WO2019111830A1 - Twisted yarn and twisted yarn structure using same - Google Patents
Twisted yarn and twisted yarn structure using same Download PDFInfo
- Publication number
- WO2019111830A1 WO2019111830A1 PCT/JP2018/044309 JP2018044309W WO2019111830A1 WO 2019111830 A1 WO2019111830 A1 WO 2019111830A1 JP 2018044309 W JP2018044309 W JP 2018044309W WO 2019111830 A1 WO2019111830 A1 WO 2019111830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yarn
- fiber
- core
- twisted
- sheath
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/04—Blended or other yarns or threads containing components made from different materials
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/26—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/38—Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/02—Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
Definitions
- the present invention relates to a twisted yarn comprising a core yarn and a sheath yarn and used for a rope or the like, and a twisted yarn structure using the same.
- net products such as ropes and ball-proof nets
- those obtained by twisting filaments of spun yarns or thermoplastic fibers consisting of single fibers such as natural fibers are used. Since it is used under severe conditions such as, it is desirable to have a high strength utilization rate as well as an excellent strength.
- a high elongation fiber tow A such as polyester fiber and a high strength fiber tow B such as polyarylate fiber made of a molten liquid crystal polymer are mixed and twisted, and the ratio of elongation of tow A to tow B and the ratio of yarn length A rope set in a predetermined range has been proposed. And, it is described that such a configuration can provide a rope having an appropriate elongation and an excellent utilization factor of the strength (see, for example, Patent Document 1).
- the high strength fiber described above has extremely high strength but low elongation, so to compensate for this decrease in elongation, it is necessary to blend and twist with the high elongation fiber as in the rope described in Patent Document 1 above. is there. However, in this case, there is a problem that the strength utilization factor of the twisted yarn is reduced due to the difference in physical properties between the high strength fiber and the high elongation fiber.
- the above-mentioned high strength fiber has a large strength reduction due to ultraviolet light and abrasion, and further, when processed, there is a problem that the strength is reduced due to the change of the fiber shape.
- this invention is made in view of the above-mentioned problem, and an object of this invention is to provide the twist structure excellent in the intensity
- the twisted yarn of the present invention comprises a core yarn consisting of fibers having a strength of 15 cN / dtex and a thermoplastic yarn or a natural fiber, and is a sheath yarn twisted to cover the core yarn.
- the twisting coefficient K calculated by the following equation (1) is 0 to 60.
- K T / (10,000 / D) 1/2 (1) (Here, D is the total fineness (dtex) of the core yarn, T is (the number of twists of the core yarn before winding the sheath yarn)-(the number of twists when the core yarn and the sheath yarn are wound together) Is the absolute value (times / m) of
- FIG. 1 is a perspective view showing a twisted yarn according to an embodiment of the present invention
- FIG. 2 is a cross-sectional view showing a twisted yarn according to an embodiment of the present invention.
- the twisted yarn 1 of the present invention is composed of a core yarn 2 consisting of high strength fibers, a thermoplastic fiber or a natural fiber, and a sheath yarn 3 twisted up so as to cover the core yarn 2 It is composed of
- high strength fibers constituting the core yarn 2 include high strength fibers such as polyarylate fibers made of a molten liquid crystal polymer, aramid fibers, ultra high molecular weight polyethylene fibers, and PBO (polyparaphenylene benzobisoxazole) fibers.
- high strength fibers such as polyarylate fibers made of a molten liquid crystal polymer, aramid fibers, ultra high molecular weight polyethylene fibers, and PBO (polyparaphenylene benzobisoxazole) fibers.
- inorganic fibers such as carbon fibers, alumina fibers, silicon carbide fibers, and glass fibers can also be used instead of these high strength fibers.
- a fiber having a strength of 15 cN / dtex or more is used as the high strength fiber.
- polyarylate composed of a molten liquid crystal polymer, which is particularly low in water absorption, excellent in cut resistance, wear resistance, high strength, and difficulty in elongation under load (creep resistance). Fibers are particularly preferred.
- melt liquid crystal polymer is mainly an aromatic polyester exhibiting optical anisotropy (liquid crystallinity) in the melt phase.
- the sample is placed on a hot stage, and the temperature is raised under heating in a nitrogen atmosphere. And can be identified by observing the transmitted light of the sample.
- the polyarylate composed of a molten liquid crystal polymer is, for example, composed of a repeating structural unit derived from an aromatic diol, an aromatic dicarboxylic acid, an aromatic hydroxycarboxylic acid or the like, and is an aromatic diol or aromatic unless the effect of the present invention is impaired.
- the structural units derived from dicarboxylic acid and aromatic hydroxycarboxylic acid are not particularly limited as to their chemical constitution.
- the polyarylate made of a molten liquid crystal polymer may contain a structural unit derived from an aromatic diamine, an aromatic hydroxyamine or an aromatic aminocarboxylic acid.
- examples shown in Table 1 can be given as preferable structural units.
- m is an integer of 0 to 2
- Y in the formula is each independently a hydrogen atom or a halogen atom (for example, a fluorine atom, or the like) within the range of 1 to the maximum substitutable number.
- An alkyl group for example, an alkyl group having 1 to 4 carbon atoms such as methyl group, ethyl group, isopropyl group, t-butyl group, etc.
- an alkoxy group eg, methoxy group, ethoxy group, etc.
- isopropoxy group n-butoxy group etc.
- aryl group eg, phenyl group, naphthyl group etc.
- aralkyl group [benzyl group (phenylmethyl group), phenethyl group (phenylethyl group) etc.]
- aryloxy group examples include (for example, phenoxy group etc.), aralkyloxy groups (for example benzyloxy group etc.) and the like.
- More preferable structural units include the structural units described in Examples (1) to (18) shown in Table 2, Table 3 and Table 4 below.
- the structural unit in a formula is a structural unit which can show several structures, you may use it as a structural unit which comprises a polymer combining 2 or more types of such structural units.
- n is an integer of 1 or 2
- Y 1 and Y 2 is each independently a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., an alkyl group (eg, a methyl group, an ethyl group, an isopropyl group, a t-butyl group, etc.) Alkyl group of 1 to 4), alkoxy group (eg, methoxy group, ethoxy group, isopropoxy group, n-butoxy group etc.), aryl group (eg, phenyl group, naphthyl group etc.), aralkyl group [benzyl group (Phenylmethyl group), phenethyl group (phenylethyl group etc.), aryloxy group (eg
- examples of Z include a substituent represented by the following formula.
- the polyarylate composed of a molten liquid crystal polymer may preferably be a combination having a naphthalene skeleton as a constituent unit.
- the structural unit (A) the following formula (A) can be mentioned
- the structural unit (B) the following formula (B) can be mentioned
- the ratio of the units (B) may preferably be in the range of 9/1 to 1/1, more preferably 7/1 to 1/1, and still more preferably 5/1 to 1/1.
- the total of the structural unit of (A) and the structural unit of (B) may be, for example, 65 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol, with respect to all the structural units. It may be% or more.
- a polyarylate composed of a molten liquid crystal polymer having 4 to 45% by mole of the constituent unit of (B).
- the melting point of the molten liquid crystal polymer suitably used in the present invention is preferably in the range of 250 to 360 ° C., more preferably 260 to 320 ° C.
- fusing point here is the main absorption peak temperature observed and measured with a differential scanning calorimeter (DSC; Mettler "TA3000") based on a JIS K7121 test method. Specifically, after taking 10 to 20 mg of a sample in the above DSC apparatus and sealing it in an aluminum pan, flow 100 cc / min of nitrogen as a carrier gas and measure the endothermic peak when the temperature is raised at 20 ° C./min. .
- a clear peak does not appear in the 1st run in DSC measurement, raise the temperature to 50 ° C higher than expected flow temperature at a heating rate of 50 ° C / min, and at that temperature for 3 minutes After complete melting, it may be cooled to 50 ° C. at a temperature drop rate of 80 ° C./min, and then the endothermic peak may be measured at a temperature rise rate of 20 ° C./min.
- the polyarylate comprising the above-mentioned molten liquid crystal polymer may be heat-treated such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyamide, polyphenylene sulfide, polyether ether ketone, fluorine resin or the like within the range not impairing the effects of the present invention.
- a plasticizing polymer may be added.
- inorganic substances such as titanium oxide, kaolin, silica and barium oxide, carbon black, colorants such as dyes and pigments, various additives such as antioxidants, ultraviolet light absorbers and light stabilizers may be included.
- Polyarylate fibers made of a molten liquid crystal polymer can be fiberized by a common melt spinning method.
- the single fiber fineness is preferably 0.3 to 15 dtex, and more preferably 1 to 10 dtex.
- the single fiber fineness is less than 0.3 dtex, inconveniences such as generation of fluff due to cutting of single fibers due to friction during production and generation of a defective place due to fusion between single fibers may occur.
- the single fiber fineness exceeds 15 dtex, the touch becomes dull, and when the user's satisfaction can not be obtained or when producing a twisted yarn structure, the fiber's bundling property is lowered, and in the production process Problems may occur.
- the number of filaments is preferably 2 to 10,000, and the total fineness is preferably 10 dtex to 50,000 dtex.
- thermoplastic fiber forming the sheath yarn examples include polyester fiber, nylon fiber, polyethylene fiber, polypropylene fiber, polyvinyl alcohol fiber, vinylidene fiber and the like.
- natural fibers which forms a sheath yarn cotton, wool (wool), silk, hemp etc. are mentioned.
- natural fibers such as cotton and wool are preferable because they are excellent in yarn strength and versatility.
- twisting structure manufactured using the twisting yarn 1 it can select suitably, and can be used individually or in combination of 2 or more types.
- a core yarn 2 consisting of high strength fibers is a sheath yarn 3 of a plurality (3 in the present embodiment) of thermoplastic fibers or natural fibers. It is covered by.
- one multifilament may be used for the core yarn 2, or a bundle of multiple multifilaments may be used for the core yarn 2.
- the number of sheath yarns 3 is not particularly limited as long as it is plural.
- the high strength fiber is an aggregate of single fibers whose orientations are uniformly aligned
- the state in which the orientations are uniformly aligned becomes uneven, and each single fiber becomes uniform. Variations in the strength of the fibers occur. As a result, the strength of the high strength fiber as an aggregate is reduced.
- the core yarn 2 made of high strength fiber has a core-sheath structure in which the sheath yarn 3 made of thermoplastic fiber or natural fiber is covered, and the sheath yarn 3 is wound around the core yarn 2 It has a structure.
- the core yarn 2 is protected by the sheath yarn 3 by such a core-sheath structure, direct irradiation of the core yarn 2 with ultraviolet light can be prevented, and the strength reduction due to the ultraviolet irradiation can be reduced. It can be suppressed. Moreover, since it is possible to suppress the wear of the core yarn 2, it is possible to suppress the strength reduction due to the wear.
- the core yarn 2 is covered with a plurality of sheath yarns 3, gaps between the sheath yarns 3 are difficult to form and can be uniformly covered.
- the twisted yarn 1 of the present invention As shown in FIG. 1, when the sheath yarn 3 is twisted in a state in which the core yarn 2 is covered by the sheath yarn 3, the core yarn 2 is twisted following the sheath yarn 3. Therefore, the number of twists of the core yarn 2 varies according to the number of twists of the sheath yarn 3 and the direction of twist, but the present inventors pay attention to this point and coat the core yarn 2 and the core yarn 2 In the twisting yarn 1 consisting of the sheath yarn 3 twisted as above, conditions were found for the strength of the twisting yarn 1 to exceed the strength of the core yarn alone (that is, the strength utilization rate is greater than 100%).
- the twisted yarn 1 of the present invention is characterized in that the draw-off core twisting coefficient K calculated by the following formula (1) is 0 to 60.
- the draw-off core twisting coefficient K in the twisted yarn 1 in this range, the sum of the strengths of the high strength fibers constituting the core yarn 2 is maintained, so the strength of the core yarn 2 in the twisted yarn 1 is a sheath The strength of the core yarn alone not covered by the yarn 3 is exceeded, and it is possible to provide the twisted yarn 1 excellent in strength and strength utilization rate.
- the total fineness of the core yarn 2 is preferably 10 to 50,000 dtex in one multifilament. If this is less than 10 dtex, it may be difficult to uniformly coat the core yarn 2 because the core yarn 2 is too thin, and if it exceeds 50,000 dtex, the alignment of the multifilaments tends to be impaired. This is because the physical properties may be easily varied.
- the total fineness of the sheath yarn 3 is preferably 500 to 1,500 dtex in one multifilament. If the diameter is less than 500 dtex, it may be difficult to uniformly coat the core yarn 2 because the sheath yarn 3 is too thin, and if it exceeds 1,500 dtex, the sheath yarns 3 overlap with each other. This is because the amount of yarn 3 used may increase unnecessarily.
- the number of twists of the core yarn 2 in the initial stage is preferably 0 to 400 times / m. This is because if it exceeds 400 times / m, the alignment of the multifilaments is likely to be affected, so the orientation is impaired, and as a result, the mechanical properties against tension in the fiber axial direction may be lowered. It is for.
- the sheath yarn 3 in the initial stage may be twisted or non-twisting.
- the shape of the sheath yarn 3 is easily changed, so the contact between the core yarn 2 and the sheath yarn 3 becomes surface contact, and the tightening effect of the sheath yarn 3 on the core yarn 2 is easily exhibited.
- the sheath yarn 3 is untwisted, the shape of the sheath yarn 3 is easily changed, so the contact between the core yarn 2 and the sheath yarn 3 becomes surface contact, and the tightening effect of the sheath yarn 3 on the core yarn 2 is easily exhibited. To be preferred.
- the mixing ratio of the core yarn 2 to the whole of the twisted yarn 1 is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 30 to 70% by mass. is there. If the mixing ratio of the core yarn 2 is less than 10% by mass, the strength of the twisted yarn 1 may be insufficient. On the other hand, when the mixing ratio of the core yarn 2 exceeds 90% by mass, the cost is undesirably increased.
- the sheath yarn 3 is a span yarn (short fiber)
- the shape of the sheath yarn 3 with respect to the core yarn 2 hardly changes, so the core yarn 2 and the sheath
- the contact of the yarn 3 is a point contact, and the tightening effect of the twisted yarn 3 on the core yarn 2 is less likely to be exhibited.
- the sheath yarn 3 is a multifilament (long fiber)
- the shape of the sheath yarn 3 is easily changed with respect to the core yarn 2, so the cross-sectional shape of the sheath yarn 3 tends to be flat.
- the contact between the sheath yarn 3 and the sheath yarn 3 makes a surface contact, and the tightening effect of the twisted yarn 3 on the core yarn 2 is easily exhibited. Therefore, since the contact part of the core yarn 2 and the sheath yarn 3 increases compared with the case where the sheath yarn 3 is a span yarn, it is considered that the strength utilization rate is improved.
- twisted yarn 1 of the present invention for example, using a general twisting machine such as a double twister, a ring twister, an up twister, etc., a core yarn 2 consisting of one to plural multifilaments and a sheath yarn of plural multifilaments
- the twisted yarn 1 is formed by twisting 3 and 4 together.
- the twisting direction of the composite twisting yarn (twisting direction in the twisting of the core yarn 2 and the sheath yarn 3) is not particularly limited, but generation of excessive twisting in the core yarn 2 is prevented From the viewpoint, it is preferable that the core yarn 2 be twisted in a non-twisted state or in a direction (reverse twist direction) that cancels the force in the twist direction of the sheath yarn 3.
- the core yarn 2 twists the sheath yarn 3
- the initial twist number 47 twists / m in the S direction
- the sheath / sheath 3 becomes a yarn with a core-sheath structure in which the sheath yarn 3 is twisted 47 times / m in the Z direction.
- the draw-off core twist coefficient of the core yarn 2 after processing (that is, the core after winding the core yarn 2 and the sheath yarn 3 together) It is possible to optimize the number of twists of the yarn 2).
- the length of the core yarn 2 can be obtained by uniformly covering and tightening the core yarn 2 by optimizing the number of filaments of the core yarn 2 to be used, the number of sheath yarns 3 and the single fiber fineness for each total denier. Since the orientation of single fibers constituting in the direction can be enhanced to minimize distortion, it is possible to maximize the strength.
- the twisting structure formed by the twisting yarn 1 according to the present invention includes, for example, textile materials (for example, ball nets, nets such as animal nets, fishing nets and the like), ropes Ropes, marine ropes, underwater ropes, underwater ropes, playground equipment ropes, ship anchoring ropes, elevator ropes), braids, and shock absorbers.
- textile materials for example, ball nets, nets such as animal nets, fishing nets and the like
- ropes Ropes for example, ball nets, nets such as animal nets, fishing nets and the like
- marine ropes for example, underwater ropes, underwater ropes, playground equipment ropes, ship anchoring ropes, elevator ropes
- braids for example, shock absorbers.
- the twisted yarn 1 having the core and sheath of the present invention even when the core yarn 2 is broken, it is possible to maintain the inherent strength of the sheath yarn 3.
- Example 1 Preparation of twisted yarn> First, prepare one yarn (total fineness: 1670 dtex) consisting of a polyarylate fiber (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer so that it becomes 47 times / m in the S direction
- the core yarn was prepared by
- three yarns consisting of polyethylene terephthalate fibers (manufactured by Teijin Ltd., trade name: P902F 830T / 72F) are prepared and manufactured.
- the core yarn and the sheath yarn were entirely twisted in the Z direction so as to be 47 times / m in the Z direction to prepare a twisted yarn of a core-sheath structure.
- Example 2 The above-described embodiment is carried out except that the core yarn is produced by twisting 217 times / m in the S direction, and the entire core yarn and sheath yarn is twisted 217 times / m in the Z direction. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
- Example 3 The above-mentioned practice is carried out except that the core yarn is produced by twisting in the S direction 136 times / m and producing the core yarn and the sheath yarn in the Z direction 62 times / m. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
- Example 4 The above-described embodiment is carried out except that the core yarn is produced by twisting 340 times / m in the S direction and the whole of the core yarn and the sheath yarn is twisted 217 times / m in the Z direction. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
- Example 5 The above-described embodiment is carried out except that the core yarn is produced by twisting so as to be 364 times / m in the S direction and that the whole of the core yarn and the sheath yarn is so twisted as 217 times / m in the Z direction. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
- polyarylate fibers made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)
- 6 yarns consisting of polyethylene terephthalate fibers (manufactured by Teijin Ltd., trade name: P902F 830T / 72F) are prepared and prepared.
- the core yarn and the sheath yarn were entirely twisted in the Z direction so as to be 116 times / m in the Z direction to prepare a twisted yarn of a core-sheath structure.
- 6 yarns consisting of polyethylene terephthalate fibers (manufactured by Teijin Ltd., trade name: P902F 830T / 72F) are prepared and prepared.
- the core yarn and the sheath yarn were entirely twisted in the Z direction so as to be 116 times / m in the Z direction to prepare a twisted yarn of a core-sheath structure.
- Example 8 First, prepare a yarn (total fineness: 1760 dtex) consisting of ultra high molecular weight polyethylene fiber (made by Toyobo Co., Ltd., trade name: Dyneema), twist it so that it becomes 90 times / m in the S direction, and core yarn Made.
- a yarn total fineness: 1760 dtex
- ultra high molecular weight polyethylene fiber made by Toyobo Co., Ltd., trade name: Dyneema
- three yarns consisting of polyethylene terephthalate fibers (manufactured by Teijin Ltd., trade name: P902F 830T / 72F) are prepared and manufactured.
- the core yarn and the sheath yarn were entirely twisted in the Z direction so as to be 90 times / m in the Z direction to prepare a twisted yarn with a core-sheath structure.
- a single yarn (total fineness: 1670 dtex) consisting of a polyarylate fiber (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer is prepared and twisted so as to be 74 times / m in the S direction. , Produced a twisted yarn.
- a polyarylate fiber made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)
- Bectran registered trademark
- three yarns consisting of polyethylene terephthalate fibers (manufactured by Teijin Ltd., trade name: P902F 830T / 72F) are prepared and manufactured.
- the core yarn and the sheath yarn were twisted in the Z direction so as to be 248 times / m in the Z direction to prepare a twisted yarn with a core-sheath structure.
- the strength utilization factor of each of the twisted yarns of Examples 1 to 5 (ie, (Tensile strength of the twisted yarn of any of Examples 1 to 5 / tensile strength of the twisted yarn of Comparative Example 1) x 100) is more than 100%. You can see that it is getting bigger.
- the tensile strength is higher than that of the twisted yarn of Comparative Example 3 (twist number is 81) consisting only of polyarylate fibers consisting of the molten liquid crystal polymer forming the core yarn of Example 6. Is improved and it is understood that the strength is excellent.
- the strength utilization factor of the twisted yarn of Example 6 that is, (Tensile strength of twisted yarn of Example 6 / tensile strength of twisted yarn of Comparative Example 3) ⁇ 100) is greater than 100%.
- the tensile strength is improved, and the strength is higher. It is clear that it is excellent.
- the strength utilization factor of the twisted yarn of Example 7 that is, (Tensile strength of twisted yarn of Example 7 / Tensile strength of twisted yarn of Comparative Example 4) x 100) is greater than 100%.
- the tensile strength is improved as compared to the twisted yarn (twist number is 80) of Comparative Example 5 consisting only of the ultrahigh molecular weight polyethylene fiber forming the core yarn of Example 8, It can be seen that the strength is excellent.
- the strength utilization factor of the twisted yarn of Example 8 that is, (Tensile strength of twisted yarn of Example 8 / tensile strength of twisted yarn of Comparative Example 5) x 100) is greater than 100%.
- the twisting yarn of Comparative Example 1 since the draw-off core twisting coefficient K is larger than 60, the twisting yarn of Comparative Example 1 consisting of only polyarylate fibers consisting of a molten liquid crystal polymer forming the core yarn of Comparative Example 2 (twist number The result is inferior in strength and strong utilization compared to 74).
- the present invention is composed of a core yarn and a sheath yarn, and is suitable for a twisting yarn used for a rope or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Ropes Or Cables (AREA)
Abstract
A twisted yarn (1) has a core-sheath structure in which a core yarn (2) comprising a high-tensile-strength fiber is covered with a sheath yarn (3) comprising a thermoplastic fiber or a natural fiber. A differential core yarn twist coefficient K calculated by formula (1) is in the range of 0 to 60. K = T/(10,000/D)1/2 (1) (where, D represents the total fineness (dtex) of the core yarn, T represents the absolute value (times/m) of (twist count of core yarn before sheath yarn is wound) – (twist count when core yarn and sheath yarn both are wound).)
Description
本発明は、芯糸と鞘糸からなり、ロープ等に用いられる撚糸及びそれを用いた撚糸構造体に関する。
The present invention relates to a twisted yarn comprising a core yarn and a sheath yarn and used for a rope or the like, and a twisted yarn structure using the same.
従来、ロープや防球ネット等の網製品として、天然繊維等の単繊維からなる紡績糸や熱可塑性繊維のフィラメントを撚り合わせたものが使用されているが、これらのロープ等は、高負荷荷重等の過酷な条件下で利用されるため、強度に優れるとともに、高い強力利用率を有するものが望まれている。
In the past, as net products such as ropes and ball-proof nets, those obtained by twisting filaments of spun yarns or thermoplastic fibers consisting of single fibers such as natural fibers are used. Since it is used under severe conditions such as, it is desirable to have a high strength utilization rate as well as an excellent strength.
そこで、高強力繊維を使用したものが提案されている。例えば、ポリエステル繊維等の高伸度繊維トウAと溶融液晶ポリマーからなるポリアリレート繊維等の高強力繊維トウBとを混撚し、トウAとトウBの伸度の比率、及び糸長の比率を所定の範囲に設定したロープが提案されている。そして、このような構成により、適度な伸度を有し、強力利用率に優れたロープを提供できると記載されている(例えば、特許文献1参照)。
Therefore, those using high strength fibers have been proposed. For example, a high elongation fiber tow A such as polyester fiber and a high strength fiber tow B such as polyarylate fiber made of a molten liquid crystal polymer are mixed and twisted, and the ratio of elongation of tow A to tow B and the ratio of yarn length A rope set in a predetermined range has been proposed. And, it is described that such a configuration can provide a rope having an appropriate elongation and an excellent utilization factor of the strength (see, for example, Patent Document 1).
上述の高強力繊維は、強力は著しく高いものの、伸度が低いため、この伸度の低下を補うために、上記特許文献1に記載のロープのように、高伸度繊維と混撚する必要がある。しかし、この場合、高強力繊維と高伸度繊維との物性差に起因して、撚糸の強力利用率が低下するという問題があった。
The high strength fiber described above has extremely high strength but low elongation, so to compensate for this decrease in elongation, it is necessary to blend and twist with the high elongation fiber as in the rope described in Patent Document 1 above. is there. However, in this case, there is a problem that the strength utilization factor of the twisted yarn is reduced due to the difference in physical properties between the high strength fiber and the high elongation fiber.
また、上述の高強力繊維は、紫外線や磨耗に起因する強度低下が大きく、更に、加工を施した場合、繊維形状の変化に起因して強度が低下するという問題があった。
In addition, the above-mentioned high strength fiber has a large strength reduction due to ultraviolet light and abrasion, and further, when processed, there is a problem that the strength is reduced due to the change of the fiber shape.
そこで、本発明は、上述の問題に鑑みてなされたものであり、強度と強力利用率に優れた撚糸及びそれを用いた撚糸構造体を提供することを目的とする。
Then, this invention is made in view of the above-mentioned problem, and an object of this invention is to provide the twist structure excellent in the intensity | strength and the strong utilization factor, and the same.
上記目的を達成するために、本発明の撚糸は、15cN/dtex以上の強度を有する繊維からなる芯糸と、熱可塑性繊維または天然繊維からなり、芯糸を被覆するように撚り上げた鞘糸からなる撚糸であって、下記式(1)にて算出する差引芯撚係数Kが0~60であることを特徴とする。
In order to achieve the above object, the twisted yarn of the present invention comprises a core yarn consisting of fibers having a strength of 15 cN / dtex and a thermoplastic yarn or a natural fiber, and is a sheath yarn twisted to cover the core yarn. The twisting coefficient K calculated by the following equation (1) is 0 to 60.
K=T/(10,000/D)1/2 (1)
(ここで、Dは、芯糸の総繊度(dtex)であり、Tは、(鞘糸を捲く前の芯糸の撚り数)-(芯糸と鞘糸をともに捲いた際の撚り数)の絶対値(回/m)である。) K = T / (10,000 / D) 1/2 (1)
(Here, D is the total fineness (dtex) of the core yarn, T is (the number of twists of the core yarn before winding the sheath yarn)-(the number of twists when the core yarn and the sheath yarn are wound together) Is the absolute value (times / m) of
(ここで、Dは、芯糸の総繊度(dtex)であり、Tは、(鞘糸を捲く前の芯糸の撚り数)-(芯糸と鞘糸をともに捲いた際の撚り数)の絶対値(回/m)である。) K = T / (10,000 / D) 1/2 (1)
(Here, D is the total fineness (dtex) of the core yarn, T is (the number of twists of the core yarn before winding the sheath yarn)-(the number of twists when the core yarn and the sheath yarn are wound together) Is the absolute value (times / m) of
本発明によれば、強度と強力利用率に優れた撚糸及びそれを用いた撚糸構造体を提供することができる。
According to the present invention, it is possible to provide a twisted yarn excellent in strength and strength utilization rate and a twisted yarn structure using the same.
以下、本発明を詳細に説明する。図1は、本発明の実施形態に係る撚糸を示す斜視図であり、図2は、本発明の実施形態に係る撚糸を示す断面図である。
Hereinafter, the present invention will be described in detail. FIG. 1 is a perspective view showing a twisted yarn according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a twisted yarn according to an embodiment of the present invention.
図1、図2に示すように、本発明の撚糸1は、高強力繊維からなる芯糸2と、熱可塑性繊維または天然繊維からなり、芯糸2を被覆するように撚り上げた鞘糸3により構成されている。
As shown in FIG. 1 and FIG. 2, the twisted yarn 1 of the present invention is composed of a core yarn 2 consisting of high strength fibers, a thermoplastic fiber or a natural fiber, and a sheath yarn 3 twisted up so as to cover the core yarn 2 It is composed of
<高強力繊維>
芯糸2を構成する高強力繊維は、溶融液晶ポリマーからなるポリアリレート繊維、アラミド繊維、超高分子量ポリエチレン繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維等の高強力繊維が挙げられる。なお、これらの高強力繊維の代わりに、炭素繊維、アルミナ繊維、炭化ケイ素繊維、及びガラス繊維等の無機繊維を使用することもできる。 <High strength fiber>
Examples of high strength fibers constituting thecore yarn 2 include high strength fibers such as polyarylate fibers made of a molten liquid crystal polymer, aramid fibers, ultra high molecular weight polyethylene fibers, and PBO (polyparaphenylene benzobisoxazole) fibers. In addition, inorganic fibers such as carbon fibers, alumina fibers, silicon carbide fibers, and glass fibers can also be used instead of these high strength fibers.
芯糸2を構成する高強力繊維は、溶融液晶ポリマーからなるポリアリレート繊維、アラミド繊維、超高分子量ポリエチレン繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維等の高強力繊維が挙げられる。なお、これらの高強力繊維の代わりに、炭素繊維、アルミナ繊維、炭化ケイ素繊維、及びガラス繊維等の無機繊維を使用することもできる。 <High strength fiber>
Examples of high strength fibers constituting the
また、撚糸1の強度を確保するとの観点から、高強力繊維として、15cN/dtex以上の強度を有する繊維が使用される。
Further, from the viewpoint of securing the strength of the twisted yarn 1, a fiber having a strength of 15 cN / dtex or more is used as the high strength fiber.
なお、本発明で言う「強度」とは、JIS L1013に準拠して測定された引張強度のことを言う。
In addition, the "strength" said by this invention says the thing of the tensile strength measured based on JISL1013.
また、上述の高強力繊維のうち、吸水率が特に低く、耐切創性、耐摩耗性、高強度、かつ荷重継続時の伸びにくさ(耐クリープ性)に優れる、溶融液晶ポリマーからなるポリアリレート繊維が、特に好ましい。
Further, among the above-mentioned high strength fibers, polyarylate composed of a molten liquid crystal polymer, which is particularly low in water absorption, excellent in cut resistance, wear resistance, high strength, and difficulty in elongation under load (creep resistance). Fibers are particularly preferred.
なお、ここで言う「溶融液晶ポリマー」とは、溶融相において光学異方性(液晶性)を示す芳香族ポリエステルが主であり、例えば、試料をホットステージに載せ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。
The term "melt liquid crystal polymer" as used herein is mainly an aromatic polyester exhibiting optical anisotropy (liquid crystallinity) in the melt phase. For example, the sample is placed on a hot stage, and the temperature is raised under heating in a nitrogen atmosphere. And can be identified by observing the transmitted light of the sample.
溶融液晶ポリマーからなるポリアリレートは、例えば、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸等に由来する反復構成単位からなり、本発明の効果を損なわない限り、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸に由来する構成単位は、その化学的構成については特に限定されるものではない。また、本発明の効果を損なわない範囲で、溶融液晶ポリマーからなるポリアリレートは、芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸に由来する構成単位を含んでいてもよい。例えば、好ましい構成単位としては、表1に示す例が挙げられる。
The polyarylate composed of a molten liquid crystal polymer is, for example, composed of a repeating structural unit derived from an aromatic diol, an aromatic dicarboxylic acid, an aromatic hydroxycarboxylic acid or the like, and is an aromatic diol or aromatic unless the effect of the present invention is impaired. The structural units derived from dicarboxylic acid and aromatic hydroxycarboxylic acid are not particularly limited as to their chemical constitution. In addition, as long as the effects of the present invention are not impaired, the polyarylate made of a molten liquid crystal polymer may contain a structural unit derived from an aromatic diamine, an aromatic hydroxyamine or an aromatic aminocarboxylic acid. For example, examples shown in Table 1 can be given as preferable structural units.
表1の構成単位において、mは0~2の整数であり、式中のYは、1~置換可能な最大数の範囲において、それぞれ独立して、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等、アルキル基(例えば、メチル基、エチル基、イソプロピル基、t-ブチル基等の炭素数1から4のアルキル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基等)、アリール基(例えば、フェニル基、ナフチル基等)、アラルキル基[ベンジル基(フェニルメチル基)、フェネチル基(フェニルエチル基)等]、アリールオキシ基(例えば、フェノキシ基等)、アラルキルオキシ基(例えば、ベンジルオキシ基等)等が挙げられる。
In the constitutional units of Table 1, m is an integer of 0 to 2, and Y in the formula is each independently a hydrogen atom or a halogen atom (for example, a fluorine atom, or the like) within the range of 1 to the maximum substitutable number. An alkyl group (for example, an alkyl group having 1 to 4 carbon atoms such as methyl group, ethyl group, isopropyl group, t-butyl group, etc.), an alkoxy group (eg, methoxy group, ethoxy group, etc.) Group, isopropoxy group, n-butoxy group etc., aryl group (eg, phenyl group, naphthyl group etc.), aralkyl group [benzyl group (phenylmethyl group), phenethyl group (phenylethyl group) etc.], aryloxy group Examples include (for example, phenoxy group etc.), aralkyloxy groups (for example benzyloxy group etc.) and the like.
より好ましい構成単位としては、下記表2、表3及び表4に示す例(1)~(18)に記載される構成単位が挙げられる。なお、式中の構成単位が、複数の構造を示し得る構成単位である場合、そのような構成単位を二種以上組み合わせて、ポリマーを構成する構成単位として使用してもよい。
More preferable structural units include the structural units described in Examples (1) to (18) shown in Table 2, Table 3 and Table 4 below. In addition, when the structural unit in a formula is a structural unit which can show several structures, you may use it as a structural unit which comprises a polymer combining 2 or more types of such structural units.
表2、表3及び表4の構成単位において、nは1または2の整数で、それぞれの構成単位n=1、n=2は、単独でまたは組み合わせて存在してもよく、Y1及びY2は、それぞれ独立して、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等、アルキル基(例えば、メチル基、エチル基、イソプロピル基、t-ブチル基等の炭素数1から4のアルキル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基等)、アリール基(例えば、フェニル基、ナフチル基等)、アラルキル基[ベンジル基(フェニルメチル基)、フェネチル基(フェニルエチル基)等]、アリールオキシ基(例えば、フェノキシ基等)、アラルキルオキシ基(例えば、ベンジルオキシ基等)等であってもよい。これらのうち、水素原子、塩素原子、臭素原子、またはメチル基が好ましい。
In the constitutional units of Tables 2, 3 and 4, n is an integer of 1 or 2, and each constitutional unit n = 1, n = 2 may be present alone or in combination, Y 1 and Y 2 is each independently a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., an alkyl group (eg, a methyl group, an ethyl group, an isopropyl group, a t-butyl group, etc.) Alkyl group of 1 to 4), alkoxy group (eg, methoxy group, ethoxy group, isopropoxy group, n-butoxy group etc.), aryl group (eg, phenyl group, naphthyl group etc.), aralkyl group [benzyl group (Phenylmethyl group), phenethyl group (phenylethyl group etc.), aryloxy group (eg phenoxy group etc.), aralkyloxy group (eg benzyloxy group etc.) etc It may be. Of these, a hydrogen atom, a chlorine atom, a bromine atom or a methyl group, are preferred.
また、Zとしては、下記式で表される置換基が挙げられる。
Further, examples of Z include a substituent represented by the following formula.
溶融液晶ポリマーからなるポリアリレートは、好ましくは、ナフタレン骨格を構成単位として有する組み合わせであってもよい。なお、ヒドロキシ安息香酸由来の構成単位(A)と、ヒドロキシナフトエ酸由来の構成単位(B)の両方を含むことが、特に好ましい。例えば、構成単位(A)としては下記式(A)が挙げられ、構成単位(B)としては下記式(B)が挙げられ、溶融成形性を向上する観点から、構成単位(A)と構成単位(B)の比率は、好ましくは9/1~1/1、より好ましくは7/1~1/1、更に好ましくは5/1~1/1の範囲であってもよい。
The polyarylate composed of a molten liquid crystal polymer may preferably be a combination having a naphthalene skeleton as a constituent unit. In addition, it is particularly preferable to include both the hydroxybenzoic acid-derived structural unit (A) and the hydroxynaphthoic acid-derived structural unit (B). For example, as the structural unit (A), the following formula (A) can be mentioned, and as the structural unit (B), the following formula (B) can be mentioned, and from the viewpoint of improving melt formability, The ratio of the units (B) may preferably be in the range of 9/1 to 1/1, more preferably 7/1 to 1/1, and still more preferably 5/1 to 1/1.
また、(A)の構成単位と(B)の構成単位の合計は、例えば、全構成単位に対して65モル%以上であってもよく、より好ましくは70モル%以上、更に好ましくは80モル%以上であってもよい。ポリマー中、特に(B)の構成単位が4~45モル%である溶融液晶ポリマーからなるポリアリレートが好ましい。
In addition, the total of the structural unit of (A) and the structural unit of (B) may be, for example, 65 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol, with respect to all the structural units. It may be% or more. Among the polymers, preferred is a polyarylate composed of a molten liquid crystal polymer having 4 to 45% by mole of the constituent unit of (B).
本発明で好適に用いられる溶融液晶ポリマーの融点は250~360℃の範囲であることが好ましく、より好ましくは260~320℃である。
The melting point of the molten liquid crystal polymer suitably used in the present invention is preferably in the range of 250 to 360 ° C., more preferably 260 to 320 ° C.
なお、ここでいう融点とは、JIS K7121試験法に準拠し、示差走差熱量計(DSC;メトラー社製「TA3000」)で測定し、観察される主吸収ピーク温度である。具体的には、前記DSC装置に、サンプルを10~20mgをとりアルミ製パンへ封入した後、キャリヤーガスとして窒素を100cc/分流し、20℃/分で昇温したときの吸熱ピークを測定する。ポリマーの種類によってはDSC測定において1st runで明確なピークが現れない場合は、50℃/分の昇温速度で予想される流れ温度よりも50℃高い温度まで昇温し、その温度で3分間完全に溶融した後、80℃/分の降温速度で50℃まで冷却し、しかる後に20℃/分の昇温速度で吸熱ピークを測定するとよい。
In addition, melting | fusing point here is the main absorption peak temperature observed and measured with a differential scanning calorimeter (DSC; Mettler "TA3000") based on a JIS K7121 test method. Specifically, after taking 10 to 20 mg of a sample in the above DSC apparatus and sealing it in an aluminum pan, flow 100 cc / min of nitrogen as a carrier gas and measure the endothermic peak when the temperature is raised at 20 ° C./min. . Depending on the type of polymer, if a clear peak does not appear in the 1st run in DSC measurement, raise the temperature to 50 ° C higher than expected flow temperature at a heating rate of 50 ° C / min, and at that temperature for 3 minutes After complete melting, it may be cooled to 50 ° C. at a temperature drop rate of 80 ° C./min, and then the endothermic peak may be measured at a temperature rise rate of 20 ° C./min.
なお、上記の溶融液晶ポリマーからなるポリアリレートには、本発明の効果を損なわない範囲で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂等の熱可塑性ポリマーを添加してもよい。また酸化チタン、カオリン、シリカ、酸化バリウム等の無機物、カーボンブラック、染料や顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤等の各種添加剤を含んでいてもよい。
Incidentally, the polyarylate comprising the above-mentioned molten liquid crystal polymer may be heat-treated such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyamide, polyphenylene sulfide, polyether ether ketone, fluorine resin or the like within the range not impairing the effects of the present invention. A plasticizing polymer may be added. In addition, inorganic substances such as titanium oxide, kaolin, silica and barium oxide, carbon black, colorants such as dyes and pigments, various additives such as antioxidants, ultraviolet light absorbers and light stabilizers may be included.
次に、上述の溶融液晶ポリマーからなるポリアリレート繊維の製造方法について、以下説明する。溶融液晶ポリマーからなるポリアリレート繊維は、通常の溶融紡糸法により繊維化が可能である。
Next, a method for producing a polyarylate fiber comprising the above-described molten liquid crystal polymer will be described below. Polyarylate fibers made of a molten liquid crystal polymer can be fiberized by a common melt spinning method.
繊維化を行う際、単繊維繊度は0.3~15dtexであることが好ましく、1~10dtexであることがより好ましい。単繊維繊度が0.3dtex未満である場合、製造時の摩擦等による単繊維の切断による毛羽、単繊維同士の融着による不良箇所の発生等の不都合が発生する場合がある。また、単繊維繊度が15dtexを超えると、手触りがゴワゴワしたものになり、ユーザーの満足度が得られない場合や、撚糸構造体を製造する際に、繊維の集束性が低下し、製造工程において不都合が生じる場合がある。
When fiberizing, the single fiber fineness is preferably 0.3 to 15 dtex, and more preferably 1 to 10 dtex. When the single fiber fineness is less than 0.3 dtex, inconveniences such as generation of fluff due to cutting of single fibers due to friction during production and generation of a defective place due to fusion between single fibers may occur. In addition, when the single fiber fineness exceeds 15 dtex, the touch becomes dull, and when the user's satisfaction can not be obtained or when producing a twisted yarn structure, the fiber's bundling property is lowered, and in the production process Problems may occur.
なお、フィラメント数としては、2本~10,000本が好ましく、総繊度は、10dtex~50,000dtexが好ましい。
The number of filaments is preferably 2 to 10,000, and the total fineness is preferably 10 dtex to 50,000 dtex.
<熱可塑性繊維、天然繊維>
鞘糸を形成する熱可塑性繊維としては、例えば、ポリエステル繊維、ナイロン繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリビニルアルコール繊維、ビニリデン繊維等が挙げられる。 <Thermoplastic fiber, natural fiber>
Examples of the thermoplastic fiber forming the sheath yarn include polyester fiber, nylon fiber, polyethylene fiber, polypropylene fiber, polyvinyl alcohol fiber, vinylidene fiber and the like.
鞘糸を形成する熱可塑性繊維としては、例えば、ポリエステル繊維、ナイロン繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリビニルアルコール繊維、ビニリデン繊維等が挙げられる。 <Thermoplastic fiber, natural fiber>
Examples of the thermoplastic fiber forming the sheath yarn include polyester fiber, nylon fiber, polyethylene fiber, polypropylene fiber, polyvinyl alcohol fiber, vinylidene fiber and the like.
また、鞘糸を形成する天然繊維としては、木綿、羊毛(ウール)、絹、麻等が挙げられる。これらのうち、木綿や羊毛等の天然繊維は、糸強度や汎用性に優れているため好ましい。
Moreover, as a natural fiber which forms a sheath yarn, cotton, wool (wool), silk, hemp etc. are mentioned. Among these, natural fibers such as cotton and wool are preferable because they are excellent in yarn strength and versatility.
これらの繊維は、入手しやすく経済性もあり、取り扱いが容易である。また、撚糸1を用いて製造する撚糸構造体の用途等に合わせて、適宜、選択することができ、単独で、または二種以上を組み合わせて使用することができる。
These fibers are easy to obtain, economical and easy to handle. Moreover, according to the use etc. of the twisting structure manufactured using the twisting yarn 1, it can select suitably, and can be used individually or in combination of 2 or more types.
<撚糸>
本発明の撚糸1は、図1、図2に示すように、高強力繊維からなる芯糸2が、熱可塑性繊維または天然繊維からなる複数本(本実施形態においては3本)の鞘糸3により被覆されている。 <Twisted yarn>
As shown in FIGS. 1 and 2, in thetwisted yarn 1 of the present invention, a core yarn 2 consisting of high strength fibers is a sheath yarn 3 of a plurality (3 in the present embodiment) of thermoplastic fibers or natural fibers. It is covered by.
本発明の撚糸1は、図1、図2に示すように、高強力繊維からなる芯糸2が、熱可塑性繊維または天然繊維からなる複数本(本実施形態においては3本)の鞘糸3により被覆されている。 <Twisted yarn>
As shown in FIGS. 1 and 2, in the
また、本発明の撚糸1においては、マルチフィラメント1本を芯糸2に用いてもよく、複数本のマルチフィラメントを束ねたものを芯糸2に用いてもよい。また、鞘糸3は、複数本であれば、その本数は特に限定されない。
Further, in the twisted yarn 1 of the present invention, one multifilament may be used for the core yarn 2, or a bundle of multiple multifilaments may be used for the core yarn 2. In addition, the number of sheath yarns 3 is not particularly limited as long as it is plural.
ここで、高強力繊維は、配向性が均一に揃えられた単繊維の集合体であるため、この高強力繊維を加工すると、配向性が均一に揃えられた状態が不均一になり、各単繊維の強度にバラツキが生じてしまう。その結果、集合体としての高強力繊維の強度が低下することになる。
Here, since the high strength fiber is an aggregate of single fibers whose orientations are uniformly aligned, when the high strength fibers are processed, the state in which the orientations are uniformly aligned becomes uneven, and each single fiber becomes uniform. Variations in the strength of the fibers occur. As a result, the strength of the high strength fiber as an aggregate is reduced.
そこで、本発明の撚糸1においては、高強力繊維からなる芯糸2が、熱可塑性繊維または天然繊維からなる鞘糸3により被覆された芯鞘構造とし、芯糸2に鞘糸3が巻き付いた構造としている。
Therefore, in the twisted yarn 1 of the present invention, the core yarn 2 made of high strength fiber has a core-sheath structure in which the sheath yarn 3 made of thermoplastic fiber or natural fiber is covered, and the sheath yarn 3 is wound around the core yarn 2 It has a structure.
このような構造により、外的要因に起因して、撚糸1に負荷がかかった場合であっても、上述の単繊維の配向性による影響が緩和されるため、強度に優れた撚糸1を提供することが可能になる。
With such a structure, even when a load is applied to the twisted yarn 1 due to an external factor, the influence of the orientation of the single fiber described above is alleviated, thus providing the twisted yarn 1 excellent in strength. It will be possible to
また、このような芯鞘構造により、芯糸2が鞘糸3によって保護されるため、芯糸2に対して、直接、紫外線が照射されることを防止でき、紫外線照射に起因する強度低下を抑制することができる。また、芯糸2の磨耗を抑制することができるため、摩耗に起因する強度低下も抑制することが可能になる。
Moreover, since the core yarn 2 is protected by the sheath yarn 3 by such a core-sheath structure, direct irradiation of the core yarn 2 with ultraviolet light can be prevented, and the strength reduction due to the ultraviolet irradiation can be reduced. It can be suppressed. Moreover, since it is possible to suppress the wear of the core yarn 2, it is possible to suppress the strength reduction due to the wear.
また、本発明の撚糸1においては、芯糸2が複数本の鞘糸3により被覆されているため、鞘糸3の隙間ができにくく、均一に被覆させることができる。
Moreover, in the twisted yarn 1 of the present invention, since the core yarn 2 is covered with a plurality of sheath yarns 3, gaps between the sheath yarns 3 are difficult to form and can be uniformly covered.
また、本発明の撚糸1においては、図1に示すように、芯糸2を鞘糸3により覆った状態で鞘糸3を撚ると、芯糸2が鞘糸3に追随して撚られるために、鞘糸3の撚り数と撚り方向に応じて、芯糸2の撚り数が変動するが、本発明者等は、この点に着目して、芯糸2と、芯糸2を被覆するように撚り上げた鞘糸3からなる撚糸1において、撚糸1の強力が、芯糸単体の強力を上回る(即ち、強力利用率が100%よりも大きくなる)ための条件を見出した。
Further, in the twisted yarn 1 of the present invention, as shown in FIG. 1, when the sheath yarn 3 is twisted in a state in which the core yarn 2 is covered by the sheath yarn 3, the core yarn 2 is twisted following the sheath yarn 3. Therefore, the number of twists of the core yarn 2 varies according to the number of twists of the sheath yarn 3 and the direction of twist, but the present inventors pay attention to this point and coat the core yarn 2 and the core yarn 2 In the twisting yarn 1 consisting of the sheath yarn 3 twisted as above, conditions were found for the strength of the twisting yarn 1 to exceed the strength of the core yarn alone (that is, the strength utilization rate is greater than 100%).
より具体的には、本発明の撚糸1においては、下記式(1)にて算出される差引芯撚係数Kが0~60である点に特徴がある。
More specifically, the twisted yarn 1 of the present invention is characterized in that the draw-off core twisting coefficient K calculated by the following formula (1) is 0 to 60.
[数1]
K=T/(10,000/D)1/2 (1)
(ここで、Dは、芯糸の総繊度(dtex)、Tは、(鞘糸を捲く前の芯糸の撚り数)-(芯糸と鞘糸をともに捲いた際の撚り数)(回/m)の絶対値である。) [Equation 1]
K = T / (10,000 / D) 1/2 (1)
(Here, D is the total fineness (dtex) of the core yarn, T is (the number of twists of the core yarn before winding the sheath yarn)-(the number of twists when the core yarn and the sheath yarn are wound together) (twice / M) is an absolute value.)
K=T/(10,000/D)1/2 (1)
(ここで、Dは、芯糸の総繊度(dtex)、Tは、(鞘糸を捲く前の芯糸の撚り数)-(芯糸と鞘糸をともに捲いた際の撚り数)(回/m)の絶対値である。) [Equation 1]
K = T / (10,000 / D) 1/2 (1)
(Here, D is the total fineness (dtex) of the core yarn, T is (the number of twists of the core yarn before winding the sheath yarn)-(the number of twists when the core yarn and the sheath yarn are wound together) (twice / M) is an absolute value.)
そして、撚糸1における差引芯撚係数Kを、この範囲に設定することにより、芯糸2を構成する高強力繊維の強度の総和が維持されるため、撚糸1における芯糸2の強力が、鞘糸3により被覆されていない芯糸単体の強力を上回ることになり、強度と強力利用率に優れた撚糸1を提供することが可能になる。
And, by setting the draw-off core twisting coefficient K in the twisted yarn 1 in this range, the sum of the strengths of the high strength fibers constituting the core yarn 2 is maintained, so the strength of the core yarn 2 in the twisted yarn 1 is a sheath The strength of the core yarn alone not covered by the yarn 3 is exceeded, and it is possible to provide the twisted yarn 1 excellent in strength and strength utilization rate.
また、芯糸2の総繊度は、マルチフィラメント1本において、10~50,000dtexが好ましい。これは、10dtex未満の場合、芯糸2が細すぎるため、芯糸2を均一に被覆することが困難になる場合があり、50,000dtexを超えると、マルチフィラメントの引き揃え性が損なわれやすく、物性にバラツキが生じやすくなる場合があるためである。
The total fineness of the core yarn 2 is preferably 10 to 50,000 dtex in one multifilament. If this is less than 10 dtex, it may be difficult to uniformly coat the core yarn 2 because the core yarn 2 is too thin, and if it exceeds 50,000 dtex, the alignment of the multifilaments tends to be impaired. This is because the physical properties may be easily varied.
また、鞘糸3の総繊度は、マルチフィラメント1本において、500~1,500dtexが好ましい。これは、500dtex未満の場合、鞘糸3が細すぎるため、芯糸2を均一に被覆することが困難になる場合があり、1,500dtexを超えると、鞘糸3同士が重なることにより、鞘糸3の使用量が不必要に増大する場合があるためである。
The total fineness of the sheath yarn 3 is preferably 500 to 1,500 dtex in one multifilament. If the diameter is less than 500 dtex, it may be difficult to uniformly coat the core yarn 2 because the sheath yarn 3 is too thin, and if it exceeds 1,500 dtex, the sheath yarns 3 overlap with each other. This is because the amount of yarn 3 used may increase unnecessarily.
また、初期(撚糸にする前)の芯糸2の撚り数は、0~400回/mが好ましい。これは、400回/mを超えると、マルチフィラメントの引き揃え性に影響が出やすくなるため、配向性が損なわれ、結果として、繊維軸方向の引っ張りに対する力学的な物性が低下する場合があるためである。
In addition, the number of twists of the core yarn 2 in the initial stage (before being made into a twisted yarn) is preferably 0 to 400 times / m. This is because if it exceeds 400 times / m, the alignment of the multifilaments is likely to be affected, so the orientation is impaired, and as a result, the mechanical properties against tension in the fiber axial direction may be lowered. It is for.
また、初期(撚糸にする前)の鞘糸3は、撚糸してもよく、また、無撚糸でもよい。特に鞘糸3が無撚の場合、鞘糸3の形状が変化しやすくなるため、芯糸2と鞘糸3の接触が面接触となり、芯糸2に対する鞘糸3の引き締め効果が発揮されやすくなるため、好ましい。
In addition, the sheath yarn 3 in the initial stage (prior to twisting) may be twisted or non-twisting. In particular, when the sheath yarn 3 is untwisted, the shape of the sheath yarn 3 is easily changed, so the contact between the core yarn 2 and the sheath yarn 3 becomes surface contact, and the tightening effect of the sheath yarn 3 on the core yarn 2 is easily exhibited. To be preferred.
また、本発明の撚糸1において、撚糸1の全体に対する芯糸2の混合率が10~90質量%であることが好ましく、より好ましくは20~80質量%、更に好ましくは30~70質量%である。芯糸2の混合率が10質量%未満であると、撚糸1の強力が不十分となる場合がある。一方、芯糸2の混合率が90質量%を越えると、コストが高くなるので好ましくない。
Further, in the twisted yarn 1 of the present invention, the mixing ratio of the core yarn 2 to the whole of the twisted yarn 1 is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 30 to 70% by mass. is there. If the mixing ratio of the core yarn 2 is less than 10% by mass, the strength of the twisted yarn 1 may be insufficient. On the other hand, when the mixing ratio of the core yarn 2 exceeds 90% by mass, the cost is undesirably increased.
また、鞘糸3がスパン糸(短繊維)の場合、鞘糸3により芯糸2を被覆すると、芯糸2に対して、鞘糸3の形状が変化しにくくなるため、芯糸2と鞘糸3の接触が点接触となり、芯糸2に対する撚糸3の引き締め効果が発揮されにくくなる。
When the sheath yarn 3 is a span yarn (short fiber), when the core yarn 2 is covered with the sheath yarn 3, the shape of the sheath yarn 3 with respect to the core yarn 2 hardly changes, so the core yarn 2 and the sheath The contact of the yarn 3 is a point contact, and the tightening effect of the twisted yarn 3 on the core yarn 2 is less likely to be exhibited.
一方、鞘糸3がマルチフィラメント(長繊維)の場合、芯糸2に対して、鞘糸3の形状が変化しやすくなるため、鞘糸3の断面形状が扁平形状になりやすく、芯糸2と鞘糸3の接触が面接触となり、芯糸2に対する撚糸3の引き締め効果が発揮されやすくなる。従って、鞘糸3がスパン糸の場合に比し、芯糸2と鞘糸3との接触部分が多くなるため、強力利用率が向上するものと考えられる。
On the other hand, when the sheath yarn 3 is a multifilament (long fiber), the shape of the sheath yarn 3 is easily changed with respect to the core yarn 2, so the cross-sectional shape of the sheath yarn 3 tends to be flat. The contact between the sheath yarn 3 and the sheath yarn 3 makes a surface contact, and the tightening effect of the twisted yarn 3 on the core yarn 2 is easily exhibited. Therefore, since the contact part of the core yarn 2 and the sheath yarn 3 increases compared with the case where the sheath yarn 3 is a span yarn, it is considered that the strength utilization rate is improved.
<撚糸の製造方法>
本発明の撚糸1においては、例えば、ダブルツイスター、リングツイスター、アップツイスター等の汎用の撚糸機を使用して、1~複数本のマルチフィラメントからなる芯糸2と複数本のマルチフィラメントの鞘糸3とを撚り合わせて、撚糸1が形成される。 <Production method of twisted yarn>
In thetwisted yarn 1 of the present invention, for example, using a general twisting machine such as a double twister, a ring twister, an up twister, etc., a core yarn 2 consisting of one to plural multifilaments and a sheath yarn of plural multifilaments The twisted yarn 1 is formed by twisting 3 and 4 together.
本発明の撚糸1においては、例えば、ダブルツイスター、リングツイスター、アップツイスター等の汎用の撚糸機を使用して、1~複数本のマルチフィラメントからなる芯糸2と複数本のマルチフィラメントの鞘糸3とを撚り合わせて、撚糸1が形成される。 <Production method of twisted yarn>
In the
また、本発明の撚糸1では、複合撚糸の撚り方向(芯糸2と鞘糸3との撚り合わせにおける撚り方向)は特に限定されないが、芯糸2における過度な捻じれの発生を防止するとの観点から、芯糸2は、無撚の状態、または鞘糸3の撚り方向の力を相殺する方向(逆撚り方向)に撚られていることが好ましい。
Further, in the twisting yarn 1 of the present invention, the twisting direction of the composite twisting yarn (twisting direction in the twisting of the core yarn 2 and the sheath yarn 3) is not particularly limited, but generation of excessive twisting in the core yarn 2 is prevented From the viewpoint, it is preferable that the core yarn 2 be twisted in a non-twisted state or in a direction (reverse twist direction) that cancels the force in the twist direction of the sheath yarn 3.
例えば、芯糸2に対してS方向に47回/mで撚りを掛け、鞘糸3に対してZ方向に47回/mで撚りを掛けた場合、芯糸2は鞘糸3を撚ることにより、初期撚り数(S方向に47回/mの撚り)は解撚され0となり、鞘糸3がZ方向に47回/m撚糸された芯鞘構造の糸となる。
For example, when twisting the core yarn 2 in the S direction at 47 times / m and twisting the sheath yarn 3 in the Z direction at 47 times / m, the core yarn 2 twists the sheath yarn 3 As a result, the initial twist number (47 twists / m in the S direction) is untwisted to 0 and the sheath / sheath 3 becomes a yarn with a core-sheath structure in which the sheath yarn 3 is twisted 47 times / m in the Z direction.
このように、加工前の芯糸2の撚り数と撚り方向を調整することにより、加工後における芯糸2の差引芯撚係数(即ち、芯糸2と鞘糸3を共に巻いた後の芯糸2の撚り数)の最適化を図ることが可能になる。
Thus, by adjusting the number of twists and the twist direction of the core yarn 2 before processing, the draw-off core twist coefficient of the core yarn 2 after processing (that is, the core after winding the core yarn 2 and the sheath yarn 3 together) It is possible to optimize the number of twists of the yarn 2).
また、使用する芯糸2のフィラメント数と、総繊度毎に鞘糸3の本数と単繊維繊度を最適化させて、芯糸2を均一に被覆して締め付けることにより、芯糸2の長さ方向に構成する単繊維の配向性を高めて、歪みを最小化することができるため、強力の最大化を図ることが可能になる。
Further, the length of the core yarn 2 can be obtained by uniformly covering and tightening the core yarn 2 by optimizing the number of filaments of the core yarn 2 to be used, the number of sheath yarns 3 and the single fiber fineness for each total denier. Since the orientation of single fibers constituting in the direction can be enhanced to minimize distortion, it is possible to maximize the strength.
<撚糸構造体>
本発明の撚糸1により形成された撚糸構造体としては、例えば、水産業や土木建築業において使用される繊維資材(例えば、防球ネット、防獣ネット、漁網等の網製品)、ロープ(陸上用ロープ、海上用ロープ、海中用ロープ、水中用ロープ、遊具用ロープ、船舶繋留用ロープ、エレベータ用ロープ)、組紐、及び衝撃吸収材等が挙げられる。 <Twist structure>
The twisting structure formed by the twistingyarn 1 according to the present invention includes, for example, textile materials (for example, ball nets, nets such as animal nets, fishing nets and the like), ropes Ropes, marine ropes, underwater ropes, underwater ropes, playground equipment ropes, ship anchoring ropes, elevator ropes), braids, and shock absorbers.
本発明の撚糸1により形成された撚糸構造体としては、例えば、水産業や土木建築業において使用される繊維資材(例えば、防球ネット、防獣ネット、漁網等の網製品)、ロープ(陸上用ロープ、海上用ロープ、海中用ロープ、水中用ロープ、遊具用ロープ、船舶繋留用ロープ、エレベータ用ロープ)、組紐、及び衝撃吸収材等が挙げられる。 <Twist structure>
The twisting structure formed by the twisting
また、本発明の芯鞘を有する撚糸1を使用することにより、仮に芯糸2が断糸した場合であっても、鞘糸3の固有の強力を保持することができる。
Further, by using the twisted yarn 1 having the core and sheath of the present invention, even when the core yarn 2 is broken, it is possible to maintain the inherent strength of the sheath yarn 3.
以下に、本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを本発明の範囲から除外するものではない。
Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples, and these examples can be modified or changed based on the spirit of the present invention, and those are excluded from the scope of the present invention is not.
(実施例1)
<撚糸の作製>
まず、溶融液晶ポリマーからなるポリアリレート繊維(株式会社クラレ製、商品名:ベクトラン(登録商標))からなる糸(総繊度:1670dtex)を1本用意し、S方向に47回/mとなるように撚り、芯糸を作製した。 Example 1
<Preparation of twisted yarn>
First, prepare one yarn (total fineness: 1670 dtex) consisting of a polyarylate fiber (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer so that it becomes 47 times / m in the S direction The core yarn was prepared by
<撚糸の作製>
まず、溶融液晶ポリマーからなるポリアリレート繊維(株式会社クラレ製、商品名:ベクトラン(登録商標))からなる糸(総繊度:1670dtex)を1本用意し、S方向に47回/mとなるように撚り、芯糸を作製した。 Example 1
<Preparation of twisted yarn>
First, prepare one yarn (total fineness: 1670 dtex) consisting of a polyarylate fiber (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer so that it becomes 47 times / m in the S direction The core yarn was prepared by
次に、ポリエチレンテレフタレート繊維(帝人(株)製、商品名:P902F 830T/72F)からなる糸(総繊度:830dtex)を3本(合計繊度:830×3=2490dtex)用意し、作製した芯糸を被覆するように捲き付け、芯糸と鞘糸の全体をZ方向に47回/mとなるように撚り、芯鞘構造の撚糸を作製した。
Next, three yarns (total fineness: 830 × 3 = 2490 dtex) consisting of polyethylene terephthalate fibers (manufactured by Teijin Ltd., trade name: P902F 830T / 72F) are prepared and manufactured. The core yarn and the sheath yarn were entirely twisted in the Z direction so as to be 47 times / m in the Z direction to prepare a twisted yarn of a core-sheath structure.
<撚糸の引張強力の測定>
作製した撚糸から所定長(20cm有効長を確保)の糸を切り取って、これを試料糸とし、JIS L1013に準拠して、引張荷重測定機(エーアンドディー製、商品名:RTG1310)を用いて、温度が20℃、湿度が65%RHの条件下にて、撚糸の引張強力[N]を測定した。以上の結果を表5に示す。 <Measurement of tensile strength of twisted yarn>
A yarn of a predetermined length (20 cm effective length secured) is cut out from the produced twisted yarn, and this is used as a sample yarn, and in accordance with JIS L1013, using a tensile load measuring machine (trade name: RTG1310 made by A and D) The tensile strength [N] of the twisted yarn was measured under the conditions of a temperature of 20 ° C. and a humidity of 65% RH. The above results are shown in Table 5.
作製した撚糸から所定長(20cm有効長を確保)の糸を切り取って、これを試料糸とし、JIS L1013に準拠して、引張荷重測定機(エーアンドディー製、商品名:RTG1310)を用いて、温度が20℃、湿度が65%RHの条件下にて、撚糸の引張強力[N]を測定した。以上の結果を表5に示す。 <Measurement of tensile strength of twisted yarn>
A yarn of a predetermined length (20 cm effective length secured) is cut out from the produced twisted yarn, and this is used as a sample yarn, and in accordance with JIS L1013, using a tensile load measuring machine (trade name: RTG1310 made by A and D) The tensile strength [N] of the twisted yarn was measured under the conditions of a temperature of 20 ° C. and a humidity of 65% RH. The above results are shown in Table 5.
(実施例2)
S方向に217回/mとなるように撚って芯糸を作製するとともに、芯糸と鞘糸の全体をZ方向に217回/mとなるように撚ったこと以外は、上述の実施例1と同様にして、芯鞘構造の撚糸を作製した。 (Example 2)
The above-described embodiment is carried out except that the core yarn is produced by twisting 217 times / m in the S direction, and the entire core yarn and sheath yarn is twisted 217 times / m in the Z direction. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
S方向に217回/mとなるように撚って芯糸を作製するとともに、芯糸と鞘糸の全体をZ方向に217回/mとなるように撚ったこと以外は、上述の実施例1と同様にして、芯鞘構造の撚糸を作製した。 (Example 2)
The above-described embodiment is carried out except that the core yarn is produced by twisting 217 times / m in the S direction, and the entire core yarn and sheath yarn is twisted 217 times / m in the Z direction. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(実施例3)
S方向に136回/mとなるように撚って芯糸を作製するとともに、芯糸と鞘糸の全体をZ方向に62回/mとなるように撚ったこと以外は、上述の実施例1と同様にして、芯鞘構造の撚糸を作製した。 (Example 3)
The above-mentioned practice is carried out except that the core yarn is produced by twisting in the S direction 136 times / m and producing the core yarn and the sheath yarn in the Z direction 62 times / m. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
S方向に136回/mとなるように撚って芯糸を作製するとともに、芯糸と鞘糸の全体をZ方向に62回/mとなるように撚ったこと以外は、上述の実施例1と同様にして、芯鞘構造の撚糸を作製した。 (Example 3)
The above-mentioned practice is carried out except that the core yarn is produced by twisting in the S direction 136 times / m and producing the core yarn and the sheath yarn in the Z direction 62 times / m. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(実施例4)
S方向に340回/mとなるように撚って芯糸を作製するとともに、芯糸と鞘糸の全体をZ方向に217回/mとなるように撚ったこと以外は、上述の実施例1と同様にして、芯鞘構造の撚糸を作製した。 (Example 4)
The above-described embodiment is carried out except that the core yarn is produced by twisting 340 times / m in the S direction and the whole of the core yarn and the sheath yarn is twisted 217 times / m in the Z direction. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
S方向に340回/mとなるように撚って芯糸を作製するとともに、芯糸と鞘糸の全体をZ方向に217回/mとなるように撚ったこと以外は、上述の実施例1と同様にして、芯鞘構造の撚糸を作製した。 (Example 4)
The above-described embodiment is carried out except that the core yarn is produced by twisting 340 times / m in the S direction and the whole of the core yarn and the sheath yarn is twisted 217 times / m in the Z direction. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(実施例5)
S方向に364回/mとなるように撚って芯糸を作製するとともに、芯糸と鞘糸の全体をZ方向に217回/mとなるように撚ったこと以外は、上述の実施例1と同様にして、芯鞘構造の撚糸を作製した。 (Example 5)
The above-described embodiment is carried out except that the core yarn is produced by twisting so as to be 364 times / m in the S direction and that the whole of the core yarn and the sheath yarn is so twisted as 217 times / m in the Z direction. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
S方向に364回/mとなるように撚って芯糸を作製するとともに、芯糸と鞘糸の全体をZ方向に217回/mとなるように撚ったこと以外は、上述の実施例1と同様にして、芯鞘構造の撚糸を作製した。 (Example 5)
The above-described embodiment is carried out except that the core yarn is produced by twisting so as to be 364 times / m in the S direction and that the whole of the core yarn and the sheath yarn is so twisted as 217 times / m in the Z direction. In the same manner as Example 1, a twisted yarn with a core-sheath structure was produced.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(実施例6)
まず、溶融液晶ポリマーからなるポリアリレート繊維(株式会社クラレ製、商品名:ベクトラン(登録商標))からなる糸(総繊度:1670dtex)を3本(合計繊度:1670×3=5010dtex)用意し、S方向に46回/mとなるように撚り、芯糸を作製した。 (Example 6)
First, prepare three yarns (total fineness: 1670 × 3 = 5010 dtex) consisting of polyarylate fibers (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer, The core yarn was produced by twisting in the S direction so as to be 46 times / m.
まず、溶融液晶ポリマーからなるポリアリレート繊維(株式会社クラレ製、商品名:ベクトラン(登録商標))からなる糸(総繊度:1670dtex)を3本(合計繊度:1670×3=5010dtex)用意し、S方向に46回/mとなるように撚り、芯糸を作製した。 (Example 6)
First, prepare three yarns (total fineness: 1670 × 3 = 5010 dtex) consisting of polyarylate fibers (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer, The core yarn was produced by twisting in the S direction so as to be 46 times / m.
次に、ポリエチレンテレフタレート繊維(帝人(株)製、商品名:P902F 830T/72F)からなる糸(総繊度:830dtex)を6本(合計繊度:830×6=4980dtex)用意し、作製した芯糸を被覆するように捲き付け、芯糸と鞘糸の全体をZ方向に116回/mとなるように撚り、芯鞘構造の撚糸を作製した。
Next, 6 yarns (total fineness: 830 × 6 = 4980 dtex) consisting of polyethylene terephthalate fibers (manufactured by Teijin Ltd., trade name: P902F 830T / 72F) are prepared and prepared. The core yarn and the sheath yarn were entirely twisted in the Z direction so as to be 116 times / m in the Z direction to prepare a twisted yarn of a core-sheath structure.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(実施例7)
まず、パラ系アラミド繊維(デュポン社製、商品名:ケブラー29)からなる糸(総繊度:1670tex)を3本(合計繊度:1670×3=5010dtex)用意し、S方向に46回/mとなるように撚り、芯糸を作製した。 (Example 7)
First, prepare three yarns (total fineness: 1670 tex) consisting of para-aramid fibers (manufactured by DuPont, trade name: Kevlar 29) (total fineness: 1670 × 3 = 5010 dtex) and prepare 46 times / m in the S direction The core yarn was prepared so as to be
まず、パラ系アラミド繊維(デュポン社製、商品名:ケブラー29)からなる糸(総繊度:1670tex)を3本(合計繊度:1670×3=5010dtex)用意し、S方向に46回/mとなるように撚り、芯糸を作製した。 (Example 7)
First, prepare three yarns (total fineness: 1670 tex) consisting of para-aramid fibers (manufactured by DuPont, trade name: Kevlar 29) (total fineness: 1670 × 3 = 5010 dtex) and prepare 46 times / m in the S direction The core yarn was prepared so as to be
次に、ポリエチレンテレフタレート繊維(帝人(株)製、商品名:P902F 830T/72F)からなる糸(総繊度:830dtex)を6本(合計繊度:830×6=4980dtex)用意し、作製した芯糸を被覆するように捲き付け、芯糸と鞘糸の全体をZ方向に116回/mとなるように撚り、芯鞘構造の撚糸を作製した。
Next, 6 yarns (total fineness: 830 × 6 = 4980 dtex) consisting of polyethylene terephthalate fibers (manufactured by Teijin Ltd., trade name: P902F 830T / 72F) are prepared and prepared. The core yarn and the sheath yarn were entirely twisted in the Z direction so as to be 116 times / m in the Z direction to prepare a twisted yarn of a core-sheath structure.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(実施例8)
まず、超高分子量ポリエチレン繊維(東洋紡(株)製、商品名:ダイニーマ)からなる糸(総繊度:1760dtex)を1本用意し、S方向に90回/mとなるように撚り、芯糸を作製した。 (Example 8)
First, prepare a yarn (total fineness: 1760 dtex) consisting of ultra high molecular weight polyethylene fiber (made by Toyobo Co., Ltd., trade name: Dyneema), twist it so that it becomes 90 times / m in the S direction, and core yarn Made.
まず、超高分子量ポリエチレン繊維(東洋紡(株)製、商品名:ダイニーマ)からなる糸(総繊度:1760dtex)を1本用意し、S方向に90回/mとなるように撚り、芯糸を作製した。 (Example 8)
First, prepare a yarn (total fineness: 1760 dtex) consisting of ultra high molecular weight polyethylene fiber (made by Toyobo Co., Ltd., trade name: Dyneema), twist it so that it becomes 90 times / m in the S direction, and core yarn Made.
次に、ポリエチレンテレフタレート繊維(帝人(株)製、商品名:P902F 830T/72F)からなる糸(総繊度:830dtex)を3本(合計繊度:830×3=2490dtex)用意し、作製した芯糸を被覆するように捲き付け、芯糸と鞘糸の全体をZ方向に90回/mとなるように撚り、芯鞘構造の撚糸を作製した。
Next, three yarns (total fineness: 830 × 3 = 2490 dtex) consisting of polyethylene terephthalate fibers (manufactured by Teijin Ltd., trade name: P902F 830T / 72F) are prepared and manufactured. The core yarn and the sheath yarn were entirely twisted in the Z direction so as to be 90 times / m in the Z direction to prepare a twisted yarn with a core-sheath structure.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(比較例1)
溶融液晶ポリマーからなるポリアリレート繊維(株式会社クラレ製、商品名:ベクトラン(登録商標))からなる糸(総繊度:1670dtex)を1本用意し、S方向に74回/mとなるように撚り、撚糸を作製した。 (Comparative example 1)
A single yarn (total fineness: 1670 dtex) consisting of a polyarylate fiber (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer is prepared and twisted so as to be 74 times / m in the S direction. , Produced a twisted yarn.
溶融液晶ポリマーからなるポリアリレート繊維(株式会社クラレ製、商品名:ベクトラン(登録商標))からなる糸(総繊度:1670dtex)を1本用意し、S方向に74回/mとなるように撚り、撚糸を作製した。 (Comparative example 1)
A single yarn (total fineness: 1670 dtex) consisting of a polyarylate fiber (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer is prepared and twisted so as to be 74 times / m in the S direction. , Produced a twisted yarn.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(比較例2)
まず、溶融液晶ポリマーからなるポリアリレート繊維(株式会社クラレ製、商品名:ベクトラン(登録商標))からなる糸(総繊度:1670dtex)を1本用意し、S方向に420回/mとなるように撚り、撚糸を作製した。 (Comparative example 2)
First, prepare a yarn (total fineness: 1670 dtex) consisting of a polyarylate fiber (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer so that it becomes 420 times / m in the S direction To produce a twisted yarn.
まず、溶融液晶ポリマーからなるポリアリレート繊維(株式会社クラレ製、商品名:ベクトラン(登録商標))からなる糸(総繊度:1670dtex)を1本用意し、S方向に420回/mとなるように撚り、撚糸を作製した。 (Comparative example 2)
First, prepare a yarn (total fineness: 1670 dtex) consisting of a polyarylate fiber (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer so that it becomes 420 times / m in the S direction To produce a twisted yarn.
次に、ポリエチレンテレフタレート繊維(帝人(株)製、商品名:P902F 830T/72F)からなる糸(総繊度:830dtex)を3本(合計繊度:830×3=2490dtex)用意し、作製した芯糸を被覆するように捲き付け、芯糸と鞘糸の全体をZ方向に248回/mとなるように撚り、芯鞘構造の撚糸を作製した。
Next, three yarns (total fineness: 830 × 3 = 2490 dtex) consisting of polyethylene terephthalate fibers (manufactured by Teijin Ltd., trade name: P902F 830T / 72F) are prepared and manufactured. The core yarn and the sheath yarn were twisted in the Z direction so as to be 248 times / m in the Z direction to prepare a twisted yarn with a core-sheath structure.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(比較例3)
まず、溶融液晶ポリマーからなるポリアリレート繊維(株式会社クラレ製、商品名:ベクトラン(登録商標))からなる糸(総繊度:1670dtex)を3本(合計繊度:1670×3=5010dtex)用意し、S方向に81回/mとなるように撚り、撚糸を作製した。 (Comparative example 3)
First, prepare three yarns (total fineness: 1670 × 3 = 5010 dtex) consisting of polyarylate fibers (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer, A twisted yarn was produced by twisting 81 times / m in the S direction.
まず、溶融液晶ポリマーからなるポリアリレート繊維(株式会社クラレ製、商品名:ベクトラン(登録商標))からなる糸(総繊度:1670dtex)を3本(合計繊度:1670×3=5010dtex)用意し、S方向に81回/mとなるように撚り、撚糸を作製した。 (Comparative example 3)
First, prepare three yarns (total fineness: 1670 × 3 = 5010 dtex) consisting of polyarylate fibers (made by Kuraray Co., Ltd., trade name: Bectran (registered trademark)) made of a molten liquid crystal polymer, A twisted yarn was produced by twisting 81 times / m in the S direction.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(比較例4)
まず、パラ系アラミド繊維(デュポン社製、商品名:ケブラー29)からなる糸(総繊度:1670tex)を3本(合計繊度:1670×3=5010dtex)用意し、S方向に81回/mとなるように撚り、撚糸を作製した。 (Comparative example 4)
First, prepare three yarns (total fineness: 1670 tex) consisting of para-aramid fibers (manufactured by DuPont, trade name: Kevlar 29) (total fineness: 1670 × 3 = 5010 dtex) and prepare 81 times / m in the S direction The resultant was twisted to prepare a twisted yarn.
まず、パラ系アラミド繊維(デュポン社製、商品名:ケブラー29)からなる糸(総繊度:1670tex)を3本(合計繊度:1670×3=5010dtex)用意し、S方向に81回/mとなるように撚り、撚糸を作製した。 (Comparative example 4)
First, prepare three yarns (total fineness: 1670 tex) consisting of para-aramid fibers (manufactured by DuPont, trade name: Kevlar 29) (total fineness: 1670 × 3 = 5010 dtex) and prepare 81 times / m in the S direction The resultant was twisted to prepare a twisted yarn.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
(比較例5)
まず、超高分子量ポリエチレン繊維(東洋紡(株)製、商品名:ダイニーマ)からなる糸(総繊度:1760dtex)を1本用意し、S方向に80回/mとなるように撚り、撚糸を作製した。 (Comparative example 5)
First, one yarn (total fineness: 1760 dtex) made of ultra-high molecular weight polyethylene fiber (manufactured by Toyobo Co., Ltd., trade name: Dyneema) is prepared, and is twisted at 80 times / m in the S direction to prepare twisted yarn. did.
まず、超高分子量ポリエチレン繊維(東洋紡(株)製、商品名:ダイニーマ)からなる糸(総繊度:1760dtex)を1本用意し、S方向に80回/mとなるように撚り、撚糸を作製した。 (Comparative example 5)
First, one yarn (total fineness: 1760 dtex) made of ultra-high molecular weight polyethylene fiber (manufactured by Toyobo Co., Ltd., trade name: Dyneema) is prepared, and is twisted at 80 times / m in the S direction to prepare twisted yarn. did.
そして、上述の実施例1と同様にして、撚糸の引張強力の測定を行った。以上の結果を表5に示す。
Then, the tensile strength of the twisted yarn was measured in the same manner as in Example 1 described above. The above results are shown in Table 5.
表5に示すように、差引芯撚係数Kが0~60の範囲にある実施例1~5の撚糸においては、実施例1~5の芯糸を形成する溶融液晶ポリマーからなるポリアリレート繊維のみからなる比較例1の撚糸(撚り数が74)に比し、引張強力が向上しており、強度に優れていることが分かる。
As shown in Table 5, in the twisted yarns of Examples 1 to 5 in which the draw-off core twisting coefficient K is in the range of 0 to 60, only polyarylate fibers consisting of the molten liquid crystal polymer forming the core yarns of Examples 1 to 5 It is understood that the tensile strength is improved and the strength is excellent as compared with the twisted yarn of the comparative example 1 (twist number is 74).
また、実施例1~5の撚糸の各々の強力利用率(即ち、(実施例1~5の何れかの撚糸の引張強力/比較例1の撚糸の引張強力)×100)が100%よりも大きくなっていることが分かる。
Also, the strength utilization factor of each of the twisted yarns of Examples 1 to 5 (ie, (Tensile strength of the twisted yarn of any of Examples 1 to 5 / tensile strength of the twisted yarn of Comparative Example 1) x 100) is more than 100%. You can see that it is getting bigger.
また、同様に、実施例6の撚糸においては、実施例6の芯糸を形成する溶融液晶ポリマーからなるポリアリレート繊維のみからなる比較例3の撚糸(撚り数が81)に比し、引張強力が向上しており、強度に優れていることが分かる。また、実施例6の撚糸の強力利用率(即ち、(実施例6の撚糸の引張強力/比較例3の撚糸の引張強力)×100)が100%よりも大きくなっていることが分かる。
Similarly, in the twisted yarn of Example 6, the tensile strength is higher than that of the twisted yarn of Comparative Example 3 (twist number is 81) consisting only of polyarylate fibers consisting of the molten liquid crystal polymer forming the core yarn of Example 6. Is improved and it is understood that the strength is excellent. In addition, it can be seen that the strength utilization factor of the twisted yarn of Example 6 (that is, (Tensile strength of twisted yarn of Example 6 / tensile strength of twisted yarn of Comparative Example 3) × 100) is greater than 100%.
また、実施例7の撚糸においては、実施例7の芯糸を形成するパラ系アラミド繊維のみからなる比較例4の撚糸(撚り数が81)に比し、引張強力が向上しており、強度に優れていることが分かる。また、実施例7の撚糸の強力利用率(即ち、(実施例7の撚糸の引張強力/比較例4の撚糸の引張強力)×100)が100%よりも大きくなっていることが分かる。
Moreover, in the twisted yarn of Example 7, compared with the twisted yarn (twist number 81) of Comparative Example 4 consisting only of para-aramid fibers forming the core yarn of Example 7, the tensile strength is improved, and the strength is higher. It is clear that it is excellent. In addition, it can be seen that the strength utilization factor of the twisted yarn of Example 7 (that is, (Tensile strength of twisted yarn of Example 7 / Tensile strength of twisted yarn of Comparative Example 4) x 100) is greater than 100%.
さらに、実施例8の撚糸においては、実施例8の芯糸を形成する超高分子量ポリエチレン繊維のみからなる比較例5の撚糸(撚り数が80)に比し、引張強力が向上しており、強度に優れていることが分かる。また、実施例8の撚糸の強力利用率(即ち、(実施例8の撚糸の引張強力/比較例5の撚糸の引張強力)×100)が100%よりも大きくなっていることが分かる。
Furthermore, in the twisted yarn of Example 8, the tensile strength is improved as compared to the twisted yarn (twist number is 80) of Comparative Example 5 consisting only of the ultrahigh molecular weight polyethylene fiber forming the core yarn of Example 8, It can be seen that the strength is excellent. In addition, it can be seen that the strength utilization factor of the twisted yarn of Example 8 (that is, (Tensile strength of twisted yarn of Example 8 / tensile strength of twisted yarn of Comparative Example 5) x 100) is greater than 100%.
なお、比較例2の撚糸においては、差引芯撚係数Kが60よりも大きいため、比較例2の芯糸を形成する溶融液晶ポリマーからなるポリアリレート繊維のみからなる比較例1の撚糸(撚り数が74)に比し、強度と強力利用率が劣る結果となった。
In addition, in the twisting yarn of Comparative Example 2, since the draw-off core twisting coefficient K is larger than 60, the twisting yarn of Comparative Example 1 consisting of only polyarylate fibers consisting of a molten liquid crystal polymer forming the core yarn of Comparative Example 2 (twist number The result is inferior in strength and strong utilization compared to 74).
以上に説明したように、本発明は、芯糸と鞘糸からなり、ロープ等に用いられる撚糸に適している。
As described above, the present invention is composed of a core yarn and a sheath yarn, and is suitable for a twisting yarn used for a rope or the like.
1 撚糸
2 芯糸
3 鞘糸 1Twisted yarn 2 Core yarn 3 Sheath yarn
2 芯糸
3 鞘糸 1
Claims (5)
- 15cN/dtex以上の強度を有する繊維からなる芯糸と、熱可塑性繊維または天然繊維からなり、前記芯糸を被覆するように撚り上げた鞘糸からなる撚糸であって、
下記式(1)にて算出する差引芯撚係数Kが0~60であることを特徴とする撚糸。
K=T/(10,000/D)1/2 (1)
(ここで、Dは、芯糸の総繊度(dtex)、Tは、(鞘糸を捲く前の芯糸の撚り数)-(芯糸と鞘糸をともに捲いた際の撚り数)の絶対値(回/m)である。) It is a twisted yarn comprising a core yarn comprising fibers having a strength of 15 cN / dtex or more, and a sheath yarn comprising thermoplastic fibers or natural fibers and being twisted so as to cover the core yarn,
A twisted yarn characterized in that a draw-off core twisting factor K calculated by the following formula (1) is 0 to 60.
K = T / (10,000 / D) 1/2 (1)
(Here, D is the total fineness (dtex) of the core yarn, T is (the number of twists of the core yarn before winding the sheath yarn)-(the number of twists when the core yarn and the sheath yarn are wound together) It is a value (times / m). - 該芯糸が複数本の前記鞘糸により被覆されていることを特徴とする請求項1に記載の撚糸。 The twisted yarn according to claim 1, wherein the core yarn is covered with a plurality of the sheath yarns.
- 前記繊維が、溶融液晶ポリマーからなるポリアリレート繊維、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、炭素繊維、及びガラス繊維からなる群より選ばれる少なくとも1種であることを特徴とする請求項1または請求項2に記載の撚糸。 The fiber is at least one selected from the group consisting of polyarylate fiber, aramid fiber, polyethylene fiber, polyparaphenylene benzoxazole (PBO) fiber, carbon fiber, and glass fiber made of a molten liquid crystal polymer. The twisted yarn according to claim 1 or claim 2.
- 前記熱可塑性繊維が、ポリエステル繊維、ナイロン繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリビニルアルコール繊維、及びビニリデン繊維からなる群より選択される少なくとも1種であり、前記天然繊維が、木綿、羊毛(ウール)、絹、及び麻からなる群より選択される少なくとも1種であることを特徴とする請求項1~請求項3のいずれか1項に記載の撚糸。 The thermoplastic fiber is at least one selected from the group consisting of polyester fiber, nylon fiber, polyethylene fiber, polypropylene fiber, polyvinyl alcohol fiber, and vinylidene fiber, and the natural fiber is cotton, wool (wool), 4. The twisted yarn according to any one of claims 1 to 3, which is at least one selected from the group consisting of silk and hemp.
- 請求項1~請求項4のいずれか1項に記載の撚糸からなる撚糸構造体。 A twisting structure comprising the twisting yarn according to any one of claims 1 to 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017232896 | 2017-12-04 | ||
JP2017-232896 | 2017-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019111830A1 true WO2019111830A1 (en) | 2019-06-13 |
Family
ID=66750998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/044309 WO2019111830A1 (en) | 2017-12-04 | 2018-11-30 | Twisted yarn and twisted yarn structure using same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7249569B2 (en) |
TW (1) | TW201937024A (en) |
WO (1) | WO2019111830A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113832584A (en) * | 2021-10-29 | 2021-12-24 | 浙江汇纤纺织科技有限公司 | Method for spinning untwisted core-spun yarn with layered structure core layer |
CN117255706A (en) * | 2021-03-17 | 2023-12-19 | 阿维夫有限责任公司 | Antibacterial Basketball Net |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102449137B1 (en) * | 2020-11-25 | 2022-10-05 | 주식회사 미성폴리머 | Method of manufacturing liquid crystal complex yarn having excellent cut-resistance property |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63152421A (en) * | 1986-12-05 | 1988-06-24 | ソシエテ・アノニム・シヤープ | Production of composite yarn equipped with core composed of long fiber surrounded by outside lapping |
JPH02200830A (en) * | 1989-01-25 | 1990-08-09 | Showa Ind Co Ltd | Sheath-core structure system and low permittivity base material comprising the same system |
JPH0931786A (en) * | 1995-07-14 | 1997-02-04 | Toyobo Co Ltd | Fishing line |
JPH11217777A (en) * | 1998-01-23 | 1999-08-10 | Toray Ind Inc | Rope |
JP2002167250A (en) * | 2000-11-29 | 2002-06-11 | Toyobo Co Ltd | Partially fused reinforcing fiber for concrete, method of producing the same and fiber-reinforced concrete product |
JP2006161179A (en) * | 2004-12-02 | 2006-06-22 | Teijin Techno Products Ltd | Spun yarn of core-sheath two-layer structure |
JP2007506006A (en) * | 2003-09-15 | 2007-03-15 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Composite twisted core spun yarn and method and apparatus for manufacturing the same |
JP2012207347A (en) * | 2011-03-30 | 2012-10-25 | Kuraray Co Ltd | Monofilament-like article |
JP2016069741A (en) * | 2014-09-27 | 2016-05-09 | 株式会社サンライン | Braided yarn |
WO2016147779A1 (en) * | 2015-03-18 | 2016-09-22 | 日本毛織株式会社 | Multilayered spun yarn, heat-resistant fabric obtained using same, and heat-resistant protective garment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19911757A1 (en) * | 1999-03-16 | 2000-09-21 | Amann & Soehne | Sewing thread and method for producing a sewing thread |
JP2002069794A (en) * | 2000-08-31 | 2002-03-08 | Mitsubishi Rayon Co Ltd | Twist yarn woven fabric |
JP4916818B2 (en) * | 2006-08-29 | 2012-04-18 | ユニチカトレーディング株式会社 | Method for producing double layer yarn |
JP4876807B2 (en) * | 2006-09-13 | 2012-02-15 | 東レ株式会社 | Core yarn sewing thread and manufacturing method thereof |
JP5662262B2 (en) * | 2011-06-21 | 2015-01-28 | 帝人株式会社 | Core-sheath type composite yarn |
-
2018
- 2018-11-30 JP JP2018224751A patent/JP7249569B2/en active Active
- 2018-11-30 WO PCT/JP2018/044309 patent/WO2019111830A1/en active Application Filing
- 2018-12-03 TW TW107143253A patent/TW201937024A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63152421A (en) * | 1986-12-05 | 1988-06-24 | ソシエテ・アノニム・シヤープ | Production of composite yarn equipped with core composed of long fiber surrounded by outside lapping |
JPH02200830A (en) * | 1989-01-25 | 1990-08-09 | Showa Ind Co Ltd | Sheath-core structure system and low permittivity base material comprising the same system |
JPH0931786A (en) * | 1995-07-14 | 1997-02-04 | Toyobo Co Ltd | Fishing line |
JPH11217777A (en) * | 1998-01-23 | 1999-08-10 | Toray Ind Inc | Rope |
JP2002167250A (en) * | 2000-11-29 | 2002-06-11 | Toyobo Co Ltd | Partially fused reinforcing fiber for concrete, method of producing the same and fiber-reinforced concrete product |
JP2007506006A (en) * | 2003-09-15 | 2007-03-15 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Composite twisted core spun yarn and method and apparatus for manufacturing the same |
JP2006161179A (en) * | 2004-12-02 | 2006-06-22 | Teijin Techno Products Ltd | Spun yarn of core-sheath two-layer structure |
JP2012207347A (en) * | 2011-03-30 | 2012-10-25 | Kuraray Co Ltd | Monofilament-like article |
JP2016069741A (en) * | 2014-09-27 | 2016-05-09 | 株式会社サンライン | Braided yarn |
WO2016147779A1 (en) * | 2015-03-18 | 2016-09-22 | 日本毛織株式会社 | Multilayered spun yarn, heat-resistant fabric obtained using same, and heat-resistant protective garment |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117255706A (en) * | 2021-03-17 | 2023-12-19 | 阿维夫有限责任公司 | Antibacterial Basketball Net |
CN113832584A (en) * | 2021-10-29 | 2021-12-24 | 浙江汇纤纺织科技有限公司 | Method for spinning untwisted core-spun yarn with layered structure core layer |
CN113832584B (en) * | 2021-10-29 | 2022-08-23 | 浙江汇纤纺织科技有限公司 | Method for spinning untwisted core-spun yarn with layered structure core layer |
Also Published As
Publication number | Publication date |
---|---|
TW201937024A (en) | 2019-09-16 |
JP2019099990A (en) | 2019-06-24 |
JP7249569B2 (en) | 2023-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12102320B2 (en) | Small diameter fiber braid with central core member | |
WO2019111830A1 (en) | Twisted yarn and twisted yarn structure using same | |
US7296394B2 (en) | Fluoropolymer fiber composite bundle | |
US20060207414A1 (en) | Rope | |
BRPI0415780B1 (en) | Junction twisted yarn and cut resistant fabric | |
US20120131895A1 (en) | Synthetic Rope Formed of Blend Fibers | |
JP5918240B2 (en) | Mixed fiber and method for producing the same | |
JP5116223B2 (en) | Fishing line manufacturing method | |
JP2023536426A (en) | rope | |
US20220119991A1 (en) | Liquid crystal polyester multi-filament and method for manufacturing same | |
JP2009254245A (en) | Yarn and spinning line comprising the yarns | |
JP2010506062A (en) | Multi-denier fiber anti-cut fabric and article and method for producing the same | |
JP3449433B2 (en) | Method for producing composite yarn woven or knitted fabric | |
JP7239410B2 (en) | Method for producing liquid crystal polyester fiber | |
CN201574241U (en) | Wrap yarn structure body capable of being produced into light heat-proof glove | |
JP7249468B2 (en) | double rope structure | |
JP2021147709A (en) | Rubber product reinforcing aramid spun yarn and manufacturing method thereof | |
WO2023249125A1 (en) | Double-rope structure | |
EP1964952B1 (en) | Yarn for technical fabrics and method for manufacturing the same | |
JP2022103147A (en) | Double rope structure | |
WO2022186150A1 (en) | Core-sheath composite fiber, production method therefor, and fiber structure | |
JP4478872B2 (en) | Long / short composite yarn and method for producing the same | |
TW201938861A (en) | Aromatic polyester multifilament capable of forming an optically anisotropic melt phase | |
JPH06313234A (en) | Core yarn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18885290 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18885290 Country of ref document: EP Kind code of ref document: A1 |