WO2019112035A1 - Method for exploring ocean floor subterranean layers - Google Patents

Method for exploring ocean floor subterranean layers Download PDF

Info

Publication number
WO2019112035A1
WO2019112035A1 PCT/JP2018/045078 JP2018045078W WO2019112035A1 WO 2019112035 A1 WO2019112035 A1 WO 2019112035A1 JP 2018045078 W JP2018045078 W JP 2018045078W WO 2019112035 A1 WO2019112035 A1 WO 2019112035A1
Authority
WO
WIPO (PCT)
Prior art keywords
seabed
hydrophone array
hydrophones
searching
hydrophone
Prior art date
Application number
PCT/JP2018/045078
Other languages
French (fr)
Japanese (ja)
Inventor
栄一 淺川
文俊 村上
均 塚原
秀太郎 齊藤
Original Assignee
株式会社地球科学総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社地球科学総合研究所 filed Critical 株式会社地球科学総合研究所
Priority to JP2019558294A priority Critical patent/JPWO2019112035A1/en
Publication of WO2019112035A1 publication Critical patent/WO2019112035A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern

Definitions

  • the present invention relates to a method of searching a submarine basement layer.
  • Conventional submarine resources include petroleum and natural gas.
  • the long side direction of the hydrophone array is aligned along the direction (horizontal direction) parallel to the water surface in the sea.
  • a method is used in which a hydrophone array is towed by an exploration boat, a reflection wave of seismic waves generated from an energy source is detected, and a submarine topography and a submarine formation are identified (see Patent Document 1).
  • the seafloor hydrothermal deposit has attracted attention as one of the seabed resources.
  • the seafloor hydrothermal deposit is a deposit formed by the process in which the hydrothermal fluid containing various metals ejected on the seabed is cooled by the surrounding seawater, and is expected as a seabed resource.
  • unique topography such as chimney chimneys and mounds where they are broken are formed. Therefore, it was considered to identify and mine the seabed topography.
  • the temperature is high around the active seafloor hydrothermal deposit, making it difficult to extract resources.
  • Petroleum which has been attracting attention as a submarine resource in the past, is contained in a sand layer having a thickness of several hundreds of meters 2 to 3 km below the sea floor.
  • the seafloor hydrothermal deposit is formed at a shallow position several tens m to about 100 m below the sea floor and has a thickness of at most about several tens m.
  • the present inventors towed hydrophone arrays with a exploration boat so that a plurality of hydrophones used for oil exploration under the seabed are aligned in a direction parallel to the water surface (horizontal direction) in the sea,
  • the hydrophone receives the reflected waves from all directions without distinction, so there is much noise such as the reflected waves from the side, and the resolution of the information to be acquired is low. Therefore, it has been difficult to obtain information on a thin submarine hydrothermal deposit having a thickness of a few tens of meters to 100 meters below the sea floor.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method of searching a submarine base layer which can analyze the formation of a subseabed shallow position such as a submarine hydrothermal deposit.
  • the method of searching a submarine basement layer uses a hydrophone array having a plurality of hydrophones, and while maintaining a state in which the plurality of hydrophones are vertically spaced from each other in seawater, the hydrophones A sound wave is generated at least one of the upper side and the lower side of the array, and information including the swing width of the reflected wave, the arrival direction of the reflected wave, and the time delay from the generation of the sound wave is detected by each of the plurality of hydrophones. It is characterized by
  • the detection information of each hydrophone can be processed in consideration of the time difference in which the reflected waves reach the respective hydrophones.
  • the horizontal position of each hydrophone is the same position It becomes possible to
  • a reflected wave from the seabed bed is extracted from the information detected by each of the plurality of hydrophones, and the reflected waves from the seabed bed extracted are overlapped. Is preferred.
  • the horizontal position of each hydrophone at the time of detecting the reflected wave is the same position, and the reflected wave from the submarine base layer directly under the hydrophone array is each hydrophone
  • the time difference to arrive at can be specified in advance by the distance between each hydrophone. That is, in the present invention, a plurality of hydrophones are arranged at intervals in the vertical direction (vertical direction) in the hydrophone array. It can be extracted in consideration of the distance between hydrophones and the velocity of acoustic waves in the sea. Thus, when extracting information of a specific reflected wave from the submarine foundation immediately below each hydrophone array from the arrival time difference of sound waves in each hydrophone, the information acquired by each hydrophone is lateral.
  • the hydrophone array is maintained at a constant water depth from the sea level, and the sound waves are generated plural times at intervals in time while being moved in a certain direction, It is preferable that each time the sound wave is generated, information including the swing width of the reflected wave, the arrival direction of the reflected wave, and the time delay from the generation of the sound wave is detected by each of the plurality of hydrophones. According to the method of searching the submarine basement layer, it is possible to search the formation of the submarine underground layer in a wide area.
  • a deep sea movement search device or a deep sea towing body is connected to one end of a cable to which the plurality of hydrophones are attached, and the deep sea movement search device is a remote control type It is an unmanned underwater vehicle (ROV: Remotely operated vehicle) or an autonomous unmanned underwater vehicle (AUV: autonomous underwater vehicle), and the acoustic positioning device attached to the hydrophone array It is preferable to measure the position in water.
  • ROV Remotely operated vehicle
  • AAV autonomous underwater vehicle
  • a reflected wave from the sea floor immediately below the hydrophone array while moving the hydrophone array in a certain direction Can be detected.
  • the acoustic positioning device since the underwater position of the hydrophone array is specified, it becomes possible to move the hydrophone array closer to the bottom of the sea floor to detect a reflected wave, and the accuracy of the detected information is improves.
  • the water depth of the said deep-sea movement survey device is constant in the exploration method of the seabed foundation of the present invention.
  • the search can be performed without mounting a camera or the like on the deep sea movement search device.
  • the height of the hydrophone array from the seabed can be maintained constant.
  • the information of the reflected wave from the seabed immediately below the hydrophone array can be easily processed.
  • the said hydrophones are arranged in series and the said hydrophone array is comprised in the exploration method of the seabed foundation layer of this invention.
  • the plurality of hydrophones are arranged in series, it is easy to prepare a hydrophone array.
  • the said hydrophones are arranged in parallel and the said hydrophone array is comprised in the exploration method of the seabed foundation layer of this invention.
  • the plurality of hydrophones are arranged in parallel, a failed hydrophone can be easily identified and replacement of the failed hydrophone is easy.
  • the method of exploration of a seabed bed it is possible to provide a method of searching a seabed bed capable of analyzing the formation of a bed located at a shallow position on the seabed such as a hydrothermal deposit.
  • a receiver using a hydrophone array 11 is prepared.
  • a hydrophone array 11 in which a plurality of hydrophones 12 are connected in series is used.
  • a plurality of hydrophones 12 are installed at regular intervals in the pipe, and the hydrophones 11 are prepared by wiring between them to prepare the hydrophone array 11.
  • about 16 to 32 hydrophones can be used as the plurality of hydrophones.
  • the distance between adjacent hydrophones is not limited, but it is preferable to set the hydrophones at intervals of about 1 to 10 m.
  • One end of the hydrophone array 11 is connected to a data logger 13 to record information obtained by each hydrophone 12.
  • the main cable 15 having the weight 14 attached to the tip is connected to the exploration boat 21 and the main cable 15 is vertically suspended in the sea.
  • the hydrophone array 11 is fixed so that the plurality of hydrophones 12 are arranged along a direction parallel to the length direction of the main cable 15.
  • the weight 14 is not particularly limited, it is possible to suspend the main cable 15 vertically to the seabed, and for example, a weight 14 of 1 ton can be used.
  • a deep sea tow body (Deep tow) 22 or a deep sea movement search device is connected to the exploration boat 21 and the hydrophone array 11 is connected from the deep sea tow body 22 or the deep sea movement search device.
  • the fixed main cable 15 may be hung vertically.
  • the data recording device 13 for recording the received information of the hydrophone 12 may be disposed at the upper end or the lower end of the hydrophone array 11.
  • the data recording device 13 can simultaneously record information of a plurality of hydrophones 12 simultaneously, and the information detected by the plurality of hydrophones 12 is stored in a recording medium in the data recording device 13.
  • a high frequency hypocenter (SBP: Sub bottom profiler) mounted on a submersible vehicle (ROV: Remotely operated vehicle) 32 or an autonomous underwater vehicle (AUV) can be used.
  • An air gun emits compressed air into water to generate an acoustic wave, and a parker generates an acoustic wave by electric spark discharge.
  • the high frequency hypocenter oscillates an acoustic pulse toward the lower part.
  • Sound waves are generated by one or more types of hypocenters selected from an air gun, a parker, and a high frequency hypocenter. Also, the sound waves may be generated at least one of the upper side and the lower side of the hydrophone array 11. The upper side of the hydrophone array 11 may be directly above, and the lower side may be directly below.
  • the hydrophone array 11 is maintained suspended vertically to the bottom of the sea floor, and the search boat 21 or the deep-sea tow body 22 is used at a constant water depth from the sea level.
  • the certain direction may be horizontal.
  • the horizontal movement speed of the hydrophone array 11 is a speed at which the hydrophone array 11 can be maintained suspended vertically to the seabed.
  • the moving speed of the hydrophone array 11 in the horizontal direction may be set to about 1 to 2 km / hour.
  • the oscillation point of the sound wave generated at least one of the upper side and the lower side (directly above and directly below) of the hydrophone array 11
  • the receiving point for receiving the reflected wave from the seabed foundation layer by the hydrophone array 11 at substantially the same position in the horizontal direction.
  • the oscillation of the sound wave immediately above and / or just below the hydrophone array 11 The point and the sound wave receiving point are approximately at the same position (zero offset) in the horizontal direction.
  • FIGS. 3 and 4 although the arrangement position of the air gun 23, the arrangement position of the deep sea towing body 22 equipped with the high frequency hypocenter or the deep sea movement search device 32 is not directly above and / or just below the hydrophone array 11, An air gun 23, a deep sea towing body 22 equipped with a high frequency hypocenter, or a deep sea movement survey device 32 is disposed approximately directly above and / or just below the hydrophone array 11, which is a schematic diagram in which the reflection state of sound waves is made easy to understand.
  • the plurality of hydrophones 12 can detect information including the amplitude of the reflected wave of the sound wave from the submarine underlayer, the arrival direction of the reflected wave, and the time delay from the generation of the reflected wave.
  • the plurality of hydrophones 12 are arranged at intervals in the vertical direction (vertical direction) with respect to the seabed. Therefore, if the distance between adjacent hydrophones 12 is specified beforehand and made to correspond to the velocity of the sound wave in the sea, the reflected wave from the seabed foundation layer directly below the hydrophone array 11 is received by the hydrophone 12 at the lower end of the hydrophone array 11 After that, it is possible to specify the time for which each hydrophone 12 receives a signal.
  • the information by the reflected wave from immediately below the hydrophone array 11 is extracted according to the time difference of the reflected wave reaching each hydrophone 12. That is, when the information taking into consideration the arrival time difference of the sound wave in each hydrophone 12 is extracted from the acquired information and the information is superimposed, only the information of the reflected wave from immediately below the hydrophone array 11 is emphasized and clear information You can get Specifically, the time difference of arrival time of sound waves per interval of adjacent hydrophones 12 is calculated from the speed of sound in water, and the time when a specific reflected wave reaches each hydrophone 12 is determined, according to the time difference Extracted data.
  • each hydrophone 12 when extracting information of a specific reflected wave from the submarine foundation layer immediately below each hydrophone array 11 from the arrival time difference of sound waves in each hydrophone 12, it is possible to use information acquired by each hydrophone 12 Although the information of the side reflection wave and the reflection wave from other directions are also included, the information detected by each hydrophone 12 overlaps is the reflection wave from the seabed foundation layer directly under the hydrophone array 11 It is information only. Therefore, if the information detected by each hydrophone 12 is extracted and superimposed in consideration of the arrival time difference of the sound wave in each hydrophone 12, the side reflection wave that each detected information has or from other direction Since the information of the reflected waves does not overlap, the information of the side reflected waves and the reflected waves from other directions is not emphasized when overlapping the information, and can be excluded.
  • the reflected wave from the seabed foundation layer is an upward traveling wave
  • the reflected wave from the sea surface is a downward traveling wave.
  • the interval between adjacent hydrophones 12 is specified in advance, and information indicating the arrival time difference of the sound wave from the lower end side of the hydrophone array 11 and the arrival time difference of the sound wave from the upper end side of the hydrophone array 11 It is easy to separate information. Therefore, in consideration of the arrival time difference of the sound wave in each hydrophone 12, before extracting and superposing the information detected by each hydrophone 12, data pre-processing to separate the information by the reflected wave from the sea surface is performed be able to.
  • a hydrophone array 11 in which a plurality of hydrophones 12 similar to those in the first embodiment are connected in series is prepared, and a float 31 for the hydrophone array 11 to float vertically in the sea is It is installed at one end of the phone array 11. Further, a data recording device 13 is connected to one end of the hydrophone array 11. In FIG. 2, the data recording device 13 and the float 31 are connected to the upper end side of the hydrophone array 11, and the data recording device 13 is disposed between the float 31 and the hydrophone array 11.
  • the arrangement position of the data recording device 13 is not limited, and the data recording device 13 may be arranged on the lower end side of the hydrophone array 11. As the data recording device 13, the same one as that of the first embodiment can be used.
  • a remotely operated unmanned underwater vehicle (ROV: Remotely operated vehicle) 32 or an autonomous underwater vehicle (AUV: autonomous underwater vehicle), which is a deep sea movement search device, is prepared.
  • the remote control type unmanned submersible vehicle 32 may be connected to the exploration boat 21.
  • one end of the hydrophone array 11 to which the float 31 is not connected is connected to the remote-controlled unmanned underwater vehicle 32 or the autonomous unmanned underwater vehicle.
  • the hydrophone array 11 connected to the remote-controlled unmanned underwater vehicle 32 or the unmanned unmanned underwater vehicle under the sea will be in a vertically floating state by the float 31.
  • an air gun or a parka used on the sea, or a high frequency wave mounted on a remote control type unmanned submersible unit 32 or an unmanned type unmanned submersible A hypocenter (SBP: Sub bottom profiler) or the like can be used.
  • the method and position of generating the sound wave are the same as in the first embodiment.
  • the floating state of the hydrophone array 11 is maintained in the vertical direction by the floats 31 of the hydrophone array 11, and the unmanned underwater vehicle 32 of remote control type or the unmanned unmanned type unmanned While moving the hydrophone array 11 in a certain direction using a submersible machine, sound waves are generated plural times at intervals in time by the above-mentioned earthquake source.
  • the certain direction may be horizontal.
  • the moving speed of the hydrophone array 11 in the horizontal direction is the same as that of the first embodiment.
  • the plurality of hydrophones 12 can detect information including the amplitude of the reflected wave of the sound wave from the submarine underlayer, the arrival direction of the reflected wave, and the time delay from the generation of the reflected wave.
  • the plurality of hydrophones 12 are arranged at intervals in the vertical direction (vertical direction) with respect to the seabed. Therefore, if the distance between adjacent hydrophones 12 is specified in advance and made to correspond to the velocity of the sound wave in the sea, the reflected wave from the seabed foundation layer immediately below the hydrophone array 11 is received by the hydrophone 12 at the lower end of the hydrophone array 11 After that, it is possible to specify the time for which each hydrophone 12 receives a signal.
  • the method of extracting the information by the reflected wave from immediately below the hydrophone array 11 is the same as that of the first embodiment.
  • a hydrophone array in which a plurality of hydrophones are connected in series from the data recording device 13 is used, but a plurality of hydrophones are connected in parallel.
  • the cables 41 to which the hydrophones 12 are attached are respectively fixed to the linear central member (rope) 42 connected to the data recording device 13 so that the intervals of the plurality of hydrophones 12 become constant.
  • Hydrophone array 43 is configured.
  • the hydrophones are arranged at regular intervals, but the regular intervals may be regular or irregular.
  • the hydrophon array 11, the deep sea tow body 22 used in the first embodiment, and the remote control type unmanned underwater vehicle 32 or the autonomous unmanned underwater vehicle used in the second embodiment have the acoustic positioning device (SSBL) : Super Short Baseline method may be attached.
  • the position of the hydrophone array is calculated by the acoustic positioning device, and the bottom position, depth, moving direction, etc. of the hydrophone array can be determined from the position of the hydrophone array obtained.
  • the water depth of the hydrophone array is constant, it is preferable that the water depth at the upper end of the hydrophone array is such that the horizontal movement of the hydrophone array is not easily inhibited by the topography of the seabed in consideration of the seabed topography and the like.
  • the seabed height at the lower end of the hydrophone array is 100 m to 200 m.
  • the seabed height of the hydrophone array is preferably maintained such that the lower end height of the hydrophone array is 5 m to 10 m. In this case, observation of the seabed condition around the hydrophone array can be simultaneously performed to avoid the inhibitor.
  • the hydrophone array used in the first and second embodiments may be provided with at least one of an inclinometer and a compass.
  • the hydrophone array is suspended vertically in the sea, or the hydrophone array is vertically floated. It can be confirmed.
  • the sound waves are generated by one or more types of hypocenters selected from an air gun, a parker, and a high frequency hypocenter (SBP), but the sound waves generated from the air gun are 10 to At 300 Hz, the sound wave generated from the spring is 20 to 1 kHz, and the sound wave generated from the high frequency seismic source (SBP) is 500 to 2.5 kHz. That is, the energy of the sound wave from the high frequency seismic source (SBP) which generates the sound wave near the seabed is smaller than the sound wave from the air gun or the spoter used on the sea.
  • SBP high frequency hypocenter
  • the cross correlation method is used to obtain information on sound waves from ocean sources and sound waves generated near the seabed. It is good to separate from the information of
  • the hydrophone array is suspended vertically (or floats vertically) with respect to the seabed by a search boat, a deep sea tow body, a deep sea movement search device, or floating. Tow, and the method of detecting the information of the reflected wave was shown. According to the method of the present embodiment, the information of the reflected wave immediately below the hydrophone array is extracted by excluding the information of the side reflected wave and the reflected wave from other directions in each hydrophone constituting the hydrophone array. It is possible to obtain clear two-dimensional imaging of the seabed underlayer.
  • Example A hydrophone array in which 16 hydrophones are arranged in series at intervals of 5 m is prepared, and the long side direction of the hydrophone array is parallel to the water surface in a deep sea tow body (Deep tow). It was towed at about 1 m / sec to maintain the following condition (horizontal direction). At this time, the seabed height of the hydrophone array was about 100 m. The seabed height was measured indirectly from the difference between the hydrophone depth and the seabed depth. Next, a sound wave of about 20 to 1 kHz was oscillated every 5 seconds from the sea using a parker, and the hydrophones received the reflected waves from the seabed and the seabed foundation layer.
  • the information of the reflected wave detected by each hydrophone was recorded and analyzed by a data recorder connected to one end of the hydrophone array.
  • the data recording device is capable of simultaneously recording information of a plurality of hydrophones simultaneously, using a sampling rate of 10 kHz, time stamped by an atomic clock (CSAC), and the detected information is in the data recording device.
  • CRC atomic clock
  • a sound wave of about 20 to 1 kHz is oscillated approximately immediately above the hydrophone array every 5 seconds using a parker mounted on the exploration boat, and each hydrophone receives the reflected waves from the seabed and the seabed foundation layer. did.
  • the information of the reflected wave detected by each hydrophone was recorded and analyzed by the same data recording device as the conventional example connected to one end of the hydrophone array.
  • a two-dimensional imaging diagram of the seabed underlayer obtained from the analyzed data is shown in FIG.
  • the two-dimensional imaging diagram of the seabed underlayer shown in FIG. 6 is a portion surrounded by a broken line in FIG.
  • the towing speed of the hydrophone array is about 1 km / hour (0.28 m / sec) in order to maintain the hydrophone array suspended vertically to the seabed. Therefore, in consideration of the speed of sound in the sea, the point of oscillation of the sound wave by the parka placed almost directly above the hydrophone array and the point of reception of the reflected wave from the seabed underground layer in the hydrophone array are almost the same. It is a position. Therefore, it is possible to increase the accuracy of the reception of the reflected wave corresponding to the oscillated sound wave.
  • the towing speed of the hydrophone array is slower compared to the conventional example, and the resolution (number of observation points) in the observation range can be increased, and as shown in FIG. We were able to analyze in detail the stratum at the position of.
  • the sound wave oscillated toward the submarine foundation layer is reflected at a location where the composition of the formation changes (eg, between the mud layer and the gravel layer).
  • 16 hydrophones are arranged at intervals of 5 m in the vertical direction (vertical direction), and the time difference for the reflected waves to arrive from the seabed directly below the hydrophone array is calculated in advance to each hydrophone From the information of the reflected wave obtained by each hydrophone, the information according to this time difference was extracted, and the information of 16 hydrophones was superimposed. According to this method, only the reflected waves from the bottom of the hydrophone array overlap, and it is possible to remove the information of the reflected waves in the lateral direction and the reflected waves from other directions.
  • the hydrothermal deposit 60 is a portion surrounded by the upper boundary and the lower boundary, and there is no reflection of the formation indicated by the shade of dark gray and light gray immediately below it. From the example of the present invention described above, it has been confirmed that according to the method of the present invention, it is possible to easily identify the position of the hydrothermal deposit by two-dimensional imaging.
  • the method of exploration of a seabed bed it is possible to provide a method of searching a seabed bed capable of analyzing the formation of a bed located at a shallow position on the seabed such as a hydrothermal deposit.
  • the exploration method of the seabed foundation layer of the present invention is also applicable to the exploration of seabed resources such as methane hydrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

In this method for exploring ocean floor subterranean layers, a hydrophone array comprising a plurality of hydrophones is used to generate sound waves above and/or below the hydrophone array while keeping the plurality of hydrophones arrayed underwater at intervals in the vertical direction, and information including reflected wave amplitude, the direction from which the reflected waves arrive, and time delay following the generation of the sound waves is detected by each of the plurality of hydrophones.

Description

海底下地層の探査方法Submarine basement exploration method
 本発明は、海底下地層の探査方法に関する。
 本願は、2017年12月8日に、米国に出願された米国仮出願No.62/596,116号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method of searching a submarine basement layer.
This application claims the benefit of U.S. Provisional Patent Application No. 10 / 9,067, filed Dec. 8, 2017, which is filed in the United States. Priority is claimed under 62/2 596,116, the contents of which are incorporated herein by reference.
 従来の海底資源としては、石油や天然ガスなどが挙げられる。海底下の石油や天然ガスの探査では、複数のハイドロフォンを有するハイドロフォンアレイを用い、ハイドロフォンアレイの長辺方向が海中で水面に対して平行な方向(水平方向)に沿って配列するように探査ボートでハイドロフォンアレイを曳航し、エネルギー源から発生させた地震波の反射波を検出して、海底地形や海底下の地層を特定する方法が使用されている(特許文献1参照)。 Conventional submarine resources include petroleum and natural gas. In the exploration of oil and natural gas under the sea floor, using hydrophone arrays with multiple hydrophones, the long side direction of the hydrophone array is aligned along the direction (horizontal direction) parallel to the water surface in the sea A method is used in which a hydrophone array is towed by an exploration boat, a reflection wave of seismic waves generated from an energy source is detected, and a submarine topography and a submarine formation are identified (see Patent Document 1).
 近年、海底資源の一つとして海底熱水鉱床が注目されている。
 海底熱水鉱床は、海底で噴出する各種金属を含む熱水が、周辺の海水によって冷却される過程で沈殿してできた鉱床であり、海底資源として期待されている。アクティブな海底熱水鉱床付近では、煙突状のチムニー群や、それらが崩れたマウンドといった独特の地形が形成される。従って、海底地形を特定して採掘することが検討されていた。しかし、アクティブな海底熱水鉱床の周辺は温度が高く、資源の採取が困難であるという問題があった。
In recent years, the seafloor hydrothermal deposit has attracted attention as one of the seabed resources.
The seafloor hydrothermal deposit is a deposit formed by the process in which the hydrothermal fluid containing various metals ejected on the seabed is cooled by the surrounding seawater, and is expected as a seabed resource. In the vicinity of the active seafloor hydrothermal deposit, unique topography such as chimney chimneys and mounds where they are broken are formed. Therefore, it was considered to identify and mine the seabed topography. However, there is a problem that the temperature is high around the active seafloor hydrothermal deposit, making it difficult to extract resources.
 一方、海底での熱水活動が停止している熱水鉱床であれば、形成されてから時間が経過しており、温度が低く資源の採取ができる可能性がある。しかしこの場合、熱水鉱床は海底の堆積層の中に埋没しており、海底の地形から熱水鉱床の位置を特定することが困難であった。
 そこで、チムニー群や、それらが崩れたマウンド等の海底地形を特定したあと、その付近をボーリングし、海底下の地層構成を特定する方法が採用されていた。しかし、この方法では海底下の地層構造が不明なままボーリングが行われるため、効率的ではなかった。
On the other hand, if it is a hydrothermal deposit where hydrothermal activity on the seabed has stopped, the time has passed since it was formed, and there is a possibility that the temperature is low and resources can be collected. However, in this case, the hydrothermal deposit is buried in the sediment of the seabed, and it is difficult to locate the hydrothermal deposit from the topography of the seabed.
Therefore, after identifying the submarine topography such as the chimney group and the mound where they collapsed, a method of boring in the vicinity and identifying the formation configuration under the submarine has been adopted. However, this method is not efficient because boring is performed while the formation structure under the seabed is unknown.
米国特許第3943484号U.S. Pat. No. 3,943,484
 従来海底資源として注目されていた石油は海底から2~3km程度下の数百mの厚さを有する砂層に含まれている。一方、海底熱水鉱床は海底から数十m~100m程度下の浅い位置に厚さが最大でも数十m程度で形成されるものである。
 本発明者らは、海底下の石油探査に用いる、複数のハイドロフォンが海中で水面に対して平行となる方向(水平方向)に沿って配列するように探査ボートでハイドロフォンアレイを曳航し、震源から発生させた音波の反射波を検出する方法(特許文献1)で海底熱水鉱床の位置を特定することを試みた。しかし、この方法では全ての方向からの反射波を区別することなくハイドロフォンが受信するため、横からの反射波等のノイズが多く、取得する情報の分解能が低い。従って、海底から数十m~100m下の浅い位置の厚さの薄い海底熱水鉱床の情報を取得することが困難であった。
Petroleum, which has been attracting attention as a submarine resource in the past, is contained in a sand layer having a thickness of several hundreds of meters 2 to 3 km below the sea floor. On the other hand, the seafloor hydrothermal deposit is formed at a shallow position several tens m to about 100 m below the sea floor and has a thickness of at most about several tens m.
The present inventors towed hydrophone arrays with a exploration boat so that a plurality of hydrophones used for oil exploration under the seabed are aligned in a direction parallel to the water surface (horizontal direction) in the sea, An attempt was made to identify the position of the seafloor hydrothermal deposit by a method of detecting the reflected wave of the sound wave generated from the hypocenter (Patent Document 1). However, in this method, the hydrophone receives the reflected waves from all directions without distinction, so there is much noise such as the reflected waves from the side, and the resolution of the information to be acquired is low. Therefore, it has been difficult to obtain information on a thin submarine hydrothermal deposit having a thickness of a few tens of meters to 100 meters below the sea floor.
 本発明は以上の事情を鑑みてなされたものであり、海底熱水鉱床などの海底下の浅い位置にある地層構成を分析可能な海底下地層の探査方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method of searching a submarine base layer which can analyze the formation of a subseabed shallow position such as a submarine hydrothermal deposit.
 本発明の海底下地層の探査方法は、複数のハイドロフォンを有するハイドロフォンアレイを用い、海水下で前記複数のハイドロフォンが上下方向に間隔をあけて配列された状態を保ちつつ、前記ハイドロフォンアレイの上方及び下方の少なくとも一方において音波を発生させ、反射波の振れ幅、前記反射波の到来方向、並びに前記音波の発生からの時間的遅れを含む情報を、前記複数のハイドロフォンそれぞれにより検出することを特徴とする。 The method of searching a submarine basement layer according to the present invention uses a hydrophone array having a plurality of hydrophones, and while maintaining a state in which the plurality of hydrophones are vertically spaced from each other in seawater, the hydrophones A sound wave is generated at least one of the upper side and the lower side of the array, and information including the swing width of the reflected wave, the arrival direction of the reflected wave, and the time delay from the generation of the sound wave is detected by each of the plurality of hydrophones. It is characterized by
 本発明の海底下地層の探査方法では、ハイドロフォンアレイにおいて複数のハイドロフォンが上下方向(鉛直方向)に間隔をあけて配列されているため、ハイドロフォンアレイ直下の海底下地層からの反射波が各々のハイドロフォンに到達する時間について時間差が生じる。従って、この各々のハイドロフォンに反射波が到達する時間差を考慮して各々のハイドロフォンの検出情報を処理可能になる。また、複数のハイドロフォンが上下方向に間隔をあけて配列されているため、ハイドロフォンアレイ直下の海底下地層からの反射波を検出する際に、各々のハイドロフォンの水平方向の位置を同じ位置とすることが可能になる。 In the method of searching a submarine base layer according to the present invention, since a plurality of hydrophones are arranged at intervals in the vertical direction (vertical direction) in the hydrophone array, the reflected wave from the submarine base layer immediately below the hydrophone array is There is a difference in time to reach each hydrophone. Therefore, the detection information of each hydrophone can be processed in consideration of the time difference in which the reflected waves reach the respective hydrophones. In addition, since a plurality of hydrophones are arranged at intervals in the vertical direction, when detecting a reflected wave from the seabed foundation layer directly under the hydrophone array, the horizontal position of each hydrophone is the same position It becomes possible to
 本発明の海底下地層の探査方法では、前記複数のハイドロフォンそれぞれにより検出された前記情報から、前記海底下地層からの反射波を抽出し、抽出された海底下地層からの反射波を重ね合せることが好ましい。 In the method of searching a seabed bed according to the present invention, a reflected wave from the seabed bed is extracted from the information detected by each of the plurality of hydrophones, and the reflected waves from the seabed bed extracted are overlapped. Is preferred.
 本発明の海底下地層の探査方法では、反射波を検出する際の各々のハイドロフォンの水平方向の位置が同じ位置であり、ハイドロフォンアレイ直下の海底下地層からの反射波が各々のハイドロフォンに到達する時間差を、各々のハイドロフォン間の距離により予め特定可能である。
 すなわち、本発明ではハイドロフォンアレイにおいて複数のハイドロフォンが上下方向(鉛直方向)に間隔をあけて配列されているため、ハイドロフォンアレイ直下の海底下地層からの反射波の情報については、各々のハイドロフォン間の距離と海中の音波の速度を考慮して抽出することができる。
 このように各々のハイドロフォンにおける音波の到達時間差から、各々のハイドロフォンアレイ直下の海底下地層からの特定の反射波の情報を抽出する場合、各々のハイドロフォンで取得される情報には側方反射波や他の方向からの反射波の情報も含まれているが、各々のハイドロフォンで検出する情報で重複するのはハイドロフォンアレイ直下の海底下地層からの反射波の情報のみとなる。従って、各々のハイドロフォンにおける音波の到達時間差に対応させて、各々のハイドロフォンで検出した情報を抽出して重ね合わせると、個々の検出情報が有する側方反射波や他の方向からの反射波の情報は重複しないため、情報を重ね合わせた際に側方反射波や他の方向からの反射波の情報が強調されることは無く、除外できる。
In the method of searching a submarine base layer according to the present invention, the horizontal position of each hydrophone at the time of detecting the reflected wave is the same position, and the reflected wave from the submarine base layer directly under the hydrophone array is each hydrophone The time difference to arrive at can be specified in advance by the distance between each hydrophone.
That is, in the present invention, a plurality of hydrophones are arranged at intervals in the vertical direction (vertical direction) in the hydrophone array. It can be extracted in consideration of the distance between hydrophones and the velocity of acoustic waves in the sea.
Thus, when extracting information of a specific reflected wave from the submarine foundation immediately below each hydrophone array from the arrival time difference of sound waves in each hydrophone, the information acquired by each hydrophone is lateral. Although information on reflected waves and reflected waves from other directions is also included, it is only information on reflected waves from the seabed foundation layer directly under the hydrophone array that overlaps in information detected by each hydrophone. Therefore, if the information detected by each hydrophone is extracted and superimposed corresponding to the arrival time difference of the sound wave in each hydrophone, the side reflection wave which each detection information has or the reflected wave from other direction Since the information in the above does not overlap, the information of the side reflection wave and the reflection wave from the other direction is not emphasized when the information is superimposed, and can be excluded.
 本発明の海底下地層の探査方法では、前記ハイドロフォンアレイを海水面から一定の水深で維持し、ある方向に移動させながら、前記音波を、時間的に間隔をあけて複数回発生させ、前記音波を発生させる度に、反射波の振れ幅、前記反射波の到来方向、並びに前記音波の発生からの時間的遅れを含む情報を前記複数のハイドロフォンのそれぞれにより検出することが好ましい。
 この海底下地層の探査方法によれば、広範囲における海底地下層の地層を探査することができる。
In the method of searching a submarine basement layer according to the present invention, the hydrophone array is maintained at a constant water depth from the sea level, and the sound waves are generated plural times at intervals in time while being moved in a certain direction, It is preferable that each time the sound wave is generated, information including the swing width of the reflected wave, the arrival direction of the reflected wave, and the time delay from the generation of the sound wave is detected by each of the plurality of hydrophones.
According to the method of searching the submarine basement layer, it is possible to search the formation of the submarine underground layer in a wide area.
 本発明の海底下地層の探査方法であって、前記複数のハイドロフォンが取り付けられている索体の一端に深海移動探査装置又は深海曳航体を接続し、前記深海移動探査装置が遠隔操作型の無人潜水機(ROV:Remotely operated vehicle)又は自律型無人潜水機(AUV:autonomous underwater vehicle)であり、前記ハイドロフォンアレイに取り付けた音響測位装置にて、前記深海移動探査装置又は前記深海曳航体の水中位置を測定することが好ましい。 In the method of searching a submarine basement layer according to the present invention, a deep sea movement search device or a deep sea towing body is connected to one end of a cable to which the plurality of hydrophones are attached, and the deep sea movement search device is a remote control type It is an unmanned underwater vehicle (ROV: Remotely operated vehicle) or an autonomous unmanned underwater vehicle (AUV: autonomous underwater vehicle), and the acoustic positioning device attached to the hydrophone array It is preferable to measure the position in water.
 前記複数のハイドロフォンが取り付けられている索体の一端に接続した深海移動探査装置又は深海曳航体によれば、ハイドロフォンアレイをある方向に移動させながら、ハイドロフォンアレイ直下の海底からの反射波を検出可能である。また、前記音響測位装置によれば、ハイドロフォンアレイの水中位置が特定されるため、ハイドロフォンアレイを海底面により近づけて反射波の検出を行うことが可能になり、検出される情報の精度が向上する。 According to the deep sea movement search device or the deep sea towing body connected to one end of the cable to which the plurality of hydrophones are attached, a reflected wave from the sea floor immediately below the hydrophone array while moving the hydrophone array in a certain direction Can be detected. Further, according to the acoustic positioning device, since the underwater position of the hydrophone array is specified, it becomes possible to move the hydrophone array closer to the bottom of the sea floor to detect a reflected wave, and the accuracy of the detected information is improves.
 本発明の海底下地層の探査方法では、前記深海移動探査装置の水深が一定であることが好ましい。 It is preferable that the water depth of the said deep-sea movement survey device is constant in the exploration method of the seabed foundation of the present invention.
 本発明の海底下地層の探査方法で、前記深海移動探査装置の水深が一定である場合は、海底地形などを考慮し、海底の地形によってハイドロフォンアレイの水平方向移動を阻害されにくい水深を選択するとよい。この場合、深海移動探査装置にカメラなどを搭載せずに探査を行うことができる。 In the method of searching a submarine basement layer according to the present invention, when the depth of the deep sea movement surveying apparatus is constant, the sea floor topography and the like are taken into consideration, and the depth of the horizontal movement of the hydrophone array is hardly inhibited by the topography of the sea floor. It is good to do. In this case, the search can be performed without mounting a camera or the like on the deep sea movement search device.
 本発明の海底下地層の探査方法では、前記ハイドロフォンアレイに取り付けた高度測定装置にて、海底からの前記深海移動探査装置の高度を測定することが好ましい。 It is preferable to measure the height of the said deep-sea movement survey device from the seabed with the altitude measurement device attached to the said hydrophone array in the exploration method of the seabed foundation layer of this invention.
 本発明の海底下地層の探査方法で、前記高度測定装置にて、海底からの前記深海移動探査装置の高度を測定する場合、前記ハイドロフォンアレイの海底からの高度を一定に維持することができ、前記ハイドロフォンアレイ直下の海底からの反射波の情報を処理しやすくなる。 In the method of the present invention, when measuring the height of the deep sea movement surveying apparatus from the seabed with the altimetry apparatus, the height of the hydrophone array from the seabed can be maintained constant. The information of the reflected wave from the seabed immediately below the hydrophone array can be easily processed.
 本発明の海底下地層の探査方法では、前記複数のハイドロフォンが直列に配列されて前記ハイドロフォンアレイを構成していることが好ましい。
 前記複数のハイドロフォンが直列に配列されている場合、ハイドロフォンアレイを準備し易い。
It is preferable that the said hydrophones are arranged in series and the said hydrophone array is comprised in the exploration method of the seabed foundation layer of this invention.
When the plurality of hydrophones are arranged in series, it is easy to prepare a hydrophone array.
 本発明の海底下地層の探査方法では、前記複数のハイドロフォンが並列に配列されて前記ハイドロフォンアレイを構成していることが好ましい。
 前記複数のハイドロフォンが並列に配列されている場合、故障したハイドロフォンが確認し易く、且つ故障したハイドロフォンの交換が容易である。また、探査対象に合わせてハイドロフォンの間隔を変更することが可能となる。
It is preferable that the said hydrophones are arranged in parallel and the said hydrophone array is comprised in the exploration method of the seabed foundation layer of this invention.
When the plurality of hydrophones are arranged in parallel, a failed hydrophone can be easily identified and replacement of the failed hydrophone is easy. In addition, it is possible to change the hydrophone interval according to the search target.
 本発明の海底下地層の探査方法によれば、熱水鉱床などの海底の浅い位置にある地層構成を分析可能な海底下地層の探査方法を提供することができる。 According to the method of exploration of a seabed bed according to the present invention, it is possible to provide a method of searching a seabed bed capable of analyzing the formation of a bed located at a shallow position on the seabed such as a hydrothermal deposit.
本実施形態で用いるハイドロフォンアレイの長さ方向が海底に対して鉛直になるようにハイドロフォンアレイを吊り下げて行う海底下地層の探査方法を示す略図である。It is a schematic diagram which shows the exploration method of the seabed foundation layer performed by suspending a hydrophone array so that the length direction of the hydrophone array used by this embodiment may become perpendicular to the seabed. 本実施形態で用いるハイドロフォンアレイの長さ方向が海底に対して鉛直になるようにハイドロフォンアレイを浮かして行う海底下地層の探査方法を示す略図である。It is a schematic diagram which shows the exploration method of the seabed foundation layer performed by floating a hydrophone array so that the length direction of the hydrophone array used by this embodiment may become perpendicular to the seabed. 深海曳航体に高周波震源を設置し、海中内で発振した音波と海上で発振した音波とを本実施形態のハイドロフォンアレイで受振する一例を示す略図である。It is a schematic diagram which shows an example which installs the high frequency hypocenter in the deep sea towing body, and receives the sound wave oscillated in the sea and the sound wave oscillated in the sea by the hydrophone array of this embodiment. 遠隔操作型の無人潜水機に高周波震源を設置し、海中内で発振した音波と海上で発振した音波とを本実施形態のハイドロフォンアレイで受振する一例を示す略図である。It is a schematic diagram showing an example which installs a high frequency hypocenter in a remote control type unmanned underwater vehicle, and receives a sound wave oscillated in the sea and a sound wave oscillated in the sea by the hydrophone array of this embodiment. 従来例で示す海底下地層の探査方法で得られた、海底下地層の二次元イメージングの一例である。It is an example of the two-dimensional imaging of the seabed underlayer obtained by the exploration method of the seabed underlayer shown in the conventional example. 本実施形態で示す海底下地層の探査方法で得られた、海底下地層の二次元イメージングの一例である。It is an example of the two-dimensional imaging of the seabed underlayer obtained by the exploration method of the seabed underlayer shown in the present embodiment. 本実施形態で用いるハイドロフォンアレイの一例を示す略図である。It is a schematic diagram which shows an example of the hydrophone array used by this embodiment.
 以下、本発明の実施形態の一例について図を参照して詳細に説明するが、本発明はこれらの実施形態に限定して解釈されるものではない。 Hereinafter, although an example of an embodiment of the present invention is explained in detail with reference to figures, the present invention is not interpreted as limiting to these embodiments.
[第1の実施形態]
 図1、図3及び図4で説明を行う第1の実施形態の海底下地層の探査方法では、まずハイドロフォンアレイ11による受信機を準備する。本実施形態では、ハイドロフォンアレイ11として複数のハイドロフォン12を直列に接続したものを使用する。具体的には、管内に一定間隔で複数のハイドロフォン12を設置して、その間を配線で繋いでハイドロフォンアレイ11を準備する。ここで、複数のハイドロフォンとして16~32個程度のハイドロフォンを用いることができる。隣接するハイドロフォンの間隔は限定されないが1~10m程度の間隔をあけてハイドロフォンを設置するとよい。ハイドロフォンアレイ11の一端はデータ記録装置(data logger)13に接続し、各ハイドロフォン12で得た情報を記録する。
First Embodiment
In the method of searching the seabed underlayer according to the first embodiment described with reference to FIGS. 1, 3 and 4, first, a receiver using a hydrophone array 11 is prepared. In the present embodiment, a hydrophone array 11 in which a plurality of hydrophones 12 are connected in series is used. Specifically, a plurality of hydrophones 12 are installed at regular intervals in the pipe, and the hydrophones 11 are prepared by wiring between them to prepare the hydrophone array 11. Here, about 16 to 32 hydrophones can be used as the plurality of hydrophones. The distance between adjacent hydrophones is not limited, but it is preferable to set the hydrophones at intervals of about 1 to 10 m. One end of the hydrophone array 11 is connected to a data logger 13 to record information obtained by each hydrophone 12.
 次に、探査ボート21に先端に錘14を取り付けたメインケーブル15を接続して、メインケーブル15を海中に鉛直に吊り下ろす。メインケーブル15では、メインケーブル15の長さ方向に平行な方向に沿って複数のハイドロフォン12が配置されるようにハイドロフォンアレイ11を固定する。
 錘14は特に限定されないが、メインケーブル15を海底に対して鉛直に吊り下げることが可能であるものとし、例えば1トンの錘14を用いることができる。
 図示しないが、メインケーブル15を鉛直に吊り下ろす際、探査ボート21に深海曳航体(Deep tow)22又は深海移動探査装置を接続し、深海曳航体22又は深海移動探査装置からハイドロフォンアレイ11を固定したメインケーブル15を鉛直に吊り下ろしてもよい。
Next, the main cable 15 having the weight 14 attached to the tip is connected to the exploration boat 21 and the main cable 15 is vertically suspended in the sea. In the main cable 15, the hydrophone array 11 is fixed so that the plurality of hydrophones 12 are arranged along a direction parallel to the length direction of the main cable 15.
Although the weight 14 is not particularly limited, it is possible to suspend the main cable 15 vertically to the seabed, and for example, a weight 14 of 1 ton can be used.
Although not shown, when the main cable 15 is suspended vertically, a deep sea tow body (Deep tow) 22 or a deep sea movement search device is connected to the exploration boat 21 and the hydrophone array 11 is connected from the deep sea tow body 22 or the deep sea movement search device. The fixed main cable 15 may be hung vertically.
 メインケーブル15にハイドロフォンアレイ11を固定する際、ハイドロフォン12の受信情報を記録するデータ記録装置13はハイドロフォンアレイ11の上端に配置されていても、下端に配置されていてもよい。
 データ記録装置13は、複数のハイドロフォン12の情報の同時高速記録が可能なものであり、複数のハイドロフォン12で検出された情報はデータ記録装置13内の記録媒体に保存される。
When the hydrophone array 11 is fixed to the main cable 15, the data recording device 13 for recording the received information of the hydrophone 12 may be disposed at the upper end or the lower end of the hydrophone array 11.
The data recording device 13 can simultaneously record information of a plurality of hydrophones 12 simultaneously, and the information detected by the plurality of hydrophones 12 is stored in a recording medium in the data recording device 13.
 海底下地層の探査に用いる音波を発生させる震源としては、海上で用いるエアガン23やスパーカー又は、図3に示される深海曳航体22又は図4で示される深海移動探査装置(遠隔操作型の無人潜水機(ROV:Remotely operated vehicle)32又は自律型無人潜水機(AUV:autonomous underwater vehicle))に搭載した高周波震源(SBP:Sub bottom profiler)などを用いることができる。
 エアガンは圧縮空気を水中に放出して音波を発生させるものであり、スパーカーは電気スパーク放電にて音波を発生させるものである。高周波震源は、直下に向けて音響パルスを発振するものである。エアガン、スパーカー、及び高周波震源から選択される1種以上の震源により音波を発生させる。また、音波はハイドロフォンアレイ11の上方及び下方の少なくとも一方で生じさせるとよい。なお、ハイドロフォンアレイ11の上方とは直上であってもよく、下方とは直下であってもよい。
As an epicenter to generate sound waves used for exploration of the submarine underground layer, an air gun 23 or a parka used on the sea, or a deep sea towing body 22 shown in FIG. 3 or a deep sea movement surveying apparatus shown in FIG. A high frequency hypocenter (SBP: Sub bottom profiler) mounted on a submersible vehicle (ROV: Remotely operated vehicle) 32 or an autonomous underwater vehicle (AUV) can be used.
An air gun emits compressed air into water to generate an acoustic wave, and a parker generates an acoustic wave by electric spark discharge. The high frequency hypocenter oscillates an acoustic pulse toward the lower part. Sound waves are generated by one or more types of hypocenters selected from an air gun, a parker, and a high frequency hypocenter. Also, the sound waves may be generated at least one of the upper side and the lower side of the hydrophone array 11. The upper side of the hydrophone array 11 may be directly above, and the lower side may be directly below.
 本実施形態の海底下地層の探査方法では、ハイドロフォンアレイ11が海底に対して鉛直に吊り下げられた状態を維持し、海水面から一定の水深で、探査ボート21又は深海曳航体22を用いてハイドロフォンアレイ11をある方向に移動させながら、前述の震源により音波を時間的に間隔をあけて複数回発生させる。ここで、ある方向とは水平方向であってよい。
 このとき、ハイドロフォンアレイ11の水平方向の移動速度は、ハイドロフォンアレイ11が海底に対して鉛直に吊り下げられた状態を維持できる速度である。例えば、ハイドロフォンアレイ11の水平方向の移動速度を1~2km/時程度に設定するとよい。
 ハイドロフォンアレイ11が海底に対して鉛直に吊り下げられた状態を維持できる速度移動する場合、ハイドロフォンアレイ11の上方及び下方(直上及び直下)の少なくとも一方で生じた音波の発振点と、音波の海底下地層からの反射波をハイドロフォンアレイ11で受振する受振点とが水平方向にほぼ同じ位置にすることができる。例えば、1000~1500mの海底の海底下地層を探査する場合には、ハイドロフォンアレイ11の水平方向の移動速度を1km/時前後とすると、ハイドロフォンアレイ11の直上及び/又は直下の音波の発振点と音波の受振点とを水平方向にほぼ同じ位置(ゼロオフセット)になる。また、音波の発振点と音波の受振点とが水平方向にずれている場合も、その距離はごく僅かであり、検出する情報には影響を及ぼしにくい。
 なお、図3及び図4において、エアガン23の配置位置、高周波震源を搭載した深海曳航体22又は深海移動探査装置32の配置位置はハイドロフォンアレイ11の直上及び/又は直下ではないが、これは音波の反射状態を分かりやすくした略図であり、エアガン23、高周波震源を搭載した深海曳航体22、又は深海移動探査装置32はハイドロフォンアレイ11の略直上及び/又は略直下に配置される。
In the method of searching the submarine basement layer according to the present embodiment, the hydrophone array 11 is maintained suspended vertically to the bottom of the sea floor, and the search boat 21 or the deep-sea tow body 22 is used at a constant water depth from the sea level. While moving the hydrophone array 11 in a certain direction, sound waves are generated a plurality of times at intervals in time by the above-mentioned earthquake source. Here, the certain direction may be horizontal.
At this time, the horizontal movement speed of the hydrophone array 11 is a speed at which the hydrophone array 11 can be maintained suspended vertically to the seabed. For example, the moving speed of the hydrophone array 11 in the horizontal direction may be set to about 1 to 2 km / hour.
When moving at such a speed that the hydrophone array 11 can be maintained suspended vertically relative to the seabed, the oscillation point of the sound wave generated at least one of the upper side and the lower side (directly above and directly below) of the hydrophone array 11 And the receiving point for receiving the reflected wave from the seabed foundation layer by the hydrophone array 11 at substantially the same position in the horizontal direction. For example, in the case of searching a submarine basement layer of 1000 to 1500 m, assuming that the horizontal movement speed of the hydrophone array 11 is about 1 km / hour, the oscillation of the sound wave immediately above and / or just below the hydrophone array 11 The point and the sound wave receiving point are approximately at the same position (zero offset) in the horizontal direction. Further, even when the oscillation point of the sound wave and the reception point of the sound wave are shifted in the horizontal direction, the distance is very small, and it is difficult to affect the information to be detected.
In FIGS. 3 and 4, although the arrangement position of the air gun 23, the arrangement position of the deep sea towing body 22 equipped with the high frequency hypocenter or the deep sea movement search device 32 is not directly above and / or just below the hydrophone array 11, An air gun 23, a deep sea towing body 22 equipped with a high frequency hypocenter, or a deep sea movement survey device 32 is disposed approximately directly above and / or just below the hydrophone array 11, which is a schematic diagram in which the reflection state of sound waves is made easy to understand.
 複数のハイドロフォン12では、音波の海底下地層からの反射波の振れ幅、反射波の到来方向、反射波の音波の発生からの時間的遅れを含む情報を検出可能である。
 本実施形態では、複数のハイドロフォン12は、海底に対して上下方向(鉛直方向)に間隔を空けて配列されている。従って、予め隣接するハイドロフォン12の間隔を特定し、海中での音波の速度と対応させると、ハイドロフォンアレイ11直下の海底下地層からの反射波をハイドロフォンアレイ11下端のハイドロフォン12で受振してから、各々のハイドロフォン12で受振する時間を特定できる。
The plurality of hydrophones 12 can detect information including the amplitude of the reflected wave of the sound wave from the submarine underlayer, the arrival direction of the reflected wave, and the time delay from the generation of the reflected wave.
In the present embodiment, the plurality of hydrophones 12 are arranged at intervals in the vertical direction (vertical direction) with respect to the seabed. Therefore, if the distance between adjacent hydrophones 12 is specified beforehand and made to correspond to the velocity of the sound wave in the sea, the reflected wave from the seabed foundation layer directly below the hydrophone array 11 is received by the hydrophone 12 at the lower end of the hydrophone array 11 After that, it is possible to specify the time for which each hydrophone 12 receives a signal.
 ハイドロフォンアレイ11直下からの反射波による情報は、各々のハイドロフォン12に反射波が到達する時間差に応じて抽出される。すなわち、取得した情報から、各々のハイドロフォン12における音波の到達時間差を考慮した情報を抽出し、情報を重ね合わせると、ハイドロフォンアレイ11直下からの反射波の情報だけが強調され、鮮明な情報を得ることができる。
 具体的には、水中の音速から隣接するハイドロフォン12の間隔あたりの音波の到達時間の時間差を算出し、各々のハイドロフォン12に特定の反射波が到達する時間を決定し、その時間差に応じたデータを抽出する。
 このように各々のハイドロフォン12における音波の到達時間差から、各々のハイドロフォンアレイ11直下の海底下地層からの特定の反射波の情報を抽出する場合、各々のハイドロフォン12で取得される情報には側方反射波や他の方向からの反射波の情報も含まれているが、各々のハイドロフォン12で検出する情報で重複するのはハイドロフォンアレイ11直下の海底下地層からの反射波の情報のみとなる。
 従って、各々のハイドロフォン12における音波の到達時間差を考慮して、各々のハイドロフォン12で検出した情報を抽出して重ね合わせると、個々の検出情報が有する側方反射波や他の方向からの反射波の情報は重複しないため、情報を重ね合わせた際に側方反射波や他の方向からの反射波の情報が強調されることは無く、除外できる。
The information by the reflected wave from immediately below the hydrophone array 11 is extracted according to the time difference of the reflected wave reaching each hydrophone 12. That is, when the information taking into consideration the arrival time difference of the sound wave in each hydrophone 12 is extracted from the acquired information and the information is superimposed, only the information of the reflected wave from immediately below the hydrophone array 11 is emphasized and clear information You can get
Specifically, the time difference of arrival time of sound waves per interval of adjacent hydrophones 12 is calculated from the speed of sound in water, and the time when a specific reflected wave reaches each hydrophone 12 is determined, according to the time difference Extracted data.
Thus, when extracting information of a specific reflected wave from the submarine foundation layer immediately below each hydrophone array 11 from the arrival time difference of sound waves in each hydrophone 12, it is possible to use information acquired by each hydrophone 12 Although the information of the side reflection wave and the reflection wave from other directions are also included, the information detected by each hydrophone 12 overlaps is the reflection wave from the seabed foundation layer directly under the hydrophone array 11 It is information only.
Therefore, if the information detected by each hydrophone 12 is extracted and superimposed in consideration of the arrival time difference of the sound wave in each hydrophone 12, the side reflection wave that each detected information has or from other direction Since the information of the reflected waves does not overlap, the information of the side reflected waves and the reflected waves from other directions is not emphasized when overlapping the information, and can be excluded.
 震源から発生した音波によれば、海底下地層からの反射波だけではなく、海面からの反射波も発生する。
 海底下地層からの反射波は上方進行波となり、海面からの反射波は下方進行波となる。本実施形態では、予め隣接するハイドロフォン12の間隔が特定されており、ハイドロフォンアレイ11の下端側から音波の到達時間差を示す情報と、ハイドロフォンアレイ11の上端側から音波の到達時間差を示す情報と、を分離することが容易である。
 従って、各々のハイドロフォン12における音波の到達時間差を考慮して、各々のハイドロフォン12で検出した情報を抽出して重ね合わせる前に、海面からの反射波による情報を分離するデータ前処理を行うことができる。
According to the sound waves generated from the epicenter, not only the reflected wave from the seabed foundation layer but also the reflected wave from the sea surface is generated.
The reflected wave from the seabed foundation layer is an upward traveling wave, and the reflected wave from the sea surface is a downward traveling wave. In the present embodiment, the interval between adjacent hydrophones 12 is specified in advance, and information indicating the arrival time difference of the sound wave from the lower end side of the hydrophone array 11 and the arrival time difference of the sound wave from the upper end side of the hydrophone array 11 It is easy to separate information.
Therefore, in consideration of the arrival time difference of the sound wave in each hydrophone 12, before extracting and superposing the information detected by each hydrophone 12, data pre-processing to separate the information by the reflected wave from the sea surface is performed be able to.
[第2の実施形態]
 第2の実施形態では、第1の実施形態と同様の複数のハイドロフォン12を直列に接続したハイドロフォンアレイ11を準備し、ハイドロフォンアレイ11が海中で鉛直方向に浮くための浮き31をハイドロフォンアレイ11の一端に設置する。また、ハイドロフォンアレイ11の何れか一端には、データ記録装置13を接続する。
 図2では、データ記録装置13と浮き31とを、ハイドロフォンアレイ11の上端側に接続し、浮き31とハイドロフォンアレイ11との間にデータ記録装置13を配置している。しかし、データ記録装置13の配置位置は限定されず、ハイドロフォンアレイ11の下端側にデータ記録装置13を配置してもよい。
 データ記録装置13としては、第1の実施形態と同様のものを用いることができる。
Second Embodiment
In the second embodiment, a hydrophone array 11 in which a plurality of hydrophones 12 similar to those in the first embodiment are connected in series is prepared, and a float 31 for the hydrophone array 11 to float vertically in the sea is It is installed at one end of the phone array 11. Further, a data recording device 13 is connected to one end of the hydrophone array 11.
In FIG. 2, the data recording device 13 and the float 31 are connected to the upper end side of the hydrophone array 11, and the data recording device 13 is disposed between the float 31 and the hydrophone array 11. However, the arrangement position of the data recording device 13 is not limited, and the data recording device 13 may be arranged on the lower end side of the hydrophone array 11.
As the data recording device 13, the same one as that of the first embodiment can be used.
 第2の実施形態では、深海移動探査装置である遠隔操作型の無人潜水機(ROV:Remotely operated vehicle)32又は自律型無人潜水機(AUV:autonomous underwater vehicle)を準備する。遠隔操作型の無人潜水機32は探査ボート21に接続していてもよい。
 次に、遠隔操作型の無人潜水機32又は自律型無人潜水機に、ハイドロフォンアレイ11の浮き31が接続されていない一端を接続する。
 以上の構成により、海中内で遠隔操作型の無人潜水機32又は自律型無人潜水機に接続されたハイドロフォンアレイ11は、浮き31によって鉛直方向に浮いた状態となる。
In the second embodiment, a remotely operated unmanned underwater vehicle (ROV: Remotely operated vehicle) 32 or an autonomous underwater vehicle (AUV: autonomous underwater vehicle), which is a deep sea movement search device, is prepared. The remote control type unmanned submersible vehicle 32 may be connected to the exploration boat 21.
Next, one end of the hydrophone array 11 to which the float 31 is not connected is connected to the remote-controlled unmanned underwater vehicle 32 or the autonomous unmanned underwater vehicle.
According to the above configuration, the hydrophone array 11 connected to the remote-controlled unmanned underwater vehicle 32 or the unmanned unmanned underwater vehicle under the sea will be in a vertically floating state by the float 31.
 海底下地層の探査に用いる音波を発生させる震源としては、第1の実施形態と同様に海上で用いるエアガンやスパーカー或いは、遠隔操作型の無人潜水機32又は自律型無人潜水機に搭載した高周波震源(SBP:Sub bottom profiler)などを用いることができる。
 音波を発生させる方法及び位置については第1の実施形態と同様である。
As a seismic source for generating a sound wave used for the exploration of the submarine basement, as in the first embodiment, an air gun or a parka used on the sea, or a high frequency wave mounted on a remote control type unmanned submersible unit 32 or an unmanned type unmanned submersible A hypocenter (SBP: Sub bottom profiler) or the like can be used.
The method and position of generating the sound wave are the same as in the first embodiment.
 本実施形態の海底下地層の探査方法では、ハイドロフォンアレイ11の浮き31によって鉛直方向に浮いた状態を維持し、海水面から一定の水深で、遠隔操作型の無人潜水機32又は自律型無人潜水機を用いてハイドロフォンアレイ11をある方向に移動させながら、前述の震源により音波を時間的に間隔をあけて複数回発生させる。ここで、ある方向とは水平方向であってよい。
 このとき、ハイドロフォンアレイ11の水平方向の移動速度は、第1の実施形態と同様である。
In the method of searching the seabed bed according to the present embodiment, the floating state of the hydrophone array 11 is maintained in the vertical direction by the floats 31 of the hydrophone array 11, and the unmanned underwater vehicle 32 of remote control type or the unmanned unmanned type unmanned While moving the hydrophone array 11 in a certain direction using a submersible machine, sound waves are generated plural times at intervals in time by the above-mentioned earthquake source. Here, the certain direction may be horizontal.
At this time, the moving speed of the hydrophone array 11 in the horizontal direction is the same as that of the first embodiment.
 複数のハイドロフォン12では、音波の海底下地層からの反射波の振れ幅、反射波の到来方向、反射波の音波の発生からの時間的遅れを含む情報を検出可能である。
 本実施形態では、複数のハイドロフォン12は、海底に対して上下方向(鉛直方向)に間隔を空けて配列されている。従って、予め隣り合うハイドロフォン12の間隔を特定し、海中での音波の速度と対応させると、ハイドロフォンアレイ11直下の海底下地層からの反射波をハイドロフォンアレイ11下端のハイドロフォン12で受振してから、各々のハイドロフォン12で受振する時間を特定できる。
 ハイドロフォンアレイ11直下からの反射波による情報を抽出する方法は第1の実施形態と同じものとする。
The plurality of hydrophones 12 can detect information including the amplitude of the reflected wave of the sound wave from the submarine underlayer, the arrival direction of the reflected wave, and the time delay from the generation of the reflected wave.
In the present embodiment, the plurality of hydrophones 12 are arranged at intervals in the vertical direction (vertical direction) with respect to the seabed. Therefore, if the distance between adjacent hydrophones 12 is specified in advance and made to correspond to the velocity of the sound wave in the sea, the reflected wave from the seabed foundation layer immediately below the hydrophone array 11 is received by the hydrophone 12 at the lower end of the hydrophone array 11 After that, it is possible to specify the time for which each hydrophone 12 receives a signal.
The method of extracting the information by the reflected wave from immediately below the hydrophone array 11 is the same as that of the first embodiment.
 以上、第1の実施形態及び第2の実施形態では、ハイドロフォンアレイとして、複数のハイドロフォンをデータ記録装置13から直列に接続したものを使用したが、複数のハイドロフォンを並列に接続したものを使用してもよい。具体的には、図7で示す通り、データ記録装置13に長さの異なるケーブル41を複数並列接続し、各々のケーブル41先端にハイドロフォン12を取り付ける。次に、データ記録装置13に接続している線状の中心部材(ロープ)42に、複数のハイドロフォン12の間隔が一定になるように、ハイドロフォン12を取り付けたケーブル41をそれぞれ固定して、ハイドロフォンアレイ43を構成する。このように、複数のハイドロフォン12が並列に接続しているハイドロフォンアレイ43では、何れか1つのハイドロフォン12が故障した際に、1本のハイドロフォン12を取り付けたケーブル41を交換するだけで修理を行うことができる。また、ハイドロフォンアレイ43において何れのハイドロフォン12が故障しているのかの検査が容易であるという利点がある。 As described above, in the first and second embodiments, a hydrophone array in which a plurality of hydrophones are connected in series from the data recording device 13 is used, but a plurality of hydrophones are connected in parallel. You may use Specifically, as shown in FIG. 7, a plurality of cables 41 having different lengths are connected in parallel to the data recording device 13, and the hydrophone 12 is attached to the tip of each cable 41. Next, the cables 41 to which the hydrophones 12 are attached are respectively fixed to the linear central member (rope) 42 connected to the data recording device 13 so that the intervals of the plurality of hydrophones 12 become constant. , Hydrophone array 43 is configured. Thus, in the hydrophone array 43 in which a plurality of hydrophones 12 are connected in parallel, when any one of the hydrophones 12 fails, only the cable 41 attached with one hydrophone 12 is replaced. You can do repairs with In addition, there is an advantage that it is easy to check which hydrophone 12 in the hydrophone array 43 is broken.
 第1の実施形態及び第2の実施形態では、ハイドロフォンを一定間隔を空けて配置するとしたが、この一定間隔は規則的なものであっても不規則なものであってもよい。 In the first and second embodiments, the hydrophones are arranged at regular intervals, but the regular intervals may be regular or irregular.
 第1の実施形態で用いた、ハイドロフォンアレイ11、深海曳航体22、並びに第2の実施形態で用いた遠隔操作型の無人潜水機32又は自律型無人潜水機には、音響測位装置(SSBL:Super Short Baseline法)を取り付けてもよい。音響測位装置でハイドロフォンアレイの位置を計算し、得られたハイドロフォンアレイの位置により、ハイドロフォンアレイの海底高度、水深、移動方向などを決定することができる。
 ハイドロフォンアレイの水深を一定にする場合、ハイドロフォンアレイの上端の水深が、海底地形などを考慮して海底の地形によってハイドロフォンアレイの水平方向移動を阻害されにくい水深であるとよい。例えば、深海曳航体22を用いた場合、ハイドロフォンアレイの下端の海底高度を100m~200mにすることが好ましい。
 遠隔操作型の無人探査機32を用いる場合には、ハイドロフォンアレイの海底高度は、ハイドロフォンアレイの下端高度が5m~10mとなるように維持されることが好ましい。この場合、ハイドロフォンアレイ周辺の海底状況の観察を同時に行い、阻害物を回避することができる。
The hydrophon array 11, the deep sea tow body 22 used in the first embodiment, and the remote control type unmanned underwater vehicle 32 or the autonomous unmanned underwater vehicle used in the second embodiment have the acoustic positioning device (SSBL) : Super Short Baseline method may be attached. The position of the hydrophone array is calculated by the acoustic positioning device, and the bottom position, depth, moving direction, etc. of the hydrophone array can be determined from the position of the hydrophone array obtained.
When the water depth of the hydrophone array is constant, it is preferable that the water depth at the upper end of the hydrophone array is such that the horizontal movement of the hydrophone array is not easily inhibited by the topography of the seabed in consideration of the seabed topography and the like. For example, when the deep sea tow body 22 is used, it is preferable to set the seabed height at the lower end of the hydrophone array to 100 m to 200 m.
In the case of using the remote control type unmanned spacecraft 32, the seabed height of the hydrophone array is preferably maintained such that the lower end height of the hydrophone array is 5 m to 10 m. In this case, observation of the seabed condition around the hydrophone array can be simultaneously performed to avoid the inhibitor.
 第1の実施形態及び第2の実施形態で用いるハイドロフォンアレイには傾斜計及びコンパスの少なくとも1つが設置されているとよい。傾斜計及びコンパスの少なくとも1つがハイドロフォンアレイに設置されていると、海中でハイドロフォンアレイが鉛直方向に吊り下げられている状態であること、又はハイドロフォンアレイが鉛直方向に浮かんでいることを確認することができる。 The hydrophone array used in the first and second embodiments may be provided with at least one of an inclinometer and a compass. When at least one of the inclinometer and the compass is installed on the hydrophone array, the hydrophone array is suspended vertically in the sea, or the hydrophone array is vertically floated. It can be confirmed.
 第1の実施形態及び第2の実施形態では、エアガン、スパーカー、及び高周波震源(SBP)から選択される1種以上の震源により音波を発生させるとしたが、エアガンから発生する音波は10~300Hz、スパーカーから発生する音波は20~1kHz、高周波震源(SBP)から発生する音波は500~2.5kHzである。すなわち、海底付近で音波を発生させる高周波震源(SBP)からの音波のエネルギーは、海上で用いるエアガンやスパーカーからの音波より小さい。従って、エアガンと高周波震源(SBP)とを組み合わせる場合、又はスパーカーと高周波震源(SBP)とを組み合わせる場合は、相互相関法を使って海上震源からの音波の情報と、海底付近で発生した音波の情報とを分離するとよい。 In the first embodiment and the second embodiment, the sound waves are generated by one or more types of hypocenters selected from an air gun, a parker, and a high frequency hypocenter (SBP), but the sound waves generated from the air gun are 10 to At 300 Hz, the sound wave generated from the spring is 20 to 1 kHz, and the sound wave generated from the high frequency seismic source (SBP) is 500 to 2.5 kHz. That is, the energy of the sound wave from the high frequency seismic source (SBP) which generates the sound wave near the seabed is smaller than the sound wave from the air gun or the spoter used on the sea. Therefore, when combining an air gun with a high frequency hypocenter (SBP), or when combining a parker with a high frequency hypocenter (SBP), the cross correlation method is used to obtain information on sound waves from ocean sources and sound waves generated near the seabed. It is good to separate from the information of
 第1の実施形態及び第2の実施形態では、探査ボート、深海曳航体、深海移動探査装置、又は浮き等でハイドロフォンアレイを海底に対して鉛直に吊り下げられた状態(又は垂直に浮いている状態)を維持しながら曳航し、反射波の情報を検出する方法を示した。
 本実施形態の方法によれば、ハイドロフォンアレイを構成する個々のハイドロフォンにおける側方反射波や他の方向からの反射波の情報を除外して、ハイドロフォンアレイ直下の反射波の情報を抽出し、海底下地層の鮮明な二次元イメージングを得ることが可能になる。
In the first embodiment and the second embodiment, the hydrophone array is suspended vertically (or floats vertically) with respect to the seabed by a search boat, a deep sea tow body, a deep sea movement search device, or floating. Tow, and the method of detecting the information of the reflected wave was shown.
According to the method of the present embodiment, the information of the reflected wave immediately below the hydrophone array is extracted by excluding the information of the side reflected wave and the reflected wave from other directions in each hydrophone constituting the hydrophone array. It is possible to obtain clear two-dimensional imaging of the seabed underlayer.
 チムニー群や、それらが崩れたマウンド等の海底地形を特定し、その付近をボーリングすることで、海底熱水鉱床が確認されている海底領域について、従来の海底下地層の探査方法と本発明の海底下地層の探査方法とを適用し、得られるデータの違いを確認した。 By identifying the submarine topography such as the chimney group and the mound where they collapsed and boring the area thereabout, a method of searching a conventional submarine basement layer and the present invention for the submarine region where the submarine hydrothermal deposit is confirmed We applied the method of exploration of the seabed and confirmed the difference in the obtained data.
(1)従来例
 16個のハイドロフォンを直列に5m間隔をあけて配列されたハイドロフォンアレイを準備し、深海曳航体(Deep tow)でハイドロフォンアレイの長辺方向が水面に対して平行となる状態(水平方向)を維持するように1m/秒程度で曳航した。このとき、ハイドロフォンアレイの海底高度は約100mとした。海底高度は、ハイドロフォン深度と海底深度の差から、間接的に測定した。
 次に、海上からスパーカーを用いて20~1kHz程度の音波を5秒毎に発振し、各々のハイドロフォンで海底及び海底下地層からの反射波を受振した。
 各々のハイドロフォンで検出された反射波の情報はハイドロフォンアレイの一端に接続したデータ記録装置で記録し、解析を行った。データ記録装置は、複数のハイドロフォンの情報の同時高速記録が可能なものであり、サンプリングレート10kHz、時間が原子時計(CSAC)によってスタンプされるものを用い、検出された情報はデータ記録装置内の記録媒体に保存された。
 解析したデータより得られた、海底下地層の二次元イメージング図を図5に示す。
(1) Conventional Example A hydrophone array in which 16 hydrophones are arranged in series at intervals of 5 m is prepared, and the long side direction of the hydrophone array is parallel to the water surface in a deep sea tow body (Deep tow). It was towed at about 1 m / sec to maintain the following condition (horizontal direction). At this time, the seabed height of the hydrophone array was about 100 m. The seabed height was measured indirectly from the difference between the hydrophone depth and the seabed depth.
Next, a sound wave of about 20 to 1 kHz was oscillated every 5 seconds from the sea using a parker, and the hydrophones received the reflected waves from the seabed and the seabed foundation layer.
The information of the reflected wave detected by each hydrophone was recorded and analyzed by a data recorder connected to one end of the hydrophone array. The data recording device is capable of simultaneously recording information of a plurality of hydrophones simultaneously, using a sampling rate of 10 kHz, time stamped by an atomic clock (CSAC), and the detected information is in the data recording device. Was stored on a recording medium.
A two-dimensional imaging diagram of the seabed underlayer obtained from the analyzed data is shown in FIG.
 従来例の方法では、ハイドロフォンアレイの長辺方向が水面に対して平行となる状態(水平方向)を維持するために、ハイドロフォンアレイの曳航速度を1m/秒程度とする必要があった。従って、震源を用いて音波を発振させた時点のハイドロフォンアレイの位置と、海底下地層からの反射波を受振する時点のハイドロフォンアレイの位置とが大きくずれた。すなわち、異なる地点のデータを分析する必要があった。また、ハイドロフォンアレイの曳航速度が速く、観測範囲における解像度(観測点の数)を高くすることが困難であり、図5で示されるように、海底下地層の20~30m程度の位置の地層を詳細に解析することが出来なかった。
 更に、この方法では、ハイドロフォンアレイの横方向からの反射波を除くことが困難であり、検出した情報においてノイズが多く、情報の分解能が低い傾向にあった。
In the conventional method, in order to maintain the state (horizontal direction) in which the long side direction of the hydrophone array is parallel to the water surface, it is necessary to set the towing speed of the hydrophone array to about 1 m / sec. Therefore, the position of the hydrophone array at the time of emitting the sound wave using the hypocenter and the position of the hydrophone array at the time of receiving the reflected wave from the seabed foundation layer are largely shifted. That is, it was necessary to analyze data at different points. In addition, it is difficult to increase the towing speed of the hydrophone array and increase the resolution (number of observation points) in the observation range, and as shown in FIG. Could not be analyzed in detail.
Furthermore, in this method, it is difficult to remove the reflected wave from the lateral direction of the hydrophone array, and there is a tendency that the detected information has a lot of noise and the resolution of the information is low.
(2)本発明例
 16個のハイドロフォンが上下方向(鉛直方向)に5m間隔をあけて配列されたハイドロフォンアレイを準備した。先端に錘を取り付けたメインケーブルの長さ方向に沿ってハイドロフォンアレイを固定し、海中に潜水させた深海曳航体からメインケーブルを海底に対して鉛直に吊り下げた。
 次に、ハイドロフォンアレイが海底に対して鉛直に吊り下げられた状態を維持するように、1km/時(0.28m/秒)程度の速度でハイドロフォンアレイを曳航した。このとき、ハイドロフォンアレイの下端部の海底高度は100mとした。海底高度は、ハイドロフォン深度と海底深度の差から、間接的に測定した。
(2) Invention Example A hydrophone array was prepared in which 16 hydrophones were arranged at intervals of 5 m in the vertical direction (vertical direction). The hydrophone array was fixed along the length direction of the main cable with the weight attached to the tip, and the main cable was suspended vertically from the sea bottom from the deep sea towing body submerged in the sea.
Next, the hydrophone array was towed at a speed of about 1 km / hour (0.28 m / sec) so that the hydrophone array was suspended vertically to the seabed. At this time, the height of the bottom of the hydrophone array was 100 m. The seabed height was measured indirectly from the difference between the hydrophone depth and the seabed depth.
 次に、探査ボートに搭載したスパーカーを用いて20~1kHz程度の音波を5秒毎にハイドロフォンアレイの略直上で発振し、各々のハイドロフォンで海底及び海底下地層からの反射波を受振した。
 各々のハイドロフォンで検出された反射波の情報はハイドロフォンアレイの一端に接続した従来例と同様のデータ記録装置で記録し、解析を行った。
 解析したデータより得られた、海底下地層の二次元イメージング図を図6に示す。図6で示す海底下地層の二次元イメージング図は、図5の破線で囲まれた箇所である。
Next, a sound wave of about 20 to 1 kHz is oscillated approximately immediately above the hydrophone array every 5 seconds using a parker mounted on the exploration boat, and each hydrophone receives the reflected waves from the seabed and the seabed foundation layer. did.
The information of the reflected wave detected by each hydrophone was recorded and analyzed by the same data recording device as the conventional example connected to one end of the hydrophone array.
A two-dimensional imaging diagram of the seabed underlayer obtained from the analyzed data is shown in FIG. The two-dimensional imaging diagram of the seabed underlayer shown in FIG. 6 is a portion surrounded by a broken line in FIG.
 本発明例の方法では、ハイドロフォンアレイが海底に対して鉛直に吊り下げられた状態を維持するため、ハイドロフォンアレイの曳航速度が1km/時(0.28m/秒)程度である。従って、海中での音速を考慮すると、ハイドロフォンアレイの略直上に配置したスパーカーによる音波の発振点と、海底地下層からの反射波のハイドロフォンアレイでの受振点とが水平方向にほぼ同じ位置である。従って、発振した音波に対応する反射波の受振の精度を高くすることができる。
 また、ハイドロフォンアレイの曳航速度が従来例と比較して遅く、観測範囲における解像度(観測点の数)を高くすることができ、図6で示されるように、海底下地層の20~30m程度の位置の地層を詳細に解析出来た。
In the method of the present invention, the towing speed of the hydrophone array is about 1 km / hour (0.28 m / sec) in order to maintain the hydrophone array suspended vertically to the seabed. Therefore, in consideration of the speed of sound in the sea, the point of oscillation of the sound wave by the parka placed almost directly above the hydrophone array and the point of reception of the reflected wave from the seabed underground layer in the hydrophone array are almost the same. It is a position. Therefore, it is possible to increase the accuracy of the reception of the reflected wave corresponding to the oscillated sound wave.
In addition, the towing speed of the hydrophone array is slower compared to the conventional example, and the resolution (number of observation points) in the observation range can be increased, and as shown in FIG. We were able to analyze in detail the stratum at the position of.
 海底下地層に向けて発振された音波は、地層の組成が変化する箇所(例えば、泥層と砂礫層との間)などで反射する。
 本発明例の方法では、16個のハイドロフォンを上下方向(鉛直方向)に5m間隔で配置して、予め各々のハイドロフォンに、ハイドロフォンアレイ直下の海底から反射波が到達する時間差を算出し、各ハイドロフォンで得られた反射波の情報から、この時間差に応じた情報を抽出して、16個のハイドロフォンの情報を重ね合わせた。
 この方法によれば、ハイドロフォンアレイ直下の海底から反射波のみが重複し、横方向の反射波や他の方向からの反射波の情報を除くことができる。従って、精度の高い海底下地層の情報を得ることができた。
 以上の方法で、本発明者らが検出した情報の分析を行ったところ、図6で示される通り、熱水鉱床60の下では反射が無く地層が無い状態が確認された。図6において熱水鉱床60は上部境界(Upper boundary)と下部境界(Lower boundary)に囲まれた箇所であり、その直下に濃いグレーと薄いグレーとの濃淡で示される地層の反射が無い。
 以上の本発明例より、本発明の方法によれば、熱水鉱床の位置の特定を二次元イメージングにて容易に行うことが可能であることが確認された。
The sound wave oscillated toward the submarine foundation layer is reflected at a location where the composition of the formation changes (eg, between the mud layer and the gravel layer).
In the method of the present invention, 16 hydrophones are arranged at intervals of 5 m in the vertical direction (vertical direction), and the time difference for the reflected waves to arrive from the seabed directly below the hydrophone array is calculated in advance to each hydrophone From the information of the reflected wave obtained by each hydrophone, the information according to this time difference was extracted, and the information of 16 hydrophones was superimposed.
According to this method, only the reflected waves from the bottom of the hydrophone array overlap, and it is possible to remove the information of the reflected waves in the lateral direction and the reflected waves from other directions. Therefore, it was possible to obtain highly accurate information on the seabed foundation layer.
When the information detected by the present inventors was analyzed by the above method, as shown in FIG. 6, there was no reflection under the hydrothermal deposit 60 and no formation was confirmed. In FIG. 6, the hydrothermal deposit 60 is a portion surrounded by the upper boundary and the lower boundary, and there is no reflection of the formation indicated by the shade of dark gray and light gray immediately below it.
From the example of the present invention described above, it has been confirmed that according to the method of the present invention, it is possible to easily identify the position of the hydrothermal deposit by two-dimensional imaging.
 本発明の海底下地層の探査方法によれば、熱水鉱床などの海底の浅い位置にある地層構成を分析可能な海底下地層の探査方法を提供することができる。また、本発明の海底下地層の探査方法は、メタンハイドレード等の海底資源の探査にも適用可能である。 According to the method of exploration of a seabed bed according to the present invention, it is possible to provide a method of searching a seabed bed capable of analyzing the formation of a bed located at a shallow position on the seabed such as a hydrothermal deposit. Moreover, the exploration method of the seabed foundation layer of the present invention is also applicable to the exploration of seabed resources such as methane hydrate.
 11  ハイドロフォンアレイ
 12  ハイドロフォン
 13  データ記録装置
 14  錘
 15  メインケーブル
 21  探査ボート
 22  深海曳航体
11 Hydrophone array 12 Hydrophone 13 Data recorder 14 Weight 15 Main cable 21 Exploration boat 22 Deep-sea tow body

Claims (8)

  1.  海底下地層の探査方法であって、
     複数のハイドロフォンを有するハイドロフォンアレイを用い、
     海水下で前記複数のハイドロフォンが上下方向に間隔を空けて配列された状態を保ちつつ、前記ハイドロフォンアレイの上方及び下方の少なくとも一方において音波を発生させ、
     反射波の振れ幅、前記反射波の到来方向、並びに前記音波の発生からの時間的遅れを含む情報を、前記複数のハイドロフォンそれぞれにより検出することを特徴とする、海底下地層の探査方法。
    A method of searching a submarine basement layer,
    Using a hydrophone array having a plurality of hydrophones,
    Under seawater, the plurality of hydrophones are arranged at intervals in the vertical direction, and sound waves are generated at least one of the upper side and the lower side of the hydrophone array,
    A method of searching a seabed foundation layer, wherein information including a swing width of a reflected wave, an arrival direction of the reflected wave, and a time delay from generation of the sound wave is detected by each of the plurality of hydrophones.
  2.  請求項1に記載の海底下地層の探査方法であって、
     前記複数のハイドロフォンそれぞれにより検出された前記情報から、前記海底下地層からの反射波を抽出し、
     抽出された海底下地層からの反射波を重ね合せることを特徴とする海底下地層の探査方法。
    The method of searching a seabed bed according to claim 1, wherein
    The reflected wave from the seabed foundation layer is extracted from the information detected by each of the plurality of hydrophones,
    A method of searching a seabed underlayer characterized by superimposing reflected waves from the extracted seabed underlayer.
  3.  請求項2に記載の海底下地層の探査方法であって、
     前記ハイドロフォンアレイを海水面から一定の水深で維持し、ある方向に移動させながら、前記音波を、時間的に間隔を空けて複数回発生させ、
     前記音波を発生させる度に、反射波の振れ幅、前記反射波の到来方向、並びに前記音波の発生からの時間的遅れを含む情報を前記複数のハイドロフォンのそれぞれにより検出することを特徴とする海底下地層の探査方法。
    The method of searching a seabed bed according to claim 2,
    The hydrophone array is maintained at a constant depth from the surface of the sea and, while being moved in a certain direction, the sound waves are generated plural times at intervals in time.
    Each time the sound wave is generated, information including the swing width of the reflected wave, the arrival direction of the reflected wave, and the time delay from the generation of the sound wave is detected by each of the plurality of hydrophones. Submarine basement exploration method.
  4.  請求項1~3の何れか一項に記載の海底下地層の探査方法であって、
     前記複数のハイドロフォンが取り付けられている索体の一端に深海移動探査装置又は深海曳航体を接続し、前記深海移動探査装置が遠隔操作型の無人潜水機(ROV:Remotely operated vehicle)又は自律型無人潜水機(AUV:autonomous underwater vehicle)であり、
     前記ハイドロフォンアレイに取り付けた音響測位装置にて、前記深海移動探査装置又は前記深海曳航体の水中位置を測定することを特徴とする海底下地層の探査方法。
    The method of searching a seabed bed layer according to any one of claims 1 to 3,
    A deep sea mobile search device or a deep sea tow body is connected to one end of a cable to which the plurality of hydrophones are attached, and the deep sea mobile search device is a remotely operated unmanned underwater vehicle (ROV: Remotely operated vehicle) or an autonomous type It is an unmanned underwater vehicle (AUV: autonomous underwater vehicle),
    A method of searching a seabed underlayer, comprising measuring an underwater position of the deep-sea mobile search device or the deep-sea towed body by an acoustic positioning device attached to the hydrophone array.
  5.  請求項4に記載の海底下地層の探査方法であって、
     前記深海移動探査装置の水深が一定であることを特徴とする海底下地層の探査方法。
    The method of searching a seabed bed according to claim 4,
    A method of searching a submarine basement layer, wherein the water depth of the deep sea movement search device is constant.
  6.  請求項4に記載の海底下地層の探査方法であって、
     前記ハイドロフォンアレイに取り付けた高度測定装置にて、海底からの前記深海移動探査装置の高度を測定することを特徴とする海底下地層の探査方法。
    The method of searching a seabed bed according to claim 4,
    A method of searching a seabed underlayer, comprising measuring the height of the deep sea movement surveying apparatus from the seabed with an altimetry apparatus attached to the hydrophone array.
  7.  請求項1に記載の海底下地層の探査方法であって、前記複数のハイドロフォンが直列に配列されて前記ハイドロフォンアレイを構成していることを特徴とする海底下地層の探査方法。 The method of searching a seabed bed according to claim 1, wherein the plurality of hydrophones are arranged in series to constitute the hydrophone array.
  8.  請求項1に記載の海底下地層の探査方法であって、前記複数のハイドロフォンが並列に配列されて前記ハイドロフォンアレイを構成していることを特徴とする海底下地層の探査方法。 The method of searching a seabed bed according to claim 1, wherein the plurality of hydrophones are arranged in parallel to constitute the hydrophone array.
PCT/JP2018/045078 2017-12-08 2018-12-07 Method for exploring ocean floor subterranean layers WO2019112035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019558294A JPWO2019112035A1 (en) 2017-12-08 2018-12-07 Exploration method for submarine strata

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762596116P 2017-12-08 2017-12-08
US62/596,116 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019112035A1 true WO2019112035A1 (en) 2019-06-13

Family

ID=66751000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045078 WO2019112035A1 (en) 2017-12-08 2018-12-07 Method for exploring ocean floor subterranean layers

Country Status (2)

Country Link
JP (1) JPWO2019112035A1 (en)
WO (1) WO2019112035A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543274A (en) * 2020-12-21 2021-03-23 青岛科技大学 Unmanned deep sea biological image capture equipment
CN113219410A (en) * 2020-04-29 2021-08-06 中国人民解放军国防科技大学 Element space position active measurement system and method of hydrophone array
CN113534260A (en) * 2021-07-20 2021-10-22 自然资源部第二海洋研究所 Broadband near-seabed deep-sea geological structure acoustic detection system and method
JP2022550226A (en) * 2020-09-02 2022-12-01 中国海洋大学 Plasma source wavelet high-precision measurement equipment under shallow water conditions
JP7530637B2 (en) 2020-12-25 2024-08-08 国立大学法人東京海洋大学 Waveform extraction system, waveform extraction method, and marine seismic exploration method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116292A (en) * 1988-10-26 1990-04-27 Hitachi Cable Ltd Control information controller for cogeneration system
US4958328A (en) * 1989-07-24 1990-09-18 Texaco Inc. Marine walkaway vertical seismic profiling
US5113377A (en) * 1991-05-08 1992-05-12 Atlantic Richfield Company Receiver array system for marine seismic surveying
US6088299A (en) * 1998-12-04 2000-07-11 Syntron, Inc. Vertical hydrophone array
US20100182870A1 (en) * 2007-08-10 2010-07-22 Norris Michael W Underseas seismic acquisition
US20140362663A1 (en) * 2012-01-13 2014-12-11 Westerngeco L.L.C. Simultaneous source marine seismic acquisition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116292A (en) * 1988-10-26 1990-04-27 Hitachi Cable Ltd Control information controller for cogeneration system
US4958328A (en) * 1989-07-24 1990-09-18 Texaco Inc. Marine walkaway vertical seismic profiling
US5113377A (en) * 1991-05-08 1992-05-12 Atlantic Richfield Company Receiver array system for marine seismic surveying
US6088299A (en) * 1998-12-04 2000-07-11 Syntron, Inc. Vertical hydrophone array
US20100182870A1 (en) * 2007-08-10 2010-07-22 Norris Michael W Underseas seismic acquisition
US20140362663A1 (en) * 2012-01-13 2014-12-11 Westerngeco L.L.C. Simultaneous source marine seismic acquisition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASAKAWA, EIICHI ET AL.: "Development of vertical cable seismic (VCS", BUTSURI-TANSA(GEOPHYSICAL EXPLORATION, vol. 64, no. 4, 2011, pages 267 - 277, XP032716656 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219410A (en) * 2020-04-29 2021-08-06 中国人民解放军国防科技大学 Element space position active measurement system and method of hydrophone array
JP2022550226A (en) * 2020-09-02 2022-12-01 中国海洋大学 Plasma source wavelet high-precision measurement equipment under shallow water conditions
JP7273429B2 (en) 2020-09-02 2023-05-15 中国海洋大学 Plasma source wavelet high-precision measurement equipment under shallow water conditions
CN112543274A (en) * 2020-12-21 2021-03-23 青岛科技大学 Unmanned deep sea biological image capture equipment
JP7530637B2 (en) 2020-12-25 2024-08-08 国立大学法人東京海洋大学 Waveform extraction system, waveform extraction method, and marine seismic exploration method
CN113534260A (en) * 2021-07-20 2021-10-22 自然资源部第二海洋研究所 Broadband near-seabed deep-sea geological structure acoustic detection system and method
CN113534260B (en) * 2021-07-20 2024-05-03 自然资源部第二海洋研究所 Broadband near-seafloor deep sea geological structure acoustic detection system and method

Also Published As

Publication number Publication date
JPWO2019112035A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019112035A1 (en) Method for exploring ocean floor subterranean layers
US9013952B2 (en) Marine seismic survey systems and methods using autonomously or remotely operated vehicles
AU2017101934A4 (en) System and method for seismic imaging using fiber optic sensing systems
US10281605B2 (en) Communication systems for water vehicles
KR101766916B1 (en) System and method for surveying mirine seismic refraction using unmanned gliders
RU2602735C2 (en) Method for seismic monitoring of process of development of hydrocarbons in water areas
GB2429529A (en) Determining sound velocity profile using an acoustic transmitter and acoustic receivers
US9915746B2 (en) Marine seismic surveying including direct far field measurements
WO2005094431A2 (en) Seismic acquisition system
WO2018020205A1 (en) Offshore reservoir monitoring system and method for its operation
US11733090B1 (en) Marine animal monitoring during seismic surveying using distributed acoustic sensing
KR101488215B1 (en) Hull-mounted type subbottom profiler system capable of adjusting horizontality
KR101488216B1 (en) Hull-mounted type subbottom profiler system
JP2008014830A (en) Hydrate existence domain survey method and survey system
JP2007218766A (en) Geological boundary discrimination method for vicinity of existing tunnel
McGuinness et al. The application of various geophysical techniques to specialized engineering projects
BR102012024723A2 (en) METHODS AND APPARATUS FOR POSITIONING STREAMER DURING SEA SEISMIC EXPLORATION
Birin et al. Analysis of seismic methods used for subsea hydrocarbon exploration
JP2006138706A (en) Method of estimating thickness of hydrate layer
Woolsey et al. A remote station to monitor sea floor stability and gas hydrate outcrops in the Gulf of Mexico

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886323

Country of ref document: EP

Kind code of ref document: A1