WO2019111952A1 - Hydrophilized dye-containing particles, dye-containing particles, method for producing hydrophilized dye-containing particles, and method for in vivo observation - Google Patents

Hydrophilized dye-containing particles, dye-containing particles, method for producing hydrophilized dye-containing particles, and method for in vivo observation Download PDF

Info

Publication number
WO2019111952A1
WO2019111952A1 PCT/JP2018/044734 JP2018044734W WO2019111952A1 WO 2019111952 A1 WO2019111952 A1 WO 2019111952A1 JP 2018044734 W JP2018044734 W JP 2018044734W WO 2019111952 A1 WO2019111952 A1 WO 2019111952A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
particle
hydrophilized
particles
fluorescent dye
Prior art date
Application number
PCT/JP2018/044734
Other languages
French (fr)
Japanese (ja)
Inventor
公平 曽我
真生 上村
佑一 植屋
英司 高本
Original Assignee
Jsr株式会社
Jsrライフサイエンス株式会社
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社, Jsrライフサイエンス株式会社, 学校法人東京理科大学 filed Critical Jsr株式会社
Priority to JP2019558252A priority Critical patent/JP7296589B2/en
Publication of WO2019111952A1 publication Critical patent/WO2019111952A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • One embodiment of the present invention relates to a hydrophilized dye-containing particle, a dye-containing particle, a method of producing the hydrophilized dye-containing particle, and a method of observing in vivo.
  • Fluorescence imaging is frequently used for microscopic observation of cells, tissue sections, etc., in vivo imaging, etc., and there are no restrictions on its simplicity, handling of radioactive materials, etc. Because it can be used, its clinical use is also expanding.
  • a near-infrared region (a first biological window) having a wavelength of 700 to 899 nm, which is higher in biological permeability than visible light.
  • indocyanine green which emits fluorescence at a wavelength of 800 to 899 nm
  • light scattering is still large, resulting in haze in the observed image. Therefore, in consideration of the light loss of the living tissue, it is desirable to use the near-infrared region (the window of the second living body) having a wavelength of 900 to 1700 nm in order to observe the deep part more clearly.
  • a probe that emits fluorescence is desired.
  • Patent Document 1 Metal / inorganic nanomaterials such as semiconductor nanoparticles and carbon nanotubes are known as probes that emit fluorescence at the window of the second living body (Patent Document 1), but when these materials are used in the living body, Biotoxicity is a concern. Therefore, development of a probe using a fluorescent dye (organic molecule) that emits fluorescence at the window of the second living body has been performed. However, since these fluorescent dyes are generally insoluble in water and can not emit fluorescence in water, an approach of incorporating them in polymer micelles and the like has been attempted (Patent Document 2).
  • polymer micelles are self-assemblies utilizing hydrophobic interactions and ionic interactions, and are not rigid, so their ionic strength is high and various contaminants are present in vivo and in vitro, especially in body fluids.
  • living tissues it has been difficult to maintain fluorescence intensity for a long time due to water intrusion into micelles, dye outflow, and micelle collapse.
  • One embodiment of the present invention provides a hydrophilized dye-containing particle for imaging capable of maintaining fluorescence intensity for a long time in body fluid, in living tissue, and the like.
  • a hydrophilized dye-containing particle for imaging comprising a hydrophilic polymer and a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm.
  • hydrophilized dye-containing particle according to ⁇ 1> which comprises the base particle and the fluorescent dye.
  • grain as described in ⁇ 1> or ⁇ 2> which has ⁇ 3> said hydrophilic polymer in at least one part of the surface.
  • ⁇ 4> The hydrophilized dye-containing particle according to any one of ⁇ 1> to ⁇ 3>, wherein the fluorescent dye is a cationic compound.
  • ⁇ 5> The hydrophilized dye-containing particle according to any one of ⁇ 1> to ⁇ 4>, wherein the fluorescent dye has a polymethine skeleton.
  • ⁇ 6> a base particle and the fluorescent dye,
  • ⁇ 7> Base particles and the fluorescent dye, The hydrophilized dye-containing particle according to any one of ⁇ 1> to ⁇ 6>, wherein the base particle is an organic polymer particle and contains a structural unit having an acidic group.
  • ⁇ 10> a base particle and the fluorescent dye,
  • ⁇ 11> a base particle and the fluorescent dye,
  • hydrophilized dye-containing particle according to any one of ⁇ 1> to ⁇ 11>, which has a volume average particle size of 1 to 300 nm.
  • hydrophilized dye-containing particle according to any one of ⁇ 1> to ⁇ 12>, wherein the hydrophilic polymer is a polymer containing a polyalkylene glycol structure at least in part.
  • hydrophilized dye-containing particle according to any one of ⁇ 1> to ⁇ 13>, wherein the hydrophilic polymer is bound to at least a part of the particle via a covalent bond.
  • hydrophilized dye-containing particle according to any one of ⁇ 1> to ⁇ 14>, wherein the hydrophilic polymer has a polyalkylene glycol structure and at least one amine structure.
  • hydrophilized dye-containing particle according to any one of ⁇ 1> to ⁇ 15>, wherein the hydrophilic polymer has a structure derived from a polymer represented by Formula (8).
  • n is an integer of 5 to 300.
  • a pigment-containing particle comprising a base particle and the fluorescent dye, and a hydrophilic polymer on the surface of at least a part of the pigment-containing particle,
  • the hydrophilized dye-containing particle according to any one of ⁇ 1> to ⁇ 16>, wherein the density at which the hydrophilic polymer occupies the surface of the dye-containing particle is 0.01 string / nm 2 or more.
  • the base particle is an organic polymer particle
  • the amount of the fluorescent dye contained in the organic polymer particle is 0.01 to 30 mmol per 1 g of the organic polymer particle according to any one of ⁇ 1> to ⁇ 17> Hydrophilized dye-containing particles.
  • ⁇ 19> an organic polymer particle and the fluorescent dye,
  • Base particles and a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm The base particle comprises a structural unit having an acidic group, Dye-containing particles for imaging.
  • a method of producing a hydrophilized dye-containing particle for imaging which is the following production method I or production method II.
  • Production method I Step 1 of obtaining a dye-containing particle comprising a base particle and a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm, and Contacting the dye-containing particles obtained in step 1 with a hydrophilic polymer to obtain hydrophilized dye-containing particles having the dye-containing particles and the hydrophilic polymer;
  • Production method II contacting the base particle and the hydrophilic polymer, and Contacting the particles obtained in step 3 with a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm to obtain hydrophilized dye-containing particles 4; ⁇ 22>
  • a fluorescent polymer particle for imaging capable of maintaining the fluorescence intensity for a long time in a body fluid, a living tissue or the like.
  • FIG. 1 shows the ratio of the amount of fluorescent dye to the amount of organic polymer particles used in the production of dye-containing particles (the amount of fluorescent dye ⁇ 100 / the amount of organic polymer particles) (% by mass) and the fluorescence intensity of the obtained dye-containing particles
  • FIG. 2 is a view showing the relationship between the content (mmol / g) of acidic groups per 1 g of base particles (organic polymer particles) and the fluorescence intensity of the obtained dye-containing particles.
  • FIG. 3 shows the absorption spectrum of the dye-containing particle obtained in the synthesis example.
  • FIG. 4 shows fluorescence pictures of mice observed in the in vivo imaging of the example.
  • the hydrophilized dye-containing particles for imaging according to one embodiment of the present invention are a hydrophilic polymer and a fluorescent dye which emits fluorescence having a wavelength in the range of 900 to 1700 nm (hereinafter This fluorescent dye is also referred to as "fluorescent dye A”.
  • a particle which is a particle and which is a part of the particle other than the fluorescent dye A and the hydrophilic polymer is referred to as a "base particle” and a particle containing the fluorescent dye A and the base particle is a "dye-containing particle”.
  • the particles having the fluorescent dye A and the hydrophilic polymer are referred to as "hydrophilized dye-containing particles".
  • the particles before contacting with the fluorescent dye A are base particles, and as in the following (Method 1-2), they are granulated.
  • the particle formed using the fluorescent dye A is a dye-containing particle (a particle composed of a component other than the fluorescent dye A of the dye-containing particle is a base particle) containing the fluorescent dye A and the base particle.
  • particles in the present specification do not include micelles and liposomes.
  • Such a hydrophilized particle can maintain fluorescence intensity for a long time in body fluid, in living tissue, etc. including in vitro and in vivo, has low biotoxicity, and is stable and dispersed in body fluid, living tissue, etc. It is excellent in sex, can emit fluorescence even in body fluids and living tissues, and has biocompatibility.
  • particles with high fluorescence intensity can be produced.
  • the hydrophilized particles are preferably used in vivo. Further, by using the present hydrophilized particles, noise due to auto-fluorescence of the living tissue can be suppressed, and blood vessels, tissues, organs and the like in the deep region can be observed more clearly.
  • the present hydrophilized particles contain the fluorescent dye A and the base particles from the viewpoint of being able to easily obtain particles capable of emitting fluorescence even in body fluids or biological tissues, etc., with low biotoxicity.
  • the hydrophilic polymer is preferably present on at least a part of the surface of the present hydrophilized particle, from the viewpoint that the effect of the present hydrophilized particle is more exhibited, etc., and the fluorescent dye A and the base are preferably used. More preferably, they are present on the surface of at least a part of the dye-containing particles containing particles. When the dye-containing particles are brought into contact with a hydrophilic polymer to obtain the present hydrophilized particles having them, it can usually be said that the hydrophilic polymer is present on at least a part of the surface of the dye-containing particles.
  • Dye-containing particles for imaging according to an embodiment of the present invention include the fluorescent dye A and base particles, and the base particles preferably have a structure having an acidic group.
  • the dye-containing particles, which contain units, are preferably fluorescent particles with a wavelength in the range of 900-1700 nm.
  • Such pigment-containing particles are low in biotoxicity and can emit fluorescence even in body fluids or living tissues.
  • the present dye-containing particles can also be particles with high fluorescence intensity. Also, by having a negative charge, the dispersibility of particles due to charge repulsion is improved. Furthermore, electrostatic repulsion with cells that are generally negatively charged can suppress nonspecific adsorption to cells present in the body and entry into cells.
  • the present hydrophilized particles and the present dye-containing particles are collectively referred to as present particles.
  • a part of the wavelength of emitted light of the present particles is in the range of 900 to 1700 nm, and the permeability of the particles is high, so that deep blood vessels, tissues, organs, etc. can be observed more clearly.
  • the range of 1000 to 1700 nm is preferable, the range of 1000 to 1500 nm is more preferable, and the range of 1000 to 1200 nm is particularly preferable.
  • the present particle has a maximum of fluorescence emitted in the above wavelength range (peak peak of fluorescence) Is preferred. The fluorescence can be measured by the method described in the examples.
  • the excitation wavelength is preferably 700 to 1700 nm, more preferably 750 to 1700 nm, and still more preferably 800 to 1200 nm.
  • the present particles are preferably particles for in vivo imaging, and are used for imaging lesions such as blood vessels, living tissues, organs, tumors and the like. As a result, it can be utilized for non-invasive imaging which monitors in vivo processes such as disease discovery and progression processes, effects of cell activities and drugs, disease progression, and healing status from outside the body. It can also be used for disease research, drug discovery, clinical trial development and the like.
  • the imaging may be multiple imaging.
  • the fluorescent dye A is not particularly limited as long as it is a dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm.
  • the fluorescent dye A is more preferably a fluorescent dye that can emit fluorescence such that the emission wavelength of the present particle is in the same wavelength range as the emission wavelength of the fluorescent dye A itself.
  • the fluorescent dye A used in the present particles may be two or more types, but is usually one type.
  • the fluorescent dye A may have a part of the wavelength of emitted fluorescence in the range of 900 to 1700 nm, but has high bio-permeability and is easy to observe blood vessels, tissues, organs, etc. in a deep region more clearly. It is preferable to be in the range of 1000 to 1700 nm, more preferable to be in the range of 1000 to 1500 nm, and particularly preferable to be in the range of 1000 to 1200 nm, from the viewpoint that it can be used. In addition, in view of high biopermeability and the ability to clearly observe deep blood vessels, tissues, organs, etc., the fluorescent dye A is a maximum of fluorescence that emits in the wavelength range (peak peak of fluorescence) Is preferred. The wavelength of the fluorescence emitted by the fluorescent dye A can be measured with a near infrared fluorescence spectrophotometer such as Fluorolog-NIR manufactured by Horiba, Ltd., or the like.
  • the fluorescent dye A is preferably a water-insoluble fluorescent dye.
  • water-insoluble means that the solubility of the fluorescent dye in 100 g of water at 25 ° C. is less than 1 g.
  • the solubility is within the above range, the present particles having a high content of the fluorescent dye A can be easily obtained, and even when the dye-containing particles and the hydrophilized dye-containing particles are dispersed in water, the fluorescent dye A is leached
  • the hydrophilized dye-containing particles (dispersion liquid) and the dye-containing particles (dispersion liquid) can be easily obtained which are stable and have high fluorescence intensity.
  • the fluorescent dye A is cationic in that it can enhance the bonding with organic polymer particles, particularly organic polymer particles containing a structural unit having an acidic group, and can further suppress the leaching (dropping) of the fluorescent dye A into water. It is preferably a compound. Examples of such cationic compounds include compounds containing thiopyrylium ion, benzo [cd] indolinium cation, and the like.
  • the fluorescent dye A is preferably a compound having a polymethine skeleton, more preferably a compound having a heterocyclic ring at both ends of the polymethine skeleton, as represented by the following formula (A), from the viewpoint of exhibiting high fluorescence intensity etc. Compounds are particularly preferred.
  • the R 1 and R 2 are each independently an organic group having 1 to 30 carbon atoms including a heterocyclic ring.
  • the organic group is preferably a group in which a heterocycle is bonded to a carbon atom to which R 1 and R 2 are bonded, and a hetero atom constituting one heterocycle of R 1 or R 2 is positively charged.
  • the heterocyclic ring include a thiopyran ring, a benzo [cd] indole ring and the like.
  • R 3 independently represents a halogen atom or a hydrocarbon group having 1 to 12 carbon atoms, preferably a halogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • the n is an integer of 1 to 4, preferably 1 or 2.
  • fluorescent dye A 4- [2- [2-chloro-3-[(2,6-diphenyl-4H-thiopyran-4-ylidene) ethylidene] -1-cyclohexen-1-yl] ethenyl] -2, 6-diphenylthiopyrylium tetrafluoroborate (IR-1061, manufactured by Sigma Aldrich), 1-butyl-2- [2- [3-[(1-butyl-6-chlorobenzo [cd] indole-2 (1H) -Ylidene) ethylidene] -2-chloro-1-cyclohexen-1-yl] ethenyl] -6-chlorobenzo [cd] indolium tetrafluoroborate (IR-1048, manufactured by Sigma Aldrich), 4- [2- [3 -[(2,6-Diphenyl-4H-thiopyran-4-ylidene) ethylidene] -2, 6-
  • the content of the fluorescent dye A contained in the present dye-containing particles is preferably 0.001 to 3.0 parts by mass, more preferably 0.01 to 1.0 parts by mass, further preferably 100 parts by mass of the base particles. Preferably, it is 0.05 to 0.5 parts by mass. Further, the content of the fluorescent dye A contained in the present hydrophilized particles is preferably 0.0009 to 2.7% by mass, more preferably 0.009 to 0.9 based on 100% by mass of the present hydrophilized particles. % By mass, more preferably 0.049 to 0.49 mass%. When the content of the fluorescent dye A increases, the fluorescence intensity of the present particles tends to increase.
  • the content of the fluorescent dye A becomes too large, the fluorescence intensity of the obtained particles saturates and decreases due to the quenching phenomenon. May. For this reason, it is preferable that the content of the fluorescent dye A is in the above-described range in consideration of the point of the fluorescence intensity, the point of the cost, and the like.
  • the base particle is not particularly limited as long as it has components other than the fluorescent dye A and the following hydrophilic polymer, but is relatively hydrophobic, is swellable with an organic solvent, and facilitates the dye-containing particle containing the fluorescent dye A It is preferable that it is organic polymer particle from the point of being able to prepare to, and being able to suppress the leaching (dropping out) of fluorescent dye A easily.
  • the base particles are preferably particles made of a polymer other than the following hydrophilic polymer, particularly particles made of a polymer which dissolves less than 1 g per 100 g of pure water at normal temperature (25 ° C.) and 1 atm.
  • the number of base particles used in the present particles may be two or more, but usually one.
  • the organic polymer particles known particles can be used and are not particularly limited.
  • the polymerizable unsaturated aromatic compound, the polymerizable unsaturated carboxylic acid compound, the polymerizable unsaturated sulfonic acid compound or a salt thereof, the polymerizable carboxylic acid Obtained by (co) polymerization using at least one monomer selected from the group consisting of ester compounds, polymerizable unsaturated carboxylic acid amide compounds, polymerizable unsaturated nitrile compounds, halogenated vinyl compounds, and conjugated diene compounds
  • Particles which are preferably selected from the group consisting of polymerizable unsaturated aromatic compounds, polymerizable unsaturated carboxylic acid compounds, polymerizable unsaturated sulfonic acid compounds or salts thereof, and polymerizable carboxylic acid ester compounds. More preferably, they are particles obtained by (co) polymerizing one kind of monomer.
  • the monomer examples include styrene, chlorostyrene, ⁇ -methylstyrene, divinylbenzene, vinyltoluene, vinylnaphthalene, divinylnaphthalene, ⁇ -naphthyl (meth) acrylate, ⁇ -naphthyl (meth) acrylate and the like.
  • Unsaturated aromatic compounds polymerizable unsaturated carboxylic acid compounds such as (meth) acrylic acid, itaconic acid, maleic acid and fumaric acid; polymerizable unsaturated sulfonic acid compounds such as sodium styrene sulfonate or salts thereof; ) Methyl acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, ethylene glycol di (meth) acrylate, (meth) ) Acrylic acid tribromophenyl, vinyl acetate, etc. Phosphate ester compounds; and the like.
  • examples of the polymerizable unsaturated carboxylic acid amide compound, polymerizable unsaturated nitrile compound, halogenated vinyl compound, conjugated diene compound, etc. include acrylonitrile, methacrylonitrile, acrolein, methacrolein, (meth) acrylamide, N-methylol ( Meta) acrylamide, methylene bis (meth) acrylamide, butadiene, isoprene, vinyl pyridine, N-vinyl pyrrolidone, vinyl chloride, vinylidene chloride, vinyl bromide and the like.
  • the organic polymer particles may be crosslinked.
  • Such crosslinked particles can be made, for example, using crosslinking monomers.
  • the crosslinking monomer include compounds having two or more polymerizable groups among the above-mentioned monomers, and specifically, polyfunctional polymerizable unsaturated aromatic compounds such as divinylbenzene and ethylene glycol di (meth) acrylate And polyfunctional polymerizable carboxylic acid ester compounds and the like.
  • the organic polymer particles are preferably particles containing a structural unit having an acidic group.
  • a particle containing a structural unit having an acidic group in particular, by using it with a fluorescent dye A which is a cationic compound, and further by using it together with a fluorescent dye A which is hydrophobic and which is a cationic compound, The present particles having high fluorescence intensity can be easily obtained.
  • a carboxy group As an acidic group, a carboxy group, a sulfo group, a phosphoric acid group, or these salts etc. are mentioned.
  • the salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as magnesium salt and calcium salt; ammonium salt; organic ammonium salt and the like.
  • a carboxy group is preferable in that a compound containing an amino group can be easily covalently bonded, and in particular, a particle surface-modified with a compound containing an amino group can be easily obtained.
  • the organic polymer particle may have one acidic group in one molecule, and may have two or more.
  • the content of the acidic group is preferably 0.40 mmol or more, more preferably 0.70 mmol or more, and still more preferably 1.40 mmol or more per 1 g of the organic polymer particles.
  • the content of the acidic group is in the above range, the present particles having higher fluorescence intensity can be easily obtained.
  • the reason why the fluorescence intensity can be increased is not necessarily clear, but is considered to be because the fluorescent dye A can be dispersed uniformly in the present particles due to the presence of the acidic group, and thus the quenching of the fluorescent dye A can be further suppressed.
  • the content of the acidic group is preferably 7.0 mmol or less, more preferably 5.6 mmol or less, and still more preferably 4.0 mmol or less, per 1 g of the organic polymer particles.
  • the content of the acidic group in the organic polymer particle is excessive, the hydrophilicity is increased and the particle shape tends to be unable to be maintained, so the above range is preferable.
  • the content of the acidic group can be calculated, for example, when using a monomer having an acidic group, from the amount of the monomer having an acidic group to the total monomers used in the synthesis of the organic polymer.
  • the content of the structural unit having an acidic group is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more based on 100% by mass of all structural units constituting the organic polymer particles. .
  • the content of the structural unit having an acidic group is in the above range, the present particles having higher fluorescence intensity can be easily obtained.
  • the reason why the fluorescence intensity can be increased is not necessarily clear, but is considered to be because quenching of the fluorescent dye A can be suppressed because the fluorescent dye A can be uniformly dispersed in the dye-containing particle due to the presence of the acidic group.
  • the content of the structural unit having an acidic group is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, based on 100% by mass of all structural units constituting the organic polymer particles. It is. When the content of the acidic group in the organic polymer particle is excessive, the hydrophilicity is increased and the particle shape tends to be unable to be maintained, so the above range is preferable.
  • the content of the structural unit having an acidic group can be calculated, for example, when using a monomer having an acidic group, from the amount of the monomer having an acidic group to the total monomers used in the synthesis of the organic polymer.
  • Organic polymer particles containing a structural unit having an acidic group may be produced using a monomer having an acidic group, and produced by modifying the obtained particles so as to have an acidic group by a conventionally known method. It is also good.
  • Examples of the monomer having a carboxy group include polymerizable unsaturated carboxylic acid compounds such as (meth) acrylic acid, fumaric acid, maleic acid and itaconic acid.
  • a monomer having a sulfo group sulfo group-containing polymerizable unsaturated monomers such as ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, 2-sulfoethyl (meth) acrylate, 2-acrylamido-2-methylpropane sulfonic acid, etc. Can be mentioned.
  • Examples of the monomer having a phosphoric acid group include phosphoric acid group-containing polymerizable unsaturated monomers such as 2- (meth) acryloyloxyethyl acid phosphate and 2- (meth) acryloyloxypropyl acid phosphate. These monomers may be used alone or in combination of two or more. Among these, acrylic acid and itaconic acid are preferable in terms of ease of introduction of the acid group, reactivity, and the like.
  • the surface charge amount of the base particles is preferably 0.05 to 6.0 mmol / g, more preferably 0.20 to 6.0 mmol / g, from the viewpoint that the present particles having higher fluorescence intensity can be obtained. More preferably, it is 0.28 to 3.8 mmol / g, particularly preferably 0.60 to 2.4 mmol / g.
  • the surface charge amount in the present specification is a value calculated by determining the amount of sulfuric acid titrated using the tangent of the obtained conductivity curve when measured by the potentiometric titrator, and the surface charge per 1 g of particles is calculated. Represents the quantity. It can be measured using a Titrino series (manufactured by Metrome) potentiometric titrator.
  • the organic polymer particles can be easily incorporated with the fluorescent dye A, particularly the fluorescent dye A which is hydrophobic, and can easily suppress the leaching (dropping out) of the fluorescent dye A, and so on. It is preferable that it is a particle containing a hydrophobic structural unit. Particles containing a hydrophobic structural unit are produced, for example, by using one or more of the above-mentioned polymerizable unsaturated aromatic compounds and polymerizable carboxylic acid ester compounds as monomers used for the synthesis of organic polymer particles. Can.
  • the content of the hydrophobic structural unit is an organic compound from the viewpoint that the fluorescent dye A, particularly the fluorescent dye A which is hydrophobic, can be incorporated more easily and the leaching (dropping out) of the fluorescent dye A can be more easily suppressed.
  • the amount is preferably 50 to 97% by mass, more preferably 60 to 95% by mass, and still more preferably 70 to 90% by mass with respect to 100% by mass of all structural units constituting the polymer particles.
  • the content of the hydrophobic structural unit can be calculated, for example, from the amount of the hydrophobic monomer used relative to all the monomers used in the synthesis of the organic polymer.
  • a commercial item may be used for organic polymer particle, and what was synthesize
  • methods for producing organic polymer particles include emulsion polymerization, seed polymerization, soap-free polymerization, suspension polymerization, and precipitation polymerization.
  • the emulsion polymerization method is preferable from the viewpoint that nano-sized particles can be easily produced.
  • the volume average particle size of the base particles is not particularly limited, but is preferably 1 to 300 nm, more preferably 5 to 200 nm, still more preferably 10 to 100 nm, from the viewpoint of being suitably used by in vivo and in vitro imaging. It is. If the volume average particle size is 100 nm or less, the accumulation of the present particles in the spleen, the liver and the like can be reduced, and imaging of a tumor by the EPR (Enhanced Permeability and Retention effect) can be easily performed. In addition, when the volume average particle size is 10 nm or more, the clearance by the kidney can be reduced, and the residence time in the body can be extended, so that long-term in-vivo imaging can be easily performed.
  • EPR Enhanced Permeability and Retention effect
  • the volume average particle size can be measured by the method described in the examples.
  • the volume average particle size does not largely change from the volume average particle size of the base particles. Accordingly, the volume average particle size of the present particles is also preferably in the above range.
  • the present hydrophilized particles are not particularly limited as long as they have a hydrophilic polymer, but it is preferable to have a hydrophilic polymer on the surface of the dye-containing particle.
  • a hydrophilic polymer it has biocompatibility and is excellent in dispersibility in a body fluid or a living tissue, in vivo, in vitro, and further, fluorescence in vivo, in vitro for a long period of time Hydrophilized dye-containing particles capable of maintaining strength can be obtained.
  • hydrophilic polymer as a raw material of the hydrophilized dye-containing particle, specifically, the hydrophilic polymer before being physically adsorbed or chemically bonded to the surface of the pigment-containing particle is described below, it is present on the surface of the pigment-containing particle
  • the hydrophilic polymer is substantially the same as the polymer described below except that the terminal physically adsorbed or chemically bonded to the surface of the dye-containing particle may be different from the polymer described below.
  • a hydrophilic polymer means that it has a strong affinity to water. Specifically, a polymer which dissolves by 1 g or more in 100 g of pure water at normal temperature (25 ° C.) and 1 atmospheric pressure is referred to as a hydrophilic polymer.
  • the hydrophilic polymer generally has a hydrophilic repeating unit, may have a hydrophilic repeating unit in the main chain, and may have a hydrophilic repeating unit in a side chain.
  • the hydrophilic repeating unit is a homopolymer consisting of only one kind of repeating unit (having a number average molecular weight of about 1,000 to 100,000), pure water at normal temperature (25.degree. C.) and 1 atm.
  • the repeating unit is said to be a hydrophilic repeating unit.
  • the hydrophilic polymer is preferably physically adsorbed to the pigment-containing particles or chemically bonded, but it is chemically preferable in that it can further suppress leaching (dropping) from the hydrophilized pigment-containing particles.
  • it is attached to Examples of chemical bonds include covalent bonds, but there is less risk of detachment from dye-containing particles, adhesion of biorelated substances such as proteins can be further suppressed, and dispersibility of hydrophilized dye-containing particles is further enhanced.
  • Covalent bonding is preferred in that it can be used.
  • a polymer having a functional group capable of covalently bonding with (the functional group of) the dye-containing particle surface is used as the hydrophilic polymer.
  • a functional group an amino group etc. are mentioned when the pigment
  • organic polymer particles having an acidic group are preferable from the viewpoint that hydrophilicized dye-containing particles having high fluorescence intensity can be easily obtained, etc., amino acids can be effectively used, etc.
  • Hydrophilic polymers having a group are preferred.
  • Examples of the polymer having a hydrophilic repeating unit in the main chain include polymers having a polyalkylene glycol structure or a polyvinyl alcohol structure in the main chain.
  • a polymer having a polyalkylene glycol structure is preferable, and a polymer having a polyethylene glycol structure is more preferable, from the viewpoint of further suppressing the adhesion of a biological substance such as a protein and further enhancing the dispersibility of the hydrophilized dye-containing particles.
  • one end of the polyalkylene glycol is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and the other end is a group capable of physically adsorbing on the surface of the dye-containing particle, or a functional group capable of chemically bonding Polymers which are a group having a are preferred.
  • the hydrophilic polymer is preferably a polymer having a polyalkylene glycol structure and at least one amine structure.
  • the amine structure is not particularly limited, but an oligoamine structure is preferable, and a polyethyleneimine structure is more preferable.
  • a hydrophilic polymer a polymer represented by the following formula (8) may be mentioned, and specifically, Blockmaster CE510 or CE210 manufactured by JSR Life Science Co., Ltd. can be suitably used.
  • n is an integer of 5 to 300.
  • polymer having a hydrophilic repeating unit having a hydrophilic group in the side chain it has a polyalkylene glycol structure in the side chain, and the end of the side chain is composed of a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • polymer having a repeating unit (A-4) having a hetero ring containing nitrogen and oxygen at the side chain end polymer having a repeating unit (A-5) having a lactam at the side chain end, and It is preferable that it is one or more selected from polymers having a repeating unit (A-6) having a betaine group.
  • the polymer having any one or more of the repeating units (A-1) to (A-6) is further reacted with a functional group on the surface of the particle to immobilize the hydrophilic polymer on the surface of the dye-containing particle by covalent bonding. It is preferable to have a terminal structure that can be used and a repeating unit (B).
  • a repeating unit (B) the repeating unit which has a functional group which reacts with the carboxy group of pigment
  • a functional group which reacts with a carboxy group and forms a covalent bond an amino group, a mercapto group, etc. are mentioned.
  • the hydrophilic polymer may be a naturally occurring hydrophilic polymer, or may be BSA used as a blocking agent, a protein such as casein, a saccharide such as chitosan, or the like, and a carboxy group on the surface of the base particle or the dye-containing particle
  • BSA used as a blocking agent
  • a protein such as casein
  • a saccharide such as chitosan, or the like
  • the compound which can form a covalent bond by a condensing agent etc. is preferable.
  • the repeating unit (A-1) include repeating units obtained by using these singly or in combination of two or more.
  • repeating unit (A-3) dimethyl (meth) acrylamide, diethyl (meth) acrylamide, N- isopropyl (meth) acrylamide, N- (hydroxymethyl) (meth) acrylamide, N- (2-) And hydroxyethyl) (meth) acrylamide and the like.
  • the repeating unit (A-3) include repeating units obtained by using these singly or in combination of two or more.
  • repeating unit (A-4) 4- (meth) acryloyl morpholine and the like can be mentioned.
  • Examples of the repeating unit (A-4) include repeating units obtained by using the above-mentioned monomers alone or two or more kinds.
  • Examples of the monomer for deriving the repeating unit (A-5) include 1-vinyl-2-pyrrolidone, N-vinyl- ⁇ -caprolactam and the like.
  • Examples of the repeating unit (A-5) include repeating units obtained by using these singly or in combination of two or more.
  • repeating unit (A-6) As a monomer to derive the repeating unit (A-6), N- (meth) acryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine, N- (meth) acryloyloxyethyl-N, N And (meth) acrylate monomers such as dimethylammonium- ⁇ -N-propylsulfobetaine.
  • the repeating unit (A-6) include repeating units obtained by using these singly or in combination of two or more.
  • the number average molecular weight (Mn) of the hydrophilic polymer is preferably 500 to 100,000, more preferably 1,000 to 10,000.
  • Mn The number average molecular weight
  • hydrophilized dye-containing particles having a large content of hydrophilic polymer can be easily obtained, and in particular, the modification amount of the hydrophilic polymer on the surface of the dye-containing particle can be further increased.
  • the number average molecular weight can be measured by gel permeation chromatography.
  • the density at which the hydrophilic polymer occupies the surface of the dye-containing particle can suppress the adhesion of biorelated substances such as proteins, and can easily obtain hydrophilic pigment-containing particles having higher dispersibility.
  • the density is calculated from the ratio of the hydrophilic polymer to the dye-containing particles, the particle size and the specific gravity of the dye-containing particles, and can be specifically measured by the method described in the examples.
  • Examples of the method for producing the hydrophilized dye-containing particles include the following production method I or production method II.
  • Production method I Step 1 of obtaining dye-containing particles containing base particles and the fluorescent dye A, and Contacting the dye-containing particles obtained in step 1 with a hydrophilic polymer to obtain hydrophilized dye-containing particles having the dye-containing particles and the hydrophilic polymer;
  • a method of manufacturing comprising a method of manufacturing II: a step 3 of bringing a base particle into contact with a hydrophilic polymer, and Contacting the particles obtained in step 3 with the fluorescent dye A to obtain hydrophilized dye-containing particles;
  • the method I is more preferable because the fluorescent dye A can be efficiently introduced, and in particular, the content of the fluorescent dye A can be dramatically increased.
  • the step 1 is not particularly limited as long as dye-containing particles can be obtained, (Method 1-1) A method of immobilizing the fluorescent dye A on the surface of the base particle by covalent bonding, (Method 1-2) in the presence of the fluorescent dye A A method of incorporating fluorescent dye A into the particles in the process of granulating and forming into particles, (Method 1-3) base particles, preferably using a liquid containing organic polymer particles and fluorescent dye A, fluorescent dye A May be incorporated into base particles, preferably organic polymer particles.
  • the dye-containing particle may be a particle having the fluorescent dye A on the surface of the base particle, or may be a particle having the fluorescent dye A inside the base particle, and the surface of the fluorescent dye A on the base particle And particles inside it.
  • the production method of (Method 1-3) is preferable in that the present particles of high fluorescence intensity can be easily produced.
  • organic polymer particles are prepared. Preferred compositions, particle sizes and the like are as described above.
  • the organic polymer particles commercially available products may be used, or those synthesized by a conventionally known method such as the method described above may be used.
  • the organic polymer particles are dispersed in an aqueous medium to prepare an aqueous dispersion.
  • the aqueous dispersion may contain an additive such as a surfactant.
  • the surfactant include nonionic surfactants.
  • polymeric surfactants are preferable in that a dispersion having excellent particle dispersion stability can be easily obtained, and the like, and Pluronic F-127 and Kolliphor are preferable.
  • P407 manufactured by BASF is more preferable.
  • a dye solution in which the fluorescent dye A is dissolved in an organic solvent is added to the obtained aqueous dispersion of organic polymer particles, and the dye is dyed while being stirred (staining step).
  • the dye solution is added to the aqueous dispersion of organic polymer particles, the organic polymer particles swell, and the dye present in the solvent is gradually absorbed into the organic polymer particles.
  • the organic solvent for dissolving the fluorescent dye A is not particularly limited, and may be either a nonpolar or polar organic solvent, but a polar solvent miscible with water in an arbitrary ratio is preferable.
  • a polar solvent miscible with water in an arbitrary ratio is preferable.
  • alcohols such as methyl alcohol and ethyl alcohol
  • ethers such as tetrahydrofuran, 1,3-dioxolane and dioxane
  • ketones such as acetone, dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone and the like
  • fluorescent dyes used Depending on the type of A etc., one type or two or more types are used.
  • dimethyl sulfoxide is preferable because the solubility of the fluorescent dye A is high.
  • the concentration of the fluorescent dye A in the dye solution is preferably 0.001 to 5 g / L, more preferably 0.01 to 3 g / L, and still more preferably 0.01 to 1 g / L.
  • the concentration of the organic polymer particles (the concentration of the organic polymer particles in the total of the aqueous dispersion and the dye solution) in the dyeing step is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass. More preferably, it is 0.1 to 3% by mass.
  • the concentration of the surfactant (the concentration of the surfactant in the total of the aqueous dispersion and the dye solution) in the dyeing step is preferably 0.005 to 10% by mass, more preferably 0.01 to 5% by mass. More preferably, it is 0.05 to 1% by mass.
  • the concentration of the organic solvent (the concentration of the organic solvent in the total of the aqueous dispersion and the dye solution) in the dyeing step is preferably 0.1 to 50% by mass, more preferably 1 to 25% by mass, and still more preferably 2 to It is 10% by mass.
  • the organic solvent at the above concentration, the organic polymer particles can be sufficiently swollen, and the fluorescent dye A is more easily incorporated into the base particles, which is preferable, and leaching of the fluorescent dye A from the obtained particles is preferable. (Dropping off) is reduced, and aggregation and shape change due to state change of the present particles can be suppressed.
  • the amount of the fluorescent dye A added to the organic polymer particles in the dyeing step is preferably such that the content of the fluorescent dye A per 1 g of the organic polymer particles in the obtained present particles is 0.01 to 30 mmol, more preferably 0.1 to The amount is preferably 15 mmol, more preferably 0.5 to 7 mmol.
  • the amount of the fluorescent dye A used is large, the fluorescence intensity of the obtained particles tends to increase, but when the amount of the fluorescent dye A used is too large, the fluorescence intensity of the obtained particles is saturated due to the quenching phenomenon. ⁇ It tends to decrease. Therefore, in consideration of the point of the fluorescence intensity and the point of cost, it is preferable that the amount of the fluorescent dye A used is in the above range.
  • the temperature of the dyeing step is not particularly limited, but is preferably 0 to 50 ° C., more preferably 10 to 40 ° C., and still more preferably 20 to 30 ° C.
  • the fluorescent dye A can be efficiently contained in the organic polymer particles, and dye-containing particles in which aggregation is further suppressed can be easily obtained.
  • the time for which the fluorescent dye A is absorbed into the organic polymer particles is appropriately determined depending on the type of the fluorescent dye A used, the composition of the organic polymer particles, the particle size, etc. But preferably 1 to 60 minutes, more preferably 2 to 30 minutes, and still more preferably 3 to 10 minutes.
  • Step 1 may include the step of replacing the dispersion after the dyeing step with an aqueous dispersion.
  • Methods for such replacement include centrifugation, dialysis, ultrafiltration and the like. Among these, ultrafiltration is preferable in that it can be easily replaced in a short time.
  • Step 1 basically, a dye-containing particle containing almost all of the used fluorescent dye A can be obtained, and the amount of fluorescent dye used may be adjusted, but this production method can be obtained in the staining step. And the step of removing the free fluorescent dye A in the dispersion using a filter or the like.
  • the step 2 is not particularly limited, and (Method 2-1) a method of causing a hydrophilic polymer to be physically adsorbed on a pigment-containing particle, particularly the particle surface by hydrophobic interaction or ionic interaction, (Method 2-2) hydrophilicity And the like.
  • the functional group contained in the polymer and the functional group possessed by the surface of the dye-containing particle are covalently bonded to each other, and the hydrophilic polymer is covalently bonded to the dye-containing particle, particularly to the particle surface.
  • hydrophilic polymer is difficult to be detached in vitro or in vivo, and it is possible to easily obtain a hydrophilized dye-containing particle which is excellent in dispersibility and can maintain high fluorescence intensity.
  • the method of 2) is preferred.
  • the pigment-containing particles obtained in Step 1 are dispersed in an aqueous medium to prepare an aqueous dispersion.
  • the aqueous dispersion of the dye-containing particles obtained in Step 1 may be used as it is.
  • These aqueous dispersions may contain additives such as surfactants.
  • a hydrophilic polymer aqueous solution and, if necessary, a condensing agent are added to the aqueous dispersion to modify the dye-containing particles, particularly the particle surfaces, with the hydrophilic polymer (modification step).
  • the condensing agent may be selected according to the functional group of the hydrophilic polymer and the dye-containing particle.
  • a carbodiimide compound such as dicyclohexyl carbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, etc .
  • N, N ′ Imidazole compounds such as -carbonyldiimidazole
  • triazine compounds such as 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride n-hydrate
  • 1H Phosphonium compounds such as -benzotriazol-1-yloxy tris (dimethylamino) phosphonium hexafluorophosphate
  • the concentration of the dye-containing particles in the modification step is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, and still more preferably 0.3 to 3% by mass.
  • the amount of the hydrophilic polymer added to 1 g of the pigment-containing particles in the modification step is preferably 0.001 to 10 g / g, more preferably 0.01 to 5.0 g / g, still more preferably 0.1 to 1.0 g It is / g.
  • the addition amount of the hydrophilic polymer is in the above-mentioned range, it is possible to easily obtain a sufficiently surface-modified hydrophilized dye-containing particle at low cost.
  • the amount of the condensing agent added to 1 g of the pigment-containing particles in the surface modification step is preferably 0.0001 to 1 g / g, more preferably 0.001 to 0.5 g / g, still more preferably 0.01 to 0.3 g It is / g.
  • the amount of the hydrophilic polymer added is in the above range, it is possible to easily obtain a hydrophilized dye-containing particle in which aggregation is suppressed and the surface is sufficiently modified with the hydrophilic polymer.
  • the modification step may be performed in a buffer solution.
  • the buffer is not particularly limited as long as it does not inhibit the modification reaction.
  • MES buffer of pH 4 to 7 is preferable .
  • the step 3 is not particularly limited, and the base particle and the hydrophilic polymer may be brought into contact with each other.
  • Method 3-1 Hydrophilic polymer or hydrophilic polymer based particle by hydrophobic interaction or ionic interaction, particularly the particle Method of physically adsorbing to the surface,
  • Method 3-2 The functional group contained in the hydrophilic polymer is covalently bonded to the functional group possessed by the base particle surface, and the hydrophilic polymer is attached to the base particle, particularly to the particle surface. Methods of covalent bonding and the like can be mentioned.
  • the production method of (Method 3-2) is preferable in that the hydrophilic polymer is difficult to be detached in vitro or in vivo, and particles having excellent dispersibility can be easily obtained.
  • the same methods as those described in the above (Method 2-1) and (Method 2-2) but using a base particle instead of the dye-containing particle are listed.
  • Step 4 is a step of bringing the particles obtained in step 3 into contact with the fluorescent dye A to obtain hydrophilized dye-containing particles.
  • the step 4 is not particularly limited as long as it is possible to obtain the hydrophilized dye-containing particles, but (Method 4-1) a method of immobilizing the fluorescent dye A on the particle surface obtained in the step 3 by covalent bonding, -3) Using a liquid containing the particles obtained in step 3 and fluorescent dye A, a method of incorporating fluorescent dye A into the particles obtained in step 3 and the like can be mentioned.
  • the production method of (Method 4-3) is preferable in that the present particles of high fluorescence intensity can be easily produced.
  • the same method as in (Method 1-1) and (Method 1-3) above is used except that the particles obtained in Step 3 are used instead of the base particles. Method is mentioned.
  • the method of observing the inside of a living body is A step A of irradiating excitation light of the fluorescent dye A to an analyte containing the present hydrophilized particle or the present dye-containing particle in the body, and Detecting fluorescence in a wavelength range of 900 to 1700 nm emitted from the subject, including.
  • the step A includes a step A1 of administering the present hydrophilized particle or the present dye-containing particle, preferably the present hydrophilized particle, and a step A2 of irradiating the analyte with the excitation light of the fluorescent dye A. And the steps involved.
  • the administration method in step A1 may adopt any suitable means depending on the subject.
  • oral administration (b) parenteral administration can be mentioned.
  • parenteral administration may be local or topical administration, administration using a syringe, an infusion pump, a tube or the like, administration on the skin, transmucosal administration, inhalation administration, or buccal administration.
  • the dispersion of the present particles may be directly orally administered, or a mixture containing the present particles and a pharmaceutically acceptable carrier and the like well known in the art may be administered.
  • the dosage form of the mixture is not particularly limited, and examples thereof include pills, dragees, capsules, solutions, gels, syrups, slurries and suspensions.
  • excipient may be used when orally administering the particles.
  • the excipient used preferably is not particularly limited, but, for example, sugars such as lactose, sucrose, mannitol and sorbitol, corn starch, wheat starch, rice starch, potato starch, gelatin, tragacanth gum, methylcellulose, hydroxypropyl methylcellulose, carboxy Cellulose preparations such as methylcellulose sodium, polyvinyl pyrrolidone (PVP).
  • PVP polyvinyl pyrrolidone
  • a disintegrant may be used when orally administering the particles.
  • the disintegrant is not particularly limited, and examples thereof include cross-linked polyvinyl pyrrolidone, agar, alginic acid or a salt thereof (eg, sodium alginate).
  • the capsule may be a push-fit capsule made of gelatin, or a sealed soft capsule made of gelatin and a plasticizer (eg, glycerol or sorbitol).
  • the push-fit capsule may contain a filler (eg, lactose), a binder (eg, starch), a lubricant (eg, talc, magnesium stearate), a stabilizer and the like.
  • the particles may be dissolved or suspended in a suitable liquid such as fatty oil, liquid paraffin, liquid polyethylene glycol and the like.
  • the amount of the particles used for oral administration is preferably a dosage suitable for such administration.
  • Parenteral administration includes administration other than oral, for example, rectal administration, vaginal administration, intraurethral administration, intraocular administration, intranasal administration or ear drops.
  • the particles may be in the form of a rectal composition, such as a suppository or retention enema.
  • a rectal composition such as a suppository or retention enema.
  • conventional suppository bases eg, cocoa butter, other glycerides
  • cocoa butter other glycerides
  • Local and local administration includes, for example, direct injection in the kidney or heart region and depot transplantation.
  • Examples of administration using a syringe, infusion pump, etc. include subcutaneous injection, intraperitoneal injection, intravenous injection, intramuscular injection, intradermal injection, intraorbital injection, intrathecal injection, intraspinal injection, intrasternal injection, etc. (Including infusion pump delivery).
  • the present particles may be used as a suspension, if necessary, using an excipient and the like.
  • suitable excipients include, but are not limited to, water, saline, dextrose, mannitol, lactose, lecithin, albumin, sodium glutamate, and cysteine hydrochloride.
  • small amounts of nontoxic auxiliary substances such as wetting agents, buffers, absorption enhancers and the like may be used.
  • penetrants appropriate to the barrier to be permeated may be used.
  • buccal administration it may take the form of a tablet or lozenge containing the particles, formulated in a conventional manner.
  • the particles can be loaded from a pressurized pack or a nebulizer with a suitable propellant, such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. May be coadministered with When administered as a pressurized aerosol, the dosage may be controlled using a valve to release a metered amount.
  • a powder base eg, powder (mixture) such as lactose and starch
  • a powder base eg, powder (mixture) such as lactose and starch
  • the method for irradiating the subject with excitation light is not particularly limited, and irradiation may be performed from the outside of the subject using a light source, and the present particles can be made to emit light by emitting a luminescent substance administered to the subject separately from the present particles. Although irradiation may be performed, it is preferable to irradiate from the outside of the subject in terms of being able to adjust the intensity of excitation light.
  • the light source for irradiating excitation light from the outside of the subject is not particularly limited, and common excitation light sources such as various lasers (eg, ion laser, dye laser: semiconductor laser), halogen light source, xenon light source, etc. You may use.
  • the excitation light may, if desired, be illuminated only at the optimum excitation wavelength using various optical filters.
  • the wavelength of the excitation light is preferably 700 to 1700 nm, more preferably 750 to 1700 nm, and still more preferably 800 to 1200 nm, from the viewpoint of high biopermeability and clear observation of the deep part.
  • Step B there is no particular limitation as long as the fluorescence emitted from the subject, specifically, the fluorescence in the wavelength range of 900 to 1700 nm emitted from the present particles is detected. During this detection, various optical filters may be used to detect only light of the desired wavelength.
  • a detector for detecting fluorescence is not particularly limited, for example, a CCD camera can be used. More specifically, an InGaAs-CCD camera can be used. In addition, an optical CT apparatus, an endoscope, a fundus camera or the like may be used.
  • the detected fluorescence may be subjected to data processing as fluorescence information, and a recordable fluorescence image may be created based on this data.
  • the fluorescence image may be created by irradiating excitation light to a wide region including a target tissue, detecting fluorescence with a CCD camera, and image-processing the obtained fluorescence information.
  • Step A2 and step B may be performed continuously in a dedicated device.
  • a dedicated device is not particularly limited, but SAI-1000 manufactured by Shimadzu Corporation can be suitably used.
  • the particle size (volume average particle size) of each particle is determined by using a dynamic light scattering nanotrack particle size analyzer (manufactured by Nikkiso Co., Ltd.), particle permeability: transmission, particle shape: spherical shape, particle refractive index: 1 It measured on condition of .59, particle density: 1.00, solvent: water, solvent refractive index: 1.333.
  • the number ( ⁇ ) of the hydrophilic polymer modified per 1 g of the hydrophilized dye-containing particles was determined from the number average molecular weight of the hydrophilic polymer.
  • the surface area ( ⁇ ) per 1 g of the hydrophilized dye-containing particles is determined from the particle diameter and specific gravity of the hydrophilized dye-containing particles, and the hydrophilic polymer occupies the surface of the hydrophilized dye-containing particles by ( ⁇ ) / ( ⁇ ). Density was calculated.
  • Synthesis Example 1-1 In a polymerization vessel, 330 parts by mass of water and 0.7 parts by mass of sodium dodecylbenzene sulfonate were charged, and the temperature was raised to 80 ° C. under a nitrogen atmosphere. After adding 0.3 parts by mass of potassium persulfate thereto, 80 parts by mass of water, 1.1 parts by mass of sodium dodecyl sulfate, 96 parts by mass of styrene, 3.8 parts by mass of acrylic acid and 0.2 parts by mass of itaconic acid Is added dropwise at 80.degree. C. over 2 hours, and then 0.1 parts by mass of potassium persulfate is added, followed by polymerization at 80.degree. C. for 3 hours to obtain organic polymer particles (A-1). Obtained. The surface charge of the resulting particles (A-1) was 0.24 mmol / g.
  • Synthesis Examples 1-2 to 1-6 The same procedure as in Synthesis Example 1-1 was repeated, except that the amounts of styrene, acrylic acid and itaconic acid were as listed in Table 1, to obtain organic polymer particles (A-2) to (A-6). .
  • “part” in Table 1 shows a "mass part.”
  • Synthesis Examples 2-2 to 2-6 The same procedure as in Synthesis Example 2-1 was repeated, except that the concentration of IR-1061 was changed as described in Table 2, to obtain Dye-containing particles (B-2) to (B-6).
  • the value of “IR-1061 / organic polymer particles [mass%]” in Table 2 is a value calculated from the preparation amount.
  • the fluorescence of the dye-containing particles (B-1) to (B-6) was measured, and the results of the fluorescence intensity at a wavelength of 1096 nm are shown in Table 2.
  • the fluorescence measurement of the dye-containing particles (B-1) to (B-6) is performed, and the mass ratio of the fluorescent dye A contained in the organic polymer particles (IR-1061 / organic polymer particles [mass%])
  • a semi-logarithmic graph was created with the axis (log scale) and the fluorescence intensity at a wavelength of 1096 nm as the vertical axis. The results are shown in FIG.
  • Synthesis Example 2-8 to 2-12 The same procedure as in Synthesis Example 2-4 was followed, except that particles (A-2) to (A-6) were used, to obtain dye-containing particles (B-8) to (B-12).
  • the fluorescence of the dye-containing particles (B-4) and (B-8) to (B-12) was measured, and the results of the fluorescence intensity at a wavelength of 1096 nm are shown in Table 3.
  • the fluorescence measurement of the pigment-containing particles (B-4) and (B-8) to (B-12) was carried out, and the content (mmol / g) of the acidic group per 1 g of the organic polymer particles (base particles)
  • the fluorescence intensity at a wavelength of 1096 nm was plotted as the vertical axis. The results are shown in FIG.
  • content of the acidic group per 1 g of organic polymer particle (base particle) was computed from the usage-amount of the monomer which has an acidic group with respect to all the monomers used for the synthesis
  • the content (mmol / g) of the acidic group per 1 g of the organic polymer particles (A-1) can be determined by (3.8 / 72 + 2 ⁇ 0.2 / 130) / 100 ⁇ 1000.
  • 3.8 / 72 represents the mass of the acidic group derived from acrylic acid when the total monomer is 100 g
  • 2 ⁇ 0.2 / 130 represents the mass of the acidic group derived from itaconic acid.
  • the fluorescence intensity and absorption characteristics change according to the proportion of the acidic groups of the organic polymer particles. From this, it is inferred that the acidic group of the organic polymer particle changes the state of the fluorescent dye A contained in the particle. The inventor infers that the reason for these changes is that the fluorescent dye A, which is cationic, can be uniformly distributed in the particles due to the presence of the acidic group. It is believed that by changing the type of organic polymer particles used, the type of pigment and the amount of pigment, it is possible to obtain pigment-containing particles that emit stronger fluorescence.
  • Example 1 3 mL of an aqueous dispersion containing 150 mg of dye-containing particles (B-4) in a reaction vessel, and an aqueous solution of polyethylene glycol having an amino group at one end of 2.0 mass% (BSRMaster CE510, manufactured by JSR Life Science Co., Ltd.) MES buffer solution (0.1 M, pH 5.0) of 3.75 mL and 1.0% by mass of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (manufactured by Dojin Chemical Laboratory Co., Ltd.) ) 1.5 mL was added and stirred at room temperature for 2 hours.
  • BSRMaster CE510 manufactured by JSR Life Science Co., Ltd.
  • MES buffer solution 0.1 M, pH 5.0
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride manufactured by Dojin Chemical Laboratory Co., Ltd.
  • hydrophilized dye-containing particles (C-1) having polyethylene glycol chains on the surface was 70 nm, and the density at which the hydrophilic polymer occupied the surface of the dye-containing particles was 0.20 / nm 2 .
  • Example 2 The same procedure as in Example 1 was carried out except using the dye-containing particles (B-9) to obtain hydrophilized dye-containing particles (C-2).
  • the particle size was 82 nm, and the density at which the hydrophilic polymer occupied the surface of the dye-containing particle was 0.20 / nm 2 .
  • Example 3 A hydrophilic dye-containing particle (C-3) was obtained by the same operation as in Example 1 except that polyethylene glycol (Blockmaster CE210, manufactured by JSR Life Sciences Ltd.) was used instead of Blockmaster CE510. .
  • the particle diameter was 67 nm, and the density at which the hydrophilic polymer occupied the surface of the dye-containing particles was 0.29 / nm 2 .
  • Example 4 The same operation as in Example 2 was carried out except using block master CE210 instead of block master CE510, to obtain hydrophilized dye-containing particles (C-4).
  • the particle size was 79 nm, and the density at which the hydrophilic polymer occupied the surface of the dye-containing particles was 0.29 / nm 2 .
  • Comparative Example 1 While stirring a mixed solution of PEG-b-PCL (manufactured by Montreal) in acetonitrile (0.4 mM, 1 mL) and IR-1061 in acetonitrile (130 mM, 1100 ⁇ L), 1 mL of water was added. Evaporation of acetonitrile gave a polymer micelle with near infrared fluorescence.
  • Test Example 2 Dispersion immediately after dispersing 6 mg of particles or polymer micelles obtained in Examples or Comparative Examples in 2 mL of human plasma (Korjin Bio Co., Ltd., normal human plasma, pool, EDTA) and dispersion after standing for 3 days The fluorescence at a wavelength of 1096 nm, which was emitted by irradiating the liquid with excitation light, was measured, and the maintenance rate of the fluorescence intensity (fluorescence intensity after 3 days / fluorescence intensity immediately after dispersion [%]) was calculated. The results are shown in Table 4. In addition, it can be said that the hydrophilized dye-containing particle having a high maintenance rate of the fluorescence intensity in this Test Example 2 can maintain the fluorescence intensity for a long time similarly in in vivo.
  • Test Example 3 200 ⁇ L of an aqueous dispersion containing the particles obtained in the example of 6.0% by mass was injected by tail vein injection into a mouse, and SAI-1000 (Filter: 1050 nm long pass filter) manufactured by Shimadzu Corporation. 5 minutes after administration, in vivo imaging was performed. The case where blood vessels and organs were clearly observed was evaluated as ⁇ , the case where very clearly observed was ⁇ , and the case where particle aggregates were not observed but not clearly observed was evaluated as x. The results are shown in Table 4 and FIG.

Abstract

An embodiment of the present invention relates to hydrophilized dye-containing particles, dye-containing particles, a method for producing hydrophilized dye-containing particles, and a method for in vivo observation. The hydrophilized dye-containing particles are for imaging, and contain a hydrophilic polymer and a fluorescent dye that emits fluorescent light having a wavelength within a range of 900 to 1700 nm.

Description

親水化色素含有粒子、色素含有粒子、親水化色素含有粒子の製造方法および生体内を観察する方法Hydrophilized dye-containing particles, dye-containing particles, method of producing hydrophilicized dye-containing particles and method of observing in vivo
 本発明の一実施形態は、親水化色素含有粒子、色素含有粒子、親水化色素含有粒子の製造方法および生体内を観察する方法に関する。 One embodiment of the present invention relates to a hydrophilized dye-containing particle, a dye-containing particle, a method of producing the hydrophilized dye-containing particle, and a method of observing in vivo.
 蛍光イメージングは、顕微鏡による細胞、組織切片等の観察や、生体(in vivo)イメージング等に頻繁に用いられており、その簡便性や、放射性物質の取り扱いに関する規制を受けないなど、場所を選ばず使用可能であることから、臨床での利用も広がりつつある。 Fluorescence imaging is frequently used for microscopic observation of cells, tissue sections, etc., in vivo imaging, etc., and there are no restrictions on its simplicity, handling of radioactive materials, etc. Because it can be used, its clinical use is also expanding.
 蛍光イメージングでは、体の深部の血管や組織・臓器等を明瞭に観察するため、可視光より生体透過性の高い波長700~899nmの近赤外領域(第1の生体の窓)を利用することが注目されており、中でも波長800~899nmの蛍光を発するインドシアニングリーンを用いた臨床応用が進められている。しかしこの波長領域では、光の散乱が依然として大きいため、結果として観察される像に、haze(かすみ)が生じる。このため、生体組織の光損失を考慮すると、より明瞭に深部を観察するためには波長900~1700nmの近赤外領域(第2の生体の窓)を利用することが望ましく、この波長領域で蛍光を発するプローブが切望されている。 In fluorescence imaging, in order to clearly observe blood vessels, tissues, organs and the like in the deep part of the body, use a near-infrared region (a first biological window) having a wavelength of 700 to 899 nm, which is higher in biological permeability than visible light. In particular, clinical applications using indocyanine green, which emits fluorescence at a wavelength of 800 to 899 nm, are in progress. However, in this wavelength region, light scattering is still large, resulting in haze in the observed image. Therefore, in consideration of the light loss of the living tissue, it is desirable to use the near-infrared region (the window of the second living body) having a wavelength of 900 to 1700 nm in order to observe the deep part more clearly. A probe that emits fluorescence is desired.
 第2の生体の窓で蛍光を発するプローブとして、半導体ナノ粒子やカーボンナノチューブ等の金属・無機ナノ物質が知られているが(特許文献1)、これらの物質を生体に用いた場合には、生体毒性が懸念される。そこで、第2の生体の窓で蛍光を発する蛍光色素(有機分子)を用いたプローブの開発が行われている。しかしながら、一般にこれらの蛍光色素は水に不溶であり、また水中で蛍光を発することができないために、ポリマーミセル等に含有させるアプローチが試みられている(特許文献2)。 Metal / inorganic nanomaterials such as semiconductor nanoparticles and carbon nanotubes are known as probes that emit fluorescence at the window of the second living body (Patent Document 1), but when these materials are used in the living body, Biotoxicity is a concern. Therefore, development of a probe using a fluorescent dye (organic molecule) that emits fluorescence at the window of the second living body has been performed. However, since these fluorescent dyes are generally insoluble in water and can not emit fluorescence in water, an approach of incorporating them in polymer micelles and the like has been attempted (Patent Document 2).
特開2014-178155号公報JP, 2014-178155, A 米国特許出願公開第2015/0056142号明細書US Patent Application Publication No. 2015/0056142
 しかしながら、ポリマーミセルは疎水性相互作用やイオン性相互作用を利用した自己集合体であり、構造が強固でないため、イオン強度が高く、様々な夾雑物が存在するin vivoやin vitro、特に体液中や生体組織内では、ミセル中への水の侵入や、色素の流出、ミセルの崩壊等により、長期間蛍光強度を維持することは困難であった。 However, polymer micelles are self-assemblies utilizing hydrophobic interactions and ionic interactions, and are not rigid, so their ionic strength is high and various contaminants are present in vivo and in vitro, especially in body fluids. In living tissues, it has been difficult to maintain fluorescence intensity for a long time due to water intrusion into micelles, dye outflow, and micelle collapse.
 本発明の一実施形態は、体液中や生体組織内などで長期間蛍光強度を維持できるイメージング用の親水化色素含有粒子を提供する。 One embodiment of the present invention provides a hydrophilized dye-containing particle for imaging capable of maintaining fluorescence intensity for a long time in body fluid, in living tissue, and the like.
 本発明者は、前記課題を解決すべく鋭意検討した結果、下記構成例によれば前記課題を解決できることを見出し、本発明を完成するに至った。
 本発明の構成例は以下の通りである。
As a result of intensive studies to solve the above problems, the present inventor has found that the problems can be solved according to the following configuration example, and the present invention has been completed.
The structural example of this invention is as follows.
 <1> 親水性ポリマーおよび波長が900~1700nmの範囲にある蛍光を発する蛍光色素を含む、イメージング用の親水化色素含有粒子。 <1> A hydrophilized dye-containing particle for imaging, comprising a hydrophilic polymer and a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm.
 <2> ベース粒子および前記蛍光色素を含む、<1>に記載の親水化色素含有粒子。 <2> The hydrophilized dye-containing particle according to <1>, which comprises the base particle and the fluorescent dye.
 <3> 前記親水性ポリマーを表面の少なくとも一部に有する、<1>または<2>に記載の親水化色素含有粒子。 The hydrophilized pigment | dye containing particle | grain as described in <1> or <2> which has <3> said hydrophilic polymer in at least one part of the surface.
 <4> 前記蛍光色素がカチオン性化合物である、<1>~<3>のいずれかに記載の親水化色素含有粒子。
 <5> 前記蛍光色素がポリメチン骨格を有する、<1>~<4>のいずれかに記載の親水化色素含有粒子。
<4> The hydrophilized dye-containing particle according to any one of <1> to <3>, wherein the fluorescent dye is a cationic compound.
<5> The hydrophilized dye-containing particle according to any one of <1> to <4>, wherein the fluorescent dye has a polymethine skeleton.
 <6> ベース粒子および前記蛍光色素を含み、
 前記ベース粒子が有機ポリマー粒子である、<1>~<5>のいずれかに記載の親水化色素含有粒子。
<6> a base particle and the fluorescent dye,
The hydrophilized dye-containing particle according to any one of <1> to <5>, wherein the base particle is an organic polymer particle.
 <7> ベース粒子および前記蛍光色素を含み、
 前記ベース粒子が有機ポリマー粒子であり、酸性基を有する構造単位を含む、<1>~<6>のいずれかに記載の親水化色素含有粒子。
 <8> 前記酸性基の含有量が、有機ポリマー粒子1gあたり、0.40ミリモル以上である、<7>に記載の親水化色素含有粒子。
 <9> 前記酸性基を有する構造単位が、有機ポリマー粒子を構成する全構造単位100質量%に対し3質量%以上である、<7>または<8>に記載の親水化色素含有粒子。
<7> Base particles and the fluorescent dye,
The hydrophilized dye-containing particle according to any one of <1> to <6>, wherein the base particle is an organic polymer particle and contains a structural unit having an acidic group.
<8> The hydrophilized dye-containing particle according to <7>, wherein the content of the acidic group is 0.40 mmol or more per 1 g of the organic polymer particle.
The hydrophilized pigment | dye containing particle | grains as described in <7> or <8> whose structural unit which has <9> above-mentioned acidic group is 3 mass% or more with respect to 100 mass% of total structural units which comprise organic polymer particle.
 <10> ベース粒子および前記蛍光色素を含み、
 前記ベース粒子の表面荷電量が0.05~6.0mmol/gである、<1>~<9>のいずれかに記載の親水化色素含有粒子。
<10> a base particle and the fluorescent dye,
The hydrophilized dye-containing particle according to any one of <1> to <9>, wherein a surface charge amount of the base particle is 0.05 to 6.0 mmol / g.
 <11> ベース粒子および前記蛍光色素を含み、
 前記ベース粒子が有機ポリマー粒子であり、疎水性構造単位を含む、<1>~<10>のいずれかに記載の親水化色素含有粒子。
<11> a base particle and the fluorescent dye,
The hydrophilized dye-containing particle according to any one of <1> to <10>, wherein the base particle is an organic polymer particle and contains a hydrophobic structural unit.
 <12> 体積平均粒径が1~300nmである、<1>~<11>のいずれかに記載の親水化色素含有粒子。 <12> The hydrophilized dye-containing particle according to any one of <1> to <11>, which has a volume average particle size of 1 to 300 nm.
 <13> 前記親水性ポリマーがポリアルキレングリコール構造を少なくとも一部に含むポリマーである、<1>~<12>のいずれかに記載の親水化色素含有粒子。 <13> The hydrophilized dye-containing particle according to any one of <1> to <12>, wherein the hydrophilic polymer is a polymer containing a polyalkylene glycol structure at least in part.
 <14> 前記親水性ポリマーが共有結合を介して粒子の少なくとも一部に結合されている、<1>~<13>のいずれかに記載の親水化色素含有粒子。 <14> The hydrophilized dye-containing particle according to any one of <1> to <13>, wherein the hydrophilic polymer is bound to at least a part of the particle via a covalent bond.
 <15> 前記親水性ポリマーが、ポリアルキレングリコール構造と少なくとも1つのアミン構造とを有する、<1>~<14>のいずれかに記載の親水化色素含有粒子。 <15> The hydrophilized dye-containing particle according to any one of <1> to <14>, wherein the hydrophilic polymer has a polyalkylene glycol structure and at least one amine structure.
 <16> 前記親水性ポリマーが式(8)で表されるポリマー由来の構造を有する、<1>~<15>のいずれかに記載の親水化色素含有粒子。 <16> The hydrophilized dye-containing particle according to any one of <1> to <15>, wherein the hydrophilic polymer has a structure derived from a polymer represented by Formula (8).
Figure JPOXMLDOC01-appb-C000002
[式(8)中、nは5~300の整数である。]
Figure JPOXMLDOC01-appb-C000002
In the formula (8), n is an integer of 5 to 300. ]
 <17> ベース粒子および前記蛍光色素を含む色素含有粒子と、該色素含有粒子の少なくとも一部の表面に親水性ポリマーを有し、
 前記親水性ポリマーが前記色素含有粒子表面を占有する密度が、0.01本/nm2以上である、<1>~<16>のいずれかに記載の親水化色素含有粒子。
<17> A pigment-containing particle comprising a base particle and the fluorescent dye, and a hydrophilic polymer on the surface of at least a part of the pigment-containing particle,
The hydrophilized dye-containing particle according to any one of <1> to <16>, wherein the density at which the hydrophilic polymer occupies the surface of the dye-containing particle is 0.01 string / nm 2 or more.
 <18> ベース粒子および前記蛍光色素を含み、
 前記ベース粒子が有機ポリマー粒子であり、該有機ポリマー粒子中に含まれる前記蛍光色素量が有機ポリマー粒子1gあたり、0.01~30mmolである、<1>~<17>のいずれかに記載の親水化色素含有粒子。
<18> a base particle and the fluorescent dye,
The base particle is an organic polymer particle, and the amount of the fluorescent dye contained in the organic polymer particle is 0.01 to 30 mmol per 1 g of the organic polymer particle according to any one of <1> to <17> Hydrophilized dye-containing particles.
 <19> 有機ポリマー粒子および前記蛍光色素を含み、
 前記有機ポリマー粒子100質量部に対する前記蛍光色素の量が0.001~3.0質量部である、<1>~<18>のいずれかに記載の親水化色素含有粒子。
<19> an organic polymer particle and the fluorescent dye,
The hydrophilized dye-containing particle according to any one of <1> to <18>, wherein the amount of the fluorescent dye is 0.001 to 3.0 parts by mass with respect to 100 parts by mass of the organic polymer particles.
 <20> ベース粒子および波長が900~1700nmの範囲にある蛍光を発する蛍光色素を含み、
 前記ベース粒子が酸性基を有する構造単位を含む、
 イメージング用の色素含有粒子。
 <21> 下記製造方法Iまたは製造方法IIである、イメージング用の親水化色素含有粒子の製造方法。
 製造方法I:ベース粒子と波長が900~1700nmの範囲にある蛍光を発する蛍光色素とを含む色素含有粒子を得る工程1、および、
 工程1で得られた色素含有粒子と親水性ポリマーとを接触させ、色素含有粒子と親水性ポリマーとを有する親水化色素含有粒子を得る工程2、
を含む
 製造方法II:ベース粒子と親水性ポリマーとを接触させる工程3、および、
 工程3で得られた粒子と波長が900~1700nmの範囲にある蛍光を発する蛍光色素とを接触させて親水化色素含有粒子を得る工程4、
を含む
 <22> 前記製造方法Iである、<21>に記載の製造方法。
<20> Base particles and a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm,
The base particle comprises a structural unit having an acidic group,
Dye-containing particles for imaging.
<21> A method of producing a hydrophilized dye-containing particle for imaging, which is the following production method I or production method II.
Production method I: Step 1 of obtaining a dye-containing particle comprising a base particle and a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm, and
Contacting the dye-containing particles obtained in step 1 with a hydrophilic polymer to obtain hydrophilized dye-containing particles having the dye-containing particles and the hydrophilic polymer;
Production method II: contacting the base particle and the hydrophilic polymer, and
Contacting the particles obtained in step 3 with a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm to obtain hydrophilized dye-containing particles 4;
<22> The manufacturing method according to <21>, which is the manufacturing method I.
 <23> <1>~<19>のいずれかに記載の親水化色素含有粒子または<20>に記載の色素含有粒子を体内に含む被検体に、前記蛍光色素の励起光を照射する工程A、および、
 被検体から発せられる波長900~1700nmの範囲の蛍光を検出する工程B、
を含む、生体内を観察する方法。
<23> Process A of irradiating excitation light of the said fluorescent dye to the test substance which contains in a body the hydrophilized pigment containing particle | grains in any one of <1>-<19>, or the pigment | dye containing particle | grains as described in <20> ,and,
Detecting fluorescence in a wavelength range of 900 to 1700 nm emitted from the subject,
A method of observing in vivo, including
 本発明の一実施形態によれば、体液中や生体組織内などで長期間蛍光強度を維持できるイメージング用蛍光ポリマー粒子を得ることができる。 According to one embodiment of the present invention, it is possible to obtain a fluorescent polymer particle for imaging capable of maintaining the fluorescence intensity for a long time in a body fluid, a living tissue or the like.
図1は、色素含有粒子の製造に用いた有機ポリマー粒子量に対する蛍光色素量の割合(蛍光色素量×100/有機ポリマー粒子量)(質量%)と、得られた色素含有粒子の蛍光強度との関係を示す図である。FIG. 1 shows the ratio of the amount of fluorescent dye to the amount of organic polymer particles used in the production of dye-containing particles (the amount of fluorescent dye × 100 / the amount of organic polymer particles) (% by mass) and the fluorescence intensity of the obtained dye-containing particles FIG. 図2は、ベース粒子(有機ポリマー粒子)1gあたりの酸性基の含有量(mmol/g)と、得られた色素含有粒子の蛍光強度との関係を示す図である。FIG. 2 is a view showing the relationship between the content (mmol / g) of acidic groups per 1 g of base particles (organic polymer particles) and the fluorescence intensity of the obtained dye-containing particles. 図3は、合成例で得られた色素含有粒子の吸収スペクトルを示す。FIG. 3 shows the absorption spectrum of the dye-containing particle obtained in the synthesis example. 図4は、実施例のin vivoイメージングで観察されたマウスの蛍光写真を示す。FIG. 4 shows fluorescence pictures of mice observed in the in vivo imaging of the example.
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、以下に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。なお、本明細書において、数値範囲を表す「A~B」等の記載は、「A以上、B以下」と同義であり、AおよびBをその数値範囲内に含む。
 また、本明細書において、「~(メタ)アクリレート」とは、「~アクリレート」および「~メタクリレート」の双方を包括する概念である。同様の記載は、同様の意味を有する。
Hereinafter, preferred embodiments according to the present invention will be described in detail. It is to be understood that the present invention is not limited to only the embodiments described below, but also includes various modifications implemented within the scope of the present invention. In the present specification, the descriptions of “A to B” and the like representing numerical ranges are synonymous with “A or more and B or less”, and include A and B within the numerical ranges.
Furthermore, in the present specification, “-(meth) acrylate” is a concept encompassing both “-acrylate” and “-methacrylate”. Similar descriptions have similar meanings.
≪イメージング用の親水化色素含有粒子≫
 本発明の一実施形態に係るイメージング用の親水化色素含有粒子(以下「本親水化粒子」ともいう。)は、親水性ポリマーおよび波長が900~1700nmの範囲にある蛍光を発する蛍光色素(以下この蛍光色素を「蛍光色素A」ともいう。)を含む。
 なお、本明細書では、粒子であって、該粒子における蛍光色素Aや親水性ポリマー以外の部分の粒子を「ベース粒子」といい、蛍光色素Aおよびベース粒子を含む粒子を「色素含有粒子」といい、蛍光色素Aと親水性ポリマーとを有する粒子を「親水化色素含有粒子」という。例えば、以下の(手法1-1)や(手法1-3)において、蛍光色素Aと接触させる前の粒子はベース粒子であり、下記(手法1-2)のように、造粒の際に蛍光色素Aを用いて形成された粒子は、蛍光色素Aとベース粒子とを含む色素含有粒子(該色素含有粒子の蛍光色素A以外の成分からなる粒子がベース粒子)である。
 また、本明細書における「粒子」には、ミセルやリポソームは含まれない。
«Hydrophilized dye-containing particles for imaging»
The hydrophilized dye-containing particles for imaging according to one embodiment of the present invention (hereinafter also referred to as "the hydrophilized particles") are a hydrophilic polymer and a fluorescent dye which emits fluorescence having a wavelength in the range of 900 to 1700 nm (hereinafter This fluorescent dye is also referred to as "fluorescent dye A".
In the present specification, a particle which is a particle and which is a part of the particle other than the fluorescent dye A and the hydrophilic polymer is referred to as a "base particle" and a particle containing the fluorescent dye A and the base particle is a "dye-containing particle". The particles having the fluorescent dye A and the hydrophilic polymer are referred to as "hydrophilized dye-containing particles". For example, in the following (Method 1-1) and (Method 1-3), the particles before contacting with the fluorescent dye A are base particles, and as in the following (Method 1-2), they are granulated. The particle formed using the fluorescent dye A is a dye-containing particle (a particle composed of a component other than the fluorescent dye A of the dye-containing particle is a base particle) containing the fluorescent dye A and the base particle.
Also, "particles" in the present specification do not include micelles and liposomes.
 このような本親水化粒子は、in vitro、in vivoを含め、体液中や生体組織内などで長期間蛍光強度を維持でき、生体毒性が低く、体液や生体組織内などでの安定性および分散性に優れ、体液や生体組織などの中でも蛍光を発することができ、生体適合性を有する。また、本発明の一実施形態によれば、蛍光強度の高い粒子を作製することができる。本親水化粒子は、in vivoにおいて使用されることが好ましい。
 また、本親水化粒子を用いることで、生体組織の自家蛍光によるノイズが抑えられ、より明瞭に深部の血管や組織・臓器等を観察することができる。
Such a hydrophilized particle can maintain fluorescence intensity for a long time in body fluid, in living tissue, etc. including in vitro and in vivo, has low biotoxicity, and is stable and dispersed in body fluid, living tissue, etc. It is excellent in sex, can emit fluorescence even in body fluids and living tissues, and has biocompatibility. In addition, according to one embodiment of the present invention, particles with high fluorescence intensity can be produced. The hydrophilized particles are preferably used in vivo.
Further, by using the present hydrophilized particles, noise due to auto-fluorescence of the living tissue can be suppressed, and blood vessels, tissues, organs and the like in the deep region can be observed more clearly.
 本親水化粒子は、生体毒性が低く、体液や生体組織内などでも蛍光を発することができる粒子を容易に得ることができる等の点から、前記蛍光色素Aおよびベース粒子を含むことがより好ましい。
 また、前記親水性ポリマーは、前記本親水化粒子の効果がより発揮される等の点から、本親水化粒子の少なくとも一部の表面に存在していることが好ましく、前記蛍光色素Aおよびベース粒子を含む色素含有粒子の少なくとも一部の表面に存在していることがより好ましい。なお、前記色素含有粒子と親水性ポリマーとを接触させて、これらを有する本親水化粒子を得る場合、通常、該親水性ポリマーは、色素含有粒子の少なくとも一部の表面に存在するといえる。
It is more preferable that the present hydrophilized particles contain the fluorescent dye A and the base particles from the viewpoint of being able to easily obtain particles capable of emitting fluorescence even in body fluids or biological tissues, etc., with low biotoxicity. .
Further, the hydrophilic polymer is preferably present on at least a part of the surface of the present hydrophilized particle, from the viewpoint that the effect of the present hydrophilized particle is more exhibited, etc., and the fluorescent dye A and the base are preferably used. More preferably, they are present on the surface of at least a part of the dye-containing particles containing particles. When the dye-containing particles are brought into contact with a hydrophilic polymer to obtain the present hydrophilized particles having them, it can usually be said that the hydrophilic polymer is present on at least a part of the surface of the dye-containing particles.
≪イメージング用の色素含有粒子≫
 本発明の一実施形態に係るイメージング用の色素含有粒子(以下「本色素含有粒子」ともいう。)は、前記蛍光色素Aおよびベース粒子を含み、該ベース粒子は、好ましくは酸性基を有する構造単位を含み、本色素含有粒子は、好ましくは波長が900~1700nmの範囲にある蛍光を発する粒子である。
 このような本色素含有粒子は、生体毒性が低く、体液や生体組織内などでも蛍光を発することができる。本色素含有粒子は、蛍光強度の高い粒子とすることもできる。また、負電荷を有することにより、電荷反発による粒子の分散性が向上する。さらに、一般的に負電荷を帯びている細胞との静電反発により、体内に存在する細胞への非特異的な吸着や、細胞内への侵入を抑制することができる。
 なお、以下では、本親水化粒子および本色素含有粒子をまとめて本粒子ともいう。
«Dye-containing particles for imaging»
Dye-containing particles for imaging according to an embodiment of the present invention (hereinafter also referred to as "the present dye-containing particles") include the fluorescent dye A and base particles, and the base particles preferably have a structure having an acidic group. The dye-containing particles, which contain units, are preferably fluorescent particles with a wavelength in the range of 900-1700 nm.
Such pigment-containing particles are low in biotoxicity and can emit fluorescence even in body fluids or living tissues. The present dye-containing particles can also be particles with high fluorescence intensity. Also, by having a negative charge, the dispersibility of particles due to charge repulsion is improved. Furthermore, electrostatic repulsion with cells that are generally negatively charged can suppress nonspecific adsorption to cells present in the body and entry into cells.
Hereinafter, the present hydrophilized particles and the present dye-containing particles are collectively referred to as present particles.
 本粒子は、その発光する蛍光の波長の一部が、900~1700nmの範囲にあることが好ましく、生体透過性が高く、より明瞭に深部の血管や組織・臓器等を観察することができるなどの点から、1000~1700nmの範囲にあることが好ましく、1000~1500nmの範囲にあることがより好ましく、1000~1200nmの範囲にあることが特に好ましい。
 また、生体透過性が高く、より明瞭に深部の血管や組織・臓器等を観察することができるなどの点から、本粒子は、前記波長範囲に、発光する蛍光の極大(蛍光のピークトップ)があることが好ましい。
 前記蛍光は実施例に記載の方法で測定することができる。
It is preferable that a part of the wavelength of emitted light of the present particles is in the range of 900 to 1700 nm, and the permeability of the particles is high, so that deep blood vessels, tissues, organs, etc. can be observed more clearly. From the point of point of view, the range of 1000 to 1700 nm is preferable, the range of 1000 to 1500 nm is more preferable, and the range of 1000 to 1200 nm is particularly preferable.
In addition, in view of high biopermeability and clear observation of deep blood vessels, tissues, organs and the like, the present particle has a maximum of fluorescence emitted in the above wavelength range (peak peak of fluorescence) Is preferred.
The fluorescence can be measured by the method described in the examples.
 本粒子をIn vivoイメージングに用いる場合、体内を透過する範囲内で励起する必要があり、相対的に蛍光のピークとなる波長よりも短い範囲で励起する。励起波長は、具体的には、700~1700nmが好ましく、750~1700nmがより好ましく、800~1200nmがさらに好ましい。 When this particle is used for in vivo imaging, it needs to be excited within the range that penetrates the body, and is excited within a range shorter than the wavelength at which the fluorescence peak is relatively obtained. Specifically, the excitation wavelength is preferably 700 to 1700 nm, more preferably 750 to 1700 nm, and still more preferably 800 to 1200 nm.
 本粒子は、好ましくはin vivoイメージング用粒子であり、血管、生体組織、臓器、腫瘍などの病巣の造影に使用される。結果として、疾患の発見や進行過程、細胞活動や薬物の影響、病気の進行、治癒状態などの生体内プロセスを体外からモニタリングする、非侵襲的なイメージングに活用することができる。また、疾患研究、創薬、治験開発等に用いることもできる。
 なお、前記イメージングは、多重イメージングであってもよい。
The present particles are preferably particles for in vivo imaging, and are used for imaging lesions such as blood vessels, living tissues, organs, tumors and the like. As a result, it can be utilized for non-invasive imaging which monitors in vivo processes such as disease discovery and progression processes, effects of cell activities and drugs, disease progression, and healing status from outside the body. It can also be used for disease research, drug discovery, clinical trial development and the like.
The imaging may be multiple imaging.
<蛍光色素A>
 蛍光色素Aは、波長が900~1700nmの範囲にある蛍光を発する色素であれば特に制限されない。前記蛍光色素Aは、前記本粒子の発光波長が蛍光色素A自体の発光波長と同様の波長範囲となるような蛍光を発することができる蛍光色素であることがより好ましい。
 本粒子に用いられる蛍光色素Aは、2種以上であってもよいが、通常は1種である。
<Fluorescent dye A>
The fluorescent dye A is not particularly limited as long as it is a dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm. The fluorescent dye A is more preferably a fluorescent dye that can emit fluorescence such that the emission wavelength of the present particle is in the same wavelength range as the emission wavelength of the fluorescent dye A itself.
The fluorescent dye A used in the present particles may be two or more types, but is usually one type.
 蛍光色素Aは、その発光する蛍光の波長の一部が、900~1700nmの範囲にあればよいが、生体透過性が高く、より明瞭に深部の血管や組織・臓器等を観察する場合に容易に用いることができるなどの点から、1000~1700nmの範囲にあることが好ましく、1000~1500nmの範囲にあることがより好ましく、1000~1200nmの範囲にあることが特に好ましい。
 また、生体透過性が高く、より明瞭に深部の血管や組織・臓器等を観察することができるなどの点から、蛍光色素Aは、前記波長範囲に、発光する蛍光の極大(蛍光のピークトップ)があることが好ましい。
 蛍光色素Aの発光する蛍光の波長は、(株)堀場製作所製のFluorolog-NIR等の近赤外蛍光分光光度計等で測定することができる。
The fluorescent dye A may have a part of the wavelength of emitted fluorescence in the range of 900 to 1700 nm, but has high bio-permeability and is easy to observe blood vessels, tissues, organs, etc. in a deep region more clearly. It is preferable to be in the range of 1000 to 1700 nm, more preferable to be in the range of 1000 to 1500 nm, and particularly preferable to be in the range of 1000 to 1200 nm, from the viewpoint that it can be used.
In addition, in view of high biopermeability and the ability to clearly observe deep blood vessels, tissues, organs, etc., the fluorescent dye A is a maximum of fluorescence that emits in the wavelength range (peak peak of fluorescence) Is preferred.
The wavelength of the fluorescence emitted by the fluorescent dye A can be measured with a near infrared fluorescence spectrophotometer such as Fluorolog-NIR manufactured by Horiba, Ltd., or the like.
 蛍光色素Aは、非水溶性の蛍光色素であることが好ましい。
 ここで、非水溶性であるとは、25℃の水100gに対する蛍光色素の溶解度が1g未満であることをいう。
 溶解度が前記範囲内にあると、蛍光色素Aの含有量が多い本粒子を容易に得ることができ、水中に色素含有粒子および親水化色素含有粒子を分散させても蛍光色素Aの浸出(脱落)が少なく、安定した高い蛍光強度を示す親水化色素含有粒子(分散液)および色素含有粒子(分散液)を容易に得ることができる。
The fluorescent dye A is preferably a water-insoluble fluorescent dye.
Here, water-insoluble means that the solubility of the fluorescent dye in 100 g of water at 25 ° C. is less than 1 g.
When the solubility is within the above range, the present particles having a high content of the fluorescent dye A can be easily obtained, and even when the dye-containing particles and the hydrophilized dye-containing particles are dispersed in water, the fluorescent dye A is leached The hydrophilized dye-containing particles (dispersion liquid) and the dye-containing particles (dispersion liquid) can be easily obtained which are stable and have high fluorescence intensity.
 蛍光色素Aは、有機ポリマー粒子、特に酸性基を有する構造単位を含む有機ポリマー粒子との結合力を高め、蛍光色素Aの水中への浸出(脱落)をより抑制できる等の点から、カチオン性化合物であることが好ましい。
 このようなカチオン性化合物としては、例えば、チオピリリウムイオン、ベンゾ[cd]インドリニウムカチオンなどを含む化合物が挙げられる。
The fluorescent dye A is cationic in that it can enhance the bonding with organic polymer particles, particularly organic polymer particles containing a structural unit having an acidic group, and can further suppress the leaching (dropping) of the fluorescent dye A into water. It is preferably a compound.
Examples of such cationic compounds include compounds containing thiopyrylium ion, benzo [cd] indolinium cation, and the like.
 蛍光色素Aとしては、高い蛍光強度を示す等の点から、ポリメチン骨格を有する化合物が好ましく、ポリメチン骨格の両末端に複素環を含む基を有する化合物がより好ましく、下記式(A)で表される化合物が特に好ましい。 The fluorescent dye A is preferably a compound having a polymethine skeleton, more preferably a compound having a heterocyclic ring at both ends of the polymethine skeleton, as represented by the following formula (A), from the viewpoint of exhibiting high fluorescence intensity etc. Compounds are particularly preferred.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記R1およびR2はそれぞれ独立して、複素環を含む炭素数1~30の有機基である。該有機基としては、R1およびR2の結合する炭素原子に複素環が結合した基が好ましく、R1またはR2の一方の複素環を構成するヘテロ原子が正電荷を帯びていることが好ましい。複素環としては、チオピラン環、ベンゾ[cd]インドール環等が挙げられる。
 前記R3は独立して、ハロゲン原子または炭素数1~12の炭化水素基であり、好ましくはハロゲン原子または炭素数1~6の炭化水素基である。
 前記nは1~4の整数であり、好ましくは1または2である。
The R 1 and R 2 are each independently an organic group having 1 to 30 carbon atoms including a heterocyclic ring. The organic group is preferably a group in which a heterocycle is bonded to a carbon atom to which R 1 and R 2 are bonded, and a hetero atom constituting one heterocycle of R 1 or R 2 is positively charged. preferable. Examples of the heterocyclic ring include a thiopyran ring, a benzo [cd] indole ring and the like.
R 3 independently represents a halogen atom or a hydrocarbon group having 1 to 12 carbon atoms, preferably a halogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
The n is an integer of 1 to 4, preferably 1 or 2.
 蛍光色素Aとしては、4-[2-[2-クロロ-3-[(2,6-ジフェニル-4H-チオピラン-4-イリデン)エチリデン]-1-シクロヘキセン-1-イル]エテニル]-2,6-ジフェニルチオピリリウムテトラフルオロボレート(IR-1061、シグマアルドリッチ社製)、1-ブチル-2-[2-[3-[(1-ブチル-6-クロロベンゾ[cd]インドール-2(1H)-イリデン)エチリデン]-2-クロロ-1-シクロヘキセン-1-イル]エテニル]-6-クロロベンゾ[cd]インドリウムテトラフルオロボレート(IR-1048、シグマアルドリッチ社製)、4-[2-[3-[(2,6-ジフェニル-4H-チオピラン-4-イリデン)エチリデン]-2-フェニル-1-シクロヘキセン-1-イル]エテニル]-2,6-ジフェニルチオピリリウムテトラフルオロボレート(IR-1040、シグマアルドリッチ社製)、1-ブチル-2-[2-[3-[(1-ブチル-6-クロロベンゾ[cd]インドール-2(1H)-イリデン)エチリデン]-2-クロロ-5-メチル-1-シクロヘキセン-1-イル]エテニル]-6-クロロベンゾ[cd]インドリウムテトラフルオロボレート(IR-1050、シグマアルドリッチ社製)等が挙げられる。 As the fluorescent dye A, 4- [2- [2-chloro-3-[(2,6-diphenyl-4H-thiopyran-4-ylidene) ethylidene] -1-cyclohexen-1-yl] ethenyl] -2, 6-diphenylthiopyrylium tetrafluoroborate (IR-1061, manufactured by Sigma Aldrich), 1-butyl-2- [2- [3-[(1-butyl-6-chlorobenzo [cd] indole-2 (1H) -Ylidene) ethylidene] -2-chloro-1-cyclohexen-1-yl] ethenyl] -6-chlorobenzo [cd] indolium tetrafluoroborate (IR-1048, manufactured by Sigma Aldrich), 4- [2- [3 -[(2,6-Diphenyl-4H-thiopyran-4-ylidene) ethylidene] -2-phenyl-1-cyclohexen-1-yl] ethene [L] -2,6-diphenylthiopyrylium tetrafluoroborate (IR-1040, manufactured by Sigma Aldrich), 1-butyl-2- [2- [3-[(1-butyl-6-chlorobenzo [cd] indole -2 (1H) -ylidene) ethylidene] -2-chloro-5-methyl-1-cyclohexen-1-yl] ethenyl] -6-chlorobenzo [cd] indolium tetrafluoroborate (IR-1050, manufactured by Sigma-Aldrich Co.) Etc.).
 本色素含有粒子中に含まれる蛍光色素Aの含有量は、ベース粒子100質量部に対し、好ましくは0.001~3.0質量部、より好ましくは0.01~1.0質量部、さらに好ましくは0.05~0.5質量部である。
 また、本親水化粒子中に含まれる蛍光色素Aの含有量は、本親水化粒子100質量%に対し、好ましくは0.0009~2.7質量%、より好ましくは0.009~0.9質量%、さらに好ましくは0.049~0.49質量%である。
 蛍光色素Aの含有量が多くなれば、本粒子の蛍光強度が増加する傾向にあるが、蛍光色素Aの含有量があまりに多くなると、消光現象によって、得られる本粒子の蛍光強度が飽和・低下する場合がある。このため、蛍光強度の点やコストの点などを考慮すると、蛍光色素Aの含有量は前記範囲にあることが好ましい。
The content of the fluorescent dye A contained in the present dye-containing particles is preferably 0.001 to 3.0 parts by mass, more preferably 0.01 to 1.0 parts by mass, further preferably 100 parts by mass of the base particles. Preferably, it is 0.05 to 0.5 parts by mass.
Further, the content of the fluorescent dye A contained in the present hydrophilized particles is preferably 0.0009 to 2.7% by mass, more preferably 0.009 to 0.9 based on 100% by mass of the present hydrophilized particles. % By mass, more preferably 0.049 to 0.49 mass%.
When the content of the fluorescent dye A increases, the fluorescence intensity of the present particles tends to increase. However, when the content of the fluorescent dye A becomes too large, the fluorescence intensity of the obtained particles saturates and decreases due to the quenching phenomenon. May. For this reason, it is preferable that the content of the fluorescent dye A is in the above-described range in consideration of the point of the fluorescence intensity, the point of the cost, and the like.
<ベース粒子>
 ベース粒子としては、蛍光色素Aおよび下記親水性ポリマー以外の成分を有すれば特に限定されないが、比較的疎水性であり、有機溶剤で膨潤可能であり、蛍光色素Aを含む色素含有粒子を容易に調製することができ、かつ、蛍光色素Aの浸出(脱落)を容易に抑制できる等の点から、有機ポリマー粒子であることが好ましい。ベース粒子としては、下記親水性ポリマー以外のポリマーからなる粒子、特に、常温(25℃)、1気圧において純水100gに対して1g未満しか溶解しないポリマーからなる粒子であることが好ましい。
 本粒子に用いられるベース粒子は、2種以上であってもよいが、通常は1種である。
<Base particle>
The base particle is not particularly limited as long as it has components other than the fluorescent dye A and the following hydrophilic polymer, but is relatively hydrophobic, is swellable with an organic solvent, and facilitates the dye-containing particle containing the fluorescent dye A It is preferable that it is organic polymer particle from the point of being able to prepare to, and being able to suppress the leaching (dropping out) of fluorescent dye A easily. The base particles are preferably particles made of a polymer other than the following hydrophilic polymer, particularly particles made of a polymer which dissolves less than 1 g per 100 g of pure water at normal temperature (25 ° C.) and 1 atm.
The number of base particles used in the present particles may be two or more, but usually one.
 有機ポリマー粒子としては、公知の粒子を用いることができ特に限定されないが、重合性不飽和芳香族化合物、重合性不飽和カルボン酸化合物、重合性不飽和スルホン酸化合物もしくはその塩、重合性カルボン酸エステル化合物、重合性不飽和カルボン酸アミド化合物、重合性不飽和ニトリル化合物、ハロゲン化ビニル化合物、および、共役ジエン化合物からなる群より選ばれる少なくとも1種のモノマーを用いて(共)重合して得られる粒子であることが好ましく、重合性不飽和芳香族化合物、重合性不飽和カルボン酸化合物、重合性不飽和スルホン酸化合物もしくはその塩、および、重合性カルボン酸エステル化合物からなる群より選ばれる少なくとも1種のモノマーを(共)重合して得られる粒子であることがより好ましい。 As the organic polymer particles, known particles can be used and are not particularly limited. However, the polymerizable unsaturated aromatic compound, the polymerizable unsaturated carboxylic acid compound, the polymerizable unsaturated sulfonic acid compound or a salt thereof, the polymerizable carboxylic acid Obtained by (co) polymerization using at least one monomer selected from the group consisting of ester compounds, polymerizable unsaturated carboxylic acid amide compounds, polymerizable unsaturated nitrile compounds, halogenated vinyl compounds, and conjugated diene compounds Particles which are preferably selected from the group consisting of polymerizable unsaturated aromatic compounds, polymerizable unsaturated carboxylic acid compounds, polymerizable unsaturated sulfonic acid compounds or salts thereof, and polymerizable carboxylic acid ester compounds. More preferably, they are particles obtained by (co) polymerizing one kind of monomer.
 前記モノマーとして具体的には、スチレン、クロロスチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエン、ビニルナフタレン、ジビニルナフタレン、(メタ)アクリル酸α-ナフチル、(メタ)アクリル酸β-ナフチルなどの重合性不飽和芳香族化合物;(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸などの重合性不飽和カルボン酸化合物;スチレンスルホン酸ソーダなどの重合性不飽和スルホン酸化合物もしくはその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸グリシジル、エチレングリコールジ(メタ)アクリレート、(メタ)アクリル酸トリブロモフェニル、酢酸ビニルなどの重合性カルボン酸エステル化合物;等が挙げられる。 Specific examples of the monomer include styrene, chlorostyrene, α-methylstyrene, divinylbenzene, vinyltoluene, vinylnaphthalene, divinylnaphthalene, α-naphthyl (meth) acrylate, β-naphthyl (meth) acrylate and the like. Unsaturated aromatic compounds; polymerizable unsaturated carboxylic acid compounds such as (meth) acrylic acid, itaconic acid, maleic acid and fumaric acid; polymerizable unsaturated sulfonic acid compounds such as sodium styrene sulfonate or salts thereof; ) Methyl acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, ethylene glycol di (meth) acrylate, (meth) ) Acrylic acid tribromophenyl, vinyl acetate, etc. Phosphate ester compounds; and the like.
 また、前記重合性不飽和カルボン酸アミド化合物、重合性不飽和ニトリル化合物、ハロゲン化ビニル化合物、共役ジエン化合物などとしては、アクリロニトリル、メタアクリロニトリル、アクロレイン、メタアクロレイン、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、メチレンビス(メタ)アクリルアミド、ブタジエン、イソプレン、ビニルピリジン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデン、臭化ビニル等が挙げられる。 Also, examples of the polymerizable unsaturated carboxylic acid amide compound, polymerizable unsaturated nitrile compound, halogenated vinyl compound, conjugated diene compound, etc. include acrylonitrile, methacrylonitrile, acrolein, methacrolein, (meth) acrylamide, N-methylol ( Meta) acrylamide, methylene bis (meth) acrylamide, butadiene, isoprene, vinyl pyridine, N-vinyl pyrrolidone, vinyl chloride, vinylidene chloride, vinyl bromide and the like.
 有機ポリマー粒子は、架橋されていてもよい。このような架橋された粒子は、例えば、架橋モノマーを用いて作成することができる。該架橋モノマーとしては、前記モノマーのうち、重合性基を2つ以上有する化合物が挙げられ、具体的には、ジビニルベンゼンなどの多官能重合性不飽和芳香族化合物やエチレングリコールジ(メタ)アクリレートなどの多官能重合性カルボン酸エステル化合物等が挙げられる。 The organic polymer particles may be crosslinked. Such crosslinked particles can be made, for example, using crosslinking monomers. Examples of the crosslinking monomer include compounds having two or more polymerizable groups among the above-mentioned monomers, and specifically, polyfunctional polymerizable unsaturated aromatic compounds such as divinylbenzene and ethylene glycol di (meth) acrylate And polyfunctional polymerizable carboxylic acid ester compounds and the like.
 有機ポリマー粒子は、酸性基を有する構造単位を含む粒子であることが好ましい。酸性基を有する構造単位を含む粒子を用いることで、特に、カチオン性化合物である蛍光色素Aとともに用いることで、さらには、疎水性であり、カチオン性化合物である蛍光色素Aとともに用いることで、蛍光強度の高い本粒子を容易に得ることができる。 The organic polymer particles are preferably particles containing a structural unit having an acidic group. By using a particle containing a structural unit having an acidic group, in particular, by using it with a fluorescent dye A which is a cationic compound, and further by using it together with a fluorescent dye A which is hydrophobic and which is a cationic compound, The present particles having high fluorescence intensity can be easily obtained.
 酸性基としては、カルボキシ基、スルホ基、リン酸基またはこれらの塩などが挙げられる。なお、塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩等のアルカリ土類金属塩;アンモニウム塩;有機アンモニウム塩等が挙げられる。これらの中でも、アミノ基を含む化合物などを容易に共有結合でき、特に、アミノ基を含む化合物などで表面修飾された粒子を容易に得ることができる等の点から、カルボキシ基が好ましい。
 有機ポリマー粒子は、1分子中に酸性基を1個有していてもよく、2個以上有していてもよい。
As an acidic group, a carboxy group, a sulfo group, a phosphoric acid group, or these salts etc. are mentioned. Examples of the salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as magnesium salt and calcium salt; ammonium salt; organic ammonium salt and the like. Among these, a carboxy group is preferable in that a compound containing an amino group can be easily covalently bonded, and in particular, a particle surface-modified with a compound containing an amino group can be easily obtained.
The organic polymer particle may have one acidic group in one molecule, and may have two or more.
 酸性基の含有量は、有機ポリマー粒子1gあたり、好ましくは0.40ミリモル以上、より好ましくは0.70ミリモル以上、さらに好ましくは1.40ミリモル以上である。
 酸性基の含有量が前記範囲にあると、より蛍光強度が高い本粒子を容易に得ることができる。蛍光強度を増大できる理由は必ずしも明らかではないが、酸性基の存在により、本粒子中で蛍光色素Aを均一に分散できるため、蛍光色素Aの消光等をより抑制できるためであると考えられる。
The content of the acidic group is preferably 0.40 mmol or more, more preferably 0.70 mmol or more, and still more preferably 1.40 mmol or more per 1 g of the organic polymer particles.
When the content of the acidic group is in the above range, the present particles having higher fluorescence intensity can be easily obtained. The reason why the fluorescence intensity can be increased is not necessarily clear, but is considered to be because the fluorescent dye A can be dispersed uniformly in the present particles due to the presence of the acidic group, and thus the quenching of the fluorescent dye A can be further suppressed.
 酸性基の含有量は、有機ポリマー粒子1gあたり、好ましくは7.0ミリモル以下、より好ましくは5.6ミリモル以下、さらに好ましくは4.0ミリモル以下である。
 有機ポリマー粒子中の酸性基の含有量が過剰となると、親水性が高まり、粒子形状を保てなくなる傾向にあるため、前記範囲にあることが好ましい。
The content of the acidic group is preferably 7.0 mmol or less, more preferably 5.6 mmol or less, and still more preferably 4.0 mmol or less, per 1 g of the organic polymer particles.
When the content of the acidic group in the organic polymer particle is excessive, the hydrophilicity is increased and the particle shape tends to be unable to be maintained, so the above range is preferable.
 酸性基の含有量は、例えば、酸性基を有するモノマーを用いる場合、有機ポリマーの合成に用いる全モノマーに対する酸性基を有するモノマーの使用量から算出することができる。 The content of the acidic group can be calculated, for example, when using a monomer having an acidic group, from the amount of the monomer having an acidic group to the total monomers used in the synthesis of the organic polymer.
 酸性基を有する構造単位の含有量は、有機ポリマー粒子を構成する全構造単位100質量%に対し、好ましくは3質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上である。
 酸性基を有する構造単位の含有量が前記範囲にあると、より蛍光強度が高い本粒子を容易に得ることができる。蛍光強度を増大できる理由は必ずしも明らかではないが、酸性基の存在により、色素含有粒子中で蛍光色素Aを均一に分散できるため、蛍光色素Aの消光等を抑制できるためであると考えられる。
The content of the structural unit having an acidic group is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more based on 100% by mass of all structural units constituting the organic polymer particles. .
When the content of the structural unit having an acidic group is in the above range, the present particles having higher fluorescence intensity can be easily obtained. The reason why the fluorescence intensity can be increased is not necessarily clear, but is considered to be because quenching of the fluorescent dye A can be suppressed because the fluorescent dye A can be uniformly dispersed in the dye-containing particle due to the presence of the acidic group.
 また、酸性基を有する構造単位の含有量は、有機ポリマー粒子を構成する全構造単位100質量%に対し、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。
 有機ポリマー粒子中の酸性基の含有量が過剰となると、親水性が高まり、粒子形状を保てなくなる傾向にあるため、前記範囲にあることが好ましい。
Further, the content of the structural unit having an acidic group is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, based on 100% by mass of all structural units constituting the organic polymer particles. It is.
When the content of the acidic group in the organic polymer particle is excessive, the hydrophilicity is increased and the particle shape tends to be unable to be maintained, so the above range is preferable.
 酸性基を有する構造単位の含有量は、例えば、酸性基を有するモノマーを用いる場合、有機ポリマーの合成に用いる全モノマーに対する酸性基を有するモノマーの使用量から算出することができる。 The content of the structural unit having an acidic group can be calculated, for example, when using a monomer having an acidic group, from the amount of the monomer having an acidic group to the total monomers used in the synthesis of the organic polymer.
 酸性基を有する構造単位を含む有機ポリマー粒子は、酸性基を有するモノマーを用いて製造してもよく、得られた粒子が酸性基を有するように従来公知の方法で変性することで製造してもよい。 Organic polymer particles containing a structural unit having an acidic group may be produced using a monomer having an acidic group, and produced by modifying the obtained particles so as to have an acidic group by a conventionally known method. It is also good.
 カルボキシ基を有するモノマーとしては、(メタ)アクリル酸、フマル酸、マレイン酸、イタコン酸等の重合性不飽和カルボン酸化合物等が挙げられる。スルホ基を有するモノマーとしては、エチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、2-スルホエチル(メタ)アクリレート、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホ基含有重合性不飽和モノマー等が挙げられる。リン酸基を有するモノマーとしては、2-(メタ)アクリロイルオキシエチルアシッドホスフェート、2-(メタ)アクリロイルオキシプロピルアシッドホスフェート等のリン酸基含有重合性不飽和モノマー等が挙げられる。これらのモノマーは、単独でまたは2種以上を用いてもよい。
 これらの中でも、酸性基の導入の容易さ、反応性等の点から、アクリル酸、イタコン酸が好ましい。
Examples of the monomer having a carboxy group include polymerizable unsaturated carboxylic acid compounds such as (meth) acrylic acid, fumaric acid, maleic acid and itaconic acid. As a monomer having a sulfo group, sulfo group-containing polymerizable unsaturated monomers such as ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, 2-sulfoethyl (meth) acrylate, 2-acrylamido-2-methylpropane sulfonic acid, etc. Can be mentioned. Examples of the monomer having a phosphoric acid group include phosphoric acid group-containing polymerizable unsaturated monomers such as 2- (meth) acryloyloxyethyl acid phosphate and 2- (meth) acryloyloxypropyl acid phosphate. These monomers may be used alone or in combination of two or more.
Among these, acrylic acid and itaconic acid are preferable in terms of ease of introduction of the acid group, reactivity, and the like.
 ベース粒子の表面荷電量は、より蛍光強度が高い本粒子を得ることができる等の点から、好ましくは0.05~6.0mmol/g、より好ましくは0.20~6.0mmol/g、さらに好ましくは0.28~3.8mmol/g、特に好ましくは0.60~2.4mmol/gである。
 本明細書中における表面荷電量は、電位差滴定装置で測定した際、得られた電導度曲線の接線を利用して滴定した硫酸量を求め、算出した値であり、粒子1gあたりの表面荷電の量を表す。Titrinoシリーズ(メトローム社製)の電位差滴定装置を用いて測定できる。
The surface charge amount of the base particles is preferably 0.05 to 6.0 mmol / g, more preferably 0.20 to 6.0 mmol / g, from the viewpoint that the present particles having higher fluorescence intensity can be obtained. More preferably, it is 0.28 to 3.8 mmol / g, particularly preferably 0.60 to 2.4 mmol / g.
The surface charge amount in the present specification is a value calculated by determining the amount of sulfuric acid titrated using the tangent of the obtained conductivity curve when measured by the potentiometric titrator, and the surface charge per 1 g of particles is calculated. Represents the quantity. It can be measured using a Titrino series (manufactured by Metrome) potentiometric titrator.
 有機ポリマー粒子は、蛍光色素A、特に疎水性である蛍光色素Aを容易に取り込むことができ、蛍光色素Aの浸出(脱落)を容易に抑制できる等の点から、1種または2種以上の疎水性構造単位を含む粒子であることが好ましい。
 疎水性構造単位を含む粒子は、例えば、有機ポリマー粒子の合成に用いるモノマーとして、1種または2種以上の前記重合性不飽和芳香族化合物や重合性カルボン酸エステル化合物を用いることで製造することができる。
The organic polymer particles can be easily incorporated with the fluorescent dye A, particularly the fluorescent dye A which is hydrophobic, and can easily suppress the leaching (dropping out) of the fluorescent dye A, and so on. It is preferable that it is a particle containing a hydrophobic structural unit.
Particles containing a hydrophobic structural unit are produced, for example, by using one or more of the above-mentioned polymerizable unsaturated aromatic compounds and polymerizable carboxylic acid ester compounds as monomers used for the synthesis of organic polymer particles. Can.
 疎水性構造単位の含有量は、蛍光色素A、特に疎水性である蛍光色素Aをより容易に取り込むことができ、蛍光色素Aの浸出(脱落)をより容易に抑制できる等の点から、有機ポリマー粒子を構成する全構造単位100質量%に対し、好ましくは50~97質量%、より好ましくは60~95質量%、さらに好ましくは70~90質量%である。
 疎水性構造単位の含有量は、例えば、有機ポリマーの合成に用いる全モノマーに対する疎水性モノマーの使用量から算出することができる。
The content of the hydrophobic structural unit is an organic compound from the viewpoint that the fluorescent dye A, particularly the fluorescent dye A which is hydrophobic, can be incorporated more easily and the leaching (dropping out) of the fluorescent dye A can be more easily suppressed. The amount is preferably 50 to 97% by mass, more preferably 60 to 95% by mass, and still more preferably 70 to 90% by mass with respect to 100% by mass of all structural units constituting the polymer particles.
The content of the hydrophobic structural unit can be calculated, for example, from the amount of the hydrophobic monomer used relative to all the monomers used in the synthesis of the organic polymer.
 有機ポリマー粒子は、市販品を用いてもよく、従来公知の方法で合成したものを用いてもよい。
 有機ポリマー粒子を製造する方法としては、乳化重合法、シード重合法、ソープフリー重合法、懸濁重合法、沈殿重合法などが挙げられる。これらの中でも、ナノサイズの粒子を簡便に製造できる等の点から、乳化重合法が好ましい。
A commercial item may be used for organic polymer particle, and what was synthesize | combined by the conventionally well-known method may be used for it.
Examples of methods for producing organic polymer particles include emulsion polymerization, seed polymerization, soap-free polymerization, suspension polymerization, and precipitation polymerization. Among these, the emulsion polymerization method is preferable from the viewpoint that nano-sized particles can be easily produced.
 ベース粒子の体積平均粒径は特に制限されないが、in vivo、in vitroイメージングにより好適に用いることができる等の点から、好ましくは1~300nm、より好ましくは5~200nm、さらに好ましくは10~100nmである。
 体積平均粒径が100nm以下であると、脾臓や肝臓等における本粒子の蓄積を低減でき、またEPR効果(Enhanced Permeability and Retention effect)による腫瘍のイメージングも容易に行うことができる。また、体積平均粒径が10nm以上であると、腎臓によるクリアランスを低減でき、体内における滞留時間を伸ばすことができるために、長期における体内イメージングを容易に行うことができる。
 体積平均粒径は、実施例に記載の方法で測定できる。
 なお、ベース粒子が蛍光色素を含んでも、また、ベース粒子表面に親水性ポリマーを有しても、体積平均粒径はベース粒子の体積平均粒径から大きく変化しない。従って、本粒子の体積平均粒径も前記範囲にあることが好ましい。
The volume average particle size of the base particles is not particularly limited, but is preferably 1 to 300 nm, more preferably 5 to 200 nm, still more preferably 10 to 100 nm, from the viewpoint of being suitably used by in vivo and in vitro imaging. It is.
If the volume average particle size is 100 nm or less, the accumulation of the present particles in the spleen, the liver and the like can be reduced, and imaging of a tumor by the EPR (Enhanced Permeability and Retention effect) can be easily performed. In addition, when the volume average particle size is 10 nm or more, the clearance by the kidney can be reduced, and the residence time in the body can be extended, so that long-term in-vivo imaging can be easily performed.
The volume average particle size can be measured by the method described in the examples.
In addition, even if the base particles contain a fluorescent dye, and the surface of the base particles has a hydrophilic polymer, the volume average particle size does not largely change from the volume average particle size of the base particles. Accordingly, the volume average particle size of the present particles is also preferably in the above range.
<親水性ポリマー>
 本親水化粒子は、親水性ポリマーを有すれば特に制限されないが、色素含有粒子表面に親水性ポリマーを有することが好ましい。
 このように、親水性ポリマーを有することで、生体適合性を有し、体液や生体組織内中やin vivo、in vitroでの分散性に優れ、さらには、in vivo、in vitroで長期間蛍光強度を維持できる親水化色素含有粒子を得ることができる。
 なお、以下では、親水化色素含有粒子の原料としての親水性ポリマー、具体的には、色素含有粒子表面に物理吸着または化学結合する前の親水性ポリマーについて説明するが、色素含有粒子表面に存在する親水性ポリマーは、色素含有粒子表面に物理吸着または化学結合するその末端が下記説明のポリマーと異なる可能性がある他は下記説明のポリマーとほぼ同様である。
<Hydrophilic polymer>
The present hydrophilized particles are not particularly limited as long as they have a hydrophilic polymer, but it is preferable to have a hydrophilic polymer on the surface of the dye-containing particle.
Thus, by having a hydrophilic polymer, it has biocompatibility and is excellent in dispersibility in a body fluid or a living tissue, in vivo, in vitro, and further, fluorescence in vivo, in vitro for a long period of time Hydrophilized dye-containing particles capable of maintaining strength can be obtained.
Although the hydrophilic polymer as a raw material of the hydrophilized dye-containing particle, specifically, the hydrophilic polymer before being physically adsorbed or chemically bonded to the surface of the pigment-containing particle is described below, it is present on the surface of the pigment-containing particle The hydrophilic polymer is substantially the same as the polymer described below except that the terminal physically adsorbed or chemically bonded to the surface of the dye-containing particle may be different from the polymer described below.
 本明細書において親水性ポリマーとは、水との親和力が強い性質を持つことを意味する。具体的には、常温(25℃)、1気圧において純水100gに対して1g以上溶解するポリマーを、親水性ポリマーという。 In the present specification, a hydrophilic polymer means that it has a strong affinity to water. Specifically, a polymer which dissolves by 1 g or more in 100 g of pure water at normal temperature (25 ° C.) and 1 atmospheric pressure is referred to as a hydrophilic polymer.
 親水性ポリマーは、通常、親水性繰り返し単位を有し、主鎖に親水性繰り返し単位を有していてもよいし、側鎖に親水性繰り返し単位を有していてもよい。本明細書において、親水性繰り返し単位は、1種の繰り返し単位のみからなるホモポリマー(数平均分子量が1000~10万程度のもの)とした場合に、常温(25℃)、1気圧において純水100gに対して1g以上溶解する場合、その繰り返し単位は親水性繰り返し単位であるという。親水性ポリマーは物理的に色素含有粒子に吸着しているか、化学的に結合されていることが好ましいが、親水化色素含有粒子からの浸出(脱落)をより抑制できる等の点から、化学的に結合されていることが好ましい。化学結合としては、共有結合等が挙げられるが、色素含有粒子からの脱離の恐れがより低く、タンパク質等の生体関連物質の付着をより抑制でき、親水化色素含有粒子の分散性をより高めることができる等の点で共有結合が好ましい。 The hydrophilic polymer generally has a hydrophilic repeating unit, may have a hydrophilic repeating unit in the main chain, and may have a hydrophilic repeating unit in a side chain. In the present specification, when the hydrophilic repeating unit is a homopolymer consisting of only one kind of repeating unit (having a number average molecular weight of about 1,000 to 100,000), pure water at normal temperature (25.degree. C.) and 1 atm. When 1 g or more is dissolved in 100 g, the repeating unit is said to be a hydrophilic repeating unit. The hydrophilic polymer is preferably physically adsorbed to the pigment-containing particles or chemically bonded, but it is chemically preferable in that it can further suppress leaching (dropping) from the hydrophilized pigment-containing particles. Preferably it is attached to Examples of chemical bonds include covalent bonds, but there is less risk of detachment from dye-containing particles, adhesion of biorelated substances such as proteins can be further suppressed, and dispersibility of hydrophilized dye-containing particles is further enhanced. Covalent bonding is preferred in that it can be used.
 親水性ポリマーが色素含有粒子に化学的に結合している親水化色素含有粒子を得るには、親水性ポリマーとして、色素含有粒子表面(の官能基)と共有結合できる官能基を有するポリマーを用いることが好ましい。このような官能基としては、色素含有粒子表面が酸性基を有する場合はアミノ基等が挙げられ、粒子表面がアミノ基を有する場合はカルボキシ基等が挙げられる。前述の通り、蛍光強度の高い親水化色素含有粒子を容易に得ることができる等の点から、酸性基を有する有機ポリマー粒子が好ましいため、該酸性基を有効に利用できる等の点から、アミノ基を有する親水性ポリマーが好ましい。 In order to obtain a hydrophilized dye-containing particle in which a hydrophilic polymer is chemically bonded to the dye-containing particle, a polymer having a functional group capable of covalently bonding with (the functional group of) the dye-containing particle surface is used as the hydrophilic polymer. Is preferred. As such a functional group, an amino group etc. are mentioned when the pigment | dye containing particle | grain surface has an acidic group, A carboxy group etc. are mentioned when particle surface has an amino group. As described above, since organic polymer particles having an acidic group are preferable from the viewpoint that hydrophilicized dye-containing particles having high fluorescence intensity can be easily obtained, etc., amino acids can be effectively used, etc. Hydrophilic polymers having a group are preferred.
 主鎖に親水性繰り返し単位を有するポリマーとしては、主鎖にポリアルキレングリコール構造やポリビニルアルコール構造を有するポリマーなどが挙げられる。タンパク質等の生体関連物質の付着をより抑制し、親水化色素含有粒子の分散性をより高める等の点から、ポリアルキレングリコール構造を有するポリマーが好ましく、ポリエチレングリコール構造を有するポリマーがより好ましい。
 また、ポリアルキレングリコールの片方の末端が水素原子または炭素数1~4のアルキル基であり、もう片方の末端が色素含有粒子表面に物理的に吸着できる基、または、化学的に結合できる官能基を有する基であるポリマーが好ましい。
Examples of the polymer having a hydrophilic repeating unit in the main chain include polymers having a polyalkylene glycol structure or a polyvinyl alcohol structure in the main chain. A polymer having a polyalkylene glycol structure is preferable, and a polymer having a polyethylene glycol structure is more preferable, from the viewpoint of further suppressing the adhesion of a biological substance such as a protein and further enhancing the dispersibility of the hydrophilized dye-containing particles.
In addition, one end of the polyalkylene glycol is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and the other end is a group capable of physically adsorbing on the surface of the dye-containing particle, or a functional group capable of chemically bonding Polymers which are a group having a are preferred.
 前記親水性ポリマーとしては、ポリアルキレングリコール構造と少なくとも1つのアミン構造とを有するポリマーが好ましい。該アミン構造としては特に制限されないが、オリゴアミン構造が好ましく、ポリエチレンイミン構造がより好ましい。
 このような親水性ポリマーとして、下記式(8)で表されるポリマーが挙げられ、具体的には、JSRライフサイエンス(株)製、Blockmaster CE510やCE210が好適に使用できる。
The hydrophilic polymer is preferably a polymer having a polyalkylene glycol structure and at least one amine structure. The amine structure is not particularly limited, but an oligoamine structure is preferable, and a polyethyleneimine structure is more preferable.
As such a hydrophilic polymer, a polymer represented by the following formula (8) may be mentioned, and specifically, Blockmaster CE510 or CE210 manufactured by JSR Life Science Co., Ltd. can be suitably used.
Figure JPOXMLDOC01-appb-C000004
[式(8)中、nは5~300の整数である。]
Figure JPOXMLDOC01-appb-C000004
In the formula (8), n is an integer of 5 to 300. ]
 側鎖に親水性基を有する親水性繰り返し単位を有するポリマーとしては、側鎖にポリアルキレングリコール構造を有し、その側鎖の末端が水素原子または炭素数1~4のアルキル基で構成される繰り返し単位(A-1)を有するポリマー、側鎖末端にアンモニオアルキルホスフェート基を有する繰り返し単位(A-2)を有するポリマー、側鎖末端にアミド基を有する繰り返し単位(A-3)を有するポリマー、側鎖末端に窒素および酸素を含むヘテロ環を有する繰り返し単位(A-4)を有するポリマー、側鎖末端にラクタムを有する繰り返し単位(A-5)を有するポリマー、および、側鎖末端にベタイン性基を有する繰り返し単位(A-6)を有するポリマーから選ばれる1種以上であるのが好ましい。 As a polymer having a hydrophilic repeating unit having a hydrophilic group in the side chain, it has a polyalkylene glycol structure in the side chain, and the end of the side chain is composed of a hydrogen atom or an alkyl group having 1 to 4 carbon atoms A polymer having a repeating unit (A-1), a polymer having a repeating unit (A-2) having an ammonio alkyl phosphate group at a side chain end, and a repeating unit (A-3) having an amide group at a side chain end Polymer, polymer having a repeating unit (A-4) having a hetero ring containing nitrogen and oxygen at the side chain end, polymer having a repeating unit (A-5) having a lactam at the side chain end, and It is preferable that it is one or more selected from polymers having a repeating unit (A-6) having a betaine group.
 前記繰り返し単位(A-1)~(A-6)のいずれか1種以上を有するポリマーは、さらに粒子表面の官能基と反応させ、親水性ポリマーを色素含有粒子表面に共有結合により固定化することができる末端構造や繰り返し単位(B)を有することが好ましい。繰り返し単位(B)としては、例えば色素含有粒子表面のカルボキシ基と反応して共有結合を形成する官能基を側鎖に有する繰り返し単位が好ましい。カルボキシ基と反応して共有結合を形成する官能基としては、アミノ基、メルカプト基等が挙げられる。 The polymer having any one or more of the repeating units (A-1) to (A-6) is further reacted with a functional group on the surface of the particle to immobilize the hydrophilic polymer on the surface of the dye-containing particle by covalent bonding. It is preferable to have a terminal structure that can be used and a repeating unit (B). As a repeating unit (B), the repeating unit which has a functional group which reacts with the carboxy group of pigment | dye containing particle | grain surface, for example, forms a covalent bond in a side chain is preferable. As a functional group which reacts with a carboxy group and forms a covalent bond, an amino group, a mercapto group, etc. are mentioned.
 親水性ポリマーとしては、さらに天然物である親水性ポリマーでもよく、ブロッキング剤として使用されているBSA、カゼインなどのタンパク質、キトサンなどの糖類などでもよく、ベース粒子や色素含有粒子表面のカルボキシ基と縮合剤などにより共有結合を形成できる化合物が好ましい。 The hydrophilic polymer may be a naturally occurring hydrophilic polymer, or may be BSA used as a blocking agent, a protein such as casein, a saccharide such as chitosan, or the like, and a carboxy group on the surface of the base particle or the dye-containing particle The compound which can form a covalent bond by a condensing agent etc. is preferable.
 繰り返し単位(A-1)を誘導するモノマーとしては、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコールポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコールポリテトラメチレングリコール(メタ)アクリレート、ポリプロピレングリコールポリテトラメチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート等が挙げられ、これらの中でも、ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレートが好ましい。
 繰り返し単位(A-1)としては、これらを単独でまたは2種以上を用いて得られた繰り返し単位等が挙げられる。
As a monomer for deriving the repeating unit (A-1), polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, polyethylene glycol polypropylene glycol (meth) acrylate, polyethylene glycol polytetramethylene glycol (meth) acrylate, polypropylene glycol Polytetramethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) acrylate, ethoxy polyethylene glycol (meth) acrylate and the like can be mentioned. Among these, polyethylene glycol (meth) acrylate and methoxy polyethylene glycol (meth) acrylate are preferable.
Examples of the repeating unit (A-1) include repeating units obtained by using these singly or in combination of two or more.
 繰り返し単位(A-2)を誘導するモノマーとしては、2-(メタ)アクリロイルオキシエチル-2’-(トリメチルアンモニオ)エチルホスフェート(2-(メタ)アクリロイルオキシエチルホスホリルコリン)、3-(メタ)アクリロイルオキシプロピル-2’-(トリメチルアンモニオ)エチルホスフェート、4-(メタ)アクリロイルオキシブチル-2’-(トリメチルアンモニオ)エチルホスフェート、2-(メタ)アクリロイルオキシエトキシエチル-2’-(トリメチルアンモニオ)エチルホスフェート、2-(メタ)アクリロイルオキシジエトキシエチル-2’-(トリメチルアンモニオ)エチルホスフェート、2-(メタ)アクリロイルオキシエチル-2’-(トリエチルアンモニオ)エチルホスフェート、2-(メタ)アクリロイルオキシエチル-2’-(トリブチルアンモニオ)エチルホスフェート等が挙げられる。
 繰り返し単位(A-2)としては、これらを単独でまたは2種以上を用いて得られた繰り返し単位等が挙げられる。
As a monomer to derive the repeating unit (A-2), 2- (meth) acryloyloxyethyl-2 '-(trimethylammonio) ethyl phosphate (2- (meth) acryloyloxyethyl phosphorylcholine), 3- (meth) Acryloyloxypropyl-2 '-(trimethylammonio) ethyl phosphate, 4- (meth) acryloyloxybutyl-2'-(trimethylammonio) ethyl phosphate, 2- (meth) acryloyloxyethoxyethyl-2 '-(trimethyl) Ammonio) ethyl phosphate, 2- (meth) acryloyloxydiethoxyethyl-2 '-(trimethylammonio) ethyl phosphate, 2- (meth) acryloyloxyethyl-2'-(triethylammonio) ethyl phosphate, 2- (Meth) acryl Ruokishiechiru -2 '- (tributyl ammonio) ethyl phosphate.
Examples of the repeating unit (A-2) include repeating units obtained by using these singly or in combination of two or more.
 繰り返し単位(A-3)を誘導するモノマーとしては、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-(ヒドロキシメチル)(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド等が挙げられる。
 繰り返し単位(A-3)としては、これらを単独でまたは2種以上を用いて得られた繰り返し単位等が挙げられる。
As a monomer which derives a repeating unit (A-3), dimethyl (meth) acrylamide, diethyl (meth) acrylamide, N- isopropyl (meth) acrylamide, N- (hydroxymethyl) (meth) acrylamide, N- (2-) And hydroxyethyl) (meth) acrylamide and the like.
Examples of the repeating unit (A-3) include repeating units obtained by using these singly or in combination of two or more.
 繰り返し単位(A-4)を誘導するモノマーとしては、4-(メタ)アクリロイルモルホリン等が挙げられる。
 繰り返し単位(A-4)としては、前記モノマーを単独でまたは2種以上を用いて得られた繰り返し単位等が挙げられる。
As a monomer for deriving the repeating unit (A-4), 4- (meth) acryloyl morpholine and the like can be mentioned.
Examples of the repeating unit (A-4) include repeating units obtained by using the above-mentioned monomers alone or two or more kinds.
 繰り返し単位(A-5)を誘導するモノマーとしては、1-ビニル-2-ピロリドン、N-ビニル-ε-カプロラクタム等が挙げられる。
 繰り返し単位(A-5)としては、これらを単独でまたは2種以上を用いて得られた繰り返し単位等が挙げられる。
Examples of the monomer for deriving the repeating unit (A-5) include 1-vinyl-2-pyrrolidone, N-vinyl-ε-caprolactam and the like.
Examples of the repeating unit (A-5) include repeating units obtained by using these singly or in combination of two or more.
 繰り返し単位(A-6)を誘導するモノマーとしては、N-(メタ)アクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン、N-(メタ)アクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-プロピルスルホベタイン等の(メタ)アクリレート系モノマー等が挙げられる。
 繰り返し単位(A-6)としては、これらを単独でまたは2種以上用いて得られた繰り返し単位等が挙げられる。
As a monomer to derive the repeating unit (A-6), N- (meth) acryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine, N- (meth) acryloyloxyethyl-N, N And (meth) acrylate monomers such as dimethylammonium-α-N-propylsulfobetaine.
Examples of the repeating unit (A-6) include repeating units obtained by using these singly or in combination of two or more.
 親水性ポリマーの数平均分子量(Mn)としては、好ましくは500~100,000、より好ましくは1000~10,000である。
 数平均分子量が前記範囲にあることで、親水性ポリマーの含有量が多い親水化色素含有粒子を容易に得ることができ、特に色素含有粒子表面への親水性ポリマーの修飾量をより高めることができ、タンパク質等の生体関連物質の付着をより抑制でき、分散性のより高い親水化色素含有粒子を容易に得ることができる。
 数平均分子量は、ゲル浸透クロマトグラフィーで測定できる。
The number average molecular weight (Mn) of the hydrophilic polymer is preferably 500 to 100,000, more preferably 1,000 to 10,000.
When the number average molecular weight is in the above range, hydrophilized dye-containing particles having a large content of hydrophilic polymer can be easily obtained, and in particular, the modification amount of the hydrophilic polymer on the surface of the dye-containing particle can be further increased. As a result, it is possible to further suppress the adhesion of a biorelated substance such as a protein, and to easily obtain a hydrophilized dye-containing particle having higher dispersibility.
The number average molecular weight can be measured by gel permeation chromatography.
 親水性ポリマーが色素含有粒子表面を占有する密度は、タンパク質等の生体関連物質の付着を抑制することができ、分散性のより高い親水化色素含有粒子を容易に得ることができる等の点で、好ましくは0.01本/nm2以上、より好ましくは0.05本/nm2以上、さらに好ましくは0.1本/nm2以上であり、上限は好ましくは2.0本/nm2である。
 該密度は、色素含有粒子に対する親水性ポリマーの割合、色素含有粒子の粒径および比重から算出され、具体的には、実施例に記載の方法で測定できる。
The density at which the hydrophilic polymer occupies the surface of the dye-containing particle can suppress the adhesion of biorelated substances such as proteins, and can easily obtain hydrophilic pigment-containing particles having higher dispersibility. Is preferably 0.01 line / nm 2 or more, more preferably 0.05 line / nm 2 or more, and still more preferably 0.1 line / nm 2 or more, and the upper limit is preferably 2.0 lines / nm 2 is there.
The density is calculated from the ratio of the hydrophilic polymer to the dye-containing particles, the particle size and the specific gravity of the dye-containing particles, and can be specifically measured by the method described in the examples.
≪親水化色素含有粒子の製造方法≫
 親水化色素含有粒子の製造方法(以下「本製造方法」ともいう。)としては、例えば、下記製造方法Iまたは製造方法IIが挙げられる。
 ・製造方法I:ベース粒子と前記蛍光色素Aとを含む色素含有粒子を得る工程1、および、
 工程1で得られた色素含有粒子と親水性ポリマーとを接触させ、色素含有粒子と親水性ポリマーとを有する親水化色素含有粒子を得る工程2、
を含む製造方法
 ・製造方法II:ベース粒子と親水性ポリマーとを接触させる工程3、および、
 工程3で得られた粒子と前記蛍光色素Aとを接触させて親水化色素含有粒子を得る工程4、
を含む製造方法
 これらの方法の中でも、蛍光色素Aを効率よく導入でき、特に、蛍光色素Aの含有量を飛躍的に高めることができる等の点から、製造方法Iがより好ましい。
«Method for producing hydrophilized dye-containing particles»
Examples of the method for producing the hydrophilized dye-containing particles (hereinafter also referred to as “the present production method”) include the following production method I or production method II.
Production method I: Step 1 of obtaining dye-containing particles containing base particles and the fluorescent dye A, and
Contacting the dye-containing particles obtained in step 1 with a hydrophilic polymer to obtain hydrophilized dye-containing particles having the dye-containing particles and the hydrophilic polymer;
A method of manufacturing comprising a method of manufacturing II: a step 3 of bringing a base particle into contact with a hydrophilic polymer, and
Contacting the particles obtained in step 3 with the fluorescent dye A to obtain hydrophilized dye-containing particles;
Among these methods, among these methods, the method I is more preferable because the fluorescent dye A can be efficiently introduced, and in particular, the content of the fluorescent dye A can be dramatically increased.
<工程1>
 工程1としては色素含有粒子が得られれば特に制限されず、(手法1-1)共有結合によりベース粒子表面に蛍光色素Aを固定化する方法、(手法1-2)蛍光色素Aの存在下で造粒し、粒子化する過程で蛍光色素Aを該粒子に取り込ませる方法、(手法1-3)ベース粒子、好ましくは有機ポリマー粒子と、蛍光色素Aとを含む液体を用い、蛍光色素Aを、ベース粒子、好ましくは有機ポリマー粒子中に取り込ませる方法等が挙げられる。つまり、前記色素含有粒子は、蛍光色素Aをベース粒子の表面に有する粒子であってもよく、蛍光色素Aをベース粒子の内部に有する粒子であってもよく、蛍光色素Aをベース粒子の表面および内部に有する粒子であってもよい。
 これらの中でも、高蛍光強度の本粒子を容易に製造できる等の点で(手法1-3)の製造方法が好ましい。
<Step 1>
The step 1 is not particularly limited as long as dye-containing particles can be obtained, (Method 1-1) A method of immobilizing the fluorescent dye A on the surface of the base particle by covalent bonding, (Method 1-2) in the presence of the fluorescent dye A A method of incorporating fluorescent dye A into the particles in the process of granulating and forming into particles, (Method 1-3) base particles, preferably using a liquid containing organic polymer particles and fluorescent dye A, fluorescent dye A May be incorporated into base particles, preferably organic polymer particles. That is, the dye-containing particle may be a particle having the fluorescent dye A on the surface of the base particle, or may be a particle having the fluorescent dye A inside the base particle, and the surface of the fluorescent dye A on the base particle And particles inside it.
Among these, the production method of (Method 1-3) is preferable in that the present particles of high fluorescence intensity can be easily produced.
 以下、工程1の好ましい一例を挙げる。
 まず、有機ポリマー粒子を用意する。好ましい組成、粒径等は前記の通りである。有機ポリマー粒子は、市販品を用いてもよく、前述の方法などの従来公知の方法で合成したものを用いてもよい。
Hereinafter, a preferable example of the process 1 is given.
First, organic polymer particles are prepared. Preferred compositions, particle sizes and the like are as described above. As the organic polymer particles, commercially available products may be used, or those synthesized by a conventionally known method such as the method described above may be used.
 次に、この有機ポリマー粒子を水系媒体中に分散させ、水系分散液を調製する。水系分散液は、界面活性剤などの添加剤を含有していてもよい。界面活性剤としては、ノニオン系界面活性剤が挙げられ、中でも粒子分散安定性に優れる分散液を容易に得ることができる等の点から高分子系界面活性剤が好ましく、Pluronic F-127、Kolliphor P407(BASF社製)がより好ましい。 Next, the organic polymer particles are dispersed in an aqueous medium to prepare an aqueous dispersion. The aqueous dispersion may contain an additive such as a surfactant. Examples of the surfactant include nonionic surfactants. Among them, polymeric surfactants are preferable in that a dispersion having excellent particle dispersion stability can be easily obtained, and the like, and Pluronic F-127 and Kolliphor are preferable. P407 (manufactured by BASF) is more preferable.
 得られた有機ポリマー粒子の水系分散液に、蛍光色素Aを有機溶媒に溶解した色素溶液を加えて撹拌しながら染色する(染色工程)。有機ポリマー粒子の水系分散液に色素溶液を加えると、有機ポリマー粒子が膨潤し、溶媒中に存在する色素が徐々に有機ポリマー粒子内に吸収されていく。 A dye solution in which the fluorescent dye A is dissolved in an organic solvent is added to the obtained aqueous dispersion of organic polymer particles, and the dye is dyed while being stirred (staining step). When the dye solution is added to the aqueous dispersion of organic polymer particles, the organic polymer particles swell, and the dye present in the solvent is gradually absorbed into the organic polymer particles.
 蛍光色素Aを溶解する有機溶媒としては特に制限されず、非極性、極性のいずれの有機溶媒であってもよいが、水と任意の割合で混和する極性溶媒が好ましい。例えば、メチルアルコール、エチルアルコールなどのアルコール類;テトラヒドロフラン、1,3-ジオキソラン、ジオキサンなどのエーテル類、アセトンなどのケトン類、ジメチルスルホキシド、ジメチルホルムアミド、N-メチルピロリドンなどが挙げられ、用いる蛍光色素Aの種類等に応じて1種類または2種類以上が用いられる。これらの中でも、蛍光色素Aの溶解度が高いことから、ジメチルスルホキシドが好ましい。 The organic solvent for dissolving the fluorescent dye A is not particularly limited, and may be either a nonpolar or polar organic solvent, but a polar solvent miscible with water in an arbitrary ratio is preferable. For example, alcohols such as methyl alcohol and ethyl alcohol; ethers such as tetrahydrofuran, 1,3-dioxolane and dioxane, ketones such as acetone, dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone and the like, and fluorescent dyes used Depending on the type of A etc., one type or two or more types are used. Among these, dimethyl sulfoxide is preferable because the solubility of the fluorescent dye A is high.
 色素溶液における蛍光色素Aの濃度は、好ましくは0.001~5g/L、より好ましくは0.01~3g/L、さらに好ましくは0.01~1g/Lである。 The concentration of the fluorescent dye A in the dye solution is preferably 0.001 to 5 g / L, more preferably 0.01 to 3 g / L, and still more preferably 0.01 to 1 g / L.
 染色工程における、有機ポリマー粒子の濃度(前記水系分散液および色素溶液の合計中の有機ポリマー粒子の濃度)は、好ましくは0.01~10質量%、より好ましくは0.05~5質量%、さらに好ましくは0.1~3質量%である。
 前記濃度で有機ポリマー粒子を用いることで、凝集の抑制された色素含有粒子を高い生産性で容易に得ることができる。
The concentration of the organic polymer particles (the concentration of the organic polymer particles in the total of the aqueous dispersion and the dye solution) in the dyeing step is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass. More preferably, it is 0.1 to 3% by mass.
By using organic polymer particles at the above concentration, dye-containing particles in which aggregation is suppressed can be easily obtained with high productivity.
 染色工程における、界面活性剤の濃度(前記水系分散液および色素溶液の合計中の界面活性剤の濃度)は、好ましくは0.005~10質量%、より好ましくは0.01~5質量%、さらに好ましくは0.05~1質量%である。
 前記濃度で界面活性剤を用いることで、凝集がより抑制された色素含有粒子を容易に得ることができる。
The concentration of the surfactant (the concentration of the surfactant in the total of the aqueous dispersion and the dye solution) in the dyeing step is preferably 0.005 to 10% by mass, more preferably 0.01 to 5% by mass. More preferably, it is 0.05 to 1% by mass.
By using a surfactant at the above concentration, dye-containing particles in which aggregation is further suppressed can be easily obtained.
 染色工程における、有機溶媒濃度(前記水系分散液および色素溶液の合計中の有機溶媒の濃度)は、好ましくは0.1~50質量%、より好ましくは1~25質量%、さらに好ましくは2~10質量%である。
 前記濃度で有機溶媒を用いることで、有機ポリマー粒子を十分に膨潤させることができ、ベース粒子に蛍光色素Aがより取り込まれ易くなるため好ましく、また、得られる本粒子からの蛍光色素Aの浸出(脱落)が低減され、本粒子の状態変化による凝集や形状の変化を抑制できる。
The concentration of the organic solvent (the concentration of the organic solvent in the total of the aqueous dispersion and the dye solution) in the dyeing step is preferably 0.1 to 50% by mass, more preferably 1 to 25% by mass, and still more preferably 2 to It is 10% by mass.
By using the organic solvent at the above concentration, the organic polymer particles can be sufficiently swollen, and the fluorescent dye A is more easily incorporated into the base particles, which is preferable, and leaching of the fluorescent dye A from the obtained particles is preferable. (Dropping off) is reduced, and aggregation and shape change due to state change of the present particles can be suppressed.
 染色工程における、有機ポリマー粒子に対する蛍光色素Aの添加量は、得られる本粒子における有機ポリマー粒子1gあたりの蛍光色素Aの含有量が、好ましくは0.01~30mmol、より好ましくは0.1~15mmol、さらに好ましくは0.5~7mmolとなる量である。
 蛍光色素Aの使用量が多くなれば、得られる本粒子の蛍光強度が増加する傾向にあるが、蛍光色素Aの使用量があまりに多くなると、消光現象によって、得られる本粒子の蛍光強度が飽和・低下する傾向にある。このため、蛍光強度の点やコストの点などを考慮すると、蛍光色素Aの使用量は前記範囲にあることが好ましい。
The amount of the fluorescent dye A added to the organic polymer particles in the dyeing step is preferably such that the content of the fluorescent dye A per 1 g of the organic polymer particles in the obtained present particles is 0.01 to 30 mmol, more preferably 0.1 to The amount is preferably 15 mmol, more preferably 0.5 to 7 mmol.
When the amount of the fluorescent dye A used is large, the fluorescence intensity of the obtained particles tends to increase, but when the amount of the fluorescent dye A used is too large, the fluorescence intensity of the obtained particles is saturated due to the quenching phenomenon.・ It tends to decrease. Therefore, in consideration of the point of the fluorescence intensity and the point of cost, it is preferable that the amount of the fluorescent dye A used is in the above range.
 染色工程の温度は特に制限されないが、好ましくは0~50℃、より好ましくは10~40℃、さらに好ましくは20~30℃である。
 温度を前記範囲とすることで、蛍光色素Aを効率よく有機ポリマー粒子に含ませることができ、凝集がより抑制された色素含有粒子を容易に得ることができる。
The temperature of the dyeing step is not particularly limited, but is preferably 0 to 50 ° C., more preferably 10 to 40 ° C., and still more preferably 20 to 30 ° C.
By setting the temperature in the above range, the fluorescent dye A can be efficiently contained in the organic polymer particles, and dye-containing particles in which aggregation is further suppressed can be easily obtained.
 蛍光色素Aを有機ポリマー粒子に吸収させる時間(有機ポリマー粒子の水系分散液と色素溶液とを撹拌する時間)は、用いる蛍光色素Aの種類、有機ポリマー粒子の組成、粒子径などにより適宜決定すればよいが、好ましくは1~60分、より好ましくは2~30分、さらに好ましくは3~10分である。 The time for which the fluorescent dye A is absorbed into the organic polymer particles (the time for stirring the aqueous dispersion of the organic polymer particles and the dye solution) is appropriately determined depending on the type of the fluorescent dye A used, the composition of the organic polymer particles, the particle size, etc. But preferably 1 to 60 minutes, more preferably 2 to 30 minutes, and still more preferably 3 to 10 minutes.
 なお、工程1は、染色工程後の分散液を水系分散液に置換する工程を含んでもよい。このように置換する方法としては、遠心分離、透析、限外濾過等が挙げられる。これらの中でも、簡便かつ短時間で置換できる等の点で限外濾過が好ましい。 Step 1 may include the step of replacing the dispersion after the dyeing step with an aqueous dispersion. Methods for such replacement include centrifugation, dialysis, ultrafiltration and the like. Among these, ultrafiltration is preferable in that it can be easily replaced in a short time.
 工程1では、基本的には、用いた蛍光色素Aのほぼ全てを含む色素含有粒子を得ることができ、用いる蛍光色素量を調整してもよいが、本製造方法は、染色工程で得られた分散液中の遊離の蛍光色素Aを、フィルターなどを用いて除去する工程を含んでもよい。 In Step 1, basically, a dye-containing particle containing almost all of the used fluorescent dye A can be obtained, and the amount of fluorescent dye used may be adjusted, but this production method can be obtained in the staining step. And the step of removing the free fluorescent dye A in the dispersion using a filter or the like.
<工程2>
 工程2としては特に制限されず、(手法2-1)疎水性相互作用またはイオン性相互作用により親水性ポリマーを色素含有粒子、特に該粒子表面に物理吸着させる方法、(手法2-2)親水性ポリマーに含まれる官能基と、色素含有粒子表面が有する官能基とを共有結合により結合し、親水性ポリマーを色素含有粒子、特に該粒子表面に共有結合する方法等が挙げられる。これらの中でも、親水性ポリマーがin vitroまたはin vivoで脱離しにくく、分散性に優れ、高い蛍光強度を維持できる親水化色素含有粒子を容易に得ることができる等の点で、(手法2-2)の製造方法が好ましい。
<Step 2>
The step 2 is not particularly limited, and (Method 2-1) a method of causing a hydrophilic polymer to be physically adsorbed on a pigment-containing particle, particularly the particle surface by hydrophobic interaction or ionic interaction, (Method 2-2) hydrophilicity And the like. The functional group contained in the polymer and the functional group possessed by the surface of the dye-containing particle are covalently bonded to each other, and the hydrophilic polymer is covalently bonded to the dye-containing particle, particularly to the particle surface. Among these, hydrophilic polymer is difficult to be detached in vitro or in vivo, and it is possible to easily obtain a hydrophilized dye-containing particle which is excellent in dispersibility and can maintain high fluorescence intensity. The method of 2) is preferred.
 以下、工程2の好ましい一例を挙げる。
 工程1で得られた色素含有粒子を水系媒体中に分散させ、水系分散液を調製する。または、工程1で得られた色素含有粒子の水系分散液をそのまま用いてもよい。これらの水系分散液は、界面活性剤などの添加剤を含有していてもよい。
Hereinafter, a preferable example of the process 2 is given.
The pigment-containing particles obtained in Step 1 are dispersed in an aqueous medium to prepare an aqueous dispersion. Alternatively, the aqueous dispersion of the dye-containing particles obtained in Step 1 may be used as it is. These aqueous dispersions may contain additives such as surfactants.
 次に、親水性ポリマー水溶液と、必要に応じて縮合剤を前記水系分散液に添加し、親水性ポリマーで色素含有粒子、特に該粒子表面を修飾する(修飾工程)。 Next, a hydrophilic polymer aqueous solution and, if necessary, a condensing agent are added to the aqueous dispersion to modify the dye-containing particles, particularly the particle surfaces, with the hydrophilic polymer (modification step).
 縮合剤は、親水性ポリマーと色素含有粒子の官能基に応じて選択すればよい。例えば、親水性ポリマーがアミノ基を含み、色素含有粒子がカルボキシ基を含む場合、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩などのカルボジイミド系化合物;N,N’-カルボニルジイミダゾールなどのイミダゾール系化合物;4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドn水和物などのトリアジン系化合物;1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロりん酸塩などのホスホニウム系化合物;O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸などのウロニウム系化合物を用いることができる。これらの中でも、簡便に扱える等の点で、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩が好ましい。 The condensing agent may be selected according to the functional group of the hydrophilic polymer and the dye-containing particle. For example, when the hydrophilic polymer contains an amino group and the dye-containing particle contains a carboxy group, a carbodiimide compound such as dicyclohexyl carbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, etc .; N, N ′ Imidazole compounds such as -carbonyldiimidazole; triazine compounds such as 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride n-hydrate; 1H Phosphonium compounds such as -benzotriazol-1-yloxy tris (dimethylamino) phosphonium hexafluorophosphate; O- (benzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium Uronium compounds such as hexafluorophosphoric acid can be used. Among these, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride is preferable in view of easy handling and the like.
 修飾工程における、色素含有粒子の濃度は、好ましくは0.05~10質量%、より好ましくは0.1~5質量%、さらに好ましくは0.3~3質量%である。
 前記濃度で色素含有粒子を用いることで、凝集が抑制された親水化色素含有粒子を高い生産性で容易に得ることができる。
The concentration of the dye-containing particles in the modification step is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, and still more preferably 0.3 to 3% by mass.
By using the pigment-containing particles at the above concentration, hydrophilized pigment-containing particles in which aggregation is suppressed can be easily obtained with high productivity.
 修飾工程における、色素含有粒子1gに対する親水性ポリマーの添加量は、好ましくは0.001~10g/g、より好ましくは0.01~5.0g/g、さらに好ましくは0.1~1.0g/gである。
 親水性ポリマーの添加量が前記範囲にあることで、十分に表面修飾された親水化色素含有粒子を低コストで容易に得ることができる。
The amount of the hydrophilic polymer added to 1 g of the pigment-containing particles in the modification step is preferably 0.001 to 10 g / g, more preferably 0.01 to 5.0 g / g, still more preferably 0.1 to 1.0 g It is / g.
When the addition amount of the hydrophilic polymer is in the above-mentioned range, it is possible to easily obtain a sufficiently surface-modified hydrophilized dye-containing particle at low cost.
 表面修飾工程における、色素含有粒子1gに対する縮合剤の添加量は、好ましくは0.0001~1g/g、より好ましくは0.001~0.5g/g、さらに好ましくは0.01~0.3g/gである。
 親水性ポリマーの添加量が前記範囲にあることで、凝集が抑制され、かつ、親水性ポリマーで十分に表面修飾された親水化色素含有粒子を容易に得ることができる。
The amount of the condensing agent added to 1 g of the pigment-containing particles in the surface modification step is preferably 0.0001 to 1 g / g, more preferably 0.001 to 0.5 g / g, still more preferably 0.01 to 0.3 g It is / g.
When the amount of the hydrophilic polymer added is in the above range, it is possible to easily obtain a hydrophilized dye-containing particle in which aggregation is suppressed and the surface is sufficiently modified with the hydrophilic polymer.
 なお、修飾工程は緩衝液中で行ってもよい。該緩衝液としては、修飾反応を阻害しないものであれば特に制限されないが、例えば、親水性ポリマーがアミノ基を含み、色素含有粒子がカルボキシ基を含む場合、pH4~7のMES緩衝液が好ましい。 The modification step may be performed in a buffer solution. The buffer is not particularly limited as long as it does not inhibit the modification reaction. For example, when the hydrophilic polymer contains an amino group and the dye-containing particles contain a carboxy group, MES buffer of pH 4 to 7 is preferable .
<工程3>
 工程3としては特に制限されず、ベース粒子と親水性ポリマーとを接触させればよいが、(手法3-1)疎水性相互作用またはイオン性相互作用により親水性ポリマーをベース粒子、特に該粒子表面に物理吸着させる方法、(手法3-2)親水性ポリマーに含まれる官能基と、ベース粒子表面が有する官能基とを共有結合により結合し、親水性ポリマーをベース粒子、特に該粒子表面に共有結合する方法等が挙げられる。これらの中でも、親水性ポリマーがin vitroまたはin vivoで脱離しにくく、分散性に優れる粒子を容易に得ることができる等の点で、(手法3-2)の製造方法が好ましい。
 これら(手法3-1)や(手法3-2)としては、前記(手法2-1)や(手法2-2)において、色素含有粒子の代わりにベース粒子を用いる以外は同様の方法が挙げられる。
<Step 3>
The step 3 is not particularly limited, and the base particle and the hydrophilic polymer may be brought into contact with each other. (Method 3-1) Hydrophilic polymer or hydrophilic polymer based particle by hydrophobic interaction or ionic interaction, particularly the particle Method of physically adsorbing to the surface, (Method 3-2) The functional group contained in the hydrophilic polymer is covalently bonded to the functional group possessed by the base particle surface, and the hydrophilic polymer is attached to the base particle, particularly to the particle surface. Methods of covalent bonding and the like can be mentioned. Among these, the production method of (Method 3-2) is preferable in that the hydrophilic polymer is difficult to be detached in vitro or in vivo, and particles having excellent dispersibility can be easily obtained.
As these (Method 3-1) and (Method 3-2), the same methods as those described in the above (Method 2-1) and (Method 2-2) but using a base particle instead of the dye-containing particle are listed. Be
<工程4>
 工程4は、工程3で得られた粒子と前記蛍光色素Aとを接触させて親水化色素含有粒子を得る工程である。
 工程4としては、親水化色素含有粒子を得ることができれば特に制限されないが、(手法4-1)共有結合により工程3で得られた粒子表面に蛍光色素Aを固定化する方法、(手法4-3)工程3で得られた粒子と、蛍光色素Aとを含む液体を用い、蛍光色素Aを、工程3で得られた粒子中に取り込ませる方法等が挙げられる。
 これらの中でも、高蛍光強度の本粒子を容易に製造できる等の点で(手法4-3)の製造方法が好ましい。
 これら(手法4-1)や(手法4-3)としては、前記(手法1-1)や(手法1-3)において、ベース粒子の代わりに工程3で得られた粒子を用いる以外は同様の方法が挙げられる。
<Step 4>
Step 4 is a step of bringing the particles obtained in step 3 into contact with the fluorescent dye A to obtain hydrophilized dye-containing particles.
The step 4 is not particularly limited as long as it is possible to obtain the hydrophilized dye-containing particles, but (Method 4-1) a method of immobilizing the fluorescent dye A on the particle surface obtained in the step 3 by covalent bonding, -3) Using a liquid containing the particles obtained in step 3 and fluorescent dye A, a method of incorporating fluorescent dye A into the particles obtained in step 3 and the like can be mentioned.
Among these, the production method of (Method 4-3) is preferable in that the present particles of high fluorescence intensity can be easily produced.
As these (Method 4-1) and (Method 4-3), the same method as in (Method 1-1) and (Method 1-3) above is used except that the particles obtained in Step 3 are used instead of the base particles. Method is mentioned.
≪生体内を観察する方法≫
 生体内を観察する方法(以下「本観察方法」ともいう。)は、
 本親水化粒子または本色素含有粒子を体内に含む被検体に、蛍光色素Aの励起光を照射する工程A、および、
 被検体から発せられる波長900~1700nmの範囲の蛍光を検出する工程B、
を含む。
«Method to observe in vivo»
The method of observing the inside of a living body (hereinafter also referred to as “the present observation method”) is
A step A of irradiating excitation light of the fluorescent dye A to an analyte containing the present hydrophilized particle or the present dye-containing particle in the body, and
Detecting fluorescence in a wavelength range of 900 to 1700 nm emitted from the subject,
including.
<工程A>
 工程Aは、具体的には、本親水化粒子または本色素含有粒子、好ましくは本親水化粒子を体内に投与する工程A1、および、被検体に蛍光色素Aの励起光を照射する工程A2を含む工程が挙げられる。
<Step A>
Specifically, the step A includes a step A1 of administering the present hydrophilized particle or the present dye-containing particle, preferably the present hydrophilized particle, and a step A2 of irradiating the analyte with the excitation light of the fluorescent dye A. And the steps involved.
〈工程A1〉
 工程A1における投与方法は、対象に応じて、任意の好適な手段を採用すればよい。例えば、(a)経口投与、(b)非経口投与が挙げられる。
 なお、これらの投与は、局部・局所投与であってもよく、注射器、注入ポンプ、チューブ等を用いた投与、皮膚上投与、経粘膜投与、吸入投与、バッカル投与であってもよい。
<Step A1>
The administration method in step A1 may adopt any suitable means depending on the subject. For example, (a) oral administration, (b) parenteral administration can be mentioned.
These administrations may be local or topical administration, administration using a syringe, an infusion pump, a tube or the like, administration on the skin, transmucosal administration, inhalation administration, or buccal administration.
 (a)経口投与としては、本粒子の分散液を直接経口投与してもよいし、本粒子と、当該技術分野で周知の薬学的に許容し得る担体等とを含む混合物を投与してもよい。該混合物の剤形は特に限定されず、例えば、ピル、糖衣剤、カプセル、液剤、ゲル剤、シロップ剤、スラリー剤、懸濁剤が挙げられる。 (A) For oral administration, the dispersion of the present particles may be directly orally administered, or a mixture containing the present particles and a pharmaceutically acceptable carrier and the like well known in the art may be administered. Good. The dosage form of the mixture is not particularly limited, and examples thereof include pills, dragees, capsules, solutions, gels, syrups, slurries and suspensions.
 本粒子を経口投与する際には賦形剤を用いてもよい。好適に用いられる賦形剤としては特に限定されないが、例えば、ラクトース、スクロース、マンニトール、ソルビトール等の糖、トウモロコシデンプン、小麦デンプン、米デンプン、ジャガイモデンプン、ゼラチン、トラガカントガム、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウム等のセルロース調製物、ポリビニルピロリドン(PVP)が挙げられる。 An excipient may be used when orally administering the particles. The excipient used preferably is not particularly limited, but, for example, sugars such as lactose, sucrose, mannitol and sorbitol, corn starch, wheat starch, rice starch, potato starch, gelatin, tragacanth gum, methylcellulose, hydroxypropyl methylcellulose, carboxy Cellulose preparations such as methylcellulose sodium, polyvinyl pyrrolidone (PVP).
 また、本粒子を経口投与する際には崩壊剤を用いてもよい。前記崩壊剤としては特に限定されないが、例えば、架橋ポリビニルピロリドン、寒天、アルギン酸もしくはその塩(例:アルギン酸ナトリウム)が挙げられる。 In addition, a disintegrant may be used when orally administering the particles. The disintegrant is not particularly limited, and examples thereof include cross-linked polyvinyl pyrrolidone, agar, alginic acid or a salt thereof (eg, sodium alginate).
 前記カプセルとしては、ゼラチン製のプッシュフィットカプセルや、ゼラチンおよび可塑剤(例:グリセロールまたはソルビトール)で作製されたシールされたソフトカプセルであってもよい。
 前記プッシュフィットカプセルは、充填剤(例:ラクトース)、結合剤(例:デンプン)、滑沢剤(例:タルク、ステアリン酸マグネシウム)、安定化剤等を含んでもよい。
 前記ソフトカプセルにおいて本粒子は、好適な液体、例えば、脂肪油、流動パラフィン、液体ポリエチレングリコールなどに溶解または懸濁していてもよい。
The capsule may be a push-fit capsule made of gelatin, or a sealed soft capsule made of gelatin and a plasticizer (eg, glycerol or sorbitol).
The push-fit capsule may contain a filler (eg, lactose), a binder (eg, starch), a lubricant (eg, talc, magnesium stearate), a stabilizer and the like.
In the soft capsule, the particles may be dissolved or suspended in a suitable liquid such as fatty oil, liquid paraffin, liquid polyethylene glycol and the like.
 経口投与する際の本粒子の使用量は、かかる投与に適した投薬量であることが好ましい。 The amount of the particles used for oral administration is preferably a dosage suitable for such administration.
 (b)非経口投与としては、経口以外の投与、例えば、直腸投与、膣内投与、尿道内投与、眼内投与、鼻腔内投与または点耳が挙げられる。 (B) Parenteral administration includes administration other than oral, for example, rectal administration, vaginal administration, intraurethral administration, intraocular administration, intranasal administration or ear drops.
 非経口投与では、本粒子を、直腸組成物、例えば、坐剤または保持浣腸等の形態としてもよい。この場合、例えば、慣用の坐剤基剤(例:ココアバター、他のグリセリド)を用いてもよい。 For parenteral administration, the particles may be in the form of a rectal composition, such as a suppository or retention enema. In this case, for example, conventional suppository bases (eg, cocoa butter, other glycerides) may be used.
 局部・局所投与としては、例えば、腎臓又は心臓領域における直接注射やデポ移植が挙げられる。 Local and local administration includes, for example, direct injection in the kidney or heart region and depot transplantation.
 注射器や注入ポンプ等を用いた投与としては、例えば、皮下注射、腹腔内注射、静脈内注射、筋肉内注射、皮内注射、眼窩内注射、テノン氏嚢内注射、脊髄内注射、胸骨内注射等(注入ポンプ送達を含む)が挙げられる。これらの投与の際には、必要により賦形剤等を用い、本粒子を懸濁液として用いればよい。好適な賦形剤としては特に限定されないが、例えば、水、食塩水、デキストロース、マンニトール、ラクトース、レシチン、アルブミン、グルタミン酸ナトリウム、塩酸システインが挙げられる。さらに、所望により、少量の無毒性補助物質、例えば、湿潤剤、緩衝液、吸収増強剤等を用いてもよい。 Examples of administration using a syringe, infusion pump, etc. include subcutaneous injection, intraperitoneal injection, intravenous injection, intramuscular injection, intradermal injection, intraorbital injection, intrathecal injection, intraspinal injection, intrasternal injection, etc. (Including infusion pump delivery). At the time of such administration, the present particles may be used as a suspension, if necessary, using an excipient and the like. Examples of suitable excipients include, but are not limited to, water, saline, dextrose, mannitol, lactose, lecithin, albumin, sodium glutamate, and cysteine hydrochloride. In addition, if desired, small amounts of nontoxic auxiliary substances, such as wetting agents, buffers, absorption enhancers and the like may be used.
 経粘膜投与の際には、透過すべき障壁に適した浸透剤を用いてもよい。
 バッカル投与の際には、慣用の手法で製剤された、本粒子を含む、錠剤またはロゼンジ剤の形態をとってもよい。
For transmucosal administration, penetrants appropriate to the barrier to be permeated may be used.
For buccal administration, it may take the form of a tablet or lozenge containing the particles, formulated in a conventional manner.
 吸入投与の際には、本粒子は、加圧パック(pressurized pack)またはネブライザーから、好適なプロペラント、例えば、ジクロロジフルオロメタン、トリクロロフルオロメタン、ジクロロテトラフルオロエタン、二酸化炭素または他の好適なガスとともに投与してもよい。
 加圧エアゾールとして投与する場合、投薬量は、計量された量を放出するためのバルブを用いて制御してもよい。
 吸入器やインサフレーター等を用いて投与する場合には、粉末基剤(例:ラクトース、デンプン等の粉末(混合物))を用いてもよい。
For administration by inhalation, the particles can be loaded from a pressurized pack or a nebulizer with a suitable propellant, such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. May be coadministered with
When administered as a pressurized aerosol, the dosage may be controlled using a valve to release a metered amount.
In the case of administration using an inhaler, an inhaler or the like, a powder base (eg, powder (mixture) such as lactose and starch) may be used.
〈工程A2〉
 励起光を被検体に照射する方法は特に限定されず、光源を用いて被検体の外側から照射してもよく、本粒子とは別に被検体に投与した発光物質を発光させることにより本粒子に照射してもよいが、励起光の強度を調整できる等の点から、被検体の外側から照射することが好ましい。
<Step A2>
The method for irradiating the subject with excitation light is not particularly limited, and irradiation may be performed from the outside of the subject using a light source, and the present particles can be made to emit light by emitting a luminescent substance administered to the subject separately from the present particles. Although irradiation may be performed, it is preferable to irradiate from the outside of the subject in terms of being able to adjust the intensity of excitation light.
 被検体の外から励起光を照射するための、光源としては特に限定されず、種々のレーザー(例:イオンレーザー、色素レーザー:半導体レーザー)、ハロゲン光源、キセノン光源などの通常の励起光光源を用いてもよい。
 励起光は、所望により、種々の光学フィルターを使用して最適な励起波長のみを照射してもよい。
The light source for irradiating excitation light from the outside of the subject is not particularly limited, and common excitation light sources such as various lasers (eg, ion laser, dye laser: semiconductor laser), halogen light source, xenon light source, etc. You may use.
The excitation light may, if desired, be illuminated only at the optimum excitation wavelength using various optical filters.
 励起光の波長としては、生体透過性が高く、深部を鮮明に観察できる点から、700~1700nmが好ましく、750~1700nmがより好ましく、800~1200nmがさらに好ましい。 The wavelength of the excitation light is preferably 700 to 1700 nm, more preferably 750 to 1700 nm, and still more preferably 800 to 1200 nm, from the viewpoint of high biopermeability and clear observation of the deep part.
<工程B>
 工程Bでは、被検体から発せられる、具体的には、本粒子から発せられる波長900~1700nmの範囲の蛍光を検出すれば特に制限されない。この検出の際には、種々の光学フィルターを使用して、所望の波長の光のみを検出してもよい。
<Step B>
In the step B, there is no particular limitation as long as the fluorescence emitted from the subject, specifically, the fluorescence in the wavelength range of 900 to 1700 nm emitted from the present particles is detected. During this detection, various optical filters may be used to detect only light of the desired wavelength.
 蛍光を検出するための検出器は特に限定されないが、例えば、CCDカメラを用いることができる。より具体的には、InGaAs-CCDカメラを用いることができる。また、光学CT装置、内視鏡、眼底カメラ等を使用してもよい。 Although a detector for detecting fluorescence is not particularly limited, for example, a CCD camera can be used. More specifically, an InGaAs-CCD camera can be used. In addition, an optical CT apparatus, an endoscope, a fundus camera or the like may be used.
 本観察方法では、前記蛍光を検出した後、検出した蛍光を蛍光情報としてデータ処理し、このデータを元に記録可能な蛍光イメージを作成してもよい。
 前記蛍光イメージは、具体的には、標的組織を含む広い領域に励起光を照射して、CCDカメラで蛍光を検出し、得られた蛍光情報をイメージ処理することにより作成してもよい。
In the present observation method, after the fluorescence is detected, the detected fluorescence may be subjected to data processing as fluorescence information, and a recordable fluorescence image may be created based on this data.
Specifically, the fluorescence image may be created by irradiating excitation light to a wide region including a target tissue, detecting fluorescence with a CCD camera, and image-processing the obtained fluorescence information.
 工程A2および工程Bは専用装置で連続的に行ってもよい。このような装置としては特に限定されないが、(株)島津製作所製、SAI-1000を好適に使用できる。 Step A2 and step B may be performed continuously in a dedicated device. Such an apparatus is not particularly limited, but SAI-1000 manufactured by Shimadzu Corporation can be suitably used.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples.
[粒径の測定]
 各粒子の粒径(体積平均粒径)は、動的光散乱式ナノトラック粒度分析計(日機装(株)製)を用い、粒子透過性:透過、粒子形状:真球形、粒子屈折率:1.59、粒子密度:1.00、溶媒:水、溶媒屈折率:1.333の条件で測定した。
[Measurement of particle size]
The particle size (volume average particle size) of each particle is determined by using a dynamic light scattering nanotrack particle size analyzer (manufactured by Nikkiso Co., Ltd.), particle permeability: transmission, particle shape: spherical shape, particle refractive index: 1 It measured on condition of .59, particle density: 1.00, solvent: water, solvent refractive index: 1.333.
[蛍光測定]
 0.3質量%の粒子分散液2mLを含む石英セルを、25℃で管理されたファイバー接続型温調機能付キュベットホルダ(Quantum North West社製、qpod2e)に設置した。次に、温度コントローラー付精密LDドライバー(YAMAKI製、KLD-6.5ALT)で制御された980nmの励起光をレーザーダイオード(LASER COMPONENTS.LTd.製、ハイパワーファイバーレーザーダイオード,SP-976-5-1015-7)で照射し、光ファイバースペクトロメーター(AVANTES社製、AvaSpec-NIR256-1.7)により、波長1000~1700nmにおける各粒子の蛍光スペクトルを測定した。
[Fluorescent measurement]
A quartz cell containing 2 mL of a 0.3% by mass particle dispersion was placed in a fiber-connected cuvette holder (Quantum North West, qpod 2e) managed at 25 ° C. Next, a 980 nm excitation light controlled by a precision LD driver with a temperature controller (manufactured by YAMAKI, KLD-6.5 ALT) is a laser diode (manufactured by LASER COMPONENTS.LTd., A high power fiber laser diode, SP-976-5-). The light was irradiated at 1015-7), and the fluorescence spectrum of each particle at a wavelength of 1000 to 1700 nm was measured using an optical fiber spectrometer (AVANTES, AvaSpec-NIR 256-1.7).
[吸光度の測定]
 0.3質量%の粒子分散液2mLを含む石英セルを紫外可視近赤外分光光度計(日本分光(株)製、V-770)に設置し、波長700~1300nmにおける各粒子の吸収スペクトルを測定した。
[Measurement of absorbance]
A quartz cell containing 2 mL of 0.3% by mass particle dispersion is placed in an ultraviolet-visible near-infrared spectrophotometer (V-770, manufactured by JASCO Corporation), and the absorption spectrum of each particle at a wavelength of 700 to 1300 nm is obtained. It was measured.
[親水性ポリマーが色素含有粒子表面を占有する密度の算出]
 親水化色素含有粒子をDMSO-d6に溶解させ、NMR(Bruker社製、AVANCEIIIHD、700MHz-cryo-DCH-NMR、核種:13C(NS=512,D1=15)、温度:120℃)で、有機ポリマー粒子のスチレン由来の炭素ピークと、親水性ポリマーのポリエチレングリコール由来の炭素ピークとの積分比から、親水化色素含有粒子1gあたりに修飾された親水性ポリマーの質量(α)を求めた。
 次に、親水性ポリマーの数平均分子量から親水化色素含有粒子1gあたりに修飾された親水性ポリマーの本数(β)を求めた。次いで、親水化色素含有粒子の粒径および比重から、親水化色素含有粒子1gあたりの表面積(γ)を求め、(β)/(γ)により、親水性ポリマーが親水化色素含有粒子表面を占有する密度を算出した。
[Calculation of density at which the hydrophilic polymer occupies the surface of the dye-containing particle]
The hydrophilized dye-containing particles are dissolved in DMSO-d6, and NMR (manufactured by Bruker, AVANCEIIIHD, 700 MHz-cryo-DCH-NMR, nuclide: 13C (NS = 512, D1 = 15), temperature: 120 ° C.), organic The mass (α) of the hydrophilic polymer modified per 1 g of the hydrophilized dye-containing particle was determined from the integral ratio of the carbon peak derived from styrene of the polymer particle and the carbon peak derived from polyethylene glycol of the hydrophilic polymer.
Next, the number (β) of the hydrophilic polymer modified per 1 g of the hydrophilized dye-containing particles was determined from the number average molecular weight of the hydrophilic polymer. Next, the surface area (γ) per 1 g of the hydrophilized dye-containing particles is determined from the particle diameter and specific gravity of the hydrophilized dye-containing particles, and the hydrophilic polymer occupies the surface of the hydrophilized dye-containing particles by (β) / (γ). Density was calculated.
[合成例1-1]
 重合容器に水330質量部およびドデシルベンゼンスルホン酸ナトリウム0.7質量部を仕込み、窒素雰囲気下で80℃まで昇温した。そこに、過硫酸カリウム0.3質量部を加えた後、水80質量部、ドデシル硫酸ナトリウム1.1質量部、スチレン96質量部、アクリル酸3.8質量部およびイタコン酸0.2質量部からなるモノマーエマルションを80℃下で、2時間かけて滴下し、続いて過硫酸カリウム0.1質量部を加え、さらに80℃で3時間重合することで、有機ポリマー粒子(A-1)を得た。得られた粒子(A-1)の表面荷電量は、0.24mmol/gであった。
Synthesis Example 1-1
In a polymerization vessel, 330 parts by mass of water and 0.7 parts by mass of sodium dodecylbenzene sulfonate were charged, and the temperature was raised to 80 ° C. under a nitrogen atmosphere. After adding 0.3 parts by mass of potassium persulfate thereto, 80 parts by mass of water, 1.1 parts by mass of sodium dodecyl sulfate, 96 parts by mass of styrene, 3.8 parts by mass of acrylic acid and 0.2 parts by mass of itaconic acid Is added dropwise at 80.degree. C. over 2 hours, and then 0.1 parts by mass of potassium persulfate is added, followed by polymerization at 80.degree. C. for 3 hours to obtain organic polymer particles (A-1). Obtained. The surface charge of the resulting particles (A-1) was 0.24 mmol / g.
[合成例1-2~1-6]
 スチレン、アクリル酸およびイタコン酸の仕込み量を表1に記載の通りとした以外は合成例1-1と同様の操作を行い、有機ポリマー粒子(A-2)~(A-6)を得た。
 なお、表1中の「部」は、「質量部」を示す。
Synthesis Examples 1-2 to 1-6
The same procedure as in Synthesis Example 1-1 was repeated, except that the amounts of styrene, acrylic acid and itaconic acid were as listed in Table 1, to obtain organic polymer particles (A-2) to (A-6). .
In addition, "part" in Table 1 shows a "mass part."
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[合成例2-1]
 100mLビーカー内で、有機ポリマー粒子(A-1)50mgを、Kolliphor P407(BASF社製)20mgを溶解させた水溶液28.5gに分散させ、0.001質量%のIR-1061(4-[2-[2-クロロ-3-[(2,6-ジフェニル-4H-チオピラン-4-イリデン)エチリデン]-1-シクロヘキセン-1-イル]エテニル]-2,6-ジフェニルチオピリリウムテトラフルオロボラート、シグマアルドリッチ社製)のジメチルスルホキシド溶液1.5mLを加えて、室温でマグネティックスターラー(アズワン(株)製、HS-30D、100rpm)で5分間撹拌した。撹拌後、限外濾過(Amicon Ultra、100,000NMWL)により分散媒を水に置換し、色素含有粒子(B-1)を得た。
Synthesis Example 2-1
In a 100 mL beaker, 50 mg of the organic polymer particles (A-1) are dispersed in 28.5 g of an aqueous solution in which 20 mg of Kolliphor P407 (manufactured by BASF Corporation) is dissolved, and 0.001 mass% of IR-1061 (4- [2 -[2-Chloro-3-[(2,6-diphenyl-4H-thiopyran-4-ylidene) ethylidene] -1-cyclohexen-1-yl] ethenyl] -2,6-diphenylthiopyrylium tetrafluoroborate Then, 1.5 mL of a dimethylsulfoxide solution of Sigma Aldrich) was added, and the mixture was stirred at room temperature for 5 minutes with a magnetic stirrer (manufactured by As One Corp., HS-30D, 100 rpm). After stirring, the dispersion medium was replaced with water by ultrafiltration (Amicon Ultra, 100,000 NMWL) to obtain dye-containing particles (B-1).
[合成例2-2~2-6]
 IR-1061の濃度を表2に記載の通りに変更した以外は、合成例2-1と同様の操作を行い、色素含有粒子(B-2)~(B-6)を得た。
 なお、表2中の「IR-1061/有機ポリマー粒子[質量%]」の値は、仕込み量から算出した値である。
Synthesis Examples 2-2 to 2-6
The same procedure as in Synthesis Example 2-1 was repeated, except that the concentration of IR-1061 was changed as described in Table 2, to obtain Dye-containing particles (B-2) to (B-6).
The value of “IR-1061 / organic polymer particles [mass%]” in Table 2 is a value calculated from the preparation amount.
 色素含有粒子(B-1)~(B-6)の蛍光測定を行い、波長1096nmにおける蛍光強度の結果を表2に示す。
 また、色素含有粒子(B-1)~(B-6)の蛍光測定を行い、有機ポリマー粒子中に含まれる蛍光色素Aの質量割合(IR-1061/有機ポリマー粒子[質量%])を横軸(対数目盛)、波長1096nmにおける蛍光強度を縦軸として、片対数グラフを作成した。結果を図1に示す。
The fluorescence of the dye-containing particles (B-1) to (B-6) was measured, and the results of the fluorescence intensity at a wavelength of 1096 nm are shown in Table 2.
In addition, the fluorescence measurement of the dye-containing particles (B-1) to (B-6) is performed, and the mass ratio of the fluorescent dye A contained in the organic polymer particles (IR-1061 / organic polymer particles [mass%]) A semi-logarithmic graph was created with the axis (log scale) and the fluorescence intensity at a wavelength of 1096 nm as the vertical axis. The results are shown in FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[合成例2-8~2-12]
 粒子(A-2)~(A-6)を用いた以外は合成例2-4と同様の操作を行い、色素含有粒子(B-8)~(B-12)を得た。
Synthesis Example 2-8 to 2-12
The same procedure as in Synthesis Example 2-4 was followed, except that particles (A-2) to (A-6) were used, to obtain dye-containing particles (B-8) to (B-12).
 色素含有粒子(B-4)および(B-8)~(B-12)の蛍光測定を行い、波長1096nmにおける蛍光強度の結果を表3に示す。
 色素含有粒子(B-4)および(B-8)~(B-12)の蛍光測定を行い、有機ポリマー粒子(ベース粒子)1gあたりの酸性基の含有量(mmol/g)を横軸、波長1096nmにおける蛍光強度を縦軸としてプロットした。結果を図2に示す。
 なお、有機ポリマー粒子(ベース粒子)1gあたりの酸性基の含有量は、有機ポリマー粒子の合成に用いる全モノマーに対する酸性基を有するモノマーの使用量から算出した。具体的には、有機ポリマー粒子(A-1)1gあたりの酸性基の含有量(mmol/g)は、(3.8/72+2×0.2/130)/100×1000で求めることができる。なお、3.8/72は全モノマーを100gとした際のアクリル酸由来の酸性基の物質量、2×0.2/130はイタコン酸由来の酸性基の物質量を表す。
The fluorescence of the dye-containing particles (B-4) and (B-8) to (B-12) was measured, and the results of the fluorescence intensity at a wavelength of 1096 nm are shown in Table 3.
The fluorescence measurement of the pigment-containing particles (B-4) and (B-8) to (B-12) was carried out, and the content (mmol / g) of the acidic group per 1 g of the organic polymer particles (base particles) The fluorescence intensity at a wavelength of 1096 nm was plotted as the vertical axis. The results are shown in FIG.
In addition, content of the acidic group per 1 g of organic polymer particle (base particle) was computed from the usage-amount of the monomer which has an acidic group with respect to all the monomers used for the synthesis | combination of organic polymer particle. Specifically, the content (mmol / g) of the acidic group per 1 g of the organic polymer particles (A-1) can be determined by (3.8 / 72 + 2 × 0.2 / 130) / 100 × 1000. . Here, 3.8 / 72 represents the mass of the acidic group derived from acrylic acid when the total monomer is 100 g, and 2 × 0.2 / 130 represents the mass of the acidic group derived from itaconic acid.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 色素含有粒子(B-4)および(B-8)~(B-12)の吸光度を測定した。結果を図3に示す。 The absorbances of the dye-containing particles (B-4) and (B-8) to (B-12) were measured. The results are shown in FIG.
 図2および3から、有機ポリマー粒子の酸性基の割合に応じて蛍光強度および吸収特性が変化することが分かった。このことから、有機ポリマー粒子の酸性基が、該粒子に内包された蛍光色素Aの状態を変化させていると推察される。本発明者は、酸性基の存在により、カチオン性である蛍光色素Aが粒子内で均一に分布できることがこれらの変化の理由であると推察している。
 用いる有機ポリマー粒子、色素の種類および色素の量を変化させることで、より強い蛍光を発する色素含有粒子を得ることができると考えられる。
It can be seen from FIGS. 2 and 3 that the fluorescence intensity and absorption characteristics change according to the proportion of the acidic groups of the organic polymer particles. From this, it is inferred that the acidic group of the organic polymer particle changes the state of the fluorescent dye A contained in the particle. The inventor infers that the reason for these changes is that the fluorescent dye A, which is cationic, can be uniformly distributed in the particles due to the presence of the acidic group.
It is believed that by changing the type of organic polymer particles used, the type of pigment and the amount of pigment, it is possible to obtain pigment-containing particles that emit stronger fluorescence.
[実施例1]
 反応容器中に、色素含有粒子(B-4)150mgを含む水分散液3mL、2.0質量%の片末端にアミノ基を有するポリエチレングリコール(JSRライフサイエンス(株)製、ブロックマスターCE510)水溶液3.75mL、および、1.0質量%の1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩((株)同仁化学研究所製)のMES緩衝溶液(0.1M、pH5.0)1.5mLを加え、室温で2時間撹拌した。
 その後、透析により、過剰の原料を除去し、溶媒を水に置換することで、表面にポリエチレングリコール鎖を有する親水化色素含有粒子(C-1)を得た。粒径は70nm、親水性ポリマーが色素含有粒子表面を占有する密度は0.20本/nm2であった。
Example 1
3 mL of an aqueous dispersion containing 150 mg of dye-containing particles (B-4) in a reaction vessel, and an aqueous solution of polyethylene glycol having an amino group at one end of 2.0 mass% (BSRMaster CE510, manufactured by JSR Life Science Co., Ltd.) MES buffer solution (0.1 M, pH 5.0) of 3.75 mL and 1.0% by mass of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (manufactured by Dojin Chemical Laboratory Co., Ltd.) ) 1.5 mL was added and stirred at room temperature for 2 hours.
Thereafter, the excess raw material was removed by dialysis, and the solvent was replaced with water to obtain hydrophilized dye-containing particles (C-1) having polyethylene glycol chains on the surface. The particle size was 70 nm, and the density at which the hydrophilic polymer occupied the surface of the dye-containing particles was 0.20 / nm 2 .
[実施例2]
 色素含有粒子(B-9)を用いた以外は実施例1と同様の操作を行い、親水化色素含有粒子(C-2)を得た。粒径は82nm、親水性ポリマーが色素含有粒子表面を占有する密度は0.20本/nm2であった。
Example 2
The same procedure as in Example 1 was carried out except using the dye-containing particles (B-9) to obtain hydrophilized dye-containing particles (C-2). The particle size was 82 nm, and the density at which the hydrophilic polymer occupied the surface of the dye-containing particle was 0.20 / nm 2 .
[実施例3]
 ブロックマスターCE510の代わりに、ポリエチレングリコール(JSRライフサイエンス(株)製、ブロックマスターCE210)を使用した以外は実施例1と同様の操作を行い、親水化色素含有粒子(C-3)を得た。粒径は67nm、親水性ポリマーが色素含有粒子表面を占有する密度は0.29本/nm2であった。
[Example 3]
A hydrophilic dye-containing particle (C-3) was obtained by the same operation as in Example 1 except that polyethylene glycol (Blockmaster CE210, manufactured by JSR Life Sciences Ltd.) was used instead of Blockmaster CE510. . The particle diameter was 67 nm, and the density at which the hydrophilic polymer occupied the surface of the dye-containing particles was 0.29 / nm 2 .
[実施例4]
 ブロックマスターCE510の代わりに、ブロックマスターCE210を使用した以外は実施例2と同様の操作を行い、親水化色素含有粒子(C-4)を得た。粒径は79nm、親水性ポリマーが色素含有粒子表面を占有する密度は0.29本/nm2であった。
Example 4
The same operation as in Example 2 was carried out except using block master CE210 instead of block master CE510, to obtain hydrophilized dye-containing particles (C-4). The particle size was 79 nm, and the density at which the hydrophilic polymer occupied the surface of the dye-containing particles was 0.29 / nm 2 .
[比較例1]
 PEG-b-PCL(Montreal社製)のアセトニトリル溶液(0.4mM,1mL)とIR-1061のアセトニトリル溶液(130mM ,1100μL)の混合溶液を撹拌しながら、水1mLを加えた。アセトニトリルをエバポレートすることで、近赤外蛍光を有するポリマーミセルを得た。
Comparative Example 1
While stirring a mixed solution of PEG-b-PCL (manufactured by Montreal) in acetonitrile (0.4 mM, 1 mL) and IR-1061 in acetonitrile (130 mM, 1100 μL), 1 mL of water was added. Evaporation of acetonitrile gave a polymer micelle with near infrared fluorescence.
[試験例1]
 2mLのエッペンドルフチューブに、実施例で得られた粒子1mgを含む水分散液10μLを入れ、それぞれのチューブにヒト血漿(コージンバイオ(株)製、正常ヒト血漿・プール、EDTA)200μLを入れ、10秒間ボルテックス撹拌した後、遠心処理(2000g、10秒間)を行った。目視にて粒子の沈殿が確認されない場合を○、粒子の沈殿が確認された場合を×と評価した。結果を表4に示す。
[Test Example 1]
10 μL of the aqueous dispersion containing 1 mg of the particles obtained in the example is placed in a 2 mL eppendorf tube, and 200 μL of human plasma (Cordin Bio Co., Ltd., normal human plasma pool, EDTA) is placed in each tube, 10 After vortexing for a second, centrifugation (2000 g, 10 seconds) was performed. The case where precipitation of particles was not confirmed visually was evaluated as ○, and the case where precipitation of particles was confirmed as x. The results are shown in Table 4.
[試験例2]
 実施例または比較例で得られた粒子またはポリマーミセル6mgをヒト血漿(コージンバイオ(株)製、正常ヒト血漿・プール、EDTA)2mLに分散させた直後の分散液と3日静置後の分散液に、励起光を照射することで発せられた、波長1096nmにおける蛍光を測定し、蛍光強度の維持率(3日後の蛍光強度/分散直後の蛍光強度[%])を算出した。結果を表4に示す。
 なお、この試験例2で蛍光強度の維持率が高い親水化色素含有粒子は、in vivoでも同様に、長期間蛍光強度を維持できるといえる。
[Test Example 2]
Dispersion immediately after dispersing 6 mg of particles or polymer micelles obtained in Examples or Comparative Examples in 2 mL of human plasma (Korjin Bio Co., Ltd., normal human plasma, pool, EDTA) and dispersion after standing for 3 days The fluorescence at a wavelength of 1096 nm, which was emitted by irradiating the liquid with excitation light, was measured, and the maintenance rate of the fluorescence intensity (fluorescence intensity after 3 days / fluorescence intensity immediately after dispersion [%]) was calculated. The results are shown in Table 4.
In addition, it can be said that the hydrophilized dye-containing particle having a high maintenance rate of the fluorescence intensity in this Test Example 2 can maintain the fluorescence intensity for a long time similarly in in vivo.
[試験例3]
 6.0質量%の実施例で得られた粒子を含む水分散液200μLを、マウスに尾静脈注射投与し、(株)島津製作所製、SAI-1000(Filter:1050nm long pass filter)を用いて、投与から5分後のin vivoイメージングを行った。血管および臓器が明瞭に観察された場合を○、非常に明瞭に観察された場合を◎、明瞭に観察されず粒子の凝集物が見られた場合を×と評価した。結果を表4および図4に示す。
[Test Example 3]
200 μL of an aqueous dispersion containing the particles obtained in the example of 6.0% by mass was injected by tail vein injection into a mouse, and SAI-1000 (Filter: 1050 nm long pass filter) manufactured by Shimadzu Corporation. 5 minutes after administration, in vivo imaging was performed. The case where blood vessels and organs were clearly observed was evaluated as ○, the case where very clearly observed was ◎, and the case where particle aggregates were not observed but not clearly observed was evaluated as x. The results are shown in Table 4 and FIG.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Claims (23)

  1.  親水性ポリマーおよび波長が900~1700nmの範囲にある蛍光を発する蛍光色素を含む、イメージング用の親水化色素含有粒子。 Hydrophilized dye-containing particles for imaging, comprising a hydrophilic polymer and a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm.
  2.  ベース粒子および前記蛍光色素を含む、請求項1に記載の親水化色素含有粒子。 The hydrophilized dye-containing particle according to claim 1, comprising a base particle and the fluorescent dye.
  3.  前記親水性ポリマーを表面の少なくとも一部に有する、請求項1または2に記載の親水化色素含有粒子。 The hydrophilized dye-containing particle according to claim 1, wherein the hydrophilic polymer is on at least a part of the surface.
  4.  前記蛍光色素がカチオン性化合物である、請求項1~3のいずれか1つに記載の親水化色素含有粒子。 The hydrophilized dye-containing particle according to any one of claims 1 to 3, wherein the fluorescent dye is a cationic compound.
  5.  前記蛍光色素がポリメチン骨格を有する、請求項1~4のいずれか1つに記載の親水化色素含有粒子。 The hydrophilized dye-containing particle according to any one of claims 1 to 4, wherein the fluorescent dye has a polymethine skeleton.
  6.  ベース粒子および前記蛍光色素を含み、
     前記ベース粒子が有機ポリマー粒子である、請求項1~5のいずれか1つに記載の親水化色素含有粒子。
    A base particle and the fluorescent dye,
    The hydrophilized dye-containing particle according to any one of claims 1 to 5, wherein the base particle is an organic polymer particle.
  7.  ベース粒子および前記蛍光色素を含み、
     前記ベース粒子が有機ポリマー粒子であり、酸性基を有する構造単位を含む、請求項1~6のいずれか1つに記載の親水化色素含有粒子。
    A base particle and the fluorescent dye,
    The hydrophilized dye-containing particle according to any one of claims 1 to 6, wherein the base particle is an organic polymer particle and contains a structural unit having an acidic group.
  8.  前記酸性基の含有量が、有機ポリマー粒子1gあたり、0.40ミリモル以上である、請求項7に記載の親水化色素含有粒子。 The hydrophilized dye-containing particle according to claim 7, wherein the content of the acidic group is 0.40 mmol or more per 1 g of the organic polymer particle.
  9.  前記酸性基を有する構造単位が、有機ポリマー粒子を構成する全構造単位100質量%に対し3質量%以上である、請求項7または8に記載の親水化色素含有粒子。 The hydrophilized dye-containing particle according to claim 7 or 8, wherein the structural unit having an acidic group is 3% by mass or more based on 100% by mass of all structural units constituting the organic polymer particle.
  10.  ベース粒子および前記蛍光色素を含み、
     前記ベース粒子の表面荷電量が0.05~6.0mmol/gである、請求項1~9のいずれか1つに記載の親水化色素含有粒子。
    A base particle and the fluorescent dye,
    The hydrophilized dye-containing particle according to any one of claims 1 to 9, wherein a surface charge amount of the base particle is 0.05 to 6.0 mmol / g.
  11.  ベース粒子および前記蛍光色素を含み、
     前記ベース粒子が有機ポリマー粒子であり、疎水性構造単位を含む、請求項1~10のいずれか1つに記載の親水化色素含有粒子。
    A base particle and the fluorescent dye,
    The hydrophilized dye-containing particle according to any one of claims 1 to 10, wherein the base particle is an organic polymer particle and contains a hydrophobic structural unit.
  12.  体積平均粒径が1~300nmである、請求項1~11のいずれか1つに記載の親水化色素含有粒子。 The hydrophilized dye-containing particle according to any one of claims 1 to 11, which has a volume average particle size of 1 to 300 nm.
  13.  前記親水性ポリマーがポリアルキレングリコール構造を少なくとも一部に含むポリマーである、請求項1~12のいずれか1つに記載の親水化色素含有粒子。 The hydrophilized dye-containing particle according to any one of claims 1 to 12, wherein the hydrophilic polymer is a polymer containing a polyalkylene glycol structure at least in part.
  14.  前記親水性ポリマーが共有結合を介して粒子の少なくとも一部に結合されている、請求項1~13のいずれか1つに記載の親水化色素含有粒子。 The hydrophilized dye-containing particle according to any one of claims 1 to 13, wherein the hydrophilic polymer is bound to at least a part of the particle via a covalent bond.
  15.  前記親水性ポリマーが、ポリアルキレングリコール構造と少なくとも1つのアミン構造とを有する、請求項1~14のいずれか1つに記載の親水化色素含有粒子。 The hydrophilized dye-containing particle according to any one of claims 1 to 14, wherein the hydrophilic polymer has a polyalkylene glycol structure and at least one amine structure.
  16.  前記親水性ポリマーが式(8)で表されるポリマー由来の構造を有する、請求項1~15のいずれか1つに記載の親水化色素含有粒子。
    Figure JPOXMLDOC01-appb-C000001
    [式(8)中、nは5~300の整数である。]
    The hydrophilized dye-containing particle according to any one of claims 1 to 15, wherein the hydrophilic polymer has a structure derived from a polymer represented by formula (8).
    Figure JPOXMLDOC01-appb-C000001
    In the formula (8), n is an integer of 5 to 300. ]
  17.  ベース粒子および前記蛍光色素を含む色素含有粒子と、該色素含有粒子の少なくとも一部の表面に親水性ポリマーを有し、
     前記親水性ポリマーが前記色素含有粒子表面を占有する密度が、0.01本/nm2以上である、請求項1~16のいずれか1つに記載の親水化色素含有粒子。
    A base particle and a dye-containing particle comprising the fluorescent dye, and a hydrophilic polymer on the surface of at least a part of the dye-containing particle,
    The hydrophilized dye-containing particle according to any one of claims 1 to 16, wherein the density at which the hydrophilic polymer occupies the surface of the dye-containing particle is 0.01 string / nm 2 or more.
  18.  ベース粒子および前記蛍光色素を含み、
     前記ベース粒子が有機ポリマー粒子であり、該有機ポリマー粒子中に含まれる前記蛍光色素量が有機ポリマー粒子1gあたり、0.01~30mmolである、請求項1~17のいずれか1つに記載の親水化色素含有粒子。
    A base particle and the fluorescent dye,
    The base particle is an organic polymer particle, The amount of the fluorescent dye contained in the organic polymer particle is 0.01 to 30 mmol per 1 g of the organic polymer particle according to any one of claims 1 to 17. Hydrophilized dye-containing particles.
  19.  有機ポリマー粒子および前記蛍光色素を含み、
     前記有機ポリマー粒子100質量部に対する前記蛍光色素の量が0.001~3.0質量部である、請求項1~18のいずれか1つに記載の親水化色素含有粒子。
    An organic polymer particle and the fluorescent dye,
    The hydrophilized dye-containing particle according to any one of claims 1 to 18, wherein the amount of the fluorescent dye relative to 100 parts by weight of the organic polymer particles is 0.001 to 3.0 parts by weight.
  20.  ベース粒子および波長が900~1700nmの範囲にある蛍光を発する蛍光色素を含み、
     前記ベース粒子が酸性基を有する構造単位を含む、
     イメージング用の色素含有粒子。
    A base particle and a fluorescent dye that emits fluorescence with a wavelength in the range of 900-1700 nm;
    The base particle comprises a structural unit having an acidic group,
    Dye-containing particles for imaging.
  21.  下記製造方法Iまたは製造方法IIである、イメージング用の親水化色素含有粒子の製造方法:
     ベース粒子と波長が900~1700nmの範囲にある蛍光を発する蛍光色素とを含む色素含有粒子を得る工程1、および、
     工程1で得られた色素含有粒子と親水性ポリマーとを接触させ、色素含有粒子と親水性ポリマーとを有する親水化色素含有粒子を得る工程2、
    を含む製造方法I、
     ベース粒子と親水性ポリマーとを接触させる工程3、および、
     工程3で得られた粒子と波長が900~1700nmの範囲にある蛍光を発する蛍光色素とを接触させて親水化色素含有粒子を得る工程4、
    を含む製造方法II。
    Method of producing hydrophilized dye-containing particles for imaging which is the following production method I or production method II:
    Obtaining a dye-containing particle comprising a base particle and a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm;
    Contacting the dye-containing particles obtained in step 1 with a hydrophilic polymer to obtain hydrophilized dye-containing particles having the dye-containing particles and the hydrophilic polymer;
    Manufacturing method I,
    Contacting the base particle with the hydrophilic polymer;
    Contacting the particles obtained in step 3 with a fluorescent dye that emits fluorescence having a wavelength in the range of 900 to 1700 nm to obtain hydrophilized dye-containing particles 4;
    Manufacturing method II.
  22.  前記製造方法Iである、請求項21に記載の製造方法。 The production method according to claim 21, which is the production method I.
  23.  請求項1~19のいずれか1つに記載の親水化色素含有粒子または請求項20に記載の色素含有粒子を体内に含む被検体に、前記蛍光色素の励起光を照射する工程A、および、
     被検体から発せられる波長900~1700nmの範囲の蛍光を検出する工程B、
    を含む、生体内を観察する方法。
    20. A step A of irradiating the fluorescent dye with excitation light to an analyte containing the hydrophilized dye-containing particle according to any one of claims 1 to 19 or the dye-containing particle according to claim 20 in the body,
    Detecting fluorescence in a wavelength range of 900 to 1700 nm emitted from the subject,
    A method of observing in vivo, including
PCT/JP2018/044734 2017-12-05 2018-12-05 Hydrophilized dye-containing particles, dye-containing particles, method for producing hydrophilized dye-containing particles, and method for in vivo observation WO2019111952A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019558252A JP7296589B2 (en) 2017-12-05 2018-12-05 Hydrophilized dye-containing particles, dye-containing particles, method for producing hydrophilic dye-containing particles, and method for observing in vivo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-233224 2017-12-05
JP2017233224 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019111952A1 true WO2019111952A1 (en) 2019-06-13

Family

ID=66751595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044734 WO2019111952A1 (en) 2017-12-05 2018-12-05 Hydrophilized dye-containing particles, dye-containing particles, method for producing hydrophilized dye-containing particles, and method for in vivo observation

Country Status (2)

Country Link
JP (1) JP7296589B2 (en)
WO (1) WO2019111952A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217985A1 (en) * 2019-04-26 2020-10-29 コニカミノルタ株式会社 Light emitting dye-containing particles and labeling agent for pathological diagnosis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503994A (en) * 1993-09-24 1996-04-30 バイオサイト・ダイアグノスティックス・インコーポレイテッド Fluorescent energy transfer and intramolecular energy transfer in particles using novel compounds
WO2012026316A1 (en) * 2010-08-23 2012-03-01 株式会社 島津製作所 Switching fluorescent nanoparticle probe and fluorescent particle imaging method using same
JP2014231488A (en) * 2013-05-28 2014-12-11 片山化学工業株式会社 Fluorescent label agent for bioimaging
US20150056142A1 (en) * 2013-08-20 2015-02-26 The Board Of Trustees Of The Leland Stanford Junior University Near-infrared-ii fluorescent agents, methods of making near-infrared-ii fluorescent agents, and methods of using water-soluble nir-ii fluorescent agents
JP2016516729A (en) * 2013-03-15 2016-06-09 スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ Multimodal silica nanoparticles
JP2017116463A (en) * 2015-12-25 2017-06-29 リオン株式会社 Method for producing standard particle suspension for viable particle counter calibration, and method for calibrating viable particle counter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503994A (en) * 1993-09-24 1996-04-30 バイオサイト・ダイアグノスティックス・インコーポレイテッド Fluorescent energy transfer and intramolecular energy transfer in particles using novel compounds
WO2012026316A1 (en) * 2010-08-23 2012-03-01 株式会社 島津製作所 Switching fluorescent nanoparticle probe and fluorescent particle imaging method using same
JP2016516729A (en) * 2013-03-15 2016-06-09 スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ Multimodal silica nanoparticles
JP2014231488A (en) * 2013-05-28 2014-12-11 片山化学工業株式会社 Fluorescent label agent for bioimaging
US20150056142A1 (en) * 2013-08-20 2015-02-26 The Board Of Trustees Of The Leland Stanford Junior University Near-infrared-ii fluorescent agents, methods of making near-infrared-ii fluorescent agents, and methods of using water-soluble nir-ii fluorescent agents
JP2017116463A (en) * 2015-12-25 2017-06-29 リオン株式会社 Method for producing standard particle suspension for viable particle counter calibration, and method for calibrating viable particle counter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CARTIER, R ET AL.: "Latex nanoparticles for multimodal imaging and detection in vivo", NANOTECHNOLOGY, vol. 18, no. 19, 2007, XP020119110, doi:10.1088/0957-4484/18/19/195102 *
HEMMER, E ET AL.: "Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging", ACTA BIOMATER, vol. 9, no. 1, 2013, pages 4734 - 4743, XP055047250, doi:10.1016/j.actbio.2012.08.045 *
JIN, TAKASHI: "Non-invasive Near-Infrared Fluorescence Imaging in the second optical window", NIPPON LASER IGAKKAISHI, vol. 36, no. 2, 2015, pages 195 - 200 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217985A1 (en) * 2019-04-26 2020-10-29 コニカミノルタ株式会社 Light emitting dye-containing particles and labeling agent for pathological diagnosis
JP7456438B2 (en) 2019-04-26 2024-03-27 コニカミノルタ株式会社 Luminescent dye-containing particles and labeling agents for pathological diagnosis

Also Published As

Publication number Publication date
JP7296589B2 (en) 2023-06-23
JPWO2019111952A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
Pu et al. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging
Penon et al. Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy
CN104162172B (en) A kind of polymer albumin nanospheres comprising taxol and its preparation method and application
US20080102036A1 (en) Biocompatible Fluorescent Silicon Nanoparticles
Geng et al. Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging
JP5822602B2 (en) Particles and contrast agent for optical imaging having the particles
CA2924018C (en) Cell-specific targeting using nanostructured delivery systems
Tallury et al. Ultra-small water-dispersible fluorescent chitosan nanoparticles: synthesis, characterization and specific targeting
US20200208110A1 (en) PLATELETS LOADED WITH mRNA
Zhao et al. Preparation and characterization of the fluorescent chitosan nanoparticle probe
WO2021108539A1 (en) Platelet diagnostic imaging agents
JP2013526547A (en) Functional cross-linked nanostructures for optical contrast and therapy tandems
US20210180016A1 (en) PLATELETS LOADED WITH mRNA
Liu et al. Temperature-sensitive polymeric nanogels encapsulating with β-cyclodextrin and ICG complex for high-resolution deep-tissue ultrasound-switchable fluorescence imaging
Plunkett et al. In vivo deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing
Chansaenpak et al. Aza-BODIPY based polymeric nanoparticles for cancer cell imaging
WO2019111952A1 (en) Hydrophilized dye-containing particles, dye-containing particles, method for producing hydrophilized dye-containing particles, and method for in vivo observation
Wang et al. A class of biocompatible dye–protein complex optical nanoprobes
US8974830B2 (en) Particles and contrast agent including the same for optical imaging
KR20200006748A (en) Nanoparticles comprising near infrared absorption dye, methods for manufacturing thereof, and uses thereof
Kashapov et al. Supramolecular assembly of calix [4] resorcinarenes and chitosan for the design of drug nanocontainers with selective effects on diseased cells
JP2023504718A (en) Luminescent Zwitterionic Polymer Nanoparticles
Zhu et al. Highly swelling pH-responsive microgels for dual mode near infra-red fluorescence reporting and imaging
Ramalingam et al. Green light-emitting BSA-conjugated dye supported silica nanoparticles for bio-imaging applications
Linares et al. One-step synthesis of polymer core–shell particles with a carboxylated ruthenium complex: A potential tool for biomedical applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885584

Country of ref document: EP

Kind code of ref document: A1