is configured to receive display data from the main control chip 3 and store the received display data.
  • the decompression circuit 2053 is configured to decompress display data from the main control chip 3, and output the compressed display data to the color adjustment circuit 2055.
  • the color adjustment circuit 2055 performs color adjustment on the received display data, for example, performs color enhancement processing or the like on the display data, and outputs the adjusted display data to the level conversion unit 264.
  • the level converting unit 264 level-converts the received display data, and outputs the level-converted display data to the control circuit 25.
  • the control circuit 25 outputs corresponding display data and timing signals to the data driving circuit 29, and further outputs timing signals to the scan driving circuit 28.
  • the scan driving circuit 28 correspondingly outputs a corresponding scan enable signal to the scan line 281 according to the timing signal.
  • the data driving circuit 29 converts the received display data into a gray scale voltage, and outputs a corresponding gray scale voltage to the corresponding data line 291 according to the timing signal to perform image display refresh.
  • the display processing circuit 205 is not limited to the circuits included herein, and some of the circuits may be omitted or further include other circuits.
  • the modulation circuit 21, the display processing circuit 205, the touch driving circuit 23, the display driving circuit 20a, the control circuit 25, and the level converting unit 264 are all integrated in the single driving chip 20, the single chip The chip saves space compared to a plurality of chips, and therefore, the touch display device 1 occupies less space in the electronic device 100.
  • a single chip is more advantageous for assembly and production management of the touch display device 1 than a plurality of chips, thereby improving production efficiency, thereby reducing the manufacturing cost of the electronic device 100.
  • the present application can also perform touch sensing by additionally providing a layer of touch sensing electrodes, and these embodiments are also possible.

Abstract

A driving chip (20), a touch display apparatus (1), and an electronic device (100). The driving chip (20) is used for driving multiple common electrodes (101) of a touch display panel (10) to execute image display, and is also used for intermittently driving the multiple common electrodes (101) to execute touch sensing. A time period in which there is a common electrode (101) to execute touch sensing is defined as a first time period (W1), and a time period in which none of the multiple common electrodes (101) executes touch sensing is defined as a second time period (W2). The driving chip (20) comprises: a first ground terminal (201); a modulation circuit (21) for generating a modulation signal to the first ground terminal (201) within the first time period (W1), and generating a constant voltage signal to the first ground terminal (201) within the second time period (W2); a touch driving circuit (28) for driving the same common electrode (101) to simultaneously execute image display and self-capacitive touch sensing within the first time period (W1); and a common voltage generation circuit for driving the multiple common electrodes (101) to execute image display within the second time period (W2). The touch display apparatus (1) comprises the driving chip (20). The electronic device (100) comprises the touch display apparatus (1).

Description

驱动芯片、触摸显示装置、以及电子设备Driver chip, touch display device, and electronic device 技术领域Technical field
本实用新型涉及集成电路技术领域,尤其涉及一种用于驱动触摸显示面板执行图像显示与触摸感测的驱动芯片。The utility model relates to the field of integrated circuit technology, in particular to a driving chip for driving a touch display panel to perform image display and touch sensing.
背景技术Background technique
对于触摸显示装置,尤其是复用公共电极执行触摸感测的触摸显示装置,为了减少触摸感测与图像显示刷新之间的干扰,厂商通常采用的做法是:控制触摸显示面板分时执行触摸感测与图像显示刷新。如,在一具体实施方式中,在图像显示的行间隙或帧间隙期间,驱动触摸显示面板的执行触摸感测。For touch display devices, especially touch display devices that perform touch sensing by multiplexing common electrodes, in order to reduce interference between touch sensing and image display refresh, manufacturers generally adopt a method of controlling touch display panel to perform touch sense in a time-sharing manner. The measurement and image display refresh. For example, in one embodiment, the touch sensing of the touch display panel is driven during a line gap or frame gap of the image display.
然,随着所述触摸显示面板的分辨率的逐渐提高,例如,手机的液晶显示面板的分辨率都逐渐采用2K(如,2560x1440)分辨率、甚至更高的分辨率,显示刷新频率一般采用60HZ,所述行间隙、帧间隙则会被明显压缩,如果再采用仅在行间隙、帧间隙驱动触摸感测电极执行触摸感测,则会因时间明显不够而导致触摸感测不能充分进行的问题。当触摸显示装置的刷新频率提高至120HZ时,可用于触摸感测的时间就更少。However, as the resolution of the touch display panel is gradually increased, for example, the resolution of the liquid crystal display panel of the mobile phone gradually adopts a resolution of 2K (eg, 2560×1440), or even higher resolution, and the display refresh frequency is generally adopted. 60HZ, the line gap and the frame gap are obviously compressed. If the touch sensing is performed by driving the touch sensing electrodes only in the line gap or the frame gap, the touch sensing may not be fully performed due to the obvious time. problem. When the refresh rate of the touch display device is increased to 120 Hz, less time is available for touch sensing.
实用新型内容Utility model content
本实用新型旨在至少解决现有技术中存在的技术问题之一。为此,本实用新型需要提供一种能驱动触摸显示面板同时执行图像显示与触摸感测的驱动芯片、触摸显示装置、以及电子设备。The present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention needs to provide a driving chip, a touch display device, and an electronic device capable of driving a touch display panel while performing image display and touch sensing.
本实用新型提供一种驱动芯片,用于驱动一触摸显示面板执行图像显示与触摸感测,其中,所述触摸显示面板包括多个公共电极;所述驱动芯片用于驱动所述多个公共电极执行图像显示,还用于间歇性驱动所述多个公共电极执行触摸感测,定义存在公共电极执行触摸感测的时段为第一时段,定义所述多个公共电极均未执行触摸感测的时段为第二时段;所述驱动芯片包括:The present invention provides a driving chip for driving a touch display panel to perform image display and touch sensing, wherein the touch display panel includes a plurality of common electrodes; the driving chip is configured to drive the plurality of common electrodes Performing image display, further for intermittently driving the plurality of common electrodes to perform touch sensing, defining that a period in which the common electrode performs touch sensing is a first time period, and defining that the plurality of common electrodes are not performing touch sensing The time period is the second time period; the driving chip includes:
第一接地端,所述驱动芯片输出给所述触摸显示面板的电压信号均以所述第一接地端上的电压信号为基准;a first ground end, wherein a voltage signal output by the driving chip to the touch display panel is based on a voltage signal on the first ground end;
调制电路,用于在第一时段产生一调制信号给所述第一接地端,在第二时段产生一恒定电压信号给所述第一接地端;a modulation circuit, configured to generate a modulation signal to the first ground end during a first time period, and generate a constant voltage signal to the first ground end during a second time period;
触摸驱动电路,用于在第一时段驱动同一公共电极同时执行图像显示与自电容触摸感测; a touch driving circuit, configured to simultaneously perform image display and self-capacitive touch sensing while driving the same common electrode in a first time period;
公共电压产生电路,用于在第二时段驱动所述多个公共电极执行图像显示。And a common voltage generating circuit for driving the plurality of common electrodes to perform image display in a second period of time.
由于在第一时段,所述调制电路产生所述调制信号给所述第一接地端,所述触摸驱动电路能够在驱动公共电极执行触摸感测的同时,进一步驱动同一公共电极执行图像显示,从而不影响所述触摸显示面板正常的图像显示。因此,所述驱动芯片驱动公共电极执行触摸感测的时间并不局限在图像显示的行间隙、帧间隙,也可在图像显示刷新期间。相应地,即使当所述触摸显示面板的分辨率提高,所述驱动芯片用于驱动所述触摸显示面板执行触摸感测的时间也并不会缩短。从而,提高用户的使用体验。Since the modulation circuit generates the modulation signal to the first ground terminal during a first period of time, the touch driving circuit can further drive the same common electrode to perform image display while driving the common electrode to perform touch sensing, thereby The normal image display of the touch display panel is not affected. Therefore, the time during which the driving chip drives the common electrode to perform touch sensing is not limited to the line gap of the image display, the frame gap, or may be during the image display refresh period. Accordingly, even when the resolution of the touch display panel is increased, the time during which the driving chip is used to drive the touch display panel to perform touch sensing is not shortened. Thereby, the user experience is improved.
另外,所述调制电路和触摸驱动电路都位于同一所述驱动芯片中,而不是分别位于两颗芯片中,从而可以节省芯片与芯片之间连接的引脚,减小芯片所占电子设备的体积,另外,也利于生产管理,提高生产效率,进而降低产品生产成本。In addition, the modulation circuit and the touch driving circuit are all located in the same driving chip, instead of being respectively located in two chips, thereby saving the pin connecting between the chip and the chip, and reducing the volume of the electronic device occupied by the chip. In addition, it is also conducive to production management, improve production efficiency, and thus reduce product production costs.
可选地,在第一时段,通过所述调制信号同步调制所述驱动芯片给所述触摸显示面板的电压信号,所述驱动芯片在驱动所述触摸显示面板执行图像显示的同时,进一步驱动公共电极执行自电容触摸感测。Optionally, during the first time period, the voltage signal of the driving chip to the touch display panel is synchronously modulated by the modulation signal, and the driving chip further drives the public while driving the touch display panel to perform image display. The electrodes perform self-capacitive touch sensing.
可选地,所述触摸驱动电路用于分时驱动所述多个公共电极执行触摸感测,当所述触摸驱动电路与部分公共电极电连接时,所述公共电压产生电路与其余的公共电极电连接,所述触摸驱动电路提供给公共电极的触摸驱动信号与所述公共电压产生电路提供给公共电极的第一公共电压相同。Optionally, the touch driving circuit is configured to drive the plurality of common electrodes to perform touch sensing in a time division manner, and when the touch driving circuit is electrically connected to a part of the common electrode, the common voltage generating circuit and the remaining common electrode Electrically connected, the touch drive signal provided by the touch drive circuit to the common electrode is the same as the first common voltage supplied to the common electrode by the common voltage generating circuit.
可选地,对于同一公共电极,当所述触摸驱动电路提供所述触摸驱动信号给所述公共电极时,进一步接收来自所述公共电极输出的触摸感测信号。Optionally, for the same common electrode, when the touch drive circuit provides the touch drive signal to the common electrode, a touch sensing signal from the common electrode output is further received.
可选地,所述触摸驱动电路提供给公共电极的触摸驱动信号与所述公共电压产生电路提供给公共电极的第一公共电压均为同一电压信号经所述调制信号调制后的信号。Optionally, the touch driving circuit provided by the touch driving circuit to the common electrode and the first common voltage provided by the common voltage generating circuit to the common electrode are both signals modulated by the modulated signal.
可选地,所述触摸显示面板进一步包括多个像素电极,所述多个像素电极用于与所述多个公共电极之间形成边缘电场或平行电场;在第一时段,所述驱动芯片通过提供第一灰阶电压给所述多个像素电极,提供相同的第一公共电压和触摸驱动信号给所述多个公共电极来驱动所述触摸显示面板执行图像显示刷新的同时,进一步驱动公共电极执行自电容触摸感测,其中,所述第一灰阶电压、所述第一公共电压、所述触摸驱动信号均随所述调制信号的升高而升高、随所述调制信号的降低而降低。Optionally, the touch display panel further includes a plurality of pixel electrodes for forming a fringe electric field or a parallel electric field with the plurality of common electrodes; during the first time period, the driving chip passes Providing a first gray scale voltage to the plurality of pixel electrodes, providing the same first common voltage and a touch driving signal to the plurality of common electrodes to drive the touch display panel to perform image display refreshing, further driving the common electrode Performing self-capacitive touch sensing, wherein the first gray scale voltage, the first common voltage, and the touch drive signal both increase with an increase of the modulation signal, and decrease with the modulation signal reduce.
可选地,在同一时刻,所述驱动芯片提供给第一灰阶电压的像素电极与提供给触摸驱动信号的公共电极间隔至少一行公共电极。Optionally, at the same time, the pixel electrode provided by the driving chip to the first gray scale voltage is spaced apart from the common electrode provided to the touch driving signal by at least one row of the common electrode.
可选地,所述第一时段与所述第二时段交替进行。Optionally, the first time period and the second time period alternate.
可选地,所述恒定电压信号为接地信号。Optionally, the constant voltage signal is a ground signal.
可选地,所述驱动芯片进一步包括信号处理电路,所述信号处理电路连接所述触摸驱动电路,所述信号处理电路用于根据所述触摸驱动电路接收到的触摸感测信号获得触摸位 置信息。Optionally, the driving chip further includes a signal processing circuit, the signal processing circuit is connected to the touch driving circuit, and the signal processing circuit is configured to obtain a touch bit according to the touch sensing signal received by the touch driving circuit. Set the information.
可选地,所述信号处理电路上的电压信号以所述第一接地端上的电压信号为基准。Optionally, the voltage signal on the signal processing circuit is referenced to a voltage signal on the first ground.
可选地,所述公共电压产生电路和所述触摸驱动电路通过一数据选择电路可选择性连接所述多个公共电极。Optionally, the common voltage generating circuit and the touch driving circuit are selectively connectable to the plurality of common electrodes by a data selecting circuit.
可选地,所述驱动芯片包括所述数据选择电路。Optionally, the driver chip comprises the data selection circuit.
可选地,所述数据选择电路包括一第一数据选择器和多个第二数据选择器,其中,所述第一数据选择连接所述公共电压产生电路,并进一步用于与所述多个公共电极连接;所述多个第二数据选择器与所述触摸驱动电路连接,且每一第二数据选择器分别用于连接部分公共电极。Optionally, the data selection circuit includes a first data selector and a plurality of second data selectors, wherein the first data is selected to be connected to the common voltage generating circuit, and further used to a common electrode connection; the plurality of second data selectors are coupled to the touch drive circuit, and each of the second data selectors is configured to connect a portion of the common electrode.
可选地,所述驱动芯片进一步包括第二接地端,所述第二接地端用于连接设备地,接收一接地信号;所述调制电路连接在所述第一接地端和所述第二接地端之间,用于根据所述接地信号和一驱动信号产生所述调制信号。Optionally, the driving chip further includes a second ground end, wherein the second ground end is used to connect to the device ground, and receives a ground signal; the modulation circuit is connected to the first ground end and the second ground Between the ends, the modulation signal is generated according to the ground signal and a driving signal.
可选地,所述驱动信号的电平高于所述接地信号的电平。Optionally, the level of the drive signal is higher than the level of the ground signal.
可选地,所述驱动芯片进一步包括显示驱动电路、显示处理电路、和电平转换单元,所述显示处理电路用于接收来自一主控芯片的显示数据,对所述显示数据进行存储、解压缩、和色彩调整,并输出调整后的显示数据给所述电平转换单元进行转换,所述电平转换单元对所述显示数据进行电平转换,并输出转换后的显示数据给所述显示驱动电路,所述显示驱动电路根据接收到显示数据对应产生相应的灰阶电压给所述多个像素电极。Optionally, the driving chip further includes a display driving circuit, a display processing circuit, and a level converting unit, wherein the display processing circuit is configured to receive display data from a main control chip, and store and solve the display data. Compressing, and color-adjusting, and outputting the adjusted display data to the level converting unit for converting, the level converting unit level-converting the display data, and outputting the converted display data to the display a driving circuit, wherein the display driving circuit generates a corresponding gray scale voltage corresponding to the plurality of pixel electrodes according to the received display data.
可选地,所述显示驱动电路上的电压信号以所述第一接地端上的电压信号为基准,所述显示处理电路上的电压信号以所述第二接地端上的电压信号为基准。Optionally, the voltage signal on the display driving circuit is based on a voltage signal on the first ground, and the voltage signal on the display processing circuit is based on a voltage signal on the second ground.
可选地,所述调制信号包括第一参考信号和第二参考信号,所述第一参考信号的电平低于所述第二参考信号的电平,其中,所述第一参考信号的持续时间大于或等于所述第二参考信号的持续时间。Optionally, the modulation signal includes a first reference signal and a second reference signal, the level of the first reference signal being lower than a level of the second reference signal, wherein the first reference signal continues The time is greater than or equal to the duration of the second reference signal.
可选地,所述第一参考信号的持续时间是所述第二参考信号的持续时间的两倍。Optionally, the duration of the first reference signal is twice the duration of the second reference signal.
可选地,所述调制信号为周期性变化的方波信号。Optionally, the modulated signal is a periodically varying square wave signal.
本实用新型还提供一种触摸显示装置,包括触摸显示面板和驱动芯片,所述驱动芯片用于驱动所述触摸显示面板执行图像显示和触摸感测,其中,所述驱动芯片为上述中任意一项所述的驱动芯片。The present invention further provides a touch display device including a touch display panel and a driving chip, wherein the driving chip is configured to drive the touch display panel to perform image display and touch sensing, wherein the driving chip is any one of the above The driver chip described in the item.
本实用新型还提供一种电子设备,包括上述的触摸显示装置。The present invention also provides an electronic device comprising the above touch display device.
附图说明DRAWINGS
图1为本申请电子设备的结构示意简图。 FIG. 1 is a schematic diagram showing the structure of an electronic device of the present application.
图2为图1所示电子设备的部分信号的一实施方式的波形示意图。2 is a waveform diagram of an embodiment of a partial signal of the electronic device shown in FIG. 1.
图3为图1所示电子设备的一实施方式的电路结构示意图。FIG. 3 is a schematic diagram showing the circuit structure of an embodiment of the electronic device shown in FIG. 1. FIG.
图4为图3所示调制电路的一实施方式的电路结构示意图。4 is a schematic diagram showing the circuit structure of an embodiment of the modulation circuit shown in FIG.
图5为图1所示电子设备的一具体实施方式的电路结构示意图。FIG. 5 is a schematic circuit diagram of a specific embodiment of the electronic device shown in FIG. 1. FIG.
图6为图5所示触摸显示面板的一实施方式的分解结构示意图。FIG. 6 is an exploded perspective view of an embodiment of the touch display panel of FIG. 5. FIG.
图7为图6所示触摸显示面板的剖面结构示意图。7 is a cross-sectional structural view of the touch display panel shown in FIG. 6.
图8为图5所示触摸显示面板的另一实施方式的剖面结构示意图。FIG. 8 is a cross-sectional structural view showing another embodiment of the touch display panel shown in FIG. 5. FIG.
图9为图8所示触摸显示面板的俯视示意图。9 is a top plan view of the touch display panel of FIG. 8.
图10为图3所示信号处理电路的一实施方式的结构框图。Figure 10 is a block diagram showing the structure of an embodiment of the signal processing circuit shown in Figure 3.
图11为图10所示信号处理电路的一信号处理单元的一实施方式的结构示意图。11 is a block diagram showing an embodiment of a signal processing unit of the signal processing circuit shown in FIG.
图12为本申请电子设备的又一实施方式的结构示意图。FIG. 12 is a schematic structural diagram of still another embodiment of an electronic device according to the present application.
图13为图12所示保护电路的一实施方式的电路结构示意图。FIG. 13 is a schematic diagram showing the circuit structure of an embodiment of the protection circuit shown in FIG.
图14为保护电路的另一实施方式的电路结构示意图。14 is a schematic diagram showing the circuit structure of another embodiment of a protection circuit.
图15为图12所示显示处理电路的一实施方式的示意图。Figure 15 is a schematic diagram of an embodiment of the display processing circuit of Figure 12;
具体实施方式Detailed ways
为使本实用新型的上述目的、特征和优点能够更为明显易懂,下面结合附图对本实用新型的具体实施例做详细的说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本实用新型将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。为了方便或清楚,可能夸大、省略或示意地示出在附图中所示的每层的厚度和大小、以及示意地示出相关元件的数量。另外,元件的大小不完全反映实际大小,以及相关元件的数量不完全反映实际数量。因为附图大小不同等原因,在不同的附图中所示的相同或相似或相关元件的数量存在并不一致的情况。在图中相同的附图标记表示相同或类似的结构。然,需要说明的是,为了使得标号具有规律性以及逻辑性等,在某些不同实施例中,相同或类似的元件或结构采用了不同的附图标记,根据技术的关联性以及相关文字说明,本领域的技术人员是可直接或间接判断得知。The above described objects, features and advantages of the present invention will become more apparent from the aspects of the invention. However, the example embodiments can be embodied in a variety of forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this invention will be It is communicated to those skilled in the art. The thickness and size of each layer shown in the drawings may be exaggerated, omitted or schematically shown, and the number of related elements may be schematically illustrated for convenience or clarity. In addition, the size of the component does not fully reflect the actual size, and the number of related components does not fully reflect the actual number. The number of identical or similar or related elements shown in different figures may be inconsistent because of the different size of the drawings and the like. The same reference numerals in the drawings denote the same or similar structures. It should be noted that, in order to make the labels have regularity and logic, etc., in some different embodiments, the same or similar elements or structures adopt different reference numerals, according to the technical relevance and related text description. Those skilled in the art can directly or indirectly determine the knowledge.
此外,所描述的特征、结构可以以任何合适的方式结合在一个或更多个实施方式中。在下面的描述中,提供许多具体细节从而给出对本实用新型的实施方式的充分理解。然而,本领域技术人员应意识到,没有所述特定细节中的一个或更多,或者采用其它的结构、组元等,也可以实践本实用新型的技术方案。在其它情况下,不详细示出或描述公知结构或者操作以避免模糊本实用新型。 Furthermore, the described features, structures may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are set forth However, those skilled in the art will appreciate that the technical solution of the present invention may be practiced without one or more of the specific details or other structures, components, and the like. In other instances, well-known structures or operations are not shown or described in detail to avoid obscuring the invention.
进一步地,下列术语是示例性的,并非旨在以任何方式进行限制。在阅读本申请之后,本领域技术人员将认识到,这些术语表述适用于技术、方法、物理元件以及系统(无论目前是否知晓),包括阅读本申请之后本领域技术人员推断出或者可推断的其扩展。Further, the following terms are exemplary and are not intended to be limiting in any way. After reading this application, those skilled in the art will recognize that these terms are applied to techniques, methods, physical elements, and systems (whether or not currently known), including those inferred or inferred by those skilled in the art after reading this application. Expansion.
在本实用新型的描述中,需要理解的是:“多个”包括两个和两个以上,“多条”包括两条和两条以上,“多颗”包括两颗和两颗以上,“多行”包括两行和两行以上,“多列”包括两列和两列以上,除非本申请另有明确具体的限定。另外,各元件名称以及信号名称中出现的“第一”、“第二”、“第三”、“第四”等词语并不是限定元件或信号出现的先后顺序,而是为方便元件命名,清楚区分各元件,使得描述更简洁易懂。In the description of the present invention, it is to be understood that "a plurality" includes two or more, "multiple" includes two or more, and "multiple" includes two and two or more, " "Multiple rows" include two rows and two or more rows, and "multiple columns" includes two columns and two or more columns unless otherwise specifically defined by the present application. In addition, the words "first", "second", "third", "fourth" and the like appearing in each component name and signal name are not intended to limit the order in which the components or signals appear, but to facilitate the naming of the components. Clearly distinguish the components to make the description more concise and understandable.
为了避免理解混淆,需要进一步预先说明的有:In order to avoid confusion, some further explanations are needed:
对于一般的显示装置而言,显示装置通常包括显示面板和驱动电路。所述驱动电路用于驱动所述显示面板执行图像显示。所述显示面板通常包括多个像素点,每一像素点包括第一电极和第二电极。所述驱动电路通过给各像素点的第一电极提供相同的电压(例如为0伏),给各像素点的第二电极提供不同的电压,从而实现不同灰阶的图像显示。For a general display device, the display device typically includes a display panel and a drive circuit. The driving circuit is configured to drive the display panel to perform image display. The display panel typically includes a plurality of pixel points, each pixel point including a first electrode and a second electrode. The driving circuit provides different voltages to the second electrodes of the respective pixels by supplying the same voltage (for example, 0 volts) to the first electrodes of the respective pixel points, thereby realizing image display of different gray levels.
当所述显示装置为液晶显示装置时,所述第一电极通常被称为公共电极,所述第二电极通常被称为像素电极。所述驱动电路通过提供公共电压给第一电极、提供灰阶电压给第二电极来驱动液晶显示面板执行图像显示刷新。可变更地,所述显示装置也可为其它合适类型的显示装置,例如电子纸显示装置(EPD)、有机电致发光二极管显示装置(OLED)等。当显示装置为OLED时,第一电极也可被称为阴极,第二电极也可被称为阳极。When the display device is a liquid crystal display device, the first electrode is generally referred to as a common electrode, and the second electrode is generally referred to as a pixel electrode. The driving circuit drives the liquid crystal display panel to perform image display refresh by supplying a common voltage to the first electrode, supplying a gray scale voltage to the second electrode. Alternatively, the display device may be other suitable types of display devices, such as an electronic paper display device (EPD), an organic electroluminescent diode display device (OLED), and the like. When the display device is an OLED, the first electrode may also be referred to as a cathode and the second electrode may also be referred to as an anode.
对于每一像素点而言,其图像显示状态一般包括图像显示刷新状态和图像显示保持状态。以单一像素点为例,当所述驱动电路提供灰阶电压给第二电极、提供公共电压给第一电极时,所述像素点开始执行图像显示刷新,当所述灰阶电压写入至第二电极之后,停止提供灰阶电压给所述第二电极,图像显示刷新完成。之后,所述像素点进入图像显示保持状态,直至所述像素点下一次接收到灰阶电压。For each pixel, its image display state generally includes an image display refresh state and an image display hold state. Taking a single pixel as an example, when the driving circuit supplies a gray scale voltage to the second electrode and supplies a common voltage to the first electrode, the pixel starts to perform image display refresh, when the gray scale voltage is written to the first After the two electrodes, the supply of the gray scale voltage to the second electrode is stopped, and the image display refresh is completed. Thereafter, the pixel enters the image display hold state until the pixel point receives the gray scale voltage next time.
一般地,所述多个像素点例如呈行列式排布。所述驱动电路通常逐行驱动像素点执行图像显示刷新。Generally, the plurality of pixel points are arranged, for example, in a matrix. The drive circuit typically performs image display refreshes by driving pixel points row by row.
上面预先说明图像显示刷新与图像显示保持这两种不同的显示状态,是为更好地理解本申请下面所述的各实施方式做准备。The two different display states of the image display refresh and the image display are described above in advance, in order to better understand the various embodiments described below in the present application.
如前所述,第一电极、第二电极在不同类型的显示装置中的名称有所不同,对于适用本申请的各合适类型的显示装置,统一称第一电极为公共电极,统一称第二电极为像素电极。相应地,下述本申请的驱动芯片提供给公共电极的显示电压信号为公共电压,提供给像素电极的显示电压信号为灰阶电压。As described above, the names of the first electrode and the second electrode in different types of display devices are different. For each suitable type of display device to which the present application is applied, the first electrode is collectively referred to as a common electrode, and the second electrode is collectively referred to as a second. The electrode is a pixel electrode. Correspondingly, the display voltage signal supplied to the common electrode by the driving chip of the present application is a common voltage, and the display voltage signal supplied to the pixel electrode is a gray scale voltage.
触摸屏一般包括电阻式、电容式、红外线式等几种类型的触摸屏,其中,电容式触摸屏的应用更为广泛。电容式触摸屏又包括互电容式触摸屏和自电容式触摸屏。 Touch screens generally include resistive, capacitive, infrared, and other types of touch screens, of which capacitive touch screens are more widely used. The capacitive touch screen includes a mutual capacitive touch screen and a self-capacitive touch screen.
在基于互电容的触摸系统中,触摸屏可包括(例如)驱动区及感测区,诸如驱动线及感测线。在一实例情况中,驱动线可形成多行,而感测线可形成多列(例如,正交)。触摸像素可设置于行与列的交叉点处。在操作期间,可用交流信号(AC)波形来激励所述行,且互电容可形成于该触摸像素的行与列之间。在一目标物体接近该触摸像素时,耦合于该触摸像素的行与列之间的一些电荷可改为耦合至该物件上。耦合于该触摸像素上的电荷的此减少可导致行与列之间的互电容的净减少及耦合于该触摸像素上的AC波形的减少。电荷耦合AC波形的此减少可由触摸系统检测并测量以判定该目标物体在触摸该触摸屏时的位置。In a mutual capacitance based touch system, the touch screen may include, for example, a driving area and a sensing area such as a driving line and a sensing line. In an example case, the drive lines may form multiple rows, while the sense lines may form multiple columns (eg, orthogonal). Touch pixels can be placed at the intersection of rows and columns. During operation, the rows may be energized with an alternating current (AC) waveform, and mutual capacitance may be formed between the rows and columns of the touch pixels. As a target object approaches the touch pixel, some of the charge coupled between the rows and columns of the touch pixel can instead be coupled to the object. This reduction in charge coupled to the touch pixel can result in a net decrease in mutual capacitance between the rows and columns and a decrease in the AC waveform coupled to the touch pixel. This reduction in the charge coupled AC waveform can be detected and measured by the touch system to determine the location of the target object as it touches the touch screen.
相对地,在基于自电容的触摸系统中,每一触摸像素可由形成对地的自电容的个别电极形成。在一目标物体接近该触摸像素时,另一对地电容(capacitance to ground)可形成于该目标物体与该触摸像素之间。该另一对地电容可导致该触摸像素所经受的自电容的净增加。此自电容增加可由触摸系统检测并测量以判定该目标物体在触摸该触摸屏时的位置。In contrast, in a self-capacitance based touch system, each touch pixel can be formed by an individual electrode that forms a self-capacitance to ground. When a target object approaches the touch pixel, another capacitance to ground may be formed between the target object and the touch pixel. The other pair of ground capacitances can result in a net increase in self-capacitance experienced by the touch pixel. This self-capacitance increase can be detected and measured by the touch system to determine the location of the target object as it touches the touch screen.
下面,对本申请的各实施例进行说明。Hereinafter, each embodiment of the present application will be described.
请一并参阅图1和图2,图1为本申请电子设备一实施方式的结构示意图。图2为图1所示电子设备的部分信号的一实施方式的波形示意图。所述电子设备100如为可携式电子产品、智能家居电子产品、以及车载电子产品等各种合适类型的产品,本实用新型对此不作限制。所述可携式电子产品例如为手机、平板电脑、笔记本电脑、穿戴式设备等等。所述智能家居电子产品例如为台式电脑、冰箱、洗衣机、电视等等。所述车载电子产品例如为导航仪、车载DVD等等。所述电子设备100包括触摸显示装置1。所述触摸显示装置1用于实现图像显示与触摸感测。所述触摸显示装置1例如但不局限为In-Cell(盒内式或内嵌式)类型的触摸显示装置。所述触摸显示装置1例如为液晶显示装置。然,可变更地,所述触摸显示装置1也可为其它合适类型的显示装置,如,电子纸显示装置(EPD)、有机电致发光二极管显示装置(OLED)等等。Please refer to FIG. 1 and FIG. 2 together. FIG. 1 is a schematic structural diagram of an embodiment of an electronic device according to the present application. 2 is a waveform diagram of an embodiment of a partial signal of the electronic device shown in FIG. 1. The electronic device 100 is a variety of suitable types of products, such as a portable electronic product, a smart home electronic product, and an in-vehicle electronic product. The present invention does not limit this. The portable electronic product is, for example, a mobile phone, a tablet computer, a notebook computer, a wearable device, or the like. The smart home electronic products are, for example, desktop computers, refrigerators, washing machines, televisions, and the like. The in-vehicle electronic products are, for example, navigators, car DVDs, and the like. The electronic device 100 includes a touch display device 1. The touch display device 1 is used to implement image display and touch sensing. The touch display device 1 is, for example but not limited to, an In-Cell (in-box or in-line) type of touch display device. The touch display device 1 is, for example, a liquid crystal display device. However, the touch display device 1 can also be other suitable types of display devices, such as an electronic paper display device (EPD), an organic electroluminescent diode display device (OLED), and the like.
所述触摸显示装置1包括触摸显示面板10和驱动芯片20。所述驱动芯片20用于驱动所述触摸显示面板10执行图像显示与触摸感测。The touch display device 1 includes a touch display panel 10 and a driving chip 20. The driving chip 20 is configured to drive the touch display panel 10 to perform image display and touch sensing.
在一实施方式中,所述触摸显示面板10包括多个公共电极101。所述多个公共电极101用作显示电极和触摸感测电极。所述驱动芯片20和所述多个公共电极101分别连接,用于提供公共电压给所述多个公共电极101,以驱动所述多个公共电极101执行图像显示。所述驱动芯片20还用于提供触摸驱动信号给所述多个公共电极101,以驱动所述多个公共电极101执行触摸感测。较佳地,所述驱动芯片20用于驱动所述多个公共电极101执行自电容触摸感测。In an embodiment, the touch display panel 10 includes a plurality of common electrodes 101. The plurality of common electrodes 101 function as display electrodes and touch sensing electrodes. The driving chip 20 and the plurality of common electrodes 101 are respectively connected to provide a common voltage to the plurality of common electrodes 101 to drive the plurality of common electrodes 101 to perform image display. The driving chip 20 is further configured to provide a touch driving signal to the plurality of common electrodes 101 to drive the plurality of common electrodes 101 to perform touch sensing. Preferably, the driving chip 20 is configured to drive the plurality of common electrodes 101 to perform self-capacitive touch sensing.
所述多个公共电极101例如呈二维阵列排布,具体地,所述多个公共电极101沿X方向和Y方向呈多行多列排布,其中,所述X方向为行方向,所述Y方向为列方向。然,可变更地,在其它实施方式中,所述多个公共电极101也可呈其它规则或非规则方式排布, 本申请对此并不做限制。每一公共电极101的形状例如但不局限为矩形。The plurality of common electrodes 101 are arranged, for example, in a two-dimensional array. Specifically, the plurality of common electrodes 101 are arranged in a plurality of rows and columns in the X direction and the Y direction, wherein the X direction is a row direction. The Y direction is the column direction. However, in other embodiments, the plurality of common electrodes 101 may also be arranged in other regular or irregular manners. This application does not limit this. The shape of each common electrode 101 is, for example but not limited to, a rectangle.
所述驱动芯片20用于产生调制信号MGND,并通过利用所述调制信号MGND同步调制所述驱动芯片20输出给所述触摸显示面板10的所有电压信号,来实现在驱动所述触摸显示面板10执行正常图像显示的任意过程中,均可进一步驱动公共电极101执行自电容触摸感测。因此,即使当触摸显示面板10的显示分辨率提高,也并不会缩短触摸感测的时间,进而打破显示分辨率增加所带来的触摸感测时间不够的技术瓶颈。相应地,所述电子设备100的用户使用体验较好。The driving chip 20 is configured to generate a modulation signal MGND, and realize driving the touch display panel 10 by synchronously modulating all voltage signals output by the driving chip 20 to the touch display panel 10 by using the modulation signal MGND. In any process of performing normal image display, the common electrode 101 can be further driven to perform self-capacitance touch sensing. Therefore, even when the display resolution of the touch display panel 10 is improved, the time of the touch sensing is not shortened, thereby breaking the technical bottleneck that the touch sensing time caused by the increase in the display resolution is insufficient. Accordingly, the user experience of the electronic device 100 is better.
尤其地,所述驱动芯片20在驱动所述触摸显示面板10执行图像显示刷新的同时,能够进一步驱动公共电极101执行自电容触摸感测。从而,所述触摸显示装置1的触摸感测并不局限在图像显示的行间隙I(见图2)、帧间隙期间进行。In particular, the driving chip 20 can further drive the common electrode 101 to perform self-capacitance touch sensing while driving the touch display panel 10 to perform image display refreshing. Thus, the touch sensing of the touch display device 1 is not limited to the line gap I (see FIG. 2) of the image display, and the frame gap is performed.
在本实施方式中,所述调制信号MGND为周期性变化的方波信号。然,可变更地,在其它实施方式中,所述调制信号MGND例如也可为正弦波信号、阶梯波信号等其它合适的波形。进一步地,所述调制信号MGND也可为非周期性变化的信号。In the present embodiment, the modulation signal MGND is a square wave signal that changes periodically. However, in other embodiments, the modulation signal MGND may be, for example, another suitable waveform such as a sine wave signal or a staircase wave signal. Further, the modulation signal MGND may also be a signal that changes non-periodically.
当所述驱动芯片20驱动所述触摸显示面板10同时执行图像显示与触摸感测时,所述触摸显示面板10上的元件或被所述驱动芯片20直接驱动,或被所述驱动芯片20间接驱动。以所述触摸显示面板10上的一元件为例,当所述元件被所述驱动芯片20直接驱动时,所述元件上的电压信号为来自所述驱动芯片20输出的信号;当所述元件未被所述驱动芯片20直接驱动时,则例如通过电容耦合被所述驱动芯片20间接驱动,电容耦合例如存在于被所述驱动芯片20直接驱动的元件与被所述驱动芯片20间接驱动的元件之间,相应地,所述元件的信号因电容耦合叠加所述调制信号MGND。从而,所述触摸显示面板10上的所有电压信号均为经所述调制信号MGND调制后的信号。除了电容耦合,所述触摸显示面板10中的元件例如还可通过电阻等元件被所述驱动芯片20间接驱动。When the driving chip 20 drives the touch display panel 10 while performing image display and touch sensing, elements on the touch display panel 10 are directly driven by the driving chip 20 or indirectly by the driving chip 20 drive. Taking an element on the touch display panel 10 as an example, when the element is directly driven by the driving chip 20, the voltage signal on the element is a signal output from the driving chip 20; when the element When not directly driven by the driving chip 20, it is indirectly driven by the driving chip 20, for example, by capacitive coupling, and the capacitive coupling exists, for example, in an element directly driven by the driving chip 20 and indirectly driven by the driving chip 20. Between the components, correspondingly, the signal of the component is superimposed by the modulation signal MGND due to capacitive coupling. Therefore, all voltage signals on the touch display panel 10 are signals modulated by the modulation signal MGND. In addition to capacitive coupling, elements in the touch display panel 10 can also be indirectly driven by the drive chip 20, for example, by components such as resistors.
相应地,当所述驱动芯片20驱动所述触摸显示面板10同时执行图像显示与触摸感测时,所述触摸显示面板10上的所有电压信号均为经所述调制信号MGND调制后的信号。其中,所述触摸显示面板10上的所有电压信号均随所述调制信号MGND的变化而变化。较佳地,所述触摸显示面板10上的各电压信号均随所述调制信号MGND的升高而升高,随所述调制信号MGND的降低而降低。Correspondingly, when the driving chip 20 drives the touch display panel 10 while performing image display and touch sensing, all voltage signals on the touch display panel 10 are signals modulated by the modulation signal MGND. The voltage signals on the touch display panel 10 all change with the change of the modulation signal MGND. Preferably, each voltage signal on the touch display panel 10 rises as the modulation signal MGND rises, and decreases as the modulation signal MGND decreases.
如此,所述驱动芯片20可通过同步或近似同步调制所述触摸显示面板10的所有电压信号,来实现在驱动所述触摸显示面板10执行正常图像显示的任意过程中,可同时驱动公共电极101执行触摸感测。进一步地,由于被所述调制信号MGND调制,所述触摸驱动信号可被抬高,因此,所述公共电极101输出给所述驱动芯片20的触摸感测信号可相应地被抬高,从而可提高所述触摸显示装置1的触摸感测的信噪比,进而提高所述触摸显示装置1的触摸感测的精确度。 As such, the driving chip 20 can realize the common electrode 101 simultaneously in any process of driving the touch display panel 10 to perform normal image display by synchronously or approximately synchronously modulating all voltage signals of the touch display panel 10. Perform touch sensing. Further, the touch driving signal may be raised due to being modulated by the modulation signal MGND, and therefore, the touch sensing signal output by the common electrode 101 to the driving chip 20 may be raised accordingly, thereby being The signal-to-noise ratio of the touch sensing of the touch display device 1 is increased, thereby improving the accuracy of the touch sensing of the touch display device 1.
可选地,所述驱动芯片20用于分时驱动所述多个公共电极101执行触摸感测。例如,所述驱动芯片20每次驱动部分公共电极101执行触摸感测,通过多次驱动,完成对所有的公共电极101执行完触摸感测。Optionally, the driving chip 20 is configured to drive the plurality of common electrodes 101 to perform touch sensing in a time division manner. For example, the driving chip 20 performs touch sensing each time the partial common electrode 101 is driven, and performs touch sensing for all the common electrodes 101 by multiple driving.
在某些具体的实施方式中,所述驱动芯片20例如可逐行驱动公共电极101执行图像显示与触摸感测,也可一次同时驱动多行公共电极101执行图像显示与触摸感测。In some specific embodiments, the driving chip 20 may perform image display and touch sensing, for example, driving the common electrode 101 row by row, or may simultaneously drive the plurality of rows of common electrodes 101 to perform image display and touch sensing.
由于所述驱动芯片20分时(如,按行或逐行)驱动公共电极101执行自电容触摸感测,因此,所述驱动芯片20的输出引脚则相较于同时驱动所有的公共电极101执行自电容触摸感测的芯片的输出引脚要少,从而可减小所述驱动芯片20的面积,进而达到节省成本的目的。Since the driving chip 20 drives the common electrode 101 to perform self-capacitance touch sensing in a time division (eg, in a row or row by row), the output pin of the driving chip 20 drives all the common electrodes 101 simultaneously. The chip that performs self-capacitance touch sensing has fewer output pins, so that the area of the driving chip 20 can be reduced, thereby achieving cost saving.
然,可变更地,在其它实施方式中,所述驱动芯片20也可同时驱动全部公共电极101执行触摸感测。或者,所述驱动芯片20也可采用分时驱动与同时驱动相结合的方式对所述多个公共电极101执行触摸感测。However, in other embodiments, the driving chip 20 can simultaneously drive all the common electrodes 101 to perform touch sensing. Alternatively, the driving chip 20 may also perform touch sensing on the plurality of common electrodes 101 in a manner of combining time-division driving and simultaneous driving.
在不同的实施方式中,所述驱动芯片20可一次驱动一行公共电极101执行触摸感测,也可一次驱动多行公共电极101执行触摸感测,又可一次驱动所有的公共电极101同时执行触摸感测。另外,所述驱动芯片20也可并非按行驱动公共电极101执行触摸感测,例如,按列驱动公共电极101执行触摸感测或按非规律的驱动方式来驱动公共电极101执行触摸感测等等。In different embodiments, the driving chip 20 may drive one row of the common electrodes 101 to perform touch sensing at a time, or may drive the plurality of rows of common electrodes 101 to perform touch sensing at one time, and simultaneously drive all the common electrodes 101 to perform touch simultaneously. Sensing. In addition, the driving chip 20 may not perform touch sensing by the row driving common electrode 101, for example, performing driving touch by the column driving common electrode 101 or driving the common electrode 101 to perform touch sensing or the like in an irregular driving manner. Wait.
需要说明的是,所述驱动芯片20在同时驱动所述多个公共电极101执行图像显示的过程中,实现分时驱动所述多个公共电极101执行自电容触摸感测。在一具体的实施方式中,所述驱动芯片20例如每次提供触摸驱动信号给部分公共电极101执行图像显示与触摸感测,所述驱动芯片20则对应提供公共电压给其余的公共电极101执行图像显示。其中,所述触摸驱动信号与所述公共电压相同,且均为经所述调制信号MGND调制后的信号。It should be noted that, in the process of simultaneously driving the plurality of common electrodes 101 to perform image display, the driving chip 20 realizes time-division driving of the plurality of common electrodes 101 to perform self-capacitance touch sensing. In a specific embodiment, the driving chip 20 performs image display and touch sensing to the partial common electrode 101, for example, each time providing a touch driving signal, and the driving chip 20 correspondingly supplies a common voltage to the remaining common electrodes 101. Image display. The touch driving signal is the same as the common voltage, and is a signal modulated by the modulation signal MGND.
进一步地,所述驱动芯片20还接收来自公共电极101输出的触摸感测信号,以获取目标物体在所述触摸显示面板10上的触摸位置信息。所述目标物体例如为用户的手指、触控笔等合适的物体。Further, the driving chip 20 further receives a touch sensing signal output from the common electrode 101 to acquire touch position information of the target object on the touch display panel 10. The target object is, for example, a user's finger, a stylus, or the like.
由于触摸驱动信号与公共电压相同,因此,被提供触摸驱动信号的公共电极101在执行触摸感测的同时,能够执行正常的图像显示。相应地,所述触摸显示装置1的触摸感测与图像显示可同时进行。尤其地,当所述驱动芯片20驱动所述触摸显示面板10执行图像显示刷新时,可进一步驱动公共电极101执行自电容触摸感测。Since the touch driving signal is the same as the common voltage, the common electrode 101 to which the touch driving signal is supplied can perform normal image display while performing touch sensing. Accordingly, the touch sensing and image display of the touch display device 1 can be performed simultaneously. In particular, when the driving chip 20 drives the touch display panel 10 to perform image display refreshing, the common electrode 101 may be further driven to perform self-capacitive touch sensing.
可选地,所述驱动芯片20用于间歇性驱动所述触摸显示面板10执行触摸感测。例如,在一实施例中,所述驱动芯片20在驱动所述触摸显示面板10同时执行触摸感测与图像显示达一第一预定时间之后,接着再驱动所述触摸显示面板10执行图像显示而停止执行触 摸感测达一第二预定时间,如此循环往复,所述触摸显示装置1实现图像显示与触摸感测。Optionally, the driving chip 20 is used to intermittently drive the touch display panel 10 to perform touch sensing. For example, in an embodiment, the driving chip 20 drives the touch display panel 10 while performing touch sensing and image display for a first predetermined time, and then drives the touch display panel 10 to perform image display. Stop execution The touch sensing device 1 achieves a second predetermined time, and thus the touch display device 1 realizes image display and touch sensing.
当所述驱动芯片20驱动所述触摸显示面板10同时执行触摸感测与图像显示时,所述触摸显示面板10上的所有电压信号或所述驱动芯片20输出给所述触摸显示面板10的所有电压信号均是以所述调制信号MGND为基准。When the driving chip 20 drives the touch display panel 10 while performing touch sensing and image display, all voltage signals on the touch display panel 10 or all of the driving chip 20 output to the touch display panel 10 The voltage signals are all based on the modulation signal MGND.
当所述驱动芯片20驱动所述触摸显示面板10执行图像显示而非同时执行触摸感测时,替代产生所述调制信号MGND,所述驱动芯片20产生一恒定电压信号,所述触摸显示装置1上的所有电压信号均是以所述恒定电压信号为基准。When the driving chip 20 drives the touch display panel 10 to perform image display instead of simultaneously performing touch sensing, instead of generating the modulation signal MGND, the driving chip 20 generates a constant voltage signal, and the touch display device 1 All voltage signals on are referenced to the constant voltage signal.
较佳地,所述恒定电压信号为接地信号GND,所述接地信号GND例如为0V(伏)的恒定电压信号,但不局限于0V的恒定电压信号,也可为接近0V的恒定电压信号,所述接地信号GND通常为电子设备100的设备地上的电压信号。所述设备地又称系统地,例如为电子设备100的供电电源的负极,供电电源如为电池。所述接地信号GND又称系统地电压、系统地信号、设备地电压、或设备地信号等。通常,所述设备地并非地球大地或绝对大地。然,当电子设备100通过导体与地球大地连接时,所述设备地也可能为地球大地。Preferably, the constant voltage signal is a ground signal GND, and the ground signal GND is, for example, a constant voltage signal of 0 V (volts), but is not limited to a constant voltage signal of 0 V, and may be a constant voltage signal close to 0 V. The ground signal GND is typically a voltage signal on the ground of the device of the electronic device 100. The device is also referred to as a system, for example, a negative pole of a power supply of the electronic device 100, and the power supply is a battery. The ground signal GND is also referred to as a system ground voltage, a system ground signal, a device ground voltage, or a device ground signal. Typically, the device is not earthy or absolutely earthy. However, when the electronic device 100 is connected to the earth through a conductor, the device ground may also be the earth's earth.
其中,所述调制信号MGND相对于所述接地信号GND为变化的信号。The modulation signal MGND is a signal that changes with respect to the ground signal GND.
可变更地,在其它实施方式中,所述驱动芯片20例如也可为一直驱动所述触摸显示面板10同时执行图像显示与触摸感测。又或者,各第一预定时间可相同或不同,各第二预定时间可相同或不同。Alternatively, in other embodiments, the driving chip 20 may also perform image display and touch sensing while driving the touch display panel 10 at the same time. Still alternatively, each of the first predetermined times may be the same or different, and each of the second predetermined times may be the same or different.
由上述可知,所述触摸驱动信号同时用作为公共电压。为了区分所述触摸显示装置1执行触摸感测与非执行触摸感测时,所述驱动芯片20提供给所述多个公共电极101的公共电压不同,定义所述触摸显示装置1在执行触摸感测时,所述驱动芯片20提供给所述多个公共电极101的公共电压为第一公共电压Vcl,定义所述触摸显示装置1在执行图像显示而非同时执行触摸感测时,所述驱动芯片20提供给所述多个公共电极101的公共电压为第二公共电压Vc2。As can be seen from the above, the touch drive signal is simultaneously used as a common voltage. In order to distinguish that the touch display device 1 performs touch sensing and non-execution touch sensing, the common voltage supplied to the plurality of common electrodes 101 by the driving chip 20 is different, and the touch display device 1 is defined to perform a touch feeling. At the time of measurement, the common voltage supplied to the plurality of common electrodes 101 by the driving chip 20 is a first common voltage Vcl, which is defined when the touch display device 1 performs image display instead of simultaneously performing touch sensing. The common voltage supplied from the chip 20 to the plurality of common electrodes 101 is the second common voltage Vc2.
较佳地,所述第一公共电压Vc1与所述调制信号MGND之间的压差保持不变。即,所述第一公共电压Vc1相对所述调制信号MGND保持不变。所述第一公共电压Vc1相对所述接地信号GND为变化的信号。Preferably, the voltage difference between the first common voltage Vc1 and the modulation signal MGND remains unchanged. That is, the first common voltage Vc1 remains unchanged with respect to the modulation signal MGND. The first common voltage Vc1 is a signal that changes with respect to the ground signal GND.
所述第二公共电压Vc2相较于所述接地信号GND保持不变。然,可变更地,所述第二公共电压Vc2相较于所述接地信号GND也可为变化的信号,例如为一方波信号。当所述第二公共电压Vc2与第一公共电压Vc1均为周期性的方波信号时,所述第二公共电压Vc2的频率小于所述第一公共电压Vc1的频率。The second common voltage Vc2 remains unchanged compared to the ground signal GND. However, the second common voltage Vc2 may be a changed signal compared to the ground signal GND, for example, a square wave signal. When the second common voltage Vc2 and the first common voltage Vc1 are both periodic square wave signals, the frequency of the second common voltage Vc2 is smaller than the frequency of the first common voltage Vc1.
需要再说明的是,以一个公共电极101为例,当所述驱动芯片20驱动所述公共电极101同时执行图像显示与触摸感测时,提供给所述公共电极101的第一公共电压Vc1同时用作显示驱动信号与触摸驱动信号;当所述驱动芯片20驱动所述公共电极101仅执行图 像显示时,提供给所述公共电极101的第一公共电压Vc1仅用作显示驱动信号。It is to be noted that, taking a common electrode 101 as an example, when the driving chip 20 drives the common electrode 101 while performing image display and touch sensing, the first common voltage Vc1 supplied to the common electrode 101 is simultaneously Used as a display driving signal and a touch driving signal; when the driving chip 20 drives the common electrode 101, only the image is executed When displayed, the first common voltage Vc1 supplied to the common electrode 101 is used only as a display driving signal.
由上述内容可知,当所述驱动芯片20驱动所述多个公共电极101分时执行触摸感测时,所述驱动芯片20同时提供给所述多个公共电极101的第一公共电压Vc1并不是都同时用作触摸驱动信号。然而,当所述驱动芯片20驱动所述多个公共电极101同时执行触摸感测时,提供给所述多个公共电极101的第一公共电压Vc1同时又都用作触摸驱动信号。It can be seen from the above that when the driving chip 20 drives the plurality of common electrodes 101 to perform touch sensing, the first common voltage Vc1 that the driving chip 20 simultaneously supplies to the plurality of common electrodes 101 is not Both are used as touch drive signals. However, when the driving chip 20 drives the plurality of common electrodes 101 while performing touch sensing, the first common voltage Vc1 supplied to the plurality of common electrodes 101 is simultaneously used as a touch driving signal.
尤其地,当所述驱动芯片20分时驱动所述多个公共电极101执行触摸感测时,虽然所述驱动芯片20同时提供相同的第一公共电压Vc1给所述多个公共电极101,但是所述驱动芯片20中驱动公共电极101同时执行图像显示与触摸感测的电路结构与驱动公共电极101仅执行图像显示的电路结构是不同的。关于此,本申请下面会做具体说明。In particular, when the driving chip 20 drives the plurality of common electrodes 101 to perform touch sensing in a time division manner, although the driving chip 20 simultaneously supplies the same first common voltage Vc1 to the plurality of common electrodes 101, The circuit structure in which the driving electrode 20 drives the common electrode 101 while performing image display and touch sensing is different from the circuit structure in which the driving common electrode 101 performs only image display. In this regard, the present application will be specifically described below.
由于所述触摸显示面板10上的所有电压信号均为经所述调制信号MGND同步调制后的信号,因此,所有电压信号中经调制后的显示驱动信号能够驱动所述触摸显示面板10执行正常图像显示,而且经调制后的显示驱动信号,例如,第一公共电压Vc1,可进一步适用于驱动公共电极101执行自电容触摸感测。相应地,所述驱动芯片20在驱动触摸显示面板10执行图像显示的任意过程中,均可同时驱动触摸显示面板10执行触摸感测,且所述触摸感测不会影响正常的图像显示。进一步地,即使当触摸显示装置1的显示分辨率提高,也并不会缩短触摸感测的时间,从而提高电子设备100的用户使用体验。Since all the voltage signals on the touch display panel 10 are signals that are synchronously modulated by the modulation signal MGND, the modulated display driving signals among all the voltage signals can drive the touch display panel 10 to execute a normal image. The display and the modulated display driving signal, for example, the first common voltage Vc1, may be further adapted to drive the common electrode 101 to perform self-capacitive touch sensing. Accordingly, the driving chip 20 can simultaneously drive the touch display panel 10 to perform touch sensing in any process of driving the touch display panel 10 to perform image display, and the touch sensing does not affect normal image display. Further, even when the display resolution of the touch display device 1 is increased, the time of the touch sensing is not shortened, thereby improving the user experience of the electronic device 100.
为了更好地理解,可先参见图5,一般地,所述触摸显示面板10包括多个像素点11,每个像素点11包括公共电极101与像素电极103。所述公共电极101与所述像素电极103之间的压差的绝对值决定了所述像素点11的显示灰度等级。当所述驱动芯片20驱动所述触摸显示面板10执行触摸感测时,公共电极101与像素电极103上的信号被所述调制信号MGND同步调制后,公共电极101与像素电极103之间的显示压差不会改变,因此,触摸显示面板10进行正常的图像显示。而经所述调制信号MGND调制后的第一公共电压Vc1可进一步用作触摸驱动信号。因此,在确保触摸显示面板10执行正常显示图像的过程中,所述驱动芯片20能够进一步驱动公共电极101执行自电容触摸感测。For a better understanding, reference may be made first to FIG. 5. Generally, the touch display panel 10 includes a plurality of pixel points 11, each of which includes a common electrode 101 and a pixel electrode 103. The absolute value of the voltage difference between the common electrode 101 and the pixel electrode 103 determines the display gradation level of the pixel point 11. When the driving chip 20 drives the touch display panel 10 to perform touch sensing, the display between the common electrode 101 and the pixel electrode 103 after the signals on the common electrode 101 and the pixel electrode 103 are synchronously modulated by the modulation signal MGND The pressure difference does not change, and therefore, the display panel 10 is touched to perform normal image display. The first common voltage Vc1 modulated by the modulation signal MGND can be further used as a touch drive signal. Therefore, in ensuring that the touch display panel 10 performs a normal display image, the driving chip 20 can further drive the common electrode 101 to perform self-capacitance touch sensing.
需要说明的是,对于执行图像显示刷新的像素点11和执行图像显示保持的像素点11而言,执行图像显示刷新的像素点11的像素电极103上的信号为来自驱动芯片20所提供的调制后的信号,执行图像显示保持的像素点11的像素电极103上的信号因电容耦合叠加所述调制信号MGND。It should be noted that, for the pixel point 11 performing the image display refresh and the pixel point 11 performing the image display holding, the signal on the pixel electrode 103 of the pixel point 11 performing the image display refresh is the modulation supplied from the driving chip 20. After the signal, the signal on the pixel electrode 103 of the pixel 11 where the image display is held is superimposed by the capacitive coupling MGND.
所述触摸显示装置1例如为高清(HD)显示装置、全高清(FHD)显示装置、超高清(UHD)显示装置等各种类型的显示装置,对应地,显示分辨率例如为1280x720、1920x1080、3840x2160,然,所述显示分辨率并不局限于此,例如,当显示分辨率为2K时,2K可为1920x1080,然,也可为2560X1440等各种合适情况。类似地,当显示分辨率为4K、8K时,也可包括多种情况。对于本申请的触摸显示装置1而言,在其图像显示的任意过程中, 能够进一步执行触摸感测,且触摸感测不影响正常的图像显示。The touch display device 1 is, for example, various types of display devices such as a high definition (HD) display device, a full high definition (FHD) display device, and an ultra high definition (UHD) display device, and correspondingly, the display resolution is, for example, 1280×720, 1920×1080, 3840x2160. However, the display resolution is not limited thereto. For example, when the display resolution is 2K, 2K may be 1920x1080, or may be 2560X1440 or the like. Similarly, when the display resolution is 4K, 8K, a variety of situations can also be included. For the touch display device 1 of the present application, in any process of its image display, Touch sensing can be further performed, and touch sensing does not affect normal image display.
由于所述触摸显示面板10上的电压信号被所述调制信号MGND同步调制,且经调制后的第一公共电压Vc1可同时用作显示驱动信号与触摸驱动信号,因此,所述触摸显示装置1可同时执行图像显示刷新与自电容触摸感测,且所述触摸显示装置1的图像显示与触摸感测之间并不存在干扰或干扰较小。Since the voltage signal on the touch display panel 10 is synchronously modulated by the modulation signal MGND, and the modulated first common voltage Vc1 can be simultaneously used as the display driving signal and the touch driving signal, the touch display device 1 Image display refresh and self-capacitive touch sensing can be performed simultaneously, and there is no interference or less interference between image display and touch sensing of the touch display device 1.
另外,当所述触摸显示面板10在所述驱动芯片20的驱动下处于非图像显示刷新的状态时,例如,行间隙I(见图2所示)、帧间隙时,所述驱动芯片20也可驱动公共电极101一同执行自电容触摸感测。此时,所述触摸显示面板10整体处于图像显示保持的状态,由于采用所述调制信号MGND对驱动芯片20输出给触摸显示面板10的信号进行同步调制,因此,执行触摸感测并不会改变像素点11(见图5)的两个电极101、103之间的显示压差,相应地,触摸显示面板10的图像显示与触摸感测的品质较好。In addition, when the touch display panel 10 is in a state of non-image display refreshing under the driving of the driving chip 20, for example, a line gap I (shown in FIG. 2) and a frame gap, the driving chip 20 is also The self-capacitive touch sensing can be performed by driving the common electrode 101 together. At this time, the touch display panel 10 as a whole is in a state in which the image display is maintained, and since the signal output from the driving chip 20 to the touch display panel 10 is synchronously modulated by the modulation signal MGND, the touch sensing is not changed. The display voltage difference between the two electrodes 101, 103 of the pixel 11 (see FIG. 5), correspondingly, the quality of the image display and touch sensing of the touch display panel 10 is better.
由于所述驱动芯片20在驱动所述触摸显示面板10执行图像显示的任意过程中、均可驱动公共电极101一同执行触摸感测,因此,厂商可根据需要自行设定所述驱动芯片20驱动公共电极101执行触摸感测的时段。具体地,例如,在图像显示的整个过程或部分过程中,执行触摸感测。更具体地,例如,在图像显示刷新期间和/或行间隙I、帧间隙期间,执行触摸感测,等等。Since the driving chip 20 can drive the common electrode 101 to perform touch sensing together in any process of driving the touch display panel 10 to perform image display, the manufacturer can set the driving chip 20 to drive the public as needed. The electrode 101 performs a period of touch sensing. Specifically, for example, touch sensing is performed during the entire process or part of the image display. More specifically, for example, during image display refresh and/or line gap I, frame gap, touch sensing is performed, and the like.
在本实施方式中,所述驱动芯片20同时驱动所述多个公共电极101执行图像显示,以及分时驱动所述多个公共电极101执行自电容触摸感测。In the present embodiment, the driving chip 20 simultaneously drives the plurality of common electrodes 101 to perform image display, and time-divisionally drives the plurality of common electrodes 101 to perform self-capacitive touch sensing.
需要说明的是,对于所述多个公共电极101作为整体而言,所述驱动芯片20是分时驱动所述多个公共电极101执行自电容触摸感测的。然,对于所述多个公共电极101中的部分公共电极101而言,所述驱动芯片20可为同时驱动部分公共电极101执行触摸感测的。例如,所述驱动芯片20每次同时驱动所述多个公共电极101中的一部分公共电极101执行触摸感测,通过多次驱动,完成对所有公共电极101的一次触摸感测。It should be noted that, for the plurality of common electrodes 101 as a whole, the driving chip 20 drives the plurality of common electrodes 101 to perform self-capacitance touch sensing. However, for a part of the common electrodes 101 of the plurality of common electrodes 101, the driving chip 20 may perform touch sensing for simultaneously driving the partial common electrodes 101. For example, the driving chip 20 simultaneously drives a part of the common electrodes 101 of the plurality of common electrodes 101 to perform touch sensing, and one-time sensing of all the common electrodes 101 is completed by multiple driving.
在本申请中,只要所述驱动芯片20通过多次驱动才完成对所述多个公共电极101的一次触摸感测,即定义所述驱动芯片20为分时驱动所述多个公共电极101执行触摸感测。In the present application, the touch sensing of the plurality of common electrodes 101 is completed by the driving chip 20 by multiple driving, that is, the driving of the driving chip 20 for time-division driving of the plurality of common electrodes 101 is performed. Touch sensing.
对于所述驱动芯片20分时驱动所述多个公共电极101执行自电容触摸感测,在某些实施方式中,例如可为:所述驱动芯片20按行驱动公共电极101执行自电容触摸感测。当所述驱动芯片20提供所述第一公共电压Vc1给一行公共电极101执行自电容触摸感测与图像显示时,也提供所述第一公共电压Vc1给其余行的公共电极101执行图像显示。当所述驱动芯片20驱动一行公共电极101执行完自电容触摸感测后,接下来,驱动另一行公共电极101执行自电容触摸感测与图像显示,并驱动其余行的公共电极101执行图像显示。如此,通过多次驱动,完成对所有的公共电极101的一次触摸感测驱动。Performing self-capacitive touch sensing on the driving chip 20 for driving the plurality of common electrodes 101 in a time-sharing manner, in some embodiments, for example, the driving chip 20 may perform self-capacitive touch sensing by driving the common electrode 101 in a row. Measurement. When the driving chip 20 supplies the first common voltage Vc1 to perform self-capacitance touch sensing and image display for one row of the common electrodes 101, the first common voltage Vc1 is also supplied to perform image display to the common electrodes 101 of the remaining rows. After the driving chip 20 drives a row of common electrodes 101 to perform self-capacitive touch sensing, next, driving another row of common electrodes 101 to perform self-capacitance touch sensing and image display, and driving the remaining rows of common electrodes 101 to perform image display . As such, one touch sensing drive for all of the common electrodes 101 is completed by multiple driving.
需要说明的是,所述驱动芯片20先后驱动执行触摸感测的公共电极101可部分重叠 或不相重叠。It should be noted that the driving chip 20 sequentially drives the common electrodes 101 that perform touch sensing to partially overlap. Or not overlapping.
尤其地,对于所述驱动芯片20间歇性驱动所述触摸显示面板10执行自电容触摸感测的方式,定义存在公共电极101执行触摸感测的时段为第一时段W1,定义所述多个公共电极101均执行图像显示而非同时执行触摸感测的时段为第二时段W2。相邻的第一时段W1之间包括第二时段W2。例如,所述第一时段W1与所述第二时段W2交替进行。In particular, for the manner in which the driving chip 20 intermittently drives the touch display panel 10 to perform self-capacitive touch sensing, defining a period in which the common electrode 101 performs touch sensing is the first time period W1, and the plurality of public are defined. The period in which the electrodes 101 perform image display instead of simultaneously performing touch sensing is the second period W2. A second time period W2 is included between adjacent first time periods W1. For example, the first time period W1 and the second time period W2 alternate.
在第一时段W1,所述驱动芯片20产生所述调制信号MGND,并利用所述调制信号MGND同步调制所述触摸显示面板10的输入信号。相应地,所述驱动芯片20同时输出所述第一公共电压Vcl给所述多个公共电极101执行图像显示,并分时接收来自所述多个公共电极101输出的触摸感测信号,以获取触摸信息。In the first period W1, the driving chip 20 generates the modulation signal MGND, and synchronously modulates an input signal of the touch display panel 10 by using the modulation signal MGND. Correspondingly, the driving chip 20 simultaneously outputs the first common voltage Vcl to perform image display on the plurality of common electrodes 101, and time-receives touch sensing signals from the plurality of common electrodes 101 to obtain Touch the message.
为了便于与下述的第二时段W2的信号进行清楚区分,定义所述驱动芯片20在第一时段W1输出给所述触摸显示面板10的电压信号均为第一信号,定义所述驱动芯片20在第二时段W2输出给所述触摸显示面板10的电压信号均为第二信号。相应地,所述第一信号包括所述第一公共电压Vc1。In order to facilitate clear distinction between the signals of the second time period W2 and the following, the voltage signals outputted to the touch display panel 10 by the driving chip 20 during the first time period W1 are all first signals, and the driving chip 20 is defined. The voltage signals output to the touch display panel 10 during the second period W2 are all second signals. Correspondingly, the first signal comprises the first common voltage Vc1.
在每一第二时段W2,所述驱动芯片20输出第二信号给所述触摸显示面板10执行图像显示。In each of the second time periods W2, the driving chip 20 outputs a second signal to the touch display panel 10 to perform image display.
较佳地,在第二时段W2,所述驱动芯片20并不利用所述调制信号MGND同步调制所述触摸显示面板10的输入信号。相应地,所述第一信号例如为所述第二信号经所述调制信号MGND调制后的信号。所述驱动芯片20输出所述第一信号给所述触摸显示面板10同时执行图像显示与自电容触摸感测。Preferably, in the second period W2, the driving chip 20 does not synchronously modulate the input signal of the touch display panel 10 by using the modulation signal MGND. Correspondingly, the first signal is, for example, a signal modulated by the second signal via the modulation signal MGND. The driving chip 20 outputs the first signal to the touch display panel 10 while performing image display and self-capacitive touch sensing.
所述第二信号包括所述第二公共电压Vc2。在第二时段W2,所述驱动芯片20输出第二公共电压Vc2给所述多个公共电极101执行图像显示。The second signal includes the second common voltage Vc2. In the second period W2, the driving chip 20 outputs a second common voltage Vc2 to perform image display on the plurality of common electrodes 101.
所述第一公共电压Vc1例如为所述第二公共电压Vc2经所述调制信号MGND调制后的信号。对于液晶显示装置而言,所述第二公共电压Vc2例如为(-1)V,然,对于其它类型的显示装置而言,所述第二公共电压Vc2也可为其它大小的电压信号。The first common voltage Vc1 is, for example, a signal obtained by the second common voltage Vc2 modulated by the modulation signal MGND. For the liquid crystal display device, the second common voltage Vc2 is, for example, (-1)V. However, for other types of display devices, the second common voltage Vc2 may also be voltage signals of other sizes.
所述调制信号MGND的幅度例如为0.15V到0.3V之间的信号。可选地,所述调制信号MGND的幅度例如为0.2V的信号。The amplitude of the modulation signal MGND is, for example, a signal between 0.15V and 0.3V. Optionally, the amplitude of the modulation signal MGND is, for example, a signal of 0.2V.
然,本实用新型并不局限于此,所述调制信号MGND、所述第二公共电压Vc2等信号也可为其它合适类型的信号。However, the present invention is not limited thereto, and the signals such as the modulation signal MGND and the second common voltage Vc2 may also be other suitable types of signals.
由于在第二时段W2,所述驱动芯片20并不利用所述调制信号MGND同步调制所述触摸显示面板10的输入信号,例如,所述驱动芯片20仍然采用现有的显示驱动方式对所述触摸显示面板10进行驱动,因此,所述触摸显示装置1在第二时段W2相较于在第一时段W1采用调制的技术方案要相对降低功耗。Since the driving chip 20 does not synchronously modulate the input signal of the touch display panel 10 by using the modulation signal MGND during the second time period W2, for example, the driving chip 20 still adopts an existing display driving manner. The touch display panel 10 is driven, and therefore, the touch display device 1 relatively reduces power consumption in the second period W2 compared to the technical scheme in which modulation is employed in the first period W1.
由上述可知,驱动芯片20采用间歇性驱动所述多个公共电极101执行触摸感测的方 式,所述触摸显示装置1不仅在执行图像显示的任意过程中可进一步执行自电容触摸感测,也可尽量避免因采用调制方案而导致功耗较大的问题。As can be seen from the above, the driving chip 20 employs a method of intermittently driving the plurality of common electrodes 101 to perform touch sensing. The touch display device 1 can further perform self-capacitance touch sensing not only in any process of performing image display, but also avoids the problem of large power consumption due to the adoption of the modulation scheme.
在第一时段W1,所述驱动芯片20例如驱动多行公共电极101执行完触摸感测,或者,驱动所有的公共电极101执行完一次触摸感测,或者,驱动所有的公共电极101执行完多次触摸感测。对于所述驱动芯片20驱动所有的公共电极101执行完多次触摸感测的情况又可分为多种情况,例如,所述驱动芯片20驱动所有的公共电极101执行完触摸感测的次数相同,或者,所述驱动芯片20驱动一部分公共电极101执行完触摸感测的次数相同,驱动另一部分公共电极101执行完触摸感测的次数相同,然,所述驱动芯片20驱动这两部分公共电极101执行完触摸感测的次数不同。In the first period W1, the driving chip 20 drives the plurality of rows of common electrodes 101 to perform touch sensing, for example, or drives all of the common electrodes 101 to perform one touch sensing, or drives all of the common electrodes 101 to perform the most. Secondary touch sensing. The case where the driving chip 20 drives all the common electrodes 101 to perform a plurality of touch sensing can be divided into various cases, for example, the driving chip 20 drives all the common electrodes 101 to perform the same number of touch sensing times. Or, the driving chip 20 drives the part of the common electrode 101 to perform the same number of touch sensing times, and drives the other part of the common electrode 101 to perform the same number of times of the touch sensing. However, the driving chip 20 drives the two parts of the common electrode. 101 The number of times the touch sensing is performed is different.
需要说明的是,所述第二时段W2的时长设置需对所述触摸显示装置1整体检测触摸操作并不存在影响,相反还可在一定程度上降低功耗。It should be noted that the duration setting of the second time period W2 does not affect the overall touch operation of the touch display device 1 , and vice versa.
各第一时段W1的时长例如相同,各第二时段W2的时长例如相同。然,所述各第一时段W1的时长也可并不完全相同或彼此均不同,所述各第二时段W2的时长也可并不完全相同或彼此均不同。另外,对于不同类型的触摸显示装置1、对于尺寸不同的触摸显示装置1、对于材料不同的触摸显示装置1的第一时段W1、第二时段W2也可对应不同。进一步地,对于所述触摸显示装置1工作在不同的状态,例如,黑屏待机状态与亮屏图像显示状态,所述第一时段W1、第二时段W2的时长设置也可不同,以降低功耗。The duration of each of the first time periods W1 is, for example, the same, and the duration of each of the second time periods W2 is, for example, the same. The durations of the first time periods W1 may not be identical or different from each other, and the durations of the second time periods W2 may not be identical or different from each other. In addition, for the different types of touch display devices 1 , for the touch display devices 1 having different sizes, the first time period W1 and the second time period W2 of the touch display device 1 having different materials may also be correspondingly different. Further, for the touch display device 1 to operate in different states, for example, a black screen standby state and a bright screen image display state, the durations of the first time period W1 and the second time period W2 may also be different to reduce power consumption. .
下面主要以驱动芯片20间歇性且分时驱动所述多个公共电极101执行触摸感测的方式,对触摸显示装置1及其工作原理进行说明。In the following, the touch display device 1 and its operation principle will be described mainly in such a manner that the driving chip 20 intermittently and time-divisionally drives the plurality of common electrodes 101 to perform touch sensing.
请参阅图3,图3为所述电子设备100的一具体实施方式的电路结构示意图。所述驱动芯片20包括调制电路21、公共电压产生电路22、触摸驱动电路23、数据选择电路24、控制电路25、和信号处理电路26。所述公共电压产生电路22和所述触摸驱动电路23连接所述数据选择电路24。所述数据选择电路24连接所述多个公共电极101。所述控制电路25与所述数据选择电路24相连接。所述公共电压产生电路22和所述触摸驱动电路23通过所述数据选择电路24可选择性连接相应的公共电极101。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of a circuit structure of a specific implementation of the electronic device 100 . The driving chip 20 includes a modulation circuit 21, a common voltage generating circuit 22, a touch driving circuit 23, a data selecting circuit 24, a control circuit 25, and a signal processing circuit 26. The common voltage generating circuit 22 and the touch driving circuit 23 are connected to the data selecting circuit 24. The data selection circuit 24 connects the plurality of common electrodes 101. The control circuit 25 is connected to the data selection circuit 24. The common voltage generating circuit 22 and the touch driving circuit 23 are selectively connectable to the corresponding common electrode 101 through the data selecting circuit 24.
所述公共电压产生电路22用于驱动公共电极101执行图像显示。The common voltage generating circuit 22 is for driving the common electrode 101 to perform image display.
所述触摸驱动电路23用于驱动同一公共电极101同时执行图像显示与自电容触摸感测。The touch driving circuit 23 is configured to drive the same common electrode 101 while performing image display and self-capacitance touch sensing.
所述信号处理电路26用于根据所述触摸驱动电路23所输出的触摸感测信号进行触摸坐标计算,获取触摸位置信息。The signal processing circuit 26 is configured to perform touch coordinate calculation according to the touch sensing signal output by the touch driving circuit 23 to acquire touch position information.
所述数据选择电路24在所述控制电路25的控制下,对应选择输出所述公共电压产生电路22所产生的信号给相应的公共电极101执行图像显示,以及选择输出所述触摸驱动电路23所产生的信号给相应的公共电极101执行图像显示与自电容触摸感测。 The data selection circuit 24, under the control of the control circuit 25, correspondingly selects and outputs a signal generated by the common voltage generating circuit 22 to perform image display on the corresponding common electrode 101, and selectively outputs the touch driving circuit 23 The generated signal performs image display and self-capacitance touch sensing to the corresponding common electrode 101.
所述控制电路25例如根据主控芯片3的控制信号,对应控制所述数据选择电路24的信号输出时序。The control circuit 25 correspondingly controls the signal output timing of the data selection circuit 24, for example, according to a control signal of the main control chip 3.
所述调制电路21用于产生所述调制信号MGND。所述调制信号MGND包括第一参考信号与第二参考信号。所述第一参考信号与第二参考信号的电压情况可为下述五种情况中的任意一种:The modulation circuit 21 is configured to generate the modulation signal MGND. The modulation signal MGND includes a first reference signal and a second reference signal. The voltage condition of the first reference signal and the second reference signal may be any one of the following five cases:
第一:第一参考信号的电压为正电压,第二参考信号的电压为0V;First: the voltage of the first reference signal is a positive voltage, and the voltage of the second reference signal is 0V;
第二:第一参考信号的电压为0V,第二参考信号的电压为负电压;Second: the voltage of the first reference signal is 0V, and the voltage of the second reference signal is a negative voltage;
第三:第一参考信号的电压为正电压,第二参考信号的电压为负电压,所述第一参考信号的电压的绝对值等于或不等于所述第二参考信号的电压的绝对值;Third, the voltage of the first reference signal is a positive voltage, the voltage of the second reference signal is a negative voltage, and the absolute value of the voltage of the first reference signal is equal to or not equal to the absolute value of the voltage of the second reference signal;
第四:第一参考信号、第二参考信号的电压为大小不同的正电压;Fourth: the voltages of the first reference signal and the second reference signal are positive voltages of different sizes;
第五:第一参考信号、第二参考信号的电压为大小不同的负电压。Fifth: the voltages of the first reference signal and the second reference signal are negative voltages of different sizes.
以接地信号GND为参照,所述第一参考信号、第二参考信号均为恒定电压信号。所述调制信号MGND为第一参考信号与第二参考信号交替出现的周期性变化的方波脉冲信号。Referring to the ground signal GND, the first reference signal and the second reference signal are constant voltage signals. The modulation signal MGND is a periodically varying square wave pulse signal in which the first reference signal and the second reference signal alternately appear.
在本实施方式中,所述调制信号MGND的第一参考信号为接地信号GND,所述第二参考信号为高于第一参考信号的驱动信号。比如,所述接地信号GND为0V,所述驱动信号为0.2V。然,所述接地信号为0V、所述驱动信号为0.2V只是一个示例,厂商可根据产品的情况对所述调制信号MGND的幅度作对应调整,本申请对此并不做限制。In this embodiment, the first reference signal of the modulation signal MGND is the ground signal GND, and the second reference signal is a driving signal higher than the first reference signal. For example, the ground signal GND is 0V, and the driving signal is 0.2V. The grounding signal is 0V, and the driving signal is 0.2V. The manufacturer can adjust the amplitude of the modulation signal MGND according to the product, which is not limited in this application.
另外,以第一参考信号为低电平的信号、第二参考信号为高电平的信号为例,较佳地,所述调制信号MGND的第一参考信号的持续时间是第二参考信号的持续时间的2倍。或者,可变更地,所述调制信号MGND的第一参考信号的持续时间与第二参考信号的持续时间的相同。In addition, taking the signal whose first reference signal is low level and the signal whose second reference signal is high level as an example, preferably, the duration of the first reference signal of the modulation signal MGND is the second reference signal 2 times the duration. Alternatively, the duration of the first reference signal of the modulation signal MGND may be the same as the duration of the second reference signal.
当所述调制信号MGND的第一参考信号的持续时间是第二参考信号的持续时间的2倍时,所述驱动芯片20在第一参考信号的前半部分期间进行重置操作,在第一参考信号的后半部分以及第二参考信号存在期间分别进行触摸感测信号的采样。如此,能够提高触摸感测的精度。When the duration of the first reference signal of the modulation signal MGND is twice the duration of the second reference signal, the driving chip 20 performs a reset operation during the first half of the first reference signal, at the first reference The sensing of the touch sensing signal is performed separately during the second half of the signal and during the presence of the second reference signal. In this way, the accuracy of touch sensing can be improved.
当所述调制信号MGND的第一参考信号的持续时间与第二参考信号的持续时间相同时,所述驱动芯片20例如在第一参考信号存在期间进行重置操作,在第二参考信号存在期间分别进行触摸感测信号的采样。When the duration of the first reference signal of the modulation signal MGND is the same as the duration of the second reference signal, the driving chip 20 performs a reset operation, for example, during the presence of the first reference signal, during the presence of the second reference signal Sampling of the touch sensing signals is performed separately.
然,本实用新型并不以此为限,所述调制信号MGND的第一参考信号和第二参考信号的持续时间也可为其它合适的类型。However, the present invention is not limited thereto, and the durations of the first reference signal and the second reference signal of the modulation signal MGND may also be other suitable types.
可选地,所述驱动芯片20进一步包括电压产生电路27。所述电压产生电路27用于产生所述第二参考信号。所述调制电路21连接所述电子设备100的设备地和所述电压产生 电路22,接收所述设备地上的接地信号GND与所述电压产生电路22产生的第二参考信号,对应产生所述调制信号MGND。为区别接地信号GND,所述调制信号被标示为MGND。Optionally, the driving chip 20 further includes a voltage generating circuit 27. The voltage generating circuit 27 is configured to generate the second reference signal. The modulation circuit 21 is connected to the device ground of the electronic device 100 and the voltage is generated The circuit 22 receives the ground signal GND on the ground of the device and the second reference signal generated by the voltage generating circuit 22, and generates the modulation signal MGND correspondingly. To distinguish the ground signal GND, the modulation signal is labeled MGND.
在本实施方式中,所述驱动芯片20通过提供所述调制信号MGND给驱动芯片20中的一部分地,来达到同步调制触摸显示面板10上的所有电压信号,从而驱动所述触摸显示面板10同时执行正常的图像显示与触摸感测。即,只要这部分地上的信号为调制信号MGND,所述触摸显示面板10的所有电压信号均同步变为经所述调制信号MGND调制后的信号。In the embodiment, the driving chip 20 synchronously modulates all the voltage signals on the touch display panel 10 by providing the modulation signal MGND to a part of the driving chip 20, thereby driving the touch display panel 10 at the same time. Perform normal image display and touch sensing. That is, as long as the signal on the portion of the ground is the modulation signal MGND, all of the voltage signals of the touch display panel 10 are synchronized to become the signals modulated by the modulation signal MGND.
由上述内容可知,当所述驱动芯片20驱动所述触摸显示面板10同时执行图像显示与触摸感测时,所述驱动芯片20包括两部分地,其中,一部分地用于加载所述调制信号MGND,一部分地用于加载所述接地信号GND。It can be seen from the above that when the driving chip 20 drives the touch display panel 10 while performing image display and touch sensing, the driving chip 20 includes two parts, wherein a part of the driving signal MGND is loaded. Partially used to load the ground signal GND.
定义在第一时段W1施加有调制信号MGND的地为调制地,以区别施加有接地信号GND的设备地。相应地,在第一时段W1,所述电子设备100是以两个域为电压参考基准。两个域分别示出为以接地信号GND为基准的域80和以调制信号MGND为基准的域90。其中,在以接地信号GND为基准的域80中的电路的接地端用于加载接地信号GND,在以调制信号MGND为基准的域90中的电路的接地端用于加载调制信号MGND。换句话说,在第一时段W1,对于以调制地为地的电路,其参考地电位为调制地所加载的调制信号MGND;对于以设备地为地的电路,其参考地电位为设备地所加载的接地信号GND。The ground to which the modulation signal MGND is applied in the first period W1 is defined as a modulation ground to distinguish the device ground to which the ground signal GND is applied. Correspondingly, in the first time period W1, the electronic device 100 is based on two domains as a voltage reference. The two fields are shown as a domain 80 referenced to the ground signal GND and a domain 90 referenced to the modulation signal MGND. The ground terminal of the circuit in the domain 80 with reference to the ground signal GND is used to load the ground signal GND, and the ground terminal of the circuit in the domain 90 with reference to the modulation signal MGND is used to load the modulation signal MGND. In other words, in the first period W1, for a circuit that is modulated ground, its reference ground potential is a modulated signal MGND loaded; for a device grounded circuit, its reference ground potential is a device ground. Loaded ground signal GND.
相对地,在第二时段W2,所述电子设备100是以一个域为电压参考基准,均以接地信号GND为电压参考基准。所述电子设备100中的电路的地均连接设备地,接收接地信号GND。即,在第二时段W2,所述调制地对应变为设备地,用于传输接地信号GND而非调制信号MGND。In contrast, in the second time period W2, the electronic device 100 uses a domain as a voltage reference reference, and both use the ground signal GND as a voltage reference. The ground of the circuit in the electronic device 100 is connected to the device ground, and receives the ground signal GND. That is, in the second period W2, the modulation ground corresponds to the device ground for transmitting the ground signal GND instead of the modulation signal MGND.
预先说明的是,在本实施方式中,在第一时段W1,所述公共电压产生电路22、触摸驱动电路23、信号处理电路26、数据选择电路24、和控制电路25位于所述域90中,另外,所述触摸显示面板10也位于所述域90中;所述调制电路21和电压产生电路27位于所述域80中。It is to be noted that, in the present embodiment, the common voltage generating circuit 22, the touch driving circuit 23, the signal processing circuit 26, the data selecting circuit 24, and the control circuit 25 are located in the field 90 in the first period W1. In addition, the touch display panel 10 is also located in the field 90; the modulation circuit 21 and the voltage generating circuit 27 are located in the domain 80.
所述调制电路21包括调制端M。所述调制电路21通过所述调制端M输出所述调制信号MGND给到域90中的各电路的接地端,从而,以调制信号MGND为电压参照基准的域90中的电路输出经所述调制信号MGND调制后的电压信号给所述触摸显示面板10。其中,所述调制端M连接调制地,或作为调制地的一端。另外,触摸显示面板10上例如处于悬空状态的元件(如,后述执行图像显示保持的像素电极103,见图5)上的信号因电容耦合作用叠加所述调制信号MGND。因此,在第一时段W1,所述触摸显示面板10上的所有电压电信号均变为经所述调制信号MGND调制后的信号。The modulation circuit 21 includes a modulation terminal M. The modulation circuit 21 outputs the modulation signal MGND to the ground of each circuit in the domain 90 through the modulation terminal M, so that the circuit output in the domain 90 with the modulation signal MGND as the voltage reference is modulated. The voltage signal modulated by the signal MGND is supplied to the touch display panel 10. Wherein, the modulation terminal M is connected to the modulation ground or as one end of the modulation ground. Further, a signal on the touch display panel 10, for example, an element in a floating state (for example, a pixel electrode 103 for performing image display holding, which will be described later, see FIG. 5) superimposes the modulation signal MGND by capacitive coupling. Therefore, in the first period W1, all of the voltage electrical signals on the touch display panel 10 become signals modulated by the modulation signal MGND.
在域90中的电路,例如,所述公共电压产生电路22、触摸驱动电路23、信号处理电 路26、数据选择电路24、控制电路25,若包括接地端,则接地端可直接连接至调制地。Circuits in the field 90, for example, the common voltage generating circuit 22, the touch driving circuit 23, and the signal processing power The circuit 26, the data selection circuit 24, and the control circuit 25, if included with the ground terminal, can be directly connected to the modulation ground.
在第二时段W2,所述电子设备100整体上是以接地信号GND为电压参考基准。In the second time period W2, the electronic device 100 as a whole is based on the ground signal GND as a voltage reference.
相应地,在第一时段W1,所述调制电路21根据设备地上的接地信号GND和来自所述电压产生电路27的驱动信号对应产生所述调制信号MGND,并提供所述调制信号MGND给所述调制地。所述公共电压产生电路22对应产生所述第一公共电压Vc1,并通过所述数据选择电路24提供给相应的公共电极101执行图像显示。所述触摸驱动电路23对应产生所述第一公共电压Vc1,并通过所述数据选择电路24提供给相应的公共电极101执行图像显示与自电容触摸感测。所述信号处理电路26接收来自所述触摸驱动电路23输出的触摸感测信号,以获取触摸信息。即,所述触摸驱动电路23输出给公共电极101的第一公共电压Vc1同时用作显示驱动信号与触摸驱动信号,所述公共电压产生电路22输出给公共电极101的第一公共电压Vc1仅用作显示驱动信号。Correspondingly, in the first time period W1, the modulation circuit 21 generates the modulation signal MGND according to the ground signal GND on the device ground and the driving signal from the voltage generating circuit 27, and provides the modulation signal MGND to the Modulated ground. The common voltage generating circuit 22 correspondingly generates the first common voltage Vc1, and supplies the image display to the corresponding common electrode 101 through the data selecting circuit 24. The touch driving circuit 23 correspondingly generates the first common voltage Vc1, and provides image display and self-capacitance touch sensing to the corresponding common electrode 101 through the data selection circuit 24. The signal processing circuit 26 receives a touch sensing signal output from the touch driving circuit 23 to acquire touch information. That is, the first common voltage Vc1 outputted to the common electrode 101 by the touch driving circuit 23 is simultaneously used as a display driving signal and a touch driving signal, and the first common voltage Vc1 outputted by the common voltage generating circuit 22 to the common electrode 101 is used only. Display drive signal.
所述触摸驱动电路23与所述公共电压产生电路22输出给所述多个公共电极101的第一公共电压Vc1为经所述调制信号MGND调制后的相同信号,且所述触摸驱动电路23能够进一步传输来自公共电极101所感测到的触摸感测信号给信号处理电路26,以获取触摸信息。因此,所述驱动芯片20能够驱动所述触摸显示面板10同时执行图像显示与自电容触摸感测。The first common voltage Vc1 outputted by the touch driving circuit 23 and the common voltage generating circuit 22 to the plurality of common electrodes 101 is the same signal modulated by the modulation signal MGND, and the touch driving circuit 23 can The touch sensing signal sensed from the common electrode 101 is further transmitted to the signal processing circuit 26 to acquire touch information. Therefore, the driving chip 20 can drive the touch display panel 10 while performing image display and self-capacitive touch sensing.
由于所述触摸驱动电路23提供给公共电极101的第一公共电压Vc1既用作触摸驱动信号,又用作显示驱动信号,因此,在所述公共电压产生电路22驱动部分公共电极101执行图像显示时,所述触摸驱动电路23可一同驱动其余公共电极101执行图像显示与自电容触摸感测。因此,本实用新型的触摸显示装置1在执行图像显示的任意过程之中,均可同时执行触摸感测,且,触摸感测与图像显示之间无干扰或对图像显示造成的干扰较少。Since the first common voltage Vc1 supplied from the touch drive circuit 23 to the common electrode 101 functions as both a touch drive signal and a display drive signal, the common voltage generating circuit 22 drives the partial common electrode 101 to perform image display. The touch driving circuit 23 can drive the remaining common electrodes 101 together to perform image display and self-capacitance touch sensing. Therefore, the touch display device 1 of the present invention can perform touch sensing simultaneously in any process of performing image display, and there is no interference between the touch sensing and the image display or less interference to the image display.
另外,由于所述调制电路21、以及触摸驱动电路23等电路都集成在单颗驱动芯片20中,而单颗芯片相较于多颗芯片节约空间,因此,所述触摸显示装置1占所述电子设备100的空间较小。另外,单颗芯片相较于多颗芯片更有利于触摸显示装置1的组装以及生产管理,提高生产效率,从而,降低所述电子设备100的制造成本。In addition, since the modulation circuit 21 and the touch drive circuit 23 and the like are integrated in the single driving chip 20, and the single chip saves space compared to the plurality of chips, the touch display device 1 occupies the The space of the electronic device 100 is small. In addition, a single chip is more advantageous for assembly and production management of the touch display device 1 than a plurality of chips, thereby improving production efficiency, thereby reducing the manufacturing cost of the electronic device 100.
进一步地,在第二时段W2,所述公共电压产生电路22通过所述数据选择电路24提供第二公共电压Vc2给所述多个公共电极101执行图像显示。Further, in the second period W2, the common voltage generating circuit 22 supplies the second common voltage Vc2 through the data selecting circuit 24 to perform image display on the plurality of common electrodes 101.
较佳地,在第二时段W2,通过所述控制电路25控制所述数据选择电路24,所述多个公共电极101上的第二公共电压Vc2均来自所述公共电压产生电路22。所述触摸驱动电路23例如可进一步输出第二公共电压Vc2给数据选择电路24,但数据选择电路24选择输出来自所述公共电压产生电路22的第二公共电压Vc2给所述多个公共电极101,从而,使得所述触摸显示装置1在第二时段W2执行图像显示而停止执行触摸感测。Preferably, in the second period W2, the data selection circuit 24 is controlled by the control circuit 25, and the second common voltage Vc2 on the plurality of common electrodes 101 is derived from the common voltage generating circuit 22. The touch drive circuit 23 may further output a second common voltage Vc2 to the data selection circuit 24, for example, but the data selection circuit 24 selectively outputs a second common voltage Vc2 from the common voltage generation circuit 22 to the plurality of common electrodes 101. Thereby, the touch display device 1 is caused to perform image display at the second time period W2 to stop performing touch sensing.
通过所述第一时段W1与所述第二时段W2交替进行,所述触摸显示装置1实现图像 显示与触摸感测。The first time period W1 and the second time period W2 are alternately performed, and the touch display device 1 implements an image Display and touch sensing.
在显示一帧图像的过程中,所述触摸显示装置1可包括一个第一时段W1、多个第一时段W1、一个第一时段W1的一部分、一个第一时段W1和第一时段W1的部分、或多个第一时段W1与第一时段W1的部分。In the process of displaying one frame of image, the touch display device 1 may include a first time period W1, a plurality of first time periods W1, a portion of a first time period W1, a first time period W1, and a portion of the first time period W1. Or a plurality of portions of the first time period W1 and the first time period W1.
所述触摸驱动电路23与所述公共电压产生电路22的电路结构不同。所述触摸驱动电路23能够进一步接收来自公共电极101输出的触摸感测信号。所述信号处理电路26根据所述触摸感测信号获取触摸位置信息。The touch drive circuit 23 is different from the circuit configuration of the common voltage generating circuit 22. The touch drive circuit 23 is capable of further receiving a touch sensing signal output from the common electrode 101. The signal processing circuit 26 acquires touch location information based on the touch sensing signal.
具体地,与所述触摸驱动电路23电连接的公共电极101可响应于目标物体(例如,手指等合适物体)的触摸或接近与否,对应输出不同的触摸感测信号给所述触摸感测驱动电路23,相应地,所述信号处理电路26可根据触摸感测信号获得触摸位置信息。Specifically, the common electrode 101 electrically connected to the touch driving circuit 23 may correspondingly output different touch sensing signals to the touch sensing in response to a touch or proximity of a target object (eg, a suitable object such as a finger) The drive circuit 23, correspondingly, the signal processing circuit 26 can obtain touch position information from the touch sensing signal.
相对地,所述公共电压产生电路22并不接收来自公共电极101的信号。In contrast, the common voltage generating circuit 22 does not receive a signal from the common electrode 101.
较佳地,所述公共电压产生电路22与所述触摸驱动电路23共享同一信号源221,所述信号源221受所述调制信号MGND的调制,对应产生一第一参考电压信号。所述公共电压产生电路22与所述触摸驱动电路23分别输出与所述第一参考电压信号相同的第一公共电压Vc1给所述多个公共电极101,其中,与公共电压产生电路22相电连接的公共电极101仅执行图像显示,与触摸驱动电路23相电连接的公共电极101同时执行图像显示与自电容触摸感测。Preferably, the common voltage generating circuit 22 and the touch driving circuit 23 share the same signal source 221, and the signal source 221 is modulated by the modulation signal MGND to generate a first reference voltage signal. The common voltage generating circuit 22 and the touch driving circuit 23 respectively output the same first common voltage Vc1 as the first reference voltage signal to the plurality of common electrodes 101, wherein the common voltage generating circuit 22 is electrically The connected common electrode 101 performs only image display, and the common electrode 101 electrically connected to the touch drive circuit 23 simultaneously performs image display and self-capacitance touch sensing.
由于所述触摸驱动电路23提供与所述公共电压产生电路22相同的信号给公共电极101,因此,所述触摸驱动电路23在驱动公共电极101执行自电容触摸感测的同时,并不影响执行自电容触摸感测的公共电极101同时执行正常的图像显示。另外,由于所述公共电压产生电路22与所述触摸驱动电路23共享同一信号源221,因此,所述公共电压产生电路22与所述触摸驱动电路23输出给所述多个公共电极101的信号可达到相同或基本相同,从而确保触摸感测与图像显示的质量。Since the touch driving circuit 23 supplies the same signal to the common electrode 101 as the common voltage generating circuit 22, the touch driving circuit 23 does not affect the execution while driving the common electrode 101 to perform self-capacitive touch sensing. The self-capacitive touch-sensing common electrode 101 simultaneously performs normal image display. In addition, since the common voltage generating circuit 22 and the touch driving circuit 23 share the same signal source 221, the common voltage generating circuit 22 and the signal that the touch driving circuit 23 outputs to the plurality of common electrodes 101 The same or substantially the same can be achieved to ensure the quality of touch sensing and image display.
在一些具体的实施方式中,所述公共电压产生电路22例如包括信号源221、跟随器222、和稳压电路223。所述信号源221与所述跟随器222连接,所述跟随器222进一步与所述数据选择电路24连接。所述稳压电路223的一端连接于所述跟随器222与所述数据选择电路24之间,另一端与所述调制地连接。In some specific embodiments, the common voltage generating circuit 22 includes, for example, a signal source 221, a follower 222, and a voltage stabilizing circuit 223. The signal source 221 is coupled to the follower 222, and the follower 222 is further coupled to the data selection circuit 24. One end of the voltage stabilizing circuit 223 is connected between the follower 222 and the data selection circuit 24, and the other end is connected to the modulation ground.
所述信号源221包括接地端a和输出端b。所述接地端a与所述调制地连接。所述输出端b与所述跟随器222连接。所述信号源221例如为直流源,然,本实用新型对此并不做限制,所述信号源221也可为其它合适的电路结构。The signal source 221 includes a ground terminal a and an output terminal b. The ground terminal a is connected to the modulation ground. The output terminal b is connected to the follower 222. The signal source 221 is, for example, a DC source. However, the present invention is not limited thereto, and the signal source 221 may also be other suitable circuit structures.
所述跟随器222传输所述信号源221输出的信号给所述数据选择电路24,并通过所述数据选择电路24提供给相应的公共电极101执行图像显示。所述跟随器222例如为第一放大器,然,本实用新型并不局限于此,所述跟随器222也可为其它合适的电路结构,并 不局限于所述第一放大器。在所述具体实施方式中,以跟随器222为第一放大器为例进行说明。所述第一放大器222包括第三电源端c1、第三接地端d1、第一同相端e1、第一反相端f1、和第一输出端g1。其中,所述第三电源端c1用于加载电源电压VDD1。所述第三接地端d1用于连接调制地。所述第一同相端e1用于与所述信号源221的输出端b连接。所述第一反相端f1与所述第一输出端g1短接。所述第一输出端g1与所述数据选择电路24连接。The follower 222 transmits a signal output from the signal source 221 to the data selection circuit 24, and is supplied to the corresponding common electrode 101 through the data selection circuit 24 to perform image display. The follower 222 is, for example, a first amplifier. However, the present invention is not limited thereto, and the follower 222 may be other suitable circuit structures, and It is not limited to the first amplifier. In the specific embodiment, the follower 222 is taken as an example of the first amplifier. The first amplifier 222 includes a third power terminal c1, a third ground terminal d1, a first in-phase terminal e1, a first inverting terminal f1, and a first output terminal g1. The third power terminal c1 is used to load the power voltage VDD1. The third ground terminal d1 is used to connect the modulation ground. The first in-phase end e1 is for connecting to the output end b of the signal source 221. The first inverting terminal f1 is shorted to the first output end g1. The first output terminal g1 is connected to the data selection circuit 24.
所述稳压电路223连接在所述第一输出端g1与调制地之间,用于对所述跟随器222与所述数据选择电路24之间的电压进行稳压。在本实施方式中,所述稳压电路223例如包括稳压电容Cw。所述稳压电容Cw连接在所述第一输出端g1与所述调制地之间。The voltage stabilizing circuit 223 is connected between the first output terminal g1 and the modulation ground for regulating the voltage between the follower 222 and the data selection circuit 24. In the present embodiment, the regulator circuit 223 includes, for example, a voltage stabilizing capacitor Cw. The voltage stabilizing capacitor Cw is connected between the first output terminal g1 and the modulation ground.
工作时,在第一时段W1,所述接地端a和第三接地端d1均接收所述调制信号MGND,所述信号源221对应通过所述输出端b输出所述第一参考电压信号给所述第一放大器222,所述第一放大器222处于虚短状态,则对应输出与所述第一参考电压信号相同的第一公共电压Vc1给所述数据选择电路24,通过所述数据选择电路24提供给相应的公共电极101执行图像显示。In operation, in the first time period W1, the grounding terminal a and the third grounding terminal d1 receive the modulation signal MGND, and the signal source 221 correspondingly outputs the first reference voltage signal to the output terminal b. The first amplifier 222 is in a virtual short state, and correspondingly outputs a first common voltage Vc1 identical to the first reference voltage signal to the data selection circuit 24 through the data selection circuit 24 Image display is performed for the corresponding common electrode 101.
在第二时段W2,所述接地端a和第三接地端d1均接收所述接地信号GND,所述信号源221对应通过所述输出端b输出第二参考电压信号给所述第一放大器222,所述第一放大器222处于虚短状态,则对应传输与所述第二参考电压信号相同的第二公共电压Vc2给所述数据选择电路24,并通过所述数据选择电路24提供给所述多个公共电极101执行图像显示。In the second time period W2, the ground terminal a and the third ground terminal d1 both receive the ground signal GND, and the signal source 221 correspondingly outputs a second reference voltage signal to the first amplifier 222 through the output terminal b. And the first amplifier 222 is in a virtual short state, and correspondingly transmits a second common voltage Vc2 that is the same as the second reference voltage signal to the data selection circuit 24, and is provided by the data selection circuit 24 to the The plurality of common electrodes 101 perform image display.
所述触摸驱动电路23例如包括所述信号源221和多个运算放大器231。每一运算放大器231包括第二放大器232和反馈支路233。所述第二放大器232包括第四电源端c2、第四接地端d2、第二同相端e2、第二反相端f2、和第二输出端g2。其中,所述第四电源端c2用于加载电源电压VDD2。所述第四接地端d2用于连接调制地。所述第二同相端e2用于与所述信号源221的输出端b连接。所述第二反相端f2与所述数据选择电路24连接,并进一步通过所述反馈支路233与所述第二输出端g2连接。所述第二输出端g2进一步与所述信号处理电路26连接。The touch drive circuit 23 includes, for example, the signal source 221 and a plurality of operational amplifiers 231. Each operational amplifier 231 includes a second amplifier 232 and a feedback branch 233. The second amplifier 232 includes a fourth power terminal c2, a fourth ground terminal d2, a second in-phase terminal e2, a second inverting terminal f2, and a second output terminal g2. The fourth power terminal c2 is used to load the power voltage VDD2. The fourth ground terminal d2 is used to connect the modulation ground. The second in-phase end e2 is for connecting to the output end b of the signal source 221. The second inverting terminal f2 is connected to the data selection circuit 24 and further connected to the second output terminal g2 through the feedback branch 233. The second output terminal g2 is further connected to the signal processing circuit 26.
所述反馈支路233例如包括反馈电容233a和重置开关233b。较佳地,所述反馈电容233a和所述重置开关233b并联连接至所述第二反相端f2与所述第二输出端g2之间。The feedback branch 233 includes, for example, a feedback capacitor 233a and a reset switch 233b. Preferably, the feedback capacitor 233a and the reset switch 233b are connected in parallel between the second inverting terminal f2 and the second output terminal g2.
工作时,在第一时段W1,所述第四接地端d2接收所述调制信号MGND。所述第二放大器232处于虚短状态,接收来自所述信号源221的第一参考电压信号,并对应输出所述第一公共电压Vc1给所述数据选择电路24,通过所述数据选择电路24提供给相应的公共电极101。所述反馈支路233用于传输公共电极101感测到的触摸感测信号给所述信号处理电路26。 In operation, in the first period W1, the fourth ground terminal d2 receives the modulation signal MGND. The second amplifier 232 is in a virtual short state, receives a first reference voltage signal from the signal source 221, and correspondingly outputs the first common voltage Vc1 to the data selection circuit 24, through the data selection circuit 24 It is supplied to the corresponding common electrode 101. The feedback branch 233 is configured to transmit a touch sensing signal sensed by the common electrode 101 to the signal processing circuit 26.
所述多个运算放大器231的个数例如与所述多个公共电极101的列数相同。每一运算放大器231通过所述数据选择电路24对应可选择连接一列的公共电极101。然,所述多个运算放大器231的个数也可与所述多个公共电极101的行数相同。另外,本实用新型并不以此为限,例如,每一列的公共电极101也可对应选择连接二运算放大器231等等实施方式也是可以的。The number of the plurality of operational amplifiers 231 is, for example, the same as the number of columns of the plurality of common electrodes 101. Each of the operational amplifiers 231 corresponds to a common electrode 101 that can be selectively connected to one column through the data selection circuit 24. However, the number of the plurality of operational amplifiers 231 may be the same as the number of rows of the plurality of common electrodes 101. In addition, the present invention is not limited thereto. For example, the common electrode 101 of each column may also be connected to the second operational amplifier 231, and the like.
本实用新型的触摸驱动电路23提供与公共电压产生电路22产生的第一公共电压Vc1相同的触摸驱动信号给公共电极101,从而,所述触摸驱动信号可以驱动公共电极101既执行图像显示又执行自电容触摸感测,因此,所述触摸显示装置1的所述多个公共电极101在执行图像显示的同时,可进一步执行触摸感测。The touch driving circuit 23 of the present invention supplies the same touch driving signal to the common electrode 101 as the first common voltage Vc1 generated by the common voltage generating circuit 22, so that the touch driving signal can drive the common electrode 101 to perform both image display and execution. Self-capacitive touch sensing, therefore, the plurality of common electrodes 101 of the touch display device 1 can further perform touch sensing while performing image display.
进一步地,相较于所述触摸驱动电路23与所述公共电压产生电路22分别各用一信号源,由于本申请的所述触摸驱动电路23与所述公共电压产生电路22共用同一信号源221,因此,所述触摸驱动电路23与所述公共电压产生电路22通过所述数据选择电路24输出给所述多个公共电极101的第一公共电压Vc1可更趋向相同或能达到相同,从而确保所述触摸显示装置1的图像显示与触摸感测的品质。Further, each of the touch driving circuit 23 and the common voltage generating circuit 22 respectively uses a signal source, and the touch driving circuit 23 and the common voltage generating circuit 22 share the same signal source 221 of the present application. Therefore, the first common voltage Vc1 outputted by the touch drive circuit 23 and the common voltage generating circuit 22 to the plurality of common electrodes 101 through the data selection circuit 24 may be more the same or may be the same, thereby ensuring The image of the touch display device 1 is displayed with the quality of touch sensing.
在第二时段W2,调制地变为设备地,所述信号源221输出第二参考电压信号给所述跟随器222和所述多个运算放大器231,所述控制电路25控制所述数据选择电路24选择输出来自所述公共电压产电路22的第二公共电压Vc2给所述多个公共电极101执行图像显示。In a second time period W2, the modulation ground becomes a device ground, the signal source 221 outputs a second reference voltage signal to the follower 222 and the plurality of operational amplifiers 231, and the control circuit 25 controls the data selection circuit 24 selectively outputs a second common voltage Vc2 from the common voltage generating circuit 22 to perform image display on the plurality of common electrodes 101.
进一步地,在一些变更实施方式中,也可在信号源221与跟随器222之间设置第一开关(图未示)、在信号源221与运算放大器231之间设置第二开关(图未示),对应地,在第一时段W1,第一开关与第二开关均处于闭合状态,第二时段W2,所述第一开关处于闭合,所述第二开关处于开启状态也可是可以的。Further, in some modified implementations, a first switch (not shown) may be disposed between the signal source 221 and the follower 222, and a second switch is disposed between the signal source 221 and the operational amplifier 231 (not shown) Correspondingly, in the first time period W1, both the first switch and the second switch are in a closed state, the second time period W2, the first switch is in a closed state, and the second switch is in an open state.
所述数据选择电路24例如包括一第一数据选择器241和多个第二数据选择器242。所述跟随器222与所述第一数据选择器241连接,所述第一数据选择器241与所述多个公共电极101分别连接。每一运算放大器231分别连接一第二数据选择器242,每一第二数据选择器242分别连接一列公共电极101。所述第一数据选择器241和所述多个第二数据选择器242分别连接至所述控制电路25。所述控制电路25控制所述第一数据选择器241和所述多个第二数据选择器242的信号输出时序。The data selection circuit 24 includes, for example, a first data selector 241 and a plurality of second data selectors 242. The follower 222 is connected to the first data selector 241, and the first data selector 241 is connected to the plurality of common electrodes 101, respectively. Each of the operational amplifiers 231 is connected to a second data selector 242, and each of the second data selectors 242 is connected to a column of common electrodes 101. The first data selector 241 and the plurality of second data selectors 242 are respectively connected to the control circuit 25. The control circuit 25 controls signal output timings of the first data selector 241 and the plurality of second data selectors 242.
举例,所述多个公共电极101为呈26行40列的矩阵式排布,对应地,所述多个运算放大器231的数量为40个,所述第二数据选择器242的数量为40个。所述第一数据选择器241包括第一输出端口O1,用于输出来自所述公共电压产生电路22的信号给相应的公共电极101。所述第一输出端口O1的数量与所述多个公共电极101的行数相同,即为26个。每一第二数据选择器242包括第二输出端口O2,用于输出来自所述触摸驱动电路23 的信号给相应的公共电极101。所述第二输出端口O2的数量与所述多个公共电极101的行数相同,即为26个。需要说明的是,在图2中,限于图示的大小,实际上只示出部分电路结构,例如,只示出2个运算放大器231,2个第二数据选择器242,以及部分公共电极101。For example, the plurality of common electrodes 101 are arranged in a matrix of 26 rows and 40 columns. Correspondingly, the number of the plurality of operational amplifiers 231 is 40, and the number of the second data selectors 242 is 40. . The first data selector 241 includes a first output port O1 for outputting a signal from the common voltage generating circuit 22 to the corresponding common electrode 101. The number of the first output ports O1 is the same as the number of rows of the plurality of common electrodes 101, that is, 26. Each second data selector 242 includes a second output port O2 for outputting from the touch drive circuit 23 The signal is given to the corresponding common electrode 101. The number of the second output ports O2 is the same as the number of rows of the plurality of common electrodes 101, that is, 26. It should be noted that, in FIG. 2, limited to the illustrated size, only part of the circuit structure is actually shown. For example, only two operational amplifiers 231, two second data selectors 242, and a portion of the common electrode 101 are shown. .
在本实施方式中,每一第二数据选择器242的第二输出端口O2分别连接一公共电极101。每一第一输出端口O1分别连接至各第二数据选择器242的一第二输出端口O2与公共电极101之间,从而节省连接线L的数量,不同的第一输出端口O1彼此之间连接不同的第二输出端口O2。In this embodiment, the second output port O2 of each second data selector 242 is respectively connected to a common electrode 101. Each of the first output ports O1 is connected to a second output port O2 of each of the second data selectors 242 and the common electrode 101, thereby saving the number of the connection lines L, and the different first output ports O1 are connected to each other. Different second output ports O2.
然,可变更地,在其它实施方式中,所述第一数据选择器241的数量也可为多个,并不局限为一个,相应地,所述多个第一数据选择器241的第一输出端口O1与所述多个第二数据选择器242的第二输出端口O2之间的连接关系可对应调整,比如,每一第一数据选择器241与部分第二数据选择器242相连接,然,也可为,每一第一数据选择器241的第一输出端口O1与所述多个第二数据选择器242的部分第二输出端口O2连接,等等。However, in other embodiments, the number of the first data selectors 241 may also be multiple, not limited to one, and correspondingly, the first of the plurality of first data selectors 241 The connection relationship between the output port O1 and the second output port O2 of the plurality of second data selectors 242 can be adjusted accordingly. For example, each first data selector 241 is connected to a portion of the second data selector 242. However, it is also possible that the first output port O1 of each first data selector 241 is connected to a part of the second output port O2 of the plurality of second data selectors 242, and so on.
在第一时段W1,所述多个第二数据选择器242在控制电路25的控制下为26选1的数据选择器,相应地,每一第二数据选择器242每次输出来自触摸驱动电路23的所述第一公共电压Vc1给一公共电极101,通过26次,所述多个第二数据选择器242驱动所有的公共电极101执行完一次触摸感测。所述第一数据选择器241在控制电路25的控制下为26选25的数据选择器,当所述多个第二数据选择器242输出第一公共电压Vc1给同一行的公共电极101时,所述第一数据选择器241输出来自公共电压产生电路22的第一公共电压Vc1给其余各行的各公共电极101。需要说明的是,26次的触摸驱动可为在一个或多个第一时段W1完成。In the first time period W1, the plurality of second data selectors 242 are 26-selected data selectors under the control of the control circuit 25, and correspondingly, each second data selector 242 outputs the touch drive circuit each time. The first common voltage Vc1 of 23 is given to a common electrode 101, and the plurality of second data selectors 242 drive all of the common electrodes 101 to perform one touch sensing. The first data selector 241 is a 26-select 25 data selector under the control of the control circuit 25, and when the plurality of second data selectors 242 output the first common voltage Vc1 to the common electrode 101 of the same row, The first data selector 241 outputs the first common voltage Vc1 from the common voltage generating circuit 22 to the respective common electrodes 101 of the remaining rows. It should be noted that the 26 touch driving may be completed in one or more first time periods W1.
在第二时段W2,所述第一数据选择器241在控制电路25的控制下变为26选26的数据选择器,输出来自所述公共电压产生电路22的第二公共电压Vc2给全部公共电极101。所述第二数据选择器242例如在控制电路25的控制下停止输出信号给公共电极101。In the second period W2, the first data selector 241 becomes a 26-select 26 data selector under the control of the control circuit 25, and outputs a second common voltage Vc2 from the common voltage generating circuit 22 to all the common electrodes. 101. The second data selector 242 stops outputting signals to the common electrode 101 under the control of the control circuit 25, for example.
所述触摸显示装置1的触摸驱动电路23和公共电压产生电路22并不局限为上述的电路结构,也可为其它合适的电路结构。例如,所述数据选择电路24并不局限为第一数据选择器241和第二数据选择器242,也可为其它合适的开关电路结构。The touch driving circuit 23 and the common voltage generating circuit 22 of the touch display device 1 are not limited to the above-described circuit configuration, and may be other suitable circuit configurations. For example, the data selection circuit 24 is not limited to the first data selector 241 and the second data selector 242, but may be other suitable switching circuit configurations.
通过所述数据选择电路24,一方面可减少驱动芯片20与所述多个公共电极101之间的连接线L的数量,一方面也可达到在驱动所述多个公共电极101执行图像显示的同时,分时驱动公共电极101执行触摸感测。Through the data selection circuit 24, on the one hand, the number of connection lines L between the driving chip 20 and the plurality of common electrodes 101 can be reduced, and on the other hand, image display for driving the plurality of common electrodes 101 can be achieved. At the same time, the time-division driving common electrode 101 performs touch sensing.
可变更地,在某些实施方式中,所述触摸显示装置1也可为图像显示与触摸感测均在持续进行的,例如,在时间上,所述公共电压产生电路22与所述触摸驱动电路23均持续提供所述第一公共电压Vc1给公共电极101,在空间上,所述公共电压产生电路22与所述 触摸驱动电路23相配合驱动所述多个公共电极101。换句话说,无第二时段W2,所述控制电路25对应控制所述第一数据选择器241始终保持26选25,控制所述多个第二数据选择器242始终保持26选1。Alternatively, in some embodiments, the touch display device 1 may also continue to perform both image display and touch sensing, for example, in time, the common voltage generating circuit 22 and the touch driving The circuit 23 continuously supplies the first common voltage Vc1 to the common electrode 101, spatially, the common voltage generating circuit 22 and the The touch drive circuit 23 cooperates to drive the plurality of common electrodes 101. In other words, without the second time period W2, the control circuit 25 correspondingly controls the first data selector 241 to always hold 26 select 25, and controls the plurality of second data selectors 242 to always keep 26 select 1.
进一步地,当所述多个公共电极101呈其它规则或非规则方式排布时,所述数据选择电路24、所述公共电压产生电路22、所述触摸驱动电路23与所述多个公共电极101之间的关系可做相应的调整,对于本领域的一般技术人员而言,根据上述揭示的技术内容,是可以合理推测出相应的电路信息,故,此处不再赘述。Further, when the plurality of common electrodes 101 are arranged in other regular or irregular manners, the data selection circuit 24, the common voltage generating circuit 22, the touch driving circuit 23, and the plurality of common electrodes The relationship between the 101 can be adjusted accordingly. For those skilled in the art, according to the technical content disclosed above, the corresponding circuit information can be reasonably estimated, and therefore, no further details are provided herein.
另外,在一些实施方式中,所述驱动芯片20例如可进一步包括指纹驱动电路,所述指纹驱动电路可选择性连接所述多个公共电极101,当所述驱动芯片20在驱动部分公共电极101同时执行触摸感测与图像显示时,所述指纹驱动电路也可驱动部分公共电极101同时执行指纹感测与图像显示,公共电压产生电路22驱动部分公共电极执行图像显示。因此,本申请中,驱动公共电极101工作的不局限于公共电压产生电路22和触摸驱动电路23,还可以包括其它合适类型或合适功能的电路,对应驱动公共电极101执行相应的功能。In addition, in some embodiments, the driving chip 20 may further include, for example, a fingerprint driving circuit that selectively connects the plurality of common electrodes 101 when the driving chip 20 is at the driving portion common electrode 101 When the touch sensing and image display are simultaneously performed, the fingerprint driving circuit can also drive the partial common electrode 101 to simultaneously perform fingerprint sensing and image display, and the common voltage generating circuit 22 drives the partial common electrode to perform image display. Therefore, in the present application, the operation of driving the common electrode 101 is not limited to the common voltage generating circuit 22 and the touch driving circuit 23, and may include other circuits of a suitable type or suitable function, and the corresponding driving common electrode 101 performs a corresponding function.
请一并参阅图3与图4,图4为所述调制电路21的一实施方式的电路结构示意图。所述调制电路21包括第一有源开关211、第二有源开关213、和控制单元215。其中,第一有源开关211包括控制端K1、第一传输端T1、和第二传输端T2,第二有源开关213包括控制端K2、第一传输端T3、和第二传输端T4。所述控制端K1、K2均与控制单元215连接。第一有源开关211的第二传输端T2与第二有源开关213的第一传输端T3连接、并于连接线上定义一输出节点N,第一有源开关211的第一传输端T1接收第一参考信号,第二有源开关213的第二传输端T4接收第二参考信号,所述控制单元215通过控制所述第一、第二有源开关211、213来对应控制所述输出节点N交替输出所述第一参考信号与所述第二参考信号,以形成调制信号MGND。Please refer to FIG. 3 and FIG. 4 together. FIG. 4 is a schematic diagram showing the circuit structure of an embodiment of the modulation circuit 21. The modulation circuit 21 includes a first active switch 211, a second active switch 213, and a control unit 215. The first active switch 211 includes a control terminal K1, a first transmission terminal T1, and a second transmission terminal T2. The second active switch 213 includes a control terminal K2, a first transmission terminal T3, and a second transmission terminal T4. The control terminals K1, K2 are all connected to the control unit 215. The second transmission end T2 of the first active switch 211 is connected to the first transmission end T3 of the second active switch 213, and defines an output node N on the connection line, and the first transmission end T1 of the first active switch 211 Receiving the first reference signal, the second transmission end T4 of the second active switch 213 receives the second reference signal, and the control unit 215 controls the output correspondingly by controlling the first and second active switches 211, 213 The node N alternately outputs the first reference signal and the second reference signal to form a modulation signal MGND.
在本实施方式中,所述第一参考信号为接地信号GND,所述第二参考信号为驱动信号。相应地,所述第二传输端T4与所述电压产生电路27连接,所述第一传输端T1与设备地连接,用于接收接地信号GND,所述节点N用于输出所述调制信号MGND给调制地。In this embodiment, the first reference signal is a ground signal GND, and the second reference signal is a driving signal. Correspondingly, the second transmission end T4 is connected to the voltage generating circuit 27, the first transmission end T1 is connected to the device ground for receiving the ground signal GND, and the node N is for outputting the modulation signal MGND. Give modulation.
所述第一有源开关211和第二有源开关213如为薄膜晶体管、三极管、金属氧化物半导体场效应管等合适类型的开关。The first active switch 211 and the second active switch 213 are, for example, suitable switches of a thin film transistor, a triode, a metal oxide semiconductor field effect transistor, or the like.
所述调制电路21的工作原理为:在第一时段W1,所述控制单元215用于控制所述调制电路21输出调制信号MGND给域90中的地,此时域90中的地为调制地;在第二时段W2,所述控制单元215用于控制所述调制电路21输出接地信号GND给调制地,此时调制地变为与设备地相同。The working principle of the modulation circuit 21 is that, in the first time period W1, the control unit 215 is configured to control the modulation circuit 21 to output the modulation signal MGND to the ground in the domain 90, and the ground in the domain 90 is modulated. In the second time period W2, the control unit 215 is configured to control the modulation circuit 21 to output the ground signal GND to the modulation ground, at which time the modulation ground becomes the same as the device ground.
需要进一步说明的是,在第一时段W1,所述电子设备100有一个以接地信号GND为基准的参考域80和一个以调制信号MGND为基准的参考域90,对于触摸显示装置1,由 于所述触摸驱动电路23提供触摸驱动信号给公共电极101的同时,进一步接收来自所述公共电极101本身输出的触摸感测信号,以获取触摸信息,因此,所述触摸驱动电路23在驱动所述触摸显示面板10执行触摸感测时的原理为自电容触摸感测原理。It should be further noted that, in the first time period W1, the electronic device 100 has a reference domain 80 referenced to the ground signal GND and a reference domain 90 referenced to the modulation signal MGND. For the touch display device 1, While the touch driving circuit 23 supplies the touch driving signal to the common electrode 101, the touch sensing signal output from the common electrode 101 itself is further received to acquire touch information, and therefore, the touch driving circuit 23 is at the driving station. The principle when the touch display panel 10 performs touch sensing is the self-capacitance touch sensing principle.
请一并参阅图2、图3、与图5,图5为所述电子设备100的一具体实施方式的电路结构示意图。如前所述,在此实施方式中,所述触摸显示装置1是以液晶显示装置为例进行说明。然,可变更地,当所述触摸显示装置1为其它类型的显示装置时,所述触摸显示装置1的电路结构可对应所有不同,另外,不同的液晶显示装置的电路结构也可不尽相同,但对于本领域的一般技术人员可对应轻易推导得知的结构均应落入本申请的保护范围。在本实施方式中,所述触摸显示装置1的触摸显示面板10包括多个像素点11。每一像素点11在所述驱动芯片20的驱动下用于执行图像显示与触摸感测。每一像素点11包括所述公共电极101、像素电极103、和控制开关105。所述控制开关105包括控制电极G、第一传输电极S、和第二传输电极D。所述控制电极G和所述第一传输电极S与所述驱动芯片20连接。所述第二传输电极D与所述像素电极103连接。所述驱动芯片20用于驱动所述控制开关105导通与截止。Referring to FIG. 2, FIG. 3, and FIG. 5, FIG. 5 is a schematic diagram of a circuit structure of a specific implementation of the electronic device 100. As described above, in the embodiment, the touch display device 1 is described by taking a liquid crystal display device as an example. However, the circuit structure of the touch display device 1 may be different for all the different types of display devices, and the circuit configurations of different liquid crystal display devices may also be different. However, the structure that can be easily derived by a person of ordinary skill in the art should fall within the protection scope of the present application. In the present embodiment, the touch display panel 10 of the touch display device 1 includes a plurality of pixel dots 11. Each pixel 11 is driven by the drive chip 20 for performing image display and touch sensing. Each pixel 11 includes the common electrode 101, the pixel electrode 103, and a control switch 105. The control switch 105 includes a control electrode G, a first transfer electrode S, and a second transfer electrode D. The control electrode G and the first transfer electrode S are connected to the drive chip 20. The second transfer electrode D is connected to the pixel electrode 103. The driving chip 20 is configured to drive the control switch 105 to be turned on and off.
所述控制开关105例如为薄膜晶体管开关。所述薄膜晶体管开关例如为低温多晶硅薄膜晶体管开关、非晶硅薄膜晶体管开关、氧化铟镓锌(IGZO)薄膜晶体管开关、高温多晶硅薄膜晶体管开关等等。然,本实用新型并不以此为限,所述控制开关105也可为其它合适类型的开关。当所述控制开关105为薄膜晶体管开关时,所述控制电极G为薄膜晶体管开关的栅极,所述第一传输电极S为薄膜晶体管开关的源极,所述第二传输电极D为薄膜晶体管开关的漏极。The control switch 105 is, for example, a thin film transistor switch. The thin film transistor switch is, for example, a low temperature polysilicon thin film transistor switch, an amorphous silicon thin film transistor switch, an indium gallium zinc oxide (IGZO) thin film transistor switch, a high temperature polysilicon thin film transistor switch, or the like. However, the present invention is not limited thereto, and the control switch 105 can also be other suitable types of switches. When the control switch 105 is a thin film transistor switch, the control electrode G is a gate of a thin film transistor switch, the first transfer electrode S is a source of a thin film transistor switch, and the second transfer electrode D is a thin film transistor The drain of the switch.
在本实施方式中,每一像素点11分别包括一像素电极103和一控制开关105。由于公共电极101的尺寸一般较大于像素电极103的尺寸,相应地,几个像素点11可共用同一公共电极101。然,在其它变更实施方式中,也可为每一像素点11分别包括一公共电极101。另外,对于OLED等其它类型的显示装置,每一像素点11可包括多个开关以及电容等元件。In the present embodiment, each pixel 11 includes a pixel electrode 103 and a control switch 105, respectively. Since the size of the common electrode 101 is generally larger than the size of the pixel electrode 103, correspondingly, several pixel points 11 can share the same common electrode 101. However, in other modified embodiments, a common electrode 101 may be included for each pixel point 11 respectively. In addition, for other types of display devices such as OLEDs, each pixel 11 may include a plurality of switches and components such as capacitors.
在第一时段W1,所述驱动芯片20通过提供第一扫描开启信号Vg1给控制开关105,驱动所述控制开关105导通,并通过导通的控制开关105提供第一灰阶电压Vd1给像素电极103,提供第一公共电压Vc1给公共电极101,以驱动所述像素点11执行图像显示刷新。其中,所述第一扫描开启信号Vg1、所述第一灰阶电压Vd1、与所述第一公共电压Vc1均为经所述调制信号MGND同步调制后的信号。In the first time period W1, the driving chip 20 drives the control switch 105 to turn on by providing the first scan enable signal Vg1, and provides the first gray scale voltage Vd1 to the pixel through the turned-on control switch 105. The electrode 103 supplies a first common voltage Vc1 to the common electrode 101 to drive the pixel point 11 to perform image display refresh. The first scan enable signal Vg1, the first gray scale voltage Vd1, and the first common voltage Vc1 are both signals that are synchronously modulated by the modulation signal MGND.
通常,所述驱动芯片20按行驱动所述多个像素点11执行图像显示刷新。在第一时段W1,当所述驱动芯片20驱动某一行的像素点11执行图像显示刷新时,所述驱动芯片20通过提供第一扫描截止信号Vg2给其余行的像素点11的控制开关105,使得所述其余行的 像素点11的控制开关105截止,从而,使得所述其余行的像素点11处于图像显示保持状态。其中,所述第一扫描截止信号Vg2为经所述调制信号MGND调制后的信号。Generally, the driving chip 20 drives the plurality of pixel dots 11 in rows to perform image display refresh. In the first time period W1, when the driving chip 20 drives the pixel point 11 of a certain row to perform image display refreshing, the driving chip 20 supplies the first scan cutoff signal Vg2 to the control switch 105 of the pixel point 11 of the remaining row. Making the remaining rows The control switch 105 of the pixel 11 is turned off, thereby causing the pixel dots 11 of the remaining rows to be in the image display holding state. The first scan cutoff signal Vg2 is a signal modulated by the modulation signal MGND.
一般地,所述多个像素点11呈多行多列的方式排布。然,所述多个像素点11也可呈其它规则或非规则方式排布。Generally, the plurality of pixel dots 11 are arranged in a plurality of rows and columns. However, the plurality of pixel points 11 may also be arranged in other regular or irregular manners.
为避免触摸感测对图像显示刷新的干扰,较佳地,所述驱动芯片20同时驱动执行触摸感测的像素点11与执行图像显示刷新的像素点11之间不相重叠,例如,执行图像显示刷新的像素点11与执行触摸感测的公共电极101之间间隔预定行在执行图像显示保持的像素点11。通过软件或硬件或软硬件控制,来实现执行触摸感测的像素点11与执行图像显示刷新的像素点11之间可以保持预定距离而不相重叠。In order to avoid the interference of the touch sensing on the image display refresh, preferably, the driving chip 20 simultaneously drives the pixel point 11 performing the touch sensing without overlapping with the pixel point 11 performing the image display refreshing, for example, executing the image. The pixels 11 of the display refreshed pixel point 11 and the common electrode 101 performing touch sensing are spaced apart at a pixel point 11 where image display retention is performed. The pixel point 11 that performs touch sensing and the pixel point 11 that performs image display refresh can be maintained by a predetermined distance without being overlapped by software or hardware or hardware and software control.
相对地,在第二时段W2,所述驱动芯片20例如提供第二扫描开启信号Vg3给控制开关105,激活控制开关105,并通过激活的控制开关105提供第二灰阶电压Vd2给像素电极103,提供第二公共电压Vc2给公共电极101执行图像显示刷新。当所述驱动芯片20驱动某一行的像素点11执行图像显示刷新时,提供第二扫描截止信号Vg4给其余行的像素点11的控制开关105截止,从而,使得所述其余行的像素点11处于图像显示保持状态。In contrast, in the second period W2, the driving chip 20 supplies, for example, a second scan enable signal Vg3 to the control switch 105, activates the control switch 105, and supplies the second gray scale voltage Vd2 to the pixel electrode 103 through the activated control switch 105. Providing the second common voltage Vc2 to perform image display refreshing to the common electrode 101. When the driving chip 20 drives the pixel point 11 of a certain row to perform image display refreshing, the second scan cutoff signal Vg4 is supplied to the control switch 105 of the pixel row 11 of the remaining row, thereby turning off the pixel points 11 of the remaining rows. In the image display hold state.
所述第一扫描开启信号Vg1例如为所述第二扫描开启信号Vg3经所述调制信号MGND调制后的信号。所述第一扫描截止信号Vg2例如为所述第二扫描截止信号Vg4经所述调制信号MGND调制后的信号。The first scan enable signal Vg1 is, for example, a signal modulated by the second scan enable signal Vg3 via the modulation signal MGND. The first scan cutoff signal Vg2 is, for example, a signal modulated by the second scan cutoff signal Vg4 via the modulation signal MGND.
所述第一灰阶电压Vd1为相应的第二灰阶电压Vd2经所述调制信号MGND调制后的信号。例如,当一第一灰阶电压Vd1为第二灰阶电压Vd2经所述调制信号MGND调制后的信号,则,第二灰阶电压Vd2与第二公共电压Vc2之间的压差等于第一灰阶电压Vd1与第一公共电压Vc1之间的压差。The first gray scale voltage Vd1 is a signal modulated by the corresponding second gray scale voltage Vd2 via the modulation signal MGND. For example, when a first gray scale voltage Vd1 is a signal modulated by the modulation signal MGND by the second gray scale voltage Vd2, the voltage difference between the second gray scale voltage Vd2 and the second common voltage Vc2 is equal to the first A pressure difference between the gray scale voltage Vd1 and the first common voltage Vc1.
对于各像素点11:所述第一像素电极103与所述公共电极101之间的压差决定各像素点11的显示灰度级别。对于液晶显示装置而言,为了使得液晶分子不被极化,对于同一显示灰度级别,灰阶电压可分为正极性灰阶电压和负极性灰阶电压。For each pixel point 11 , the voltage difference between the first pixel electrode 103 and the common electrode 101 determines the display gradation level of each pixel point 11 . For the liquid crystal display device, in order to prevent the liquid crystal molecules from being polarized, the gray scale voltage can be classified into a positive gray scale voltage and a negative polarity gray scale voltage for the same display gray level.
所述触摸显示面板10可进一步包括多条扫描线281和多条数据线291。所述多条扫描线281和所述多条数据线291例如为绝缘交叉排布。所述多条扫描线281例如沿X方向延伸,沿Y方向排布。所述多条数据线291例如沿Y方向延伸,沿X方向排布。每一扫描线281分别连接一行像素点11的控制开关105的控制电极G。每一数据线291分别连接一列像素点11的控制开关的第一传输电极S。The touch display panel 10 may further include a plurality of scan lines 281 and a plurality of data lines 291. The plurality of scan lines 281 and the plurality of data lines 291 are, for example, insulated cross-distributions. The plurality of scanning lines 281 extend, for example, in the X direction and are arranged in the Y direction. The plurality of data lines 291 extend, for example, in the Y direction and are arranged in the X direction. Each of the scanning lines 281 is connected to the control electrode G of the control switch 105 of one row of pixel points 11, respectively. Each of the data lines 291 is connected to a first transmission electrode S of a control switch of a column of pixel points 11, respectively.
所述多条扫描线281用于传输来自所述驱动芯片20的第一扫描开启信号Vg1、第二扫描开启信号Vg3、第一扫描截止信号Vg2、或第二扫描截止信号Vg4给控制开关105的控制电极G。所述多条数据线291用于传输来自所述驱动芯片20的第一灰阶电压Vd1、或第二灰阶电压Vd2给控制开关105的第一传输电极S。 The plurality of scan lines 281 are configured to transmit the first scan enable signal Vg1, the second scan enable signal Vg3, the first scan cutoff signal Vg2, or the second scan cutoff signal Vg4 from the driving chip 20 to the control switch 105. Control electrode G. The plurality of data lines 291 are used to transmit the first gray scale voltage Vd1 or the second gray scale voltage Vd2 from the driving chip 20 to the first transfer electrode S of the control switch 105.
所述驱动芯片20进一步包括显示驱动电路20a。所述显示驱动电路20a用于驱动所述触摸显示面板10执行图像显示。所述显示驱动电路20a包括扫描驱动电路28、扫描信号产生电路28a、数据驱动电路29、和所述公共电压产生电路22。所述扫描驱动电路28连接所述多条扫描线281。所述数据驱动电路29连接所述多条数据线291。所述扫描驱动电路28和所述数据驱动电路29均与所述控制电路25连接。所述控制电路25进一步用于控制所述扫描驱动电路28的扫描时序,以及提供相应的显示数据给所述数据驱动电路29。所述扫描信号产生电路28a与所述扫描驱动电路28连接。所述扫描信号产生电路28a用于产生所述第一扫描开启信号Vg1、第二扫描开启信号Vg3、第一扫描截止信号Vg2、或第二扫描截止信号Vg4,并提供所述第一扫描开启信号Vg1、第二扫描开启信号Vg3、第一扫描截止信号Vg2、或第二扫描截止信号Vg4给所述扫描驱动电路28。所述扫描驱动电路28例如包括移位寄存器的电路结构,接收来自扫描信号产生电路28a的扫描开启信号和扫描截止信号,并在控制电路25的控制下对应提供扫描开启信号和扫描截止信号给相应的扫描线281。The drive chip 20 further includes a display drive circuit 20a. The display driving circuit 20a is configured to drive the touch display panel 10 to perform image display. The display driving circuit 20a includes a scan driving circuit 28, a scan signal generating circuit 28a, a data driving circuit 29, and the common voltage generating circuit 22. The scan driving circuit 28 connects the plurality of scan lines 281. The data driving circuit 29 connects the plurality of data lines 291. The scan driving circuit 28 and the data driving circuit 29 are both connected to the control circuit 25. The control circuit 25 is further configured to control the scan timing of the scan drive circuit 28 and provide corresponding display data to the data drive circuit 29. The scan signal generating circuit 28a is connected to the scan driving circuit 28. The scan signal generating circuit 28a is configured to generate the first scan enable signal Vg1, the second scan enable signal Vg3, the first scan cutoff signal Vg2, or the second scan cutoff signal Vg4, and provide the first scan enable signal Vg1, the second scan enable signal Vg3, the first scan cutoff signal Vg2, or the second scan cutoff signal Vg4 are supplied to the scan driving circuit 28. The scan driving circuit 28 includes, for example, a circuit structure of a shift register, receives a scan enable signal and a scan cutoff signal from the scan signal generating circuit 28a, and correspondingly provides a scan enable signal and a scan cutoff signal to the corresponding control under the control of the control circuit 25. Scan line 281.
在本实施方式中,工作时,在第一时段W1,所述扫描信号产生电路28a、所述扫描驱动电路28和数据驱动电路29也位于域90中。所述扫描信号产生电路28a受所述调制电路21的调制信号MGND的调制输出所述第一扫描开启信号Vg1、所述第一扫描截止信号Vg2给所述扫描驱动电路28,所述扫描驱动电路28在控制电路25的时序控制下对应输出所述第一扫描开启信号Vg1、所述第一扫描截止信号Vg2分别给相应的扫描线281,所述数据驱动电路29受所述调制电路21的调制信号MGND的调制,输出所述第一灰阶电压Vd1给所述多条数据线291,以通过激活的控制开关105提供给相应的像素电极103执行图像显示刷新。所述公共电压产生电路22和所述触摸驱动电路23通过所述数据选择电路24提供第一公共电压Vc1给所述多个公共电极101。In the present embodiment, in operation, in the first period W1, the scan signal generating circuit 28a, the scan driving circuit 28, and the data driving circuit 29 are also located in the field 90. The scan signal generating circuit 28a is modulated by the modulation signal MGND of the modulation circuit 21 to output the first scan enable signal Vg1, the first scan cutoff signal Vg2 to the scan drive circuit 28, and the scan drive circuit 28 correspondingly outputting the first scan enable signal Vg1 and the first scan cutoff signal Vg2 to the corresponding scan line 281 under the timing control of the control circuit 25, and the data drive circuit 29 is modulated by the modulation circuit 21. The modulation of the signal MGND outputs the first gray scale voltage Vd1 to the plurality of data lines 291 to be supplied to the corresponding pixel electrode 103 through the activated control switch 105 to perform image display refresh. The common voltage generating circuit 22 and the touch driving circuit 23 supply the first common voltage Vc1 to the plurality of common electrodes 101 through the data selecting circuit 24.
另外,处于图像显示保持的像素点11的像素电极103上的信号通过电容耦合作用变为经所述调制信号MGND调制的信号。因此,所述触摸显示面板10的各像素点11的像素电极103与公共电极101上的信号均变为经所述调制信号MGND同步调制后的信号。从而,所述驱动芯片20在驱动所述触摸显示面板10执行正常图像显示的任意过程中,均可同时驱动公共电极101执行触摸感测。Further, the signal on the pixel electrode 103 of the pixel point 11 held by the image display becomes a signal modulated by the modulation signal MGND by capacitive coupling. Therefore, the signals on the pixel electrode 103 and the common electrode 101 of each pixel 11 of the touch display panel 10 become signals that are synchronously modulated by the modulation signal MGND. Thereby, the drive chip 20 can simultaneously drive the common electrode 101 to perform touch sensing in any process of driving the touch display panel 10 to perform normal image display.
例如,当所述扫描驱动电路28提供所述第一扫描开启信号Vg1给一扫描线281时,所述公共电压产生电路22提供所述第一公共电压Vc1给部分公共电极101执行图像显示,所述触摸驱动电路23提供第一公共电压Vc1给其余公共电极101执行图像显示与自电容触摸感测。For example, when the scan driving circuit 28 supplies the first scan enable signal Vg1 to a scan line 281, the common voltage generating circuit 22 provides the first common voltage Vc1 to perform image display on the partial common electrode 101. The touch driving circuit 23 supplies the first common voltage Vc1 to perform image display and self-capacitance touch sensing to the remaining common electrodes 101.
相较于现有的复用公共电极执行触摸感测的Incell类型的触摸显示装置,本申请的触摸显示装置1通过利用所述调制信号MGND同步调制触摸显示面板10的输入信号,从而 使得用于驱动公共电极101执行图像显示的信号可进一步用作触摸驱动信号,因此,所述驱动芯片20在提供第一扫描开启信号Vg1给扫描线281时,也同样可以对公共电极101执行自电容触摸感测,相应地,触摸显示装置1不必受限于在行间隙I、帧间隙来驱动公共电极101执行触摸感测,从而,对于显示分辨率提高的显示装置并不会存在执行触摸感测的时间不够的技术问题。另外,所述触摸显示装置1在显示图像的任意过程中执行触摸感测,对图像的正常显示无影响或影响较小。The touch display device 1 of the present application synchronously modulates the input signal of the touch display panel 10 by using the modulation signal MGND, compared to the touch display device of the Incell type that performs touch sensing with the existing multiplexing common electrode, thereby The signal for driving the common electrode 101 to perform image display can be further used as a touch driving signal. Therefore, when the driving chip 20 supplies the first scan-on signal Vg1 to the scan line 281, the common electrode 101 can also be executed. Capacitive touch sensing, correspondingly, the touch display device 1 is not necessarily limited to driving the common electrode 101 to perform touch sensing in the line gap I, the frame gap, and thus, there is no touch feeling for the display device with improved display resolution. A technical problem that is not enough time to measure. In addition, the touch display device 1 performs touch sensing in any process of displaying an image, and has no influence or influence on normal display of the image.
需要说明的是,所述驱动芯片20输出至所述多个公共电极101的第一公共电压Vc1均相同,且,所述第一公共电压Vc1相较于接地信号GND为变化的信号,从而,可采用所述第一公共电压Vc1进一步用作触摸驱动信号,相应地,所述驱动芯片20在驱动公共电极101执行正常图像显示的同时,可进一步驱动公共电极101执行自电容触摸感测。It should be noted that the first common voltage Vc1 outputted by the driving chip 20 to the plurality of common electrodes 101 are the same, and the first common voltage Vc1 is a changed signal compared to the ground signal GND, and thus, The first common voltage Vc1 may be further used as a touch driving signal, and accordingly, the driving chip 20 may further drive the common electrode 101 to perform self-capacitance touch sensing while driving the common electrode 101 to perform normal image display.
另外,在第二时段W2,所述扫描信号产生电路28a输出所述第二扫描开启信号Vg3、所述第二扫描截止信号Vg4给所述扫描驱动电路28,所述扫描驱动电路28在控制电路25的控制下对应输出第二扫描开启信号Vg3、所述第二扫描截止信号Vg4分别给相应的扫描线281,所述数据驱动电路29输出第二灰阶电压Vd2给所述多条数据线291,以通过激活的控制开关105提供给相应的像素电极103。所述公共电压产生电路22提供第二公共电压Vc2给所述多个公共电极101。从而,驱动所述触摸显示面板10执行图像显示。In addition, in the second period W2, the scan signal generating circuit 28a outputs the second scan enable signal Vg3 and the second scan cutoff signal Vg4 to the scan driving circuit 28, and the scan driving circuit 28 is in the control circuit. The second scan enable signal Vg3 is outputted to the corresponding scan line 281, and the data drive circuit 29 outputs the second gray scale voltage Vd2 to the plurality of data lines 291. To be supplied to the corresponding pixel electrode 103 through the activated control switch 105. The common voltage generating circuit 22 supplies a second common voltage Vc2 to the plurality of common electrodes 101. Thereby, the touch display panel 10 is driven to perform image display.
对于液晶显示装置而言,所述第二公共电压Vc2一般选择相对所述接地信号GND为不变的恒定电压信号,例如为(-1)V。在第一时段W1,所述调制信号MGND例如为周期性变化的信号,频率例如为200KHZ,幅度为0.2V,即调制信号MGND的第一参考信号为0V,第二参考信号为0.2V。相应地,所述第一公共电压Vc1为(-1)V的电压信号和(-0.8)V的电压信号交替输出的信号。For the liquid crystal display device, the second common voltage Vc2 generally selects a constant voltage signal that is constant with respect to the ground signal GND, for example, (-1)V. In the first time period W1, the modulation signal MGND is, for example, a periodically varying signal, the frequency is, for example, 200 kHz and the amplitude is 0.2 V, that is, the first reference signal of the modulation signal MGND is 0 V, and the second reference signal is 0.2 V. Accordingly, the first common voltage Vc1 is a signal in which a voltage signal of (-1) V and a voltage signal of (-0.8) V are alternately output.
需要说明的是,在图5中,仅示出调制电路21输出调制信号MGND给触摸驱动电路23,省略了调制电路21输出调制信号MGND给域90中其它具有接地端的电路,例如公共电压产生电路22、扫描信号产生电路28a等,然,本领域技术人员根据上述说明可以明确得知所述调制电路21是有输出调制信号MGND给域90中其它具有接地端的电路。It should be noted that, in FIG. 5, only the modulation circuit 21 outputs the modulation signal MGND to the touch drive circuit 23, and the modulation circuit 21 outputs the modulation signal MGND to other circuits having the ground terminal in the field 90, such as a common voltage generation circuit. 22. Scanning signal generating circuit 28a and the like. However, those skilled in the art can clearly know from the above description that the modulating circuit 21 has an output modulated signal MGND to other circuits in the field 90 having a ground terminal.
在某些实施方式中,所述驱动芯片20也可并不驱动所有的公共电极101均执行自电容触摸感测。In some embodiments, the driver chip 20 may also not drive all of the common electrodes 101 to perform self-capacitance touch sensing.
另外,在某些变更的实施方式中,所述扫描驱动电路28例如通过GIP(Gate In Panel)技术形成在所述触摸显示面板10上,而并非集成在所述驱动芯片20中。In addition, in some modified embodiments, the scan driving circuit 28 is formed on the touch display panel 10 by, for example, GIP (Gate In Panel) technology, and is not integrated in the driving chip 20.
类似地,所述数据选择电路24也可例如通过GIP技术形成在所述触摸显示面板10上,而并非集成在所述驱动芯片20中。Similarly, the data selection circuit 24 can also be formed on the touch display panel 10, such as by GIP technology, rather than being integrated into the driver chip 20.
请一并参阅图6与图7,图6为图5所示触摸显示面板10的一实施方式的分解结构示意图。图7为图6所示触摸显示面板10的剖面结构示意图。所述触摸显示面板10包括第 一基板106、第二基板107、显示媒质层108。所述显示媒质层108在此实施方式中为液晶层,然,可变更地,在其它实施方式中,可对应为其它显示媒质。所述多个像素点11的像素电极103和控制开关105、所述多条扫描线281、和所述多条数据线291均设置在所述第二基板107上。所述显示媒质层108和所述多个公共电极101设置在所述第一基板106和所述第二基板107之间。Please refer to FIG. 6 and FIG. 7. FIG. 6 is an exploded perspective view of an embodiment of the touch display panel 10 of FIG. FIG. 7 is a cross-sectional structural view of the touch display panel 10 of FIG. 6. The touch display panel 10 includes a A substrate 106, a second substrate 107, and a display medium layer 108. The display medium layer 108 is a liquid crystal layer in this embodiment, but may be modified, and in other embodiments, may correspond to other display media. The pixel electrode 103 of the plurality of pixel points 11 and the control switch 105, the plurality of scanning lines 281, and the plurality of data lines 291 are all disposed on the second substrate 107. The display medium layer 108 and the plurality of common electrodes 101 are disposed between the first substrate 106 and the second substrate 107.
所述第一基板106与所述第二基板107例如为透明绝缘基板。所述透明绝缘基板例如为玻璃基板、薄膜基板等。The first substrate 106 and the second substrate 107 are, for example, transparent insulating substrates. The transparent insulating substrate is, for example, a glass substrate, a film substrate, or the like.
所述第二基板107、以及设置在所述第二基板107上的像素电极103、控制开关105、所述多条扫描线281和所述多条数据线291通常被统称为阵列(Array)基板。相对地,所述第一基板106上设置有彩色滤光片(图未示),以实现彩色图像显示。所述第一基板106以及彩色滤光片通常被统称为彩色滤光片(Color Filter,CF)基板。所述第一基板106背对所述第二基板107的一侧用于图像显示以及接收触摸感测。然,可变更地,所述彩色滤光片也可放置在所述第二基板107上。在一些类型的显示装置中,所述彩色滤光片也可被省略,可替代地,采用红、绿、蓝三颜色的光源进行发光。另外,对于类型不同的显示装置,所述第二基板107背对所述第一基板106的一侧也可用于图像显示以及接收触摸感测。所述触摸显示面板10又或者为双面触摸显示面板。本实用新型对触摸显示面板10是单面触摸显示面板还是双面触摸显示面板并不做具体限制。The second substrate 107, and the pixel electrode 103 disposed on the second substrate 107, the control switch 105, the plurality of scan lines 281, and the plurality of data lines 291 are generally collectively referred to as an Array substrate. . In contrast, a color filter (not shown) is disposed on the first substrate 106 to implement color image display. The first substrate 106 and the color filter are generally collectively referred to as a color filter (CF) substrate. One side of the first substrate 106 facing away from the second substrate 107 is used for image display and receiving touch sensing. However, the color filter may also be placed on the second substrate 107. In some types of display devices, the color filters may also be omitted, and alternatively, light sources of three colors of red, green, and blue may be used for illumination. In addition, for different types of display devices, the side of the second substrate 107 facing away from the first substrate 106 can also be used for image display and receiving touch sensing. The touch display panel 10 is again a double-sided touch display panel. The present invention does not impose any specific limitation on whether the touch display panel 10 is a single-sided touch display panel or a double-sided touch display panel.
较佳地,所述多个公共电极101设置在所述显示媒质层108与所述第二基板107之间。在本实施方式中,所述多个公共电极101位于所述显示媒质层108与所述多个像素电极103之间。例如,所述多个公共电极101位于同一层,所述多个像素电极103位于同一层,二者层叠设置。另外,由于所述触摸显示装置1是以液晶显示装置为例,相应地,所述液晶显示装置为边缘场转换型(Fringe Field Switching,FFS)的液晶显示装置。所述多个公共电极101上分别设置有狭缝101a。从而以与像素电极103之间形成边缘电场。在此实施方式中,所述多个像素电极103上可不设置狭缝,各为一整片电极,然,可变更地,所述多个像素电极103上也可设置有狭缝,从而提高边缘电场强度。Preferably, the plurality of common electrodes 101 are disposed between the display medium layer 108 and the second substrate 107. In the present embodiment, the plurality of common electrodes 101 are located between the display medium layer 108 and the plurality of pixel electrodes 103. For example, the plurality of common electrodes 101 are located in the same layer, and the plurality of pixel electrodes 103 are located on the same layer, and the two are stacked. In addition, since the touch display device 1 is an example of a liquid crystal display device, the liquid crystal display device is a liquid crystal display device of a Fringe Field Switching (FFS). The plurality of common electrodes 101 are respectively provided with slits 101a. Thereby, a fringe electric field is formed with the pixel electrode 103. In this embodiment, the plurality of pixel electrodes 103 may not be provided with slits, and each is a whole piece of electrodes. However, the plurality of pixel electrodes 103 may be provided with slits to improve the edge. Electric field strength.
请一并参阅图8与图9,图8为图5所示触摸显示面板10的另一实施方式的剖面结构示意图。图9为图8所示触摸显示面板10的俯视示意图。所述多个公共电极101也可设置在像素电极103与第二基板107之间。所述多个公共电极101与所述多个像素电极103之间层叠设置。所述多个像素电极103上分别设置有狭缝103a,以与公共电极101之间形成边缘电场。在此实施方式中,所述多个公共电极101上可不设置狭缝,各为一整片电极,然,可变更地,所述多个公共电极101上也可设置有狭缝,从而提高边缘电场强度。Please refer to FIG. 8 and FIG. 9 together. FIG. 8 is a cross-sectional structural diagram of another embodiment of the touch display panel 10 shown in FIG. 5. FIG. 9 is a top plan view of the touch display panel 10 of FIG. 8. The plurality of common electrodes 101 may also be disposed between the pixel electrode 103 and the second substrate 107. The plurality of common electrodes 101 and the plurality of pixel electrodes 103 are stacked one on another. The plurality of pixel electrodes 103 are respectively provided with slits 103a to form a fringe electric field with the common electrode 101. In this embodiment, the plurality of common electrodes 101 may not be provided with slits, each of which is a whole piece of electrodes. However, the plurality of common electrodes 101 may be provided with slits to improve the edges. Electric field strength.
另外,可变更地,所述触摸显示面板10也可为平面转换型(In-Plane Switching,IPS)的液晶显示面板,或,所述触摸显示面板10也可为扭曲向列型(Twisted Nematic,TN)的液晶 显示面板,或,所述触摸显示面板10为其它任何合适类型的显示面板。其中,对于IPS的液晶显示面板,像素电极103与公共电极101之间形成的电场为平行电场。In addition, the touch display panel 10 may be an In-Plane Switching (IPS) liquid crystal display panel, or the touch display panel 10 may be a twisted nematic type (Twisted Nematic, TN) LCD The display panel, or the touch display panel 10 is any other suitable type of display panel. Wherein, for the liquid crystal display panel of IPS, the electric field formed between the pixel electrode 103 and the common electrode 101 is a parallel electric field.
请再参阅图1和图3,所述电子设备100进一步包括所述主控芯片3。所述主控芯片3与所述触摸显示装置1连接。所述主控芯片3用于与所述触摸显示装置1进行数据通信。所述主控芯片3还进一步用于提供电源电压给所述触摸显示装置1。所述主控芯片3可以是单一芯片,也可以是一芯片组。当主控芯片3为芯片组时,所述芯片组包括应用处理器(Application Processor,AP)和电源芯片。另外,所述芯片组可进一步包括存储芯片。进一步地,所述应用处理器也可为中央处理器(Central Processing Unit,CPU)。Referring to FIG. 1 and FIG. 3 again, the electronic device 100 further includes the main control chip 3. The main control chip 3 is connected to the touch display device 1. The main control chip 3 is used for data communication with the touch display device 1. The main control chip 3 is further used to supply a power supply voltage to the touch display device 1. The main control chip 3 can be a single chip or a chipset. When the master chip 3 is a chipset, the chipset includes an application processor (AP) and a power chip. Additionally, the chipset may further include a memory chip. Further, the application processor may also be a central processing unit (CPU).
所述主控芯片3包括供电电源端31和接地端33。所述供电电源端31连接驱动芯片20,用于为驱动芯片20供电。所述接地端33连接设备地,接收设备地的接地信号GND。在第一时段W1和第二时段W2,所述主控芯片3均是以接地信号GND为电压参考基准。The main control chip 3 includes a power supply terminal 31 and a ground terminal 33. The power supply terminal 31 is connected to the driving chip 20 for supplying power to the driving chip 20. The ground terminal 33 is connected to the device ground and receives the ground signal GND of the device ground. In the first period W1 and the second period W2, the main control chip 3 is based on the ground signal GND as a voltage reference.
所述主控芯片3例如提供显示数据以及相关控制信号给所述显示驱动电路20a。所述显示驱动电路20a根据所述主控芯片3所提供的信号对应驱动所述触摸显示面板10执行相应的图像显示。所述主控芯片3例如进一步提供电源电压信号(VDD1、VDD2)给触摸驱动电路23和公共电压产生电路22等电路。所述触摸驱动电路23提供触摸驱动信号给公共电极101执行触摸感测,所述主控芯片3接收来自信号处理电路26输出的信号,对应控制电子设备100是否执行相应的功能。另外,所述主控芯片3例如通过提供控制信号给控制电路25,通过控制电路25控制所述数据选择电路24,来对应控制所述驱动芯片20驱动公共电极101执行触摸感测的时序。The main control chip 3 supplies display data and associated control signals to the display drive circuit 20a, for example. The display driving circuit 20a correspondingly drives the touch display panel 10 to perform corresponding image display according to the signal provided by the main control chip 3. The main control chip 3 further supplies, for example, a power supply voltage signal (VDD1, VDD2) to circuits such as the touch drive circuit 23 and the common voltage generation circuit 22. The touch drive circuit 23 provides a touch drive signal to the common electrode 101 to perform touch sensing, and the master control chip 3 receives a signal output from the signal processing circuit 26, corresponding to whether the control electronic device 100 performs a corresponding function. In addition, the main control chip 3 controls the data selection circuit 24 by controlling the control circuit 25 to control the timing at which the driving chip 20 drives the common electrode 101 to perform touch sensing, for example, by providing a control signal to the control circuit 25.
需要说明的是,在第一时段W1,由于所述主控芯片3位于域80中,所述显示驱动电路20a、触摸驱动电路23等电路位于域90中,因此,位于域80中的主控芯片3与位于域90中的显示驱动电路20a、触摸驱动电路23等电路之间的信号传输例如需经由电平转换处理,以满足电子元件的耐压需求。相对地,在第二时段W2,主控芯片3与显示驱动电路20a、触摸驱动电路23等电路之间的信号传输若需经由电平转换处理,则进行电平转换处理,若无需经由电平转换处理,则不进行电平转换处理。It should be noted that, in the first time period W1, since the main control chip 3 is located in the domain 80, the circuit such as the display driving circuit 20a and the touch driving circuit 23 is located in the domain 90. Therefore, the master located in the domain 80 The signal transmission between the chip 3 and the circuits such as the display driving circuit 20a and the touch driving circuit 23 in the field 90 is subjected to, for example, level shift processing to satisfy the withstand voltage requirement of the electronic component. In contrast, in the second period W2, if signal transmission between the main control chip 3 and the display driving circuit 20a, the touch driving circuit 23, and the like is to be subjected to level conversion processing, level conversion processing is performed if the level is not required. In the conversion processing, the level conversion processing is not performed.
请一并参阅图3、图10与图11,图10为图3所示信号处理电路26的一实施方式的结构框图。所述图11为图10所示信号处理电路26的一信号处理单元261的一实施方式的结构示意图。所述信号处理电路26包括多个信号处理单元261。每一信号处理单元261对应连接一运算放大器231,用于对从所述运算放大器231输出的感测信号进行处理与计算,获得触摸信息。Referring to FIG. 3, FIG. 10 and FIG. 11, FIG. 10 is a structural block diagram of an embodiment of the signal processing circuit 26 shown in FIG. FIG. 11 is a schematic structural diagram of an embodiment of a signal processing unit 261 of the signal processing circuit 26 shown in FIG. The signal processing circuit 26 includes a plurality of signal processing units 261. Each of the signal processing units 261 is connected to an operational amplifier 231 for processing and calculating the sensing signals output from the operational amplifier 231 to obtain touch information.
所述信号处理单元261包括模拟-数字信号转换单元263和计算单元265。所述模拟-数字信号转换单元263对来自运算放大器231的第二输出端g2所输出的信号进行模数转换,并输出转换后的数字信号给所述计算单元265。所述计算单元265根据所述数字信号 计算获得触摸坐标。所述计算单元265与所述主控芯片3连接,用于输出表示触摸坐标的信号给主控芯片3。所述主控芯片3根据所述表示触摸坐标的信号对应控制电子设备100执行相应的功能。The signal processing unit 261 includes an analog-digital signal conversion unit 263 and a calculation unit 265. The analog-digital signal conversion unit 263 performs analog-to-digital conversion on the signal output from the second output terminal g2 of the operational amplifier 231, and outputs the converted digital signal to the calculation unit 265. The calculating unit 265 is based on the digital signal Calculate the touch coordinates. The computing unit 265 is connected to the main control chip 3 for outputting a signal indicating touch coordinates to the main control chip 3. The main control chip 3 controls the electronic device 100 to perform a corresponding function according to the signal indicating the touch coordinates.
需要说明的是,所述信号处理电路26的结构也并非限于图10所示的结构,例如,也可为多个运算放大器231共用一信号处理单元261,而并非为每一运算放大器231对应分别连接一信号处理单元261。It should be noted that the configuration of the signal processing circuit 26 is not limited to the configuration shown in FIG. 10. For example, the plurality of operational amplifiers 231 may share a signal processing unit 261 instead of each of the operational amplifiers 231. A signal processing unit 261 is connected.
另外,在运算放大器231与信号处理单元261中增加相应的电路模块或省略部分电路模块也是可以的,又或者,采用其它电路模块或电路单元来也实现相同功能同样是可以的。具体地,如,在模拟-数字信号转换单元263与第二输出端g2之间进一步包括滤波单元,所述滤波单元对第二输出端g2输出的信号进行滤波处理之后再输出滤波后的信号给模拟-数字信号转换单元263。In addition, it is also possible to add a corresponding circuit module or a part of the circuit module in the operational amplifier 231 and the signal processing unit 261, or it is also possible to implement the same function by using other circuit modules or circuit units. Specifically, for example, a filtering unit is further included between the analog-digital signal converting unit 263 and the second output terminal g2, and the filtering unit performs filtering processing on the signal outputted by the second output terminal g2, and then outputs the filtered signal to Analog-to-digital signal conversion unit 263.
当所述驱动芯片20驱动所述触摸显示面板10执行触摸感测时,由于域80、90之间的地电压不同,因此,当这两个域80、90之间进行信号传输时,需要对信号进行电平转换,以满足电子元件的耐压需求。相应地,所述驱动芯片20可进一步包括电平转换单元264。所述电平转换单元264横跨两个域80、90。例如,所述计算单元265通过所述电平转换单元264连接所述主控芯片3。所述电平转换单元264用于对所述计算单元265输出的表示触摸坐标的信号进行电平转换后,再输出经电平转换后的信号给所述主控芯片3。When the driving chip 20 drives the touch display panel 10 to perform touch sensing, since the ground voltages between the domains 80, 90 are different, when signal transmission between the two domains 80, 90 is required, The signal is level-shifted to meet the withstand voltage requirements of the electronic components. Accordingly, the driving chip 20 may further include a level converting unit 264. The level shifting unit 264 spans two domains 80,90. For example, the calculation unit 265 connects the main control chip 3 through the level conversion unit 264. The level converting unit 264 is configured to level-convert the signal indicating the touch coordinates output by the calculating unit 265, and then output the level-converted signal to the main control chip 3.
请参阅图12,图12为所述电子设备100的又一实施方式的结构示意图。所述触摸显示面板10可进一步包括接地元件,所述接地元件例如为接地线L1。所述接地线L1例如设置在所述多个像素点11的周围。然,所述接地元件并不限于所述接地线L1。另外,所述扫描驱动电路28例如可集成在所述触摸显示面板10上(Gate In Panel,GIP),相应地,所述接地元件也可为扫描驱动电路28中的接地元件。所述接地线L1在其它实施方式中也可被省略。Please refer to FIG. 12 , which is a schematic structural diagram of still another embodiment of the electronic device 100 . The touch display panel 10 may further include a ground element, such as a ground line L1. The ground line L1 is disposed, for example, around the plurality of pixel points 11. However, the grounding element is not limited to the ground line L1. In addition, the scan driving circuit 28 can be integrated, for example, on the touch display panel 10 (Gate In Panel, GIP). Accordingly, the ground element can also be a ground element in the scan driving circuit 28. The ground line L1 may also be omitted in other embodiments.
所述驱动芯片20可进一步包括第一接地端201和第二接地端203。所述调制电路21连接于所述第一接地端201与所述第二接地端203之间。其中,所述第一接地端201连接所述触摸显示面板10上的接地元件,在本实施方式中,所述第一接地端201连接所述接地线L1。所述第二接地端203连接设备地,接收接地信号GND。在第一时段W1,所述调制电路21通过所述第一接地端201输出所述调制信号MGND给所述触摸显示面板10;在第二时段W2,所述调制电路21通过所述第一接地端201输出所述接地信号GND给所述触摸显示面板10。The driving chip 20 may further include a first ground end 201 and a second ground end 203. The modulation circuit 21 is connected between the first ground end 201 and the second ground end 203. The first ground end 201 is connected to the ground element on the touch display panel 10. In the embodiment, the first ground end 201 is connected to the ground line L1. The second ground end 203 is connected to the device ground and receives the ground signal GND. In the first time period W1, the modulation circuit 21 outputs the modulation signal MGND to the touch display panel 10 through the first ground terminal 201; in the second time period W2, the modulation circuit 21 passes the first ground The terminal 201 outputs the ground signal GND to the touch display panel 10.
对于位于域90中的各电路的接地端例如连接在所述调制电路21与所述第一接地端201之间,对于位于域80中的各电路的接地端例如连接在所述调制电路21与所述第二接地端203之间。 For example, the ground terminal of each circuit located in the field 90 is connected between the modulation circuit 21 and the first ground terminal 201, and the ground terminal of each circuit located in the domain 80 is connected to the modulation circuit 21, for example. Between the second ground ends 203.
所述驱动芯片20例如可进一步包括斜率控制器204,所述斜率控制器204与所述调制电路21连接,用于控制所述调制电路21输出的调制信号的斜率,以减少电磁干扰(EMI)。另,所述斜率控制器204例如设置在以GND为基准的域80中。然,在其它实施方式中,所述斜率控制器204也可被省略。The driving chip 20 may further include, for example, a slope controller 204 coupled to the modulation circuit 21 for controlling a slope of a modulation signal output by the modulation circuit 21 to reduce electromagnetic interference (EMI). . In addition, the slope controller 204 is disposed, for example, in a domain 80 referenced to GND. However, in other embodiments, the slope controller 204 can also be omitted.
所述驱动芯片20可进一步包括显示处理电路205。所述显示处理电路205连接于所述主控芯片3与所述电平转换单元264之间。所述电平转换单元264进一步与控制电路25连接。所述显示处理电路205用于对来自主控芯片3的显示数据进行相应处理(如,存储、解压缩、色彩调整等)。所述电平转换单元264设置在所述显示处理电路205与控制电路25之间,用于对所述显示处理电路205处理后的显示数据进行电平转换,并输出电平转换后的显示数据给所述控制电路25。所述控制电路25输出相应的显示数据以及时序信号给所述显示驱动电路20a。所述显示驱动电路20a转换接收到的显示数据为灰阶电压,并根据所述时序信号在第一时段W1输出第一灰阶电压Vd1给相应的像素电极103执行图像显示刷新,在第二时段W2输出第二灰阶电压Vd2给相应的像素电极103执行图像显示刷新。所述显示数据优选为数字信号。The driver chip 20 may further include a display processing circuit 205. The display processing circuit 205 is connected between the main control chip 3 and the level conversion unit 264. The level converting unit 264 is further connected to the control circuit 25. The display processing circuit 205 is configured to perform corresponding processing (eg, storage, decompression, color adjustment, etc.) on the display data from the main control chip 3. The level converting unit 264 is disposed between the display processing circuit 205 and the control circuit 25 for level-converting the display data processed by the display processing circuit 205, and outputting the level-converted display data. The control circuit 25 is given. The control circuit 25 outputs corresponding display data and timing signals to the display driving circuit 20a. The display driving circuit 20a converts the received display data into a gray scale voltage, and outputs a first gray scale voltage Vd1 to the corresponding pixel electrode 103 to perform image display refresh in the first period W1 according to the timing signal, in the second period W2 outputs the second gray scale voltage Vd2 to perform image display refresh on the corresponding pixel electrode 103. The display data is preferably a digital signal.
需要说明的是,在第二时段W2,不采用调制地的方案时,若显示处理电路205与所述控制电路25之间的信号不需电平转换时,则对显示处理电路205与控制电路25之间的信号可不进行电平转换,但是,在第一时段W1,采用调制地技术方案,由于域80与域90的电压参考基准不同,所以需做电平转换。It should be noted that, in the second time period W2, when the modulation ground scheme is not adopted, if the signal between the display processing circuit 205 and the control circuit 25 does not need level conversion, the display processing circuit 205 and the control circuit are The signal between 25 may not be level-converted, but in the first period W1, a modulation scheme is employed, since the domain 80 is different from the voltage reference of the domain 90, level conversion is required.
在本实施方式中,对驱动芯片20中各电路模块或电路单元在两个域80、90的划分情况为:将显示驱动电路20a、触摸驱动电路23、信号处理电路26、数据选择电路24、和控制电路25均划分在以MGND为基准的域90中,另外,触摸显示面板10也划分在域90中;将调制电路21、显示处理电路205、电压产生电路27、斜率控制器204均划分在以GND为基准的域80中;电平转换单元264横跨两个域,即,一部分在域80中,一部分在域90中,对于本领域的一般技术人员,其根据本申请的记载以及电路原理是可以确定电平转换单元264分别位于域80与域90的部分,此处对此不再赘述。In the present embodiment, the division of each of the circuit modules or circuit units in the drive chip 20 in the two domains 80, 90 is: display drive circuit 20a, touch drive circuit 23, signal processing circuit 26, data selection circuit 24, And the control circuit 25 are both divided into the domain 90 with reference to MGND. In addition, the touch display panel 10 is also divided into the domain 90; the modulation circuit 21, the display processing circuit 205, the voltage generating circuit 27, and the slope controller 204 are all divided. In domain 80 referenced to GND; level shifting unit 264 spans two domains, i.e., a portion is in domain 80 and a portion is in domain 90, as is known to those of ordinary skill in the art in view of the present application and The circuit principle is that the level conversion unit 264 can be determined to be located in the domain 80 and the domain 90, respectively, and details are not described herein.
可变更地,本实用新型对驱动芯片20在上述两个域80、90的划分方式也可为其它合适的情况,并不局限于上述实施方式所述的划分。Alternatively, the partitioning manner of the driving chip 20 in the two domains 80 and 90 may be other suitable conditions, and is not limited to the partitioning described in the above embodiment.
需要进一步说明的是,从域80输出到域90的信号会被调制信号MGND调制,对应地,从域90输出到域80的信号也会被进行相应调制,如,与调制信号MGND相反的调制等。It should be further noted that the signal output from the domain 80 to the domain 90 is modulated by the modulation signal MGND, and correspondingly, the signal output from the domain 90 to the domain 80 is also modulated accordingly, for example, the modulation opposite to the modulation signal MGND. Wait.
另外,所述调制信号MGND的幅度变化为0.2V左右,以不影响电平转换单元264正常工作为依据,需根据主控芯片3进来的信号的电平和所述电平转换单元264的器件类型有所变化。 In addition, the amplitude of the modulation signal MGND is changed to about 0.2V, so as not to affect the normal operation of the level conversion unit 264, the level of the signal according to the incoming chip 3 and the device type of the level conversion unit 264 are required. Changed.
进一步地,由于0.2V的电压相对1.8V的电压要较小,因此,被调制信号MGND调制后的信号的幅度相对变化较小,因此,域80和域90之间的信号也可选择无需进行电平转换,或者,所述电平转换单元264例如也可仅设置在域80中,对来自所述信号处理电路26输出的信号进行电平转换。Further, since the voltage of 0.2 V is relatively small with respect to the voltage of 1.8 V, the amplitude of the signal modulated by the modulated signal MGND is relatively small, and therefore, the signal between the domain 80 and the domain 90 can be selected without performing. Level shifting, or the level shifting unit 264 may be set, for example, only in the field 80 to level shift the signal output from the signal processing circuit 26.
由于所述触摸显示面板10在执行触摸感测时的电压信号被调制信号MGND整体同步调制,其中,所述驱动芯片20提供给公共电极101执行图像显示的显示驱动信号,即,公共电压,如,第二公共电压Vc2,经所述调制信号MGND调制后,能同时适用于驱动公共电极101执行触摸感测,从而,在保证触摸显示面板10执行正常图像显示的同时,可进一步驱动公共电极101执行触摸感测,另,还可以提高触摸显示装置1的信噪比,进而提高触摸感测精度。Since the voltage signal of the touch display panel 10 when performing touch sensing is synchronously modulated by the modulation signal MGND as a whole, the driving chip 20 supplies the display driving signal for performing image display to the common electrode 101, that is, a common voltage, such as The second common voltage Vc2, after being modulated by the modulation signal MGND, can be simultaneously applied to the driving common electrode 101 to perform touch sensing, thereby further driving the common electrode 101 while ensuring that the touch display panel 10 performs normal image display. The touch sensing is performed, and the signal-to-noise ratio of the touch display device 1 can also be improved, thereby improving the touch sensing accuracy.
请继续参阅图12,在本实施方式中,在第一时段W1,由于所述驱动芯片20的一部分是在以GND为基准的域80中,一部分是在以MGND为基准的域90中,因此,可能会有域90中的电流反灌至域80的可能,为了防止这种现象,所述电子设备100可进一步包括保护电路15,所述保护电路15设置在域80与域90之间。Referring to FIG. 12, in the present embodiment, in the first period W1, since a part of the driving chip 20 is in the domain 80 based on GND, a part is in the domain 90 based on MGND, In order to prevent this phenomenon, the electronic device 100 may further include a protection circuit 15 disposed between the domain 80 and the domain 90.
具体地,所述驱动芯片20进一步包括第一电源端206和第二电源端207。其中,所述第一电源端206位于域90中。所述第二电源端207与所述主控芯片3的供电电源端31连接。所述主控芯片3通过所述供电电源端31输出电源电压给所述第二电源端207。所述保护电路15连接在所述第二电源端207与所述第一电源端206之间。Specifically, the driving chip 20 further includes a first power terminal 206 and a second power terminal 207. The first power terminal 206 is located in the domain 90. The second power terminal 207 is connected to the power supply terminal 31 of the main control chip 3. The main control chip 3 outputs a power voltage to the second power terminal 207 through the power supply terminal 31. The protection circuit 15 is connected between the second power terminal 207 and the first power terminal 206.
当所述调制信号MGND为驱动信号(即,第二参考信号)时,所述保护电路15对应断开所述第一电源端206与所述第二电源端207之间的连接;当所述调制信号MGND为接地信号GND(即,第一参考信号)时,所述保护电路15对应闭合所述第一电源端206与所述第二电源端207之间的连接。When the modulation signal MGND is a driving signal (ie, a second reference signal), the protection circuit 15 correspondingly disconnects the connection between the first power terminal 206 and the second power terminal 207; When the modulation signal MGND is the ground signal GND (ie, the first reference signal), the protection circuit 15 correspondingly closes the connection between the first power terminal 206 and the second power terminal 207.
所述保护电路15可集成在所述驱动芯片20中,也可设置在所述驱动芯片20之外。The protection circuit 15 may be integrated in the driving chip 20 or may be disposed outside the driving chip 20.
请参阅图13,图13为保护电路15的一实施方式的电路结构示意图。在本实施方式中,所述保护电路15包括二极管J1。所述二极管J1的阳极连接第二电源端207,所述二极管J1的阴极连接第一电源端206。Please refer to FIG. 13. FIG. 13 is a schematic diagram showing the circuit structure of an embodiment of the protection circuit 15. In the present embodiment, the protection circuit 15 includes a diode J1. The anode of the diode J1 is connected to the second power terminal 207, and the cathode of the diode J1 is connected to the first power terminal 206.
可选地,所述保护电路15进一步包括第一电容Q1和第二电容Q2。其中,所述第一电容Q1连接于所述二极管J1的阳极与加载有接地信号GND的设备地之间,所述第二电容Q2连接于所述二极管J1的阴极与加载有调制信号MGND的调制地之间。其中,所述第一电容Q1与二极管J1设置在域80中,所述第二电容Q2设置在域90中。Optionally, the protection circuit 15 further includes a first capacitor Q1 and a second capacitor Q2. The first capacitor Q1 is connected between the anode of the diode J1 and the device ground loaded with the ground signal GND, and the second capacitor Q2 is connected to the cathode of the diode J1 and the modulation loaded with the modulation signal MGND. Between the ground. The first capacitor Q1 and the diode J1 are disposed in the domain 80, and the second capacitor Q2 is disposed in the domain 90.
所述保护电路15并非限制以上实施方式所述,如,请参阅图14,图14为保护电路15的另一实施方式的电路结构示意图。为了清楚区别图13所示的保护电路15,图14所示的保护电路被标示为15a。所述保护电容15a包括第三有源开关151和控制单元153。所 述第三有源开关151包括控制端K3、第一传输端T5、和第二传输端T6。所述第三有源开关151的控制端K3连接所述控制单元153,所述第一传输端T5连接所述第二电源端207,所述第二传输端T6连接所述第一电源端206。当所述调制信号MGND为驱动信号时,所述控制单元153控制所述第三有源开关151截止,所述保护电路15a对应断开所述第一电源端206与所述第二电源端207之间的连接;当所述调制信号MGND为接地信号GND时,所述控制单元153控制所述第三有源开关151导通,所述保护电路15a对应闭合所述第一电源端206与所述第二电源端207之间的连接。所述第三有源开关151如为薄膜晶体管、三极管、金属氧化物半导体场效应管。The protection circuit 15 is not limited to the above embodiments. For example, please refer to FIG. 14. FIG. 14 is a schematic diagram of a circuit structure of another embodiment of the protection circuit 15. In order to clearly distinguish the protection circuit 15 shown in Fig. 13, the protection circuit shown in Fig. 14 is denoted as 15a. The protection capacitor 15a includes a third active switch 151 and a control unit 153. Place The third active switch 151 includes a control terminal K3, a first transmission terminal T5, and a second transmission terminal T6. The control terminal K3 of the third active switch 151 is connected to the control unit 153, the first transmission terminal T5 is connected to the second power terminal 207, and the second transmission terminal T6 is connected to the first power terminal 206. . When the modulation signal MGND is a driving signal, the control unit 153 controls the third active switch 151 to be turned off, and the protection circuit 15a correspondingly disconnects the first power terminal 206 and the second power terminal 207. When the modulation signal MGND is the ground signal GND, the control unit 153 controls the third active switch 151 to be turned on, and the protection circuit 15a correspondingly closes the first power terminal 206 and the The connection between the second power terminals 207 is described. The third active switch 151 is a thin film transistor, a triode, or a metal oxide semiconductor field effect transistor.
另外,可选地,所述保护电路15a进一步包括第一电容Q1与第二电容Q2。其中,第一电容Q1连接于第一传输端T5与加载有接地信号GND的设备地之间,所述第二电容Q2连接于第二传输端T6与加载有调制信号MGND的调制地之间。In addition, optionally, the protection circuit 15a further includes a first capacitor Q1 and a second capacitor Q2. The first capacitor Q1 is connected between the first transmission terminal T5 and the device ground loaded with the ground signal GND, and the second capacitor Q2 is connected between the second transmission terminal T6 and the modulation ground loaded with the modulation signal MGND.
可变更地,在其它实施方式中,所述调制电路21也可通过对驱动芯片20中的供电电源或参考电源进行调制,来达到对触摸显示面板10的所有信号进行整体同步调制,而并非限制对设备地进行调制。例如,所述调制电路21的调制端M除了可连接或用作前述第一接地端201之外(在调制地时),还可连接或用作前述第一电源端206(在调制供电电源时)。当连接或用作所述第一电源端206时,所述调制电路21连接于第一电源端206与第二电源端207之间。所述第一电源端206相对于第一接地端201来说,也称为供电电源端,二者所加载的电压保持恒定。Alternatively, in other embodiments, the modulation circuit 21 can also modulate all the signals of the touch display panel 10 by modulating the power supply or the reference power in the driving chip 20, without limitation. Modulate the equipment ground. For example, the modulation terminal M of the modulation circuit 21 can be connected or used as the aforementioned first power terminal 206 (when modulating the power supply), in addition to being connectable or used as the aforementioned first ground terminal 201 (when modulating the ground) ). The modulation circuit 21 is connected between the first power terminal 206 and the second power terminal 207 when connected or used as the first power terminal 206. The first power terminal 206 is also referred to as a power supply terminal with respect to the first ground terminal 201, and the voltages applied by the two are kept constant.
另外,除了所述第一电源端206与所述第一接地端201之外,驱动芯片20通常包括参考电源端(图未示),当第一电源端206用于加载第一电源电压、第一接地端201用于加载第二电源电压时,所述参考电源端用于加载第三电源电压,所述第三电源电压的高低介于所述第一电源电压与第二电源电压的高低之间,其中,所述第一电源电压与第二电源电压的压差保持恒定,所述第一电源电压与第三电源电压的压差保持恒定。所述参考电源端也可用作或连接所述调制端。即,所述供电电源端、参考电源端、和第一接地端三者中之一者用作或连接所述调制端,对应地,用作或连接所述调制端的电源电压包括调制信号。In addition, in addition to the first power terminal 206 and the first ground terminal 201, the driving chip 20 generally includes a reference power terminal (not shown), when the first power terminal 206 is used to load the first power voltage, When a ground terminal 201 is used to load a second power voltage, the reference power terminal is used to load a third power voltage, and the height of the third power voltage is between the first power voltage and the second power voltage. Meanwhile, the voltage difference between the first power voltage and the second power voltage is kept constant, and the voltage difference between the first power voltage and the third power voltage is kept constant. The reference power supply terminal can also be used or connected to the modulation terminal. That is, one of the power supply terminal, the reference power terminal, and the first ground terminal is used as or connected to the modulation terminal, and correspondingly, the power supply voltage used as or connected to the modulation terminal includes a modulation signal.
相应地,在第二时段W2,所述调制端M加载一恒定电压,所述驱动芯片20提供第二灰阶电压Vd2给像素电极103、提供第二公共电压Vc2给公共电极101,驱动所述触摸显示面板10执行图像显示;在第一时段W1,所述调制端M加载调制信号,所述驱动芯片20提供第一灰阶电压Vd1给像素电极103、提供第一公共电压Vc1给公共电极101,驱动所述触摸显示面板10执行图像显示的同时,进一步驱动公共电极101执行自电容触摸感测。Correspondingly, in the second period W2, the modulation terminal M is loaded with a constant voltage, the driving chip 20 supplies the second gray scale voltage Vd2 to the pixel electrode 103, provides the second common voltage Vc2 to the common electrode 101, and drives the Touching the display panel 10 to perform image display; in the first time period W1, the modulation terminal M loads a modulation signal, and the driving chip 20 supplies the first gray scale voltage Vd1 to the pixel electrode 103, and supplies the first common voltage Vc1 to the common electrode 101. While driving the touch display panel 10 to perform image display, the common electrode 101 is further driven to perform self-capacitance touch sensing.
请参阅图15,图15为所述显示处理电路205的一实施方式的结构示意图。所述显示处理电路205例如包括存储电路2051、解压缩电路2053、和色彩调整电路2055。所述存 储电路2051、解压缩电路2053、色彩调整电路2055依次相连接。所述存储电路2051进一步连接所述主控芯片3。所述色彩调整电路2055进一步通过电平转换单元264连接所述控制电路25。Please refer to FIG. 15. FIG. 15 is a schematic structural diagram of an embodiment of the display processing circuit 205. The display processing circuit 205 includes, for example, a storage circuit 2051, a decompression circuit 2053, and a color adjustment circuit 2055. The deposit The storage circuit 2051, the decompression circuit 2053, and the color adjustment circuit 2055 are sequentially connected. The storage circuit 2051 is further connected to the main control chip 3. The color adjustment circuit 2055 is further connected to the control circuit 25 by a level conversion unit 264.
所述存储电路2051用于接收来自主控芯片3的显示数据,并对接收到的显示数据进行存储。所述解压缩电路2053用于对来自主控芯片3的显示数据进行解压缩,并输出压缩后的显示数据给色彩调整电路2055。所述色彩调整电路2055对接收到显示数据进行色彩调整,例如,对显示数据进行色彩增强处理等,并输出调整后的显示数据给电平转换单元264。所述电平转换单元264对接收到的显示数据进行电平转换后,并输出电平转换后的显示数据给控制电路25。The storage circuit 2051 is configured to receive display data from the main control chip 3 and store the received display data. The decompression circuit 2053 is configured to decompress display data from the main control chip 3, and output the compressed display data to the color adjustment circuit 2055. The color adjustment circuit 2055 performs color adjustment on the received display data, for example, performs color enhancement processing or the like on the display data, and outputs the adjusted display data to the level conversion unit 264. The level converting unit 264 level-converts the received display data, and outputs the level-converted display data to the control circuit 25.
所述控制电路25输出相应的显示数据和时序信号给数据驱动电路29,以及进一步输出时序信号给扫描驱动电路28。所述扫描驱动电路28根据所述时序信号,对应输出相应的扫描开启信号给扫描线281。所述数据驱动电路29转换接收到的显示数据为灰阶电压,并根据时序信号输出相应的灰阶电压给相应的数据线291,以执行图像显示刷新。The control circuit 25 outputs corresponding display data and timing signals to the data driving circuit 29, and further outputs timing signals to the scan driving circuit 28. The scan driving circuit 28 correspondingly outputs a corresponding scan enable signal to the scan line 281 according to the timing signal. The data driving circuit 29 converts the received display data into a gray scale voltage, and outputs a corresponding gray scale voltage to the corresponding data line 291 according to the timing signal to perform image display refresh.
需要说明的是,所述显示处理电路205并不限于包括在此所述的电路,也可以没有其中某些电路或进一步包括其它的电路。It should be noted that the display processing circuit 205 is not limited to the circuits included herein, and some of the circuits may be omitted or further include other circuits.
另外,对于本申请各实施方式的触摸显示装置1以及电子设备100中也可减少或增加某些元件或组合电路等,对于本领域的一般技术人员而言,只要是通过公知常识、现有技术、并结合本申请的技术内容能够合理推导出的技术方案均应落入本申请的保护范围。In addition, some components or combination circuits and the like may be reduced or added to the touch display device 1 and the electronic device 100 of the embodiments of the present application, as long as the common knowledge and prior art are known to those skilled in the art. The technical solutions that can be reasonably derived in conjunction with the technical content of the present application should fall within the protection scope of the present application.
进一步地,由于所述调制电路21、显示处理电路205、触摸驱动电路23、显示驱动电路20a、控制电路25、以及电平转换单元264等电路都集成在单颗驱动芯片20中,而单颗芯片相较于多颗芯片节约空间,因此,所述触摸显示装置1占所述电子设备100的空间较小。另外,单颗芯片相较于多颗芯片更有利于触摸显示装置1的组装以及生产管理,提高生产效率,从而,降低所述电子设备100的制造成本。Further, since the modulation circuit 21, the display processing circuit 205, the touch driving circuit 23, the display driving circuit 20a, the control circuit 25, and the level converting unit 264 are all integrated in the single driving chip 20, the single chip The chip saves space compared to a plurality of chips, and therefore, the touch display device 1 occupies less space in the electronic device 100. In addition, a single chip is more advantageous for assembly and production management of the touch display device 1 than a plurality of chips, thereby improving production efficiency, thereby reducing the manufacturing cost of the electronic device 100.
以上各实施方式是以所述驱动芯片20驱动公共电极101执行自电容触摸感测为例进行说明,然,本申请并不局限于此,只要是基于相同或类似的想法对触摸显示装置进行改进,均应落在本申请的保护范围。The above embodiments are described by taking the driving chip 20 driving the common electrode 101 to perform self-capacitive touch sensing as an example. However, the present application is not limited thereto, as long as the touch display device is improved based on the same or similar ideas. , should fall within the scope of protection of this application.
除上述介绍的复用公共电极做自电容触摸感测的各实施方式之外,本申请也可通过额外设置一层触摸感测电极来执行触摸感测,这些实施例也都是可行的。In addition to the various embodiments of the multiplexed common electrode described above for self-capacitive touch sensing, the present application can also perform touch sensing by additionally providing a layer of touch sensing electrodes, and these embodiments are also possible.
虽然实施方式这里已经关于具体的配置和操作序列进行描述,但是应该理解,替代的实施方式可增加、省略或改变元件、操作等等。因此,这里公开的实施方式意味着是实施例而不是限制。 Although the embodiments have been described herein with respect to specific configurations and operational sequences, it should be understood that alternative embodiments may add, omit, or change elements, operations, and the like. Accordingly, the embodiments disclosed herein are meant to be illustrative rather than limiting.

Claims (23)

  1. 一种驱动芯片,用于驱动一触摸显示面板执行图像显示与触摸感测,其中,所述触摸显示面板包括多个公共电极;所述驱动芯片用于驱动所述多个公共电极执行图像显示,还用于间歇性驱动所述多个公共电极执行触摸感测,定义存在公共电极执行触摸感测的时段为第一时段,定义所述多个公共电极均未执行触摸感测的时段为第二时段;所述驱动芯片包括:a driving chip for driving a touch display panel to perform image display and touch sensing, wherein the touch display panel includes a plurality of common electrodes; the driving chip is configured to drive the plurality of common electrodes to perform image display, And a method for intermittently driving the plurality of common electrodes to perform touch sensing, defining that a period in which the common electrode performs touch sensing is a first time period, and defining a time period in which the plurality of common electrodes are not performing touch sensing is a second time a period of time; the driver chip includes:
    第一接地端,所述驱动芯片输出给所述触摸显示面板的电压信号均以所述第一接地端上的电压信号为基准;a first ground end, wherein a voltage signal output by the driving chip to the touch display panel is based on a voltage signal on the first ground end;
    调制电路,用于在第一时段产生一调制信号给所述第一接地端,在第二时段产生一恒定电压信号给所述第一接地端;a modulation circuit, configured to generate a modulation signal to the first ground end during a first time period, and generate a constant voltage signal to the first ground end during a second time period;
    触摸驱动电路,用于在第一时段驱动同一公共电极同时执行图像显示与自电容触摸感测;公共电压产生电路,用于在第二时段驱动所述多个公共电极执行图像显示。a touch driving circuit for simultaneously performing image display and self-capacitive touch sensing while driving the same common electrode in a first period; and a common voltage generating circuit for driving the plurality of common electrodes to perform image display in a second period of time.
  2. 如权利要求1所述的驱动芯片,其特征在于:在第一时段,通过所述调制信号同步调制所述驱动芯片给所述触摸显示面板的电压信号,所述驱动芯片在驱动所述触摸显示面板执行图像显示的同时,进一步驱动公共电极执行自电容触摸感测。The driving chip according to claim 1, wherein a voltage signal of said driving chip to said touch display panel is synchronously modulated by said modulation signal during said first period, said driving chip driving said touch display While the panel performs image display, the common electrode is further driven to perform self-capacitance touch sensing.
  3. 如权利要求2所述的驱动芯片,其特征在于:所述触摸驱动电路用于分时驱动所述多个公共电极执行触摸感测,在第一时段,当所述触摸驱动电路与部分公共电极电连接时,所述公共电压产生电路与其余的公共电极电连接,所述触摸驱动电路提供给公共电极的触摸驱动信号与所述公共电压产生电路提供给公共电极的第一公共电压相同。The driving chip according to claim 2, wherein said touch driving circuit is configured to time-divisionally drive said plurality of common electrodes to perform touch sensing, and in said first period of time, said touch driving circuit and said partial common electrode When electrically connected, the common voltage generating circuit is electrically connected to the remaining common electrodes, and the touch driving signal supplied from the touch driving circuit to the common electrode is the same as the first common voltage supplied from the common voltage generating circuit to the common electrode.
  4. 如权利要求3所述的驱动芯片,其特征在于:对于同一公共电极,当所述触摸驱动电路提供所述触摸驱动信号给所述公共电极时,进一步接收来自所述公共电极输出的触摸感测信号。A driving chip according to claim 3, wherein for the same common electrode, when said touch driving circuit supplies said touch driving signal to said common electrode, further receiving touch sensing from said common electrode output signal.
  5. 如权利要求4所述的驱动芯片,其特征在于:所述触摸驱动电路提供给公共电极的触摸驱动信号与所述公共电压产生电路提供给公共电极的第一公共电压均为同一电压信号经所述调制信号调制后的信号。The driving chip according to claim 4, wherein the touch driving signal supplied from the touch driving circuit to the common electrode and the first common voltage supplied from the common voltage generating circuit to the common electrode are the same voltage signal. The modulated signal is modulated.
  6. 如权利要求1-5中任意一项所述的驱动芯片,其特征在于:所述触摸显示面板进一步包括多个像素电极,所述多个像素电极用于与所述多个公共电极之间形成边缘电场或平行电场;在第一时段,所述驱动芯片通过提供第一灰阶电压给所述多个像素电极,提供相同的第一公共电压和触摸驱动信号给所述多个公共电极来驱动所述触摸显示面板执行图像显示刷新的同时,进一步驱动公共电极执行自电容触摸感测,其中,所述第一灰阶电压、所述第一公共电压、所述触摸驱动信号均随所述调制信号的升高而升高、随所述调制信号的降低而降低。The driving chip according to any one of claims 1 to 5, wherein the touch display panel further comprises a plurality of pixel electrodes for forming with the plurality of common electrodes a fringe electric field or a parallel electric field; during a first period of time, the driving chip drives the plurality of pixel electrodes by providing a first gray scale voltage, providing the same first common voltage and a touch driving signal to the plurality of common electrodes to drive The touch display panel performs image display refreshing, further driving the common electrode to perform self-capacitive touch sensing, wherein the first gray scale voltage, the first common voltage, and the touch driving signal are all accompanied by the modulation The rise in signal rises and decreases as the modulation signal decreases.
  7. 如权利要求6所述的驱动芯片,其特征在于:在同一时刻,所述驱动芯片提供给第一灰阶电压的像素电极与提供给触摸驱动信号的公共电极之间间隔至少一行公共电极。 A driving chip according to claim 6, wherein at the same time, said driving chip supplies at least one row of common electrodes between a pixel electrode supplied to the first gray scale voltage and a common electrode supplied to the touch driving signal.
  8. 如权利要求1所述的驱动芯片,其特征在于:所述第一时段与所述第二时段交替进行。A driving chip according to claim 1, wherein said first period of time and said second period of time alternate.
  9. 如权利要求6所述的驱动芯片,其特征在于:所述恒定电压信号为接地信号。The driver chip of claim 6 wherein said constant voltage signal is a ground signal.
  10. 如权利要求4所述的驱动芯片,其特征在于:所述驱动芯片进一步包括信号处理电路,所述信号处理电路连接所述触摸驱动电路,所述信号处理电路用于根据所述触摸驱动电路接收到的触摸感测信号获得触摸位置信息。A driving chip according to claim 4, wherein said driving chip further comprises signal processing circuit, said signal processing circuit is connected to said touch driving circuit, said signal processing circuit is operative to receive according to said touch driving circuit The touch sensing signal is obtained to obtain touch position information.
  11. 如权利要求10所述的驱动芯片,其特征在于:所述信号处理电路上的电压信号以所述第一接地端上的电压信号为基准。A driver chip as claimed in claim 10, wherein the voltage signal on said signal processing circuit is referenced to a voltage signal on said first ground terminal.
  12. 如权利要求6所述的驱动芯片,其特征在于:所述公共电压产生电路和所述触摸驱动电路通过一数据选择电路可选择性连接所述多个公共电极。A driving chip according to claim 6, wherein said common voltage generating circuit and said touch driving circuit are selectively connectable to said plurality of common electrodes via a data selecting circuit.
  13. 如权利要求14所述的驱动芯片,其特征在于:所述驱动芯片包括所述数据选择电路。A driver chip according to claim 14, wherein said driver chip comprises said data selection circuit.
  14. 如权利要求15所述的驱动芯片,其特征在于:所述数据选择电路包括一第一数据选择器和多个第二数据选择器,其中,所述第一数据选择连接所述公共电压产生电路,并进一步用于与所述多个公共电极连接;所述多个第二数据选择器与所述触摸驱动电路连接,且每一第二数据选择器分别用于连接部分公共电极。A driving chip according to claim 15, wherein said data selection circuit comprises a first data selector and a plurality of second data selectors, wherein said first data is selectively connected to said common voltage generating circuit And further for connecting to the plurality of common electrodes; the plurality of second data selectors are coupled to the touch drive circuit, and each of the second data selectors is for connecting a portion of the common electrode.
  15. 如权利要求6所述的驱动芯片,其特征在于:所述驱动芯片进一步包括第二接地端,所述第二接地端用于连接设备地,接收一接地信号;所述调制电路连接在所述第一接地端和所述第二接地端之间,用于根据所述接地信号和一驱动信号产生所述调制信号。The driving chip according to claim 6, wherein the driving chip further comprises a second ground end, wherein the second ground end is used to connect to the device ground, and receives a ground signal; the modulation circuit is connected to the The first ground end and the second ground end are configured to generate the modulation signal according to the ground signal and a driving signal.
  16. 如权利要求17所述的驱动芯片,其特征在于:所述驱动信号的电平高于所述接地信号的电平。A driving chip according to claim 17, wherein said driving signal has a level higher than a level of said ground signal.
  17. 如权利要求17所述的驱动芯片,其特征在于:所述驱动芯片进一步包括显示驱动电路、显示处理电路、和电平转换单元,所述显示处理电路用于接收来自一主控芯片的显示数据,对所述显示数据进行存储、解压缩、和色彩调整,并输出调整后的显示数据给所述电平转换单元进行转换,所述电平转换单元对所述显示数据进行电平转换,并输出转换后的显示数据给所述显示驱动电路,所述显示驱动电路根据接收到显示数据对应产生相应的灰阶电压给所述多个像素电极。A driving chip according to claim 17, wherein said driving chip further comprises a display driving circuit, a display processing circuit, and a level converting unit, said display processing circuit for receiving display data from a main control chip And storing, decompressing, and color-adjusting the display data, and outputting the adjusted display data to the level conversion unit, wherein the level conversion unit performs level conversion on the display data, and And outputting the converted display data to the display driving circuit, and the display driving circuit generates a corresponding gray scale voltage corresponding to the plurality of pixel electrodes according to the received display data.
  18. 如权利要求19所述的驱动芯片,其特征在于:所述显示驱动电路上的电压信号以所述第一接地端上的电压信号为基准,所述显示处理电路上的电压信号以所述第二接地端上的电压信号为基准。A driving chip according to claim 19, wherein said voltage signal on said display driving circuit is based on a voltage signal on said first ground terminal, and said voltage signal on said display processing circuit is said The voltage signal on the two ground terminals is the reference.
  19. 如权利要求1所述的驱动芯片,其特征在于:所述调制信号包括第一参考信号和第二参考信号,所述第一参考信号的电平低于所述第二参考信号的电平,其中,所述第一参考信号的持续时间大于或等于所述第二参考信号的持续时间。The driving chip according to claim 1, wherein said modulation signal comprises a first reference signal and a second reference signal, said first reference signal having a level lower than a level of said second reference signal, The duration of the first reference signal is greater than or equal to the duration of the second reference signal.
  20. 如权利要求21所述的驱动芯片,其特征在于:所述第一参考信号的持续时间是所述第二参考信号的持续时间的两倍。 A driving chip according to claim 21, wherein the duration of said first reference signal is twice the duration of said second reference signal.
  21. 如权利要求21所述的驱动芯片,其特征在于:所述调制信号为周期性变化的方波信号。A driving chip according to claim 21, wherein said modulation signal is a periodically varying square wave signal.
  22. 一种触摸显示装置,包括触摸显示面板和驱动芯片,所述驱动芯片用于驱动所述触摸显示面板执行图像显示和触摸感测,其中,所述驱动芯片为上述权利要求1-23中任意一项所述的驱动芯片。A touch display device includes a touch display panel for driving an image display and a touch sensing by the touch display panel, wherein the driving chip is any one of the above claims 1-23 The driver chip described in the item.
  23. 一种电子设备,包括上述权利要求24所述的触摸显示装置。 An electronic device comprising the touch display device of claim 24.
PCT/CN2017/115729 2017-12-12 2017-12-12 Driving chip, touch display apparatus, and electronic device WO2019113797A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/115729 WO2019113797A1 (en) 2017-12-12 2017-12-12 Driving chip, touch display apparatus, and electronic device
CN201790000301.1U CN209803753U (en) 2017-12-12 2017-12-12 Drive chip, touch display device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/115729 WO2019113797A1 (en) 2017-12-12 2017-12-12 Driving chip, touch display apparatus, and electronic device

Publications (1)

Publication Number Publication Date
WO2019113797A1 true WO2019113797A1 (en) 2019-06-20

Family

ID=66818765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115729 WO2019113797A1 (en) 2017-12-12 2017-12-12 Driving chip, touch display apparatus, and electronic device

Country Status (2)

Country Link
CN (1) CN209803753U (en)
WO (1) WO2019113797A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111930267B (en) * 2020-09-18 2021-02-12 深圳市汇顶科技股份有限公司 Touch control chip, code printing method and electronic equipment
WO2022056809A1 (en) 2020-09-18 2022-03-24 深圳市汇顶科技股份有限公司 Touch control chip, coding method, and electronic device
CN115769178A (en) * 2021-06-25 2023-03-07 京东方科技集团股份有限公司 Touch display device and method of operating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424914A (en) * 2012-05-18 2013-12-04 乐金显示有限公司 Liquid crystal display device and method for driving the same
CN105335009A (en) * 2015-12-03 2016-02-17 深圳磨石科技有限公司 Touch display device and electronic device
CN105373257A (en) * 2015-12-03 2016-03-02 深圳磨石科技有限公司 Touch display apparatus and electronic device
US9373295B2 (en) * 2013-06-25 2016-06-21 Japan Display Inc. Liquid crystal display device with touch panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424914A (en) * 2012-05-18 2013-12-04 乐金显示有限公司 Liquid crystal display device and method for driving the same
US9373295B2 (en) * 2013-06-25 2016-06-21 Japan Display Inc. Liquid crystal display device with touch panel
CN105335009A (en) * 2015-12-03 2016-02-17 深圳磨石科技有限公司 Touch display device and electronic device
CN105373257A (en) * 2015-12-03 2016-03-02 深圳磨石科技有限公司 Touch display apparatus and electronic device

Also Published As

Publication number Publication date
CN209803753U (en) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2019113797A1 (en) Driving chip, touch display apparatus, and electronic device
CN107885374B (en) Driving circuit
WO2018058645A1 (en) Touch display unit and electronic device
CN107885368B (en) Touch display device and electronic apparatus
WO2019113801A1 (en) Drive chip, touch display device, and electronic device
WO2019113799A1 (en) Drive chip, touch display apparatus, and electronic device
CN109920384B (en) Drive chip, touch display device, and electronic apparatus
CN107888756B (en) Mobile phone
WO2018058650A1 (en) Touch display unit and electronic device
WO2018058646A1 (en) Touch display unit and electronic device
WO2018058664A1 (en) Electronic device
WO2019113796A1 (en) Touch display device and electronic apparatus
WO2019113802A1 (en) Drive chip, touch display apparatus, and electronic device
WO2019113800A1 (en) Driving chip, touch display device, and electronic apparatus
WO2019113798A1 (en) Driver chip, touch display apparatus, and electronic device
WO2019113794A1 (en) Touch display apparatus and electronic device
CN107885367B (en) Touch display device and electronic apparatus
WO2018058665A1 (en) Mobile phone
WO2018058657A1 (en) Touch display unit and electronic device
WO2018058659A1 (en) Driver circuit
WO2018058654A1 (en) Touch display unit and electronic device
WO2018058652A1 (en) Liquid crystal display unit having touch function and electronic device
WO2018058649A1 (en) Touch display unit and electronic device
WO2018058647A1 (en) Touch display unit and electronic device
WO2018058662A1 (en) Touch display unit and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934539

Country of ref document: EP

Kind code of ref document: A1