WO2019111674A1 - Vertical axis-type wind turbine - Google Patents

Vertical axis-type wind turbine Download PDF

Info

Publication number
WO2019111674A1
WO2019111674A1 PCT/JP2018/042486 JP2018042486W WO2019111674A1 WO 2019111674 A1 WO2019111674 A1 WO 2019111674A1 JP 2018042486 W JP2018042486 W JP 2018042486W WO 2019111674 A1 WO2019111674 A1 WO 2019111674A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
vertical axis
wind turbine
axis wind
motion
Prior art date
Application number
PCT/JP2018/042486
Other languages
French (fr)
Japanese (ja)
Inventor
裕 寺尾
Original Assignee
裕 寺尾
寺尾 進
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 裕 寺尾, 寺尾 進 filed Critical 裕 寺尾
Publication of WO2019111674A1 publication Critical patent/WO2019111674A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind turbine, and more particularly to a vertical axis wind turbine whose rotation axis is perpendicular to the ground which can efficiently convert natural energy into electric energy and the like.
  • a horizontal axis wind turbine is affected by the wind direction
  • a lift-type vertical axis wind turbine is a wind turbine for wind power generation that is suitable for environments where the wind direction is variable, with wind in any direction available and having no dependence on the wind direction. is there.
  • the vertical axis wind turbine need not be specially controlled in attitude according to the wind direction, and can be installed at a position close to the ground, so that it can be easily handled during installation and maintenance, and can be miniaturized.
  • a vertical axis type wind turbine for lifting power type wind turbine having a fixed shaft installed vertically, a rotation shaft rotating around it, and a blade arranged parallel to the rotation shaft, Support arm that connects the shaft and the rotation shaft and supports the blade to extend and contract in the radial direction centering around the rotation shaft and moves the blade in parallel, and the blade is always urged radially outward to make the blade support arm radially outward
  • the force to radially inward the blade is greater than the force to bias the blade radially inward by using the centrifugal force when the blade is rotated while urging the blade radially inward while pushing the blade radially outward.
  • a biasing means for radially contracting the wing support arm inward, and at least at the start-up, the wing support arm is extended radially outward at least at the start-up to expand the blade's radius of rotation to the maximum radius and wind turbine radius Maximize the centrifugal force when the windmill starts to rotate Ri shortens the blade support arm radially inward, have been developed techniques to reach the cut-in wind speed at least until the wing rotation radius is minimized (Patent Document 2). However, even with such a technology, it is far from being able to achieve the fundamental efficiency improvement of the vertical axis wind turbine.
  • Non-Patent Document 1 a vertical axis wind turbine is provided with a wing mechanism for flapping (heaving), and while a normal vertical axis wind turbine blade movement locus draws a circle, it is made not to follow a circular orbit on the wing.
  • Vertical axis wind turbines have been proposed to improve their performance.
  • An example of motion control that gives a heaving motion to the blades of a vertical axis wind turbine can employ a simple and efficient transmission mechanism using a combination of a pair of gears and a scotch yoke. This is a simple mechanism and high mechanical transmission efficiency. Verification by numerical calculation in the range of blade linear theory shows that a performance improvement of 15% or more can be expected compared to a normal vertical axis wind turbine It is done.
  • JP 2005-171852 A page 5, FIG. 1
  • JP-A-2015-197093 page 6, FIG. 2
  • An object of the present invention is to provide a vertical axis wind turbine capable of exhibiting extremely high energy conversion efficiency, which further exceeds the performance of a high efficiency vertical axis wind turbine in which a blade is known to have a heaving motion.
  • the vertical axis wind turbine of the present invention is A vertical axis wind turbine having blades rotating about a rotation axis installed vertically, comprising: A heaving motion imparting mechanism imparts a rotational orbit motion other than a circular orbit to the wing pivoted around the rotation axis, and at the time of the rotational orbit motion of the wing, the wing pitching angle changes with respect to at least the wing It is characterized in that the pitching angle changing operation is given.
  • the stall characteristics in the range beyond the linear wing theory of an actual wing can exhibit energy conversion efficiency exceeding the performance of a highly efficient vertical axis wind turbine in which the wing is given a heaving motion. That is, by considering the non-linear characteristics of the blade, it is possible to exhibit the highest performance among vertical axis wind turbines in which the blade is given a heaving motion.
  • the vertical axis wind turbine of the present invention is An arm extending from the rotation shaft and the wing are pivotally supported, and the wing can rotate relative to the arm. According to this feature, since the wing rotates relative to the arm rotating with the shaft within a predetermined range, it is possible to effectively move the heaving movement and the pitching angle changing operation.
  • the vertical axis wind turbine of the present invention is An elastic return means is interposed at a connection portion between the rotation shaft and an arm portion for supporting the wing. According to this feature, since the rotating wing is subjected to centrifugal force and repeated expansion and contraction due to the action of the elastic return means due to the change of the distance between the rotation axes, the relative inflow angle and the optimum flow angle automatically for the rotor Relative inflow rates can be generated.
  • the vertical axis wind turbine of the present invention is
  • the elastic return means interposed at the connection between the rotation shaft and the arm supporting the wing is characterized in that it is a spring having strength and performance optimum for wing attack angle control. According to this feature, it is possible to automatically generate the optimum relative inflow angle and relative inflow velocity for the rotor with a simple spring structure. Furthermore, energy loss is small because no special power source is required.
  • the vertical axis wind turbine of the present invention is A connection portion between the rotation shaft and an arm portion for pivotally supporting the wing is characterized in that it is disposed on the head position side of the wing. According to this feature, since the change of the blade pitching angle is started from the leading direction of the blade, the swing width of the blade is increased, and the relative inflow angle and the relative inflow velocity are automatically generated in the rotary blade. Can.
  • the vertical axis wind turbine of the present invention is It is characterized in that the rotation orbit motion other than the circular orbit is a orbit formed by combining the orbit whose rotation diameter changes with the rotation around the rotation axis and the pitching angle change operation. According to this feature, it is possible to obtain wing vibrational motion represented by the flight by the wing of a bird and the movement of the tail of an aquatic organism, and to generate the maximum efficiency with the minimum energy.
  • (A) is a conceptual diagram which shows blade motion axisymmetric to the rotation axis
  • (b) is a conceptual diagram which shows blade motion axisymmetric to the rotation shaft.
  • (A) is a figure which shows a connection with the rotating shaft and the arm part which supports a wing
  • (b) is a figure which attached the thrust increase Flap structure with respect to the up-down motion of an arm to a wing tip.
  • It is a conceptual diagram which shows the dynamic control mechanism of wing Heaving movement. It is a modification which shows arrangement of an actuator, and (a) is a figure showing a combination of a bevel gear and a link mechanism, and (b) a spur gear.
  • reference numeral 1 in FIG. 1 is a vertical axis wind turbine to which the present invention is applied.
  • VAWT Vertical Axis Wind Turbine
  • HAWT Horizontal Axis Wind Turbine
  • the efficiency of the vertical axis wind turbine is said to be lower than that of the horizontal axis wind turbine.
  • the generated torque of 0 to 180 ° is larger than the generated torque at the blade position of 180 ° to 360 °. This is considered to be the effect of the release vortex.
  • the vertical axis wind turbine 1 (FVAWT: Pitch Angle Controlled Vertical Winding Vertical Axis Wind Turbine) according to the present invention is defined as a wind turbine having a wing driving mechanism that heaving as described later. Therefore, as shown in FIG. 3, the blade 35 of the normal vertical axis wind turbine draws a circular orbit C at the rotation axis center, but the wing 5 of the vertical axis wind turbine according to the present embodiment does not draw a circular orbit. It may be rephrased as a system for drawing a pivoting track D other than a circular track.
  • the number of blades of the vertical axis wind turbine 1 is not particularly limited, but an even number is a basic form. This is because we considered the function and structure to cancel the centrifugal force generated by the wing when performing rotational movement around the rotation axis of the vertical wing. If blade motion control is not performed to balance the centrifugal force generated by each blade with respect to the rotation axis, the burden on the shaft system increases, which affects the reliability of the shaft system and the entire system.
  • the drive mechanism 10 of the vertical axis wind turbine 1 adopts a simple mechanism as shown in FIG. This is to minimize energy losses given product cost and transfer efficiency.
  • a pair of planetary gears 12, 12 disposed concentrically with the rotation shaft 2 and meshed with a sun gear 11 fixed to the ground is scotch as an actuator 15.
  • the wing position is a mechanism that expands and contracts with the wings 5 'to 5-5''(see FIG. 4).
  • a link mechanism is adopted as the flapping generation mechanism of the wing.
  • a mechanism for changing the blade turning trajectory using a motor system and a hydraulic actuator, or a mechanical system using a slider system is also conceivable.
  • a system adopting the link mechanism according to the present embodiment is advantageous.
  • the performance of the vertical axis wind turbine 1 is determined by using the optimum combination of these variables. Further, since it is more efficient to carry out the Heaving motion of the wing 5 in parallel with the rotation axis 2 in the normal direction of the wing rotational motion, a parallel link method capable of controlling the wing motion is adopted.
  • the centrifugal force direction In / Out of the wing adopts a gear and link system as shown in FIGS.
  • the relative inflow angle and the relative inflow velocity of the VAWT are determined by the flow velocity U and the blade trajectory radius r and the circumferential velocity ratio TSR.
  • the relative inflow angle to the rotating wing and the relative flow velocity can be arbitrarily set by changing the wing control variable.
  • heaving motion control of the wing is performed to increase the relative inflow angle, and the relative wing angle is set in advance so that the relative angle of attack becomes optimum (stall angle limit) with a simple mechanism (Pitch Spring). High energy absorption efficiency can be exhibited by carrying out.
  • PACFVAWT has three blade control parameters, so the optimum combination of variables can not be determined simply.
  • PACFVAWT is a high-performance FACFVAWT constructed by setting optimal values of control variables derived as a result of many numerical calculations and new optimal Pitch Spring.
  • wing Pitch angle control is simple passive type, and it is far simpler than cycloidal type, and it exhibits performance beyond these.
  • Rotor blades 5 of FVAWT and PACFVAWT can control large inflow blade attack angle and relative inflow velocity. Therefore, the wing 5 can also operate beyond the stall region.
  • a spring 16 Pitch Spring as an elastic return means is disposed at the wing joint, and the relative inflow angle is passively controlled to obtain an optimum relative inflow. Create a wing angle. This mechanism is also applicable to FVAWT.
  • the pitch angle control spring of the wing 5 employs a spring 16 having the strength and performance optimum for wing attack angle control.
  • the motion phase of the wing 5 of FVAWT and PCFVAWT has an optimum value. Therefore, it has an optimal wind direction holding mechanism that corresponds to the wind vane with respect to the wind direction.
  • a mounting arm having a function of joining the wing 5 and the rotary shaft 2, resisting the centrifugal force caused by the wing rotation, and converting the thrust of the wing 5 into torque and transmitting it to the rotary shaft 2
  • the cross section 18a of the portion 18 is provided with an optimal two-dimensional symmetrical wing cross section, or a thrust increasing mechanism 19 which increases the thrust generation of the arm. Since the arm 18 moves up and down while rotating, it behaves like fluttering motion, so the thrust generation in this operation is aimed and the wing cross section 18a and the thrust generating function are incorporated.
  • the plane shape of the arm portion 18 is a wing plane shape highly efficient for thrust generation with respect to the vertical movement of the arm, and is a thruster system with higher efficiency.
  • the Heaving / Flapping motion is active by arranging the electric actuator (rotational angle servo).
  • the way to do it is also conceivable.
  • the use of an electric actuator requires drive energy of the motor.
  • FVAWT / FACFVAWT is expected to have much larger energy gain from the flow field than VAWT. Therefore, it can be judged that the energy balance is sufficiently positive, and a simple control system for active control is proposed.
  • FVAWT / PACFVAWT needs to perform frequency control and phase difference control of motion Heaving (Flapping) of the rotor.
  • using one actuator completes the entire system.
  • the actuator control in this case will be described.
  • the flow direction and the flow velocity which are control condition variables, are measured using the measuring meter 21, and the actuator 23 is angularly controlled by the control device 20. It suffices to operate the mechanism for expanding and contracting 5. That is, the control device 20 detects a flow velocity / flow direction which is a control condition, and outputs a rotation angle instruction command of the actuator 23.
  • rotation angle control by one servomotor 22 is shown as the rotation angle control means.
  • two servomotors may be used.
  • the actuator is disposed away from the generator body 6 of the rotating body.
  • expansion and contraction of the wing can be automatically performed even if the actuator 15 is fixed without being rotated, and further the following can be achieved.
  • the actuator drive signal can be freely given from the ground. If the actuator is attached directly to the rotating part, signals from the slip ring etc. and their drive energy supply are required, and the wiring and equipment become complicated. However, in the arrangement of FIG. 11 (a), the area resistance portion slightly increases due to the wind direction as compared with FIG. 11 (b).
  • the heaving motion imparting mechanism gives the wing 5 rotating about the vertical axis a rotational orbital motion other than a circular orbit, and causes the wing 5 to rotate.
  • the wing 5 is provided with a pitching angle changing operation in which the wing pitching angle changes, so that the stall characteristics in the range beyond the linear wing theory possessed by the actual wing 5 It is possible to exhibit energy conversion efficiency that exceeds the performance of a highly efficient vertical-axis wind turbine with a heaving motion given to 5. That is, by considering the non-linear characteristics of the blade, the highest performance can be exhibited among vertical axis wind turbines in which the blade 5 is given a heaving motion.
  • an arm extending from the rotation shaft 2 and the wing 5 are pivotally supported, and the wing 5 can rotate relative to the arm so that the arm rotating with the rotation shaft 2 can be rotated. Since the wing 5 is relatively rotated within a predetermined range, it is possible to make it possible to effectively combine the heaving movement with the pitching angle changing movement.
  • the elastic return means interposed at the connection between the rotary shaft 2 and the arm supporting the wing 5 is the spring 16 having the strength and performance optimum for wing attack angle control, it has a simple spring structure. It is possible to automatically generate the optimum relative inflow angle and relative inflow velocity for the rotor. Furthermore, energy loss is small because no special power source is required.
  • connection between the rotary shaft 2 and the arm that pivotally supports the wing 5 is disposed on the head position side of the wing 5, the change of the wing pitching angle is started from the head direction of the wing 5 As the swing width of the wing 5 increases, it is possible to automatically generate the relative inflow angle and the relative inflow velocity optimum for the rotor.
  • the orbit other than the circular orbit is an orbit combining the orbit whose rotation diameter changes with the rotation around the rotation axis 2 and the pitching angle change operation, the flight by the wing of the bird and the aquatic life
  • the wing oscillation movement represented by the movement of the tail fin of a living being is obtained, and the maximum efficiency can be generated with the minimum energy.
  • Reference Signs List 1 vertical axis wind turbine 2 rotary shaft 3 arm 4 hinge 5 wing 6 generator main body 10 drive mechanism 11 sun gear 12 planetary gear 14 arm 15 actuator 16 spring 18 arm 19 thrust increasing mechanism 20 control device 21 measuring meter 22 Servo motor 23 actuator

Abstract

Provided is a vertical axis-type wind turbine which provides extremely high energy conversion efficiency exceeding the performance of a known high-efficiency vertical axis wind turbine in which blades are subjected to heaving motion. The vertical axis-type wind turbine 1 is provided with blades 5 which rotate around a vertically mounted rotating shaft 2, wherein, by means of a heaving motion providing mechanism, the blades 5 rotating around the rotating shaft 2 are subjected to rotating orbital motion other than that of a circular orbit, and, during rotating orbital motion of the blades 5, at least the blades 5 are subjected to a pitching angle varying operation for varying the pitching angle of the blades.

Description

垂直軸型風車Vertical axis wind turbine
 本発明は、風車に係り、特に自然エネルギーを電気エネルギーなどに効率よく変換できるようにした地面に対して回転軸が垂直となる垂直軸型風車に関する。 The present invention relates to a wind turbine, and more particularly to a vertical axis wind turbine whose rotation axis is perpendicular to the ground which can efficiently convert natural energy into electric energy and the like.
 水平軸風車が風向の影響を受けるのに対して、揚力型の垂直軸風車は、どの方向の風も利用可能で風向きに対する依存性がなく、風向きが変動する環境に最適な風力発電用風車である。垂直軸風車はこのように風向に応じて特別に姿勢を制御する必要がないと共に、地上に近い位置に設置できるので設置・メンテナンス時の扱いが容易で、且つ小型化が可能となる。 A horizontal axis wind turbine is affected by the wind direction, while a lift-type vertical axis wind turbine is a wind turbine for wind power generation that is suitable for environments where the wind direction is variable, with wind in any direction available and having no dependence on the wind direction. is there. The vertical axis wind turbine need not be specially controlled in attitude according to the wind direction, and can be installed at a position close to the ground, so that it can be easily handled during installation and maintenance, and can be miniaturized.
 代表的な垂直軸風車は、鉛直に設置される回転軸に対し平行となるように翼がロッドで連結されて、風車の半径、すなわち翼の回転半径が固定されている(特許文献1)。このため、カットアウト風速を超える風速に耐える構造・強度のスペックを備えなければならず、全体の重量や摩擦力も高風速下での回転力を必要とする。このため、従来の揚力型の垂直軸風車は、低風速下では、風車を回転させるモーメントが小さくなってしまうとともに、低風速下では、同様の理由により風車の起動トルクを得にくく、起動できない場合が多いという問題が指摘されている。 In a typical vertical axis wind turbine, blades are connected by rods so as to be parallel to a vertically installed rotation shaft, and the radius of the wind turbine, that is, the rotation radius of the blades is fixed (Patent Document 1). For this reason, it is necessary to provide a specification of structure and strength that can withstand the wind speed exceeding the cut-out wind speed, and the entire weight and friction also require a rotational force under high wind speed. For this reason, the conventional lift-type vertical axis wind turbine has a small moment for rotating the wind turbine under low wind speed, and it is difficult to obtain the starting torque of the wind turbine under the low wind speed for the same reason and can not start Problem is pointed out.
 このような問題を解決すべく、鉛直に設置される固定軸とその周りを回転する回転軸と該回転軸と平行に配置される翼とを有する垂直軸型風力発電用揚力型風車において、翼と回転軸とを連結し回転軸を中心に径方向へ翼を伸縮可能に支持して平行移動させる翼支持アームと、翼を常時径方向外側へ付勢して翼支持アームを径方向外側に伸展させる一方、翼が回転するときの遠心力を利用して翼を径方向内側へ付勢し翼を径方向外側へ付勢する力より翼を径方向内側へ付勢する力が上回ったときに翼支持アームを径方向内側に縮める付勢手段と、を備え、付勢手段によって少なくともスタートアップ時には翼支持アームを径方向外側に伸展させて翼の回転半径を最大半径に広げて風車の半径を最大限とし、風車が回転を開始すると遠心力により翼支持アームを径方向内側に縮め、少なくとも翼の回転半径が最小になるまでにカットイン風速に達するようにする技術も開発されている(特許文献2)。しかしこのような技術にあっても垂直軸風車の根本的な効率向上には程遠いのが実情である。 In order to solve such a problem, in a vertical axis type wind turbine for lifting power type wind turbine having a fixed shaft installed vertically, a rotation shaft rotating around it, and a blade arranged parallel to the rotation shaft, Support arm that connects the shaft and the rotation shaft and supports the blade to extend and contract in the radial direction centering around the rotation shaft and moves the blade in parallel, and the blade is always urged radially outward to make the blade support arm radially outward When the force to radially inward the blade is greater than the force to bias the blade radially inward by using the centrifugal force when the blade is rotated while urging the blade radially inward while pushing the blade radially outward. A biasing means for radially contracting the wing support arm inward, and at least at the start-up, the wing support arm is extended radially outward at least at the start-up to expand the blade's radius of rotation to the maximum radius and wind turbine radius Maximize the centrifugal force when the windmill starts to rotate Ri shortens the blade support arm radially inward, have been developed techniques to reach the cut-in wind speed at least until the wing rotation radius is minimized (Patent Document 2). However, even with such a technology, it is far from being able to achieve the fundamental efficiency improvement of the vertical axis wind turbine.
 そこで非特許文献1に示されるように、垂直軸風車にフラッピング(ヒービング)する翼機構を備え、通常の垂直軸風車翼運動軌跡は円を描くが、翼に円軌道を辿らさないようにし、性能向上を図るようにした垂直軸風車が提案されている。 Therefore, as shown in Non-Patent Document 1, a vertical axis wind turbine is provided with a wing mechanism for flapping (heaving), and while a normal vertical axis wind turbine blade movement locus draws a circle, it is made not to follow a circular orbit on the wing. Vertical axis wind turbines have been proposed to improve their performance.
 垂直軸風車の翼にヒービング 運動を与える運動制御例は、一対の歯車とスコッチヨークを組み合わせた物で構成を用いる簡易かつ効率的伝達機構を採用することができる。これは単純な機構で機械伝達効率が高く、翼線型理論の範囲での数値計算での検証によれば、通常の垂直軸風車と比較しても15%以上の性能向上が見込まれる事が示されている。 An example of motion control that gives a heaving motion to the blades of a vertical axis wind turbine can employ a simple and efficient transmission mechanism using a combination of a pair of gears and a scotch yoke. This is a simple mechanism and high mechanical transmission efficiency. Verification by numerical calculation in the range of blade linear theory shows that a performance improvement of 15% or more can be expected compared to a normal vertical axis wind turbine It is done.
特開2005-171852号公報(第5頁、第1図)JP 2005-171852 A (page 5, FIG. 1) 特開2015-197093号公報(第6頁、第2図)JP-A-2015-197093 (page 6, FIG. 2)
 本発明は、既に公知の翼にヒービング運動が与えられる高効率な垂直軸風車の性能を更に上回る、極めて高いエネルギー変換効率を発揮できる垂直軸型風車を提供することを目的とする。 An object of the present invention is to provide a vertical axis wind turbine capable of exhibiting extremely high energy conversion efficiency, which further exceeds the performance of a high efficiency vertical axis wind turbine in which a blade is known to have a heaving motion.
 前記課題を解決するために、本発明の垂直軸型風車は、
 垂直に設置される回転軸周りに回動する翼を備えた垂直軸型風車であって、
 ヒービング運動付与機構により、前記回転軸周りに回動する翼に対して円軌道以外の回動軌道運動を与えるとともに、前記翼の回動軌道運動時に、少なくとも前記翼に対して翼ピッチング角が変化するピッチング角変化動作を与えるようになっていることを特徴としている。
 この特徴によれば、実際の翼の持つ線型翼理論を越えた範囲での失速特性により、翼にヒービング運動が与えられる高効率な垂直軸風車の性能を上回るエネルギー変換効率を発揮できることになる。つまり翼非線形特性を考慮することにより、翼にヒービング運動が与えられる垂直軸風車の中でも最高の高性能を発揮できることになる。
In order to solve the above problems, the vertical axis wind turbine of the present invention is
A vertical axis wind turbine having blades rotating about a rotation axis installed vertically, comprising:
A heaving motion imparting mechanism imparts a rotational orbit motion other than a circular orbit to the wing pivoted around the rotation axis, and at the time of the rotational orbit motion of the wing, the wing pitching angle changes with respect to at least the wing It is characterized in that the pitching angle changing operation is given.
According to this feature, the stall characteristics in the range beyond the linear wing theory of an actual wing can exhibit energy conversion efficiency exceeding the performance of a highly efficient vertical axis wind turbine in which the wing is given a heaving motion. That is, by considering the non-linear characteristics of the blade, it is possible to exhibit the highest performance among vertical axis wind turbines in which the blade is given a heaving motion.
 本発明の垂直軸型風車は、
 前記回転軸から延びる腕部と前記翼が軸支されており、前記腕部に対して前記翼が相対回動できるようになっていることを特徴としている。
 この特徴によれば、軸と共に回動する腕部に対して翼が所定範囲で相対回動するため、ヒービング運動とピッチング角変化動作とを効果的に連携させる動きを可能にできる。
The vertical axis wind turbine of the present invention is
An arm extending from the rotation shaft and the wing are pivotally supported, and the wing can rotate relative to the arm.
According to this feature, since the wing rotates relative to the arm rotating with the shaft within a predetermined range, it is possible to effectively move the heaving movement and the pitching angle changing operation.
 本発明の垂直軸型風車は、
 前記回転軸と前記翼を軸支する腕部との接続部に、弾性復帰手段を介在させることを特徴としている。
 この特徴によれば、回転する翼は回転軸間の距離の変化により、遠心力が働き更に弾性復帰手段の作用で伸縮を繰り返すことになるため、自動的に回転翼に最適な相対流入角および相対流入速度を発生させることができる。
The vertical axis wind turbine of the present invention is
An elastic return means is interposed at a connection portion between the rotation shaft and an arm portion for supporting the wing.
According to this feature, since the rotating wing is subjected to centrifugal force and repeated expansion and contraction due to the action of the elastic return means due to the change of the distance between the rotation axes, the relative inflow angle and the optimum flow angle automatically for the rotor Relative inflow rates can be generated.
 本発明の垂直軸型風車は、
 前記回転軸と前記翼を軸支する腕部との接続部に介在する弾性復帰手段が、翼迎角制御に最適な強さと性能を有するバネであることを特徴としている。
 この特徴によれば、簡単なバネ構造で自動的に回転翼に最適な相対流入角および相対流入速度を発生させることができる。さらに特別な動力源が不要となるためにエネルギーロスが少ない。
The vertical axis wind turbine of the present invention is
The elastic return means interposed at the connection between the rotation shaft and the arm supporting the wing is characterized in that it is a spring having strength and performance optimum for wing attack angle control.
According to this feature, it is possible to automatically generate the optimum relative inflow angle and relative inflow velocity for the rotor with a simple spring structure. Furthermore, energy loss is small because no special power source is required.
 本発明の垂直軸型風車は、
 前記回転軸と前記翼を軸支する腕部との接続部が、翼の先頭位置側に配置されていることを特徴としている。
 この特徴によれば、翼の先頭方向から翼ピッチング角の変化が開始されるため、翼の揺れ幅が大きくなるとともに、自動的に回転翼に最適な相対流入角および相対流入速度を発生させることができる。
The vertical axis wind turbine of the present invention is
A connection portion between the rotation shaft and an arm portion for pivotally supporting the wing is characterized in that it is disposed on the head position side of the wing.
According to this feature, since the change of the blade pitching angle is started from the leading direction of the blade, the swing width of the blade is increased, and the relative inflow angle and the relative inflow velocity are automatically generated in the rotary blade. Can.
 本発明の垂直軸型風車は、
 前記円軌道以外の回動軌道運動が、前記回転軸周りの回動に伴い回動径が変化する軌道と前記ピッチング角変化動作とを複合した軌道であることを特徴としている。
 この特徴によれば、鳥の翼による飛翔や水生生物の尾鰭の動きに代表される様な翼振動運動が得られ、最小エネルギーで最大効率を発生させることができる。
The vertical axis wind turbine of the present invention is
It is characterized in that the rotation orbit motion other than the circular orbit is a orbit formed by combining the orbit whose rotation diameter changes with the rotation around the rotation axis and the pitching angle change operation.
According to this feature, it is possible to obtain wing vibrational motion represented by the flight by the wing of a bird and the movement of the tail of an aquatic organism, and to generate the maximum efficiency with the minimum energy.
垂直軸型風車の方位角を定義する図である。It is a figure which defines the azimuth of a vertical axis type windmill. 垂直軸型風車の翼推力を示す図である。It is a figure which shows the blade thrust of a vertical axis windmill. 垂直軸型風車の回転軌道を示す図である。It is a figure which shows the rotation track of a vertical axis type windmill. 本発明に係る垂直軸型風車の駆動機構を示す概念図である。It is a conceptual diagram showing the drive mechanism of the vertical axis type windmill concerning the present invention. 遊星ギアによる翼Heaving運動発生機構を示す図である。It is a figure which shows the wing | blade Heaving movement generation | occurrence | production mechanism by a planetary gear. (a)、(b)は本発明に係る垂直軸型風車の駆動機構を示す図である。(A), (b) is a figure which shows the drive mechanism of the vertical axis type windmill which concerns on this invention. 平行リンクを用いた垂直軸型風車の駆動機構を示す図である。It is a figure which shows the drive mechanism of the vertical axis type windmill using a parallel link. (a)は回転軸と軸対称の翼運動を示す概念図であり、(b)は回転軸と軸非対称の翼運動を示す概念図である。(A) is a conceptual diagram which shows blade motion axisymmetric to the rotation axis, (b) is a conceptual diagram which shows blade motion axisymmetric to the rotation shaft. (a)は回転軸と翼を支持する腕部との接続を示す図であり、(b)は腕の上下運動に対する推力増加Flap構造を翼端に取り付けた図である。(A) is a figure which shows a connection with the rotating shaft and the arm part which supports a wing | wing, (b) is a figure which attached the thrust increase Flap structure with respect to the up-down motion of an arm to a wing tip. 翼Heaving運動の動的制御機構を示す概念図である。It is a conceptual diagram which shows the dynamic control mechanism of wing Heaving movement. アクチュエータの配置を示す変形例であり、(a)は傘歯車とリンク機構、(b)は平歯車の組み合わせを示す図である。It is a modification which shows arrangement of an actuator, and (a) is a figure showing a combination of a bevel gear and a link mechanism, and (b) a spur gear.
 本発明に係る垂直軸型風車を実施するための形態を実施例に基づいて以下に説明する。 EMBODIMENT OF THE INVENTION The form for implementing the vertical axis type windmill concerning this invention is demonstrated below based on an Example.
 実施例に係る垂直軸型風車につき、図1から図11を参照して説明する。先ず図1の符号1は、本発明の適用された垂直軸型風車である。 A vertical axis wind turbine according to an embodiment will be described with reference to FIGS. 1 to 11. First, reference numeral 1 in FIG. 1 is a vertical axis wind turbine to which the present invention is applied.
 垂直軸型風車(VAWT: Vertical Axis Wind Turbine)は、水平軸型風車(HAWT: Horizontal Axis Wind Turbine)と比較して、風向によらず発電が可能であり、また発電機部分を地面近傍に設置することで低重心を達成できるうえに、製造・メンテナンスコストが低く、更には設置・輸送が容易といった長所を有している。 Vertical Axis Wind Turbine (VAWT: Vertical Axis Wind Turbine) can generate power regardless of the wind direction compared to Horizontal Axis Wind Turbine (HAWT: Horizontal Axis Wind Turbine), and install the generator part near the ground In addition to achieving a low center of gravity, it has the advantages of low manufacturing and maintenance costs and easy installation and transportation.
 しかしながら垂直軸型風車の効率は、水平軸型風車と比較して低いと言われている。その要因の一つは、垂直軸型風車の翼が回転し風に正対しているときの性能低下に関する要因である。図1,2に示されるように、風向に対する翼の方位角θ=0°近傍で翼は回転トルクを一切発生せず、逆に回転方向に対して抵抗成分のみを発生させることから、回転トルク発生にマイナスの要因となる。 However, the efficiency of the vertical axis wind turbine is said to be lower than that of the horizontal axis wind turbine. One of the factors is a factor relating to performance degradation when the blades of a vertical axis wind turbine rotate and face the wind. As shown in FIGS. 1 and 2, the blade does not generate any rotational torque near the azimuth angle θ = 0 ° of the wind direction, and conversely generates only a resistance component in the rotational direction. It becomes a negative factor to the occurrence.
 より詳しくは、図2に示されるように、垂直軸型風車はθが増加する方向(翼が風上側の領域:θ=0~90°)に従い回転トルクが増加して行きθ=90°近辺でトルクの最大値をとり、以降発生トルクは低下、θ=180°で一度負の極値を取る。さらにθが増加するに従いトルク出力は徐々に回復し259~270°付近で極大値、以降θ=360°で最小値を取る繰り返しとなる。実際では0~180°の発生トルクは180°~360°の翼位置での発生トルクより大きくなる。これは放出渦の影響と考えられている。 More specifically, as shown in FIG. 2, in the vertical axis wind turbine, the rotational torque increases according to the direction in which θ increases (the area on the windward side of the blade: θ = 0 to 90 °), and around θ = 90 ° The maximum value of torque is then taken, and thereafter the generated torque decreases, and once at θ = 180 °, it takes a negative extreme value. Further, as θ increases, the torque output gradually recovers, and becomes a local maximum at around 259 ° to 270 °, and thereafter takes a minimum value at θ = 360 °. In practice, the generated torque of 0 to 180 ° is larger than the generated torque at the blade position of 180 ° to 360 °. This is considered to be the effect of the release vortex.
 本発明に係る垂直軸型風車1(FVAWT: Flapping Vertical Axis Wind Turbine, PACFVAWT: Pitch Angle Controlled Flapping Vertical Axis Wind Turbine)は、後述するようにHeavingする翼駆動機構を備えた風車と定義される。そのため図3に示されるように、通常の垂直軸型風車の翼35は回転軸中心に円軌道Cを描くが、本実施例に係る垂直軸型風車の翼5は、円軌道を描かずに円軌道以外の回動軌道Dを描くシステムと言い換えても良い。 The vertical axis wind turbine 1 (FVAWT: Pitch Angle Controlled Vertical Winding Vertical Axis Wind Turbine) according to the present invention is defined as a wind turbine having a wing driving mechanism that heaving as described later. Therefore, as shown in FIG. 3, the blade 35 of the normal vertical axis wind turbine draws a circular orbit C at the rotation axis center, but the wing 5 of the vertical axis wind turbine according to the present embodiment does not draw a circular orbit. It may be rephrased as a system for drawing a pivoting track D other than a circular track.
 (垂直軸型風車の翼数)
垂直軸型風車1の翼数は特に限定されるものではないが、偶数を基本形とする。垂直翼の回転軸を中心に回転運動を行うとき、翼の発生する遠心力を打ち消す機能と構造を考えたためである。回転軸に対し、各翼の発生する遠心力を軸周りで釣り合う様な翼運動制御をしないと、軸系への負担増となり、軸系および全システムの信頼性に影響が出る。
そのため垂直軸型風車1では対向する翼の旋回運動の法線方向運動を、軸と翼間の距離を等しくすることで、対向する2翼間で遠心力発生を打ち消し、または対向する2翼に互いに働く遠心力の回転中心軸に働く力の差を最小とする。
(Number of blades of vertical axis wind turbine)
The number of blades of the vertical axis wind turbine 1 is not particularly limited, but an even number is a basic form. This is because we considered the function and structure to cancel the centrifugal force generated by the wing when performing rotational movement around the rotation axis of the vertical wing. If blade motion control is not performed to balance the centrifugal force generated by each blade with respect to the rotation axis, the burden on the shaft system increases, which affects the reliability of the shaft system and the entire system.
Therefore, in the vertical axis wind turbine 1, by making the normal motion of the swinging motion of the opposing blades equal to the distance between the shaft and the blades, the centrifugal force generation is canceled between the two opposing blades, or the opposing two blades are Minimize the difference in force acting on the central axis of rotation of centrifugal force acting on each other.
 (垂直軸型風車の駆動機構)
垂直軸型風車1の駆動機構10は、図4に示されるように、簡易な機構を採用する。これは、製品コストおよび伝達効率を考え、エネルギーロスを最小とするためである。図5に示されるように、この駆動機構10の提案例は、回転軸2と同心に配設され地面に固定された太陽ギヤー11に噛合した1組の遊星ギヤー12,12にアクチュエータ15としてスコッチヨークを取り付け、垂直軸型風車1の翼5,5が回転時に自動的に、翼5,5の上端と腕部3とに介設されたヒンジ部4を基端として、遠心力作動方向に翼位置が翼5’~5~5’’と伸縮する機構とする(図4参照)。翼のFlapping発生機構には、リンク機構が採用されている。なお、この他にも、電動および油圧アクチュエータや、機械式ではスライダー方式を用いて翼旋回軌跡を変化させる機構も考えられる。しかし、いずれもコスト、およびエネルギー伝達係数を考慮すれば、本実施例に係るリンク機構を採用したシステムが有利であると考えられる。
(Drive mechanism of vertical axis wind turbine)
The drive mechanism 10 of the vertical axis wind turbine 1 adopts a simple mechanism as shown in FIG. This is to minimize energy losses given product cost and transfer efficiency. As shown in FIG. 5, in the proposed example of the drive mechanism 10, a pair of planetary gears 12, 12 disposed concentrically with the rotation shaft 2 and meshed with a sun gear 11 fixed to the ground is scotch as an actuator 15. Attach a yoke, and when the blades 5, 5 of the vertical axis wind turbine 1 rotate automatically, with the hinge portion 4 interposed between the upper ends of the blades 5, 5 and the arm portion 3 as the base end, in the centrifugal force operating direction The wing position is a mechanism that expands and contracts with the wings 5 'to 5-5''(see FIG. 4). A link mechanism is adopted as the flapping generation mechanism of the wing. Other than this, a mechanism for changing the blade turning trajectory using a motor system and a hydraulic actuator, or a mechanical system using a slider system is also conceivable. However, considering the cost and the energy transfer coefficient in any case, it is considered that a system adopting the link mechanism according to the present embodiment is advantageous.
 これにより、翼Heave 運動制御には通常の垂直軸型風車にはない3つの制御変数が新たに加わる。
a)Heaving Amplitude (Heave の振幅の大きさ)
b)Frequency (Heaving の振動周波数)
c)Phase Lag (運動開始する位相差)
As a result, three control variables that are not included in the normal vertical axis wind turbine are added to the blade Heave motion control.
a) Heaving Amplitude (The amplitude of Heave)
b) Frequency (Heaving vibration frequency)
c) Phase Lag (phase difference to start movement)
 この変数の最適な組み合わせを用いることで垂直軸型風車1の性能が定まる。また翼5のHeaving 運動は回転軸2と平行に、翼回転運動の法線方向に行う方が効率は良いので、その様に翼運動を制御出来る平行リンク方式を採用する。翼の遠心力方向のIn/Outは図6および図7の様な歯車とリンクによるシステムを採用する。 The performance of the vertical axis wind turbine 1 is determined by using the optimum combination of these variables. Further, since it is more efficient to carry out the Heaving motion of the wing 5 in parallel with the rotation axis 2 in the normal direction of the wing rotational motion, a parallel link method capable of controlling the wing motion is adopted. The centrifugal force direction In / Out of the wing adopts a gear and link system as shown in FIGS.
 (垂直軸型風車の翼の運動)
回転軸と翼の位置関係は平行移動をすることを考えれば、垂直軸型風車1の基礎となる2つの翼5,5の関係位置は、図7及び図8(a)に示すように、翼運動は回転軸2と軸対称となり、翼5,5は平行運動を行う機構、若しくは図8(b)に示すように、翼運動は回転軸2と軸非対称で、2つの翼5,5は取り付け腕部14,14に従いシーソー運動を行い、且つ翼5,5は平行運動を行う機構、という2つの機構が考えられる。
(Motion of the wing of a vertical axis wind turbine)
Considering that the positional relationship between the rotation axis and the blades is parallel, as shown in FIGS. 7 and 8A, the relative positions of the two blades 5 and 5 which form the basis of the vertical axis wind turbine 1 are as follows: The wing movement is axisymmetric to the rotation axis 2 and the wings 5 and 5 perform parallel movement, or as shown in FIG. 8 (b), the wing movement is axisymmetric to the rotation axis 2 and the two wings 5 and 5 are There are two possible mechanisms for performing the seesaw motion according to the mounting arms 14 and 14 and for the wings 5 and 5 to perform the parallel motion.
 流場からのエネルギー吸収では、どちらのエネルギー吸収効率はさほど変わらないが、図8(a)では翼を上下運動させることによる反力が、回転軸を上下に振動させる力として働き、また図8(b)では翼の上下運動による力が発生しない。よって、実用的には図8(b)の方式が有利と考えられる。 In energy absorption from the flow field, which energy absorption efficiency does not differ much, but in FIG. 8 (a), the reaction force by moving the blade up and down works as a force to vibrate the rotation axis up and down, and In (b), no force is generated by the vertical motion of the wing. Therefore, practically, the system of FIG. 8 (b) is considered to be advantageous.
 (PACFVAWTの翼のPitching制御)
VAWTの相対流入角および相対流入速度は、流場の流速Uと翼軌跡半径rおよび周速度比TSRで定まってしまう。しかしFVAWTでは、回転する翼への相対流入角および相対流速を、翼制御変数を変えることで任意に設定できる。
(Pitching control of the wing of PACFVAWT)
The relative inflow angle and the relative inflow velocity of the VAWT are determined by the flow velocity U and the blade trajectory radius r and the circumferential velocity ratio TSR. However, in FVAWT, the relative inflow angle to the rotating wing and the relative flow velocity can be arbitrarily set by changing the wing control variable.
 そのため、相対流入角を大きくなるように翼のHeaving運動制御を行い、その相対翼角を簡単な機構のバネ(Pitch Spring)で、相対迎角を最適(失速角限界)となるようにあらかじめ設定しておくことにより高いエネルギー吸収効率を発揮することができる。なお、この翼角制御部分に様々なアクチュエータを採用し翼角を能動的に制御し、より高性能を狙うことも可能である。 Therefore, heaving motion control of the wing is performed to increase the relative inflow angle, and the relative wing angle is set in advance so that the relative angle of attack becomes optimum (stall angle limit) with a simple mechanism (Pitch Spring). High energy absorption efficiency can be exhibited by carrying out. In addition, it is also possible to adopt various actuators in this blade angle control part and actively control the blade angle to aim at higher performance.
 PACFVAWTはFVAWT同様、翼制御パラメータが3つ有ることにより、最適な変数の組合せは単純には求まらない。PACFVAWTは多くの数値計算の結果導かれた制御変数の最適値と、また新たに最適なPitch Springを設定することで高性能なFACFVAWTを構築したものである。 As with FVAWT, PACFVAWT has three blade control parameters, so the optimum combination of variables can not be determined simply. PACFVAWT is a high-performance FACFVAWT constructed by setting optimal values of control variables derived as a result of many numerical calculations and new optimal Pitch Spring.
 さらに図2で示されているサイクロイダル翼制御方式は、VAWTに複雑なリンク機構を配置し、初めてVAWT を越える性能を発揮する。しかし本システムでは、翼Pitch 角制御は単純な受動式であり、サイクロイダル式に比べはるかに簡易でありながら、これらを越える性能を発揮することが数値計算で示されている。 Furthermore, the cycloidal wing control system shown in FIG. 2 arranges a complicated link mechanism in the VAWT, and exhibits performance beyond the VAWT for the first time. However, in this system, it is shown by numerical calculation that wing Pitch angle control is simple passive type, and it is far simpler than cycloidal type, and it exhibits performance beyond these.
 FVAWTおよびPACFVAWT の回転翼5は、大きな流入翼迎角および相対流入速度を制御できる。そのため、翼5は失速領域を越えて作動する事も可能になる。図9(a)、(b)に示されるように、これを翼接合部において弾性復帰手段としてのバネ16(Pitch Spring)を配置し、相対流入角を受動的に制御し、最適な相対流入翼角を作り出す。この機構はFVAWT にも適用可能である。 Rotor blades 5 of FVAWT and PACFVAWT can control large inflow blade attack angle and relative inflow velocity. Therefore, the wing 5 can also operate beyond the stall region. As shown in FIGS. 9 (a) and 9 (b), a spring 16 (Pitch Spring) as an elastic return means is disposed at the wing joint, and the relative inflow angle is passively controlled to obtain an optimum relative inflow. Create a wing angle. This mechanism is also applicable to FVAWT.
 翼5のPitch角制御用バネは、翼迎角制御に最適な強さと性能を有するバネ16を採用する。FVAWT およびPCFVAWT の翼5の運動位相には最適値がある。そのため風向に対してウインドベーンに相当する最適な風向保持の機構を有する。 The pitch angle control spring of the wing 5 employs a spring 16 having the strength and performance optimum for wing attack angle control. The motion phase of the wing 5 of FVAWT and PCFVAWT has an optimum value. Therefore, it has an optimal wind direction holding mechanism that corresponds to the wind vane with respect to the wind direction.
 図9(b)に示されるように、翼5と回転軸2を接合し、翼回転による遠心力に耐え、かつ翼5の推力をトルクに変換し回転軸2に伝達する機能を有する取り付け腕部18の断面18aは最適な2次元対称翼断面、または腕部の推力発生を増加させる推力増加機構19を配置する。これは腕部18が回転中に上下運動することにより、羽ばたき運動に似た動作をするから、この動作における推力発生を狙い翼断面18aと、推力発生機能を組み込む。
腕部18の平面形状は腕の上下運動に対し、推力発生に高効率な翼平面形状とし、より高効率の推力発生システムとする。
As shown in FIG. 9 (b), a mounting arm having a function of joining the wing 5 and the rotary shaft 2, resisting the centrifugal force caused by the wing rotation, and converting the thrust of the wing 5 into torque and transmitting it to the rotary shaft 2 The cross section 18a of the portion 18 is provided with an optimal two-dimensional symmetrical wing cross section, or a thrust increasing mechanism 19 which increases the thrust generation of the arm. Since the arm 18 moves up and down while rotating, it behaves like fluttering motion, so the thrust generation in this operation is aimed and the wing cross section 18a and the thrust generating function are incorporated.
The plane shape of the arm portion 18 is a wing plane shape highly efficient for thrust generation with respect to the vertical movement of the arm, and is a thruster system with higher efficiency.
 上述では全て翼のHeaving/Flapping 運動を受動式であるが、本発明の変形例として、図10に示されるように、電動アクチュエータ(回転角サーボ)を配置することでHeaving/Flapping 運動を能動的に行う方法も考えられる。電動式アクチュエータを使用すれば、電動機の駆動エネルギーを必要とする。しかしFVAWT/FACFVAWT はVAWT より流場からのEnergy Gain がはるかに大きくなると期待される。そのため十分にエネルギー収支がプラスとなる機構と判断でき、能動制御の簡易な制御システムを提案する。 Although all the above described the passive Heaving / Flapping motion of the wing, as a modification of the present invention, as shown in FIG. 10, the Heaving / Flapping motion is active by arranging the electric actuator (rotational angle servo). The way to do it is also conceivable. The use of an electric actuator requires drive energy of the motor. However, FVAWT / FACFVAWT is expected to have much larger energy gain from the flow field than VAWT. Therefore, it can be judged that the energy balance is sufficiently positive, and a simple control system for active control is proposed.
 FVAWT/PACFVAWT はその回転翼の運動Heaving(Flapping)の周波数制御、位相差制御を行う必要がある。しかしアクチュエータを1つ用いることで全システムが完結する。この場合のアクチュエータ制御を説明すると、図10に示されるように、制御条件変数である流向、流速を計測計21を用いて計測して、制御装置20によりアクチュエータ23を角度制御し、以後の翼5の展開および伸縮を行う機構を作動させれば良い。すなわち制御装置20は、制御条件である流速/流向を検出し、アクチュエータ23の回転角指示命令を出力するものである。 FVAWT / PACFVAWT needs to perform frequency control and phase difference control of motion Heaving (Flapping) of the rotor. However, using one actuator completes the entire system. The actuator control in this case will be described. As shown in FIG. 10, the flow direction and the flow velocity, which are control condition variables, are measured using the measuring meter 21, and the actuator 23 is angularly controlled by the control device 20. It suffices to operate the mechanism for expanding and contracting 5. That is, the control device 20 detects a flow velocity / flow direction which is a control condition, and outputs a rotation angle instruction command of the actuator 23.
 流向/流速計は超音波流速計を採用すれば1つのセンサーシステムで事が足りる。図10では回転角制御手段として、1つのサーボモータ22による回転角制御を示す。なお、二翼が回転軸の回りに対称に上下運動するシステムでは2つのサーボモータを用いてもよい。 If a flow direction / flow velocity meter adopts an ultrasonic flow velocity meter, it is enough with one sensor system. In FIG. 10, rotation angle control by one servomotor 22 is shown as the rotation angle control means. In a system in which the two blades move up and down symmetrically around the rotation axis, two servomotors may be used.
 Active制御となるFVAWT・PACFVAWT について考える。これは同時に風向に対するシステムの指向性を満足させるシステムとなる。本発明の別の変形例として図11に示されるように、アクチュエータを回転体の発電機本体6から離して配置する。またアクチュエータ15を回転させず固定したままでも、翼の拡張伸縮が自動的に出来、さらに以下を果たすことが出来る。
1)低重心化
2)小慣性モーメント化
Let's consider FVAWT and PACFVAWT that become Active control. This is at the same time a system that satisfies the directionality of the system with respect to the wind direction. As shown in FIG. 11 as another modified example of the present invention, the actuator is disposed away from the generator body 6 of the rotating body. In addition, expansion and contraction of the wing can be automatically performed even if the actuator 15 is fixed without being rotated, and further the following can be achieved.
1) Low center of gravity 2) Small moment of inertia
 またこの配置により、アクチュエータ駆動信号は地上より自由に与えることが出来る。回転部分に直接アクチュエータを取り付けるならば、スリップリング等による信号とその駆動エネルギー供給が必要となり配線および装置が複雑化する。ただし、図11(a)の配置では図11(b)よりも風向により面積抵抗部分は少し増加する。 Also, with this arrangement, the actuator drive signal can be freely given from the ground. If the actuator is attached directly to the rotating part, signals from the slip ring etc. and their drive energy supply are required, and the wiring and equipment become complicated. However, in the arrangement of FIG. 11 (a), the area resistance portion slightly increases due to the wind direction as compared with FIG. 11 (b).
 また、特に図示しないが、2枚の傘歯車の組み合わせと、平歯車と外部のステッピングモータと平歯車の組み合わせで、Passive ControlledとActive Controlledの両方を成立させるシステムを構築できる。より詳しくは、このステッピングモータを回転軸に対してある角度を持つように回転させ、翼のシーソー運動開始位置の位相を風向に合わせることで高性能を発揮できる。またギヤーが最適位相位置にあれば停止させておくことで、このシステムは風力で回転すると共に翼がシーソー運動と共にFlapping運動を行う。これはいわばウインドベーンの性能をしのぐ性能を持たせたと言うことが出来る。 In addition, although not shown in the drawings, it is possible to construct a system that achieves both Passive Controlled and Active Controlled by the combination of two bevel gears and the combination of a spur gear and an external stepping motor and spur gear. More specifically, high performance can be exhibited by rotating the stepping motor at an angle to the rotation axis and adjusting the phase of the seesaw motion start position of the wing to the wind direction. By stopping the gear when it is in the optimal phase position, the system rotates with wind power and the wing performs flapping motion with seesaw motion. This can be said to have had a performance that surpasses the performance of the wind vane.
 (本発明の効果)
以上説明した本発明の垂直軸型風車1によれば、ヒービング運動付与機構により、垂直軸周りに回動する翼5に対して円軌道以外の回動軌道運動を与えるとともに、翼5の回動軌道運動時に、少なくとも翼5に対して翼ピッチング角が変化するピッチング角変化動作を与えるようになっていることで、実際の翼5の持つ線型翼理論を越えた範囲での失速特性により、翼5にヒービング運動が与えられる高効率な垂直軸風車の性能を上回るエネルギー変換効率を発揮できることになる。つまり翼非線形特性を考慮することにより、翼5にヒービング運動が与えられる垂直軸風車の中でも最高の高性能を発揮できることになる。
(Effect of the present invention)
According to the vertical axis wind turbine 1 of the present invention described above, the heaving motion imparting mechanism gives the wing 5 rotating about the vertical axis a rotational orbital motion other than a circular orbit, and causes the wing 5 to rotate. At the time of orbital movement, at least the wing 5 is provided with a pitching angle changing operation in which the wing pitching angle changes, so that the stall characteristics in the range beyond the linear wing theory possessed by the actual wing 5 It is possible to exhibit energy conversion efficiency that exceeds the performance of a highly efficient vertical-axis wind turbine with a heaving motion given to 5. That is, by considering the non-linear characteristics of the blade, the highest performance can be exhibited among vertical axis wind turbines in which the blade 5 is given a heaving motion.
 また、回転軸2から延びる腕部と翼5が軸支されており、腕部に対して翼5が相対回動できるようになっていることで、回転軸2と共に回動する腕部に対して翼5が所定範囲で相対回動するため、ヒービング運動とピッチング角変化動作とを効果的に連携させる動きを可能にできる。 Further, an arm extending from the rotation shaft 2 and the wing 5 are pivotally supported, and the wing 5 can rotate relative to the arm so that the arm rotating with the rotation shaft 2 can be rotated. Since the wing 5 is relatively rotated within a predetermined range, it is possible to make it possible to effectively combine the heaving movement with the pitching angle changing movement.
 また、回転軸2と翼5を軸支する腕部との接続部に、弾性復帰手段を介在させることで、回転する翼5は回転軸2間の距離の変化により、遠心力が働き更に弾性復帰手段の作用で伸縮を繰り返すことになるため、自動的に回転翼に最適な相対流入角および相対流入速度を発生させることができる。 Further, by interposing an elastic return means at the connecting portion between the rotary shaft 2 and the arm portion for supporting the wing 5, centrifugal force acts on the rotating wing 5 due to the change of the distance between the rotary shafts 2 and further elastic. Since the expansion and contraction is repeated by the action of the return means, it is possible to automatically generate the optimum relative inflow angle and relative inflow velocity for the rotor.
 更に、回転軸2と翼5を軸支する腕部との接続部に介在する弾性復帰手段が、翼迎角制御に最適な強さと性能を有するバネ16であることで、簡単なバネ構造で自動的に回転翼に最適な相対流入角および相対流入速度を発生させることができる。さらに特別な動力源が不要となるためにエネルギーロスが少ない。 Furthermore, since the elastic return means interposed at the connection between the rotary shaft 2 and the arm supporting the wing 5 is the spring 16 having the strength and performance optimum for wing attack angle control, it has a simple spring structure. It is possible to automatically generate the optimum relative inflow angle and relative inflow velocity for the rotor. Furthermore, energy loss is small because no special power source is required.
 また、回転軸2と翼5を軸支する腕部との接続部が、翼5の先頭位置側に配置されていることで、翼5の先頭方向から翼ピッチング角の変化が開始されるため、翼5の揺れ幅が大きくなるとともに、自動的に回転翼に最適な相対流入角および相対流入速度を発生させることができる。 In addition, since the connection between the rotary shaft 2 and the arm that pivotally supports the wing 5 is disposed on the head position side of the wing 5, the change of the wing pitching angle is started from the head direction of the wing 5 As the swing width of the wing 5 increases, it is possible to automatically generate the relative inflow angle and the relative inflow velocity optimum for the rotor.
 また、円軌道以外の回動軌道運動が、回転軸2周りの回動に伴い回動径が変化する軌道とピッチング角変化動作とを複合した軌道であることで、鳥の翼による飛翔や水生生物の尾鰭の動きに代表される様な翼振動運動が得られ、最小エネルギーで最大効率を発生させることができる。 In addition, because the orbit other than the circular orbit is an orbit combining the orbit whose rotation diameter changes with the rotation around the rotation axis 2 and the pitching angle change operation, the flight by the wing of the bird and the aquatic life The wing oscillation movement represented by the movement of the tail fin of a living being is obtained, and the maximum efficiency can be generated with the minimum energy.
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these embodiments, and any changes or additions may be made without departing from the scope of the present invention. Be
1        垂直軸型風車
2        回転軸
3        腕部
4        ヒンジ部
5        翼
6        発電機本体
10       駆動機構
11       太陽ギヤー
12       遊星ギヤー
14       腕部
15       アクチュエータ
16       バネ
18       腕部
19       推力増加機構
20       制御装置
21       計測計
22       サーボモータ
23       アクチュエータ
Reference Signs List 1 vertical axis wind turbine 2 rotary shaft 3 arm 4 hinge 5 wing 6 generator main body 10 drive mechanism 11 sun gear 12 planetary gear 14 arm 15 actuator 16 spring 18 arm 19 thrust increasing mechanism 20 control device 21 measuring meter 22 Servo motor 23 actuator

Claims (6)

  1.  垂直に設置される回転軸周りに回動する翼を備えた垂直軸型風車であって、
     ヒービング運動付与機構により、前記回転軸周りに回動する翼に対して円軌道以外の回動軌道運動を与えるとともに、前記翼の回動軌道運動時に、少なくとも前記翼に対して翼ピッチング角が変化するピッチング角変化動作を与えるようになっていることを特徴とする垂直軸型風車。
    A vertical axis wind turbine having blades rotating about a rotation axis installed vertically, comprising:
    A heaving motion imparting mechanism imparts a rotational orbit motion other than a circular orbit to the wing pivoted around the rotation axis, and at the time of the rotational orbit motion of the wing, the wing pitching angle changes with respect to at least the wing A vertical axis wind turbine characterized by providing a pitching angle changing operation.
  2.  前記回転軸から延びる腕部と前記翼が軸支されており、前記腕部に対して前記翼が相対回動できるようになっていることを特徴とする請求項1に記載の垂直軸型風車。 The vertical axis wind turbine according to claim 1, wherein an arm extending from the rotation shaft and the wing are pivotally supported, and the wing can rotate relative to the arm. .
  3.  前記回転軸と前記翼を軸支する腕部との接続部に、弾性復帰手段を介在させることを特徴とする請求項1または2に記載の垂直軸型風車。 The vertical axis wind turbine according to claim 1 or 2, wherein an elastic return means is interposed at a connection portion between the rotation shaft and an arm portion for pivotally supporting the wing.
  4.  前記回転軸と前記翼を軸支する腕部との接続部に介在する弾性復帰手段が、翼迎角制御に最適な強さと性能を有するバネであることを特徴とする請求項3に記載の垂直軸型風車。 The elastic return means interposed at the connecting portion between the rotation shaft and the arm supporting the wing is a spring having strength and performance optimum for wing attack angle control. Vertical axis windmill.
  5.  前記回転軸と前記翼を軸支する腕部との接続部が、翼の先頭位置側に配置されていることを特徴とする請求項1ないし4のいずれかに記載の垂直軸型風車。 The vertical axis wind turbine according to any one of claims 1 to 4, wherein a connecting portion between the rotation shaft and an arm portion for pivotally supporting the wing is disposed on a leading end side of the wing.
  6.  前記円軌道以外の回動軌道運動が、前記回転軸周りの回動に伴い回動径が変化する軌道と前記ピッチング角変化動作とを複合した軌道であることを特徴とする請求項1ないし5のいずれかに記載の垂直軸型風車。 The turning orbit motion other than the circular orbit is a orbit obtained by combining the orbit whose turning diameter changes with the turning around the rotation axis and the pitching angle changing operation. Vertical axis wind turbine according to any of the above.
PCT/JP2018/042486 2017-12-06 2018-11-16 Vertical axis-type wind turbine WO2019111674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017234187A JP2019100289A (en) 2017-12-06 2017-12-06 Vertical shaft windmill
JP2017-234187 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019111674A1 true WO2019111674A1 (en) 2019-06-13

Family

ID=66750493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042486 WO2019111674A1 (en) 2017-12-06 2018-11-16 Vertical axis-type wind turbine

Country Status (2)

Country Link
JP (1) JP2019100289A (en)
WO (1) WO2019111674A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112224632A (en) * 2020-09-28 2021-01-15 中天科技集团海洋工程有限公司 Offshore wind turbine blade storage device convenient to hoist and hoisting method thereof
WO2023187146A1 (en) 2022-03-31 2023-10-05 Les Ritournailes Device for indicating the direction of the wind, and associated kit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0065778A2 (en) * 1981-05-27 1982-12-01 Erich Herter Turbine
JPS60500221A (en) * 1983-01-04 1985-02-21 ヘルテル・エ−リツヒ Turbine for converting singular wind energy
JP2007218172A (en) * 2006-02-16 2007-08-30 Univ Of Electro-Communications Rotor mechanism, moving body using rotor mechanism and generator
JP2014145293A (en) * 2013-01-29 2014-08-14 Akira Yoyogi Wind turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0065778A2 (en) * 1981-05-27 1982-12-01 Erich Herter Turbine
JPS60500221A (en) * 1983-01-04 1985-02-21 ヘルテル・エ−リツヒ Turbine for converting singular wind energy
JP2007218172A (en) * 2006-02-16 2007-08-30 Univ Of Electro-Communications Rotor mechanism, moving body using rotor mechanism and generator
JP2014145293A (en) * 2013-01-29 2014-08-14 Akira Yoyogi Wind turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112224632A (en) * 2020-09-28 2021-01-15 中天科技集团海洋工程有限公司 Offshore wind turbine blade storage device convenient to hoist and hoisting method thereof
WO2023187146A1 (en) 2022-03-31 2023-10-05 Les Ritournailes Device for indicating the direction of the wind, and associated kit
FR3134184A1 (en) * 2022-03-31 2023-10-06 Les Ritournailes Device and kit for indicating wind direction

Also Published As

Publication number Publication date
JP2019100289A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
EP1888917B1 (en) Vertical axis wind turbine having an overspeeding regulator controlling multiple aerodynamic elements
US7677862B2 (en) Vertical axis wind turbine with articulating rotor
EP1861619B1 (en) Tension wheel in a rotor system for wind and water turbines
US6688842B2 (en) Vertical axis wind engine
US20110006526A1 (en) Pitch control arrangement for wind turbine
US20140167414A1 (en) Variable diameter and angle vertical axis turbine
US20140322013A1 (en) Independent variable blade pitch and geometry wind turbine control
US9903339B2 (en) Vertical axis wind turbine with variable pitch mechanism
JP4982733B2 (en) Vertical-axis linear blade wind turbine with aerodynamic speed control mechanism
JP2009500562A (en) Blade pitch control mechanism
WO2019111674A1 (en) Vertical axis-type wind turbine
EP3613980A1 (en) Vertical-shaft turbine
WO2010104419A1 (en) Carousel-style wind power assembly with symmetrical blades
AU2008222708B2 (en) Hubless windmill
CN111194382A (en) Wind turbine
CN101457738B (en) Self-adapting flexible vane rotor
JP4690800B2 (en) Horizontal axis windmill
RU2589569C2 (en) Method for conversion of kinetic flow energy into rotation of wing and apparatus for realising said method
CN212054985U (en) Inclined blade umbrella-shaped variable-diameter speed-regulating vertical-axis wind driven generator
RU2721928C1 (en) Wind-driven plant
RU2664639C2 (en) Method for converting the kinetic energy of a air flow to a rotary movement of a blade
JP7304529B2 (en) wind generator
RU2743564C1 (en) Vane engine
WO2019073189A1 (en) Vertical axis wind turbine
RU2710107C1 (en) Wind-propulsion system blade position control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885416

Country of ref document: EP

Kind code of ref document: A1