WO2019109455A1 - 一种光子微波下变频装置及方法 - Google Patents

一种光子微波下变频装置及方法 Download PDF

Info

Publication number
WO2019109455A1
WO2019109455A1 PCT/CN2018/071520 CN2018071520W WO2019109455A1 WO 2019109455 A1 WO2019109455 A1 WO 2019109455A1 CN 2018071520 W CN2018071520 W CN 2018071520W WO 2019109455 A1 WO2019109455 A1 WO 2019109455A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
frequency
local oscillator
photodetector
Prior art date
Application number
PCT/CN2018/071520
Other languages
English (en)
French (fr)
Inventor
韩秀友
邵宇辰
武震林
赵明山
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/461,713 priority Critical patent/US10659162B2/en
Publication of WO2019109455A1 publication Critical patent/WO2019109455A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/006Devices for generating or processing an RF signal by optical means

Definitions

  • the invention belongs to the technical field of microwave signal processing, and in particular relates to a photon microwave down-conversion device and method.
  • Microwave down-conversion is one of the key technologies for microwave signal processing. Its function is to change the frequency of the microwave signal received by the antenna to the IF frequency range that can be processed. Microwave down-conversion technology has a wide range of important applications in satellite communications, wireless communications, radar and other fields.
  • the traditional microwave-based frequency conversion technology based on electrical methods is mainly realized by the nonlinear characteristics of electronic devices such as diodes or FETs. The frequency range and bandwidth of the frequency conversion processing are limited by the performance of the electrical device, and the microwave frequency increases. The frequency conversion efficiency of the electrical method is reduced, and the phase noise is increased, which greatly affects the quality of the down-converted signal.
  • the microwave photon technology generated by the complementary and cross-fusion of photonic technology and microwave technology provides a good solution for microwave down-conversion processing.
  • the photon microwave down-conversion technology can fully utilize the advantages of large bandwidth, low loss, tunability, and reusability of photonic technology, and has good anti-electromagnetic interference capability, while reducing the size of the down-conversion system, reducing power consumption, and improving frequency conversion performance. Other aspects have great potential.
  • the scheme performs two independent intensity modulations in one integrated device.
  • the integrated optical waveguide shortens the transmission interval between discrete devices, reduces the number of fiber couplings, and reduces the optical signal.
  • the loss in transmission, the system structure is simplified, and it is beneficial to increase the down conversion gain.
  • this solution still requires an external electrical local oscillator signal source, and MZM1 and MZM2 require an external DC bias point control device to operate at the carrier suppression operating point, which increases the complexity of the system.
  • the RF signal received by the antenna is loaded onto the light wave output by the laser through another RF input port of the DD-MZM.
  • the RF signal and the photoelectric oscillator generate an intermediate frequency signal obtained by down-converting the local oscillator signal by the second photodetector beat frequency.
  • the scheme does not require an external electric local oscillator signal source, and the single integrated DD-MZM realizes the loading function of the local oscillator signal generated by the loop and the radio frequency signal received by the antenna, which simplifies the system structure.
  • the scheme selects the local oscillator signal through the electric filter, and the local oscillator signal frequency is difficult to be flexibly tuned, and the radio frequency signal is also recovered after the photodetection, and complete radio frequency isolation cannot be achieved.
  • the invention provides a photon microwave down-conversion device and method, which effectively solves the problems of complicated structure, poor radio frequency isolation and difficulty in flexible tuning of the microwave down-conversion system in the background art.
  • a photon microwave down-conversion device comprises a wavelength tunable laser 1, an electro-optic modulator 2, an optical narrow-band notch filter 3, an optical splitter 4, a first photodetector 5, an electrical combiner 6, and a second photoelectric Detector 7 and electrical low pass filter 8;
  • the wavelength tunable laser 1, the electro-optic modulator 2, the optical narrow-band notch filter 3, the optical splitter 4 and the first photodetector 5 are sequentially connected by an optical fiber;
  • the first photodetector 5 and the electrical combiner 6 are connected by a cable;
  • the electro-optic modulator 2, the optical narrow-band notch filter 3, the optical splitter 4, the first photodetector 5, and the electric combiner 6 are sequentially connected to form an oscillation loop;
  • optical splitter 4 and the second photodetector 7 are connected by an optical fiber
  • the second photodetector 7 and the electrical low pass filter 8 are connected by a cable.
  • the optical splitter 4 and the first photodetector 5 are a single optical fiber connection, a two-way optical fiber connection or a multi-path optical fiber connection.
  • the electro-optic modulator 2 is an electro-optic modulator having a phase modulation function.
  • the electro-optic modulator 2, the optical narrow-band notch filter 3, the optical splitter 4, the first photodetector 5, and the electric combiner 6 are sequentially connected to form an oscillation loop, and have a function of generating a local oscillation signal.
  • the frequency f LO at which the local oscillation signal is generated is determined by the optical wave frequency f C of the wavelength tunable laser 1 and the notch center frequency of the optical narrow band notch filter 3 being f N , satisfying the following relationship:
  • a photon microwave down-conversion method the steps are as follows:
  • the wavelength-tunable laser 1 outputs an optical carrier of frequency f C to the optical input port of the electro-optic modulator 2, and the RF signal f RF received by the antenna and the loop outputted by the first photodetector 5 return to the microwave local oscillator signal.
  • the left and right sidebands of the RF signal have a ⁇ phase difference due to the phase modulation.
  • the left and right sidebands of the optical RF signal cancel the offset with the optical carrier, and no RF signal is output; the output of the first photodetector 5
  • the local oscillator signal is input to the RF input port of the electro-optic modulator 2 via the combiner 6, so that the local oscillator signal oscillates back and forth in the loop, generating a low phase noise, high quality local oscillator signal; the frequency of the local oscillator signal f
  • the LO can be tuned by changing the frequency f C of the output optical carrier of the wavelength tunable laser 1;
  • the optical signal of the second branch of the optical branching device 4 is photoelectrically converted by the second photodetector 7, and the left and right side bands of the optically-borne radio frequency signal have a phase difference of ⁇ due to phase modulation, so the optical signal of the optical carrier The left and right sidebands and the optical carrier beat frequency cancel each other, and the second photodetector 7 has no radio frequency signal output, thereby achieving complete radio frequency isolation;
  • the left band of the optical local oscillator signal and the left band of the optical RF signal are beaten to generate an intermediate frequency signal, and the frequency of the intermediate frequency signal is:
  • the left side band of the optical local oscillator signal and the optical carrier beat frequency generate a local oscillator signal; the intermediate frequency signal and the local oscillator signal output by the second photodetector 7 are filtered by the electric low-pass filter 8, and the local oscillator signal is filtered to obtain an intermediate frequency.
  • the signal; the down-converted IF signal frequency f IF can be adjusted by changing the frequency f LO of the local oscillator signal, that is, changing the frequency f C of the output optical carrier of the wavelength tunable laser 1 to realize a tunable down-conversion function.
  • the photonic microwave down-conversion device and method of the present invention comprises an electro-optical modulator, an optical narrow-band notch filter, an optical splitter, a first photodetector, and an electric combiner to form a photoelectric oscillation loop, and the device itself generates the present
  • the vibration signal does not require an external local oscillator source, and the frequency at which the local oscillator signal is generated can be flexibly adjusted by changing the frequency of the wavelength-tunable laser output optical carrier.
  • the photon microwave down-conversion device and method of the invention adopts an electro-optic modulator with phase modulation function, the radio frequency signal is loaded onto the light wave, and no RF signal output is outputted at the output end of the down-converted photodetector, which has the advantages of complete radio frequency isolation.
  • the photonic microwave down-conversion device and method of the present invention can down-convert the radio frequency signals of different frequencies to the intermediate frequency signals of the same frequency according to the application requirements, and can also down-convert the same radio frequency signals to the intermediate frequency signals of different frequencies, Flexible control advantages.
  • Figure 1 is a structural view of a photonic microwave down-conversion device of the present invention.
  • FIG. 2 is a block diagram of a photonic microwave downconversion device according to an embodiment of the present invention.
  • FIG. 3 is a spectrum diagram of a filter response of an optical narrow band notch filter in an embodiment of the present invention.
  • FIG. 4 is a test spectrum diagram of different frequency local oscillator signals generated in an embodiment of the present invention.
  • Fig. 5(a) is a spectrum of a local oscillator signal at a certain frequency generated in an embodiment of the present invention
  • Fig. 5(b) is a phase noise test result at a certain frequency generated in an embodiment of the present invention.
  • FIG. 6(a) is a spectrum diagram of an optical-borne microwave signal before entering an optical narrow-band notch filter in an embodiment of the present invention
  • FIG. 6(b) is an optical-borne microwave after entering an optical narrow-band notch filter in an embodiment of the present invention. Signal spectrum diagram.
  • FIG. 8 is a test frequency spectrum diagram of down-converting the same frequency radio frequency signal to an intermediate frequency signal of different frequencies in the embodiment of the present invention.
  • 1 wavelength tunable laser 1 electro-optic modulator; 3 optical narrow-band notch filter; 4 optical splitter; 5 first photodetector; 6 electric combiner; 7 second photodetector; Low pass filter.
  • FIG. 2 is a block diagram of a photonic microwave downconversion device according to an embodiment of the present invention, including a wavelength tunable laser, an electro-optic modulator, an optical narrow band notch filter, an optical splitter, a polarization beam splitter, an optical fiber a, an optical fiber b, and a polarization combination. a beam splitter, a first photodetector, an electrical combiner, and a second photodetector.
  • the length of the optical fiber a and the optical fiber b are different;
  • the polarizing beam splitter, the optical fiber a, the optical fiber b, and the polarization combiner constitute a dual link;
  • the optical splitter and the first photodetector are dual-link connections composed of a polarization beam splitter, an optical fiber a, an optical fiber b, and a polarization combiner;
  • the electro-optic modulator is an electro-optic phase modulator
  • the first photodetector and the electrical combiner are connected by a cable
  • the electro-optic modulator, the optical narrow-band notch filter, the optical splitter, the polarization beam splitter, the optical fiber a, the optical fiber b, the polarization beam combiner, the first photodetector, and the electric combiner are sequentially connected to form an oscillation ring.
  • the oscillating loop has a function of generating a local oscillation signal.
  • the dual link formed by the polarization beam splitter, the optical fiber a, the optical fiber b and the polarization combiner is used for suppressing the side mode of the local oscillation signal generated by the photoelectric oscillation, and improving the stability of the local oscillation signal.
  • FIG. 3 is a filtered response spectrum diagram of an optical narrow band notch filter in accordance with an embodiment of the present invention, having a narrow band notch in the middle of the band pass filtered response bandwidth.
  • the frequency of the generated local oscillator signal can be adjusted by changing the optical frequency f C of the wavelength tunable laser.
  • Figure 4 shows the test spectrum of changing the optical frequency f C of a wavelength-tunable laser to produce a local oscillator signal of different frequencies.
  • the device can generate an adjustable microwave local oscillator signal in the range of 3.5 GHz to 7 GHz.
  • Figure 5 (a) and (b) show the spectrum and phase noise test results of the local oscillator signal at the frequency of 4.03 GHz, respectively. It can be seen that the power of the microwave local oscillator is -14.1 dBm and the phase noise is -107.9 dBc. /Hz@10kHz. The above results show that the device itself can generate a microwave local oscillator signal with adjustable frequency and high quality, without the need of an external local oscillator signal source.
  • the photon microwave down conversion process is as follows:
  • the optical-borne microwave signal is divided into two paths through the optical splitter, and the first branch enters a double loop composed of a polarization beam splitter, an optical fiber 1, an optical fiber 2, and a polarization combiner, and the second branch enters the second photodetector.
  • the left and right sidebands of the optical RF signal have a phase difference of ⁇ due to the phase modulation.
  • the local oscillator signal output by the first photodetector is input to the RF input port of the electro-optic modulator through the electric combiner as a local oscillator signal required in the photon microwave down-conversion process.
  • the second branch optical-borne microwave signal separated by the optical splitter is photoelectrically converted by the second photodetector, and the left and right sidebands of the optical-borne radio frequency signal have a phase difference of ⁇ due to phase modulation, so the left and right sides of the radio frequency signal After the sidebands and the optical carrier beat frequency, they cancel each other out, and the second photodetector has no RF signal output, thereby achieving complete RF isolation.
  • the down-converted intermediate frequency signal frequency f IF can be adjusted by changing the frequency f LO of the local oscillator signal, that is, changing the frequency f C of the wavelength-tunable laser output optical carrier.
  • Figure 7 is a test spectrum of RF signals down to 4.5 GHz, 5 GHz, 5.48 GHz, 6.06 GHz, 6.56 GHz, 6.9 GHz, 7.54 GHz, and 7.94 GHz, downconverted to the same frequency (1 GHz) IF signal, from Figure 7 It can be seen that there is no RF signal in the test spectrum, and complete RF isolation is achieved.
  • Figure 8 is a test spectrum diagram of an intermediate frequency signal down-converted to 1 GHz, 1.32 GHz, 1.94 GHz, 2.46 GHz, 2.96 GHz, and 3.28 GHz for an RF signal having a frequency of 8 GHz.
  • the above results show that the device can down-convert the RF signals of different frequencies to the intermediate frequency signals of the same frequency, and down-convert the same RF signals to the intermediate frequency signals of different frequencies, thus realizing the flexible and adjustable down-conversion function.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光子微波下变频装置及方法,属于微波信号处理技术领域。该装置中电光调制器、光学窄带陷波滤波器、光电探测器和电合路器构成振荡环路,具有产生微波本振的功能,且本振信号的频率可通过改变波长可调激光器输出光波的频率进行灵活调节。电光调制器的相位调制功能使得在下变频的光电探测器输出端无射频信号输出,具有完全的射频隔离优势。该装置下变频具有灵活的调控能力,既能把不同频率的射频信号下变频至同一频率的中频信号,也能把同一射频信号下变频至不同频率的中频信号。本发明有效解决了现有技术中微波下变频系统结构复杂、射频隔离度差、难以灵活调谐等问题。

Description

一种光子微波下变频装置及方法 技术领域
本发明属于微波信号处理技术领域,具体涉及一种光子微波下变频装置及方法。
背景技术
微波下变频是微波信号处理的关键技术之一,其作用是对天线接收到的微波信号进行频域上的改变,频率下降至可处理的中频频段。微波下变频技术在卫星通信、无线通信、雷达等领域具有广泛且重要的应用。传统基于电学方法的微波下变频技术,主要通过二极管或者场效应管等电子器件的非线性特性来实现,变频处理的频段范围、带宽等均受到电学器件性能的限制,随着微波频率的升高,电学方法的变频效率降低、相位噪声增大,极大影响了下变频信号的质量。
光子技术与微波技术优势互补、交叉融合而产生的微波光子技术为微波下变频处理提供了良好的解决方案。光子微波下变频技术可以充分发挥光子技术的大带宽、低损耗、可调谐、可复用等优势,具有良好的抗电磁干扰能力,同时在减小下变频系统体积、降低功耗、提升变频性能等方面极具潜力。
在先技术[1](M.M.Howerton,R.P.Moeller,G.K.Gopalakrishnan,and W.K.Burns.“Low-biased fiber-optic link for microwave downconversion”,IEEE Photonics Technology Letters,Vol.8,No.12,pp.1692-1694,Dec.1996)研究了基于级联铌酸锂调制器的光子微波下变频方案,外部电本振信号和射频信号分别经两个级联的铌酸锂强度调制器加载到激光器输出的光波上,最后加载了电本振信号和射频信号的光波在光电探测器中拍频得到中频信号。该方案需要额外的电本振信号源、两个铌酸锂强度调制器,增加了系统的复杂性;另外,两个 调制器之间的光纤连接增加了光传输损耗,劣化了下变频的增益特性。
在先技术[2](Erwin H.W.Chan and Robert A.Minasian.“Microwave photonic downconverter with high conversion efficiency”,IEEE Journal of Lightwave Technology,Vol.30,No.23,pp.3580-3585,Dec.2012)研究了基于单个集成双平行马赫-曾德调制器(DP-MZM)的光子微波下变频方案。DP-MZM由嵌在主马赫-曾德干涉臂上的两个子马赫-曾德调制器(MZM1和MZM2)构成。外部电本振信号和射频信号分别经MZM1和MZM2加载到激光器输出的光波上。与在先技术[1]相比,该方案在一个集成器件中分别进行两次独立的强度调制,集成化的光波导缩短了分立器件间的传输间隔,减少了光纤耦合次数,降低了光信号在传输中的损耗,系统结构得到简化、有利于提升下变频增益。然而,该方案仍需外部的电本振信号源,并且MZM1和MZM2需要外部的直流偏置点控制装置,使其工作在载波抑制工作点,这些都增加了系统的复杂性。
在先技术[3](Zhenzhou Tang,Fangzheng Zhang,and Shilong Pan.“Photonic microwave downconverter based on an optoelectronic oscillator using a single dual-drive Mach-Zehnder modulator”,Optics Express,Vol.22,No.1,pp.305-310,Jan.2014)研究了基于单个集成的双驱动马赫-曾德调制器(DD-MZM)构成光电振荡器的光子微波下变频方案。该方案利用DD-MZM的一个射频输入端口、传输光纤、光电探测器和电滤波器构成光电振荡器,产生本振信号。天线接收的射频信号通过DD-MZM的另一个射频输入端口加载到激光器输出的光波上。射频信号和光电振荡器产生本振信号经第二个光电探测器拍频得到下变频的中频信号。该方案无需外部的电本振信号源,单个集成的DD-MZM实现了环路产生的本振信号与天线接收的射频信号的加载功能,简化了系统结构。然而该方案通过电滤波器来选择产生本振信号,本振信号频率难以进行灵活调谐,且光 电探测后射频信号也被恢复出来,无法实现完全的射频隔离。
发明内容
本发明提供一种光子微波下变频装置及方法,有效解决背景技术中微波下变频系统结构复杂、射频隔离度差、难以灵活调谐等问题。
本发明的技术方案:
一种光子微波下变频装置,包括波长可调激光器1、电光调制器2、光学窄带陷波滤波器3、光分路器4、第一光电探测器5、电合路器6、第二光电探测器7和电低通滤波器8;
所述的波长可调激光器1、电光调制器2、光学窄带陷波滤波器3、光分路器4和第一光电探测器5依次通过光纤连接;
所述的第一光电探测器5和电合路器6通过电缆连接;
所述的电光调制器2、光学窄带陷波滤波器3、光分路器4、第一光电探测器5、电合路器6依次连接构成振荡环路;
所述的光分路器4和第二光电探测器7通过光纤连接;
所述的第二光电探测器7和电低通滤波器8通过电缆连接。
所述的光分路器4与第一光电探测器5是单路光纤连接、双路光纤连接或是多路光纤连接。
所述的电光调制器2是具有相位调制功能的电光调制器。
所述的电光调制器2、光学窄带陷波滤波器3、光分路器4、第一光电探测器5、电合路器6依次连接构成的振荡环路,具有产生本振信号的功能,产生本振信号的频率f LO由波长可调激光器1的光波频率f C和光学窄带陷波滤波器3的陷波中心频率为f N决定,满足以下关系:
f LO=f C-f N                  (1)。
一种光子微波下变频方法,步骤如下:
波长可调激光器1输出频率为f C的光载波输入至电光调制器2的光输入端口,天线接收的射频信号f RF和由第一光电探测器5输出的环路返回微波本振信号经电合路器6输入至电光调制器2的射频输入端口,在电光调制器2中射频信号和本振信号调制到光载波上;电光调制器2输出相位调制光载微波信号;相位调制光载微波信号进入光学窄带陷波滤波器3;光学窄带陷波滤波器3滤除光载本振信号的右边带;光载微波信号经光分路器4分为两路,第一支路进入第一光电探测器5,第二支路进入第二光电探测器7;
光载微波信号经第一光电探测器5进行光电转换,光载本振信号的左边带与光载波拍频输出本振信号,本振信号的频率为f LO=f C-f N;光载射频信号的左右两个边带由于相位调制具有π相位差,因此光载射频信号的左右两个边带与光载波拍频后,相互抵消,无射频信号输出;第一光电探测器5输出的本振信号经电合路器6输入至电光调制器2的射频输入端口,从而本振信号在环路中往返循环振荡,产生低相位噪声、高品质的本振信号;本振信号的频率f LO可以通过改变波长可调激光器1输出光载波的频率f C进行调谐;
光分路器4分出的第二支路光载微波信号由第二光电探测器7进行光电转换,光载射频信号的左右两个边带由于相位调制具有π相位差,因此光载射频信号的左右两个边带与光载波拍频后,相互抵消,第二光电探测器7无射频信号输出,实现完全的射频隔离;
在第二光电探测器7中,光载本振信号的左边带与光载射频信号的左边带进行拍频,产生中频信号,中频信号的频率为:
f IF=f RF-f LO           (2);
光载本振信号的左边带与光载波拍频产生本振信号;第二光电探测器7输出的 中频信号和本振信号,经电低通滤波器8滤波后,滤除本振信号得到中频信号;下变频的中频信号频率f IF可以通过改变本振信号的频率f LO,即改变波长可调激光器1输出光载波的频率f C进行调节,实现可调谐的下变频功能。
本发明的有益效果:
(1)本发明光子微波下变频装置及方法,采用电光调制器、光学窄带陷波滤波器、光分路器、第一光电探测器、电合路器构成光电振荡环路,装置自身产生本振信号,无需外部本振源,而且产生本振信号的频率可以通过改变波长可调激光器输出光载波的频率进行灵活调节。
(2)本发明光子微波下变频装置及方法,采用具有相位调制功能的电光调制器,射频信号加载到光波上,在下变频的光电探测器输出端无射频信号输出,具有完全的射频隔离优势。
(3)本发明光子微波下变频装置及方法,根据应用需求,既能把不同频率的射频信号下变频至同一频率的中频信号,也能把同一射频信号下变频至不同频率的中频信号,具有灵活调控优势。
附图说明
图1是本发明光子微波下变频装置结构图。
图2是本发明实施例光子微波下变频装置系统框图。
图3是本发明实施例中的光学窄带陷波滤波器的滤波响应频谱图。
图4是本发明实施例中产生的不同频率本振信号的测试频谱图。
图5(a)是本发明实施例中产生的一定频率下的本振信号频谱,图5(b)是本发明实施例中产生的一定频率下的相位噪声测试结果。
图6(a)是本发明实施例中进入光学窄带陷波滤波器之前的光载微波信号频谱图,图6(b)是本发明实施例中进入光学窄带陷波滤波器之后的光载微波 信号频谱图。
图7是本发明实施例中不同频率的射频信号下变频至同一频率中频信号的测试频谱图。
图8是本发明实施例中同一频率射频信号下变频至不同频率的中频信号的测试频谱图。
图中:1波长可调激光器;2电光调制器;3光学窄带陷波滤波器;4光分路器;5第一光电探测器;6电合路器;7第二光电探测器;8电低通滤波器。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
图2是本发明实施例光子微波下变频装置系统框图,包括波长可调激光器、电光调制器、光学窄带陷波滤波器、光分路器、偏振分束器、光纤a、光纤b、偏振合束器、第一光电探测器、电合路器、第二光电探测器。
所述的波长可调激光器、电光调制器、光学窄带陷波滤波器、光分路器、偏振分束器、光纤a、光纤b、偏振合束器和第一光电探测器依次通过光纤连接。
所述的光纤a和光纤b长度不同;
所述的偏振分束器、光纤a、光纤b和偏振合束器构成双链路;
所述的光分路器与第一光电探测器是由偏振分束器、光纤a、光纤b和偏振合束器构成的双链路连接;
所述的电光调制器是电光相位调制器;
所述的第一光电探测器和电合路器通过电缆连接;
所述的光分路器和第二光电探测器通过光纤连接;
所述的电光调制器、光学窄带陷波滤波器、光分路器、偏振分束器、光纤 a、光纤b、偏振合束器、第一光电探测器、电合路器依次连接构成振荡环路,该振荡环路具有产生本振信号的功能。所述的偏振分束器、光纤a、光纤b和偏振合束器构成的双链路,用于抑制光电振荡产生的本振信号的边模,提升本振信号的稳定度。
图3是本发明实施例中的光学窄带陷波滤波器的滤波响应频谱图,在带通滤波响应带宽中间位置具有一个窄带陷波。振荡环路产生本振信号的频率f LO由波长可调激光器的光波频率f C和光学窄带陷波滤波器的陷波中心频率为f N决定,满足关系:f LO=f C-f N。通过改变波长可调激光器的光波频率f C,可以调节产生的本振信号的频率。图4给出了改变波长可调激光器的光波频率f C,产生不同频率本振信号的测试频谱图,可以看出该装置能够在3.5GHz至7GHz范围内产生可调的微波本振信号。图5(a)和(b)分别给出了产生的4.03GHz频率下本振信号的频谱和相位噪声测试结果,可以看出产生微波本振的功率为-14.1dBm,相位噪声为-107.9dBc/Hz@10kHz。以上结果表明该装置自身可以产生频率可调、高品质的微波本振信号,无需外部本振信号源。
光子微波下变频过程如下:
波长可调激光器输出频率为f C的光载波输入至电光调制器的光输入端口,天线接收的射频信号f RF和由第一光电探测器输出的环路返回微波本振经电合路器输入至电光调制器的射频输入端口,在电光调制器中射频信号和本振信号调制到光载波上,电光调制器输出相位调制光载微波信号。图6(a)和图6(b)分别是进入光学窄带陷波滤波器之前和之后的光载微波信号频谱图。对比图6(a)和图6(b)可以看出,光载本振的右边带被光学窄带陷波滤波器滤除。
光载微波信号经光分路器分为两路,第一支路进入由偏振分束器、光纤1、光纤2和偏振合束器构成的双环路,第二支路进入第二光电探测器。双环路输 出的光载微波信号经第一光电探测器进行光电转换,光载本振的左边带与光载波拍频输出本振信号,本振信号的频率为f LO=f C-f N;光载射频信号的左右两个边带由于相位调制具有π相位差,因此射频信号的左右两个边带与光载波拍频后,相互抵消,无射频信号输出。第一光电探测器输出的本振信号经电合路器输入至电光调制器的射频输入端口,作为光子微波下变频过程中所需的本振信号。
光分路器分出的第二支路光载微波信号由第二光电探测器进行光电转换,光载射频信号的左右两个边带由于相位调制具有π相位差,因此射频信号的左右两个边带与光载波拍频后,相互抵消,第二光电探测器无射频信号输出,实现完全的射频隔离。
在第二光电探测器中,本振信号的左边带与射频信号的左边带进行拍频,产生中频信号,本振信号的左边带与光载波拍频产生本振信号,第二光电探测器输出中频信号和本振信号。
下变频的中频信号频率f IF可以通过改变本振信号的频率f LO,即改变波长可调激光器输出光载波的频率f C进行调节。图7是频率分别为4.5GHz,5GHz,5.48GHz,6.06GHz,6.56GHz,6.9GHz,7.54GHz和7.94GHz的RF信号,下变频至同一频率(1GHz)中频信号的测试频谱图,从图7可以看出,测试频谱中无射频信号,实现了完全的射频隔离。图8是频率为8GHz的RF信号,下变频至1GHz,1.32GHz,1.94GHz,2.46GHz,2.96GHz和3.28GHz的中频信号的测试频谱图。以上结果表明该装置既能把不同频率的射频信号下变频至同一频率的中频信号,也能把同一射频信号下变频至不同频率的中频信号,实现了灵活可调的下变频功能。
以上内容是结合优选技术方案对本发明所做的进一步详细说明,不能认定 发明的具体实施仅限于这些说明。对本发明所属技术领域的普通技术人员来说,在不脱离本发明的构思的前提下,还可以做出简单的推演及替换,都应当视为本发明的保护范围。

Claims (6)

  1. 一种光子微波下变频装置,其特征在于,所述的光子微波下变频装置包括波长可调激光器(1)、电光调制器(2)、光学窄带陷波滤波器(3)、光分路器(4)、第一光电探测器(5)、电合路器(6)、第二光电探测器(7)和电低通滤波器(8);
    所述的波长可调激光器(1)、电光调制器(2)、光学窄带陷波滤波器(3)、光分路器(4)和第一光电探测器(5)依次通过光纤连接;
    所述的第一光电探测器(5)和电合路器(6)通过电缆连接;
    所述的电光调制器(2)、光学窄带陷波滤波器(3)、光分路器(4)、第一光电探测器(5)、电合路器(6)依次连接构成振荡环路;
    所述的光分路器(4)和第二光电探测器(7)通过光纤连接;
    所述的第二光电探测器(7)和电低通滤波器(8)通过电缆连接。
  2. 根据权利要求1所述的光子微波下变频装置,其特征在于,所述的电光调制器(2)、光学窄带陷波滤波器(3)、光分路器(4)、第一光电探测器(5)、电合路器(6)依次连接构成的振荡环路,具有产生本振信号的功能,产生本振信号的频率f LO由波长可调激光器(1)的光波频率f C和光学窄带陷波滤波器(3)的陷波中心频率为f N决定,满足以下关系:
    f LO=f C-f N              (1)。
  3. 根据权利要求1或2所述的光子微波下变频装置,其特征在于,所述的光分路器(4)与第一光电探测器(5)是单路光纤连接、双路光纤连接或是多路光纤连接。
  4. 根据权利要求1或2所述的光子微波下变频装置,其特征在于,所述的电光调制器(2)是具有相位调制功能的电光调制器。
  5. 根据权利要求3所述的光子微波下变频装置,其特征在于,所述的电光调制器(2)是具有相位调制功能的电光调制器。
  6. 一种光子微波下变频方法,其特征在于,步骤如下:
    波长可调激光器(1)输出频率为f C的光载波输入至电光调制器(2)的光输入端口,天线接收的射频信号f RF和由第一光电探测器(5)输出的环路返回微波本振信号经电合路器(6)输入至电光调制器(2)的射频输入端口,在电光调制器(2)中射频信号和本振信号调制到光载波上;电光调制器(2)输出相位调制光载微波信号;相位调制光载微波信号进入光学窄带陷波滤波器(3);光学窄带陷波滤波器(3)滤除光载本振信号的右边带;光载微波信号经光分路器(4)分为两路,第一支路进入第一光电探测器(5),第二支路进入第二光电探测器(7);
    光载微波信号经第一光电探测器(5)进行光电转换,光载本振信号的左边带与光载波拍频输出本振信号,本振信号的频率为f LO=f C-f N;光载射频信号的左右两个边带由于相位调制具有π相位差,因此光载射频信号的左右两个边带与光载波拍频后,相互抵消,无射频信号输出;第一光电探测器(5)输出的本振信号经电合路器(6)输入至电光调制器(2)的射频输入端口,从而本振信号在环路中往返循环振荡,产生低相位噪声、高品质的本振信号;本振信号的频率f LO可以通过改变波长可调激光器(1)输出光载波的频率f C进行调谐;
    光分路器(4)分出的第二支路光载微波信号由第二光电探测器(7)进行光电转换,光载射频信号的左右两个边带由于相位调制具有π相位差,因此光载射频信号的左右两个边带与光载波拍频后,相互抵消,第二光电探测器(7)无射频信号输出,实现完全的射频隔离;
    在第二光电探测器(7)中,光载本振信号的左边带与光载射频信号的左边带进行拍频,产生中频信号,中频信号的频率为:
    f IF=f RF-f LO               (2);
    光载本振信号的左边带与光载波拍频产生本振信号;第二光电探测器(7)输出的中频信号和本振信号,经电低通滤波器(8)滤波后,滤除本振信号得到中频 信号;下变频的中频信号频率f IF可通过改变本振信号的频率f LO,即改变波长可调激光器(1)输出光载波的频率f C进行调节,实现可调谐的下变频功能。
PCT/CN2018/071520 2017-12-04 2018-01-05 一种光子微波下变频装置及方法 WO2019109455A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/461,713 US10659162B2 (en) 2017-12-04 2018-01-05 Photonic microwave down-conversion system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711258210.0A CN107947864B (zh) 2017-12-04 2017-12-04 一种光子微波下变频装置及方法
CN201711258210.0 2017-12-04

Publications (1)

Publication Number Publication Date
WO2019109455A1 true WO2019109455A1 (zh) 2019-06-13

Family

ID=61948415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071520 WO2019109455A1 (zh) 2017-12-04 2018-01-05 一种光子微波下变频装置及方法

Country Status (3)

Country Link
US (1) US10659162B2 (zh)
CN (1) CN107947864B (zh)
WO (1) WO2019109455A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095087A (zh) * 2021-10-14 2022-02-25 中国人民解放军空军预警学院 一种基于光电振荡器的镜像抑制下变频接收系统及方法
CN114696205A (zh) * 2022-05-06 2022-07-01 天津大学 一种宽带平坦微波频率梳的生成方法
CN114978343A (zh) * 2022-05-18 2022-08-30 中国空间技术研究院 一种超外差光子射频接收系统
CN115208475A (zh) * 2022-06-06 2022-10-18 中国人民解放军空军预警学院 上下变频一体化的宽带射频前端系统和射频信号收发方法
CN116155391A (zh) * 2022-12-01 2023-05-23 中国电子科技集团公司第三十八研究所 一种带宽和中心频率可调的微波光子滤波系统
CN114978343B (zh) * 2022-05-18 2024-05-31 中国空间技术研究院 一种超外差光子射频接收系统

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194410B (zh) * 2018-07-05 2020-08-11 浙江大学 一种基于光电振荡器的射频信号感知装置
CN109714068B (zh) * 2019-01-16 2020-09-01 湖南科技大学 一种基于光处理技术的紧凑型宽带信道化接收机
CN109831258B (zh) * 2019-02-14 2020-03-31 浙江大学 一种具有镜频抑制功能的光子射频接收机
US11942995B2 (en) * 2019-04-24 2024-03-26 Instituto Tecnológico de Aeronáutica—ITA Up/down photonic frequency converter for incoming radio frequency (RF) signals built into the optoelectronic oscillator (OEO)
CN110265854B (zh) * 2019-06-18 2020-07-10 中国人民解放军国防科技大学 一种基于高能脉冲簇激光的光导自适应窄谱微波产生方法
CN112448771B (zh) * 2019-09-05 2022-02-11 北京华航无线电测量研究所 一种微波光子宽带接收机
CN111458908A (zh) * 2020-04-09 2020-07-28 联合微电子中心有限责任公司 基于铌酸锂单晶薄膜的微环电光调制器及使用方法和应用
CN111965917B (zh) * 2020-08-17 2022-09-23 广东工业大学 一种基于非线性光学传输线的微波上变频器及其实现方法
CN114389707B (zh) * 2020-10-16 2024-01-26 西安电子科技大学 一种频率可灵活选择的多波段线性调频信号生成方法
CN113162693B (zh) * 2021-01-08 2022-10-11 北京工业大学 一种射频自干扰消除的全双工通信系统及方法
CN113098608B (zh) * 2021-02-22 2022-06-03 北京邮电大学 一种无线电信号上变频设备
CN113193916B (zh) * 2021-05-07 2022-05-13 大连理工大学 一种微波多波束光学接收解调系统及其使用方法
CN113452452B (zh) * 2021-06-24 2022-09-20 中国舰船研究设计中心 一种基于载波抑制的宽带高灵敏度毫米波接收系统
CN113810111B (zh) * 2021-07-28 2023-03-24 中国人民解放军空军工程大学 光学镜像干扰、自干扰抑制及光纤传输一体化装置及方法
CN113691321B (zh) * 2021-08-25 2022-06-07 湖南工学院 低功率微波信号一体化处理方法与一体化接收机
CN113965271B (zh) * 2021-11-02 2023-02-03 中国人民解放军空军预警学院 基于微波光子技术的振荡器实现系统
CN114401060B (zh) * 2022-01-27 2023-02-21 中国科学院半导体研究所 一种光电融合的变频系统
CN114679188B (zh) * 2022-01-27 2022-12-06 中国科学院半导体研究所 一种复用变频系统
CN114614903B (zh) * 2022-03-29 2023-12-15 中国科学院半导体研究所 一种光子信号发生器和发生方法
CN115021828B (zh) * 2022-05-27 2024-02-09 清华大学 微波光子接收装置和信号调制方法
CN115333629B (zh) * 2022-06-28 2023-06-30 中国电子科技集团公司第三十八研究所 微波光子变频装置及方法
CN115225154B (zh) * 2022-07-19 2023-07-21 中国电子科技集团公司第四十四研究所 光子集成芯片及超宽带射频光子收发装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303506A (zh) * 2008-06-26 2008-11-12 上海交通大学 基于硅基环形谐振腔的光微分器
CN103684618A (zh) * 2013-11-19 2014-03-26 南京航空航天大学 一种微波光子接收方法及装置
WO2015132772A2 (en) * 2014-03-07 2015-09-11 Elettronica S.P.A. Photonic-assisted rf spectrum scanner for ultra-wide band receivers
US9680576B1 (en) * 2016-05-13 2017-06-13 Harris Corporation Photonic frequency converting transceiver and related methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245833B1 (en) * 2002-11-15 2007-07-17 Itt Manufacturing Enterprises, Inc. Photonic channelized RF receiver employing dense wavelength division multiplexing
US7627253B1 (en) * 2006-06-28 2009-12-01 Hrl Laboratories, Llc RF-photonic transversal filter method and apparatus
CN102882472B (zh) * 2012-08-31 2014-12-10 南京航空航天大学 一种光子型频率下转换装置及方法
US9470913B2 (en) * 2013-07-01 2016-10-18 The Boeing Company Integrated photonic frequency converter and mixer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303506A (zh) * 2008-06-26 2008-11-12 上海交通大学 基于硅基环形谐振腔的光微分器
CN103684618A (zh) * 2013-11-19 2014-03-26 南京航空航天大学 一种微波光子接收方法及装置
WO2015132772A2 (en) * 2014-03-07 2015-09-11 Elettronica S.P.A. Photonic-assisted rf spectrum scanner for ultra-wide band receivers
US9680576B1 (en) * 2016-05-13 2017-06-13 Harris Corporation Photonic frequency converting transceiver and related methods

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095087A (zh) * 2021-10-14 2022-02-25 中国人民解放军空军预警学院 一种基于光电振荡器的镜像抑制下变频接收系统及方法
CN114095087B (zh) * 2021-10-14 2023-01-31 中国人民解放军空军预警学院 一种基于光电振荡器的镜像抑制下变频接收系统及方法
CN114696205A (zh) * 2022-05-06 2022-07-01 天津大学 一种宽带平坦微波频率梳的生成方法
CN114978343A (zh) * 2022-05-18 2022-08-30 中国空间技术研究院 一种超外差光子射频接收系统
CN114978343B (zh) * 2022-05-18 2024-05-31 中国空间技术研究院 一种超外差光子射频接收系统
CN115208475A (zh) * 2022-06-06 2022-10-18 中国人民解放军空军预警学院 上下变频一体化的宽带射频前端系统和射频信号收发方法
CN115208475B (zh) * 2022-06-06 2023-09-08 中国人民解放军空军预警学院 上下变频一体化的宽带射频前端系统和射频信号收发方法
CN116155391A (zh) * 2022-12-01 2023-05-23 中国电子科技集团公司第三十八研究所 一种带宽和中心频率可调的微波光子滤波系统
CN116155391B (zh) * 2022-12-01 2024-04-09 中国电子科技集团公司第三十八研究所 一种带宽和中心频率可调的微波光子滤波系统

Also Published As

Publication number Publication date
US10659162B2 (en) 2020-05-19
CN107947864B (zh) 2020-02-18
CN107947864A (zh) 2018-04-20
US20200112370A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
WO2019109455A1 (zh) 一种光子微波下变频装置及方法
US10784967B2 (en) Photonic radio-frequency receiver with mirror frequency suppression function
Zhu et al. Tunable frequency-quadrupling dual-loop optoelectronic oscillator
CN104022830B (zh) 利用马赫‑曾德尔调制器产生八倍频毫米波的装置
CN111064522B (zh) 基于级联马赫-曾德尔调制器产生16倍频毫米波的方法和系统
Li et al. High-efficiency photonic microwave downconversion with full-frequency-range coverage
CN102882472A (zh) 一种光子型频率下转换装置及方法
Zhu et al. Frequency-quadrupling optoelectronic oscillator for multichannel upconversion
Li et al. A microwave photonic mixer using a frequency-doubled local oscillator
Li et al. A widely and continuously tunable frequency doubling optoelectronic oscillator
CN112448771A (zh) 一种微波光子宽带接收机
Lin et al. Photonic microwave multi-band frequency conversion based on a DP-QPSK modulator for satellite communication
CN115037379B (zh) 基于硅基微环调制器的光子rf倍频芯片及其控制方法
CN115037380B (zh) 幅度相位可调的集成微波光子混频器芯片及其控制方法
CN116527151A (zh) 一种本振信号自产生的宽带可调谐微波光子变频系统
CN114204997B (zh) 一种32倍频毫米波信号的光学产生方法与装置
CN115865211A (zh) 基于光注入锁定的微波移频方法及装置
Hasanuzzaman et al. Cascaded microwave photonic filters for side mode suppression in a tunable optoelectronic oscillator applied to THz signal generation & transmission
Muthu et al. Frequency quadrupling with improved OSSR and RFSSR for radio over fiber applications
Chen et al. An optically tunable frequency-multiplying optoelectronic oscillator through equivalent phase modulation
US11942995B2 (en) Up/down photonic frequency converter for incoming radio frequency (RF) signals built into the optoelectronic oscillator (OEO)
Pantano et al. SILPLL based forced opto-electronic oscillator using a phase modulator in a Sagnac loop
Zeng et al. Photonic-Assisted Broadband Microwave Receiver with Cross-Channel Interference Suppression
CN115208475B (zh) 上下变频一体化的宽带射频前端系统和射频信号收发方法
CN113794087B (zh) 一种基于pt对称结合高q谐振器实现可调谐的光电振荡器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886893

Country of ref document: EP

Kind code of ref document: A1