WO2019111456A1 - Transaxle control device - Google Patents

Transaxle control device Download PDF

Info

Publication number
WO2019111456A1
WO2019111456A1 PCT/JP2018/031962 JP2018031962W WO2019111456A1 WO 2019111456 A1 WO2019111456 A1 WO 2019111456A1 JP 2018031962 W JP2018031962 W JP 2018031962W WO 2019111456 A1 WO2019111456 A1 WO 2019111456A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
gear
control device
clutch
dog
Prior art date
Application number
PCT/JP2018/031962
Other languages
French (fr)
Japanese (ja)
Inventor
剛太 那須
清水 亮
洋則 安部
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2019558000A priority Critical patent/JP6881598B2/en
Priority to CN201880077885.1A priority patent/CN111433065B/en
Publication of WO2019111456A1 publication Critical patent/WO2019111456A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device of a transaxle used in a hybrid vehicle equipped with an engine and two rotating electric machines.
  • the running mode includes EV mode, which runs only with a motor using the charging power of the battery, series mode, which runs the generator while driving the generator with the engine, and parallel mode, which runs while main running with the engine. Etc. are included.
  • the driving mode is switched by controlling a connecting / disconnecting mechanism interposed on a power transmission path in the transaxle. Examples of the connection / disconnection mechanism include a friction clutch (multiple disc clutch) and a dog clutch (see Patent Documents 1 and 2).
  • a dog clutch that does not have a synchro mechanism is often employed.
  • the spline teeth formed on the inner peripheral surface of the sleeve rotate against the dog teeth of the dog gear that rotates integrally with the idle gear while being rotationally synchronized with the idle gear side to be engaged.
  • the sleeve is moved axially to engage or disengage.
  • the sleeve is moved in the axial direction by an actuator controlled by a control device, and the sleeve has an initial position (hereinafter referred to as "zero point position") as a reference in this control.
  • the controller In order to control the sleeve accurately, the controller must accurately determine that the sleeve is at the zero point position. In other words, if the position of the sleeve can be accurately adjusted to the zero point position, the dog teeth of the dog gear and the spline teeth of the sleeve can be accurately engaged, and the generation of vibration and noise can be avoided.
  • the control device of the present transaxle has been devised in view of such problems, and one of its purposes is to adjust the position of the sleeve reliably to the zero point position.
  • the present invention is not limited to this object, and it is an operation and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and it is another object of the present invention to exert an operation and effect that can not be obtained by the prior art. is there.
  • the transaxle control device disclosed herein includes an engine, a first rotating electrical machine that drives an output shaft on the drive wheel side, and a second rotating electrical machine that generates electric power by the driving force of the engine.
  • Control device for a transaxle of a hybrid vehicle is a clutch provided on at least one of a first power transmission path from the first rotating electrical machine to the output shaft and a second power transmission path from the engine to the output shaft, and the clutch And a first gear coaxially disposed adjacent to and having an engaged gear engaged with a sleeve of the clutch.
  • control device moves the sleeve in the first direction so as to engage the engaged gear of the first gear when the output shaft is in the stop state, and then, the control device performs a predetermined neutral distance.
  • the sleeve is moved in a direction opposite to the first direction to adjust the initial position of the sleeve.
  • the neutral distance is a distance from a zero point position, which is a reference when the sleeve moves, to a position where the teeth of the sleeve mesh with the teeth of the engaged gear.
  • the sleeve is an annular engagement member rotatably synchronized with the shaft on which the clutch is provided and slidably coupled in the axial direction, and the teeth (spline provided on the inner peripheral surface side) Have teeth).
  • the first gear is supported so as to be relatively rotatable with respect to the shaft, and is engaged with a fixed gear fixed to another shaft, and the sleeve and the engaged gear are engaged (meshed) It is a gear that transmits power when.
  • the control device When moving the sleeve in the first direction, the control device preferably shifts the phase of the sleeve and the engaged gear by the power of the rotating electrical machine. (3) When moving the sleeve in the first direction, the controller causes the sleeve and the engaged gear to collide with each other when the teeth of the sleeve and the engaged gear do not engage with each other. It is preferable to shift the phase with the mating gear.
  • the control device causes the teeth of the sleeve and the teeth of the engaged gear to collide and collide It is preferable to determine that the (5)
  • the clutch is provided on the second power transmission path, and the control device shifts the phase of the sleeve and the engaged gear by the power of the second rotating electrical machine.
  • the clutch includes a high-side clutch and a low-side clutch, provided on the second power transmission path, for performing connection and disconnection of the power transmission and high / low switching, and the control device is configured to It is preferable to sequentially adjust the initial positions of both the high side clutch and the low side clutch.
  • the control device starts movement of the sleeve in the first direction to adjust the initial position of the sleeve.
  • the clutch is provided on the first power transmission path, and the control device shifts the phase of the sleeve and the engaged gear by the power of the first rotary electric machine.
  • the clutch is provided on the first power transmission path and on the second power transmission path, and the control device is driven on the first power transmission path by the power of the first rotary electric machine. It is preferable to shift the phase of the sleeve of the clutch and the engaged gear.
  • the initial position of the sleeve can be reliably adjusted (set) to the zero point position by appropriately giving the neutral distance.
  • FIG. 2 is a schematic side view of a powertrain provided with the transaxle of FIG. 1;
  • FIG. 2 is a skeleton view of a powertrain with the transaxle of FIG. 1;
  • It is a figure for demonstrating the content of the sleeve adjustment control implemented with the control apparatus of FIG. 1, (a) shows the state which the initial position Ps has shifted from 0 point position Pn, (b) carries out gear blocking The control content in the case of clutch engagement without being shown, (c) shows the control content in the case of gear block.
  • sleeve adjustment control implemented by the control apparatus of FIG.
  • a control device of a transaxle as an embodiment will be described with reference to the drawings.
  • the embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques that are not specified in the following embodiments.
  • Each structure of this embodiment can be variously modified and implemented in the range which does not deviate from those meaning. Also, they can be selected as needed or can be combined as appropriate.
  • the control device 5 of the transaxle 1 of the present embodiment is applied to a vehicle 10 shown in FIG.
  • This vehicle 10 is a hybrid vehicle equipped with an engine 2, a traveling motor 3 (motor, first rotating electric machine), and a generator 4 for power generation (generator, second rotating electric machine).
  • the generator 4 is connected to the engine 2 and can be operated independently of the operating state of the motor 3.
  • the vehicle 10 is provided with three types of travel modes: EV mode, series mode, and parallel mode. These traveling modes are alternatively selected by the control device 5 in accordance with the vehicle state, the traveling state, the driver's request output and the like, and the engine 2, the motor 3 and the generator 4 are properly used in accordance with the type.
  • the EV mode is a traveling mode in which the vehicle 10 is driven only by the motor 3 using charging power of a driving battery (not shown) while the engine 2 and the generator 4 are stopped.
  • the EV mode is selected when the traveling load and the vehicle speed are low or when the charge level of the battery is high.
  • the series mode is a traveling mode in which the generator 2 is driven by the engine 2 to generate electric power, and the electric power is used to drive the vehicle 10 by the motor 3.
  • the series mode is selected when the traveling load and the vehicle speed are medium or when the charge level of the battery is low.
  • the parallel mode is mainly a driving mode in which the vehicle 2 is driven by the engine 2 and the driving of the vehicle 10 is assisted by the motor 3 as needed.
  • the parallel mode is selected when the running load and the vehicle speed are high.
  • the engine 2 and the motor 3 are connected in parallel to the drive wheel 8 via the transaxle 1, and respective powers of the engine 2 and the motor 3 are individually transmitted from different power transmission paths. That is, each of the engine 2 and the motor 3 is a drive source which drives the output shaft 12 by the side of the driving wheel 8 mentioned later. Further, the generator 4 and the drive wheel 8 are connected in parallel to the engine 2 via the transaxle 1, and the power of the engine 2 is transmitted to the generator 4 in addition to the drive wheel 8.
  • the transaxle 1 is a power transmission device in which a final drive (final reduction gear) including a differential gear 18 (differential gear, hereinafter referred to as "differential gear 18") and a transmission (reduction gear) are integrally formed. And a plurality of mechanisms for transmitting power between the drive and the driven device.
  • the transaxle 1 of the present embodiment is configured to be capable of high / low switching (switching between high speed and low speed), and the high gear according to the traveling state, required output, etc. by the control device 5 when traveling in parallel mode. The gear and the low gear are switched.
  • the engine 2 is an internal combustion engine (gasoline engine, diesel engine) fueled by gasoline or light oil.
  • the engine 2 is a so-called horizontal engine disposed sideways so that the direction of the crankshaft 2a (rotational axis) coincides with the vehicle width direction of the vehicle 10, and is fixed to the right side of the transaxle 1 .
  • the crankshaft 2 a is disposed parallel to the drive shaft 9 of the drive wheel 8.
  • the operating state of the engine 2 is controlled by the controller 5.
  • the motor 3 and the generator 4 of the present embodiment are both a motor generator (motor generator) having a function as an electric motor and a function as a generator.
  • the motor 3 mainly functions as an electric motor to drive the vehicle 10, and functions as a generator during regeneration.
  • the generator 4 functions as a motor (starter) when starting the engine 2 and performs power generation with engine power when the engine 2 is operating.
  • An inverter (not shown) that converts a direct current and an alternating current is provided around (or inside) each of the motor 3 and the generator 4.
  • the rotational speeds of the motor 3 and the generator 4 are controlled by controlling an inverter.
  • the operating states of the motor 3, the generator 4 and the respective inverters are controlled by the control device 5.
  • the motor 3 according to the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 3a, and is fixed to the left side surface of the transaxle 1 with its bottom surface facing the transaxle 1 side.
  • the generator 4 of the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 4a, and, like the motor 3, the left side of the transaxle 1 is oriented with its bottom surface facing the transaxle 1 side. It is fixed to the face.
  • FIG. 2 is a side view of the power train 7 as viewed from the left side.
  • the power train 7 includes an engine 2, a motor 3, a generator 4, and a transaxle 1.
  • the engine 2 is omitted in FIG.
  • a power switch 6 is provided in the compartment of the vehicle 10 to switch the connection / disconnection state of the main power supply of the vehicle 10.
  • the main power source of the vehicle 10 is connected (READY-ON state)
  • the power switch 6 is turned off, the main power source of the vehicle 10 is disconnected (READY-OFF state Will be Further, the vehicle 10 is provided with a control device 5 that performs integrated control of various devices mounted on the vehicle 10.
  • FIG. 3 is a skeleton diagram of a powertrain 7 provided with the transaxle 1 of the present embodiment. As shown in FIGS. 2 and 3, the transaxle 1 is provided with six axes 11 to 16 arranged parallel to one another. Hereinafter, a rotary shaft coaxially connected with the crankshaft 2 a will be referred to as an input shaft 11.
  • rotation shafts coaxially connected with the drive shaft 9, the rotation shaft 3 a of the motor 3, and the rotation shaft 4 a of the generator 4 are referred to as an output shaft 12, a motor shaft 13, and a generator shaft 14.
  • a rotary shaft disposed on the power transmission path between the input shaft 11 and the output shaft 12 is referred to as a first countershaft 15, and is disposed on the power transmission path between the motor shaft 13 and the output shaft 12
  • the rotating shaft is called a second counter shaft 16.
  • Each of the six shafts 11 to 16 is pivotally supported by the casing 1C via bearings (not shown) at both ends.
  • An opening is formed in the side surface of the casing 1C located on each of the input shaft 11, the output shaft 12, the motor shaft 13 and the generator shaft 14, and the crankshaft 2a located outside the casing 1C and the drive shaft 9 , Rotary shaft 3a and rotary shaft 4a.
  • first path 51 a power transmission path from the motor 3 to the output shaft 12 via the motor shaft 13, and from the engine 2
  • second path 52 A power transmission path leading to the output shaft 12 through the input shaft 11
  • third path a power transmission path leading from the engine 2 to the generator shaft 14 through the input shaft 11 53
  • first path 51 and the second path 52 are drive power transmission paths
  • third path 53 is a power generation power transmission path.
  • the first path 51 is a path related to power transmission from the motor 3 to the drive wheel 8 and is responsible for power transmission of the motor 3.
  • the motor shaft 13 and the second counter shaft 16 are provided on the first path 51, and a first dog clutch 20 described later that connects and disconnects the power transmission is interposed in the middle of the first path 51.
  • the second path 52 (second power transmission path) is a path relating to power transmission from the engine 2 to the drive wheels 8 and is responsible for power transmission at the time of operation of the engine 2.
  • An input shaft 11 and a first counter shaft 15 are provided on the second path 52, and a second dog clutch 30 (engine (described later) performs disconnection and connection of power transmission and high / low switching in the middle of the second path 52 A side dog clutch is installed.
  • the third path 53 (third power transmission path) is a path related to power transmission from the engine 2 to the generator 4 and is responsible for power transmission at engine start and power transmission at the time of power generation by the engine 2.
  • the "fixed gear” means a gear provided integrally with the shaft and incapable of relative rotation with respect to the shaft.
  • “free running gear” means a gear that is rotatably supported relative to the shaft.
  • the input shaft 11 includes, in order from the side closer to the engine 2, the fixed gear 11a, the second dog clutch 30 on the high side (hereinafter referred to as "high side dog clutch 30H"), and the idle gear 11H (first gear). , And a fixed gear 11L.
  • the first countershaft 15 includes, in order from the side closer to the engine 2, the fixed gear 15a, the fixed gear 15H, the idle gear 15L (first gear), and the second dog clutch 30 on the low side (hereinafter referred to as And a low-side dog clutch 30L ".
  • the fixed gear 11 a of the input shaft 11 always meshes with the fixed gear 14 a provided on the generator shaft 14. That is, the input shaft 11 and the generator shaft 14 are connected via the two fixed gears 11 a and 14 a, and power can be transmitted between the engine 2 and the generator 4.
  • the fixed gear 15 a of the first countershaft 15 is always meshed with the ring gear 18 a of the differential 18 provided on the output shaft 12.
  • the idler gear 11H and the fixed gear 11L provided on the input shaft 11 have different numbers of teeth, and are constantly meshed with the stationary gear 15H and the idler gear 15L provided on the first countershaft 15.
  • the fixed gear 15H and the idle gear 15L of the first countershaft 15 also have different numbers of teeth.
  • the free rotation gear 11H has more teeth than the fixed gear 11L.
  • the idle gear 11H meshes with the fixed gear 15H having a small number of teeth to form a high gear.
  • the fixed gear 11L having a small number of teeth meshes with the idle gear 15L having a large number of teeth to form a low gear.
  • the idle gear 11H coaxially disposed adjacent to the high side dog clutch 30H has a dog gear 11d (engaged gear) integrally provided on the right side of the tooth surface portion meshing with the fixed gear 15H of the first countershaft 15.
  • the idle gear 15L coaxially disposed adjacent to the low-side dog clutch 30L has a dog gear 15d (engaged gear) integrally provided on the left side of the tooth surface portion meshing with the fixed gear 11L of the input shaft 11.
  • a dog tooth 11t is provided at a tip end (a radial outer end) of the dog gear 11d.
  • a dog tooth (not shown) similar to the dog tooth 11t is provided at the tip of the dog gear 15d.
  • the high-side dog clutch 30H and the low-side dog clutch 30L are both provided on the second path 52 to control the connection / disconnection state of the power of the engine 2 and to switch between the high gear stage and the low gear stage.
  • the high-side dog clutch 30H has a hub 31H fixed to the input shaft 11, and an annular sleeve 32H which can not rotate relative to the hub 31H (input shaft 11) and is axially slidably coupled. .
  • the sleeve 32 ⁇ / b> H slides in the axial direction when an actuator (for example, a servomotor, not shown) is controlled by the controller 5.
  • a stroke sensor 45a that detects the amount of movement (stroke amount) is provided.
  • spline teeth 32t that mesh with the dog teeth 11t of the dog gear 11d are provided on the inner side in the radial direction of the sleeve 32H.
  • the sleeve 32H and the dog gear 11d mesh (engage) with each other.
  • the driving force from the engine 2 is transmitted to the output shaft 12 through the high gear pairs 11H and 15H.
  • the idle gear 11H is idled and the high side power transmission in the second path 52 is interrupted. Become.
  • the low-side dog clutch 30L is non-relatively rotatable with respect to the hub 31L fixed to the first counter shaft 15, and the hub 31L (first counter shaft 15), and is axially slidably coupled.
  • an annular sleeve 32L is also slides in the axial direction when the actuator (not shown) is controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45 b.
  • spline teeth (not shown) that mesh with the dog teeth of the dog gear 15d are provided.
  • the sleeve 32L and the dog gear 15d mesh (engage) with each other.
  • the driving force from the engine 2 is transmitted to the output shaft 12 through the low gear pairs 11L and 15L.
  • the idle gear 15L is idled, and the power transmission on the low side in the second path 52 is interrupted. The control of the sleeves 32H and 32L will be described later.
  • the second countershaft 16 is provided with a first dog clutch 20, an idle gear 16M (first gear), a parking gear 19, and a fixed gear 16a in order from the side closer to the engine 2.
  • the fixed gear 16 a is in constant mesh with the ring gear 18 a of the differential 18.
  • the parking gear 19 is an element constituting the parking lock device, and when the P range is selected by the driver, the parking gear 19 engages with a parking plug (not shown) to rotate the second countershaft 16 (that is, the output shaft 12). Ban.
  • the idle gear 16M has more teeth than the fixed gear 13a provided on the motor shaft 13, and is always meshed with the fixed gear 13a.
  • the idle gear 16M has a dog gear 16d (engaged gear) integrally provided on the right side of the tooth surface that meshes with the fixed gear 13a.
  • the dog gear 16d has a dog tooth (not shown) similar to the dog tooth 11t of the above-described dog gear 11d at its tip.
  • the first dog clutch 20 has an annular sleeve fixed to the second countershaft 16 and an annular sleeve which can not rotate relative to the hub 21 (second countershaft 16) and is axially slidably coupled. And 22.
  • the sleeve 22 also slides in the axial direction by an actuator (not shown) being controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45c.
  • the sleeve 22 and the dog gear 16 d of the free rotation gear 16 M mesh with each other
  • the sleeve 22 and the dog gear 16 d mesh (engage) with each other.
  • the driving force from the motor 3 is transmitted to the output shaft 12 in a state in which the sleeve 22 and the dog gear 16 d are engaged (engaged).
  • the sleeve 22 engages with the dog gear 16d when the motor 3 is operating (on), and the sleeve 22 is controlled to the neutral position when the motor 3 is stopped (off).
  • the neutral position means a position where the sleeve is separated from the dog gear, and may be the same position as a zero point position described later, or may be a predetermined range including the zero point position. .
  • control is performed to adjust the initial position Ps of the sleeves 32H and 32L when the output shaft 12 is in the stopped state.
  • this control is referred to as "sleeve adjustment control”.
  • the sleeve adjustment control is performed by the controller 5 when the output shaft 12 is stopped (that is, while the vehicle 10 is stopped).
  • the sleeve adjustment control is performed on the sleeves 32H and 32L of the second dog clutch 30 provided on the second path 52.
  • the initial position Ps means the position of the sleeves 32H and 32L before the output shaft 12 is in the stopped state and the sleeves 32H and 32L are moved.
  • the transaxle 1 of this embodiment does not have a position sensor that directly detects the positions of the sleeves 32H and 32L, and has stroke sensors 45a and 45b that are cheaper than the position sensor.
  • the stroke sensors 45a and 45b are detection means for detecting the amount of movement of the sleeves 32H and 32L.
  • a zero point position Pn initial position which is a reference when being moved by the actuator is set in advance.
  • the control device 5 of the present embodiment moves the sleeves 32H and 32L to a desired position by instructing the movement direction and the movement amount from the initial position Ps to the actuator.
  • the desired position is, for example, a position where the spline teeth 32t of the sleeve 32H mesh with the dog teeth 11t of the dog gear 11d, ie, positions where the sleeves 32H, 32L and the dog gears 11d, 15d adjacent thereto engage. is there.
  • engagement position Pe the desired position
  • the second dog clutch 30 since the second dog clutch 30 is provided on the high side and the low side, the distance from the zero point position Pn to the engagement position Pe is previously determined for each of the sleeves 32H and 32L. Therefore, when engaging the sleeves 32H and 32L with the dog clutches 11d and 15d, the control device 5 transmits a preset command value (moving direction and moving amount) to the actuator.
  • the positions of the sleeves 32H and 32L before movement do not match the zero point position Pn due to some abnormality as shown in FIG. 4A.
  • the control device 5 adjusts the initial position Ps of the sleeves 32H and 32L to ensure that the positions of the sleeves 32H and 32L coincide with the zero point position.
  • This control is sleeve adjustment control.
  • the vehicle 10 for selecting the EV mode when the traveling load and the vehicle speed are low, that is, when the vehicle 10 starts or stops, the vehicle 10 for selecting the EV mode is illustrated. Therefore, when the output shaft 12 is stopped, the sleeve 22 of the first dog clutch 20 is And the dog gear 16 d are engaged, and the sleeve adjustment control is not performed on the sleeve 22 of the first dog clutch 20.
  • the output shaft 12 When the output shaft 12 is stopped (while the vehicle 10 is stopped), for example, when the main power supply of the vehicle 10 is cut off by turning off the power switch 6 of the vehicle 10 (that is, the vehicle 10 is When it is in the READY-OFF state). In addition, the vehicle 10 is waiting for a signal or waiting for a crossing while the vehicle 10 is in operation when the main power supply of the vehicle 10 is connected by turning on the power switch 6 of the vehicle 10 and before starting the operation, or while the vehicle 10 is in operation. Even when the generator 4 is not generating power, the output shaft 12 is also stopped. Therefore, sleeve adjustment control may be performed in these cases.
  • the controller 5 of this embodiment determines that the output shaft 12 is in the stopped state, it adjusts the position of the high side sleeve 32H, and then adjusts the position of the low side sleeve 32L to adjust both the clutches 30H and 30L.
  • the adjustment of the initial position Ps of is sequentially performed. Specifically, as shown in FIG. 4B, the actuator of the high-side sleeve 32H is controlled to move the sleeve 32H from the initial position Ps toward the dog gear 11d of the idle gear 11H, and the spline teeth 32t and dog tooth 11t are engaged.
  • the sleeve 32H is reversely set from the engagement position Pe by a preset neutral distance Dn (as shown by the black-painted arrow in the drawing, the sleeve 32H is separated from the dog gear 11d).
  • first direction the direction in which the clutch is engaged
  • second direction the direction opposite to the first direction
  • the control device 5 may determine that the vehicle 10 is stopped (that is, the output shaft 12 is stopped) by the vehicle speed sensor or the wheel speed sensor (all not shown), or the shift position or parking brake 19 It may be judged from the lock state of the main body or the on / off state of the main power supply of the vehicle 10. Further, the neutral distance Dn is the “distance from the zero point position Pn to the engagement position Pe” described above, and is preset for each of the sleeves 32H and 32L.
  • the sleeve 32H since the sleeve 32H is stopped at a position separated by the neutral distance Dn from the position where the spline teeth 32t and the dog teeth 11t mesh with each other (the above-described engagement position Pe), the position of the sleeve 32H reliably matches the zero point position. Do.
  • the factor causing the sliding movement of the sleeve 32H to end is when the spline teeth 32t mesh with the dog teeth 11t (that is, when the engagement position Pe is reached), as shown in FIG. As shown in c), this is the case where the spline teeth 32t and the dog teeth 11t collide without meshing (that is, a gear block is generated).
  • the position of the sleeve 32H when the gear is blocked is referred to as "gear block position Pb".
  • the control device 5 of the present embodiment determines a factor when the sleeve 32H is stopped based on the distance (movement amount) from the initial position Ps to the position at which the sleeve 32H is stopped.
  • the control device 5 sets “DXX”.
  • the control device 5 When moving the sleeve 32H in the first direction, the control device 5 rotates the input shaft 11 by the power of the generator 4 to shift the phase between the sleeve 32H and the dog gear 11d.
  • the hub 31H is fixed to the input shaft 11, and the sleeve 32H is provided so as to be incapable of relative rotation with respect to the hub 31H. That is, when moving the sleeve 32H, the control device 5 rotates the sleeve 32H by applying a torque to the generator 4 and changes the phase of the sleeve 32H to shift the relative phase with the dog gear 11d. Thereby, the generation of the gear block of the spline teeth 32t and the dog teeth 11t is suppressed.
  • the control device 5 of the present embodiment operates the generator 4 when judging that the gear block is generated, rotates the sleeve 32H via the input shaft 11, changes the phase, and then changes the sleeve 32H in the first direction again. Move to At this time, if the sleeve 32H moves, it is moved until the sleeve 32H stops (that is, to the engagement position Pe), and if the sleeve 32H does not move, the sleeve 32H is rotated again via the input shaft 11, and the sleeve 32H and dog gear 11d Then, the sleeve 32H is slid.
  • the rotation direction of the input shaft 11 may be one direction, or the rotation direction may be switched in a short cycle.
  • the generator 4 may be operated to turn the sleeve 32H before it is determined that a gear block has occurred (for example, when the movement of the sleeve 32H is started).
  • the control device 5 When the adjustment of the high side sleeve 32H is finished, the control device 5 performs the same control on the low side sleeve 32L. That is, the actuator of the low side sleeve 32L is controlled to move the sleeve 32L toward the dog gear 15d of the idle gear 15L (that is, in the first direction), and when the sleeve 32L stops, detection is performed by the stroke sensor 45b. It is determined whether or not the moved amount D is equal to or greater than a predetermined value X.
  • FIG. 5 is an example of a flowchart for explaining the contents of the above-described sleeve adjustment control.
  • the flowchart is implemented by the control device 5 when the main power supply of the vehicle 10 is disconnected (that is, when the output shaft 12 is in the stopped state).
  • the information detected by the stroke sensors 45a to 45c is transmitted to the control device 5 as needed.
  • the high side sleeve 32H is moved in the first direction (toward the idle gear 11H) (step S1), and it is determined whether the sleeve 32H has stopped (step S2).
  • the actuator is controlled until the sleeve 32H stops, and when the sleeve 32H stops, it is determined whether the movement amount D detected by the stroke sensor 45a is equal to or greater than a predetermined value X (step S3). If D ⁇ X, it is determined that the spline teeth 32t and the dog teeth 11t are engaged, and the sleeve 32H is moved in the second direction by the neutral distance Dn and stopped (step S4).
  • step S3 if D ⁇ X, the process proceeds to step S5, the generator 4 is driven, and the sleeve 32H is rotated by the power of the generator 4 via the input shaft 11. Thereby, the relative phase of the sleeve 32H and the dog gear 11d is shifted, and then the sleeve 32H is moved again in the first direction (step S6). Then, it is determined whether or not the sleeve 32H has moved (step S7). If the sleeve 32H has not moved, the process returns to step S5.
  • step S8 it is determined whether the sleeve 32H has stopped, and the actuator is stopped until the sleeve 32H stops (that is, until the spline teeth 32t and the dog teeth 11t mesh) Is controlled. Then, when the sleeve 32H is stopped, the process of step S4 is performed.
  • step S9 the adjustment of the low side sleeve 32L (processing of steps S9 to S16) is performed. That is, the low side sleeve 32L is moved in the first direction (toward the idle gear 15L) (step S9), and it is determined whether the sleeve 32L has stopped (step S10).
  • the actuator is controlled until the sleeve 32L stops, and when the sleeve 32L stops, it is determined whether the moving amount D detected by the stroke sensor 45b is equal to or greater than a predetermined value X (step S11). If D ⁇ X, it is determined that the spline teeth and the dog teeth are engaged, and the sleeve 32L is moved in the second direction by the neutral distance Dn and stopped (step S12).
  • step S11 if D ⁇ X, the process proceeds to step S13, the generator 4 is driven, and the idle gear 15L is rotated by the power of the generator 4. Thereby, the relative phase of the sleeve 32L and the dog gear 15d is shifted, and then the sleeve 32L is moved again in the first direction (step S14). Then, it is determined whether or not the sleeve 32L has moved (step S15). If the sleeve 32L has not moved, the process returns to step S13.
  • Step S16 it is determined whether the sleeve 32L has stopped (step S16), and the actuator controls until the sleeve 32L stops (that is, until the spline teeth and the dog teeth mesh). Be done. And if sleeve 32L stops, processing of Step S12 will be carried out.
  • the power of the generator 4 shifts the relative phases of the sleeves 32H and 32L and the dog gears 11d and 15d. It is possible to suppress the occurrence of blocks. That is, the teeth of the sleeves 32H and 32L and the teeth of the dog gears 11d and 15d can be easily engaged, and the positions of the sleeves 32H and 32L can be adjusted promptly.
  • the generator 4 since the generator 4 is operated after judging that the gear block is generated while moving the sleeves 32H and 32L, the spline teeth and the dog teeth can be engaged with minimum power, The positions of the sleeves 32H and 32L can be adjusted promptly.
  • the control device 5 uses the stroke sensors 45a and 45b, which are less expensive than the position sensor, to determine the presence or absence of the gear block based on whether each movement amount D of the sleeves 32H and 32L is equal to or greater than the predetermined value X. Judgment can be performed.
  • the above-described sleeve position control is performed when the main power supply of the vehicle 10 is cut off by turning off the power switch 6, so that the vehicle 10 immediately starts moving (the main power supply of the vehicle 10 is connected Vehicle 10 can be started more quickly than when it is carried out.
  • the second dog clutch 30 is provided on the second path 52, and when traveling in the parallel mode, the high gear and the low gear are switched according to the traveling state, required output, etc. Be That is, in the parallel mode, the power of the engine 2 can be switched in two steps and transmitted (output), so that the traveling pattern can be increased, and the effects such as the improvement of the drive feeling and the improvement of the fuel efficiency can be obtained. It is possible to improve the quality.
  • the second dog clutch 30 described above is configured of the high side dog clutch 30H and the low side dog clutch 30L, and the dog clutches 30H and 30L are provided with the sleeves 32H and 32L, there is no restriction on the gear ratio. That is, each gear ratio of the high gear stage and the low gear stage can be freely set. Furthermore, in the vehicle 10 described above, since the power of the engine 2 and the motor 3 can be output individually, it is possible to cover the torque dropout at the time of high / low switching with the power of the motor 3. As a result, it is possible to suppress the shift shock and to reduce the need to perform high / low switching quickly, so the configuration of the second dog clutch 30 can be simplified.
  • the second dog clutch 30 having no synchro mechanism is used to switch between the high gear and the low gear, downsizing can be achieved, and space saving can be realized. Moreover, since it is not a clutch mechanism using oil pressure, an oil pump is unnecessary, and further, since drag loss can be reduced, high efficiency can be expected.
  • the first dog clutch 20 is also provided on the first path 51, and the first dog clutch 20 is released when the assist by the motor 3 is unnecessary when traveling in the parallel mode.
  • the motor 3 can be disconnected from the output shaft 12.
  • corotation of the motor 3 can be avoided, power consumption can be suppressed, and loss can be reduced.
  • the content of the sleeve adjustment control described above is an example, and is not limited to the above.
  • the position of the low side sleeve 32L may be adjusted first, or the positions of the two sleeves 32H and 32L may be simultaneously adjusted. Further, whether or not the spline teeth and the dog teeth collide without meshing while the sleeves 32H and 32L are moving in the first direction is determined using parameters other than the movement amount D detected by the stroke sensors 45a and 45b. You may judge.
  • the high side sleeve 32H and the low side sleeve 32L may be controlled by the same actuator.
  • Transaxle 1 mentioned above is an example, and the composition is not restricted to what was mentioned above.
  • the second dog clutch 30 is provided on each of the input shaft 11 and the first counter shaft 15, but one second dog clutch may be provided on one of the shafts 11 and 15 Good.
  • a high-side dog gear is disposed on one side in the axial direction of the second dog clutch provided on the input shaft 11, and a low-side dog gear is disposed on the other side, and the sleeve of the second dog clutch engages with both dog gears. It may be provided.
  • the above-described sleeve adjustment control can be applied. For example, when the output shaft 12 is stopped, the sleeve is moved toward the dog gear on the high side, and when the dog gear on the high side engages with the sleeve, the amount of movement up there (engagement from the initial position to the high side) The distance to the mating position is detected by the stroke sensor. Next, move the sleeve toward the low-side dog gear, and when the low-side dog gear and the sleeve are engaged, the amount of movement (the distance from the high-side engagement position to the low-side engagement position) Detected by a stroke sensor.
  • a half value of the latter detection value (movement amount) is calculated as the neutral distance, and the sleeve is moved in the reverse direction (that is, toward the high side) by the neutral distance. Thereby, the sleeve can be reliably adjusted to the zero point position.
  • the transaxle 1 may be provided with a position sensor that directly detects the positions of the sleeves 32H and 32L. Even with such a transaxle, when the position sensor fails, the position of the sleeve can not be accurately detected. Therefore, the sleeve adjustment control described above is performed to adjust the sleeve to the zero point position. It is also good.
  • the positions of the sleeves 32H and 32L of the second dog clutch 30 on the second path 52 are adjusted, but instead of or in addition to this, the first dog clutch on the first path 51
  • the positions of the twenty sleeves 22 may be adjusted. That is, the above-described sleeve adjustment control is applicable not only to the second dog clutch 30 for high / low switching but also to a dog clutch (for example, the first dog clutch 20) that switches connection / disconnection of power transmission.
  • the spline teeth of the sleeve 22 and the dog gear 16d (engaged gear) are changed by changing the phase of the idle gear 16M (first gear) by the power of the motor 3 (first rotating electric machine). It is preferable to make it easy to mesh with the dog teeth of.
  • the first dog clutch 20 is not an essential component and may be omitted.
  • transaxle 1 has a high gear stage and a low gear stage, and these are switched by the second dog clutch 30, the dog clutch used for transaxles other than the two-stage switching type transaxle is described above.
  • Sleeve adjustment control may be applied.
  • the relative positions of the engine 2, the motor 3 and the generator 4 with respect to the transaxle 1 are not limited to those described above.
  • the arrangement of the six axes 11 to 16 in the transaxle 1 may be set according to these relative positions.
  • the arrangement of the gears provided on each of the shafts in the transaxle 1 is also an example, and is not limited to that described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Mechanical Operated Clutches (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

A hybrid vehicle transaxle (1) comprises: clutches (20, 30) provided on at least one of a first power transmission route from a first rotating electric machine (3) to an output shaft (12) and a second power transmission route from an engine (2) to the output shaft (12); and first gears (16M, 11H, 15L) arranged on the same shaft as the clutches (20, 30) so as to be adjacent to said clutches (20, 30), and having engagement gears (16d, 11d, 15d) which engage with sleeves (22, 32H, 32L) of the clutches (20, 30). When the output shaft (12) is in a stopped state, a control device moves the sleeves (22, 32H, 32L) in a first direction so as to cause the sleeves (22, 32H, 32L) to engage with the engagement gears (16d, 11d, 15d) of the first gears (16M, 11H, 15L), and thereafter adjusts the initial positions of the sleeves (22, 32H, 32L) by only moving the sleeves (22, 32H, 32L) a prescribed neutral distance in the direction opposite to the first direction.

Description

トランスアクスルの制御装置Transaxle control device
 本発明は、エンジンと二つの回転電機とを装備したハイブリッド車両に用いられるトランスアクスルの制御装置に関する。 The present invention relates to a control device of a transaxle used in a hybrid vehicle equipped with an engine and two rotating electric machines.
 従来、エンジンと回転電機(モータ,ジェネレータ,モータジェネレータ)とを装備したハイブリッド車両において、走行モードを切り替えながら走行する車両が実用化されている。走行モードには、バッテリの充電電力を用いてモータのみで走行するEVモード、エンジンによってジェネレータを駆動し、発電しながらモータのみで走行するシリーズモード、エンジン主体で走行しつつモータでアシストするパラレルモード等が含まれる。走行モードの切り替えは、トランスアクスル内における動力伝達経路上に介装された断接機構が制御されることで実施される。断接機構としては、例えば摩擦クラッチ(多板クラッチ)やドグクラッチが挙げられる(特許文献1,2参照)。 Conventionally, in a hybrid vehicle equipped with an engine and a rotating electric machine (motor, generator, motor generator), a vehicle that travels while switching the traveling mode has been put to practical use. The running mode includes EV mode, which runs only with a motor using the charging power of the battery, series mode, which runs the generator while driving the generator with the engine, and parallel mode, which runs while main running with the engine. Etc. are included. The driving mode is switched by controlling a connecting / disconnecting mechanism interposed on a power transmission path in the transaxle. Examples of the connection / disconnection mechanism include a friction clutch (multiple disc clutch) and a dog clutch (see Patent Documents 1 and 2).
特開平11-190365号公報Japanese Patent Application Laid-Open No. 11-190365 特開2015-224715号公報JP, 2015-224715, A
 トランスアクスルは、車両への搭載スペースの観点から小型であることが望ましいため、上記の特許文献2のようにドグクラッチが内蔵される場合には、シンクロ機構を持たないドグクラッチが採用されることが多い。シンクロ機構を持たないドグクラッチは、係合対象である遊転ギヤ側と回転同期させた状態で、スリーブの内周面に形成されたスプライン歯が遊転ギヤと一体回転するドグギヤのドグ歯に対して噛合または離脱するように、スリーブを軸方向に移動させる。 Since it is desirable that the transaxle be compact from the viewpoint of mounting space on a vehicle, when a dog clutch is incorporated as in Patent Document 2 described above, a dog clutch that does not have a synchro mechanism is often employed. . In a dog clutch that does not have a synchronization mechanism, the spline teeth formed on the inner peripheral surface of the sleeve rotate against the dog teeth of the dog gear that rotates integrally with the idle gear while being rotationally synchronized with the idle gear side to be engaged. The sleeve is moved axially to engage or disengage.
 スリーブは、制御装置で制御されるアクチュエータによって軸方向へ移動するが、スリーブには、この制御の際に基準となる初期位置(以下「0点位置」という)が設定されている。スリーブの制御を精度よく行うためには、スリーブが0点位置にあることを制御装置が正確に判断する必要がある。言い換えると、スリーブの位置を正確に0点位置に調整することができれば、ドグギヤのドグ歯とスリーブのスプライン歯とが正確に噛み合うことができ、振動や騒音の発生を回避できる。 The sleeve is moved in the axial direction by an actuator controlled by a control device, and the sleeve has an initial position (hereinafter referred to as "zero point position") as a reference in this control. In order to control the sleeve accurately, the controller must accurately determine that the sleeve is at the zero point position. In other words, if the position of the sleeve can be accurately adjusted to the zero point position, the dog teeth of the dog gear and the spline teeth of the sleeve can be accurately engaged, and the generation of vibration and noise can be avoided.
 本件のトランスアクスルの制御装置は、このような課題に鑑み案出されたもので、スリーブの位置を確実に0点位置に調整することを目的の一つとする。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。 The control device of the present transaxle has been devised in view of such problems, and one of its purposes is to adjust the position of the sleeve reliably to the zero point position. The present invention is not limited to this object, and it is an operation and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and it is another object of the present invention to exert an operation and effect that can not be obtained by the prior art. is there.
 (1)ここで開示するトランスアクスルの制御装置は、エンジンと、駆動輪側の出力軸を駆動する第一の回転電機と、前記エンジンの駆動力により発電する第二の回転電機とが搭載されたハイブリッド車両のトランスアクスルの制御装置である。前記トランスアクスルは、前記第一の回転電機から前記出力軸までの第一動力伝達経路上及び前記エンジンから前記出力軸までの第二動力伝達経路上の少なくとも一方に設けられたクラッチと、前記クラッチと同軸上に隣接配置され、前記クラッチのスリーブと係合する被係合ギヤを有する第一ギヤと、を備えている。また、前記制御装置は、前記出力軸が停止状態であるときに、前記スリーブを前記第一ギヤの前記被係合ギヤに係合させるよう第一方向に移動させたのち、所定の中立距離だけ前記スリーブを前記第一方向とは逆方向へ移動させて前記スリーブの初期位置を調整する。 (1) The transaxle control device disclosed herein includes an engine, a first rotating electrical machine that drives an output shaft on the drive wheel side, and a second rotating electrical machine that generates electric power by the driving force of the engine. Control device for a transaxle of a hybrid vehicle. The transaxle is a clutch provided on at least one of a first power transmission path from the first rotating electrical machine to the output shaft and a second power transmission path from the engine to the output shaft, and the clutch And a first gear coaxially disposed adjacent to and having an engaged gear engaged with a sleeve of the clutch. Further, the control device moves the sleeve in the first direction so as to engage the engaged gear of the first gear when the output shaft is in the stop state, and then, the control device performs a predetermined neutral distance. The sleeve is moved in a direction opposite to the first direction to adjust the initial position of the sleeve.
 なお、前記中立距離は、前記スリーブの移動の際に基準となる0点位置から前記スリーブの歯と前記被係合ギヤの歯とが噛合する位置までの距離である。また、前記スリーブは、前記クラッチが設けられた軸に対して回転同期しかつ前記軸方向に摺動自在に結合された環状の係合部材であり、内周面側に設けられた歯(スプライン歯)を有する。また、前記第一ギヤは、前記軸に対して相対回転可能に支承され、他の軸に固定された固定ギヤと噛み合っており、前記スリーブと前記被係合ギヤとが係合(噛合)したときに動力を伝達する歯車である。 The neutral distance is a distance from a zero point position, which is a reference when the sleeve moves, to a position where the teeth of the sleeve mesh with the teeth of the engaged gear. Further, the sleeve is an annular engagement member rotatably synchronized with the shaft on which the clutch is provided and slidably coupled in the axial direction, and the teeth (spline provided on the inner peripheral surface side) Have teeth). Further, the first gear is supported so as to be relatively rotatable with respect to the shaft, and is engaged with a fixed gear fixed to another shaft, and the sleeve and the engaged gear are engaged (meshed) It is a gear that transmits power when.
 (2)前記制御装置は、前記スリーブを前記第一方向に移動させる際に、前記回転電機の動力によって前記スリーブと前記被係合ギヤとの位相をずらすことが好ましい。
 (3)前記制御装置は、前記スリーブの前記第一方向に移動させている際に前記スリーブの歯と前記被係合ギヤの歯とが噛み合わずに衝突した場合に、前記スリーブと前記被係合ギヤとの位相をずらすことが好ましい。
(2) When moving the sleeve in the first direction, the control device preferably shifts the phase of the sleeve and the engaged gear by the power of the rotating electrical machine.
(3) When moving the sleeve in the first direction, the controller causes the sleeve and the engaged gear to collide with each other when the teeth of the sleeve and the engaged gear do not engage with each other. It is preferable to shift the phase with the mating gear.
 (4)前記制御装置は、前記スリーブを前記第一方向に移動させて停止したときの移動量が所定値未満の場合に前記スリーブの歯と前記被係合ギヤの歯とが噛み合わずに衝突したと判定することが好ましい。
 (5)前記クラッチは、前記第二動力伝達経路上に設けられ、前記制御装置は、前記第二の回転電機の動力によって前記スリーブと前記被係合ギヤとの位相をずらすことが好ましい。
 (6)前記クラッチは、前記第二動力伝達経路上に設けられて動力伝達の断接とハイロー切替とを実施すべく、ハイ側クラッチとロー側クラッチとを有し、前記制御装置は、前記ハイ側クラッチ及び前記ロー側クラッチの両方の前記初期位置の調整を順次実行することが好ましい。
(4) When the movement amount when the sleeve is moved in the first direction and stopped is less than a predetermined value, the control device causes the teeth of the sleeve and the teeth of the engaged gear to collide and collide It is preferable to determine that the
(5) Preferably, the clutch is provided on the second power transmission path, and the control device shifts the phase of the sleeve and the engaged gear by the power of the second rotating electrical machine.
(6) The clutch includes a high-side clutch and a low-side clutch, provided on the second power transmission path, for performing connection and disconnection of the power transmission and high / low switching, and the control device is configured to It is preferable to sequentially adjust the initial positions of both the high side clutch and the low side clutch.
 (7)前記制御装置は、前記車両の主電源が切断されたときに、前記スリーブの前記第一方向への移動を開始して前記スリーブの前記初期位置を調整することが好ましい。
 (8)前記クラッチは、前記第一動力伝達経路上に設けられ、前記制御装置は、前記第一の回転電機の動力によって前記スリーブと前記被係合ギヤとの位相をずらすことが好ましい。
 (9)前記クラッチは、前記第一動力伝達経路上と前記第二動力伝達経路上のそれぞれに設けられ、前記制御装置は、前記第一の回転電機の動力によって前記第一動力伝達経路上の前記クラッチの前記スリーブと前記被係合ギヤとの位相をずらすことが好ましい。
(7) Preferably, when the main power source of the vehicle is disconnected, the control device starts movement of the sleeve in the first direction to adjust the initial position of the sleeve.
(8) Preferably, the clutch is provided on the first power transmission path, and the control device shifts the phase of the sleeve and the engaged gear by the power of the first rotary electric machine.
(9) The clutch is provided on the first power transmission path and on the second power transmission path, and the control device is driven on the first power transmission path by the power of the first rotary electric machine. It is preferable to shift the phase of the sleeve of the clutch and the engaged gear.
 開示のトランスアクスルの制御装置によれば、中立距離を適切に与えることで、スリーブの初期位置を確実に0点位置に調整(設定)することができる。 According to the disclosed transaxle control device, the initial position of the sleeve can be reliably adjusted (set) to the zero point position by appropriately giving the neutral distance.
実施形態に係るトランスアクスル及びその制御装置を搭載した車両の内部構成を例示する上面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a top view which illustrates the transaxle which concerns on embodiment, and the internal structure of the vehicle carrying the control apparatus. 図1のトランスアクスルを備えたパワートレインの模式的な側面図である。FIG. 2 is a schematic side view of a powertrain provided with the transaxle of FIG. 1; 図1のトランスアクスルを備えたパワートレインを示すスケルトン図である。FIG. 2 is a skeleton view of a powertrain with the transaxle of FIG. 1; 図1の制御装置で実施されるスリーブ調整制御の内容を説明するための図であり、(a)は初期位置Psが0点位置Pnとずれている状態を示し、(b)はギヤブロックすることなくクラッチ係合した場合の制御内容を示し、(c)はギヤブロックした場合の制御内容を示す。It is a figure for demonstrating the content of the sleeve adjustment control implemented with the control apparatus of FIG. 1, (a) shows the state which the initial position Ps has shifted from 0 point position Pn, (b) carries out gear blocking The control content in the case of clutch engagement without being shown, (c) shows the control content in the case of gear block. 図1の制御装置で実施されるスリーブ調整制御のフローチャート例である。It is a flowchart example of sleeve adjustment control implemented by the control apparatus of FIG.
 図面を参照して、実施形態としてのトランスアクスルの制御装置について説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。 A control device of a transaxle as an embodiment will be described with reference to the drawings. The embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques that are not specified in the following embodiments. Each structure of this embodiment can be variously modified and implemented in the range which does not deviate from those meaning. Also, they can be selected as needed or can be combined as appropriate.
[1.全体構成]
 本実施形態のトランスアクスル1の制御装置5は、図1に示す車両10に適用される。この車両10は、エンジン2と走行用のモータ3(電動機,第一の回転電機)と発電用のジェネレータ4(発電機,第二の回転電機)とを装備したハイブリッド車両である。ジェネレータ4はエンジン2に連結され、モータ3の作動状態とは独立して作動可能である。また、車両10にはEVモード,シリーズモード,パラレルモードの三種類の走行モードが用意される。これらの走行モードは、制御装置5によって、車両状態や走行状態,運転者の要求出力等に応じて択一的に選択され、その種類に応じてエンジン2,モータ3,ジェネレータ4が使い分けられる。
[1. overall structure]
The control device 5 of the transaxle 1 of the present embodiment is applied to a vehicle 10 shown in FIG. This vehicle 10 is a hybrid vehicle equipped with an engine 2, a traveling motor 3 (motor, first rotating electric machine), and a generator 4 for power generation (generator, second rotating electric machine). The generator 4 is connected to the engine 2 and can be operated independently of the operating state of the motor 3. Further, the vehicle 10 is provided with three types of travel modes: EV mode, series mode, and parallel mode. These traveling modes are alternatively selected by the control device 5 in accordance with the vehicle state, the traveling state, the driver's request output and the like, and the engine 2, the motor 3 and the generator 4 are properly used in accordance with the type.
 EVモードは、エンジン2及びジェネレータ4を停止させたまま、図示しない駆動用のバッテリの充電電力を用いてモータ3のみで車両10を駆動する走行モードである。EVモードは、走行負荷,車速が低い場合やバッテリの充電レベルが高い場合に選択される。シリーズモードは、エンジン2でジェネレータ4を駆動して発電しつつ、その電力を利用してモータ3で車両10を駆動する走行モードである。シリーズモードは、走行負荷,車速が中程度の場合やバッテリの充電レベルが低い場合に選択される。パラレルモードは、おもにエンジン2で車両10を駆動し、必要に応じてモータ3で車両10の駆動をアシストする走行モードであり、走行負荷,車速が高い場合に選択される。 The EV mode is a traveling mode in which the vehicle 10 is driven only by the motor 3 using charging power of a driving battery (not shown) while the engine 2 and the generator 4 are stopped. The EV mode is selected when the traveling load and the vehicle speed are low or when the charge level of the battery is high. The series mode is a traveling mode in which the generator 2 is driven by the engine 2 to generate electric power, and the electric power is used to drive the vehicle 10 by the motor 3. The series mode is selected when the traveling load and the vehicle speed are medium or when the charge level of the battery is low. The parallel mode is mainly a driving mode in which the vehicle 2 is driven by the engine 2 and the driving of the vehicle 10 is assisted by the motor 3 as needed. The parallel mode is selected when the running load and the vehicle speed are high.
 駆動輪8には、トランスアクスル1を介してエンジン2及びモータ3が並列に接続され、エンジン2及びモータ3のそれぞれの動力が互いに異なる動力伝達経路から個別に伝達される。すなわち、エンジン2及びモータ3のそれぞれは、後述する駆動輪8側の出力軸12を駆動する駆動源である。また、エンジン2には、トランスアクスル1を介してジェネレータ4及び駆動輪8が並列に接続され、エンジン2の動力が、駆動輪8に加えてジェネレータ4にも伝達される。 The engine 2 and the motor 3 are connected in parallel to the drive wheel 8 via the transaxle 1, and respective powers of the engine 2 and the motor 3 are individually transmitted from different power transmission paths. That is, each of the engine 2 and the motor 3 is a drive source which drives the output shaft 12 by the side of the driving wheel 8 mentioned later. Further, the generator 4 and the drive wheel 8 are connected in parallel to the engine 2 via the transaxle 1, and the power of the engine 2 is transmitted to the generator 4 in addition to the drive wheel 8.
 トランスアクスル1は、デファレンシャルギヤ18(差動装置、以下「デフ18」と呼ぶ)を含むファイナルドライブ(終減速機)とトランスミッション(減速機)とを一体に形成した動力伝達装置であり、駆動源と被駆動装置との間の動力伝達を担う複数の機構を内蔵する。本実施形態のトランスアクスル1は、ハイロー切替(高速段,低速段の切替)が可能に構成されており、パラレルモードでの走行時において、制御装置5によって走行状態や要求出力等に応じてハイギヤ段とローギヤ段とが切り替えられる。 The transaxle 1 is a power transmission device in which a final drive (final reduction gear) including a differential gear 18 (differential gear, hereinafter referred to as "differential gear 18") and a transmission (reduction gear) are integrally formed. And a plurality of mechanisms for transmitting power between the drive and the driven device. The transaxle 1 of the present embodiment is configured to be capable of high / low switching (switching between high speed and low speed), and the high gear according to the traveling state, required output, etc. by the control device 5 when traveling in parallel mode. The gear and the low gear are switched.
 エンジン2は、ガソリンや軽油を燃料とする内燃機関(ガソリンエンジン,ディーゼルエンジン)である。このエンジン2は、クランクシャフト2a(回転軸)の向きが車両10の車幅方向に一致するように横向きに配置されたいわゆる横置きエンジンであり、トランスアクスル1の右側面に対して固定される。クランクシャフト2aは、駆動輪8のドライブシャフト9に対して平行に配置される。エンジン2の作動状態は、制御装置5で制御される。 The engine 2 is an internal combustion engine (gasoline engine, diesel engine) fueled by gasoline or light oil. The engine 2 is a so-called horizontal engine disposed sideways so that the direction of the crankshaft 2a (rotational axis) coincides with the vehicle width direction of the vehicle 10, and is fixed to the right side of the transaxle 1 . The crankshaft 2 a is disposed parallel to the drive shaft 9 of the drive wheel 8. The operating state of the engine 2 is controlled by the controller 5.
 本実施形態のモータ3及びジェネレータ4はいずれも、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機(モータ・ジェネレータ)である。モータ3は、おもに電動機として機能して車両10を駆動し、回生時には発電機として機能する。ジェネレータ4は、エンジン2を始動させる際に電動機(スターター)として機能し、エンジン2の作動時にはエンジン動力で発電を実施する。モータ3及びジェネレータ4の各周囲(又は各内部)には、直流電流と交流電流とを変換するインバータ(図示略)が設けられる。モータ3及びジェネレータ4の各回転速度は、インバータを制御することで制御される。なお、モータ3,ジェネレータ4,各インバータの作動状態は、制御装置5で制御される。 The motor 3 and the generator 4 of the present embodiment are both a motor generator (motor generator) having a function as an electric motor and a function as a generator. The motor 3 mainly functions as an electric motor to drive the vehicle 10, and functions as a generator during regeneration. The generator 4 functions as a motor (starter) when starting the engine 2 and performs power generation with engine power when the engine 2 is operating. An inverter (not shown) that converts a direct current and an alternating current is provided around (or inside) each of the motor 3 and the generator 4. The rotational speeds of the motor 3 and the generator 4 are controlled by controlling an inverter. The operating states of the motor 3, the generator 4 and the respective inverters are controlled by the control device 5.
 本実施形態のモータ3は、その外形が回転軸3aを中心軸とした円筒状に形成され、その底面をトランスアクスル1側に向けた姿勢でトランスアクスル1の左側面に対して固定される。また、本実施形態のジェネレータ4は、その外形が回転軸4aを中心軸とした円筒状に形成され、モータ3と同様に、その底面をトランスアクスル1側に向けた姿勢でトランスアクスル1の左側面に対して固定される。なお、図2はパワートレイン7を左側から見た側面図である。パワートレイン7は、エンジン2,モータ3,ジェネレータ4,トランスアクスル1を含んで構成される。なお、図2ではエンジン2は省略している。 The motor 3 according to the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 3a, and is fixed to the left side surface of the transaxle 1 with its bottom surface facing the transaxle 1 side. Further, the generator 4 of the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 4a, and, like the motor 3, the left side of the transaxle 1 is oriented with its bottom surface facing the transaxle 1 side. It is fixed to the face. FIG. 2 is a side view of the power train 7 as viewed from the left side. The power train 7 includes an engine 2, a motor 3, a generator 4, and a transaxle 1. The engine 2 is omitted in FIG.
 車両10の車室内には、車両10の主電源の断接状態を切り替えるパワースイッチ6が設けられる。パワースイッチ6がオン操作されると車両10の主電源が接続され(READY-ON状態とされ)、パワースイッチ6がオフ操作されると車両10の主電源が切断される(READY-OFF状態とされる)。また、車両10には、車両10に搭載される各種装置を統合制御する制御装置5が設けられる。 A power switch 6 is provided in the compartment of the vehicle 10 to switch the connection / disconnection state of the main power supply of the vehicle 10. When the power switch 6 is turned on, the main power source of the vehicle 10 is connected (READY-ON state), and when the power switch 6 is turned off, the main power source of the vehicle 10 is disconnected (READY-OFF state Will be Further, the vehicle 10 is provided with a control device 5 that performs integrated control of various devices mounted on the vehicle 10.
[2.トランスアクスル]
 図3は、本実施形態のトランスアクスル1を備えたパワートレイン7のスケルトン図である。図2及び図3に示すように、トランスアクスル1には、互いに平行に配列された六つの軸11~16が設けられる。以下、クランクシャフト2aと同軸上に接続される回転軸を入力軸11と呼ぶ。
[2. Transaxle]
FIG. 3 is a skeleton diagram of a powertrain 7 provided with the transaxle 1 of the present embodiment. As shown in FIGS. 2 and 3, the transaxle 1 is provided with six axes 11 to 16 arranged parallel to one another. Hereinafter, a rotary shaft coaxially connected with the crankshaft 2 a will be referred to as an input shaft 11.
 同様に、ドライブシャフト9,モータ3の回転軸3a,ジェネレータ4の回転軸4aのそれぞれと同軸上に接続される回転軸を、出力軸12,モータ軸13,ジェネレータ軸14と呼ぶ。また、入力軸11と出力軸12との間の動力伝達経路上に配置された回転軸を第一カウンタ軸15と呼び、モータ軸13と出力軸12との間の動力伝達経路上に配置された回転軸を第二カウンタ軸16と呼ぶ。六つの軸11~16はいずれも、両端部が図示しない軸受を介してケーシング1Cに軸支される。なお、入力軸11,出力軸12,モータ軸13,ジェネレータ軸14のそれぞれの軸上に位置するケーシング1Cの側面には開口が形成され、ケーシング1Cの外側に位置するクランクシャフト2a,ドライブシャフト9,回転軸3a,回転軸4aと接続される。 Similarly, rotation shafts coaxially connected with the drive shaft 9, the rotation shaft 3 a of the motor 3, and the rotation shaft 4 a of the generator 4 are referred to as an output shaft 12, a motor shaft 13, and a generator shaft 14. In addition, a rotary shaft disposed on the power transmission path between the input shaft 11 and the output shaft 12 is referred to as a first countershaft 15, and is disposed on the power transmission path between the motor shaft 13 and the output shaft 12 The rotating shaft is called a second counter shaft 16. Each of the six shafts 11 to 16 is pivotally supported by the casing 1C via bearings (not shown) at both ends. An opening is formed in the side surface of the casing 1C located on each of the input shaft 11, the output shaft 12, the motor shaft 13 and the generator shaft 14, and the crankshaft 2a located outside the casing 1C and the drive shaft 9 , Rotary shaft 3a and rotary shaft 4a.
 トランスアクスル1の内部には、三つの動力伝達経路が形成される。具体的には、図2中に二点鎖線で示すように、モータ3からモータ軸13を介して出力軸12に至る動力伝達経路(以下「第一経路51」と呼ぶ)と、エンジン2から入力軸11を介して出力軸12に至る動力伝達経路(以下「第二経路52」と呼ぶ)と、エンジン2から入力軸11を介してジェネレータ軸14に至る動力伝達経路(以下「第三経路53」と呼ぶ)とが形成される。ここで、第一経路51及び第二経路52は駆動用動力伝達経路であり、第三経路53は発電用動力伝達経路である。 Inside the transaxle 1, three power transmission paths are formed. Specifically, as shown by a two-dot chain line in FIG. 2, a power transmission path (hereinafter referred to as “first path 51”) from the motor 3 to the output shaft 12 via the motor shaft 13, and from the engine 2 A power transmission path (hereinafter referred to as “second path 52”) leading to the output shaft 12 through the input shaft 11 and a power transmission path (hereinafter referred to as “third path”) leading from the engine 2 to the generator shaft 14 through the input shaft 11 53) are formed. Here, the first path 51 and the second path 52 are drive power transmission paths, and the third path 53 is a power generation power transmission path.
 第一経路51(第一動力伝達経路)は、モータ3から駆動輪8への動力伝達に係る経路であり、モータ3の動力伝達を担うものである。第一経路51上には、モータ軸13及び第二カウンタ軸16が設けられ、第一経路51の中途にはその動力伝達を断接する後述の第一ドグクラッチ20が介装される。第二経路52(第二動力伝達経路)は、エンジン2から駆動輪8への動力伝達に係る経路であり、エンジン2の作動時における動力の伝達を担うものである。第二経路52上には、入力軸11及び第一カウンタ軸15が設けられ、第二経路52の中途にはその動力伝達の断接とハイロー切替とを実施する後述の第二ドグクラッチ30(エンジン側ドグクラッチ)が介装される。第三経路53(第三動力伝達経路)は、エンジン2からジェネレータ4への動力伝達に係る経路であり、エンジン始動時の動力伝達及びエンジン2による発電時の動力伝達を担うものである。 The first path 51 (first power transmission path) is a path related to power transmission from the motor 3 to the drive wheel 8 and is responsible for power transmission of the motor 3. The motor shaft 13 and the second counter shaft 16 are provided on the first path 51, and a first dog clutch 20 described later that connects and disconnects the power transmission is interposed in the middle of the first path 51. The second path 52 (second power transmission path) is a path relating to power transmission from the engine 2 to the drive wheels 8 and is responsible for power transmission at the time of operation of the engine 2. An input shaft 11 and a first counter shaft 15 are provided on the second path 52, and a second dog clutch 30 (engine (described later) performs disconnection and connection of power transmission and high / low switching in the middle of the second path 52 A side dog clutch is installed. The third path 53 (third power transmission path) is a path related to power transmission from the engine 2 to the generator 4 and is responsible for power transmission at engine start and power transmission at the time of power generation by the engine 2.
 次に、図3を用いてトランスアクスル1の構成を詳述する。なお、以下の説明において、「固定ギヤ」とは、軸と一体に設けられ、軸に対して相対回転不能な歯車を意味する。また、「遊転ギヤ」とは、軸に対して相対回転可能に枢支された歯車を意味する。 Next, the configuration of the transaxle 1 will be described in detail with reference to FIG. In the following description, the "fixed gear" means a gear provided integrally with the shaft and incapable of relative rotation with respect to the shaft. Also, "free running gear" means a gear that is rotatably supported relative to the shaft.
 入力軸11には、エンジン2に近い側から順に、固定ギヤ11aと、ハイ側の第二ドグクラッチ30(以下、「ハイ側ドグクラッチ30H」と呼ぶ)と、遊転ギヤ11H(第一ギヤ)と、固定ギヤ11Lとが設けられる。また、第一カウンタ軸15には、エンジン2の近い側から順に、固定ギヤ15aと、固定ギヤ15Hと、遊転ギヤ15L(第一ギヤ)と、ロー側の第二ドグクラッチ30(以下、「ロー側ドグクラッチ30L」と呼ぶ)とが設けられる。 The input shaft 11 includes, in order from the side closer to the engine 2, the fixed gear 11a, the second dog clutch 30 on the high side (hereinafter referred to as "high side dog clutch 30H"), and the idle gear 11H (first gear). , And a fixed gear 11L. The first countershaft 15 includes, in order from the side closer to the engine 2, the fixed gear 15a, the fixed gear 15H, the idle gear 15L (first gear), and the second dog clutch 30 on the low side (hereinafter referred to as And a low-side dog clutch 30L ".
 入力軸11の固定ギヤ11aは、ジェネレータ軸14に設けられた固定ギヤ14aと常時噛合している。つまり、入力軸11とジェネレータ軸14とは、二つの固定ギヤ11a,14aを介して連結されており、エンジン2とジェネレータ4との間で動力伝達可能とされる。また、第一カウンタ軸15の固定ギヤ15aは、出力軸12に設けられたデフ18のリングギヤ18aと常時噛合している。 The fixed gear 11 a of the input shaft 11 always meshes with the fixed gear 14 a provided on the generator shaft 14. That is, the input shaft 11 and the generator shaft 14 are connected via the two fixed gears 11 a and 14 a, and power can be transmitted between the engine 2 and the generator 4. The fixed gear 15 a of the first countershaft 15 is always meshed with the ring gear 18 a of the differential 18 provided on the output shaft 12.
 入力軸11に設けられた遊転ギヤ11H及び固定ギヤ11Lは互いに異なる歯数を持ち、第一カウンタ軸15に設けられた固定ギヤ15H及び遊転ギヤ15Lのそれぞれと常時噛合している。なお、第一カウンタ軸15の固定ギヤ15H及び遊転ギヤ15Lも互いに異なる歯数を持つ。本実施形態では、遊転ギヤ11Hの方が固定ギヤ11Lよりも歯数が多い。この遊転ギヤ11Hは、歯数が少ない固定ギヤ15Hと噛み合ってハイギヤ段を形成する。反対に、歯数が少ない固定ギヤ11Lは、歯数が多い遊転ギヤ15Lと噛み合ってローギヤ段を形成する。 The idler gear 11H and the fixed gear 11L provided on the input shaft 11 have different numbers of teeth, and are constantly meshed with the stationary gear 15H and the idler gear 15L provided on the first countershaft 15. The fixed gear 15H and the idle gear 15L of the first countershaft 15 also have different numbers of teeth. In the present embodiment, the free rotation gear 11H has more teeth than the fixed gear 11L. The idle gear 11H meshes with the fixed gear 15H having a small number of teeth to form a high gear. On the other hand, the fixed gear 11L having a small number of teeth meshes with the idle gear 15L having a large number of teeth to form a low gear.
 ハイ側ドグクラッチ30Hと同軸上に隣接配置された遊転ギヤ11Hは、第一カウンタ軸15の固定ギヤ15Hと噛み合う歯面部の右側に一体で設けられたドグギヤ11d(被係合ギヤ)を有する。また、ロー側ドグクラッチ30Lと同軸上に隣接配置された遊転ギヤ15Lは、入力軸11の固定ギヤ11Lと噛み合う歯面部の左側に一体で設けられたドグギヤ15d(被係合ギヤ)を有する。ドグギヤ11dの先端部(径方向外側の端部)には、ドグ歯11tが設けられる。また、ドグギヤ15dの先端部にも、ドグ歯11tと同様のドグ歯(図示略)が設けられる。 The idle gear 11H coaxially disposed adjacent to the high side dog clutch 30H has a dog gear 11d (engaged gear) integrally provided on the right side of the tooth surface portion meshing with the fixed gear 15H of the first countershaft 15. The idle gear 15L coaxially disposed adjacent to the low-side dog clutch 30L has a dog gear 15d (engaged gear) integrally provided on the left side of the tooth surface portion meshing with the fixed gear 11L of the input shaft 11. A dog tooth 11t is provided at a tip end (a radial outer end) of the dog gear 11d. In addition, a dog tooth (not shown) similar to the dog tooth 11t is provided at the tip of the dog gear 15d.
 ハイ側ドグクラッチ30H及びロー側ドグクラッチ30Lはいずれも第二経路52上に設けられ、エンジン2の動力の断接状態を制御するとともにハイギヤ段とローギヤ段とを切り替えるものである。ハイ側ドグクラッチ30Hは、入力軸11に固定されたハブ31Hと、ハブ31H(入力軸11)に対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブ32Hとを有する。 The high-side dog clutch 30H and the low-side dog clutch 30L are both provided on the second path 52 to control the connection / disconnection state of the power of the engine 2 and to switch between the high gear stage and the low gear stage. The high-side dog clutch 30H has a hub 31H fixed to the input shaft 11, and an annular sleeve 32H which can not rotate relative to the hub 31H (input shaft 11) and is axially slidably coupled. .
 スリーブ32Hは、図示しないアクチュエータ(例えばサーボモータ)が制御装置5によって制御されることで軸方向にスライド移動する。スリーブ32Hの近傍には、その移動量(ストローク量)を検出するストロークセンサ45aが設けられる。また、スリーブ32Hの径方向内側には、ドグギヤ11dのドグ歯11tと噛合するスプライン歯32tが設けられる。スプライン歯32tとドグ歯11tとが噛み合うことで、スリーブ32Hとドグギヤ11dとが噛合(係合)する。この状態では、エンジン2からの駆動力がハイ側のギヤ対11H,15Hを通じて出力軸12へと伝達される。反対に、スリーブ32Hのスプライン歯32tとドグギヤ11dのドグ歯11tとが離隔している場合には遊転ギヤ11Hが空転状態となり、第二経路52におけるハイ側の動力伝達が遮断された状態となる。 The sleeve 32 </ b> H slides in the axial direction when an actuator (for example, a servomotor, not shown) is controlled by the controller 5. In the vicinity of the sleeve 32H, a stroke sensor 45a that detects the amount of movement (stroke amount) is provided. Further, spline teeth 32t that mesh with the dog teeth 11t of the dog gear 11d are provided on the inner side in the radial direction of the sleeve 32H. As the spline teeth 32t and the dog teeth 11t mesh with each other, the sleeve 32H and the dog gear 11d mesh (engage) with each other. In this state, the driving force from the engine 2 is transmitted to the output shaft 12 through the high gear pairs 11H and 15H. On the other hand, when the spline teeth 32t of the sleeve 32H and the dog teeth 11t of the dog gear 11d are separated, the idle gear 11H is idled and the high side power transmission in the second path 52 is interrupted. Become.
 同様に、ロー側ドグクラッチ30Lは、第一カウンタ軸15に固定されたハブ31Lと、ハブ31L(第一カウンタ軸15)に対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブ32Lとを有する。スリーブ32Lも、図示しないアクチュエータが制御装置5によって制御されることで軸方向にスライド移動するものであり、ストロークセンサ45bによってその移動量(ストローク量)が検出される。スリーブ32Lの径方向内側には、ドグギヤ15dのドグ歯と噛合するスプライン歯(図示略)が設けられる。スプライン歯とドグ歯とが噛み合うことで、スリーブ32Lとドグギヤ15dとが噛合(係合)する。この状態では、エンジン2からの駆動力がロー側のギヤ対11L,15Lを通じて出力軸12へと伝達される。反対に、スリーブ32Lのスプライン歯とドグギヤ15dのドグ歯とが離隔している場合には遊転ギヤ15Lが空転状態となり、第二経路52におけるロー側の動力伝達が遮断された状態となる。なお、スリーブ32H,32Lの制御については後述する。 Similarly, the low-side dog clutch 30L is non-relatively rotatable with respect to the hub 31L fixed to the first counter shaft 15, and the hub 31L (first counter shaft 15), and is axially slidably coupled. And an annular sleeve 32L. The sleeve 32 </ b> L also slides in the axial direction when the actuator (not shown) is controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45 b. On the radially inner side of the sleeve 32L, spline teeth (not shown) that mesh with the dog teeth of the dog gear 15d are provided. As the spline teeth and the dog teeth mesh, the sleeve 32L and the dog gear 15d mesh (engage) with each other. In this state, the driving force from the engine 2 is transmitted to the output shaft 12 through the low gear pairs 11L and 15L. On the contrary, when the spline teeth of the sleeve 32L and the dog teeth of the dog gear 15d are separated from each other, the idle gear 15L is idled, and the power transmission on the low side in the second path 52 is interrupted. The control of the sleeves 32H and 32L will be described later.
 第二カウンタ軸16には、エンジン2に近い側から順に、第一ドグクラッチ20と、遊転ギヤ16M(第一ギヤ)と、パーキングギヤ19と、固定ギヤ16aとが設けられる。固定ギヤ16aは、デフ18のリングギヤ18aと常時噛合している。パーキングギヤ19は、パーキングロック装置を構成する要素であり、運転者によりPレンジが選択されると、図示しないパーキングスプラグと係合して、第二カウンタ軸16(すなわち出力軸12)の回転を禁止する。 The second countershaft 16 is provided with a first dog clutch 20, an idle gear 16M (first gear), a parking gear 19, and a fixed gear 16a in order from the side closer to the engine 2. The fixed gear 16 a is in constant mesh with the ring gear 18 a of the differential 18. The parking gear 19 is an element constituting the parking lock device, and when the P range is selected by the driver, the parking gear 19 engages with a parking plug (not shown) to rotate the second countershaft 16 (that is, the output shaft 12). Ban.
 遊転ギヤ16Mは、モータ軸13に設けられた固定ギヤ13aよりも歯数が多く、この固定ギヤ13aと常時噛合している。遊転ギヤ16Mは、固定ギヤ13aと噛み合う歯面部の右側に一体で設けられたドグギヤ16d(被係合ギヤ)を有する。なお、このドグギヤ16dは、上述したドグギヤ11dのドグ歯11tと同様のドグ歯(図示略)をその先端部に有する。 The idle gear 16M has more teeth than the fixed gear 13a provided on the motor shaft 13, and is always meshed with the fixed gear 13a. The idle gear 16M has a dog gear 16d (engaged gear) integrally provided on the right side of the tooth surface that meshes with the fixed gear 13a. The dog gear 16d has a dog tooth (not shown) similar to the dog tooth 11t of the above-described dog gear 11d at its tip.
 第一ドグクラッチ20は、第二カウンタ軸16に固定されたハブ21と、ハブ21(第二カウンタ軸16)に対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブ22とを有する。スリーブ22も、図示しないアクチュエータが制御装置5によって制御されることで軸方向にスライド移動するものであり、ストロークセンサ45cによってその移動量(ストローク量)が検出される。スリーブ22の径方向内側には、上述したスリーブ32Hのスプライン歯32tと同様のスプライン歯(図示略)が設けられる。スリーブ22のスプライン歯と遊転ギヤ16Mのドグギヤ16dとが噛み合うことで、スリーブ22とドグギヤ16dとが噛合(係合)する。 The first dog clutch 20 has an annular sleeve fixed to the second countershaft 16 and an annular sleeve which can not rotate relative to the hub 21 (second countershaft 16) and is axially slidably coupled. And 22. The sleeve 22 also slides in the axial direction by an actuator (not shown) being controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45c. On the radially inner side of the sleeve 22, spline teeth (not shown) similar to the spline teeth 32t of the sleeve 32H described above are provided. As the spline teeth of the sleeve 22 and the dog gear 16 d of the free rotation gear 16 M mesh with each other, the sleeve 22 and the dog gear 16 d mesh (engage) with each other.
 スリーブ22とドグギヤ16dとが噛合(係合)した状態では、モータ3からの駆動力が出力軸12へと伝達される。反対に、スリーブ22のスプライン歯と遊転ギヤ16Mのドグギヤ16dとが離隔している場合には遊転ギヤ16Mが空転状態となり、第一経路51の動力伝達が遮断された状態となる。本実施形態では、モータ3の作動時に(オン状態で)スリーブ22がドグギヤ16dと係合し、モータ3の停止時に(オフ状態で)スリーブ22がニュートラル位置に制御される。なお、ここでいう「ニュートラル位置」とは、スリーブがドグギヤから離隔した位置を意味し、後述する0点位置と同一位置であってもよいし、0点位置を含む所定範囲であってもよい。 The driving force from the motor 3 is transmitted to the output shaft 12 in a state in which the sleeve 22 and the dog gear 16 d are engaged (engaged). On the contrary, when the spline teeth of the sleeve 22 and the dog gear 16d of the idle gear 16M are separated, the idle gear 16M is idled, and the power transmission of the first path 51 is interrupted. In the present embodiment, the sleeve 22 engages with the dog gear 16d when the motor 3 is operating (on), and the sleeve 22 is controlled to the neutral position when the motor 3 is stopped (off). Here, the "neutral position" means a position where the sleeve is separated from the dog gear, and may be the same position as a zero point position described later, or may be a predetermined range including the zero point position. .
[3.制御の概要及び構成]
 上述したトランスアクスル1では、出力軸12が停止状態であるときに、スリーブ32H,32Lの初期位置Psを調整する制御が実施される。以下、この制御を「スリーブ調整制御」と呼ぶ。スリーブ調整制御は、制御装置5によって、出力軸12が停止しているとき(つまり車両10の停止中)に実施される。本実施形態では第二経路52上に設けられた第二ドグクラッチ30のスリーブ32H,32Lに対しスリーブ調整制御が実施される場合を説明する。なお、初期位置Psとは、出力軸12が停止状態であってスリーブ32H,32Lを移動させる前のスリーブ32H,32Lの位置を意味する。
[3. Outline and configuration of control]
In the transaxle 1 described above, control is performed to adjust the initial position Ps of the sleeves 32H and 32L when the output shaft 12 is in the stopped state. Hereinafter, this control is referred to as "sleeve adjustment control". The sleeve adjustment control is performed by the controller 5 when the output shaft 12 is stopped (that is, while the vehicle 10 is stopped). In the present embodiment, the case where the sleeve adjustment control is performed on the sleeves 32H and 32L of the second dog clutch 30 provided on the second path 52 will be described. The initial position Ps means the position of the sleeves 32H and 32L before the output shaft 12 is in the stopped state and the sleeves 32H and 32L are moved.
 本実施形態のトランスアクスル1は、スリーブ32H,32Lの位置を直接的に検出する位置センサを有しておらず、位置センサよりも安価なストロークセンサ45a,45bを持っている。ストロークセンサ45a,45bは、スリーブ32H,32Lの移動量を検出する検出手段である。また、各スリーブ32H,32Lには、アクチュエータによって移動させられる際に基準となる0点位置Pn(初期位置)が予め設定されている。さらに本実施形態の制御装置5は、初期位置Psからの移動方向と移動量とをアクチュエータに指示することで、スリーブ32H,32Lを所望の位置に移動させる。 The transaxle 1 of this embodiment does not have a position sensor that directly detects the positions of the sleeves 32H and 32L, and has stroke sensors 45a and 45b that are cheaper than the position sensor. The stroke sensors 45a and 45b are detection means for detecting the amount of movement of the sleeves 32H and 32L. Further, in each of the sleeves 32H and 32L, a zero point position Pn (initial position) which is a reference when being moved by the actuator is set in advance. Furthermore, the control device 5 of the present embodiment moves the sleeves 32H and 32L to a desired position by instructing the movement direction and the movement amount from the initial position Ps to the actuator.
 所望の位置とは、例えばスリーブ32Hのスプライン歯32tとドグギヤ11dのドグ歯11tとが噛合する位置、すなわち各スリーブ32H,32Lと、これと隣接する各ドグギヤ11d,15dとが係合する位置である。以下、所望の位置を「係合位置Pe」と呼ぶ。本実施形態では、第二ドグクラッチ30がハイ側とロー側とでそれぞれ設けられているため、0点位置Pnから係合位置Peまでの距離がスリーブ32H,32Lごとに予め決まっている。そのため、制御装置5はスリーブ32H,32Lをドグクラッチ11d,15dに係合させるときには、予め設定されている指令値(移動方向及び移動量)をアクチュエータに送信する。 The desired position is, for example, a position where the spline teeth 32t of the sleeve 32H mesh with the dog teeth 11t of the dog gear 11d, ie, positions where the sleeves 32H, 32L and the dog gears 11d, 15d adjacent thereto engage. is there. Hereinafter, the desired position is referred to as “engagement position Pe”. In the present embodiment, since the second dog clutch 30 is provided on the high side and the low side, the distance from the zero point position Pn to the engagement position Pe is previously determined for each of the sleeves 32H and 32L. Therefore, when engaging the sleeves 32H and 32L with the dog clutches 11d and 15d, the control device 5 transmits a preset command value (moving direction and moving amount) to the actuator.
 しかし、本実施形態のトランスアクスル1は、移動前のスリーブ32H,32Lの位置(すなわち初期位置Ps)が、図4(a)に示すように何らかの異常で0点位置Pnに一致していない場合には、スリーブ32H,32Lを係合位置Peに精度よく移動させることが難しい。そこで制御装置5は、出力軸12が止まっている間にスリーブ32H,32Lの初期位置Psを調整して、スリーブ32H,32Lの位置を確実に0点位置に一致させる。この制御がスリーブ調整制御である。0点位置Pnは、図3中に拡大して示すように、例えば各ハブ31H,31Lの軸方向中心点とされる。なお、移動前のスリーブ32H,32Lの初期位置Psと0点位置Pnとが一致していれば、当然、「0点位置Pn=初期位置Ps」となる。 However, in the transaxle 1 of the present embodiment, the positions of the sleeves 32H and 32L before movement (ie, the initial positions Ps) do not match the zero point position Pn due to some abnormality as shown in FIG. 4A. In this case, it is difficult to move the sleeves 32H and 32L to the engagement position Pe with high accuracy. Therefore, while the output shaft 12 is at rest, the control device 5 adjusts the initial position Ps of the sleeves 32H and 32L to ensure that the positions of the sleeves 32H and 32L coincide with the zero point position. This control is sleeve adjustment control. The zero point position Pn is, for example, an axial center point of each of the hubs 31H and 31L, as shown in an enlarged manner in FIG. If the initial position Ps of the sleeves 32H and 32L before movement and the 0 point position Pn coincide with each other, it naturally becomes “0 point position Pn = initial position Ps”.
 本実施形態では、走行負荷,車速が低い場合、すなわち車両10の発進時や停止時にはEVモードを選択する車両10を例示しているため、出力軸12の停止状態では第一ドグクラッチ20のスリーブ22とドグギヤ16dとは係合しており、第一ドグクラッチ20のスリーブ22に対してはスリーブ調整制御を実施しない。 In the present embodiment, when the traveling load and the vehicle speed are low, that is, when the vehicle 10 starts or stops, the vehicle 10 for selecting the EV mode is illustrated. Therefore, when the output shaft 12 is stopped, the sleeve 22 of the first dog clutch 20 is And the dog gear 16 d are engaged, and the sleeve adjustment control is not performed on the sleeve 22 of the first dog clutch 20.
 出力軸12が停止しているとき(車両10の停止中)としては、例えば、車両10のパワースイッチ6がオフ操作されることで車両10の主電源が切断されたとき(すなわち、車両10がREADY-OFF状態になったとき)が挙げられる。また、車両10のパワースイッチ6がオン操作されることで車両10の主電源が接続された場合であって運転を開始する前や、車両10の運転中に信号待ちや踏切待ち等で車両10が停止しているときであってジェネレータ4による発電が行なわれていないときも、出力軸12は停止している。このため、これらの場合にスリーブ調整制御を実施してもよい。 When the output shaft 12 is stopped (while the vehicle 10 is stopped), for example, when the main power supply of the vehicle 10 is cut off by turning off the power switch 6 of the vehicle 10 (that is, the vehicle 10 is When it is in the READY-OFF state). In addition, the vehicle 10 is waiting for a signal or waiting for a crossing while the vehicle 10 is in operation when the main power supply of the vehicle 10 is connected by turning on the power switch 6 of the vehicle 10 and before starting the operation, or while the vehicle 10 is in operation. Even when the generator 4 is not generating power, the output shaft 12 is also stopped. Therefore, sleeve adjustment control may be performed in these cases.
 本実施形態の制御装置5は、出力軸12が停止状態であると判定したら、ハイ側のスリーブ32Hの位置を調整し、次いでロー側のスリーブ32Lの位置を調整することで両クラッチ30H,30Lの初期位置Psの調整を順次実行する。具体的には、図4(b)に示すように、ハイ側のスリーブ32Hのアクチュエータを制御して、スリーブ32Hを初期位置Psから遊転ギヤ11Hのドグギヤ11dに向けて移動させて、スプライン歯32tとドグ歯11tとを噛合させる。このとき、スリーブ32Hは係合位置Peに位置するため、この係合位置Peから、予め設定された中立距離Dnだけスリーブ32Hを逆方向へ(図中黒塗矢印で示すようにドグギヤ11dから離れる方向へ)に移動させてスリーブ32Hの位置を調整する。以下、クラッチを係合させる方向(例えばスリーブ32Hがドグギヤ11dに向かう方向)を「第一方向」と呼び、第一方向とは逆方向(すなわちクラッチを切断する方向)を「第二方向」と呼ぶ。 If the controller 5 of this embodiment determines that the output shaft 12 is in the stopped state, it adjusts the position of the high side sleeve 32H, and then adjusts the position of the low side sleeve 32L to adjust both the clutches 30H and 30L. The adjustment of the initial position Ps of is sequentially performed. Specifically, as shown in FIG. 4B, the actuator of the high-side sleeve 32H is controlled to move the sleeve 32H from the initial position Ps toward the dog gear 11d of the idle gear 11H, and the spline teeth 32t and dog tooth 11t are engaged. At this time, since the sleeve 32H is located at the engagement position Pe, the sleeve 32H is reversely set from the engagement position Pe by a preset neutral distance Dn (as shown by the black-painted arrow in the drawing, the sleeve 32H is separated from the dog gear 11d). ) To adjust the position of the sleeve 32H. Hereinafter, the direction in which the clutch is engaged (for example, the direction in which the sleeve 32H moves toward the dog gear 11d) is referred to as "first direction", and the direction opposite to the first direction (i.e., direction in which the clutch is disconnected) is referred to as "second direction". Call.
 制御装置5は、車速センサや車輪速センサ(いずれも図示略)によって車両10が停止している(すなわち出力軸12が停止状態である)と判断してもよいし、シフトポジションやパーキングブレーキ19のロック状態や車両10の主電源のオンオフ状態から判断してもよい。また、中立距離Dnは、上述した「0点位置Pnから係合位置Peまでの距離」であり、スリーブ32H,32Lごとに予め設定されている。つまり、スプライン歯32tとドグ歯11tとが噛合した位置(上記の係合位置Pe)から中立距離Dnだけ離れた位置でスリーブ32Hが止められるため、スリーブ32Hの位置が確実に0点位置に一致する。 The control device 5 may determine that the vehicle 10 is stopped (that is, the output shaft 12 is stopped) by the vehicle speed sensor or the wheel speed sensor (all not shown), or the shift position or parking brake 19 It may be judged from the lock state of the main body or the on / off state of the main power supply of the vehicle 10. Further, the neutral distance Dn is the “distance from the zero point position Pn to the engagement position Pe” described above, and is preset for each of the sleeves 32H and 32L. That is, since the sleeve 32H is stopped at a position separated by the neutral distance Dn from the position where the spline teeth 32t and the dog teeth 11t mesh with each other (the above-described engagement position Pe), the position of the sleeve 32H reliably matches the zero point position. Do.
 なお、スリーブ32Hは、スライド移動の先にある部材に当接すると、その当接した位置で停止し、それ以上は動かない。したがって、スリーブ32Hのスライド移動が終了する要因は、図4(b)に示すように、スプライン歯32tとドグ歯11tとが噛合した(すなわち係合位置Peに到達した)場合か、図4(c)に示すように、スプライン歯32tとドグ歯11tとが噛み合わずに衝突した(すなわちギヤブロックが生じた)場合である。なお、ギヤブロックしたときのスリーブ32Hの位置を「ギヤブロック位置Pb」と呼ぶ。本実施形態の制御装置5は、スリーブ32Hが初期位置Psから停止した位置までの距離(移動量)に基づいて、スリーブ32Hが停止したときの要因を判別する。 When the sleeve 32H abuts on a member at the end of the slide movement, the sleeve 32H stops at the abutted position and does not move any more. Therefore, as shown in FIG. 4 (b), the factor causing the sliding movement of the sleeve 32H to end is when the spline teeth 32t mesh with the dog teeth 11t (that is, when the engagement position Pe is reached), as shown in FIG. As shown in c), this is the case where the spline teeth 32t and the dog teeth 11t collide without meshing (that is, a gear block is generated). The position of the sleeve 32H when the gear is blocked is referred to as "gear block position Pb". The control device 5 of the present embodiment determines a factor when the sleeve 32H is stopped based on the distance (movement amount) from the initial position Ps to the position at which the sleeve 32H is stopped.
 具体的には、図4(b)及び(c)中の左側に示すように、ストロークセンサ45aで検出されたスリーブ32Hの移動量D(図中模様付き矢印)が所定値X以上であるか否かで判断する。所定値Xは、スリーブ32Hの初期位置Psが図4(a)に示すように0点位置Pnからずれていたとしても、スリーブ32Hの係合とギヤブロックとを判別可能な値に予め設定されている。すなわち、図4(b)に示すように、スリーブ32Hが係合位置Peまで移動した場合には移動量Dが所定値X以上となるため、制御装置5は「D≧X」の場合に「スプライン歯32tとドグ歯11tとが噛合した」と判断する。反対に、図4(c)に示すように、スリーブ32Hがギヤブロック位置Pbまでしか移動していない場合には移動量Dが所定値X未満となるため、制御装置5は「D<X」の場合に「ギヤブロックが生じた」と判断する。 Specifically, as shown on the left side in FIGS. 4B and 4C, whether the movement amount D of the sleeve 32H detected by the stroke sensor 45a (patterned arrow in the drawing) is a predetermined value X or more Judge whether or not. The predetermined value X is preset to a value that allows discrimination between the engagement of the sleeve 32H and the gear block even if the initial position Ps of the sleeve 32H is deviated from the zero point position Pn as shown in FIG. 4A. ing. That is, as shown in FIG. 4B, when the sleeve 32H moves to the engagement position Pe, the movement amount D becomes equal to or larger than the predetermined value X. Therefore, the control device 5 sets “DXX”. It is determined that the spline teeth 32t and the dog teeth 11t mesh with each other. On the other hand, as shown in FIG. 4C, when the sleeve 32H moves only to the gear block position Pb, the movement amount D is smaller than the predetermined value X, so the controller 5 sets “D <X”. In the case of, it is determined that "gear block has occurred".
 制御装置5は、スリーブ32Hを第一方向に移動させる際に、ジェネレータ4の動力によって入力軸11を回し、スリーブ32Hとドグギヤ11dとの位相をずらす。本実施形態では、ハブ31Hが入力軸11に固定されており、スリーブ32Hがハブ31Hに対して相対回転不能に設けられているため、入力軸11が回ることでスリーブ32Hが回る。つまり、制御装置5は、スリーブ32Hを移動させるときに、ジェネレータ4にトルクを印加することでスリーブ32Hを回し、スリーブ32Hの位相を変化させることでドグギヤ11dとの相対的な位相をずらす。これにより、スプライン歯32tとドグ歯11tとのギヤブロックの発生を抑制する。 When moving the sleeve 32H in the first direction, the control device 5 rotates the input shaft 11 by the power of the generator 4 to shift the phase between the sleeve 32H and the dog gear 11d. In the present embodiment, the hub 31H is fixed to the input shaft 11, and the sleeve 32H is provided so as to be incapable of relative rotation with respect to the hub 31H. That is, when moving the sleeve 32H, the control device 5 rotates the sleeve 32H by applying a torque to the generator 4 and changes the phase of the sleeve 32H to shift the relative phase with the dog gear 11d. Thereby, the generation of the gear block of the spline teeth 32t and the dog teeth 11t is suppressed.
 本実施形態の制御装置5は、ギヤブロックが発生したと判断したときにジェネレータ4を作動させ、入力軸11を介してスリーブ32Hを回し、位相を変化させたのち、スリーブ32Hを再び第一方向に移動させる。このとき、スリーブ32Hが動けば、スリーブ32Hが停止するまで(すなわち係合位置Peまで)移動させ、スリーブ32Hが動かなければ、再び入力軸11を介してスリーブ32Hを回し、スリーブ32Hとドグギヤ11dとの位相をずらしたのち、スリーブ32Hをスライド移動させる。なお、入力軸11の回転方向は一方向としてもよいし、回転方向を短周期で切り替えてもよい。また、ギヤブロックが発生したと判断する前(例えば、スリーブ32Hの移動を開始したとき)から、ジェネレータ4を作動させてスリーブ32Hを回してもよい。 The control device 5 of the present embodiment operates the generator 4 when judging that the gear block is generated, rotates the sleeve 32H via the input shaft 11, changes the phase, and then changes the sleeve 32H in the first direction again. Move to At this time, if the sleeve 32H moves, it is moved until the sleeve 32H stops (that is, to the engagement position Pe), and if the sleeve 32H does not move, the sleeve 32H is rotated again via the input shaft 11, and the sleeve 32H and dog gear 11d Then, the sleeve 32H is slid. The rotation direction of the input shaft 11 may be one direction, or the rotation direction may be switched in a short cycle. Alternatively, the generator 4 may be operated to turn the sleeve 32H before it is determined that a gear block has occurred (for example, when the movement of the sleeve 32H is started).
 制御装置5は、ハイ側のスリーブ32Hの調整が終わったら、ロー側のスリーブ32Lに対しても同様の制御を実施する。すなわち、ロー側のスリーブ32Lのアクチュエータを制御して、スリーブ32Lを遊転ギヤ15Lのドグギヤ15dに向けて(すなわち第一方向に)移動させ、スリーブ32Lが停止したときに、ストロークセンサ45bで検出された移動量Dが所定値X以上であるか否かを判定する。D≧Xであれば、スプライン歯とドグ歯とが噛合したと判断して、予め設定された中立距離Dnだけスリーブ32Lを逆方向へ(ドグギヤ15dから離れる方向へ)に移動させてスリーブ32Lの位置を調整する。 When the adjustment of the high side sleeve 32H is finished, the control device 5 performs the same control on the low side sleeve 32L. That is, the actuator of the low side sleeve 32L is controlled to move the sleeve 32L toward the dog gear 15d of the idle gear 15L (that is, in the first direction), and when the sleeve 32L stops, detection is performed by the stroke sensor 45b. It is determined whether or not the moved amount D is equal to or greater than a predetermined value X. If D X X, it is determined that the spline teeth and the dog teeth are meshed, and the sleeve 32L is moved in the reverse direction (in the direction away from the dog gear 15d) by the preset neutral distance Dn. Adjust the position.
 一方、D<Xであれば、スプライン歯とドグ歯とが噛合せずに衝突した(ギヤブロックが生じた)と判断して、ジェネレータ4を作動させて入力軸11を回し、固定ギヤ11Lと噛み合っている遊転ギヤ15Lを回すことで、スリーブ32Lとドグギヤ15dとの位相をずらす。その後、スリーブ32Lを第一方向に移動させる。このとき、スリーブ32Lが動けば、スリーブ32Lが停止するまで移動させ、スリーブ32Lが動かなければ、再び入力軸11を介して遊転ギヤ15Lを回し、スリーブ32Lとドグギヤ15dとの位相をずらしたのち、スリーブ32Lをスライド移動させる。 On the other hand, if D <X, it is judged that the spline teeth and the dog teeth collide without meshing (gear block is generated), and the generator 4 is operated to turn the input shaft 11, and the fixed gear 11L and By rotating the meshing free rotation gear 15L, the phases of the sleeve 32L and the dog gear 15d are shifted. Thereafter, the sleeve 32L is moved in the first direction. At this time, if the sleeve 32L moves, the sleeve 32L is moved until it stops. If the sleeve 32L does not move, the idle gear 15L is rotated again via the input shaft 11 to shift the phase between the sleeve 32L and the dog gear 15d. After that, the sleeve 32L is slid.
[4.フローチャート]
 図5は、上述したスリーブ調整制御の内容を説明するためのフローチャート例である。このフローチャートは、車両10の主電源が切断されたとき(すなわち、出力軸12が停止状態であるとき)に制御装置5で実施される。なお、ストロークセンサ45a~45cで検出された情報は制御装置5に随時伝達されるものとする。
[4. flowchart]
FIG. 5 is an example of a flowchart for explaining the contents of the above-described sleeve adjustment control. The flowchart is implemented by the control device 5 when the main power supply of the vehicle 10 is disconnected (that is, when the output shaft 12 is in the stopped state). The information detected by the stroke sensors 45a to 45c is transmitted to the control device 5 as needed.
 まず、ハイ側のスリーブ32Hを第一方向に(遊転ギヤ11Hに向けて)移動させ(ステップS1)、スリーブ32Hが停止したか否かが判定される(ステップS2)。スリーブ32Hが停止するまでアクチュエータが制御され、スリーブ32Hが停止したら、ストロークセンサ45aで検出された移動量Dが所定値X以上であるか否かが判定される(ステップS3)。D≧Xであれば、スプライン歯32tとドグ歯11tとが噛み合ったと判断して、スリーブ32Hを第二方向に中立距離Dnだけ移動させ、停止させる(ステップS4)。 First, the high side sleeve 32H is moved in the first direction (toward the idle gear 11H) (step S1), and it is determined whether the sleeve 32H has stopped (step S2). The actuator is controlled until the sleeve 32H stops, and when the sleeve 32H stops, it is determined whether the movement amount D detected by the stroke sensor 45a is equal to or greater than a predetermined value X (step S3). If D ≧ X, it is determined that the spline teeth 32t and the dog teeth 11t are engaged, and the sleeve 32H is moved in the second direction by the neutral distance Dn and stopped (step S4).
 一方、ステップS3において、D<XであればステップS5に進み、ジェネレータ4を駆動し、ジェネレータ4の動力によって入力軸11を介してスリーブ32Hを回す。これにより、スリーブ32Hとドグギヤ11dとの相対的な位相をずらし、次いで、スリーブ32Hを再度第一方向に移動させる(ステップS6)。そして、スリーブ32Hが移動したか否かを判定し(ステップS7)、スリーブ32Hが動かなければ、ステップS5に戻る。一方、スリーブ32Hが移動した場合には、スリーブ32Hが停止したか否かが判定され(ステップS8)、スリーブ32Hが停止するまで(すなわち、スプライン歯32tとドグ歯11tとが噛合するまで)アクチュエータが制御される。そして、スリーブ32Hが停止したら、ステップS4の処理が実施される。 On the other hand, in step S3, if D <X, the process proceeds to step S5, the generator 4 is driven, and the sleeve 32H is rotated by the power of the generator 4 via the input shaft 11. Thereby, the relative phase of the sleeve 32H and the dog gear 11d is shifted, and then the sleeve 32H is moved again in the first direction (step S6). Then, it is determined whether or not the sleeve 32H has moved (step S7). If the sleeve 32H has not moved, the process returns to step S5. On the other hand, if the sleeve 32H has moved, it is determined whether the sleeve 32H has stopped (step S8), and the actuator is stopped until the sleeve 32H stops (that is, until the spline teeth 32t and the dog teeth 11t mesh) Is controlled. Then, when the sleeve 32H is stopped, the process of step S4 is performed.
 ハイ側のスリーブ32Hの調整が終わったら、ロー側のスリーブ32Lの調整(ステップS9~S16の処理)が実施される。すなわち、ロー側のスリーブ32Lを第一方向に(遊転ギヤ15Lに向けて)移動させ(ステップS9)、スリーブ32Lが停止したか否かが判定される(ステップS10)。スリーブ32Lが停止するまでアクチュエータが制御され、スリーブ32Lが停止したら、ストロークセンサ45bで検出された移動量Dが所定値X以上であるか否かが判定される(ステップS11)。D≧Xであれば、スプライン歯とドグ歯とが噛み合ったと判断して、スリーブ32Lを第二方向に中立距離Dnだけ移動させ、停止させる(ステップS12)。 When the adjustment of the high side sleeve 32H is completed, the adjustment of the low side sleeve 32L (processing of steps S9 to S16) is performed. That is, the low side sleeve 32L is moved in the first direction (toward the idle gear 15L) (step S9), and it is determined whether the sleeve 32L has stopped (step S10). The actuator is controlled until the sleeve 32L stops, and when the sleeve 32L stops, it is determined whether the moving amount D detected by the stroke sensor 45b is equal to or greater than a predetermined value X (step S11). If D ≧ X, it is determined that the spline teeth and the dog teeth are engaged, and the sleeve 32L is moved in the second direction by the neutral distance Dn and stopped (step S12).
 一方、ステップS11において、D<XであればステップS13に進み、ジェネレータ4を駆動し、ジェネレータ4の動力によって遊転ギヤ15Lを回す。これにより、スリーブ32Lとドグギヤ15dとの相対的な位相をずらし、次いで、スリーブ32Lを再度第一方向に移動させる(ステップS14)。そして、スリーブ32Lが移動したか否かを判定し(ステップS15)、スリーブ32Lが動かなければ、ステップS13に戻る。一方、スリーブ32Lが移動した場合には、スリーブ32Lが停止したか否かが判定され(ステップS16)、スリーブ32Lが停止するまで(すなわち、スプライン歯とドグ歯とが噛合するまで)アクチュエータが制御される。そして、スリーブ32Lが停止したら、ステップS12の処理が実施される。 On the other hand, in step S11, if D <X, the process proceeds to step S13, the generator 4 is driven, and the idle gear 15L is rotated by the power of the generator 4. Thereby, the relative phase of the sleeve 32L and the dog gear 15d is shifted, and then the sleeve 32L is moved again in the first direction (step S14). Then, it is determined whether or not the sleeve 32L has moved (step S15). If the sleeve 32L has not moved, the process returns to step S13. On the other hand, when the sleeve 32L has moved, it is determined whether the sleeve 32L has stopped (step S16), and the actuator controls until the sleeve 32L stops (that is, until the spline teeth and the dog teeth mesh). Be done. And if sleeve 32L stops, processing of Step S12 will be carried out.
[5.作用,効果]
 (1)上述したトランスアクスル1の制御装置5では、出力軸12が停止状態であるときに、各スリーブ32H,32Lを各遊転ギヤ11H,15Lのドグギヤ11d,15dに係合させるよう第一方向に移動させたのち、中立距離Dnだけスリーブ32H,32Lを第二方向に移動させる。ここで、本実施形態の中立距離Dnは、0点位置Pnから係合位置Peまでの距離に予め設定されているため、スリーブ32H,32Lの初期位置Psを確実に0点位置Pnに調整(設定)することができる。これにより、スリーブ32H,32Lとドグギヤ11d,15dの各歯が誤って噛み合ったり、これらの歯が誤って噛み合わなかったりすることを防止でき、クラッチ制御を精度よく行うことができる。
[5. Action, effect]
(1) In the control device 5 of the transaxle 1 described above, when the output shaft 12 is in the stop state, the first sleeve 32H, 32L is engaged with the dog gears 11d, 15d of the respective idle gears 11H, 15L. After moving in the direction, the sleeves 32H and 32L are moved in the second direction by the neutral distance Dn. Here, since the neutral distance Dn of this embodiment is set in advance as the distance from the zero point position Pn to the engagement position Pe, the initial positions Ps of the sleeves 32H and 32L are surely adjusted to the zero point position Pn ( Can be set. As a result, it is possible to prevent the teeth of the sleeves 32H and 32L and the dog gears 11d and 15d from being erroneously engaged and the teeth not being erroneously engaged, and clutch control can be performed with high accuracy.
 (2)上述した制御装置5では、各スリーブ32H,32Lを第一方向に移動させる際に、ジェネレータ4の動力によってスリーブ32H,32Lとドグギヤ11d,15dとの相対的な位相をずらすため、ギヤブロックの発生を抑制することができる。すなわち、スリーブ32H,32Lの歯とドグギヤ11d,15dの歯とが噛み合いやすくなり、スリーブ32H,32Lの位置を速やかに調整することができる。
 (3)また、スリーブ32H,32Lを移動させている際にギヤブロックが生じたと判断してからジェネレータ4を作動させるため、最小限の動力でスプライン歯とドグ歯とを噛合させることができ、スリーブ32H,32Lの位置を速やかに調整することができる。
(2) In the control device 5 described above, when moving the sleeves 32H and 32L in the first direction, the power of the generator 4 shifts the relative phases of the sleeves 32H and 32L and the dog gears 11d and 15d. It is possible to suppress the occurrence of blocks. That is, the teeth of the sleeves 32H and 32L and the teeth of the dog gears 11d and 15d can be easily engaged, and the positions of the sleeves 32H and 32L can be adjusted promptly.
(3) In addition, since the generator 4 is operated after judging that the gear block is generated while moving the sleeves 32H and 32L, the spline teeth and the dog teeth can be engaged with minimum power, The positions of the sleeves 32H and 32L can be adjusted promptly.
 (4)制御装置5は、スリーブ32H,32Lの各移動量Dが所定値X以上であるか否かによってギヤブロックの有無を判定するため、位置センサよりも安価なストロークセンサ45a,45bを使って判定を実施できる。
 (5)上述したスリーブ位置制御が、パワースイッチ6がオフ操作されることで車両10の主電源が切断された際に実施されることで、車両10の発進直前(車両10の主電源が接続されたとき)に実施される場合と比較して、車両10を速やかに発進させることができる。
(4) The control device 5 uses the stroke sensors 45a and 45b, which are less expensive than the position sensor, to determine the presence or absence of the gear block based on whether each movement amount D of the sleeves 32H and 32L is equal to or greater than the predetermined value X. Judgment can be performed.
(5) The above-described sleeve position control is performed when the main power supply of the vehicle 10 is cut off by turning off the power switch 6, so that the vehicle 10 immediately starts moving (the main power supply of the vehicle 10 is connected Vehicle 10 can be started more quickly than when it is carried out.
 (6)また、上述した車両10では、停止直前にEVモードが選択されるため、エンジン10側の第二ドグクラッチ30は開放されている。このため、上述したように第二ドグクラッチ30のスリーブ32H,32Lの位置を調整することで、次回のドライブサイクルでのクラッチ制御を精度よく行うことができる。 (6) Further, in the vehicle 10 described above, since the EV mode is selected immediately before the stop, the second dog clutch 30 on the engine 10 side is released. Therefore, by adjusting the positions of the sleeves 32H and 32L of the second dog clutch 30 as described above, clutch control in the next drive cycle can be performed accurately.
 (7)なお、上述したトランスアクスル1では、第二経路52上に第二ドグクラッチ30が設けられ、パラレルモードでの走行時に、走行状態や要求出力等に応じてハイギヤ段とローギヤ段とが切り替えられる。つまり、パラレルモードにおいて、エンジン2の動力を二段階に切り替えて伝達(出力)することができるため、走行パターンを増やすことができ、ドライブフィーリングの向上や燃費改善といった効果が得られ、車両商品性を向上させることができる。 (7) In the transaxle 1 described above, the second dog clutch 30 is provided on the second path 52, and when traveling in the parallel mode, the high gear and the low gear are switched according to the traveling state, required output, etc. Be That is, in the parallel mode, the power of the engine 2 can be switched in two steps and transmitted (output), so that the traveling pattern can be increased, and the effects such as the improvement of the drive feeling and the improvement of the fuel efficiency can be obtained. It is possible to improve the quality.
 また、上述した第二ドグクラッチ30は、ハイ側ドグクラッチ30Hとロー側ドグクラッチ30Lとから構成され、各ドグクラッチ30H,30Lにはスリーブ32H,32Lが設けられるため、ギヤ比の制約がない。すなわち、ハイギヤ段,ローギヤ段の各ギヤ比を自由に設定することができる。さらに、上述した車両10では、エンジン2及びモータ3の動力を個別に出力可能であるため、ハイロー切替時におけるトルク抜けをモータ3の動力でカバーすることができる。これにより、変速ショックを抑制することができるとともに、ハイロー切替を早急に行う必要性が低くなることから第二ドグクラッチ30の構成を簡素化することができる。 Further, since the second dog clutch 30 described above is configured of the high side dog clutch 30H and the low side dog clutch 30L, and the dog clutches 30H and 30L are provided with the sleeves 32H and 32L, there is no restriction on the gear ratio. That is, each gear ratio of the high gear stage and the low gear stage can be freely set. Furthermore, in the vehicle 10 described above, since the power of the engine 2 and the motor 3 can be output individually, it is possible to cover the torque dropout at the time of high / low switching with the power of the motor 3. As a result, it is possible to suppress the shift shock and to reduce the need to perform high / low switching quickly, so the configuration of the second dog clutch 30 can be simplified.
 上述した実施形態では、ハイギヤ段とローギヤ段との切り替えに、シンクロ機構を持たない第二ドグクラッチ30が用いられるため、小型化を図ることができ、省スペース化を実現できる。また、油圧を利用したクラッチ機構ではないためオイルポンプが不要であり、さらに引き摺り損失を低減できるため高効率化が期待できる。 In the embodiment described above, since the second dog clutch 30 having no synchro mechanism is used to switch between the high gear and the low gear, downsizing can be achieved, and space saving can be realized. Moreover, since it is not a clutch mechanism using oil pressure, an oil pump is unnecessary, and further, since drag loss can be reduced, high efficiency can be expected.
 なお、上述したトランスアクスル1では、第一経路51上にも第一ドグクラッチ20が設けられており、パラレルモードでの走行時に、モータ3によるアシストが不要な場合には第一ドグクラッチ20を開放することでモータ3を出力軸12から切り離すことができる。これにより、モータ3の連れ回りを回避でき、電力消費を抑えられ、損失低減を図ることができる。 In the transaxle 1 described above, the first dog clutch 20 is also provided on the first path 51, and the first dog clutch 20 is released when the assist by the motor 3 is unnecessary when traveling in the parallel mode. Thus, the motor 3 can be disconnected from the output shaft 12. As a result, corotation of the motor 3 can be avoided, power consumption can be suppressed, and loss can be reduced.
[6.その他]
 上述したスリーブ調整制御の内容は一例であって、上述したものに限られない。例えば、最初にロー側のスリーブ32Lの位置を調整してもよいし、二つのスリーブ32H,32Lの位置を同時に調整してもよい。また、スリーブ32H,32Lの第一方向への移動中にスプライン歯とドグ歯とが噛み合わずに衝突したか否かを、ストロークセンサ45a,45bで検出された移動量D以外のパラメータを用いて判断してもよい。また、ハイ側のスリーブ32Hとロー側のスリーブ32Lとを同一のアクチュエータで制御してもよい。
[6. Other]
The content of the sleeve adjustment control described above is an example, and is not limited to the above. For example, the position of the low side sleeve 32L may be adjusted first, or the positions of the two sleeves 32H and 32L may be simultaneously adjusted. Further, whether or not the spline teeth and the dog teeth collide without meshing while the sleeves 32H and 32L are moving in the first direction is determined using parameters other than the movement amount D detected by the stroke sensors 45a and 45b. You may judge. Also, the high side sleeve 32H and the low side sleeve 32L may be controlled by the same actuator.
 上述したトランスアクスル1は一例であって、その構成は上述したものに限られない。例えば、上述したトランスアクスル1では、第二ドグクラッチ30が入力軸11及び第一カウンタ軸15のそれぞれに設けられているが、一方の軸11,15に一つの第二ドグクラッチが設けられていてもよい。例えば、入力軸11に設けられた第二ドグクラッチの軸方向の一側にハイ側のドグギヤを配置し、他側にロー側のドグギヤを配置して、第二ドグクラッチのスリーブが両方のドグギヤと噛み合うように設けられていてもよい。 Transaxle 1 mentioned above is an example, and the composition is not restricted to what was mentioned above. For example, in the transaxle 1 described above, the second dog clutch 30 is provided on each of the input shaft 11 and the first counter shaft 15, but one second dog clutch may be provided on one of the shafts 11 and 15 Good. For example, a high-side dog gear is disposed on one side in the axial direction of the second dog clutch provided on the input shaft 11, and a low-side dog gear is disposed on the other side, and the sleeve of the second dog clutch engages with both dog gears. It may be provided.
 このような構成のトランスアクスルであっても、上述したスリーブ調整制御を適用可能である。例えば、出力軸12が停止状態であるときに、ハイ側のドグギヤに向けてスリーブを移動させ、ハイ側のドグギヤとスリーブとが係合したら、そこまでの移動量(初期位置からハイ側の係合位置までの距離)をストロークセンサで検出する。次いで、ロー側のドグギヤに向けてスリーブを移動させ、ロー側のドグギヤとスリーブとが係合したら、そこまでの移動量(ハイ側の係合位置からロー側の係合位置までの距離)をストロークセンサで検出する。そして、後者の検出値(移動量)の半分の値を中立距離として算出し、スリーブを逆方向に(すなわちハイ側に向けて)中立距離だけ移動させる。これにより、スリーブを確実に0点位置に調整することができる。 Even with the transaxle having such a configuration, the above-described sleeve adjustment control can be applied. For example, when the output shaft 12 is stopped, the sleeve is moved toward the dog gear on the high side, and when the dog gear on the high side engages with the sleeve, the amount of movement up there (engagement from the initial position to the high side) The distance to the mating position is detected by the stroke sensor. Next, move the sleeve toward the low-side dog gear, and when the low-side dog gear and the sleeve are engaged, the amount of movement (the distance from the high-side engagement position to the low-side engagement position) Detected by a stroke sensor. Then, a half value of the latter detection value (movement amount) is calculated as the neutral distance, and the sleeve is moved in the reverse direction (that is, toward the high side) by the neutral distance. Thereby, the sleeve can be reliably adjusted to the zero point position.
 なお、トランスアクスル1は、ストロークセンサに加えて、スリーブ32H,32Lの位置を直接的に検出する位置センサを備えていてもよい。このようなトランスアクスルであっても、位置センサが故障した場合にはスリーブの位置を正確に検出することができないため、上述したスリーブ調整制御を実施して、スリーブを0点位置に調整してもよい。 In addition to the stroke sensor, the transaxle 1 may be provided with a position sensor that directly detects the positions of the sleeves 32H and 32L. Even with such a transaxle, when the position sensor fails, the position of the sleeve can not be accurately detected. Therefore, the sleeve adjustment control described above is performed to adjust the sleeve to the zero point position. It is also good.
 また、上述したスリーブ調整制御では、第二経路52上の第二ドグクラッチ30のスリーブ32H,32Lの位置を調整しているが、これに代えてあるいは加えて、第一経路51上の第一ドグクラッチ20のスリーブ22の位置を調整してもよい。すなわち、上述したスリーブ調整制御は、ハイロー切り替え用の第二ドグクラッチ30に限らず、動力伝達の断接を切り替えるドグクラッチ(例えば第一ドグクラッチ20)に対して適用可能である。第一ドグクラッチ20に適用する場合、モータ3(第一の回転電機)の動力によって遊転ギヤ16M(第一ギヤ)の位相を変化させて、スリーブ22のスプライン歯とドグギヤ16d(被係合ギヤ)のドグ歯とが噛み合いやすくすることが好ましい。なお、第一ドグクラッチ20は必須の構成ではなく、省略してもよい。 In the above-described sleeve adjustment control, the positions of the sleeves 32H and 32L of the second dog clutch 30 on the second path 52 are adjusted, but instead of or in addition to this, the first dog clutch on the first path 51 The positions of the twenty sleeves 22 may be adjusted. That is, the above-described sleeve adjustment control is applicable not only to the second dog clutch 30 for high / low switching but also to a dog clutch (for example, the first dog clutch 20) that switches connection / disconnection of power transmission. When applied to the first dog clutch 20, the spline teeth of the sleeve 22 and the dog gear 16d (engaged gear) are changed by changing the phase of the idle gear 16M (first gear) by the power of the motor 3 (first rotating electric machine). It is preferable to make it easy to mesh with the dog teeth of. The first dog clutch 20 is not an essential component and may be omitted.
 また、上述したトランスアクスル1は、ハイギヤ段とローギヤ段とを有し、これらが第二ドグクラッチ30により切り替えられるが、2段切り替え式のトランスアクスル以外のトランスアクスルに用いられるドグクラッチに対して、上述したスリーブ調整制御を適用してもよい。
 なお、トランスアクスル1に対するエンジン2,モータ3,ジェネレータ4の相対位置は上述したものに限らない。これらの相対位置に応じて、トランスアクスル1内の六つの軸11~16の配置を設定すればよい。また、トランスアクスル1内の各軸に設けられるギヤの配置も一例であって、上述したものに限られない。
Moreover, although the transaxle 1 mentioned above has a high gear stage and a low gear stage, and these are switched by the second dog clutch 30, the dog clutch used for transaxles other than the two-stage switching type transaxle is described above. Sleeve adjustment control may be applied.
The relative positions of the engine 2, the motor 3 and the generator 4 with respect to the transaxle 1 are not limited to those described above. The arrangement of the six axes 11 to 16 in the transaxle 1 may be set according to these relative positions. Further, the arrangement of the gears provided on each of the shafts in the transaxle 1 is also an example, and is not limited to that described above.
 1 トランスアクスル
 2 エンジン
 3 モータ(電動機,第一の回転電機)
 4 ジェネレータ(発電機,第二の回転電機)
 5 制御装置
 8 駆動輪
 10 車両
 11 入力軸
 11d ドグギヤ(被係合ギヤ)
 11H 遊転ギヤ(第一ギヤ)
 11t ドグ歯(ドグギヤの歯)
 12 出力軸
 15 第一カウンタ軸
 15d ドグギヤ(被係合ギヤ)
 15L 遊転ギヤ(第一ギヤ)
 16d ドグギヤ(被係合ギヤ)
 16M 遊転ギヤ(第一ギヤ)
 20 第一ドグクラッチ(クラッチ)
 22 スリーブ
 30 第二ドグクラッチ(エンジン側クラッチ,クラッチ)
 30H ハイ側ドグクラッチ(エンジン側クラッチ,クラッチ)
 30L ロー側ドグクラッチ(エンジン側クラッチ,クラッチ)
 32H,32L スリーブ
 32t スプライン歯(スリーブの歯)
 51 第一経路(第一動力伝達経路)
 52 第二経路(第二動力伝達経路)
 Dn 中立距離
 D 移動量(ストローク量)
 Pb ギヤブロック位置
 Pe 係合位置
 Pn 0点位置
 Ps 初期位置
 X 所定値
 
1 transaxle 2 engine 3 motor (motor, first rotating electric machine)
4 Generator (generator, second rotating electric machine)
Reference Signs List 5 control device 8 driving wheel 10 vehicle 11 input shaft 11 d dog gear (engaged gear)
11H idle gear (first gear)
11t dog teeth (dog gear teeth)
12 Output shaft 15 First counter shaft 15d Dog gear (engaged gear)
15L free running gear (first gear)
16d dog gear (engaged gear)
16M idle gear (first gear)
20 1st dog clutch (clutch)
22 sleeve 30 second dog clutch (engine side clutch, clutch)
30H High side dog clutch (engine side clutch, clutch)
30L low side dog clutch (engine side clutch, clutch)
32H, 32L sleeve 32t spline teeth (sleeve teeth)
51 first path (first power transmission path)
52 Second path (second power transmission path)
Dn Neutral distance D Movement amount (stroke amount)
Pb gear block position Pe engagement position Pn 0 point position Ps initial position X predetermined value

Claims (9)

  1.  エンジンと、駆動輪側の出力軸を駆動する第一の回転電機と、前記エンジンの駆動力により発電する第二の回転電機とが搭載されたハイブリッド車両のトランスアクスルの制御装置であって、
     前記トランスアクスルは、前記第一の回転電機から前記出力軸までの第一動力伝達経路上及び前記エンジンから前記出力軸までの第二動力伝達経路上の少なくとも一方に設けられたクラッチと、前記クラッチと同軸上に隣接配置され、前記クラッチのスリーブと係合する被係合ギヤを有する第一ギヤと、を備え、
     前記制御装置は、前記出力軸が停止状態であるときに、前記スリーブを前記第一ギヤの前記被係合ギヤに係合させるよう第一方向に移動させたのち、所定の中立距離だけ前記スリーブを前記第一方向とは逆方向へ移動させて前記スリーブの初期位置を調整する
    ことを特徴とする、トランスアクスルの制御装置。
    A control device of a transaxle of a hybrid vehicle equipped with an engine, a first rotating electrical machine for driving an output shaft on a drive wheel side, and a second rotating electrical machine generating electric power by the driving force of the engine.
    The transaxle is a clutch provided on at least one of a first power transmission path from the first rotating electrical machine to the output shaft and a second power transmission path from the engine to the output shaft, and the clutch A first gear coaxially adjacent to and having an engaged gear engaged with a sleeve of the clutch;
    The control device moves the sleeve in a first direction to engage the engaged gear of the first gear when the output shaft is in a stopped state, and then the sleeve is moved by a predetermined neutral distance. By moving the sleeve in the direction opposite to the first direction to adjust the initial position of the sleeve.
  2.  前記制御装置は、前記スリーブを前記第一方向に移動させる際に、前記回転電機の動力によって前記スリーブと前記被係合ギヤとの位相をずらす
    ことを特徴とする、請求項1記載のトランスアクスルの制御装置。
    The transaxle according to claim 1, wherein the controller shifts the phase of the sleeve and the engaged gear by power of the rotating electric machine when moving the sleeve in the first direction. Control device.
  3.  前記制御装置は、前記スリーブの前記第一方向に移動させている際に前記スリーブの歯と前記被係合ギヤの歯とが噛み合わずに衝突した場合に、前記スリーブと前記被係合ギヤとの位相をずらす
    ことを特徴とする、請求項2記載のトランスアクスルの制御装置。
    The control device is configured to move the sleeve and the engaged gear when the sleeve teeth and the engaged gear teeth collide with each other without meshing while moving the sleeve in the first direction. 3. A control device for a transaxle according to claim 2, characterized in that:
  4.  前記制御装置は、前記スリーブを前記第一方向に移動させて停止したときの移動量が所定値未満の場合に前記スリーブの歯と前記被係合ギヤの歯とが噛み合わずに衝突したと判定する
    ことを特徴とする、請求項3記載のトランスアクスルの制御装置。
    The control device determines that the teeth of the sleeve and the teeth of the engaged gear collide without meshing when the amount of movement when the sleeve is moved in the first direction and stopped is less than a predetermined value. The control device of the transaxle according to claim 3, characterized in that:
  5.  前記クラッチは、前記第二動力伝達経路上に設けられ、
     前記制御装置は、前記第二の回転電機の動力によって前記スリーブと前記被係合ギヤとの位相をずらす
    ことを特徴とする、請求項2~4のいずれか1項に記載のトランスアクスルの制御装置。
    The clutch is provided on the second power transmission path,
    The control of the transaxle according to any one of claims 2 to 4, wherein the control device shifts the phase of the sleeve and the engaged gear by power of the second rotating electric machine. apparatus.
  6.  前記クラッチは、前記第二動力伝達経路上に設けられて動力伝達の断接とハイロー切替とを実施すべく、ハイ側クラッチとロー側クラッチとを有し、
     前記制御装置は、前記ハイ側クラッチ及び前記ロー側クラッチの両方の前記初期位置の調整を順次実行する
    ことを特徴とする、請求項1~5のいずれか1項に記載のトランスアクスルの制御装置。
    The clutch includes a high-side clutch and a low-side clutch, provided on the second power transmission path, for performing connection / disconnection of the power transmission and high / low switching.
    The control device for a transaxle according to any one of claims 1 to 5, wherein the control device sequentially executes adjustment of the initial position of both the high side clutch and the low side clutch. .
  7.  前記制御装置は、前記車両の主電源が切断された際に、前記スリーブの前記第一方向への移動を開始して前記スリーブの前記初期位置を調整する
    ことを特徴とする、請求項1~6のいずれか1項に記載のトランスアクスルの制御装置。
    The control device starts movement of the sleeve in the first direction to adjust the initial position of the sleeve when the main power supply of the vehicle is disconnected. 6. A control device for a transaxle according to any one of 6.
  8.  前記クラッチは、前記第一動力伝達経路上に設けられ、
     前記制御装置は、前記第一の回転電機の動力によって前記スリーブと前記被係合ギヤとの位相をずらす
    ことを特徴とする、請求項2~4のいずれか1項に記載のトランスアクスルの制御装置。
    The clutch is provided on the first power transmission path,
    The control of the transaxle according to any one of claims 2 to 4, wherein the control device shifts the phase of the sleeve and the engaged gear by power of the first rotating electric machine. apparatus.
  9.  前記クラッチは、前記第一動力伝達経路上と前記第二動力伝達経路上のそれぞれに設けられ、
     前記制御装置は、前記第一の回転電機の動力によって前記第一動力伝達経路上の前記クラッチの前記スリーブと前記被係合ギヤとの位相をずらす
    ことを特徴とする、請求項5に記載のトランスアクスルの制御装置。
     
     
    The clutch is provided on the first power transmission path and on the second power transmission path, respectively.
    The said control apparatus shifts the phase of the said sleeve of the said clutch and the said to-be-engaged gear on the said 1st power transmission path by the power of the said 1st rotary electric machine, It is characterized by the above-mentioned. Control device for transaxle.

PCT/JP2018/031962 2017-12-04 2018-08-29 Transaxle control device WO2019111456A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019558000A JP6881598B2 (en) 2017-12-04 2018-08-29 Transaxle controller
CN201880077885.1A CN111433065B (en) 2017-12-04 2018-08-29 Control device for variable speed drive axle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017232749 2017-12-04
JP2017-232749 2017-12-04

Publications (1)

Publication Number Publication Date
WO2019111456A1 true WO2019111456A1 (en) 2019-06-13

Family

ID=66750865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031962 WO2019111456A1 (en) 2017-12-04 2018-08-29 Transaxle control device

Country Status (3)

Country Link
JP (1) JP6881598B2 (en)
CN (1) CN111433065B (en)
WO (1) WO2019111456A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083919A (en) * 2004-09-15 2006-03-30 Toyota Motor Corp Control device of vehicle
JP2012007659A (en) * 2010-06-23 2012-01-12 Mitsubishi Motors Corp Shift operation device and double clutch speed changer
JP2015232356A (en) * 2014-06-09 2015-12-24 トヨタ自動車株式会社 Meshing-type engagement device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502007006382D1 (en) * 2007-10-23 2011-03-10 Getrag Ford Transmissions Gmbh Method for achieving a neutral position of a shift fork in a manual transmission
DE102011076388A1 (en) * 2011-05-24 2012-11-29 Zf Friedrichshafen Ag Switching device for a power shift transmission
JP5751141B2 (en) * 2011-11-10 2015-07-22 株式会社デンソー Electromagnetic control device
JP6070380B2 (en) * 2013-04-16 2017-02-01 アイシン精機株式会社 Automatic transmission for automatic transmission for vehicle
JP6176197B2 (en) * 2014-07-07 2017-08-09 トヨタ自動車株式会社 Vehicle control device
JP6394272B2 (en) * 2014-10-17 2018-09-26 トヨタ自動車株式会社 Power transmission control device
KR20160097880A (en) * 2015-02-10 2016-08-18 현대자동차주식회사 Neutral controlling method of sychronizer
RU2664117C1 (en) * 2015-06-25 2018-08-15 Ниссан Мотор Ко., Лтд. Transmission control device for hybrid vehicle
JP6396942B2 (en) * 2016-04-26 2018-09-26 本田技研工業株式会社 Transmission control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083919A (en) * 2004-09-15 2006-03-30 Toyota Motor Corp Control device of vehicle
JP2012007659A (en) * 2010-06-23 2012-01-12 Mitsubishi Motors Corp Shift operation device and double clutch speed changer
JP2015232356A (en) * 2014-06-09 2015-12-24 トヨタ自動車株式会社 Meshing-type engagement device

Also Published As

Publication number Publication date
JP6881598B2 (en) 2021-06-02
CN111433065A (en) 2020-07-17
CN111433065B (en) 2023-07-18
JPWO2019111456A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
CN109311378B (en) Transaxle device
JP5664764B2 (en) Vehicle drive device
JP5138803B2 (en) Power transmission device
JP5316724B2 (en) Vehicle drive device
KR101353760B1 (en) Vehicle power transmission apparatus
JP6919719B2 (en) Vehicle control device
US20100197436A1 (en) Power transmission unit for vehicle
EP2759435A1 (en) Vehicle parking apparatus and method for parking vehicle
WO2014002219A1 (en) Hybrid vehicle drive apparatus
EP3453550A1 (en) Transaxle device
JP6812835B2 (en) Transaxle device
WO2014162631A1 (en) Vehicle control device
JP6372616B2 (en) Hybrid vehicle start control device
WO2019111457A1 (en) Clutch control device
CN111976462A (en) Drive device for hybrid vehicle
JP2011178280A (en) Power transmission device for hybrid vehicle and control method for the same
WO2019111456A1 (en) Transaxle control device
JP6969956B2 (en) Hybrid vehicle power unit
WO2019111460A1 (en) Clutch control device
JP5821492B2 (en) Vehicle transmission
JP2005059683A (en) Power transmission for hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885531

Country of ref document: EP

Kind code of ref document: A1