WO2019112366A1 - 생체인식 연령 예측 모델 생성 방법 및 장치 - Google Patents
생체인식 연령 예측 모델 생성 방법 및 장치 Download PDFInfo
- Publication number
- WO2019112366A1 WO2019112366A1 PCT/KR2018/015516 KR2018015516W WO2019112366A1 WO 2019112366 A1 WO2019112366 A1 WO 2019112366A1 KR 2018015516 W KR2018015516 W KR 2018015516W WO 2019112366 A1 WO2019112366 A1 WO 2019112366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biometric
- age
- user
- prediction model
- biometric age
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
Definitions
- the present invention relates to a method and apparatus for generating a biometric age prediction model.
- the present invention easily identifies the current health status of a person in real life by using biometric health indicators such as his or her physical measurements such as height and weight, living environment, lifestyle, etc., , Predict future disease risk probabilities, and make it possible to prevent disease through behavioral correction based on the effects and effects of each indicator.
- biometric health indicators such as his or her physical measurements such as height and weight, living environment, lifestyle, etc.
- a typical conventional technique for predicting the biological age using the examination index is the method and system for generating a biological age calculation model, which is Patent Application No. 10-2013-0141461, and a method and system for calculating the biological age.
- This technique uses a combination of variables to maximize the correlation coefficient with the actual age based on the selected variables and to select the variables that constitute the bio-computation model through principal component analysis based on the results of the health examinations performed by the examinees
- the value of a straight line type can be handled.
- a model is constructed around a variable having a large variance value and a direction and reflects a non-
- the conventional prediction technique as described above is based on medical information. If the examination is not performed by an expert, an individual can not measure his / her biological age, and compared with the actual age by the measured biological age Although it is possible to compare the individual's health status relatively, there is a difficulty in applying the disease to the disease because the risk probability of the disease is not predicted.
- the present invention has been made to solve the above-mentioned problems of the prior art, and it is an object of the present invention to provide a method and apparatus for reducing the risk of deriving a tilting bias value from an abnormal value of a variable value, Using the ElasticNet regression model, which is one of the learning methods, the biometric age is predicted and the probability of occurrence of the present chronic diseases (hypertension, diabetes, dyslipidemia) And to provide a method and apparatus for generating a biometric age prediction model that can be predicted with a prediction power higher than that of the age.
- the present invention relates to a method and apparatus for solving the problems of the above-described conventional arts, and is directed to a method and apparatus for estimating a risk of a chronic disease using a biometric age estimation algorithm based on an individual's perceptible health index, A method for predicting probability, and a method and apparatus for generating a biometric age prediction model capable of identifying a high risk group of chronic diseases.
- a method for generating a biometric age prediction model includes receiving a plurality of users' sex, age, and a plurality of biometric indices; Selecting a plurality of biometric index parameters related to sex or age as prediction parameters to be used for biometric age prediction of the user, inputting the selected prediction parameters, and outputting items relating to biometric age prediction results Estimating a biometric age of a first user using the biometric age prediction model, and estimating a biometric age of the first user based on the predicted biometric age of the first user, And predicting the probability of a chronic disease risk.
- the step of selecting as the predictive variable includes a step of standardizing the biometric index parameter only for a continuous variable among the plurality of biometric index variables to extract a standardized variable
- the prediction parameter which is an input variable of the biometric age prediction model, may include the standardized variable.
- the step of predicting the risk of a chronic disease includes predicting a risk probability of a chronic disease using a predicted first user's biometric age using a first algorithm, Using the second algorithm, the biometric age is predicted to predict the risk of a chronic disease, and each of the predicted chronic disease risk probability value and the chronic disease risk probability value can be divided into four levels in association with a preset reference level .
- the probability of a chronic disease occurrence is predicted by comparing the biometric age of the first user with the actual age, If the difference in age is less than 0, the first user is predicted to be healthier than the actual age, and if the difference between the biometric age and actual age is greater than or equal to 0, it can be predicted that the first user has a health risk.
- a biometric authentication method comprising: comparing an actual age of a first user with a predicted biometric age of a first user; The method of claim 1, further comprising: providing an improvement measure based on the ranking, wherein the comparing step divides the biometric age of the first user into at least one of a plurality of biometric evaluation stages, It is possible to provide an improvement corresponding to at least one of a plurality of biometric indexes to be improved by the first user corresponding to the biometric evaluation step.
- the method further comprises providing an estimate of the biometric age of the first user when the plurality of biometric indices of the first user are modified, And compare the plurality of existing biometric indices of the first user with the plurality of biometric indices of the first user after the improvement.
- the male predictive variable included in a plurality of biometric index parameters related to the gender includes at least one of a year at the time of the survey, current age, current workplace, income level, education level, marital status, , History of hypothyroidism, past history of dyslipidemia, past history of allergy, past history of thyroid disease, history of asthma, smoking history, smoking period, daily smoking amount, secondhand smoke, drinking status and regular exercise.
- the female predictive variables included in the plurality of biometric index parameters related to the gender include the year at the time of the survey, current age, income level, education level, marital status, body weight, height, , History of hypertension, history of dyslipidemia, history of allergy, past history of thyroid disease, history of asthma, smoking status, smoking period, daytime smoking, secondhand smoke, drinking status, regular exercise, menarche age, contraceptive use and pregnancy can do.
- a biometric age prediction model generation apparatus includes a receiving unit that receives sex, age, and a plurality of biometric indices of a plurality of users, a plurality of biometric index variables related to sex or age of a plurality of users, A predictive model building unit for building a biometric age prediction model for selecting a predictive variable to be used for predicting the biometric age of the user, inputting the predictive variable and outputting an item related to the biometric age prediction result, A biometric age predicting unit for predicting a biometric age of a first user using the biometric age prediction model and a chronicity prediction unit for predicting a probability of a chronic disease risk of the first user based on the biometric age of the predicted first user And a disease predicting unit.
- an individual himself / herself can confirm his / her present health condition as an index of biometric age, and can identify and predict the probability of a chronic disease risk, Through the secondary prevention of the proposed diseases through the periodic diagnosis and correction of their health status can improve the health level.
- the above-mentioned problem solving means of the present invention it is possible to predicting the current disease probability / future probability based on the recognizable biomarker of an individual, and to provide a personalized measure for disease prevention based on the predicted disease risk probability value , Provides a tool to visualize the improvement of health status by mediating the occurrence of disease or entry as a risk group through the prediction of chronic disease probability such as individual hypertension, diabetes, and chronic kidney disease. People with chronic illnesses can be alerted to secondary prevention and can later control their biometric indices themselves to help manage their normal health so that they do not reach a final state, such as cardiovascular disease or death.
- the risk prediction model can be used with APP, wearable machine, AI secretary It is expected that it can be applied to the prediction of disease risk probability and disease prevention through periodic self - examination by applying to the same system.
- FIG. 1 is a schematic diagram of an apparatus for generating a biometric age prediction model according to an embodiment of the present invention.
- FIG. 2 is a schematic block diagram of an apparatus for generating a biometric age prediction model according to an embodiment of the present invention.
- FIG. 3 is a diagram for explaining a method of learning a machine learning algorithm of a biometric age prediction model generation apparatus according to an embodiment of the present invention.
- FIG. 4 is a graph showing a biometric age prediction result in a device for generating a biometric age prediction model according to an embodiment of the present invention, in comparison with an actual age in each of the sexes.
- FIGS. 5A to 5D are graphs comparing a risk prediction probability of a chronic disease using a biometric age prediction value and an actual age in a biometric age prediction model generating apparatus according to an embodiment of the present invention.
- FIG. 6A is a diagram illustrating a result of predicting the risk of a chronic disease present in a person using the actual age and the biometric age in the apparatus for generating a biometric age prediction model according to an embodiment of the present invention
- FIG. 6B is a diagram illustrating a result of predicting the risk of a chronic disease present in a person using the actual age and the biometric age in the biometric age prediction model generation apparatus according to an embodiment of the present invention.
- FIG. 7 is a first flowchart illustrating a flow of a biometric age prediction model generation method according to an embodiment of the present invention.
- 8A and 8B are second flowcharts illustrating a flow of a biometric age prediction model generation method according to an embodiment of the present invention.
- FIG. 9 is a third flowchart illustrating a flow of a biometric age prediction model generation method according to an embodiment of the present invention.
- FIG. 10 is a fourth flowchart showing a flow of a biometric age prediction model generation method according to an embodiment of the present invention.
- the present invention relates to a method for predicting the risk of a chronic disease using a biometric age estimation algorithm based on a biometric age prediction algorithm based on an individual's perceptible health index, and a method for identifying a high risk group of a chronic disease.
- the biometric age can be compared with the actual age, and the probability of chronic disease can be grasped and a method for secondary prevention of the disease can be suggested by adjusting the perceptible health index.
- FIG. 1 is a schematic diagram of an apparatus for generating a biometric age prediction model according to an embodiment of the present invention.
- a biometric age prediction model generation apparatus 1 is configured to generate a biometric age prediction model that reflects the degree of biometrics of a general population using a health index, Model can be provided.
- the biometric age generated through the algorithm of the above model can predict the risk of occurrence and risk of each disease for a chronic disease diagnosed through an expert-measured test value in comparison with the actual age.
- the biometric age prediction model generation apparatus 1 can predict the biometric age by receiving an individual's recognizable health index after generating the algorithm of the constructed biometric age.
- the biometric age prediction model generation device 1 can be applied to the technology field of a disease occurrence prediction model and a personalized preventive management service. More specifically, the biometric age using biometric biometrics allows the individual to check his / her health condition, to control his or her own indicators to enable him / her to perform usual health management, And to select high risk groups in clinical trials.
- the present invention can be applied to a product utilizing web and app (APP) together with a company providing user services such as Google, Apple, Samsung, and IBM.
- APP web and app
- a biometric age prediction model generation apparatus 1 may provide a biometric age prediction menu to a user terminal 2 according to an embodiment of the present invention.
- the application program provided by the biometric age prediction model generation device 1 may be downloaded and installed by the user terminal 2, and a biometric age prediction menu may be provided through the installed application.
- the biometric age prediction model generation apparatus 1 includes all kinds of servers, terminals, or devices that transmit / receive data, contents, and various communication signals to / from the user terminal 2 via a network and have functions of data storage and processing can do.
- the user terminal 2 is a device that interacts with the biometric age prediction model generation device 1 via a network and can be a device such as a smartphone, a smart pad, a tablet PC, a wearable device, Personal Communication System (PDA), International Mobile Telecommunication (IMT) -2000, Code Division Multiple Access (CDMA) ) -2000, W-Code Division Multiple Access (W-CDMA), and Wibro (Wireless Broadband Internet) terminals, desktop computers and smart TVs.
- PDA Personal Communication System
- IMT International Mobile Telecommunication
- CDMA Code Division Multiple Access
- W-CDMA Wideband Internet
- An example of a network for information sharing between the biometric age prediction model generation apparatus 1 and the user terminal 2 is a 3rd Generation Partnership Project (3GPP) network, a Long Term Evolution (LTE) network, a 5G network, a World Interoperability a WAN (Wide Area Network), a PAN (Personal Area Network), a Bluetooth network, a Wifi network, a WAN network, a wired or wireless network, a wired or wireless Internet, , An NFC (Near Field Communication) network, a satellite broadcasting network, an analog broadcasting network, a DMB (Digital Multimedia Broadcasting) network, and the like.
- 3GPP 3rd Generation Partnership Project
- LTE Long Term Evolution
- 5G Fifth Generation Partnership Project
- WLAN Wide Area Network
- PAN Personal Area Network
- Bluetooth Bluetooth network
- Wifi network Wireless Fide Area Network
- a WAN network Wide Area Network
- a wired or wireless network a wired or wireless Internet
- An NFC Near Field Communication
- FIG. 2 is a schematic block diagram of an apparatus for generating a biometric age prediction model according to an embodiment of the present invention.
- the biometric age prediction model generating apparatus 1 may include a receiving unit 11, a predictive model building unit 12, a biometric age predicting unit 13, and a chronic disease predicting unit 14 have.
- the configuration of the biometric age prediction model generation device 1 is not limited to those described above.
- the biometric age prediction model generation apparatus 1 may further include a database for storing information.
- the receiving unit 11 can receive sex, age, and a plurality of biometric indices of a plurality of users.
- the biometric index can be an indicator that includes factors such as body composition values and living environment, habits, and symbols, such as body weight and waist circumference that can be easily recognized by the general public.
- the receiving unit 11 can receive the diagnosis of the chronic disease of the user and the treatment force input.
- the receiving unit 11 can receive the user's individual sociocultural, bodily constitutional values and living environment habit input.
- the receiving unit 11 can receive a biometrics index (biological index) that can be recognized by an individual.
- the receiving unit 11 may receive the user's sex, age, and a plurality of biometric indices (biological indices) from the user terminal 2. [
- the predictive model building unit 12 can automatically generate a date input in connection with sex, age, and a plurality of biometric indices of a plurality of users received by the receiving unit 11.
- the predictive model building unit 12 may classify a plurality of biometric index variables related to gender or age of a plurality of users as a predictive variable used for biometric age prediction of a user. In other words, the predictive model building unit 12 can select a predictive variable used for predicting the biometric age of a user by dividing a plurality of biometric index variables related to a male. In addition, the prediction model building unit 12 may divide a plurality of biometric index parameters related to a woman and select a prediction parameter used in predicting the user's biometric age. In addition, the predictive model building unit 12 may select a predictive variable related to a male as a predictive variable used for biometric age prediction with respect to each age.
- the predictive model building unit 12 can select a predictive variable related to a woman as a predictive variable used for biometric age prediction with respect to each age.
- the prediction model construction unit 12 selects at least one biometric index parameter among a plurality of biometric index parameters as a predictive variable with respect to sex, and selects at least one of a plurality of age-related biometric index parameters
- the biometrics index variable of the biometrics can be selected as the predictive variable.
- the predictive model building unit 12 may classify the male predictive variables included in the plurality of biometric index variables related to sex by the year, current age, income level, education level, marital status, body weight, height, waist circumference , History of hypertension, history of dyslipidemia, past history of allergy, history of thyroid disease, history of asthma, smoking status, smoking period, daytime smoking, secondhand smoke, alcohol and regular exercise.
- the prediction model building unit 12 may classify the female predictive variables included in the plurality of biometric index parameters related to sex by the year, current age, income level, education level, marital status, body weight, height, waist circumference, hip There was no statistically significant difference in the prevalence of diabetes mellitus between the two groups. The prevalence of diabetes mellitus was significantly higher than that of the prevalence of diabetes mellitus. Can be selected.
- the prediction model building unit 12 can standardize the biometric index parameters only for the continuous variables among the biometric index variables included in the plurality of biometric index variables, have.
- a continuous variable can mean that it can be classified according to the size or amount of the attributes included in the plurality of biometric indexes.
- the predictive model building unit 12 constructs a predictive model by standardizing the variables having different distributions and units to lower the risk of the outliers, and each variable (biometric index parameter) is assigned to the final model (biometric age prediction model) The degree of the effect can be standardized.
- the prediction model building unit 12 can proceed standardization on each of the male and female of the continuous variable by using the following [Equation 1].
- Standardized variables can be selected from variables (biometric index parameters) included in the final model (biometric age prediction model) using the ElasticNet regression model, one of the machine learning algorithms.
- the standardized variable may be a variable included in the predictive variable, which is an input variable of the biometric age prediction model.
- Equation 2 relates to an ElasticNet regression model method.
- the predictive model building unit 12 can select a significant key variable (predictive variable) related to the actual age using the model result using the above equation.
- prediction model construction unit 12 also calculates the influence on the biological age of each variable the coefficient values can also be calculated.
- the prediction model building unit 12 can obtain the final verification value by performing 10-fold cross validation using the following Equation 3 to verify the accuracy of the predicted biometric age.
- FIG. 3 is a diagram for explaining a method of learning a machine learning algorithm of a biometric age prediction model generation apparatus according to an embodiment of the present invention.
- the prediction model building unit 12 can construct a biometric age prediction model in which a predictive variable is input and an item related to a biometric age prediction result is output.
- the predictive model building unit 12 identifies the influence of each variable by using input data (a plurality of biometric index variables related to sex or age of a plurality of users), calculates an elastic net regression model model biometric age can be output by learning algorithms.
- the biometric age prediction model can be constructed to include all the variables that are divided into male and female.
- FIG. 4 is a graph showing a biometric age prediction result in a device for generating a biometric age prediction model according to an embodiment of the present invention, in comparison with an actual age in each of the sexes.
- the biometric age prediction model generation apparatus 1 calculates a biometric age of each male and female using the generated biometric age prediction model, and calculates a biometric age distribution The results of regression analysis can be confirmed.
- the biometric age predicting unit 13 can estimate the biometric age of the first user using the biometric age prediction model.
- the biometric age predicting unit 13 predicts the sex, age, and plural biometric indices of the first user in the biometric age prediction model constructed based on sex, age, and plural biometric indices of a plurality of users And the biometric age of the first user can be predicted.
- the biometric age predicting unit 13 can construct a biometric age prediction model (biometric age generation algorithm) to predict the biometric age.
- Biometric age prediction models can be algorithms generated using a number of biometric indices (biomarkers) that are known to be a major risk factor for chronic diseases.
- biometric age prediction model biometric age generation algorithm
- biometric age generation algorithm may be an algorithm that is highly related to the present age and has less variability.
- the biometric age predicting unit 13 can express a man's biometric age calculating equation as [Equation 4].
- Biometric man age 65.111 + 0.631 * Year time (irradiation time of year -Mean investigation at the time of year) / SD survey] + -0.404 * (Key key -Mean) / SD Key -2.586 * (weight - Mean weight ) / SD weight ] + 2.101 * [(waist circumference - mean waist circumference ) / SD waist circumference ] -0.029 * [(hip circumference - mean hip circumference ) / SD hip circumference ] + 0 * [no history of hypertension] +2.772 * [History of hypertension] + 0 * [no history of dyslipidemia] +0.104 * history of dyslipidemia + 0 * [no history of allergy] -0.562 * [history of allergy] + 0 * [no previous history of thyroid disease] [History of having asthma] + 0 * [history of asthma] + 0 * [history of asthma] + 0 * [history of asthma] + 0 * [no
- the biometric age predicting unit 13 can express the biometric age calculating formula of the woman as shown in [Equation 5].
- Biometric age female 57.306 + 1.107 * [Year of investigation - year at the time of Mean investigation / year of SD survey ] + -0.805 * [(key-Mean key) / SD key] -1.142 * [ - Mean weight / SD weight + 1.961 * [(waist circumference - mean waist circumference ) / SD waist circumference ] -0.197 * [(hip circumference - mean hip circumference ) / SD hip circumference ] + 0 * [no history of hypertension] [History of hyperlipidemia] + 0 * [no history of dyslipidemia] +2.630 * [history of dyslipidemia] + 0 * [no history of allergy] -0.670 * [history of allergy] + 0 * [thyroid disease [History of asthma] +0.680 * [history of previous thyroid disease] + 0 * [history of no asthma] +0.707 * [history of asthma] + 0 * [no smoking] -2.059 * [pas
- the biometric age predicting unit 13 calculates the biometric age of a male user by applying a male predictive variable included in a plurality of biometric index parameters related to sex to [Equation 4] .
- the biometric age predicting unit 13 can calculate the biometric age of a user who is a female by applying the female predictive variable included in a plurality of biometric index parameters related to sex to the [Equation 5].
- the biometric age predicting unit 13 may compare the actual age of the first user with the biometric age of the predicted first user.
- the actual age of the first user may be generated based on the information received from the receiving unit 11.
- the biometric age predicting unit 13 may acquire the actual age (the age on the calendar) of the user using the input of the first user's date of birth and the current (today) date.
- the biometric age predicting unit 13 may calculate a difference value between the actual age of the user (age on the calendar) and the biometric age.
- the biometric age predicting unit 13 may classify the biometric age of the first user into at least one of a plurality of biometric evaluation stages.
- the plurality of biometric assessment steps may include a biological very young / youth / normal level / aging / aging risk status.
- the biometric age predicting unit 13 can evaluate the actual age (age on the calendar) and the biometric age using the biometric age evaluation algorithm.
- Biometric age assessment algorithms are: 1. biological very young state phase, 2. biological young state phase, 3. normal state phase phase, 4. biological aging phase, 5. biological aging risk phase, The age of the subject) and the biometric age.
- the biometric age predicting unit 13 distinguishes the biological very young / youth / normal level / aging / aging risk state in five steps by the biometric age evaluation algorithm and evaluates the explanatory power explaining the biometric age And priorities can be assigned to them to select biological indicators based on priorities. For example, the biometric age predicting unit 13 can be classified into a very young biological state when the actual age of the user is 30 years old and the biometric age is 23 years old. On the other hand, the biometric age predicting unit 13 can be classified into a biological aging risk level when the actual age of the user is 30 years old and the biometric age is 50 years old.
- the biometric age predicting unit 13 can provide an improvement measure according to the priorities of a plurality of biometric indexes to be improved by the first user based on the comparison result. In other words, the biometric age predicting unit 13 can provide personalized information on the indexes to be improved by the index guidance algorithm for evaluating the improvement possibility of the biological index. In addition, the biometric age predicting unit 13 can provide an improvement measure according to the priority of the biological index to be improved by the user (first user). For example, an improvement may be to suggest improvements in one or more of the plurality of biometric indices so that the biometric age of the predicted user may be younger than the actual age, in other words, to be in a biologically young (healthy) state . For example, the biometric age predicting unit 13 may provide improvements to the priorities of the plurality of biometric indices to be improved by the first user, such as smoking cessation, abstinence, and exercise amount.
- the biometric age predicting unit 13 may provide an estimated value of the biometric age of the first user when the plurality of biometric indices of the first user are improved according to the priority order.
- the biometric age predicting unit 13 can provide a biometric age change estimation value when the biological index is improved by applying the biometric variation algorithm based on the land improvement. For example, when the first user is male, the biometric age predicting unit 13 provides a need to improve the weight, the smoking period, and the frequency of drinking among a plurality of biometric indexes, and the biometric index may be improved It is possible to provide an estimated value of the biometric age of the changed first user.
- the biometric age predicting unit 13 may notify smoking cessation, It can be proposed more than 3 times.
- the biometric age predicting unit 13 may provide the estimated value of the changed biometric age of the first user when the first user changes the biometric index like the improvement plan (improvement plan).
- the chronic disease predicting unit 14 can predict the probability of a chronic disease risk of the first user based on the predicted biometric age of the first user.
- the chronic disease predicting unit 14 can predict the probability of a chronic disease risk based on the first user's probability of risk of a chronic disease based on the predicted probability of a chronic disease.
- the chronic disease predicting unit 14 can predict the occurrence of chronic diseases and the risk of death based on the first user's chronic disease occurrence and death risk prediction algorithm.
- Chronic diseases may be diseases including hypertension, diabetes, obesity, metabolic diseases, and the like.
- the chronic disease predicting unit 14 can predict the risk probability of a chronic disease by using the first algorithm (prediction algorithm of a chronic disease prevalence probability) with the biometric age of the predicted first user.
- the first algorithm may be a logistic regression algorithm.
- the chronic disease predicting unit 14 can estimate the risk probability of a chronic disease by using the following equation (6) for a biological age index measured using a biometric index (biological index).
- the probability of risk for a chronic disease can be calculated by comparing the area under curve (AUC) using the receiver operating characteristic (ROC) curve.
- AUC area under curve
- ROC receiver operating characteristic
- the chronic disease predicting unit 14 can predict the probability of a chronic disease occurrence risk by using a second algorithm (a chronic disease occurrence / death risk prediction algorithm) with the predicted biometric age of the first user.
- the second algorithm may be a Cox proportional hazard model.
- the chronic disease predicting unit 14 can predict the risk of a chronic disease occurrence using the following Equation (7).
- Is the mortality at time t of all subjects with all parameters Is the baseline mortality in subjects without all factors, Is a collection of all the factors, It can be a function expression that describes the relationship between all arguments and results.
- the chronic disease predicting unit 14 calculates a probability of occurrence of a chronic disease according to the difference between the biometric age and the actual age using the Cox proportional hazard model based on the above-described [Equation 7] .
- FIGS. 5A to 5D are graphs comparing a risk prediction probability of a chronic disease using a biometric age prediction value and an actual age in a biometric age prediction model generating apparatus according to an embodiment of the present invention.
- the dashed line indicates the actual age (chronological age), and the solid line indicates the biological age.
- the ROC curve shown in FIGS. 5A to 5D is a performance evaluation technique for the Binary Classifier System.
- the x-axis of the ROC curve is a false positive rate and the y-axis is a true positive rate.
- the biometric age prediction model generation apparatus 1 can predict a risk of hypertensive disease among chronic diseases.
- the biometric age prediction model generation apparatus 1 can predict a risk of developing a diabetes mellitus in a chronic disease.
- the biometric age prediction model generation apparatus 1 can predict a risk of hypertension or diabetes among chronic diseases.
- the biometric age prediction model generation apparatus 1 can predict a risk of hypertension and diabetes among chronic diseases.
- FIG. 6A is a diagram illustrating a result of predicting the risk of a chronic disease present in a person using the actual age and the biometric age in the apparatus for generating biometric age prediction models according to an embodiment of the present invention
- FIG. 6A Is a diagram illustrating a result of predicting the risk of a chronic disease present in a person using the actual age and the biometric age in the apparatus for generating biometric age prediction models according to an embodiment of the present invention.
- FIG. 6A is a result of comparing the biometric age generated by the biometric age predicting unit 13 using the calculation formula with the actual age to predict the risk of a chronic disease
- 6B is a result of comparing the biometric age generated by the biometric age predicting unit 13 using the calculation formula with the actual age to predict the risk of chronic diseases.
- the chronic disease predicting unit 14 can predict the risk of chronic diseases (hypertension, diabetes, chronic kidney disease) using the difference between the biometric age and actual age.
- the risk of developing hypertension may be increased by 1.10 times as the age of the actual age increases by 1.06 times and the age of biometrics by 1 year.
- Biometric age-actual age is statistically significantly increased as the 1-year-old increases, the risk of hypertension is 1.07 times, the risk of diabetes is 1.07 times, and the risk of chronic kidney disease is 1.06 times.
- the risk of multiple diseases (biometric age - actual age) with hypertension and diabetes mellitus at the same time is 1.14 times as high as 1 year of age.
- biometric age - actual age as a categorical type, it can be interpreted that as the difference value is larger than -4, the health state is worse than the actual age, The risk of disease prevalence is increasing, which can be said to be effective in showing biometric age to current health status.
- the chronic disease predicting unit 14 predicts the risk of developing chronic diseases (hypertension, diabetes, chronic kidney disease) that may occur in the future in the difference between the biometric age and actual age.
- chronic diseases hypertension, diabetes, chronic kidney disease
- the risk of occurrence of chronic diseases for at least 2 years up to 13 years depending on the difference of [02] (biometric age-actual age)
- the result is as shown in FIG. 6B.
- the actual risk of hypertension increases 1.02 times with age, and the risk of hypertension increases 1.04 times as biometric age increases with age.
- Biometric age - actual age increases statistically by 1 year, as 1.03 times the risk of hypertension, 1.05 times the risk of developing diabetes, and 1.3 times the risk of developing chronic kidney disease.
- the risk of hypertension and diabetes mellitus in the absence of hypertension and diabetes mellitus increases (biometric age - actual age) by 1.05 times as the age increases.
- categorizing biometric age - actual age as a categorical type, it can be interpreted that as the difference value is larger than -4, the health state is worse than the actual age, And the risk of the disease is gradually increasing.
- the chronic disease predicting unit 14 predicts the age of the first user based on the chronic disease prevalence probability prediction algorithm and the chronic disease occurrence and mortality risk prediction algorithm to diagnose chronic diseases (hypertension, diabetes, obesity, (High / high / medium / low risk) for chronic diseases and deaths according to the risk level according to the level of risk, .
- the chronic disease predicting unit 14 estimates the biological index to be improved according to the patient's illness, therapeutic power, risk level, and possibility of improvement based on the personalized factor and the health information selection algorithm It is possible to provide an improvement plan according to priority.
- the Chronic Disease Prediction Department (14) recommends personal information on the factors and health status of chronic diseases to be improved according to each dangerous condition, whether the patient is suffering from illness, .
- biometric authentication unit 2 when the subject reconnects the system after a certain period of time after improving his or her biometric index (biological index) or health condition and health condition of chronic disease, A new biometric index can be received from the biometric authentication unit 2.
- the biometric age prediction model generation device 1 provides the data access right inputted by the user so as to correspond to the new biometric indexes, and then, after the recalculation, It can be provided as a series.
- the biometric age prediction model generation device 1 can provide a feedback algorithm that allows a change rate to be provided for factors that are changed in factors and results, and to compare the results.
- the biometric age prediction model generation device (1) utilizes factors such as body composition, living environment, habits, and symbols, such as body weight and waist circumference, which can be easily recognized by the general public, We can select factors that have high explanatory power for the same chronic diseases on a clinical basis, and provide feedback information so that feedback can be used to correct behavior.
- the biometric age prediction model generation apparatus 1 uses an elastic net regression model, which is one of the machine learning methods that can reduce the risk of bias, generates a biometric age, (High blood pressure, diabetes mellitus, obesity, metabolic diseases, etc.) and the risk of future outbreaks, evaluates the individual's high-risk group of chronic diseases, and can prevent individuals' chronic diseases through the feedback algorithm. Recommendations can be provided.
- the biometric age prediction model generation device 1 also verifies whether the risk of future chronic diseases (hypertension, diabetes, obesity, metabolic diseases, etc.) can be predicted, and also calculates the probability of occurrence of a bad health condition in the future And it is possible to calculate the probability of death from chronic diseases.
- chronic diseases hypertension, diabetes, obesity, metabolic diseases, etc.
- the biometric age prediction model generation device (1) compares the current biometric age with the current biometric age using the biometric indexes that can be recognized by the individual, A state of biological change that changes into aging and degenerative processes).
- the biometric age is determined by the algorithms of the probability of occurrence of chronic diseases, the risk of future occurrence and the risk of death, and the result evaluation algorithm according to the level of risk is used to determine the best / high / medium / low risk status You can identify at what risk level your health condition is.
- the biometric age prediction model generation device 1 feeds back information to individuals who need to be personalized according to the biometric age result and the risk state of the chronic disease,
- the algorithm can determine whether the health status is improved or deteriorated by inputting and comparing the changed results with the previous results in series.
- the biometric age prediction model generation device 1 can help an individual to assess his / her health condition and at the same time to improve his / her factors under the guidance of health care.
- the biometric age prediction model generation apparatus 1 can be applied to a health center of a population group at a public health center or a regional center that carries out a community health management program.
- the biometric age prediction model generation device 1 is capable of generating a risk of chronic diseases such as hypertension, diabetes, obesity, and metabolic diseases in a medical examination of a patient in a medical examination center such as a worker's health examination and a general health examination This information can be used to provide medical education / intervention for the predicted subject.
- the biometric age prediction model generation device 1 can be used for presenting a health examination tool and a method through a risk prediction result at a health examination center. This tool can help with medical decisions for chronic diseases such as hypertension, diabetes, obesity, and metabolic diseases, because there is a lack of rationale as to why the physical health screening methods proposed in the actual hospital are proposed.
- the biometric age prediction model generation device 1 is used in clinical trial studies targeting hypertension, diabetes, obesity, metabolic diseases, etc., such as hospital drug development, And can be used to select patients or to elicit indications for drugs.
- the biometric age prediction model generating apparatus 1 generates a warning about health / disease and related factors and manages the biological indicators by themselves. Thus, a nationwide campaign such as [chronic disease / prevention of premature death] Health education and so on.
- the biometric age prediction model generation method shown in FIGS. 7 to 10 can be performed by the biometric age prediction model generation apparatus 1 described above. Therefore, even if omitted from the following description, the contents described for the biometric age prediction model generation device 1 can be similarly applied to the description of the biometric age prediction model generation method.
- the biometric age prediction model generation method described with reference to FIGS. 7 through 10 may include a biometric age prediction method and a disease risk probability prediction method.
- the biometric age prediction model generation apparatus 1 predicts the biometric age through the biometric age prediction method, and calculates the probability of the user using the difference value obtained by comparing the biometric age and the actual age Disease risk can be predicted.
- FIG. 7 is a first flowchart illustrating a flow of a biometric age prediction model generation method according to an embodiment of the present invention.
- Steps S701 to S704 may be biometric age prediction methods.
- Steps S705 to S708 may also be a disease risk probability prediction method.
- the biometric age prediction model generation apparatus 1 predicts the biometric age and predicts the disease risk probability by comparing the biometric age with the actual age.
- the biometric age prediction model generation apparatus 1 can propose a preventive measure for preventing a disease risk probability.
- the receiving unit 11 may receive the sex, age, and biometric index (S701).
- the prediction model building unit 12 can construct a biometric age prediction algorithm (S702).
- the biometric age prediction algorithm may be an ElasticNet regression model, which is a method of the machine learning method.
- the biometric age predicting unit 13 can estimate the biometric age using the biometric age prediction algorithm (S703).
- the biometric age predicting unit 13 can compare the actual age of the user and the biometric age (S704).
- the chronic disease predicting unit 14 can estimate the risk probability of a chronic disease using biometric age using a logistic regression (S705).
- the chronic disease predicting unit 14 can present the second prevention when the biometric age of the user is predicted with the risk probability of danger (S708).
- the chronic disease predicting unit 14 may use the Cox proportional hazard model to determine whether the biometric age of the user is predicted based on the risk of developing a chronic disease The probability can be predicted (S706).
- the chronic disease predicting unit 14 may present a primary prevention if predicted by the probability of occurrence of a chronic disease (S707).
- 8A and 8B are second flowcharts illustrating a flow of a biometric age prediction model generation method according to an embodiment of the present invention.
- FIG. 8A can be a biometric age prediction method.
- the receiving unit 11 may receive personal indices such as sex, age, and biological indicators for calculating biometric age.
- the receiving unit 11 can receive the diagnostic ability and treatment power of the chronic disease of the user.
- the predictive model building unit 12 automatically generates a personal index such as sex, age, and the like input by the receiving unit 11 and a biological index for calculating the biometric age, .
- the prediction model building unit 12 can generate the actual age by associating personal information (e.g., date of birth) of each of a plurality of users with the current input date. For example, if the date of birth of the first user is 1990.12.07 and the current date (date of entry) is 2018.12.07, the actual age (age) of the first user can be 28 years.
- the prediction model construction unit 12 may generate the biometric age of the first user based on the biometric age generation algorithm.
- the biometric age generation algorithm may be an algorithm that is perceived by individuals and uses a variety of biomarkers known as major risk factors for chronic diseases, and that is highly correlated with current age and less volatile. By generating the biometric age using the biometric age generation algorithm, it is possible to more effectively recognize the change state of chronic diseases (hypertension, diabetes, obesity, metabolic diseases, etc.) occurring in the living body.
- the biometric age generation algorithm may be an Elastic Net regression model algorithm.
- the predictive model construction unit 12 can calculate the difference between the age (actual age) on the calendar and the biometric age. In other words, when the date of birth of the first user is 1990.12.07 and the current date (date of entry) is 2018.12.07, the prediction model building unit 12 generates the actual age (age) of the first user at 28 years . The prediction model building unit 12 can generate the biometric age of the first user 38 years based on the biometric age generation algorithm. The prediction model building unit can calculate (12) the difference (10) between the age (actual age) on the own calendar and the biometric age.
- step S805 the predictive model building unit 12 can evaluate the biometric age by five levels using the biometric age evaluation algorithm.
- the biometric age evaluation state classified into five stages can be expressed as S806.
- the biometric age assessment status can be divided into the biological very young / youth / normal level / aging / aging risk status.
- the predictive model building unit 12 may provide an improvement such as step S808 using an index instruction algorithm.
- the indicator guideline algorithm can evaluate the explanatory power describing the biometric age, prioritize it according to it, select biological indicators according to priority, and evaluate the possibility of improvement of the biological indicator.
- the prediction model building unit 12 may select at least one of a plurality of biological indicators (biometric indices) as an improvement measure for improving the biometric age of the first user.
- biometrics indexes is a biological index (biometrics index) that can not be changed, such as a past history, it may provide another improvement plan.
- the predictive model building unit 12 may provide a biometric age change estimation value upon improvement of the biological indicator.
- the prediction model building unit 12 can provide a biometric age change estimation value when at least one of the plurality of biological indicators (biometric indexes) provided as an improvement is improved.
- the prediction model building unit 12 may compare the current biometric age with the biometric age after improvement to emphasize the difference to the user.
- the biometric age prediction model generation apparatus 1 may provide a biological index (biometric index), a factor index, and a health index improvement plan for the first user.
- the biometric age prediction model generation apparatus 1 can provide lifestyle, exercise method, and body composition improvement plan so that the user has a better health state in the current health state.
- Figure 8b can be a disease risk prediction method.
- the predictive model building unit 12 may calculate the difference between the actual age and the biometric age of the user.
- the chronic disease predicting unit 14 may generate a chronic disease prevalence probability using a prediction algorithm of a chronic disease prevalence probability.
- the chronic disease predicting unit 14 can generate the risk of chronic disease using the algorithm for predicting the occurrence of chronic diseases and the risk of death, and can generate the risk of death due to chronic diseases.
- the chronic disease may be a disease including hypertension, diabetes, obesity, and an objective disease.
- step S812 the chronic disease predicting unit 14 estimates the risk level of the current and future state of the chronic disease of the user as the probability of chronic disease, the risk of chronic disease, and the risk of death due to chronic disease .
- step S813 the chronic disease predicting unit 14 classifies the 4-stage risk group (highest / high / intermediate / low risk) for the occurrence, death, and chronic illness by the risk level evaluation algorithm according to the risk level .
- step S814 the chronic disease predicting unit 14 determines, based on the personalized factors and the health information selection algorithm according to the individual risk assessment result, whether the biological condition It is possible to provide an improvement measure according to the priority of the indicator.
- the Chronic Disease Prediction Department (14) provides information on the factors / health status of chronic diseases that should be improved according to each dangerous condition and the disease suffered by the patient, recommendation information and personal information .
- the biometric age prediction model generation apparatus 1 generates a biometric age prediction model by using the first user's bio index (biometric index) or a health condition /
- the biometrics index of the first user can be authenticated by the first user to provide his or her own data access authority.
- the biometric age prediction model generation apparatus 1 recalculates the biometric age using the received biometric indexes and supplies the original data and the data after the index improvement according to the input date and interval as a series can do.
- the biometric age prediction model generation device 1 can provide a rate of change for the factors that are changed in the factors and results, and can provide a comparison result.
- FIG. 9 is a third flowchart illustrating a flow of a biometric age prediction model generation method according to an embodiment of the present invention.
- the biometric age prediction model generation apparatus 1 can receive an individual's sociodemographic, body composition, and living environment habits as input values.
- step S902 the biometric age prediction model generation device 1 can generate the biometric age using the input value.
- the biometric age prediction model generation device 1 can evaluate the biological change state to the aging through the machine learning method using the biometric age generated in step S902.
- the biometric age prediction model generation device 1 can automatically determine the influence of each variable using ElastincNet regression analysis and estimate the optimal biometric age by algorithm learning method.
- the biometric age prediction model generation device 1 may provide a user-customized index improvement instruction.
- the biometric age prediction model generation apparatus 1 can provide a personalized indicator improving instruction based on the generated biometric age.
- step S903 the biometric age prediction model generation device 1 can calculate the current health state probability.
- step S904 the biometric age prediction model generation apparatus 1 can calculate future disease occurrence and death risk.
- Step S907 may be performed as the evaluation of step S903 and step S904.
- the biometric age prediction model generation device 1 can classify a disease risk object.
- the biometric age prediction model generation apparatus 1 can classify the disease risk subjects and provide the health state and the disease risk state of the individual by evaluating the health state of the person.
- step S908 the biometric age prediction model generation apparatus 1 can provide personalized index improvement and disease factor / health information.
- the biometric age prediction model generation apparatus 1 may provide the individual health state improvement instruction information.
- the biometric age prediction model generation apparatus 1 may provide a personal health summary part so that when an individual repeatedly accesses his / her own results, all the repetitive factors and results on all continuations can be viewed. Further, it is possible to provide a value for the average change rate (average change rate) of the indicator and the resultant value of the biometric age prediction model generation apparatus 1.
- the biometric age prediction model generation apparatus 1 includes a biometric age prediction model generation device 1 for generating biometric indicators (biological information such as age, sex, body composition information such as weight, waist circumference,
- the biometric age prediction model generation device 1 can use the ElastincNet regression, which is a method of the machine learning method, to analyze the influence of each variable automatically
- the biometric age prediction model generation device 1 generates a biometric age prediction model by inputting an individualally recognizable biological index and inputting the current biometric index to the current and future health statuses
- the biometric age prediction model generation apparatus 1 may evaluate and state an individual's health state and disease risk state by evaluating and feedbacking
- the biometric age prediction model generating device 1 is a device for generating a biometric age predictive model when a person repeatedly approaches and calculates his own results, And by providing a value for the mean rate of change (mean rate of change) of the
- FIG. 10 is a fourth flowchart showing a flow of a biometric age prediction model generation method according to an embodiment of the present invention.
- the biometric age prediction model generation device 1 can receive sex, age, and a plurality of biometric indices of a plurality of users.
- the biometric age prediction model generation apparatus 1 may classify a plurality of biometric index variables related to gender or age of a plurality of users as a predictive variable used for biometric age prediction of a user.
- the biometric age prediction model generation device 1 can construct a biometric age prediction model in which a predetermined predictive variable is input and an item regarding a biometric age prediction result is output.
- step S1004 the biometric age prediction model generation apparatus 1 can predict the biometric age of the first user using the biometric age prediction model.
- the biometric age prediction model generation apparatus 1 may predict the probability of a chronic disease risk of the first user based on the predicted biometric age of the first user.
- steps S1001 to S1005 may be further divided into additional steps or combined into fewer steps, according to an embodiment of the present invention. Also, some of the steps may be omitted as necessary, and the order between the steps may be changed.
- the biometric age prediction model generation method may be implemented in a form of a program command that can be executed through various computer means and recorded in a computer readable medium.
- the computer-readable medium may include program instructions, data files, data structures, and the like, alone or in combination.
- the program instructions recorded on the medium may be those specially designed and constructed for the present invention or may be available to those skilled in the art of computer software.
- Examples of computer-readable media include magnetic media such as hard disks, floppy disks and magnetic tape; optical media such as CD-ROMs and DVDs; magnetic media such as floppy disks; Magneto-optical media, and hardware devices specifically configured to store and execute program instructions such as ROM, RAM, flash memory, and the like.
- program instructions include machine language code such as those produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter or the like.
- the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
- biometric age prediction model generation method described above may be implemented in the form of a computer program or an application executed by a computer stored in a recording medium.
Landscapes
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
생체인식 연령 예측 모델 생성 방법에 관한 것이며, 생체인식 연령 예측 모델 생성 방법은 복수의 사용자의 성별, 연령 및 복수의 생체인식 지표를 수신하는 단계, 복수의 사용자의 성별 또는 연령과 관련된 복수의 생체인식 지표 변수를 구분하여 상기 사용자의 생체인식 나이 예측에 사용되는 예측 변수로 선정하는 단계, 선정된 상기 예측 변수를 입력으로 하고 생체인식 나이 예측 결과에 관한 항목을 출력으로 하는 생체인식 연령 예측 모델을 구축하는 단계, 상기 생체인식 연령 예측 모델을 이용하여 제1사용자의 생체인식 연령을 예측하는 단계 및 예측된 제1사용자의 생체인식 연령을 기반으로 상기 제1사용자의 만성질환 위험 확률을 예측하는 단계를 포함할 수 있다.
Description
본원은 생체인식 연령 예측 모델 생성 방법 및 장치에 관한 것이다.
최근 Lancet의 연구에 따르면, 최근 전세계적으로 기대수명이 증가하고 있는 추세를 보이고 있고, 특히 한국인은 앞으로 세계에서 가장 오래 살 것이라는 결과가 있다. 하지만, 이런 수명 증가에 맞물려 만성질환의 발생도 증가하고 있는 추세를 보여, 앞으로는 만성질환을 가진 상태로 오래 살게 될 것이라는 결론에 이른다. 이런 결론은 개인적으로나 사회적으로 여러 가지 사회경제학적 문제를 일으킨다. 따라서 앞으로는 단순히 오래 사는 것이 아닌 건강하게 오래 사는 것이 중요할 것이다.
동일한 연령을 갖고 있는 개인은 개인의 유전적, 환경적 영향의 특성에 따라 각기 다른 건강상태를 갖는다. 이에 따라 실제 연령만으로 만성질환의 위험을 확인하고 예측하는 데에는 한계가 따른다. 이러한 한계를 극복하기 위해, 피검진자를 대상으로 피검진자의 혈액검사 수치를 기반으로 한 생체 나이를 연산하는 방법 등이 고안되었다. 그러나 이렇게 검진 검사 결과 수치를 사용하는 경우에는 전문가에 의해 측정되어 얻을 수 있는 지표이기 때문에 개인이 이 지표를 주기적으로, 자율적으로 얻기 어려움이 따르고, 또한 각 지표의 영향과 효과를 이해하기 어려워 실생활에 쉽게 적용되기 어렵다는 점이 있다. 이런 점을 보완하고자 본 발명은 일반인이 쉽게 인식하고 확인할 수 있는 키와 몸무게와 같은 자신의 신체 계측치나 생활환경, 생활 습관과 같은 생체인식 건강지표를 이용해 실생활에서 쉽게 자신의 현재 건강상태를 확인하고, 미래 질병위험 확률을 예측하며, 각 지표의 영향과 효과를 기반으로 행동 교정을 통한 질병의 예방을 가능하게 하도록 구성된다.
검진 지표를 이용한 생체 연령을 예측하는 대표적인 종래의 기술은 특허출원번호 10-2013-0141461호인 생체 나이 연산 모델 생성 방법 및 시스템과, 그 생체 나이 연산 방법 및 시스템이 있다. 이 기술은 피검진자의 건강 검진 수행 결과를 기반으로 주성분 분석을 통해 생체 연산 모델을 구성할 변수를 선정하고, 이에 선정된 변수들을 바탕으로 실제 연령과의 상관계수를 최대화하는 변수의 조합을 이용해 하나 이상의 요인을 이용한 최종 생체 나이 연산 모델을 구성하고, 그 모델을 이용해 생체 나이를 계산하는 방법에 대한 기술이다.
상기에서 사용된 방법인 주성분 분석의 경우, 직선의 형태의 값을 취급할 수 있으며, 기존 변수 구성에서 큰 분산값을 갖는 변수 및 방향을 중심으로 모형이 구성되어 다양한 변수들의 비선형적 관계를 반영하지 못하고, 또한 큰 분산값의 영향으로 편향된 값을 예측할 수 있다는 한계점이 있다. 또한, 상기와 같은 종래의 예측기술은 의학적인 정보를 기반으로 하는 기술로써, 전문가에 의한 검진이 이뤄지지 않을 경우, 개인이 자신의 생체 연령을 측정할 수 없고, 측정된 생체 연령으로 실제 연령과 비교해 개인의 건강상태를 상대적으로 비교할 수 있지만, 이에 대한 질병에 적용해 질병의 위험 확률을 예측하지는 않아 활용성에 어려움이 있었다.
본원의 배경이 되는 기술은 한국공개특허공보 제10-2013-0141461호에 개시되어 있다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 개인이 인식할 수 있는 생체인식 변수들을 이용해, 다양한 변수 간 상관성을 고려하고, 변수값들의 이상치로 인항 편향 값을 도출하는 것의 위험을 줄이는 기계학습 방법의 하나인 엘라스틱넷 회귀 모형 (ElasticNet regression model)을 이용해 생체인식 연령을 예측하고, 예측된 연령을 이용해 현재 만성질환(고혈압, 당뇨병, 이상지질혈증) 유병위험확률과 발생위험확률 값을 실제 연령보다 높은 예측력을 가지고 예측할 수 있는 생체인식 연령 예측 모델 생성 방법 및 장치를 제공하려는 것을 목적으로 한다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 일반인구집단을 대상으로 개인의 인식 가능한 건강지표를 기반으로 생체인식 연령 예측 알고리즘을 통해 추정된 생체인식 연령을 이용한 만성질환 유병 위험과 발생 위험확률을 예측하는 방법, 만성질환 고위험군을 파악할 수 있는 생체인식 연령 예측 모델 생성 방법 및 장치를 제공하려는 것을 목적으로 한다.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 방법은, 복수의 사용자의 성별, 연령 및 복수의 생체인식 지표를 수신하는 단계, 복수의 사용자의 성별 또는 연령과 관련된 복수의 생체인식 지표 변수를 구분하여 상기 사용자의 생체인식 나이 예측에 사용되는 예측 변수로 선정하는 단계, 선정된 상기 예측 변수를 입력으로 하고 생체인식 나이 예측 결과에 관한 항목을 출력으로 하는 생체인식 연령 예측 모델을 구축하는 단계, 상기 생체인식 연령 예측 모델을 이용하여 제1사용자의 생체인식 연령을 예측하는 단계 및 예측된 제1사용자의 생체인식 연령을 기반으로 상기 제1사용자의 만성질환 위험 확률을 예측하는 단계를 포함할 수 있다.
본원의 일 실시예에 따르면, 상기 예측 변수로 선정하는 단계는, 상기 복수의 생체인식 지표 변수 중 연속변수에 한해 상기 생체인식 지표 변수의 표준화를 진행하여 표준화된 변수를 추출하는 단계를 포함하되, 상기 생체인식 연령 예측 모델의 입력 변수인 예측 변수는 상기 표준화된 변수를 포함할 수 있다.
본원의 일 실시예에 따르면, 상기 만성질환 위험 확률을 예측하는 단계는, 예측된 제1사용자의 생체인식 연령을 제1 알고리즘을 이용하여 만성질환 유병 위험확률을 예측하고, 예측된 제1사용자의 생체인식 연령을 제2알고리즘을 이용하여 만성질환 발생 위험확률을 예측하되, 예측된 만성질환 유병 위험 확률 값 및 만성질환 발생 위험 확률 값 각각을 미리 설정된 기준 수준과 연계하여 각각 4단계로 구분할 수 있다.
본원의 일 실시예에 따르면, 상기 제1사용자가 현재 만성질환이 없는 대상자인 경우, 제1사용자의 생체인식 연령과 실제 연령을 비교하여 만성질환 발생 위험 확률을 예측하되, 상기 생체인식 연령과 실제 연령의 차가 0 미만일 경우, 상기 제1사용자는 실제 연령보다 건강한 것으로 예측하고, 상기 생체인식 연령과 실제 연령의 차가 0이상일 경우, 건강위험을 갖고 있는 것으로 예측할 수 있다.
본원의 일 실시예에 따르면, 상기 제1사용자의 실제 연령과 예측된 상기 제1사용자의 생체인식 연령을 비교하는 단계 및 비교 결과에 기반하여 제1사용자가 개선해야 할 복수의 생체인식 지표의 우선순위에 따른 개선안을 제공하는 단계를 더 포함하되, 상기 비교하는 단계는, 상기 제1사용자의 생체인식 연령을 복수의 생체인식 평가 단계 중 적어도 어느 하나로 구분하고, 상기 개선안을 제공하는 단계는, 상기 구분된 생체인식 평가 단계에 대응하여 상기 제1사용자가 개선해야 할 복수의 생체인식 지표 중 적어도 어느 하나에 대응하는 개선안을 제공할 수 있다.
본원의 일 실시예에 따르면, 상기 제1사용자의 복수의 생체인식 지표가 개선될 시 변화된 상기 제1사용자의 생체인식 연령의 추정값을 제공하는 단계를 더 포함하되, 상기 추정값을 제공하는 단계는, 제1사용자의 기존 복수의 생체인식 지표와 개선 이후 제1사용자의 복수의 생체인식 지표를 비교하여 제공할 수 있다.
본원의 일 실시예에 따르면, 상기 성별과 관련된 복수의 생체인식 지표 변수에 포함된 남성 예측 변수는 조사 당시 년도, 현재 연령, 현재 직장을 다니는지 여부, 소득수준, 교육수준, 결혼상태, 몸무게, 키, 허리둘레, 엉덩이 둘레, 고혈압 과거력, 이상지질혈증 과거력, 알레르기 과거력, 갑상선질환 과거력, 천식 과거력, 흡연 여부, 흡연 기간, 하루 흡연량, 간접흡연 여부, 음주 여부, 규칙적 운동 여부를 포함할 수 있다.
본원의 일 실시예에 따르면, 상기 성별과 관련된 복수의 생체인식 지표 변수에 포함된 여성 예측 변수는 조사 당시 년도, 현재 연령, 소득수준, 교육수준, 결혼상태, 몸무게, 키, 허리둘레, 엉덩이 둘레, 고혈압 과거력, 이상지질혈증 과거력, 알레르기 과거력, 갑상선질환 과거력, 천식 과거력, 흡연 여부, 흡연 기간, 하루 흡연량, 간접흡연 여부, 음주 여부, 규칙적 운동 여부, 초경 연령, 피임약 복용 여부, 임신 여부를 포함할 수 있다.
본원의 일 실시예에 따르면, 생체인식 연령 예측 모델 생성 장치는 복수의 사용자의 성별, 연령 및 복수의 생체인식 지표를 수신하는 수신부, 복수의 사용자의 성별 또는 연령과 관련된 복수의 생체인식 지표 변수를 구분하여 상기 사용자의 생체인식 나이 예측에 사용되는 예측 변수로 선정하고, 상기 예측 변수를 입력으로 하고 생체인식 나이 예측 결과에 관한 항목을 출력으로 하는 생체인식 연령 예측 모델을 구축하는 예측 모델 구축부, 상기 생체인식 연령 예측 모델을 이용하여 제1사용자의 생체인식 연령을 예측하는 생체인식 연령 예측부 및 예측된 제1사용자의 생체인식 연령을 기반으로 상기 제1사용자의 만성질환 위험 확률을 예측하는 만성질환 예측부를 포함할 수 있다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.
전술한 본원의 과제 해결 수단에 의하면, 기존의 검진수치를 이용한 생체나이보다 접근성이 용이하고, 고혈압, 당뇨병, 만성신장질환과 같은 검사수치를 이용해 진단이 가능한 만성질환을 개인의 건강지표만을 이용해 쉽고 정확하게 예측할 수 있다.
전술한 본원의 과제 해결 수단에 의하면, 개인은 자신 스스로 현재 자신의 건강상태를 생체인식 연령이라는 하나의 지표로 확인하고, 이를 이용해 만성질환 위험확률을 확인 및 예측이 가능하며, 또한 행동 교정과 지침을 통해 제안된 질병의 일 이차예방을 통해 자신의 건강상태를 주기적으로 진단, 교정을 통해 건강수준을 향상시킬 수 있다.
전술한 본원의 과제 해결 수단에 의하면, 개인의 인식 가능한 생체지표를 기반으로 현재와 향후의 질병 유병/발생 확률을 예측하고, 예측된 질병 위험 확률값을 기반으로 질병 예방을 위한 개인 맞춤형 방안을 제시하고, 개인별 고혈압, 당뇨병, 만성신장질환과 같은 만성질환 확률 예측 결과를 통해 질병 발생 또는 위험군으로서의 진입을 중재함으로써 건강상태가 호전됨을 이미지화하여 보여주는 도구를 제공하고, 질병이 없는 대상자에게는 일차예방을, 현재 만성질환을 가진 대상자에게는 이차예방에 대해 경각심을 불러일으켜 추후 스스로 생체인식 지표를 통제함으로써 심혈관계질환이나 사망과 같은 최종 상태에 도달하지 않도록 평소 건강을 관리하도록 도울 수 있다.
더 나아가 지역사회 일반 인구집단의 건강관리 현장에 적용되거나 임상시험에서 고위험군 선정 등에 활용될 수 있고, 위험예측모델을 사용자 서비스 기술을 제공하는 기업들과 함께 앱(APP), 웨어러블 기계, AI 비서와 같은 시스템에 적용하여, 주기적인 자가 검진을 통한 질병 위험 확률 예측 및 질병 예방에 적용될 수 있을 것으로 기대된다.
다만, 본원에서 얻을 수 있는 효과는 상기된 바와 같은 효과들로 한정되지 않으며, 또 다른 효과들이 존재할 수 있다.
도 1은 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치의 개략적인 시스템이다.
도 2는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치의 개략적인 블록도이다.
도 3은 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치의 기계학습 알고리즘 학습 방법을 설명하기 위한 예시도이다.
도 4는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치에서 생체인식 연령 예측 결과를 남녀 각각에서 실제 연령과 비교하여 나타낸 그래프이다.
도 5a 내지 도 5d는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치에서 생체인식 연령 예측값과 실제 연령을 이용해 만성질환 유병위험확률 예측도를 비교한 그래프이다.
도 6a는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치에서 실제 연령 및 생체인식 연령을 이용하여 현재 본인이 가지고 있는 만성질환 유병위험을 예측한 결과를 예시적으로 나타낸 도면이다.
도 6b는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치에서 실제 연령 및 생체인식 연령을 이용하여 현재 본인이 가지고 있는 만성질환 발생위험을 예측한 결과를 예시적으로 나타낸 도면이다.
도 7은 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 방법의 흐름을 도시한 제1순서도이다.
도 8a 및 도 8b는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 방법의 흐름을 도시한 제2순서도이다.
도 9는 본원의 일 실시예에 생체인식 연령 예측 모델 생성 방법의 흐름을 도시한 제3순서도이다.
도 10은 본원의 일 실시예에 생체인식 연령 예측 모델 생성 방법의 흐름을 도시한 제4순서도이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결" 또는 "간접적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원은 개인의 인식 가능한 건강지표를 기반으로 생체인식 연령 예측 알고리즘을 통해 추정된 생체인식 연령을 이용한 만성질환 유병 위험과 발생 위험확률을 예측하는 방법, 만성질환 고위험군을 파악하는 방법에 관한 것이다. 본원의 일 실시예에 따르면, 생체인식 연령은 실제 연령과의 비교를 통해 만성질환의 위험 확률을 파악하고, 인식 가능한 건강지표의 조정을 통해 질병의 일 이차예방을 위한 방안을 제시할 수 있다.
도 1은 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치의 개략적인 시스템이다.
도 1을 참조하면, 생체인식 연령 예측 모델 생성 장치(1)는 일반인 인구집단을 대상으로 의학 전문가가 아닌 일반 개인기준에서 인식 가능한 건강지표를 이용하여, 자신의 생체인식 정도를 반영한 생체인식 연령 예측 모델을 제공할 수 있다. 상기 모델의 알고리즘을 통해 생성된 생체 인식 연령은 실제 연령과 비교해 전문가에 의해 측정된 검사 수치를 통해 진단이 이뤄지는 만성질환에 대해 각 질병의 유병, 발생 위험 확률을 예측할 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 상기 구축된 생체인식 연령의 알고리즘 생성 후 개인의 인식 가능한 건강지표를 입력받아 생체인식 연령을 예측할 수 있다.
또한, 생체인식 연령 예측 모델 생성 장치(1)는 질병 발생 예측 모델, 개인 맞춤형 예방 관리 서비스의 기술분야에 적용될 수 있다. 보다 상세하게는 개인별 생체인식 지표를 이용한 생체인식 연령을 통해 개인은 현재 자신의 건강상태를 확인하고, 스스로 이런 지표를 통제하여 평소 건강관리를 할 수 있도록 도울 수 있고, 더 나아가 지역사회 일반 인구집단의 건강관리 현장에 적용하거나 임상시험에서의 고위험군 선정 등에 활용될 수 있다. 일 실시예로, 구글, 애플, 삼성, IBM 등과 같이 사용자서비스를 제공하는 기업과 함께 웹(WEB) 및 앱(APP)을 활용한 제품에 적용되어 활용할 수 있다.
도 1을 참조하면, 본원의 일 실시예에 따르면, 생체인식 연령 예측 모델 생성 장치(1)는 사용자 단말(2)로 생체인식 연령 예측 메뉴를 제공할 수 있다. 예를 들어, 생체인식 연령 예측 모델 생성 장치(1)가 제공하는 어플리케이션 프로그램을 사용자 단말(2)이 다운로드 하여 설치하고, 설치된 애플리케이션을 통해 생체인식 연령 예측 메뉴가 제공될 수 있다.
생체인식 연령 예측 모델 생성 장치(1)는 사용자 단말(2)과 데이터, 콘텐츠, 각종 통신 신호를 네트워크를 통해 송수신하고, 데이터 저장 및 처리의 기능을 가지는 모든 종류의 서버, 단말, 또는 디바이스를 포함할 수 있다.
사용자 단말(2)은 네트워크를 통해 생체인식 연령 예측 모델 생성 장치(1)와 연동되는 디바이스로서, 예를 들면, 스마트폰(Smartphone), 스마트패드(Smart Pad), 태블릿 PC, 웨어러블 디바이스 등과 PCS(Personal Communication System), GSM(Global System for Mobile communication), PDC(Personal Digital Cellular), PHS(Personal Handyphone System), PDA(Personal Digital Assistant), IMT(International Mobile Telecommunication)-2000, CDMA(Code Division Multiple Access)-2000, W-CDMA(W-Code Division Multiple Access), Wibro(Wireless Broadband Internet) 단말기 같은 모든 종류의 무선 통신 장치 및 데스크탑 컴퓨터, 스마트 TV와 같은 고정용 단말기일 수도 있다.
생체인식 연령 예측 모델 생성 장치(1) 및 사용자 단말(2) 간의 정보 공유를 위한 네트워크의 일 예로는 3GPP(3rd Generation Partnership Project) 네트워크, LTE(Long Term Evolution) 네트워크, 5G 네트워크, WIMAX(World Interoperability for Microwave Access) 네트워크, 유무선 인터넷(Internet), LAN(Local Area Network), Wireless LAN(Wireless Local Area Network), WAN(Wide Area Network), PAN(Personal Area Network), 블루투스(Bluetooth) 네트워크, Wifi 네트워크, NFC(Near Field Communication) 네트워크, 위성 방송 네트워크, 아날로그 방송 네트워크, DMB(Digital Multimedia Broadcasting) 네트워크 등이 포함될 수 있으며, 이에 한정된 것은 아니다.
도 2는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치의 개략적인 블록도이다.
도 2를 참조하면, 생체인식 연령 예측 모델 생성 장치(1)는 수신부(11), 예측 모델 구축부(12), 생체인식 연령 예측부(13) 및 만성질환 예측부(14)를 포함할 수 있다. 다만, 생체인식 연령 예측 모델 생성 장치(1)의 구성이 앞서 개시된 것들로 한정되는 것은 아니다. 예를 들어, 생체인식 연령 예측 모델 생성 장치(1)는 정보를 저장하기 위한 데이터베이스를 더 포함할 수 있다.
수신부(11)는 복수의 사용자의 성별, 연령 및 복수의 생체인식 지표를 수신할 수 있다. 생체인식 지표(생물학적 지표)는 일반인이 쉽게 인식할 수 있는 몸무게, 허리둘레와 같은 자신의 신체구성 수치와 생활환경, 습관, 기호 등과 같은 요인들을 포함하는 지표일 수 있다. 또한, 수신부(11)는 사용자의 만성질환 진단력 및 치료력 입력을 수신할 수 있다. 또한, 수신부(11)는 사용자 개인의 인구사회학적, 신체구성수치 및 생활환경 습관 입력을 수신할 수 있다. 달리 말해, 수신부(11)는 개인이 인식할 수 있는 생체인식 지표(생물학적 지표)를 수신할 수 있다. 예시적으로, 수신부(11)는 사용자 단말(2)로부터 사용자 개인의 성별, 연령 및 복수의 생체인식 지표(생물학적 지표)를 수신할 수 있다.
일예로, 예측 모델 구축부(12)는 수신부(11)에서 수신한 복수의 사용자의 성별, 연령 및 복수의 생체인식 지표와 연계하여 입력받은 날짜를 자동으로 생성할 수 있다.
예측 모델 구축부(12)는 복수의 사용자의 성별 또는 연령과 관련된 복수의 생체인식 지표 변수를 구분하여 사용자의 생체인식 나이 예측에 사용되는 예측 변수로 선정할 수 있다. 달리 말해, 예측 모델 구축부(12)는 남성과 관련된 복수의 생체인식 지표 변수를 구분하여 사용자의 생체인식 나이 예측에 사용되는 예측 변수를 선정할 수 있다. 또한, 예측 모델 구축부(12)는 여성과 관련된 복수의 생체인식 지표 변수를 구분하여 사용자의 생체인식 나이 예측에 사용되는 예측 변수를 선정할 수 있다. 또한, 예측 모델 구축부(12)는 남성과 관련된 예측 변수를 각 연령과 관련하여 생체인식 나이 예측에 사용되는 예측 변수로 선정할 수 있다. 또한, 예측 모델 구축부(12)는 여성과 관련된 예측 변수를 각 연령과 관련하여 생체인식 나이 예측에 사용되는 예측 변수로 선정할 수 있다. 다시 말해, 예측 모델 구축부(12)는 성별과 관련하여 복수의 생체인식 지표 변수 중 적어도 어느 하나의 생체인식 지표 변수를 예측 변수로 선정하고, 연령과 관련된 복수의 생체인식 지표 변수 중 적어도 어느 하나의 생체인식 지표 변수를 예측 변수로 선정할 수 있다.
예시적으로, 예측 모델 구축부(12)는 성별과 관련된 복수의 생체인식 지표 변수에 포함된 남성 예측 변수를 조사 당시 년도, 현재 연령, 소득수준, 교육수준, 결혼상태, 몸무게, 키, 허리둘레, 엉덩이 둘레, 고혈압 과거력, 이상지질혈증 과거력, 알레르기 과거력, 갑상선질환 과거력, 천식 과거력, 흡연 여부, 흡연 기간, 하루 흡연량, 간접 흡연 여부, 음주 여부, 규칙적 운동 여부로 선정할 수 있다.
또한, 예측 모델 구축부(12)는 성별과 관련된 복수의 생체인식 지표 변수에 포함된 여성 예측 변수를 조사 당시 년도, 현재 연령, 소득수준, 교육수준, 결혼상태, 몸무게, 키, 허리둘레, 엉덩이 둘레, 고혈압 과거력, 이상지질혈증 과거력, 알레르기 과거력, 갑상선질환 과거력, 천식 과거력, 흡연 여부, 흡연 기간, 하루 흡연량, 간접흡연 여부, 음주 여부, 규칙적 운동 여부, 초경 연령, 피임약 복용 여부, 임신 여부로 선정할 수 있다.
본원의 일 실시예에 따르면, 예측 모델 구축부(12)는 복수의 생체인식 지표 변수에 포함된 생체인식 지표 변수 중 연속변수에 한해 생체인식 지표 변수의 표준화를 진행하여 표준화된 변수를 추출할 수 있다. 예시적으로, 연속변수는 복수의 생체인식 지표에 포함된 속성의 크기나 양에 따라 분류할 수 있는 것을 의미할 수 있다. 예측 모델 구축부(12)는 서로 다른 분산과 단위를 가진 변수들의 표준화를 통해 예측 모델을 구축하여 이상치의 위험을 낮추고, 각 변수(생체인식 지표 변수)들은 최종 모델(생체인식 연령 예측 모델)에 미치는 효과 정도를 표준화할 수 있다. 예측 모델 구축부(12)는 아래의 [식1]을 이용해 연속 변수에 대한 남녀 각각에서 표준화를 진행할 수 있다.
[식1]
표준화된 변수는 기계학습 알고리즘 중 하나인 엘라스틱넷 회귀 모형 (ElasticNet regression model)을 이용해 최종 모델(생체인식 연령 예측 모델)에 포함되는 변수(생체인식 지표 변수)를 선정할 수 있다. 표준화된 변수는 생체인식 연령 예측 모델의 입력 변수인 예측 변수에 포함되는 변수일 수 있다.
아래 [식2]는 엘라스틱넷 회귀 모형 (ElasticNet regression model) 방법에 관한 것이다.
[식2]
예측 모델 구축부(12)는 위의 식을 이용한 모델 결과를 이용하여 실제 연령과 관련된 유의한 주요 변수(예측 변수)를 선정할 수 있다.
또한, 예측 모델 구축부(12)는 각 변수별 생물학적 연령에 미치는 영향도 (coefficients) 값도 산출할 수 있다. 예측 모델 구축부(12)는 예측된 생체인식 연령의 정확도 검증을 위해 아래의 [식3]을 이용한 10-fold cross validation (10겹 교차 검증)을 시행해 최종 검증 값을 획득할 수 있다.
[식3]
도 3은 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치의 기계학습 알고리즘 학습 방법을 설명하기 위한 예시도이다.
도 3을 참조하면, 예측 모델 구축부(12)는 예측 변수를 입력으로 하고 생체인식 나이 예측 결과에 관한 항목을 출력으로 하는 생체인식 연령 예측 모델을 구축할 수 있다. 예시적으로, 예측 모델 구축부(12)는 입력 자료(복수의 사용자의 성별 또는 연령과 관련된 복수의 생체인식 지표 변수)를 이용하여 각 변수의 영향도를 확인하고, 엘라스틱넷 회귀 모형 (ElasticNet regression model) 알고리즘 학습을 통해 생체 인식 나이를 출력할 수 있다. 생체인식 연령 예측 모델은 남성과 여성으로 구분된 각각의 변수를 모두 포함하여 구축할 수 있다.
도 4는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치에서 생체인식 연령 예측 결과를 남녀 각각에서 실제 연령과 비교하여 나타낸 그래프이다.
도 4를 참조하면, 생체인식 연령 예측 모델 생성 장치(1)는 생성된 생체인식 연령 예측 모델을 이용하여, 남녀 각각의 생체인식 연령을 연산하고, 복수의 사용자의 실제 나이에 대한 생체인식 연령 분포를 회귀 분석한 결과를 확인할 수 있다.
생체인식 연령 예측부(13)는 생체인식 연령 예측 모델을 이용하여 제1사용자의 생체인식 연령을 예측할 수 있다. 달리 말해, 생체인식 연령 예측부(13)는 복수의 사용자의 성별, 연령 및 복수의 생체인식 지표를 기반으로 구축된 생체인식 연령 예측 모델에 제1사용자의 성별, 연령 및 복수의 생체인식 지표를 입력하고, 제1사용자의 생체인식 연령을 예측할 수 있다. 생체인식 연령 예측부(13)는 생체인식 연령 예측 모델(생체인식나이 생성 알고리즘)을 구성하여 생체인식 나이를 예측할 수 있다.
생체인식 연령 예측 모델(생체인식나이 생성 알고리즘)은 만성질병의 주요한 위험요인으로 알려져 있는 여러 생체인식 지표(생물학적 지표)를 이용하여 생성된 알고리즘일 수 있다. 또한, 생체인식 연령 예측 모델(생체인식나이 생성 알고리즘)은 현재의 연령과 연관성이 크면서 변동성이 적은 알고리즘 일 수 있다. 본원은 생체인식 연령 예측 모델(생체인식나이 생성 알고리즘)로부터 생체 내에서 일어나는 만성질병(고혈압, 당뇨병, 비만, 대사성질환 등) 의 변화 상태를 잘 인식할 수 있는 생체인식나이를 생성할 수 있다.
본원의 일 실시예에 따르면, 생체인식 연령 예측부(13)는 남자의 생체인식 연령 산출식을 하기 [식4]와 같이 표현할 수 있다.
[식4]
생체인식 연령남자 = 65.111 + 0.631 *[(조사 당시 년도-Mean조사 당시 년도) / SD조사 당시 년도] + -0.404 *[(키-Mean키) / SD키] -2.586 *[(몸무게- Mean몸무게) / SD몸무게] + 2.101 *[(허리둘레- Mean허리둘레) / SD허리둘레] -0.029 *[(엉덩이둘레- Mean엉덩이둘레) / SD엉덩이둘레] + 0 *[고혈압 과거력 없음] +2.772 *[고혈압 과거력 있음] + 0 *[이상지질혈증 과거력 없음] +0.104 *[이상지질혈증 과거력 있음] + 0 *[알레르기 과거력 없음] -0.562 *[알레르기 과거력 있음] + 0 *[갑상선질환 과거력 없음] +1.287 *[갑상선질환 과거력 있음] + 0 *[천식 과거력 없음] +0.817*[천식 과거력 있음] + 0 *[흡연 안함] -5.633 *[과거흡연] -10.133 *[현재흡연] + 4.680 *[(흡연기간(년) - Mean흡연기간) / SD흡연기간] + -0.611 *[(하루 흡연량- Mean하루 흡연량) / SD하루 흡연량] + 0 *[금주] +0.155 *[과거 음주자] -1.023 *[현재 음주자] + 0 *[간접 흡연 경험 없음] -1.333 *[간접 흡연 경험 있음] + 0 *[규칙적 운동 안함] +1.102 *[규칙적 운동 함] + 0 *[소득수중: 100만원이하/월] -1.920 *[소득수중: 100-200만원이하/월] + -4.024 *[소득수중: 200-400만원이하/월] -4.168*[소득수중: 400만원이상/월] + 0 *[교육수준: 중학교 이하] -2.161 *[교육수준: 고등학교]+ -3.549 *[교육수준: 대학졸업 이상] + 0 *[결혼여부: 미혼] + 3.406 *[결혼 여부: 기혼] + 0 *[현재 직장: 없음] -4.797 *[현재 직장: 있음]
본원의 일 실시예에 따르면, 생체인식 연령 예측부(13)는 여자의 생체인식 연령 산출식을 하기 [식5]와 같이 표현할 수 있다.
[식5]
[01] 생체인식 연령여성 =57.306 + 1.107 *[(조사 당시 년도-Mean조사 당시 년도) / SD조사 당시 년도] + -0.805 *[(키-Mean키) / SD키] -1.142 *[(몸무게- Mean몸무게) / SD몸무게] + 1.961 *[(허리둘레- Mean허리둘레) / SD허리둘레] -0.197 *[(엉덩이둘레- Mean엉덩이둘레) / SD엉덩이둘레] + 0 *[고혈압 과거력 없음] +3.219 *[고혈압 과거력 있음] + 0 *[이상지질혈증 과거력 없음] +2.630 *[이상지질혈증 과거력 있음] + 0 *[알레르기 과거력 없음] -0.670 *[알레르기 과거력 있음] + 0 *[갑상선질환 과거력 없음] +0.680 *[갑상선질환 과거력 있음] + 0 *[천식 과거력 없음] +0.707 *[천식 과거력 있음] + 0 *[흡연 안함] -2.059 *[과거흡연] -3.363 *[현재흡연] + 0.548 *[(흡연기간(년) - Mean흡연기간) / SD흡연기간] + -0.182 *[(하루 흡연량- Mean하루 흡연량) / SD하루 흡연량] + 0 *[금주] -1.672 *[과거 음주자] -2.216 *[현재 음주자] + 0 *[간접 흡연 경험 없음] -0.846 *[간접 흡연 경험 있음] + 0 *[규칙적 운동 안함] +1.033 *[규칙적 운동 함] + 1.382 *[(초경연령- Mean초경연령) / SD초경연령] + 0 *[피임약 복용 여부: 없음] +0.872 *[피임약 복용 여부: 있음] + 0 *[임신경험: 없음] +2.454 *[임신경험: 있음] + 0 *[소득수중: 100만원이하/월] -2.161 *[소득수중: 100-200만원이하/월] + -3.657 *[소득수중: 200-400만원이하/월] -3.926 *[소득수중: 400만원이상/월] + 0 *[교육수준: 중학교 이하] -3.187 *[교육수준: 고등학교]+ -4.508 *[교육수준: 대학졸업 이상] + 0 *[결혼여부: 미혼] -1.843 *[결혼 여부: 기혼] + 0 *[현재 직장: 없음] -1.870 *[현재 직장: 있음]
본원의 일 실시예에 따르면, 생체인식 연령 예측부(13)는 성별과 관련된 복수의 생체인식 지표 변수에 포함된 남성 예측 변수를 [식4]에 적용하여 남성인 사용자의 생체인식 나이를 산출할 수 있다. 또한, 생체인식 연령 예측부(13)는 성별과 관련된 복수의 생체인식 지표 변수에 포함된 여성 예측 변수를 [식5]에 적용하여 여성인 사용자의 생체인식 나이를 산출할 수 있다.
본원의 일 실시예에 따르면, 생체인식 연령 예측부(13)는 제1사용자의 실제 연령과 예측된 제1사용자의 생체인식 연령을 비교할 수 있다. 제1사용자의 실제 연령은 수신부(11)에서 입력받은 정보에 기반하여 생성될 수 있다. 예를 들어, 생체인식 연령 예측부(13)는 제1사용자의 생년월일의 입력과 현재(오늘)의 날짜를 이용하여 사용자의 실제 연령(달력상의 나이)을 획득할 수 있다.
생체인식 연령 예측부(13)는 사용자의 실제 연령(달력상의 나이)과 생체 인식 나이와의 차이값을 산출할 수 있다. 생체인식 연령 예측부(13)는 제1사용자의 생체인식 연령을 복수의 생체인식 평가 단계 중 적어도 어느 하나로 구분할 수 있다. 복수의 생체인식 평가 단계는 생물학적 매우 젊음/젊음/보통수준/나이 듦/노화위험 상태를 포함할 수 있다. 또한, 생체인식 연령 예측부(13)는 생체인식나이 평가 알고리즘을 이용하여 실제 연령(달력상의 나이)과 생체 인식 나이를 평가할 수 있다. 생체인식나이 평가 알고리즘은 1. 생물학적인 매우 젊은 상태 단계, 2. 생물학적인 젊은 상태 단계, 3. 보통수준 상태 단계, 4. 생물학적인 나이 듦 단계, 5. 생물학적인 노화위험 단계로 실제 연령(달력상의 나이)과 생체 인식 나이와의 차이값을 구분할 수 있다. 달리 말해, 생체인식 연령 예측부(13)는 생체인식나이 평가 알고리즘에 의해 5단계의 생물학적 매우 젊음/젊음/보통수준/나이 듦/노화위험 상태로 구분하고, 생체인식 나이를 설명하는 설명력을 평가하고 그것에 따라 우선순위를 매겨 우선순위에 따른 생물학적 지표를 선정할 수 있다. 예를 들어, 생체인식 연령 예측부(13)는 사용자의 실제 연령이 30세이나, 생체 인식 나이가 23세인 경우, 생물학적인 매우 젊은 상태로 구분할 수 있다. 반면, 생체인식 연령 예측부(13)는 사용자의 실제 연령이 30세이나, 생체 인식 나이가 50세인 경우, 생물학적인 노화위험 단계로 구분할 수 있다.
생체인식 연령 예측부(13)는 비교 결과에 기반하여 제1사용자가 개선해야 할 복수의 생체인식 지표의 우선순위에 따른 개선안을 제공할 수 있다. 달리 말해, 생체인식 연령 예측부(13)는 해당 생물학적 지표의 개선가능성 여부를 평가하는 지표 지침 알고리즘에 의해 본인의 개선해야 할 지표들에 대한 정보를 개인에게 맞춤형으로 제공할 수 있다. 또한, 생체인식 연령 예측부(13)는 본인(제1사용자)이 개선해야 할 생물학적 지표의 우선순위에 따른 개선안을 제공할 수 있다. 예를 들어, 개선안은 예측된 사용자의 생체인식 연령이 실제 연령보다 젊어질 수 있도록, 달리 말해, 생물학적으로 젊은(건강한) 상태가 될 수 있도록 복수의 생체인식 지표 중 어느 하나의 개선점을 제시하는 것일 수 있다. 일예로, 생체인식 연령 예측부(13)는 제1사용자가 개선해야 할 복수의 생체인식 지표의 우선순위에 금연, 금주, 운동량 등의 개선안을 제공할 수 있다.
생체인식 연령 예측부(13)는 제1사용자의 복수의 생체인식 지표가 우선순위에 따라 개선될 시 변화된 제1사용자의 생체인식 연령의 추정값을 제공할 수 있다. 달리 말해, 생체인식 연령 예측부(13)는 지표 개선에 의한 생체인식 변동 알고리즘을 적용하여 생물학적 지표 개선 시 생체인식나이의 변화 추정값을 제공할 수 있다. 예를 들어, 생체인식 연령 예측부(13)는 제1사용자가 남성일 경우, 복수의 생체인식 지표 중 몸무게, 흡연기간, 음주빈도를 개선할 필요임을 제공하고, 해당 생체인식 지표가 개선될 수 변화된 제1사용자의 생체인식 연령의 추정값을 제공할 수 있다. 달리 말해, 현재 생성된 사용자의 생체인식 연령에서 사용자가 복수의 생체인식 지표 중 적어도 어느 하나를 개선할 시 변화된 생체인식 연령의 추정값을 제공함으로써, 만성질환을 예방할 수 있도록 정보를 제공할 수 있다. 예를 들어, 생체인식 연령 예측부(13)는 제1사용자가 남성으로, 흡연자이고, 음주량이 일주일에 5번 이상이며, 운동빈도가 일주일 1회 이하인 경우, 개선안으로 금연, 금주, 운동빈도 일주일 3회 이상으로 제안할 수 있다. 또한, 생체인식 연령 예측부(13)는 제1사용자가 개선안(개선방안)과 같이 생체인식 지표를 변화할 시 제1사용자의 변화된 생체인식 연령의 추정값을 제공할 수 있다.
본원의 일 실시예에 따른, 만성질환 예측부(14)는 예측된 제1사용자의 생체인식 연령을 기반으로 제1사용자의 만성질환 위험 확률을 예측할 수 있다. 만성질환 예측부(14)는 제1사용자의 만성질환 위험 확률을 만성질환 유병확률 예측 알고리즘에 기반하여 만성질환 유병 확률을 예측할 수 있다. 또한, 만성질환 예측부(14)는 제1사용자의 만성질환 발생 및 사망 위험 예측 알고리즘에 기반하여 만성질환 발생 및 사망위험 확률을 예측할 수 있다. 만성질환은 고혈압, 당뇨병, 비만, 대사성질환 등을 포함하는 질환일 수 있다.
만성질환 예측부(14)는 예측된 제1사용자의 생체인식 연령을 제1 알고리즘(만성질환 유병 확률 예측 알고리즘)을 이용하여 만성질환 유병 위험확률을 예측할 수 있다. 제1알고리즘은 로지스틱 회귀 모형 (Logistic regression) 알고리즘일 수 있다. 달리 말해, 만성질환 예측부(14)는 생체인식 지표(생물학적 지표)를 이용하여 측정된 생체연령 지표를 아래의 [식6]을 이용하여 만성질환 유병 위험확률을 예측할 수 있다.
[식6]
또한, 만성질환 예측부(14) 생체인식 연령과 실제 연령을 이용하여 만성질환 유병 위험확률 예측도를 비교할 수 있다. 생체인식 연령과 실제 연령을 이용하여 만성질환 유병 위험확률 예측도는 Receiver operating characteristic (ROC) curve를 이용해 Area under curve (AUC) 값을 구해 비교할 수 있다. 이때, AUC 값은 곡선 아래의 부분의 해당하는 부분을 나타내는 것으로 0부터 1까지의 값을 가지며, 1에 가까울수록 높은 예측 성능이 좋은 것을 확인할 수 있다.
또한, 만성질환 예측부(14)는 예측된 제1사용자의 생체인식 연령을 제2알고리즘(만성질환 발생/사망위험 예측 알고리즘)을 이용하여 만성질환 발생 위험확률을 예측할 수 있다. 제2알고리즘은 한 콕스 비례위험 모형 (Cox proportional hazard model)일 수 있다. 달리 말해, 만성질환 예측부(14)는 아래의 [식7]을 이용하여 만성질환 발생 위험확률을 예측할 수 있다.
[식7]
여기서, 은 모든 인자를 가진 대상의 t 시각에 있어서의 사망력이고, 는 모든 인자를 가지지 않은 대상에서의 기본 사망력이고, 는 모든 인자들의 집합체이고, 모든 인자와 결과와의 관계를 설명하는 함수식일 수 있다.
또한, 만성질환 예측부(14)는 제1사용자가 현재 만성질환이 없는 대상자인 경우, 제1사용자의 생체인식 연령과 실제 연령을 비교하여 만성질환 발생 위험 확률을 예측할 수 있다. 만성질환 예측부(14)는 생체인식 연령과 실제 연령의 차가 0 미만일 경우, 제1사용자는 실제 연령보다 건강하다고 예측할 수 있다. 달리 말해, (생체인식 연령 - 실제 연령) <0일 경우, 만성질환 예측부(14)는 생체 연령이 실제 연령보다 건강하다고 예측할 수 있다. 또한, 만성질환 예측부(14)는 생체인식 연령과 실제 연령의 차가 0 이상일 경우, 실제 연령보다 높은 생체인식 연령을 가져, 실제 연령에 비해 큰 건강위험을 갖고 있다고 예상할 수 있다. 달리 말해, (생체인식 연령 - 실제 연령) >= 0일 경우, 실제 연령보다 높은 생체인식 연령을 가져, 실제 연령에 비해 높은 건강위험을 갖고 있다고 예상할 수 있다.
만성질환 예측부(14)는 앞서 설명된 [식7]을 기반으로 한 콕스 비례위험 모형 (Cox proportional hazard model)을 이용해, 생체인식 연령과 실제 연령의 차이에 따른 만성질환 발생 위험확률 값을 계산할 수 있다.
도 5a 내지 도 5d는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치에서 생체인식 연령 예측값과 실제 연령을 이용해 만성질환 유병위험확률 예측도를 비교한 그래프이다. 도 5a 내지 도 5d에 도시된 그래프에서 점선으로 표시된 것은 실제연령(Chronological age) 이고, 실선으로 표시된 것을 생체인식 연령(Biological age)이다. 도 5a 내지 도 5d에 도시된 ROC 곡선은 Binary Classifier System(이진 분류 시스템)에 대한 성능 평가 기법이다. ROC curve의 x축은 False Positive Rate이고, y축은 True Positive Rate이다.
도 5a를 참조하면, 생체인식 연령 예측 모델 생성 장치(1)는 만성질환 중 고혈압 유병 위험확률을 예측할 수 있다. 도 5b를 참조하면, 생체인식 연령 예측 모델 생성 장치(1)는 만성질환 중 당뇨병 유병 위험확률을 예측할 수 있다. 도 5c를 참조하면, 생체인식 연령 예측 모델 생성 장치(1)는 만성질환 중 고혈압 또는 당뇨병 유병 위험확률을 예측할 수 있다. 도 5d를 참조하면, 생체인식 연령 예측 모델 생성 장치(1)는 만성질환 중 고혈압과 당뇨병 유병 위험확률을 예측할 수 있다.
도 6a는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치에서 실제 연령 및 생체인식 연령을 이용하여 현재 본인이 가지고 있는 만성질환 유병위험을 예측한 결과를 예시적으로 나타낸 도면이고, 도 6a는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 장치에서 실제 연령 및 생체인식 연령을 이용하여 현재 본인이 가지고 있는 만성질환 발생위험을 예측한 결과를 예시적으로 나타낸 도면이다. 달리 말해, 도 6a는 생체인식 연령 예측부(13)에서 산출식을 이용해 생성한 생체인식 연령과 실제 연령을 비교하여 만성질환유병 위험을 예측한 결과이다. 또한, 도 6b는 생체인식 연령 예측부(13)에서 산출식을 이용해 생성한 생체인식 연령과 실제 연령을 비교하여 만성질환발생 위험을 예측한 결과이다.
본원의 일 실시예에 따르면, 만성질환 예측부(14)는 생체인식 연령과 실제 연령의 차이값을 이용하여 만성질환 (고혈압, 당뇨병, 만성신장질환) 유병 위험을 예측할 수 있다. 예시적으로 도 6a를 참조하면, 실제 연령이 1세 증가할수록 고혈압 유병 위험은 1.06 배, 생체 인식 연령은 1세 증가할수록 고혈압 유병 위험이 1.10배가 증가할 수 있다. (생체인식 연령 - 실제 연령)은 1세 증가할수록 고혈압 유병 위험이 1.07배, 당뇨병 유병 위험은 1.07배, 만성신장질환 유병 위험은 1.06배로 통계적으로 유의하게 증가함을 도 6a에서 확인할 수 있다. 또한, 현재 상태에서 고혈압과 당뇨병 다중질환이 동시에 가지고 있는 다중질환 유병 위험은 (생체인식 연령 - 실제 연령)은 1세 증가할수록 1.14배가 증가한다. 특히, (생체인식 연령 - 실제 연령)을 범주형으로 나타내본 결과, -4 미만인 경우를 기준으로 차이의 값이 커질수록, 실제 연령에 비해 나쁜 건강상태를 가진 것으로 해석할 수 있는데, 이에 따라 만성질환 유병 위험도 점차 증가하는데 이는 생체인식 연령이 현재의 건강상태를 나타내는 데에 효과적이라고 할 수 있다.
본원의 일 실시예에 따르면, 만성질환 예측부(14)는 생체인식 연령과 실제 연령의 차이값을 미래에 발생 가능성이 있는 만성질환 (고혈압, 당뇨병, 만성신장질환) 발생위험을 예측할 수 있다. 예시적으로 도 6b를 참조하면, [02] (생체인식 연령 - 실제 연령)의 차이에 따른 만성질환 (고혈압, 당뇨병, 만성신장질환) 최소 2년에서 최대 13년까지의 발생 위험 위험을 예측한 결과는 도 6b에 도시된 바와 같다. 실제 연령이 1세 증가할수록 고혈압 발생 위험은 1.02 배가 증가하는데, 생체 인식 연령은 1세 증가할수록 고혈압 발생 위험이 1.04배가 증가한다. (생체인식 연령 - 실제 연령)은 1세 증가할수록 고혈압 발생 위험이 1.03배, 당뇨병 발생위험은 1.05배, 만성신장질환 발생위험은 1.3배로 통계적으로 유의하게 증가한다. 또한, 기존에 고혈압과 당뇨병이 없던 상태에서 고혈압과 당뇨병 다중질환이 동시에 발생하게 되는 경우에 대한 위험은 (생체인식 연령 - 실제 연령)은 1세 증가할수록 1.05배가 증가한다. 특히, (생체인식 연령 - 실제 연령)을 범주형으로 나타내본 결과, -4 미만인 경우를 기준으로 차이의 값이 커질수록, 실제 연령에 비해 나쁜 건강상태를 가진 것으로 해석할 수 있는데, 이에 따라 만성질환 발생 위험도 점차 증가하는 것을 확인할 수 있다.
본원의 일 실시예에 따르면, 만성질환 예측부(14)는 제1사용자의 생체연령 연령을 만성질환 유병확률 예측 알고리즘 및 만성질환 발생 및 사망 위험 예측 알고리즘에 의해 만성질환(고혈압, 당뇨병, 비만, 대사성질환 등)의 유병 혹인 발생 및 사망 위험 수준을 산출하고 위험성 수준에 따라 위험성 수준 평가 알고리즘에 의해 만성 질환에 대한 유병, 발생 사망에 대한 4단계 위험군 (최고/고/중간 정도/저 위험이군)으로 구분할 수 있다.
또한, 만성질환 예측부(14)는 개인의 위험평가 결과에 따라 개인별 맞춤 요인 및 건강정보 선택 알고리즘에 기반하여 대상자의 질병력, 치료력, 위험수준과 개선가능성 여부에 따라 본인이 개선해야 할 생물학적 지표의 우선순위에 따른 개선안을 제공할 수 있다. 또한, 만성질환 예측 부는(14) 각 위험 상태와 본인이 앓고 있는 질병 여부에 따라 개선해야 할 만성질환의 요인 및 건강상태 정보, 필요한 개인에게 병원 내원과 건강 검진 등에 대한 권고와 정보를 개인맞춤형으로 제공할 수 있다.
본원의 일 실시예에 따르면, 대상자가 자신의 생체인식 지표(생물학적 지표) 또는 만성질환의 건강요인 및 건강상태에 대해 개선한 뒤 일정기간 이후 이 시스템을 재접속한 경우, 수신부(11)는 사용자 단말(2)로부터 신규 생체인식 지표를 수신할 수 있다.
생체인식 연령 예측 모델 생성 장치(1)는 사용자가 입력한 자료 접근권한을 줌으로써, 신규 생체인식 지표에 대응하여 재계산 이후 자신이 입력하고 평가받았던 원자료와 지표 개선 이후 자료들을 입력날짜와 간격에 따라 시리즈로 제공할 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 요인과 결과 등에 있어서 변화된 인자에 대해서는 변화율을 제공하여 결과를 비교할 수 있게끔 하는 피드백 알고리즘을 제공할 수 있다.
생체인식 연령 예측 모델 생성 장치(1)는 일반인이 쉽게 인식할 수 있는 몸무게, 허리둘레와 같은 자신의 신체구성 수치와 생활환경, 습관, 기호 등과 같은 요인들을 이용하고, 그 중에서 특히 심혈대사질환과 같은 만성질환의 설명력이 높은 요인들을 임상의학적 근거하에서 선정하고, 이들의 피드백을 통해 행동 교정을 할 수 있게끔 피드백 정보를 제공할 수 있다.
또한, 생체인식 연령 예측 모델 생성 장치(1)는 편향 위험을 줄일 수 있는 기계학습 방식 중 하나인 엘라스틱넷 회귀 모형을 이용하고, 생체인식 나이를 생성하고, 생체인식 나이를 포함한 알고리즘을 이용하여 개인의 현재 만성질환(고혈압, 당뇨병, 비만, 대사성질환 등) 유병 확률과 미래의 발생 위험을 계산함과 동시에 개개인의 만성질환의 고 위험군을 평가해 주며, 피드백 알고리즘을 통하여 개인의 만성질병을 예방할 수 있는 권고안을 제공할 수 있다.
또한, 생체인식 연령 예측 모델 생성 장치(1)는 미래의 만성질환(고혈압, 당뇨병, 비만, 대사성질환 등)의 발생 위험을 예측할 수 있는지에 대해서도 검증하고, 미래의 건강상태의 나쁜 발생 확률까지도 산출이 가능하며 만성질환으로 인한 사망확률도 산출 가능하다.
생체인식 연령 예측 모델 생성 장치(1)는 개개인이 스스로 인식할 수 있는 생물학적 지표들을 이용하여 ‘생체인식나이’이란 지표를 통해 자신의 현재 나이와 비교해 봄으로써, 자신의 생물학적으로 젊고 나이 든 상태 (노화와 퇴행성 과정으로 변화되는 생물학적 변화상태)를 평가할 수 있다. 생체인식 나이는 자신의 만성질환 유병 확률과 미래의 발생위험과 나아가서는 사망위험을 알고리즘에 의해 확인하고, 위험성 수준에 따른 결과 평가 알고리즘에 의해 만성질환의 최고/고/중간 정도/저 위험 상태 중 자신의 건강상태가 어떠한 위험 단계에 있는 지를 확인할 수 있다.
생체인식 연령 예측 모델 생성 장치(1)는 생체인식 나이에 대한 결과와 만성질환의 위험상태에 따라 개인별 맞춤형으로 개선이 필요한 정보들을 개인에게 피드백하고, 개인은 변화된 상태를 자신의 원자료와 더불어 재입력하여 변화된 결과를 이전 결과와 시리즈로 비교할 수 있는 알고리즘에 의해 건강상태가 개선되는지 아니면 악화되는 지에 대해 감지할 수 있다.
생체인식 연령 예측 모델 생성 장치(1)는 개인이 자신의 건강상태를 평가할 수 있고, 동시에 건강관리의 지침하에서 자신의 요인을 개선할 수 있도록 도울 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 지역사회 건강관리프로그램을 진행하는 보건소나 지역센터에서 인구집단의 건강관리 현장에 적용할 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 근로자건강진단과 일반인 건강진단 등의 건강진단센터 등의 의료기관에서는 환자의 건강검진에서 자신의 고혈압, 당뇨병, 비만, 대사성질환 등의 만성질병 위험을 예측하여 내원한 대상자에 대한 의학적 교육/중재를 할 때 이 정보를 이용할 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 건강진단센터에서 위험예측 결과를 통해 건강검진 도구와 방법 등을 제시해주는 등에 이용될 수 있다. 실제 병원에서의 건강검진 방법들을 제안받을 때 왜 그 검진을 제안하는지에 대한 근거가 부족하기 때문에 고혈압, 당뇨병, 비만, 대사성질환 등의 만성질병에 대해서는 이 도구가 의학적 결정에 도움을 줄 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 병원의 신약 개발과 같은 고혈압, 당뇨병, 비만, 대사성질환 등을 표적으로 하는 임상시험 연구에서는 본 내용에 미래의 발생 위험과 사망 위험을 산출하는 알고리즘에 포함되어 있기 때문에 환자 선정이나 약물의 적응증 (indication) 도출에 이용될 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 건강/질병과 관련요인에 대한 경각심을 불러 일으켜 스스로 생물학적 지표들을 관리하게 함으로써 하여 [몸소 실천하는 만성질환/조기사망 예방 방법] 등의 전국 캠페인과 건강교육 등의 방법으로도 쉽게 접근하고 이용할 수 있다.
도 7 내지 도 10에 도시된 생체인식 연령 예측 모델 생성 방법은 앞서 설명된 생체인식 연령 예측 모델 생성 장치(1)에 의하여 수행될 수 있다. 따라서, 이하 생략된 내용이라고 하더라도 생체인식 연령 예측 모델 생성 장치(1)에 대하여 설명된 내용은 생체인식 연령 예측 모델 생성 방법에 대한 설명에도 동일하게 적용될 수 있다.
이하 도 7 내지 도 10을 통해 설명되는 생체인식 연령 예측 모델 생성 방법은 생체인식 연령 예측 방법과 질병위험 확률 예측 방법을 포함할 수 있다. 생체인식 연령 예측 모델 생성 장치(1)는 생체인식 연령 예측 방법을 통해 생체인식 연령을 예측하고, 예측된 생체인식 연령과 실제 연령을 비교한 차이값을 이용하여 질병위험 확률 예측 방법을 통해 사용자의 질병위험을 예측할 수 있다.
도 7은 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 방법의 흐름을 도시한 제1순서도이다.
단계 S701 내지 S704는 생체인식 연령 예측 방법일 수 있다. 또한, 단계 S705 내지 S708은 질병위험 확률 예측 방법일 수 있다. 생체인식 연령 예측 모델 생성 장치(1)는 생체인식 연령을 예측하고, 생체인식 연령과 실제 나이를 비교하여 질병위험 확률을 예측할 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 질병위험 확률을 예방하기 위한 예방책을 제시할 수 있다.
도 7을 참조하면, 수신부(11)는 성별, 연령, 생체인식 지표를 수신할 수 있다(S701). 예측 모델 구축부(12)는 생체인식 연령 예측 알고리즘을 구축할 수 있다(S702). 이때, 생체인식 연령 예측 알고리즘은 기계학습법의 한 방법인 엘라스틱넷 회귀 모형 (ElasticNet regression model)일 수 있다. 생체인식 연령 예측부(13)는 생체인식 연령 예측 알고리즘을 이용하여 생체인식 연령을 예측할 수 있다(S703). 생체인식 연령 예측부(13)는 사용자의 실제연령과 생체인식 연령을 비교할 수 있다(S704). 만성질환 예측부(14)는 생체인식 연령을 로지스틱 회귀 모형 (Logistic regression)을 이용하여 만성질환 유병 위험확률을 예측할 수 있다(S705). 이때, 만성질환 예측부(14)는 사용자의 생체인식 연령이 유병 위험확률로 예측된 경우 2차 예방을 제시할 수 있다(S708). 만성질환 예측부(14)는 사용자의 생체인식 연령이 유병 위험확률로 예측되지 않은 경우, 또한, 만성질환 예측부(14)는 콕스 비례위험 모형 (Cox proportional hazard model)을 이용하여 만성질환 발생 위험 확률을 예측할 수 있다(S706). 만성질환 예측부(14)는 만성질환 발생 위험확률로 예측된 경우 1차예방을 제시할 수 있다(S707).
도 8a 및 도 8b는 본원의 일 실시예에 따른 생체인식 연령 예측 모델 생성 방법의 흐름을 도시한 제2순서도이다.
예시적으로, 도 8a는 생체인식 연령 예측 방법일 수 있다. 도 8a를 참조하면, 단계 S801에서 수신부(11)는 성별, 연령 등의 개인지표 및 생체인식나이 계산을 위한 생물학적 지표를 수신할 수 있다. 또한, 수신부(11)는 사용자의 만성질환 진단력 및 치료력을 수신할 수 있다.
단계 S802에서 예측 모델 구축부(12)는 생체인식 생성 알고리즘에 기반하여 수신부(11)에서 입력한 성별, 연령 등의 개인지표 및 생체인식나이 계산을 위한 생물학적 지표와 입력날짜를 연계하여 자동 생성할 수 있다. 달리 말해, 예측 모델 구축부(12)는 복수의 사용자 각각의 개인정보(예를 들어, 생년월일)를 현재 입력 날짜와 연계하여 실제 나이를 생성할 수 있다. 예를 들어, 제1사용자의 생년월일이 1990.12.07이고, 현재 날짜(입력한 날짜)가 2018.12.07일 경우, 제1사용자의 실제 나이(연령)을 28세로 생성할 수 있다.
단계 S803에서 예측 모델 구축부(12)는 생체인식나이 생성 알고리즘에 기반하여 제1사용자의 생체인식 나이를 생성할 수 있다. 일예로, 생체인식나이 생성 알고리즘은 개인이 인식할 수 있으며, 또한 만성질병의 주요한 위험요인으로 알려져 있는 여러 생물학적 지표를 이용하고 현재의 연령과 연관성이 크면서 변동성이 적은 알고리즘일 수 있다. 생체인식나이 생성 알고리즘을 이용하여 생체인식 나이를 생성함으로써, 생체 내에서 일어나는 만성질병(고혈압, 당뇨병, 비만, 대사성질환 등)의 변화 상태를 보다 효율적으로 인식할 수 있다. 본원의 일 실시예에 따르면, 생체인식나이 생성 알고리즘은 엘라스틱넷 회귀 모형 (ElasticNet regression model) 알고리즘일 수 있다.
단계 S804에서 예측 모델 구축부(12)는 자신의 달력상의 나이(실제 나이)와 생체인식 나이와의 차이값을 산출할 수 있다. 달리 말해, 예측 모델 구축부(12)는 제1사용자의 생년월일이 1990.12.07이고, 현재 날짜(입력한 날짜)가 2018.12.07일 경우, 제1사용자의 실제 나이(연령)를 28세로 생성할 수 있다. 예측 모델 구축부(12)는 생체인식나이 생성 알고리즘에 기반하여 제1사용자의 생체인식 나이를 38세로 생성할 수 있다. 예측 모델 구축 부는(12) 자신의 달력상의 나이(실제 나이)와 생체인식 나이와의 차이 값 10으로 산출할 수 있다.
단계 S805에서 예측 모델 구축부(12)는 생체인식나이 평가 알고리즘을 이용하여 생체인식나이를 5단계로 평가할 수 있다.
5단계로 구분된 생체인식 나이평가 상태는 S806과 같이 표현될 수 있다. 생체인식 나이평가 상태는 생물학적 매우 젊음/젊음/보통수준/나이 듦/노화위험 상태로 구분될 수 있다.
단계 S807에서 예측 모델 구축부(12)는 지표 지침 알고리즘을 이용하여 단계 S808과 같은 개선안을 제공할 수 있다. 지표 지침 알고리즘은 생체인식 나이를 설명하는 설명력을 평가하고 그것에 따라 우선순위를 매겨 우선순위에 따른 생물학적 지표를 선정하고, 해당 생물학적 지표의 개선가능성 여부를 평가할 수 있다. 예를 들어, 예측 모델 구축부(12)는 제1사용자의 생체인식 나이를 개선하기 위한 개선안으로 복수의 생물학적 지표(생체인식 지표) 중 적어도 어느 하나를 선택할 수 있다. 다만, 복수의 생물학적 지표(생체인식 지표)의 개선가능성 여부는 과거력과 같은 변화할 수 없는 생물학적 지표(생체인식 지표)인 경우, 다른 방안의 개선안을 제공할 수 있다.
단계 S809에서 예측 모델 구축부(12)는 생물학적 지표 개선 시 생체인식 나이의 변화 추정값을 제공할 수 있다. 달리 말해, 예측 모델 구축부(12)는 개선안으로 제공한 복수의 생물학적 지표(생체인식 지표) 중 적어도 어느 하나가 개선될 시 생체인식 나이의 변화 추정값을 제공할 수 있다. 예측 모델 구축부(12)는 사용자에게 보다 차이점을 강조하기 위해, 현재의 생체인식 나이와 개선 후 생체인식 나이를 비교하여 제공할 수 있다.
단계 S810에서 생체인식 연령 예측 모델 생성 장치(1)는 제1사용자의 생물학적 지표(생체인식 지표), 요인지표, 건강지표 개선 방안을 제공할 수 있다. 달리 말해, 생체인식 연령 예측 모델 생성 장치(1)는 사용자가 현재 건강상태에서 보다 향상된 건강상태를 가지도록 생활습관, 운동방법, 신체구성 개선방안 등을 제공할 수 있다.
예시적으로, 도 8b는 질병위험 예측 방법일 수 있다. 도 8b를 참조하면, 단계 S804에서 예측 모델 구축부(12)는 사용자의 실제 나이와 생체인식 나이의 차이값을 산출할 수 있다.
단계 S811에서 만성질환 예측부(14)는 만성질환 유병확률 예측 알고리즘을 이용하여 만성질환 유병 확률을 생성할 수 있다. 또한, 만성질환 예측부(14)는 만성질환 발생 및 사망위험 예측 알고리즘을 이용하여 만성질환 발생 위험을 생성하고, 만성질환으로 인한 사망 위험을 생성할 수 있다. 여기서, 만성질환은 고혈압, 당뇨병, 비만, 대상성질환 등을 포함하는 질환일 수 있다.
단계 S812에서 만성질환 예측 부는(14) 만성질환 예측부(14)는 사용자의 만성질환의 현재와 미래 상태에 대한 위험성 수준을 만성질환 유병 확률, 만성질환 발생 위험 및 만성질환으로 인한 사망 위험으로 구분하여 평가할 수 있다.
단계 S813에서, 만성질환 예측부(14)는 위험성 수준에 따라 위험성 수준 평가 알고리즘에 의해 만성질환에 대한 유병, 발생, 사망에 대한 4단계 위험군 (최고/고/중간 정도/저 위험이군)으로 구분할 수 있다.
단계 S814에서, 만성질환 예측부(14)는 개인의 위험평가 결과에 따라 개인별 맞춤 요인 및 건강정보 선택 알고리즘에 기반하여 대상자의 질병력, 치료력, 위험수준과 개선가능성 여부에 따라 본인이 개선해야 할 생물학적 지표의 우선순위에 따른 개선안을 제공할 수 있다. 또한, 만성질환 예측부는(14) 각 위험 상태와 본인이 앓고 있는 질병 여부에 따라 개선해야 할 만성질환의 요인/건강상태 정보, 필요한 개인에게 병원내원과 건강검진 등에 대한 권고와 정보를 개인맞춤형으로 제공할 수 있다.
단계 S815에서, 생체인식 연령 예측 모델 생성 장치(1)는 제1사용자가 자신의 생물학적 지표(생체인식 지표) 혹은 만성질환의 건강요인/건강상태에 대해 개선한 뒤 일정기간 이후 제1사용자의 복수의 생체인식 지표를 제공할 경우, 제1사용자의 본인인증을 거쳐 자신의 자료 접근권한을 제공할 수 있다. 생체인식 연령 예측 모델 생성 장치(1)는 수신한 생체인식 지표를 이용하여 생체인식 연령을 재계산하고, 자신이 입력하고 평가받았던 원자료와 지표 개선 이후 자료들을 입력날짜와 간격에 따라 시리즈로 제공할 수 있다. 생체인식 연령 예측 모델 생성 장치(1)는 요인과 결과 등에 있어서 변화된 인자에 대해서는 변화율을 제공하여 결과를 비교할 수 있도록 제공할 수 있다.
도 9는 본원의 일 실시예에 생체인식 연령 예측 모델 생성 방법의 흐름을 도시한 제3순서도이다.
도 9를 참조하면, 단계 S901에서, 생체인식 연령 예측 모델 생성 장치(1)는 입력값으로 개인의 인구사회학적, 신체구성수치 및 생활환경습관을 입력받을 수 있다.
단계 S902에서 생체인식 연령 예측 모델 생성 장치(1)는 입력값을 이용하여 생체인식 나이를 생성할 수 있다.
단계 S905에서 생체인식 연령 예측 모델 생성 장치(1)는 단계 S902에서 생성된 생체인식 나이를 기계학습 방법을 통해 노화로의 생물학적 변화 상태를 평가할 수 있다. 예시적으로 생체인식 연령 예측 모델 생성 장치(1)는 ElastincNet regression (엘라스틱넷 회귀) 분석을 이용해 각 변수의 영향도를 자동 확인하고 알고리즘 학습법에 의해 최적의 생체인식나이를 추산할 수 있다.
단계 S906에서 생체인식 연령 예측 모델 생성 장치(1)는 사용자 개인 맞춤형 지표 개선 지침을 제공할 수 있다. 달리 말해, 생체인식 연령 예측 모델 생성 장치(1)는 생성된 생체인식 나이에 기반하여 개인 맞춤형 지표 개선 지침을 제공할 수 있다.
단계 S903에서 생체인식 연령 예측 모델 생성 장치(1)는 현재 건강상태 확률을 산출할 수 있다. 단계 S904에서 생체인식 연령 예측 모델 생성 장치(1)는 향후 질병 발생 및 사망위험을 산출할 수 있다.
단계 S903 및 단계 S904의 평가로서 단계 S907 단계를 수행할 수 있다.
단계 S907에서 생체인식 연령 예측 모델 생성 장치(1)는 질병 위험대상을 구분할 수 있다. 생체인식 연령 예측 모델 생성 장치(1)는 질병 위험대상을 구분하여, 개인의 건강상태와 질병 위험상태를 평가하여 자신의 건강상태를 파악하도록 제공할 수 있다.
단계 S908에서 생체인식 연령 예측 모델 생성 장치(1)는 개인 맞춤형 지표 개선 및 질병 요인/건강정보를 제공할 수 있다.
단계 S909에서 생체인식 연령 예측 모델 생성 장치(1)는 개인의 건강상태 개선지침 정보를 제공할 수 있다.
단계 S910에서 생체인식 연령 예측 모델 생성 장치(1) 개인이 반복적으로 접근하여 자신의 결과를 산출하였을 때, 모든 연속성 상의 반복적 요인과 결과를 모두 볼 수 있게끔 개인건강요약 부분을 제공할 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1) 지표와 결과값의 평균변화율(평균 변화속도)에 대한 값을 제공할 수 있다.
본원의 일 실시예에 따르면, 생체인식 연령 예측 모델 생성 장치(1)는 개인이 인식할 수 있는 생물학적 지표들(연령, 성 등의 개인정보, 몸무게, 허리둘레 등의 신체구성정보, 생활습관/환경 등의 개인이 인식 가능한 생물학적 지표를 이용할 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 기계학습법의 한 방법인 ElastincNet regression (엘라스틱넷 회귀) 분석을 이용해 각 변수의 영향도를 자동 확인하고 알고리즘 학습법에 의해 최적의 생체인식 나이를 추산하여 생성할 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 개인이 인식 가능한 생물학적 지표를 입력(input)과 현재와 향후의 건강상태에 대한 예측 확률값 (최종 결과=output) 사이에 생체인식 나이란 중간결과 (intermediate output)을 산출하였고 이를 다시 input으로 넣음으로 인해 최종 결과의 값을 산출할 수 있다. 또한, 생체인식 연령 예측 모델 생성 장치(1)는 평가 (Evaluation)와 피드백 (feedback) 단계를 두어 개인의 건강상태와 질병 위험상태를 평가하여 자신의 건강상태를 파악할 수 있고, 개인맞춤형으로 필요한 개선지침과 정보를 제공할 수 있다. 생체인식 연령 예측 모델 생성 장치(1)는 개인이 반복적으로 접근하여 자신의 결과를 산출하였을 때, 모든 연속성 상의 반복적 요인과 결과 제공할 수 있고, 지표와 결과값의 평균변화율(평균 변화속도)에 대한 값을 제공함으로써 사용자는 건강상태가 얼마나 빨리 개선 혹은 악화되는 지를 파악할 수 있다.
이하에서는 상기에 자세히 설명된 내용을 기반으로, 본원의 동작 흐름을 간단히 살펴보기로 한다.
도 10은 본원의 일 실시예에 생체인식 연령 예측 모델 생성 방법의 흐름을 도시한 제4순서도이다.
단계 S1001에서 생체인식 연령 예측 모델 생성 장치(1)는 복수의 사용자의 성별, 연령 및 복수의 생체인식 지표를 수신할 수 있다.
단계 S1002에서 생체인식 연령 예측 모델 생성 장치(1)는 복수의 사용자의 성별 또는 연령과 관련된 복수의 생체인식 지표 변수를 구분하여 사용자의 생체인식 나이 예측에 사용되는 예측 변수로 선정할 수 있다.
단계 S1003에서 생체인식 연령 예측 모델 생성 장치(1)는 선정된 예측 변수를 입력으로 하고 생체인식 나이 예측 결과에 관한 항목을 출력으로 하는 생체인식 연령 예측 모델을 구축할 수 있다.
단계 S1004에서 생체인식 연령 예측 모델 생성 장치(1)는 생체인식 연령 예측 모델을 이용하여 제1사용자의 생체인식 연령을 예측할 수 있다.
단계 S1005에서 생체인식 연령 예측 모델 생성 장치(1)는 예측된 제1사용자의 생체인식 연령을 기반으로 제1사용자의 만성질환 위험 확률을 예측할 수 있다.
상술한 설명에서, 단계 S1001 내지 S1005는 본원의 구현예에 따라서, 추가적인 단계들로 더 분할되거나, 더 적은 단계들로 조합될 수 있다. 또한, 일부 단계는 필요에 따라 생략될 수도 있고, 단계 간의 순서가 변경될 수도 있다.
본원의 일 실시 예에 따른 생체인식 연령 예측 모델 생성 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
또한, 전술한 생체인식 연령 예측 모델 생성 방법은 기록 매체에 저장되는 컴퓨터에 의해 실행되는 컴퓨터 프로그램 또는 애플리케이션의 형태로도 구현될 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
Claims (10)
- 복수의 사용자의 성별, 연령 및 복수의 생체인식 지표를 수신하는 단계;복수의 사용자의 성별 또는 연령과 관련된 복수의 생체인식 지표 변수를 구분하여 상기 사용자의 생체인식 나이 예측에 사용되는 예측 변수로 선정하는 단계;선정된 상기 예측 변수를 입력으로 하고 생체인식 나이 예측 결과에 관한 항목을 출력으로 하는 생체인식 연령 예측 모델을 구축하는 단계;상기 생체인식 연령 예측 모델을 이용하여 제1사용자의 생체인식 연령을 예측하는 단계; 및예측된 제1사용자의 생체인식 연령을 기반으로 상기 제1사용자의 만성질환 위험 확률을 예측하는 단계;를 포함하는, 생체인식 연령 예측 모델 생성 방법.
- 제1항에 있어서,상기 예측 변수로 선정하는 단계는상기 복수의 생체인식 지표 변수 중 연속변수에 한해 상기 생체인식 지표 변수의 표준화를 진행하여 표준화된 변수를 추출하는 단계를 포함하되,상기 생체인식 연령 예측 모델의 입력 변수인 예측 변수는 상기 표준화된 변수를 포함하는 것인, 생체인식 연령 예측 모델 생성 방법.
- 제1항에 있어서,상기 만성질환 위험 확률을 예측하는 단계는예측된 제1사용자의 생체인식 연령을 제1 알고리즘을 이용하여 만성질환 유병 위험확률을 예측하고,예측된 제1사용자의 생체인식 연령을 제2알고리즘을 이용하여 만성질환 발생 위험확률을 예측하되,예측된 만성질환 유병 위험 확률 값 및 만성질환 발생 위험 확률 값 각각을 미리 설정된 기준 수준과 연계하여 각각 4단계로 구분하는 것인, 생체인식 연령 예측 모델 생성 방법.
- 제3항에 있어서,상기 제1사용자가 현재 만성질환이 없는 대상자인 경우, 제1사용자의 생체인식 연령과 실제 연령을 비교하여 만성질환 발생 위험 확률을 예측하되,상기 생체인식 연령과 실제 연령의 차가 0 미만일 경우, 상기 제1사용자는 실제 연령보다 건강한 것으로 예측하고, 상기 생체인식 연령과 실제 연령의 차가 0이상일 경우, 건강위험을 갖고 있는 것으로 예측하는 것인, 생체인식 연령 예측 모델 생성 방법.
- 제1항에 있어서,상기 제1사용자의 실제 연령과 예측된 상기 제1사용자의 생체인식 연령을 비교하는 단계; 및비교 결과에 기반하여 제1사용자가 개선해야 할 복수의 생체인식 지표의 우선순위에 따른 개선안을 제공하는 단계를 더 포함하되,상기 비교하는 단계는, 상기 제1사용자의 생체인식 연령을 복수의 생체인식 평가 단계 중 적어도 어느 하나로 구분하고,상기 개선안을 제공하는 단계는, 상기 구분된 생체인식 평가 단계에 대응하여 상기 제1사용자가 개선해야 할 복수의 생체인식 지표 중 적어도 어느 하나에 대응하는 개선안을 제공하는 것인, 생체인식 연령 예측 모델 생성 방법.
- 제5항에 있어서,상기 제1사용자의 복수의 생체인식 지표가 개선될 시 변화된 상기 제1사용자의 생체인식 연령의 추정값을 제공하는 단계를 더 포함하되,상기 추정값을 제공하는 단계는,제1사용자의 기존 복수의 생체인식 지표와 개선 이후 제1사용자의 복수의 생체인식 지표를 비교하여 제공하는 것인, 생체인식 연령 예측 모델 생성 방법
- 제1항에 있어서,상기 성별과 관련된 복수의 생체인식 지표 변수에 포함된 남성 예측 변수는 조사 당시 년도, 현재 연령, 소득수준, 교육수준, 결혼상태, 몸무게, 키, 허리둘레, 엉덩이 둘레, 고혈압 과거력, 이상지질혈증 과거력, 알레르기 과거력, 갑상선질환 과거력, 천식 과거력, 흡연 여부, 흡연 기간, 하루 흡연량, 간접 흡연 여부, 음주 여부, 규칙적 운동 여부를 포함하는 것인, 생체인식 연령 예측 모델 생성 방법.
- 제1항에 있어서,상기 성별과 관련된 복수의 생체인식 지표 변수에 포함된 여성 예측 변수는 조사 당시 년도, 현재 연령, 소득수준, 교육수준, 결혼상태, 몸무게, 키, 허리둘레, 엉덩이 둘레, 고혈압 과거력, 이상지질혈증 과거력, 알레르기 과거력, 갑상선질환 과거력, 천식 과거력, 흡연 여부, 흡연 기간, 하루 흡연량, 간접 흡연 여부, 음주 여부, 규칙적 운동 여부, 초경 연령, 피임약 복용 여부, 임신 여부를 포함하는 것인, 생체인식 연령 예측 모델 생성 방법.
- 복수의 사용자의 성별, 연령 및 복수의 생체인식 지표를 수신하는 수신부;복수의 사용자의 성별 또는 연령과 관련된 복수의 생체인식 지표 변수를 구분하여 상기 사용자의 생체인식 나이 예측에 사용되는 예측 변수로 선정하고, 상기 예측 변수를 입력으로 하고 생체인식 나이 예측 결과에 관한 항목을 출력으로 하는 생체인식 연령 예측 모델을 구축하는 예측 모델 구축부;상기 생체인식 연령 예측 모델을 이용하여 제1사용자의 생체인식 연령을 예측하는 생체인식 연령 예측부; 및예측된 제1사용자의 생체인식 연령을 기반으로 상기 제1사용자의 만성질환 위험 확률을 예측하는 만성질환 예측부를 포함하는, 생체인식 연령 예측 모델 생성 장치.
- 제 1항 내지 제 8 중 어느 한 항의 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0167582 | 2017-12-07 | ||
KR20170167582 | 2017-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019112366A1 true WO2019112366A1 (ko) | 2019-06-13 |
Family
ID=66751619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/015516 WO2019112366A1 (ko) | 2017-12-07 | 2018-12-07 | 생체인식 연령 예측 모델 생성 방법 및 장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102301202B1 (ko) |
WO (1) | WO2019112366A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111933285A (zh) * | 2020-09-29 | 2020-11-13 | 平安科技(深圳)有限公司 | 一种器官年龄预测系统、方法、装置及存储介质 |
CN112712900A (zh) * | 2021-01-08 | 2021-04-27 | 昆山杜克大学 | 基于机器学习的生理年龄预测模型及其建立方法 |
CN113257344A (zh) * | 2020-02-12 | 2021-08-13 | 大江基因医学股份有限公司 | 细胞状态评估模型的建立方法 |
CN113593705A (zh) * | 2021-08-05 | 2021-11-02 | 复旦大学附属中山医院 | 社区老年人衰弱进展预测的列线图模型系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112463973B (zh) * | 2019-09-06 | 2024-07-26 | 医渡云(北京)技术有限公司 | 医学知识图谱的构建方法、装置、介质及电子设备 |
KR102555479B1 (ko) * | 2020-06-05 | 2023-07-17 | 주식회사 메디블록 | 국민건강보험 검진 데이터를 이용한 심혈관질환 발병 예측 방법 및 그 장치 |
KR102371440B1 (ko) * | 2021-08-28 | 2022-03-07 | 유진바이오소프트 주식회사 | 개인 맞춤 생체나이 예측 모형 생성 방법 및 시스템 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014206945A (ja) * | 2013-04-16 | 2014-10-30 | ▲けい▼ 曹 | 健康情報利用システム及びそれに用いるプログラム |
KR20150028082A (ko) * | 2013-09-05 | 2015-03-13 | 주식회사 케어얼라이언스 | 헬스 케어 장치 및 방법 |
KR101510600B1 (ko) * | 2014-11-11 | 2015-04-08 | 국민건강보험공단 | 빅데이터 개인 건강 기록 시스템 |
KR101603308B1 (ko) * | 2013-11-20 | 2016-03-14 | 주식회사 바이오에이지 | 생체 나이 연산 모델 생성 방법 및 시스템과, 그 생체 나이 연산 방법 및 시스템 |
KR20160043777A (ko) * | 2014-10-14 | 2016-04-22 | 삼성에스디에스 주식회사 | 질환 발병 예측 방법 및 그 장치 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130015301A (ko) * | 2011-08-03 | 2013-02-14 | 김은엽 | 만성질환 발생 가능성 예측 모형 |
KR101398986B1 (ko) * | 2012-07-26 | 2014-05-27 | 김강형 | 의학생체나이 측정 시스템 및 단말기 |
KR101831023B1 (ko) * | 2015-05-12 | 2018-02-22 | 백정윤 | 신체시간 표시장치 |
KR101885111B1 (ko) * | 2016-11-23 | 2018-08-03 | 주식회사 셀바스에이아이 | 질환 발병 예측 방법 및 장치 |
-
2018
- 2018-12-07 KR KR1020180156873A patent/KR102301202B1/ko active IP Right Grant
- 2018-12-07 WO PCT/KR2018/015516 patent/WO2019112366A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014206945A (ja) * | 2013-04-16 | 2014-10-30 | ▲けい▼ 曹 | 健康情報利用システム及びそれに用いるプログラム |
KR20150028082A (ko) * | 2013-09-05 | 2015-03-13 | 주식회사 케어얼라이언스 | 헬스 케어 장치 및 방법 |
KR101603308B1 (ko) * | 2013-11-20 | 2016-03-14 | 주식회사 바이오에이지 | 생체 나이 연산 모델 생성 방법 및 시스템과, 그 생체 나이 연산 방법 및 시스템 |
KR20160043777A (ko) * | 2014-10-14 | 2016-04-22 | 삼성에스디에스 주식회사 | 질환 발병 예측 방법 및 그 장치 |
KR101510600B1 (ko) * | 2014-11-11 | 2015-04-08 | 국민건강보험공단 | 빅데이터 개인 건강 기록 시스템 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113257344A (zh) * | 2020-02-12 | 2021-08-13 | 大江基因医学股份有限公司 | 细胞状态评估模型的建立方法 |
CN111933285A (zh) * | 2020-09-29 | 2020-11-13 | 平安科技(深圳)有限公司 | 一种器官年龄预测系统、方法、装置及存储介质 |
CN112712900A (zh) * | 2021-01-08 | 2021-04-27 | 昆山杜克大学 | 基于机器学习的生理年龄预测模型及其建立方法 |
CN113593705A (zh) * | 2021-08-05 | 2021-11-02 | 复旦大学附属中山医院 | 社区老年人衰弱进展预测的列线图模型系统 |
Also Published As
Publication number | Publication date |
---|---|
KR102301202B1 (ko) | 2021-09-13 |
KR20190067727A (ko) | 2019-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019112366A1 (ko) | 생체인식 연령 예측 모델 생성 방법 및 장치 | |
Emon et al. | Performance analysis of machine learning approaches in stroke prediction | |
KR102028048B1 (ko) | 데이터 기반의 예방 의료정보 제공 및 평가를 위한 장치 및 방법 | |
Bulik et al. | Prevalence, heritability, and prospective risk factors for anorexia nervosa | |
Farinholt et al. | A comparison of the accuracy of clinician prediction of survival versus the palliative prognostic index | |
US20170308981A1 (en) | Patient condition identification and treatment | |
Hou et al. | Evaluation of an inpatient fall risk screening tool to identify the most critical fall risk factors in inpatients | |
JP2017526033A (ja) | 予測緊急派遣リスク評価を用いた個人緊急応答システム | |
JP2011501276A (ja) | 健康関連の転帰を予測するためのオンラインコミュニティを使用した自己改善方法 | |
Wasmann et al. | Computational audiology: new approaches to advance hearing health care in the digital age | |
WO2022211385A1 (ko) | 질병 예측치의 분포를 이용한 건강관리 상담 시스템 | |
Alharthi et al. | CASP: context-aware stress prediction system | |
Exarchos et al. | Mining balance disorders' data for the development of diagnostic decision support systems | |
KR20160043777A (ko) | 질환 발병 예측 방법 및 그 장치 | |
KR102211391B1 (ko) | 고령자 대상 인지장애 조기 검진 및 커뮤니티케어 매칭 서비스를 제공하는 시스템 및 방법 | |
JPWO2019221252A1 (ja) | 情報処理装置、情報処理方法およびプログラム | |
Li et al. | Admission Glasgow Coma Scale score as a predictor of outcome in patients without traumatic brain injury | |
Fujiwara et al. | Association of socioeconomic characteristics with receipt of pediatric cochlear implantations in California | |
Radhakrishnan et al. | Genomics of posttraumatic stress disorder in veterans: Methods and rationale for V eterans A ffairs C ooperative S tudy# 575B | |
KR101693015B1 (ko) | 개인 질병 예측 방법, 개인 질병 예측 시스템 및 개인 질병 예측을 위한 프로그램을 저장하는 저장매체 | |
JP7344424B1 (ja) | 医療・療法システム及びそれを実行する方法 | |
US20140164012A1 (en) | System and methods for simulating future medical episodes | |
KR20180002229A (ko) | 치매 정보 데이터베이스 구축을 위한 에이전트 장치 및 그 운영방법 | |
JP2017037406A (ja) | 提示装置 | |
Görgülü et al. | Submissive behaviour, depression, and suicide probability in male arrestees and convicts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18886958 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18886958 Country of ref document: EP Kind code of ref document: A1 |