WO2019111792A1 - GTP SENSOR PROTEIN PI5P4Kβ INHIBITOR - Google Patents

GTP SENSOR PROTEIN PI5P4Kβ INHIBITOR Download PDF

Info

Publication number
WO2019111792A1
WO2019111792A1 PCT/JP2018/043919 JP2018043919W WO2019111792A1 WO 2019111792 A1 WO2019111792 A1 WO 2019111792A1 JP 2018043919 W JP2018043919 W JP 2018043919W WO 2019111792 A1 WO2019111792 A1 WO 2019111792A1
Authority
WO
WIPO (PCT)
Prior art keywords
pi5p4kβ
compound
inhibitor
gtp
compounds
Prior art date
Application number
PCT/JP2018/043919
Other languages
French (fr)
Japanese (ja)
Inventor
恒 竹内
俊哉 千田
敦朗 佐々木
快文 福西
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2019111792A1 publication Critical patent/WO2019111792A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/196Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to inhibitors of PI5P4K ⁇ .
  • the present invention relates to an inhibitor that inhibits the function of PI5P4K ⁇ as a GTP sensor.
  • cancer is the leading cause of human death. About 50% of all these cancers are associated with mutations in the p53 gene. And such cancer with mutation of p53 gene is seen to acquire drug resistance and promote metastasis, and it is known that its prognosis is bad.
  • PI5P4K ⁇ phosphatidylinositol-5-phosphate-4-kinase ⁇
  • PI5P4K ⁇ Several compounds that inhibit the function of PI5P4K ⁇ have already been proposed (eg, non-patent documents 1 to 3). However, the IC50 values of these compounds are relatively large at several ⁇ M. Therefore, there is still a need for compounds that strongly inhibit PI5P4K ⁇ with lower IC50 values. These compounds can also act on homologues of PI5P4K ⁇ (in humans, PI5P4K ⁇ and PI5P4K ⁇ ). In particular, PI5P4K ⁇ has higher enzymological activity than PI5P4K ⁇ , and it is also important not to inhibit PI5P4K ⁇ , since PI5P4K ⁇ and PI5P4K ⁇ double knockout mice are lethal to many.
  • PI5P4K ⁇ compounds in which the IC50 value for PI5P4K ⁇ is sufficiently larger than the IC50 value for PI5P4K ⁇ are preferable. Since PI5P4K ⁇ has low activity, even if it is inhibited, its effect is limited and it is considered that it does not cause any problem.
  • An object of the present invention is to provide a PI5P4K ⁇ inhibitor that has a smaller IC50 value than conventional and can strongly inhibit PI5P4K ⁇ .
  • the present inventors focused on the extremely high intracellular GTP concentration of cancer cells, and by using a unique approach combining proteomics, biochemistry, structural biology and cell biological methods, PI5P4K ⁇ in mammalian cells
  • PI5P4K ⁇ functions as a sensor that detects and responds to GTP concentrations
  • the GTP sensor function of PI5P4K ⁇ promotes tumorigenesis. This is considered to be proof that p53 mutant cancer is dependent on GTP concentration sensing function.
  • the present invention is selected from the group consisting of compounds represented by the following structural formulas (1) to (4), pharmaceutically acceptable salts of these compounds, and pharmaceutically acceptable solvates thereof.
  • PI5P4K ⁇ inhibitors containing at least one of them as an active ingredient.
  • the present invention is also a method for inhibiting the function of PI5P4K ⁇ as a GTP sensor using the above-mentioned inhibitor.
  • the present invention is also a reagent composition for analysis of a GTP sensor mechanism involving PI5P4K ⁇ , which contains the above-mentioned inhibitor as an active ingredient.
  • the present invention is also an antitumor agent composition comprising the above-mentioned inhibitor as an active ingredient.
  • the present invention is also a method for preventing or treating tumor development, growth and / or malignancy by utilizing the above-mentioned method or administering the above-mentioned antitumor agent composition.
  • the present invention is a pharmaceutical composition for preventing or treating a disease relating to PI5P4K ⁇ hyperfunction, which comprises the above-mentioned inhibitor as an active ingredient.
  • All of the compounds of the present invention are capable of strongly inhibiting PI5P4K ⁇ with extremely low IC 50 values of less than 1 ⁇ M. Therefore, it is possible to provide a reagent for analysis of the function of PI5P4K ⁇ , a highly potent antitumor agent and an antitumor treatment.
  • the compounds of the present invention are also capable of strongly inhibiting PI5P4K ⁇ as compared to PI5P4K ⁇ . Therefore, it is possible to provide an antitumor agent and an antitumor treatment with high drug efficacy and few side effects. Furthermore, it is possible to provide a preventive or a remedy for diseases involving not only tumors and cancers but also PI5P4K ⁇ .
  • FIG. 1 It is a schematic diagram showing the outline of the screening. It is a measurement result of the IC50 value with respect to PI5P4K (beta) of a certain compound.
  • A It is a figure showing a mode that a compound (i) tautomerizes in water.
  • B) represents a compound (4) which is a stabilized compound of the compound (i). It is a result of the crystal structure analysis of the state which 2 types of compounds selected by the screening have couple
  • PI5P4K ⁇ is an enzyme (kinase) that phosphorylates the substrate phosphatidylinositol-5-phosphate. GTP is consumed in this phosphorylation. Although hypothesized, PI5P4K ⁇ functions as a GTP sensor that detects intracellular GTP concentration. More specifically, PI5P4K ⁇ detects intracellular GTP concentration, and consumes GTP to phosphorylate the substrate when GTP concentration is high. The phosphorylated substrate acts as a second messenger and eventually the cells become tumors. Therefore, if the function of PI5P4K ⁇ as a GTP sensor is inhibited, prevention of tumorigenesis of cells can be expected.
  • kinase kinase
  • the present inventors to verify this, to produce a mutant enzyme PI5P4K ⁇ F205L that have lost sensitivity to GTP. Growth on soft agar plates of cells expressing this mutant enzyme was significantly suppressed as compared to cells expressing wild type PI5P4K ⁇ . Furthermore, when cells expressing wild type PI5P4K ⁇ were transplanted to nude mice, half were engrafted and tumors were formed, whereas cells expressing the GTP independent PI5P4K ⁇ F205L mutant were transplanted to nude mice. Even no tumors formed.
  • the PI5P4K ⁇ inhibitor of the present invention is a group consisting of compounds represented by the following structural formulas (1) to (4), pharmaceutically acceptable salts of these compounds, and pharmaceutically acceptable solvates thereof. At least one selected from the above is contained as an active ingredient.
  • the compounds represented by Structural Formulas (1) to (4) may be expressed as Compound (1), Compound (2), Compound (3) and Compound (4), respectively.
  • the compound represented by Structural Formula (X) may be expressed as Compound (X).
  • “Contained as an active ingredient” means that PI5P4K ⁇ can be inhibited to a certain extent at a predetermined dose of the inhibitor.
  • the inhibitors of the present invention can be used either in vivo or in vitro. When in vivo, it may be administered to either unicellular or multicellular organisms. Multicellular organisms include fish, amphibians, reptiles, birds, mammals other than humans, and humans, which may be administered to any of them. When in vitro, it may be administered to cells, cells derived from multicellular organisms, or cell tissues derived from multicellular organisms.
  • the compounds represented by structural formulas (1) to (4) include all tautomers, geometric isomers and stereoisomers such as enantiomers which can be present, unless otherwise specified.
  • the method for obtaining the compounds represented by structural formulas (1) to (4) is optional, and may be synthesized by itself or may be obtained commercially.
  • the synthesis method of the compounds represented by structural formulas (1) to (4) is not particularly limited, and various known methods may be synthesized alone or in combination.
  • the compound represented by the structural formula (1) (CAS No. 19795-96-1, PubChem No. 88253) is commercially available, for example, from Vitas-M under the trade name “STK238453”.
  • the compound represented by the structural formula (2) can be obtained commercially, for example, from TimTec under the trade name “ST095461”.
  • the compound represented by the structural formula (3) (CAS No. 13710-19-5, PubChem No. 610479) can be commercially obtained, for example, from Sigma Co., Ltd. under the trade name “tolfenic acid”.
  • the compound represented by structural formula (4) is commercially available, for example, from Labotest under the trade name “LT00097173”.
  • pharmaceutically acceptable means generally not harmful to the recipient at the dose to achieve the desired main effect.
  • alkali metal salts such as lithium salts, sodium salts and potassium salts
  • alkaline earth metal salts such as magnesium salts and calcium salts.
  • basic amino acid addition salts such as lysine, ⁇ -hydroxylysine, arginine and the like can be mentioned.
  • the pharmaceutically acceptable salt when the compound has a basic group, the following may be mentioned.
  • mineral acid salts such as hydrochlorides, hydrobromides, nitrates, sulfates and phosphates; methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid, propionate, tartaric acid, fumaric acid, maleic acid
  • the acid include malic acid, malic acid, oxalic acid, succinic acid, citric acid, benzoic acid, mandelic acid, cinnamic acid, lactic acid, glycolic acid, glucuronic acid, ascorbic acid, nicotinic acid, and organic acid salts such as salicylic acid.
  • acidic amino acid addition salts such as aspartic acid and glutamic acid can be mentioned.
  • pharmaceutically acceptable solvates include, for example, hydrate, alcoholate, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, chloroform, dichloroethane, dichloromethane, diethyl ether Methyl t-butyl ether, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, isobutyl methyl ketone, toluene, benzene, o-xylene, m -Xylene, p-xylene, ethyl acetate, propyl acetate, butyl acetate, propylene carbonate, diethyl carbonate, dimethyl carbonate, hexane, Tan, h
  • solvates with pharmaceutically acceptable solvents selected from the group consisting of octane and cyclohexane. Among these, hydrates are usually preferred. Here, the solvate with the solvent which was used when synthesize
  • the IC 50 values for PI5P4K ⁇ of the compounds represented by structural formulas (1) to (4) are extremely small, less than 1 ⁇ M. It is speculated that administration of a small amount of these compounds sufficiently inhibits PI5P4K ⁇ . Therefore, it is considered possible to inhibit the function of PI5P4K ⁇ (in particular, the function as a GTPase and / or the function as a GTP sensor) by administration of compounds represented by structural formulas (1) to (4).
  • these compounds are advantageous in that they exert stronger action on PI5P4K ⁇ than PI5P4K ⁇ .
  • the IC50 values for PI5P4K ⁇ , a family of PI5P4K ⁇ are 200 ⁇ M or more for compound (1), 20 ⁇ M or more for compound (2), 100 ⁇ M or more for compound (3), and 40 ⁇ M or more for compound (4) is there. It was confirmed that PI5P4K ⁇ and PI5P4K ⁇ act extremely selectively on PI5P4K ⁇ because all compounds have an IC50 value of less than 1 ⁇ M against PI5P4K ⁇ .
  • an IC50 value means the density
  • PI5P4K ⁇ functions as a GTP sensor.
  • the PI5P4K ⁇ inhibitor of the present invention can be used as an active ingredient of a reagent for analysis of GTP sensor mechanism involving PI5P4K ⁇ .
  • the analysis reagent of the present invention contains the above-mentioned PI5P4K ⁇ inhibitor as an active ingredient. Other than this inhibitor, any component may be included.
  • PI5P4K ⁇ is an important factor in tumorigenesis.
  • the functional inhibition of PI5P4K ⁇ in turn includes the prevention (both complete prevention and delay) of tumorigenesis or carcinogenesis (malignancy of tumor) of p53 gene mutant cells, p53 gene mutant cells, p53 gene mutant cells It is speculated that it will lead to the prevention of tumor or cancer growth (meaning both complete arrest and slowing down) or treatment of p53 gene mutated tumor or cancer (meaning both cure and alleviation). Therefore, the PI5P4K ⁇ inhibitor of the present invention can be used as an active ingredient of an antitumor agent.
  • the antitumor agent of the present invention contains the PI5P4K ⁇ inhibitor described above as an active ingredient.
  • any component may be included as long as it is pharmaceutically acceptable.
  • containing as an active ingredient means that a PI5P4K ⁇ inhibitor can be administered in an amount such that a desired effect can be obtained at a predetermined dose of an analysis reagent or an antitumor agent.
  • the dose of the inhibitor of the present invention is 0.001 mg or more, 0.01 mg or more, and 0.1 mg or more per kg of body weight per day and when it is administered to an organism as an antitumor agent, although it is a guide to the last.
  • the content in the drug is preferably determined to be 0.5 mg or more or 1 mg or more.
  • the dose of the inhibitor of the present invention is 100 mg or less, 10 mg or less, 9 mg or less, 8 mg or less, 7 mg or less, 6 mg or less, 5 mg or less, 4 mg or less per day and per kg body weight
  • the content in the drug is determined to be 3 mg or less.
  • the content of the PI5P4K ⁇ inhibitor in the analysis reagent or the antitumor agent is usually 1 to 90% by mass, based on the total amount of the analysis reagent or the total amount of the antitumor agent. 2 mass% or more, 3 mass% or more, 4 mass% or more, 5 mass% or more, 6 mass% or more, 7 mass% or more, 8 mass% or more, 9 mass% or more, 10 mass% or more, 15 mass% or more, It is good also as 20 mass% or more, 25 mass% or more, and 30 mass% or more. On the other hand, 85% by mass, 80% by mass, 75% by mass, 70% by mass, 65% by mass, 60% by mass, 55% by mass, 50% by mass, 45% by mass or less.
  • the antitumor agent of the present invention is a microtubule assembly inhibitor, AKT inhibitor, mTOR inhibitor, MEK inhibitor, RTK inhibitor, ATM inhibitor, ATR inhibitor, PI3K inhibitor, EGFR inhibitor, B-Raf inhibition It may further contain one or more agents selected from the group consisting of agents, C-kit inhibitors, PARP inhibitors, DNA crosslinkers, DNA intercalators, and cytidine analogs.
  • the antitumor agent of the present invention can optionally contain pharmaceutically acceptable additives such as coloring agents, preservatives, flavors, flavors, sweeteners and other therapeutic agents.
  • Such stabilizers include, for example, albumin, globulin, gelatin, mannitol, glucose, dextran, ethylene glycol and the like.
  • the antitumor agent of the present invention may further contain, as an optional component, any pharmaceutically acceptable diluent, carrier, excipient and the like.
  • the subject to which the antitumor agent of the present invention is to be applied is not particularly limited as long as it is a tumor containing a mutant cell with a p53 gene mutation (preferably, one that shows an improvement in the activity of PI5P4K ⁇ ).
  • the tumor may be a malignant tumor (cancer).
  • tumors and cancers examples include colon cancer, colorectal cancer, stomach cancer, lung cancer, pancreatic cancer, prostate cancer, kidney cancer, thyroid cancer, breast cancer, biliary cancer, leukemia, brain cancer, Lymphoma, osteosarcoma, myeloma, brain tumor and the like.
  • the antitumor agent of the present invention can be formulated into any dosage form.
  • the dosage form include tablets, capsules, granules, powders, syrups, suspensions, suppositories, ointments, creams, gels, patches, inhalants, injections and the like.
  • the antitumor agent of the present invention may be administered by any method such as oral administration, intraperitoneal administration, intradermal administration, intravenous administration, intramuscular administration, intracerebral administration and the like.
  • the dose of the antitumor agent of the present invention is appropriately adjusted according to the condition, age, sex, components of the antitumor agent, and the like of the subject of administration.
  • the PI5P4K ⁇ inhibitor of the present invention can be used for diseases caused or exacerbated by enhancement of the function of PI5P4K ⁇ (in particular, the function as a GTP sensor and / or the function as a GTPase) other than tumors and cancers.
  • diseases include diabetes. Therefore, the inhibitor of the present invention can be used as an active ingredient of a preventive or therapeutic agent for metabolic diseases such as diabetes.
  • PI5P4K ⁇ inhibitory compounds were searched according to the method disclosed in Japanese Patent Application Laid-Open No. 2017-040603 (name of the invention “Method for screening a drug using NMR”).
  • the compounds targeted are the Pharmakon-1600 compound 1600 and the MSM-MTS method (Fukunishi, Y. Mikami, S. Kubota, H. Nakamura, “Multiple target screening method for accurate and accurate in silico screening.” Journal of Molecular Graphics and Modeling, 25, 61-70 (2005); Y. Fukunishi, S. Kubota, H.
  • a reaction solution a reaction solution in which 250 ⁇ M of GTP, 1.5 ⁇ M of PI5P4K ⁇ were dissolved in 10 mM of Phosphate (pH 7.5), 100 mM of NaCl, and 10 mM of MgCl 2 was prepared. 25 ⁇ L of the compound solution and 500 ⁇ L of the reaction solution were mixed, and reacted at 25 ° C. for 20 hours. The DMSO concentration in each sample was adjusted to 5%.
  • the IC50 value of compound (i) is 1.4 ⁇ M
  • the IC50 value of compound (3) is 0.57 ⁇ M
  • the IC50 value of compound (a) is 4.
  • the concentration was 7 ⁇ M, and it became clear that the compound (i) and the compound (3) exhibited stronger inhibitory activity than the conventionally known PI5P4K ⁇ inhibitor compound (a) (FIG. 2).
  • the IC50 value of PI5P4K ⁇ inhibitor compound SAR088 (a compound represented by the following structural formula (b), hereinafter also referred to as compound (b)) described in Non-patent document 2 presented in the present application is described as 3.8 ⁇ M Better than this. That is, it became clear that the compound (i) and the compound (3) show higher inhibitory activity than the conventional PI5P4K ⁇ inhibitory compound.
  • Compound (1) and Compound (2) already reduced the activity of PI5P4K ⁇ to less than 10% and less than 40%, respectively, at 0.5 ⁇ M which is the lowest concentration at which the activity can be evaluated by NMR. That is, its IC50 value is less than 0.5 ⁇ M.
  • each of the compounds (1) to (4) is a compound that binds to the GTP site of PI5P4K ⁇ , and is a compound capable of inhibiting the function of PI5P4K ⁇ as the GTPase and / or the function as the GTP sensor I understand. Also, its IC50 value shows significantly stronger inhibitory activity than the conventional inhibitory compounds, less than 1 ⁇ M (FIG. 5). Functional inhibition of PI5P4K ⁇ by these compounds is useful for analysis of GTP sensor mechanism. It is also expected to exert anti-tumor activity through the inhibition of the GTP sensor PI5P4K ⁇ .
  • these compounds can be used for prevention and treatment of diseases caused and / or deteriorated by enhancement of the function of PI5P4K ⁇ .
  • these compounds are advantageous in that the IC50 value against PI5P4K ⁇ is small, while the IC50 value against PI5P4K ⁇ is sufficiently large compared to the IC50 value against PI5P4K ⁇ , and inhibition of PI5P4K ⁇ is less likely to occur.

Abstract

[Problem] To provide a PI5P4Kβ inhibitor having a lower IC50 than conventional inhibitors and capable of strongly inhibiting PI5P4Kβ. [Solution] A PI5P4Kβ inhibitor containing, as an effective component, at least one selected from the group consisting of compounds represented by structural formulas (1) to (4), pharmaceutically acceptable salts thereof, and pharmaceutically acceptable solvates thereof.

Description

GTPセンサータンパク質PI5P4Kβの阻害剤Inhibitor of GTP sensor protein PI5P4Kβ
 本発明は、PI5P4Kβの阻害剤に関する。特にPI5P4KβのGTPセンサーとしての機能を阻害する阻害剤に関する。 The present invention relates to inhibitors of PI5P4Kβ. In particular, the present invention relates to an inhibitor that inhibits the function of PI5P4Kβ as a GTP sensor.
 がんが人間の死因の上位を占めていることは周知の事実である。これらがん全体のうち約50%がp53遺伝子の変異を伴っている。そしてp53遺伝子の変異を伴うこのようながんは、薬剤耐性の獲得や転移の促進が見られ、その予後が悪いことが知られている。 It is a well-known fact that cancer is the leading cause of human death. About 50% of all these cancers are associated with mutations in the p53 gene. And such cancer with mutation of p53 gene is seen to acquire drug resistance and promote metastasis, and it is known that its prognosis is bad.
 近年、p53変異がんの腫瘍形成に重要な因子として、イノシトールリン脂質キナーゼの一種ホスファチジルイノシトール-5-リン酸-4-キナーゼβ(PI5P4Kβ)が同定された。そのため、このPI5P4Kβの機能を阻害し抗腫瘍剤として利用し得る化合物の同定・開発が行われている。 In recent years, phosphatidylinositol-5-phosphate-4-kinase β (PI5P4Kβ), which is a type of inositol phospholipid kinase, has been identified as an important factor for tumorigenesis of p53 mutant cancer. Therefore, identification and development of compounds that can inhibit the function of PI5P4Kβ and can be used as an antitumor agent have been conducted.
 PI5P4Kβの機能を阻害する化合物が幾つか既に提案されている(例えば、非特許文献1~3)。しかしながらこれら化合物のIC50値は数μMと比較的大きい。そのため、より小さいIC50値でPI5P4Kβを強く阻害する化合物が依然として求められている。またこれら化合物はPI5P4Kβのホモログ(ヒトにおいてはPI5P4KαとPI5P4Kγ)にも作用し得る。特にPI5P4KαはPI5P4Kβよりも酵素学的活性が高く、PI5P4KαとPI5P4Kβのダブルノックアウトマウスは大勢致死となるため、PI5P4Kαを阻害しないことも重要である。そのため、PI5P4Kαに対するIC50値が、PI5P4Kβに対するIC50値よりも十分大きい化合物が好ましい。なお、PI5P4Kγはその活性が低いことから、仮に阻害を行ってもその効果は限定的であり、問題にならないと考えられる。 Several compounds that inhibit the function of PI5P4Kβ have already been proposed (eg, non-patent documents 1 to 3). However, the IC50 values of these compounds are relatively large at several μM. Therefore, there is still a need for compounds that strongly inhibit PI5P4Kβ with lower IC50 values. These compounds can also act on homologues of PI5P4Kβ (in humans, PI5P4Kα and PI5P4Kγ). In particular, PI5P4Kα has higher enzymological activity than PI5P4Kβ, and it is also important not to inhibit PI5P4Kα, since PI5P4Kα and PI5P4Kβ double knockout mice are lethal to many. Therefore, compounds in which the IC50 value for PI5P4Kα is sufficiently larger than the IC50 value for PI5P4Kβ are preferable. Since PI5P4Kγ has low activity, even if it is inhibited, its effect is limited and it is considered that it does not cause any problem.
 本発明は、従来よりもIC50値が小さく、PI5P4Kβを強く阻害することができるPI5P4Kβ阻害剤を提供することを目的とする。 An object of the present invention is to provide a PI5P4Kβ inhibitor that has a smaller IC50 value than conventional and can strongly inhibit PI5P4Kβ.
 本発明者らは前記課題について鋭意研究した結果、本発明を完成するに至った。 As a result of intensive studies on the above-mentioned problems, the present inventors have completed the present invention.
 まず本発明者らは、がん細胞の細胞内GTP濃度が著しく高いことに着目し、プロテオミクス、生化学、構造生物学および細胞生物学的手法を組み合わせた独自のアプローチにより、PI5P4Kβが哺乳細胞においてGTP濃度を検知・応答するセンサーとして機能すること、そしてPI5P4KβのGTPセンサー機能が腫瘍形成を促進することを発見した。このことは、p53変異がんがGTP濃度感知機能に依存していることの証左と考えられる。これらの知見に基づき、PI5P4KβをGTPセンサーとして位置付け、PI5P4Kβを小さいIC50値で強く阻害する化合物の同定を試み、所定の化合物がPI5P4Kβ阻害剤として使用できることを見出した。 First of all, the present inventors focused on the extremely high intracellular GTP concentration of cancer cells, and by using a unique approach combining proteomics, biochemistry, structural biology and cell biological methods, PI5P4Kβ in mammalian cells We have found that it functions as a sensor that detects and responds to GTP concentrations, and that the GTP sensor function of PI5P4Kβ promotes tumorigenesis. This is considered to be proof that p53 mutant cancer is dependent on GTP concentration sensing function. Based on these findings, we have positioned PI5P4Kβ as a GTP sensor and tried to identify a compound that strongly inhibits PI5P4Kβ with a small IC50 value, and found that a given compound can be used as a PI5P4Kβ inhibitor.
 すなわち本発明は、下記構造式(1)~(4)で表現される化合物およびこれら化合物の医薬的に許容される塩、並びにそれらの医薬的に許容される溶媒和物から成る群より選択される少なくとも1つを有効成分として含有するPI5P4Kβ阻害剤である。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
That is, the present invention is selected from the group consisting of compounds represented by the following structural formulas (1) to (4), pharmaceutically acceptable salts of these compounds, and pharmaceutically acceptable solvates thereof. PI5P4Kβ inhibitors containing at least one of them as an active ingredient.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
 また本発明は、上記の阻害剤を使用してPI5P4KβのGTPセンサーとしての機能を阻害する方法である。 The present invention is also a method for inhibiting the function of PI5P4Kβ as a GTP sensor using the above-mentioned inhibitor.
 また本発明は、上記の阻害剤を有効成分として含有する、PI5P4Kβが関与するGTPセンサー機構の解析に用いられる試薬組成物である。 The present invention is also a reagent composition for analysis of a GTP sensor mechanism involving PI5P4Kβ, which contains the above-mentioned inhibitor as an active ingredient.
 また本発明は、上記の阻害剤を有効成分として含有する抗腫瘍剤組成物である。 The present invention is also an antitumor agent composition comprising the above-mentioned inhibitor as an active ingredient.
 また本発明は、上記の方法を利用して、または上記の抗腫瘍剤組成物を投与して、腫瘍の発生、増殖および/または悪性化を予防ないし治療する方法である。 The present invention is also a method for preventing or treating tumor development, growth and / or malignancy by utilizing the above-mentioned method or administering the above-mentioned antitumor agent composition.
 さらに本発明は、上記の阻害剤を有効成分として含有する、PI5P4Kβの機能亢進に関する疾病を予防ないし治療するための医薬組成物である。 Furthermore, the present invention is a pharmaceutical composition for preventing or treating a disease relating to PI5P4Kβ hyperfunction, which comprises the above-mentioned inhibitor as an active ingredient.
 本発明に係る化合物はいずれも、1μM未満という極めて小さいIC50値でPI5P4Kβを強く阻害することが可能である。そのためPI5P4Kβの機能に関する解析用試薬、薬効が高い抗腫瘍剤および抗腫瘍治療を提供することができる。また本発明に係る化合物は、PI5P4Kαに比べてPI5P4Kβを強く阻害することが可能である。そのため薬効が高く、且つ、副作用の少ない抗腫瘍剤および抗腫瘍治療を提供することができる。さらには腫瘍やがんだけでなく、PI5P4Kβが関与する疾病の予防薬や治療薬を提供することができる。 All of the compounds of the present invention are capable of strongly inhibiting PI5P4Kβ with extremely low IC 50 values of less than 1 μM. Therefore, it is possible to provide a reagent for analysis of the function of PI5P4Kβ, a highly potent antitumor agent and an antitumor treatment. The compounds of the present invention are also capable of strongly inhibiting PI5P4Kβ as compared to PI5P4Kα. Therefore, it is possible to provide an antitumor agent and an antitumor treatment with high drug efficacy and few side effects. Furthermore, it is possible to provide a preventive or a remedy for diseases involving not only tumors and cancers but also PI5P4Kβ.
スクリーニングの概略を現した模式図である。It is a schematic diagram showing the outline of the screening. ある化合物のPI5P4Kβに対するIC50値の測定結果である。It is a measurement result of the IC50 value with respect to PI5P4K (beta) of a certain compound. (A)化合物(i)が水中で互変異性する様子を表す図である。     (B)化合物(i)の安定化化合物である化合物(4)を表す。(A) It is a figure showing a mode that a compound (i) tautomerizes in water. (B) represents a compound (4) which is a stabilized compound of the compound (i). スクリーニングで選ばれた2種の化合物がPI5P4Kβと結合している状態の結晶構造解析の結果である。It is a result of the crystal structure analysis of the state which 2 types of compounds selected by the screening have couple | bonded with PI5P4K (beta). 本発明に係る化合物と従来周知の化合物との対比である。It is a contrast with the compound based on this invention, and a conventionally well-known compound.
 以下、本発明について詳述する。 Hereinafter, the present invention will be described in detail.
 PI5P4Kβは基質であるホスファチジルイノシトール-5-リン酸をリン酸化する酵素(キナーゼ)である。このリン酸化においてGTPを消費する。仮説ではあるが、PI5P4Kβは細胞内のGTP濃度を検知するGTPセンサーとして機能する。より具体的には、PI5P4Kβが細胞内のGTP濃度を検知し、GTP濃度が高い場合にはGTPを消費して基質をリン酸化する。リン酸化された基質がセカンドメッセンジャーとして作用し、最終的に細胞が腫瘍となる。そのためPI5P4KβのGTPセンサーとしての機能を阻害すれば細胞の腫瘍化の予防などが期待できる。 PI5P4Kβ is an enzyme (kinase) that phosphorylates the substrate phosphatidylinositol-5-phosphate. GTP is consumed in this phosphorylation. Although hypothesized, PI5P4Kβ functions as a GTP sensor that detects intracellular GTP concentration. More specifically, PI5P4Kβ detects intracellular GTP concentration, and consumes GTP to phosphorylate the substrate when GTP concentration is high. The phosphorylated substrate acts as a second messenger and eventually the cells become tumors. Therefore, if the function of PI5P4Kβ as a GTP sensor is inhibited, prevention of tumorigenesis of cells can be expected.
  そこで、これを検証するために本発明者らは、GTPに対する感受性を喪失した変異体酵素PI5P4KβF205Lを作製した。この変異体酵素を発現させた細胞の軟寒天プレートにおける増殖は、野生型PI5P4Kβを発現させた細胞に比べ有意に抑制された。さらに、野生型PI5P4Kβを発現させた細胞をヌードマウスに移植したところ半数が生着し腫瘍を形成したのに対し、GTP非依存的PI5P4KβF205L変異体を発現させた細胞はヌードマウスに移植しても腫瘍をまったく形成しなかった。このことから、PI5P4KβのGTPセンサーは腫瘍の形成に寄与することが明らかにされた(Sumita, Lo, Takeuchi, et al., Molecular Cell, 61, 187-198 (2016) 特にFig.6参照)。 Accordingly, the present inventors to verify this, to produce a mutant enzyme PI5P4Kβ F205L that have lost sensitivity to GTP. Growth on soft agar plates of cells expressing this mutant enzyme was significantly suppressed as compared to cells expressing wild type PI5P4Kβ. Furthermore, when cells expressing wild type PI5P4Kβ were transplanted to nude mice, half were engrafted and tumors were formed, whereas cells expressing the GTP independent PI5P4Kβ F205L mutant were transplanted to nude mice. Even no tumors formed. From this, it was revealed that the GTP sensor of PI5P4Kβ contributes to the formation of a tumor (Sumita, Lo, Takeuchi, et al., Molecular Cell, 61, 187-198 (2016), particularly, see FIG. 6).
 本発明のPI5P4Kβ阻害剤は、下記構造式(1)~(4)で表現される化合物およびこれら化合物の医薬的に許容される塩、並びにそれらの医薬的に許容される溶媒和物から成る群より選択される少なくとも1つを有効成分として含有する。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
The PI5P4Kβ inhibitor of the present invention is a group consisting of compounds represented by the following structural formulas (1) to (4), pharmaceutically acceptable salts of these compounds, and pharmaceutically acceptable solvates thereof. At least one selected from the above is contained as an active ingredient.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
 以下、構造式(1)~(4)で表現される化合物のことを、それぞれ化合物(1)、化合物(2)、化合物(3)、化合物(4)と表現する場合もある。同様に、構造式(X)で表現される化合物を化合物(X)と表現することがある。 Hereinafter, the compounds represented by Structural Formulas (1) to (4) may be expressed as Compound (1), Compound (2), Compound (3) and Compound (4), respectively. Similarly, the compound represented by Structural Formula (X) may be expressed as Compound (X).
 『有効成分として含有する』とは、所定の阻害剤の投与量においてPI5P4Kβを一定程度阻害できることを意味する。 “Contained as an active ingredient” means that PI5P4Kβ can be inhibited to a certain extent at a predetermined dose of the inhibitor.
 本発明の阻害剤は、in vivoとin vitroのいずれにおいても使用可能である。in vivoの場合、単細胞生物、多細胞生物のいずれに投与してもよい。多細胞生物としては魚類、両生類、爬虫類、鳥類、人類を除く哺乳類および人類が挙げられ、いずれに投与してもよい。in vitroの場合、細胞、多細胞生物由来細胞、多細胞生物由来細胞組織いずれに投与してもよい。 The inhibitors of the present invention can be used either in vivo or in vitro. When in vivo, it may be administered to either unicellular or multicellular organisms. Multicellular organisms include fish, amphibians, reptiles, birds, mammals other than humans, and humans, which may be administered to any of them. When in vitro, it may be administered to cells, cells derived from multicellular organisms, or cell tissues derived from multicellular organisms.
 構造式(1)~(4)で表現される化合物には、特に断らない限り、存在し得る互変異性体、幾何異性体、鏡像異性体などの立体異性体のいずれもが含まれる。 The compounds represented by structural formulas (1) to (4) include all tautomers, geometric isomers and stereoisomers such as enantiomers which can be present, unless otherwise specified.
 構造式(1)~(4)で表現される化合物の入手方法は任意であり、自ら合成してもよいし、商業的に入手してもよい。 The method for obtaining the compounds represented by structural formulas (1) to (4) is optional, and may be synthesized by itself or may be obtained commercially.
 構造式(1)~(4)で表現される化合物の合成方法は特に限定されず、従来公知の種々の方法を単独または組み合わせて合成すればよい。 The synthesis method of the compounds represented by structural formulas (1) to (4) is not particularly limited, and various known methods may be synthesized alone or in combination.
  各化合物を商業的に入手する場合、例えば、以下の通り商業的に入手できる。 When each compound is obtained commercially, it is commercially available, for example, as follows.
 構造式(1)で表現される化合物(CAS番号19795-96-1、PubChem番号88253)は、例えば、Vitas-M社から、商品名「STK238453」として、商業的に入手することができる。 The compound represented by the structural formula (1) (CAS No. 19795-96-1, PubChem No. 88253) is commercially available, for example, from Vitas-M under the trade name “STK238453”.
 構造式(2)で表現される化合物は、例えば、TimTec社から、商品名「ST095461」として、商業的に入手することができる。 The compound represented by the structural formula (2) can be obtained commercially, for example, from TimTec under the trade name “ST095461”.
 構造式(3)で表現される化合物(CAS番号13710-19-5、PubChem番号610479)は、例えば、Sigma社などから、商品名「tolfenamic acid」として、商業的に入手することができる。 The compound represented by the structural formula (3) (CAS No. 13710-19-5, PubChem No. 610479) can be commercially obtained, for example, from Sigma Co., Ltd. under the trade name “tolfenic acid”.
 構造式(4)で表現される化合物は、例えば、Labotest社から、商品名「LT00097173」として、商業的に入手することができる。 The compound represented by structural formula (4) is commercially available, for example, from Labotest under the trade name “LT00097173”.
 本発明において、「医薬的に許容される」とは、所望の主作用を得るための投与量において投与対象者にとって通常、有害ではないことを意味する。 In the present invention, "pharmaceutically acceptable" means generally not harmful to the recipient at the dose to achieve the desired main effect.
 本発明において、医薬的に許容される塩としては、化合物が酸性基を有する場合には、以下のものが挙げられる。 In the present invention, as the pharmaceutically acceptable salt, when the compound has an acidic group, the following may be mentioned.
 例えば、リチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩;マグネシウム塩、カルシウム塩などのアルカリ土類金属塩などが挙げられる。またリジン、δ-ヒドロキシリジン、アルギニンなどの塩基性アミノ酸付加塩などが挙げられる。さらにはアンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、ジシクロヘキシルアミン、トリス(ヒドロキシメチル)アミノメタン、N,N-ビス(ヒドロキシエチル)ピペラジン、2-アミノ-2-メチル-1-プロパノール、エタノールアミン、N-メチルグルカミン、L-グルカミンなどのアミン付加塩などが挙げられる。 Examples thereof include alkali metal salts such as lithium salts, sodium salts and potassium salts; and alkaline earth metal salts such as magnesium salts and calcium salts. In addition, basic amino acid addition salts such as lysine, δ-hydroxylysine, arginine and the like can be mentioned. Furthermore, ammonia, methylamine, dimethylamine, trimethylamine, dicyclohexylamine, tris (hydroxymethyl) aminomethane, N, N-bis (hydroxyethyl) piperazine, 2-amino-2-methyl-1-propanol, ethanolamine, N Amine addition salts such as methylglucamine, L-glucamine and the like.
 本発明において、医薬的に許容される塩としては、化合物が塩基性基を有する場合には、以下のものが挙げられる。 In the present invention, as the pharmaceutically acceptable salt, when the compound has a basic group, the following may be mentioned.
 例えば、塩酸塩、臭化水素酸塩、硝酸塩、硫酸塩、リン酸塩などの無機酸塩;メタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、酢酸、プロピオン酸塩、酒石酸、フマル酸、マレイン酸、リンゴ酸、シュウ酸、コハク酸、クエン酸、安息香酸、マンデル酸、ケイ皮酸、乳酸、グリコール酸、グルクロン酸、アスコルビン酸、ニコチン酸、サリチル酸などの有機酸塩などが挙げられる。さらにはアスパラギン酸、グルタミン酸などの酸性アミノ酸付加塩などが挙げられる。 For example, mineral acid salts such as hydrochlorides, hydrobromides, nitrates, sulfates and phosphates; methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid, propionate, tartaric acid, fumaric acid, maleic acid Examples of the acid include malic acid, malic acid, oxalic acid, succinic acid, citric acid, benzoic acid, mandelic acid, cinnamic acid, lactic acid, glycolic acid, glucuronic acid, ascorbic acid, nicotinic acid, and organic acid salts such as salicylic acid. Furthermore, acidic amino acid addition salts such as aspartic acid and glutamic acid can be mentioned.
 本発明において、医薬的に許容される溶媒和物としては、例えば、水和物、アルコール和物の他、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、クロロホルム、ジクロロエタン、ジクロロメタン、ジエチルエーテル、メチルt-ブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、アセトン、メチルエチルケトン、イソブチルメチルケトン、トルエン、ベンゼン、o-キシレン、m-キシレン、p-キシレン、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレン、炭酸ジエチル、炭酸ジメチル、ヘキサン、ペンタン、ヘプタン、オクタンおよびシクロヘキサンからなる群より選択される薬学的に許容される溶媒との溶媒和物などが挙げられる。これらの中では水和物が通常好ましい。ここで、化合物を合成する際に使用し残存した溶媒との溶媒和物も含まれる。 In the present invention, pharmaceutically acceptable solvates include, for example, hydrate, alcoholate, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, chloroform, dichloroethane, dichloromethane, diethyl ether Methyl t-butyl ether, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, isobutyl methyl ketone, toluene, benzene, o-xylene, m -Xylene, p-xylene, ethyl acetate, propyl acetate, butyl acetate, propylene carbonate, diethyl carbonate, dimethyl carbonate, hexane, Tan, heptane, etc. solvates with pharmaceutically acceptable solvents selected from the group consisting of octane and cyclohexane. Among these, hydrates are usually preferred. Here, the solvate with the solvent which was used when synthesize | combined the compound and remained is also included.
 構造式(1)~(4)で表現される化合物のPI5P4Kβに対するIC50値は1μM未満と極めて小さい。少量のこれら化合物投与によって、PI5P4Kβを十分に機能阻害することが推測される。よって、構造式(1)~(4)で表現される化合物などの投与によってPI5P4Kβの機能(特にGTPaseとしての機能および/またはGTPセンサーとしての機能)を阻害することが可能と考えられる。 The IC 50 values for PI5P4Kβ of the compounds represented by structural formulas (1) to (4) are extremely small, less than 1 μM. It is speculated that administration of a small amount of these compounds sufficiently inhibits PI5P4Kβ. Therefore, it is considered possible to inhibit the function of PI5P4Kβ (in particular, the function as a GTPase and / or the function as a GTP sensor) by administration of compounds represented by structural formulas (1) to (4).
 さらにこれら化合物は、PI5P4KαよりもPI5P4Kβに強く作用する点で有利である。より具体的には、PI5P4KβのファミリーであるPI5P4Kαに対するIC50値はそれぞれ、化合物(1)は200μM以上、化合物(2)は20μM以上、化合物(3)は100μM以上、化合物(4)は40μM以上である。いずれの化合物もPI5P4Kβに対するIC50値は1μM未満であることから、PI5P4KαとPI5P4KβとではPI5P4Kβに極めて選択的に作用することが確認できた。 Furthermore, these compounds are advantageous in that they exert stronger action on PI5P4Kβ than PI5P4Kα. More specifically, the IC50 values for PI5P4Kα, a family of PI5P4Kβ, are 200 μM or more for compound (1), 20 μM or more for compound (2), 100 μM or more for compound (3), and 40 μM or more for compound (4) is there. It was confirmed that PI5P4Kβ and PI5P4Kβ act extremely selectively on PI5P4Kβ because all compounds have an IC50 value of less than 1 μM against PI5P4Kβ.
 なお、確認的に説明するが、IC50値は、阻害対象の活性を半減させることが可能な濃度を意味する。つまりIC50値が小さいほど阻害能力が高い。 In addition, although it demonstrates conclusively, an IC50 value means the density | concentration which can halve the activity of inhibition object. That is, the smaller the IC50 value, the higher the inhibition ability.
 上述の通り、PI5P4KβはGTPセンサーとして機能する。上記阻害剤によってPI5P4Kβのこの機能を阻害することで、PI5P4Kβが関与する(あるいはPI5P4Kβが起点となる)GTPセンサー機構の解析(例えばシグナル伝達に関与する因子や様式の特定)に利用できる。したがって、本発明のPI5P4Kβ阻害剤は、PI5P4Kβが関与するGTPセンサー機構の解析用試薬の有効成分として使用することができる。 As mentioned above, PI5P4Kβ functions as a GTP sensor. By inhibiting this function of PI5P4Kβ by the above-mentioned inhibitor, it can be used for analysis of GTP sensor mechanism involving PI5P4Kβ (or starting from PI5P4Kβ) (for example, identification of a factor or mode involved in signal transduction). Therefore, the PI5P4Kβ inhibitor of the present invention can be used as an active ingredient of a reagent for analysis of GTP sensor mechanism involving PI5P4Kβ.
 本発明の解析用試薬は、有効成分として、上述したPI5P4Kβ阻害剤を含有する。この阻害剤以外にも、任意の成分を含んでもよい。 The analysis reagent of the present invention contains the above-mentioned PI5P4Kβ inhibitor as an active ingredient. Other than this inhibitor, any component may be included.
 また上述の通り、PI5P4Kβは腫瘍形成の重要因子である。PI5P4Kβの機能阻害はひいては、p53遺伝子変異細胞の腫瘍化もしくはがん化(腫瘍の悪性化)の予防(完全予防および遅延化のいずれも意味する)、p53遺伝子変異細胞、p53遺伝子変異細胞を含む腫瘍もしくはがんの増殖の予防(完全停止および低速化のいずれも意味する)、あるいはp53遺伝子変異腫瘍もしくはがんの治療(根治および緩和のいずれも意味する)に繋がるものと推測される。したがって、本発明のPI5P4Kβ阻害剤は抗腫瘍剤の有効成分として使用することができる。 Also, as mentioned above, PI5P4Kβ is an important factor in tumorigenesis. The functional inhibition of PI5P4Kβ in turn includes the prevention (both complete prevention and delay) of tumorigenesis or carcinogenesis (malignancy of tumor) of p53 gene mutant cells, p53 gene mutant cells, p53 gene mutant cells It is speculated that it will lead to the prevention of tumor or cancer growth (meaning both complete arrest and slowing down) or treatment of p53 gene mutated tumor or cancer (meaning both cure and alleviation). Therefore, the PI5P4Kβ inhibitor of the present invention can be used as an active ingredient of an antitumor agent.
 本発明の抗腫瘍剤は、有効成分として、上述したPI5P4Kβ阻害剤を含有する。この阻害剤以外にも、医薬的に許容される限り任意の成分を含んでもよい。 The antitumor agent of the present invention contains the PI5P4Kβ inhibitor described above as an active ingredient. Other than this inhibitor, any component may be included as long as it is pharmaceutically acceptable.
 本発明において『有効成分として含有する』とは、解析用試薬または抗腫瘍剤の所定の投与量において所望の効果を得られる程度の量のPI5P4Kβ阻害剤を投与できることを意味する。 In the present invention, “containing as an active ingredient” means that a PI5P4Kβ inhibitor can be administered in an amount such that a desired effect can be obtained at a predetermined dose of an analysis reagent or an antitumor agent.
 あくまで目安であるが、抗腫瘍剤として生物に投与する場合、本発明の阻害剤の投与量は、1日当たり、且つ、体重1kgあたり、0.001mg以上、0.01mg以上、0.1mg以上、0.5mg以上、または1mg以上となるように薬剤中の含有量が決定されることが好ましい。他方、あくまで目安であるが、本発明の阻害剤の投与量が、1日当たり、且つ、体重1kgあたり、100mg以下、10mg以下、9mg以下、8mg以下、7mg以下、6mg以下、5mg以下、4mg以下、または3mg以下となるように薬剤中の含有量が決定されることが好ましい。 The dose of the inhibitor of the present invention is 0.001 mg or more, 0.01 mg or more, and 0.1 mg or more per kg of body weight per day and when it is administered to an organism as an antitumor agent, although it is a guide to the last. The content in the drug is preferably determined to be 0.5 mg or more or 1 mg or more. On the other hand, the dose of the inhibitor of the present invention is 100 mg or less, 10 mg or less, 9 mg or less, 8 mg or less, 7 mg or less, 6 mg or less, 5 mg or less, 4 mg or less per day and per kg body weight Preferably, the content in the drug is determined to be 3 mg or less.
 解析用試薬または抗腫瘍剤におけるPI5P4Kβ阻害剤の含有量は、解析用試薬全量基準または抗腫瘍剤全量基準で、通常は、1~90質量%である。2質量%以上、3質量%以上、4質量%以上、5質量%以上、6質量%以上、7質量%以上、8質量%以上、9質量%以上、10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上としてもよい。他方、85質量%以下、80質量%以下、75質量%以下、70質量%以下、65質量%以下、60質量%以下、55質量%以下、50質量%以下、45質量%以下としてもよい。 The content of the PI5P4Kβ inhibitor in the analysis reagent or the antitumor agent is usually 1 to 90% by mass, based on the total amount of the analysis reagent or the total amount of the antitumor agent. 2 mass% or more, 3 mass% or more, 4 mass% or more, 5 mass% or more, 6 mass% or more, 7 mass% or more, 8 mass% or more, 9 mass% or more, 10 mass% or more, 15 mass% or more, It is good also as 20 mass% or more, 25 mass% or more, and 30 mass% or more. On the other hand, 85% by mass, 80% by mass, 75% by mass, 70% by mass, 65% by mass, 60% by mass, 55% by mass, 50% by mass, 45% by mass or less.
 本発明の抗腫瘍剤は、微小管集合阻害剤、AKT阻害剤、mTOR阻害剤、MEK阻害剤、RTK阻害剤、ATM阻害剤、ATR阻害剤、PI3K阻害剤、EGFR阻害剤、B-Raf阻害剤、C-kit阻害剤、PARP阻害剤、DNA架橋剤、DNA挿入剤、およびシチジン類似体から成る群より選択される1以上の剤をさらに含有しても良い。 The antitumor agent of the present invention is a microtubule assembly inhibitor, AKT inhibitor, mTOR inhibitor, MEK inhibitor, RTK inhibitor, ATM inhibitor, ATR inhibitor, PI3K inhibitor, EGFR inhibitor, B-Raf inhibition It may further contain one or more agents selected from the group consisting of agents, C-kit inhibitors, PARP inhibitors, DNA crosslinkers, DNA intercalators, and cytidine analogs.
 本発明の抗腫瘍剤は、所望により、着色剤、保存剤、香料、風味剤、甘味剤などの医薬的に許容される添加物や他の治療薬を含有させることができる。 The antitumor agent of the present invention can optionally contain pharmaceutically acceptable additives such as coloring agents, preservatives, flavors, flavors, sweeteners and other therapeutic agents.
 本発明の抗腫瘍剤の製剤化に際しては、医薬的に許容される安定化剤を配合することが好ましい。そのような安定化剤としては、例えば、アルブミン、グロブリン、ゼラチン、マンニトール、グルコース、デキストラン、エチレングリコールなどが挙げられる。 When formulating the antitumor agent of the present invention, it is preferable to incorporate a pharmaceutically acceptable stabilizer. Such stabilizers include, for example, albumin, globulin, gelatin, mannitol, glucose, dextran, ethylene glycol and the like.
 本発明の抗腫瘍剤は、さらに任意の成分として、医薬的に許容される任意の希釈液、担体、賦形剤などを含んでもよい。 The antitumor agent of the present invention may further contain, as an optional component, any pharmaceutically acceptable diluent, carrier, excipient and the like.
 本発明の抗腫瘍剤を適用する対象はp53遺伝子変異を伴う変異細胞を含む腫瘍(好ましくはPI5P4Kβの活性向上が認められるもの)であれば特に限定されない。腫瘍は悪性腫瘍(がん)であってもよい。 The subject to which the antitumor agent of the present invention is to be applied is not particularly limited as long as it is a tumor containing a mutant cell with a p53 gene mutation (preferably, one that shows an improvement in the activity of PI5P4Kβ). The tumor may be a malignant tumor (cancer).
 腫瘍やがんとしては、例えば、大腸がん、直腸結腸がん、胃がん、肺がん、膵がん、前立腺がん、腎臓がん、甲状腺がん、乳がん、胆道がん、白血病、脳悪性腫瘍、リンパ腫、骨肉腫、骨髄腫、脳腫瘍などが挙げられる。 Examples of tumors and cancers include colon cancer, colorectal cancer, stomach cancer, lung cancer, pancreatic cancer, prostate cancer, kidney cancer, thyroid cancer, breast cancer, biliary cancer, leukemia, brain cancer, Lymphoma, osteosarcoma, myeloma, brain tumor and the like.
 本発明の抗腫瘍剤は、任意の剤型に製剤化することができる。剤型としては、例えば、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤、懸濁剤、座剤、軟膏、クリーム剤、ゲル剤、貼付剤、吸入剤、注射剤などが挙げられる。 The antitumor agent of the present invention can be formulated into any dosage form. Examples of the dosage form include tablets, capsules, granules, powders, syrups, suspensions, suppositories, ointments, creams, gels, patches, inhalants, injections and the like.
 本発明の抗腫瘍剤は、経口投与、腹腔内投与、皮内投与、静脈内投与、筋肉内投与、脳内投与など任意の方法によって投与してよい。 The antitumor agent of the present invention may be administered by any method such as oral administration, intraperitoneal administration, intradermal administration, intravenous administration, intramuscular administration, intracerebral administration and the like.
 本発明の抗腫瘍剤の投与量は、投与対象者の症状、年齢、性別、抗腫瘍剤の成分などにより適宜調整されるものである。 The dose of the antitumor agent of the present invention is appropriately adjusted according to the condition, age, sex, components of the antitumor agent, and the like of the subject of administration.
 本発明のPI5P4Kβ阻害剤は、腫瘍やがん以外にも、PI5P4Kβの機能(特にGTPセンサーとしての機能および/またはGTPaseとしての機能)が亢進することで生じる又は悪化する疾病に使用可能である。このような疾病として、糖尿病などが挙げられる。したがって本発明の阻害剤は、糖尿病などの代謝疾病の予防薬ないし治療薬の有効成分として使用することが可能である。 The PI5P4Kβ inhibitor of the present invention can be used for diseases caused or exacerbated by enhancement of the function of PI5P4Kβ (in particular, the function as a GTP sensor and / or the function as a GTPase) other than tumors and cancers. Such diseases include diabetes. Therefore, the inhibitor of the present invention can be used as an active ingredient of a preventive or therapeutic agent for metabolic diseases such as diabetes.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。  EXAMPLES The present invention will be specifically described by way of the following examples, but the present invention is not limited to these examples.
 まず、特開2017-040603号公報(発明の名称「NMRを用いた薬剤のスクリーニング方法」)に開示された手法に準じて、PI5P4Kβ阻害化合物を探索した。対象とした化合物は、Pharmakon-1600の化合物1600種およびMSM-MTS法(Fukunishi, Y. Mikami, S. Kubota, H. Nakamura, “Multiple target screening method for robust and accurate in silico screening.” Journal of Molecular Graphics and Modelling, 25, 61-70 (2005); Y. Fukunishi, S. Kubota, H. Nakamura, “Noise reduction method for molecular interaction energy: application to in silico drug screening and in silico target protein screening”, Journal of Chemical Information and Modeling, 46, 2071-2084 (2006))を用いた200万化合物のin silicoスクリーニングから選定した候補化合物1167種である。 First, PI5P4Kβ inhibitory compounds were searched according to the method disclosed in Japanese Patent Application Laid-Open No. 2017-040603 (name of the invention “Method for screening a drug using NMR”). The compounds targeted are the Pharmakon-1600 compound 1600 and the MSM-MTS method (Fukunishi, Y. Mikami, S. Kubota, H. Nakamura, “Multiple target screening method for accurate and accurate in silico screening.” Journal of Molecular Graphics and Modeling, 25, 61-70 (2005); Y. Fukunishi, S. Kubota, H. Nakamura, “Noise reduction method for molecular interaction energy: application to silico drug screening and in silico target protein screening”, Journal of the These are candidate compounds 1167 selected from in silico screening of 2 million compounds using Chemical Information and Modeling, 46, 2071-2084 (2006)).
 Pharmakon-1600の化合物1600種について、特開2017-040603号公報(発明の名称「NMRを用いた薬剤のスクリーニング方法」)に開示された手法に準じて、PI5P4Kβ阻害化合物を探索した結果、同定された化合物の1つが化合物(3)である。
Figure JPOXMLDOC01-appb-C000013
As a result of searching for a PI5P4Kβ inhibiting compound according to the method disclosed in JP-A-2017-040603 (name of the invention “Method for screening a drug using NMR”), about 1600 compounds of Pharmakon-1600 are identified as a result of searching One of the above compounds is the compound (3).
Figure JPOXMLDOC01-appb-C000013
 in silicoスクリーニングから選定した候補化合物1167種についても同様に、特開2017-040603号公報に開示された手法に準じて解析を行った。 Similarly, analysis was performed on the candidate compounds 1167 selected from in silico screening according to the method disclosed in JP-A-2017-040603.
 その結果同定された化合物の1つが下記構造式(i)で表現される化合物である。以下化合物(i)とも呼称する。
Figure JPOXMLDOC01-appb-C000014
One of the compounds identified as a result is a compound represented by the following structural formula (i). Hereinafter, it is also referred to as compound (i).
Figure JPOXMLDOC01-appb-C000014
 次に、同定された阻害化合物のIC50値を得るため、化合物(i)については1.8μM~60μM(2倍希釈系列)、化合物(3)については1.3μM~20μM(2倍希釈系列)の希釈系列を25μLずつ作成した。反応液として、250μMのGTP、1.5μMのPI5P4Kβを10mMのPhosphate(pH7.5)、100mMのNaCl、10mMのMgClに溶解させた反応液を調製した。化合物の溶液25μLと、反応液500μLと混合し、25℃で20時間反応を行った。各サンプル中のDMSO濃度は5%となるように調整した。 Next, in order to obtain an IC 50 value of the identified inhibitory compound, 1.8 μM to 60 μM (2-fold dilution series) for compound (i), 1.3 μM to 20 μM (2-fold dilution series) for compound (3) 25 μL of each dilution series was prepared. As a reaction solution, a reaction solution in which 250 μM of GTP, 1.5 μM of PI5P4Kβ were dissolved in 10 mM of Phosphate (pH 7.5), 100 mM of NaCl, and 10 mM of MgCl 2 was prepared. 25 μL of the compound solution and 500 μL of the reaction solution were mixed, and reacted at 25 ° C. for 20 hours. The DMSO concentration in each sample was adjusted to 5%.
 対照として、下記構造式(a)で表現される化合物についても同様に解析を行った。以下、この化合物を化合物(a)とも呼称する。これは本願が提示した非特許文献1に記載されている、PI5P4KαやPI5P4Kβを阻害できる化合物の1つである。この化合物については、1.8μM~120μM(2倍希釈系列)の濃度希釈系列を作成した。 As a control, analysis was similarly performed on a compound represented by the following structural formula (a). Hereinafter, this compound is also referred to as compound (a). This is one of the compounds which can inhibit PI5P4Kα or PI5P4Kβ described in Non-Patent Document 1 presented in the present application. For this compound, a concentration dilution series of 1.8 μM to 120 μM (2-fold dilution series) was prepared.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 GDP/GTP比の濃度依存性からIC50値を算出した結果、化合物(i)のIC50値は1.4μM、化合物(3)のIC50値は0.57μM、化合物(a)のIC50値は4.7μMであり、化合物(i)および化合物(3)は従来周知なPI5P4Kβ阻害化合物(a)よりも強い阻害活性を示すことが明らかとなった(図2)。さらに本願が提示した非特許文献2に記載されているPI5P4Kβ阻害化合物SAR088(下記構造式(b)で表現される化合物、以下化合物(b)とも呼称する)のIC50値は3.8μMと記載されており、これと比べても優れている。つまり、化合物(i)および化合物(3)は、従来のPI5P4Kβ阻害化合物よりも高い阻害活性を示すことが明らかとなった。 As a result of calculating the IC50 value from the concentration dependency of the GDP / GTP ratio, the IC50 value of compound (i) is 1.4 μM, the IC50 value of compound (3) is 0.57 μM, and the IC50 value of compound (a) is 4. The concentration was 7 μM, and it became clear that the compound (i) and the compound (3) exhibited stronger inhibitory activity than the conventionally known PI5P4Kβ inhibitor compound (a) (FIG. 2). Furthermore, the IC50 value of PI5P4Kβ inhibitor compound SAR088 (a compound represented by the following structural formula (b), hereinafter also referred to as compound (b)) described in Non-patent document 2 presented in the present application is described as 3.8 μM Better than this. That is, it became clear that the compound (i) and the compound (3) show higher inhibitory activity than the conventional PI5P4Kβ inhibitory compound.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 また化合物(i)については、水溶液中での互変異性が見つかったことから、これを安定化するため、安定化化合物(下記化合物(4))を作成した。同様に解析したところ、この化合物のIC50値は0.71μMであり、活性がさらに強化されたことが確認できた(図3)。
Figure JPOXMLDOC01-appb-C000017
In addition, since the compound (i) was found to have tautomerism in an aqueous solution, in order to stabilize it, a stabilized compound (the following compound (4)) was prepared. Similar analysis revealed that the IC50 value of this compound was 0.71 μM, confirming that the activity was further enhanced (FIG. 3).
Figure JPOXMLDOC01-appb-C000017
 化合物(3)および化合物(4)について、出願人らが提唱した方法(Sumita, K. et al. The Lipid Kinase PI5P4Kβ; Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis. Molecular Cell 61, 187-198 (2016), Miki Senda, Use of Multiple Cryoprotectants to Improve Diffraction Quality from Protein CrystalsCryst. Growth Des., 2016, 16 (3), pp 1565-1571)に則り、結晶構造解析を行った。その結果、いずれの化合物もPI5P4KβのGTP結合ポケットに結合し、競合的に酵素反応を阻害することが明らかとなった。そして阻害に際しこれら化合物は異なる位置に結合することもわかった。この知見から、相対位置に基づき、これら化合物の構造をつなぎ合わせた化合物(Link compound)を設計した(図4参照)。化合物(1)および(2)はこのLink compoundに構造的に類似している。これらについても同様にIC50値を解析した。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-I000019
For the compound (3) and the compound (4), the method proposed by the applicants (Sumita, K. et al. The Lipid Kinase PI5P4Kβ; Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis. Molecular Cell 61, 187-198 (2016 Crystal structure analysis was performed according to Miki Senda, Use of Multiple Cryoprotectants to Improve Diffraction Quality from Protein Crystals Cryst. Growth Des., 2016, 16 (3), pp 1565-1571). As a result, it became clear that all compounds bind to the GTP binding pocket of PI5P4Kβ and competitively inhibit the enzyme reaction. It was also found that these compounds bind to different positions upon inhibition. From this finding, based on the relative position, a compound (Link compound) in which the structures of these compounds were connected was designed (see FIG. 4). Compounds (1) and (2) are structurally similar to this Link compound. The IC50 values were similarly analyzed for these.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-I000019
 その結果、化合物(1)および化合物(2)は、NMRにより活性を評価可能な最低濃度である0.5μMで既にPI5P4Kβの活性をそれぞれ10%未満および40%未満に低下させることがわかった。すなわちそのIC50値は0.5μMを下回っている。 As a result, it was found that Compound (1) and Compound (2) already reduced the activity of PI5P4Kβ to less than 10% and less than 40%, respectively, at 0.5 μM which is the lowest concentration at which the activity can be evaluated by NMR. That is, its IC50 value is less than 0.5 μM.
 以上のことから、化合物(1)~(4)はいずれも、PI5P4KβのGTP部位に結合する化合物であり、PI5P4KβのGTPaseとしての機能および/またはGTPセンサーとしての機能を阻害可能な化合物であることがわかった。またそのIC50値は1μM未満と従来の阻害化合物よりも有意に強い阻害活性を示す(図5)。これらの化合物によるPI5P4Kβの機能阻害はGTPセンサー機構の解析に有用である。またGTPセンサーPI5P4Kβの阻害を介して抗腫瘍活性を発揮することが期待される。さらにPI5P4Kβの機能が亢進することによって生じるおよび/または悪化する疾病に対しても、これら化合物が予防や治療に使用できることが期待される。加えてこれらの化合物は、PI5P4Kβに対するIC50値が小さい一方、PI5P4Kαに対するIC50値はPI5P4Kβに対するIC50値と比較して十分大きく、PI5P4Kαの阻害は起こしにくい点で有利である。 From the above, each of the compounds (1) to (4) is a compound that binds to the GTP site of PI5P4Kβ, and is a compound capable of inhibiting the function of PI5P4Kβ as the GTPase and / or the function as the GTP sensor I understand. Also, its IC50 value shows significantly stronger inhibitory activity than the conventional inhibitory compounds, less than 1 μM (FIG. 5). Functional inhibition of PI5P4Kβ by these compounds is useful for analysis of GTP sensor mechanism. It is also expected to exert anti-tumor activity through the inhibition of the GTP sensor PI5P4Kβ. Furthermore, it is expected that these compounds can be used for prevention and treatment of diseases caused and / or deteriorated by enhancement of the function of PI5P4Kβ. In addition, these compounds are advantageous in that the IC50 value against PI5P4Kβ is small, while the IC50 value against PI5P4Kα is sufficiently large compared to the IC50 value against PI5P4Kβ, and inhibition of PI5P4Kα is less likely to occur.

Claims (6)

  1.  下記構造式(1)~(4)で表現される化合物およびこれら化合物の医薬的に許容される塩、並びにそれらの医薬的に許容される溶媒和物から成る群より選択される少なくとも1つを有効成分として含有するPI5P4Kβ阻害剤。
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
    Figure JPOXMLDOC01-appb-I000003
    Figure JPOXMLDOC01-appb-I000004
    At least one selected from the group consisting of compounds represented by the following structural formulas (1) to (4) and pharmaceutically acceptable salts of these compounds, and pharmaceutically acceptable solvates thereof: PI5P4K beta inhibitor which contains as an active ingredient.
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
    Figure JPOXMLDOC01-appb-I000003
    Figure JPOXMLDOC01-appb-I000004
  2.  請求項1に記載の阻害剤を使用してPI5P4KβのGTPセンサーとしての機能を阻害する方法。 A method for inhibiting the function of PI5P4Kβ as a GTP sensor using the inhibitor according to claim 1.
  3.  請求項1に記載の阻害剤を有効成分として含有する、PI5P4Kβが関与するGTPセンサー機構の解析に用いられる試薬組成物。 A reagent composition for analysis of a GTP sensor mechanism involving PI5P4Kβ, which comprises the inhibitor according to claim 1 as an active ingredient.
  4.  請求項1に記載の阻害剤を有効成分として含有する抗腫瘍剤組成物。 An antitumor agent composition comprising the inhibitor according to claim 1 as an active ingredient.
  5.  請求項2に記載の方法を利用して、または請求項4に記載の抗腫瘍剤組成物を投与して、腫瘍の発生、増殖および/または悪性化を予防ないし治療する方法。 A method for preventing or treating tumor development, growth and / or malignancy, using the method according to claim 2 or administering the antitumor agent composition according to claim 4.
  6.  請求項1に記載の阻害剤を有効成分として含有する、PI5P4Kβの機能亢進に関する疾病を予防ないし治療するための医薬組成物。 A pharmaceutical composition comprising the inhibitor according to claim 1 as an active ingredient, for preventing or treating a disease associated with PI5P4Kβ hyperfunction.
PCT/JP2018/043919 2017-12-05 2018-11-29 GTP SENSOR PROTEIN PI5P4Kβ INHIBITOR WO2019111792A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762594814P 2017-12-05 2017-12-05
US62/594,814 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019111792A1 true WO2019111792A1 (en) 2019-06-13

Family

ID=66750187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043919 WO2019111792A1 (en) 2017-12-05 2018-11-29 GTP SENSOR PROTEIN PI5P4Kβ INHIBITOR

Country Status (1)

Country Link
WO (1) WO2019111792A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985428A (en) * 2009-07-29 2011-03-16 杭州民生药业有限公司 O-anilino benzoic acid derivatives or pharmaceutically acceptable salts thereof as well as preparation method and application thereof
JP2013535448A (en) * 2010-07-20 2013-09-12 コーニング インコーポレイテッド Compositions and methods for the treatment of pathological conditions associated with GPR35 and / or GPR35-hERG complexes
JP2016530317A (en) * 2013-09-11 2016-09-29 ジ・アドミニストレーターズ・オブ・ザ・チューレーン・エデュケーショナル・ファンド Novel anthranilamides and their use
JP2017040603A (en) * 2015-08-21 2017-02-23 国立研究開発法人産業技術総合研究所 Screening method of pharmaceutical agent using nmr

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985428A (en) * 2009-07-29 2011-03-16 杭州民生药业有限公司 O-anilino benzoic acid derivatives or pharmaceutically acceptable salts thereof as well as preparation method and application thereof
JP2013535448A (en) * 2010-07-20 2013-09-12 コーニング インコーポレイテッド Compositions and methods for the treatment of pathological conditions associated with GPR35 and / or GPR35-hERG complexes
JP2016530317A (en) * 2013-09-11 2016-09-29 ジ・アドミニストレーターズ・オブ・ザ・チューレーン・エデュケーショナル・ファンド Novel anthranilamides and their use
JP2017040603A (en) * 2015-08-21 2017-02-23 国立研究開発法人産業技術総合研究所 Screening method of pharmaceutical agent using nmr

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABDELRAHIM, MAEN ET AL.: "Tolfenamic Acid and Pancreatic Cancer Growth, Angiogenesis, and Sp Protein Degradation", J. NATL. CANCER INST., vol. 98, no. 12, 2006, pages 855 - 868, XP002667993 *
PATHI, SATYA ET AL.: "Tolfenamic Acid Inhibits Colon Cancer Cell and Tumor Growth and InduceE Degradation of Specificity Protein (Sp) Transcription Factors", MOL. CARCINOG., vol. 53, 2014, pages E53 - E61, XP055616391 *
VOSS, D. MARC ET AL.: "Discovery and pharmacological characterization of a novel small molecule inhibitor of phosphatidylinositol-5- phosphate 4-kinase, type II, beta", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 449, 2014, pages 327 - 331, XP028868284 *

Similar Documents

Publication Publication Date Title
Hallin et al. Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor
Humphries-Bickley et al. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer
Fang et al. Inhibition of K-RAS4B by a unique mechanism of action: stabilizing membrane-dependent occlusion of the effector-binding site
Soga et al. Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development
Sakamoto et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant
CN106795150B (en) 1,3,4- thiadiazole compound and its purposes in treating cancer
Grosskopf et al. Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo
EA027012B1 (en) Cdc7 inhibitors
TWI466870B (en) Anti - tumor efficacy enhancer
JP7474269B2 (en) Compositions and methods for treating cancer
Ikeuchi et al. A sulfoximine-based inhibitor of human asparagine synthetase kills L-asparaginase-resistant leukemia cells
EP1845094A1 (en) Method of tumor suppression and evaluation of anticancer agent based on gsk3 beta inhibitory effect
Akocak et al. Pyridinium derivatives of 3-aminobenzenesulfonamide are nanomolar-potent inhibitors of tumor-expressed carbonic anhydrase isozymes CA IX and CA XII
Liu et al. Discovery of BP3 as an efficacious proteolysis targeting chimera (PROTAC) degrader of HSP90 for treating breast cancer
US20210317115A1 (en) Inhibitors of kidney-type glutaminase, gls-1
van Kuijk et al. New approach of delivering cytotoxic drugs towards CAIX expressing cells: A concept of dual-target drugs
Olszewski et al. Inhibition of glucose transport synergizes with chemical or genetic disruption of mitochondrial metabolism and suppresses TCA cycle-deficient tumors
US10913750B2 (en) Tubulin-binding compounds, compositions and uses related thereto
La Pietra et al. Challenging clinically unresponsive medullary thyroid cancer: Discovery and pharmacological activity of novel RET inhibitors
Lv et al. Structure-based design and SAR development of novel selective polo-like kinase 1 inhibitors having the tetrahydropteridin scaffold
Liu et al. Design, synthesis, and biological evaluation of [1, 2, 4] triazolo [4, 3-a] pyrazine derivatives as novel dual c-Met/VEGFR-2 inhibitors
ES2759940T3 (en) 1,3,4-Thiadiazole compounds and their use to treat cancer
WO2019111792A1 (en) GTP SENSOR PROTEIN PI5P4Kβ INHIBITOR
CN113543852A (en) Pyrrolopyrazole derivatives
Medina et al. Characterization of novel derivatives of MBQ-167, an inhibitor of the GTP-binding proteins Rac/Cdc42

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP