WO2019109344A1 - Flexible cyclic delay diversity control in v2x scenarios - Google Patents

Flexible cyclic delay diversity control in v2x scenarios Download PDF

Info

Publication number
WO2019109344A1
WO2019109344A1 PCT/CN2017/115260 CN2017115260W WO2019109344A1 WO 2019109344 A1 WO2019109344 A1 WO 2019109344A1 CN 2017115260 W CN2017115260 W CN 2017115260W WO 2019109344 A1 WO2019109344 A1 WO 2019109344A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
sidelink transmission
cyclic delay
delay diversity
diversity
Prior art date
Application number
PCT/CN2017/115260
Other languages
French (fr)
Inventor
Dong Li
Yong Liu
Torsten WILDSCHEK
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2017/115260 priority Critical patent/WO2019109344A1/en
Priority to CN201780097538.0A priority patent/CN111630799B/en
Publication of WO2019109344A1 publication Critical patent/WO2019109344A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the present invention relates to flexible cyclic delay diversity (CDD) control in vehicle-to-X (V2X) scenarios. More specifically, the present invention exemplarily relates to measures (including methods, apparatuses and computer program products) for realizing flexible cyclic delay diversity control in V2X scenarios.
  • CDD flexible cyclic delay diversity
  • the present specification generally relates to transmit diversity schemes for V2X.
  • SD-CDD small-delay cyclic delay diversity
  • PSSCH Physical Sidelink Shared Channel
  • SC-SFBC Single Carrier Space Frequency Block Coding
  • STBC Single Carrier Space Time Block Coding
  • a single transmit antenna transmission mode is used.
  • SD-CDD is specified only for downlink transmission.
  • the basic principle of CDD is to transmit the same set of Orthogonal Frequency-Division Multiplexing (OFDM) symbols on the same set of subcarriers with different cyclic delay on each antenna before adding the cyclic prefix.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • a method comprising determining at least one participant in a vehicle-to-X sidelink transmission, deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and transmitting information indicative of said cyclic delay diversity setting.
  • a method comprising receiving information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and adapting a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
  • an apparatus comprising at least one processor, at least one memory including computer program code, and at least one interface configured for communication with at least another apparatus, the at least one processor, with the at least one memory and the computer program code, being configured to cause the apparatus to perform determining at least one participant in a vehicle-to-X sidelink transmission, deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and transmitting information indicative of said cyclic delay diversity setting.
  • an apparatus comprising at least one processor, at least one memory including computer program code, and at least one interface configured for communication with at least another apparatus, the at least one processor, with the at least one memory and the computer program code, being configured to cause the apparatus to perform receiving information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and adapting a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
  • an apparatus comprising determining circuitry configured to determine at least one participant in a vehicle-to-X sidelink transmission, deciding circuitry configured to decide on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and transmitting circuitry configured to transmit information indicative of said cyclic delay diversity setting.
  • an apparatus comprising receiving circuitry configured to receive information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and adapting circuitry configured to adapt a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
  • a computer program product comprising computer-executable computer program code which, when the program is run on a computer (e.g. a computer of an apparatus according to any one of the aforementioned apparatus-related exemplary aspects of the present invention) , is configured to cause the computer to carry out the method according to any one of the aforementioned method-related exemplary aspects of the present invention.
  • a computer e.g. a computer of an apparatus according to any one of the aforementioned apparatus-related exemplary aspects of the present invention
  • Such computer program product may comprise (or be embodied) a (tangible) computer-readable (storage) medium or the like on which the computer-executable computer program code is stored, and/or the program may be directly loadable into an internal memory of the computer or a processor thereof.
  • Any one of the above aspects enables an efficient SD-CDD control for a V2X data channel to thereby guarantee improved performance and backward compatibility and to thereby solve at least part of the problems and drawbacks identified in relation to the prior art.
  • Figure 1 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention
  • FIG. 2 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention
  • FIG. 3 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention.
  • Figure 4 is a schematic diagram of a procedure according to exemplary embodiments of the present invention.
  • Figure 5 is a schematic diagram of a procedure according to exemplary embodiments of the present invention.
  • Figure 6 shows a diagram of results of example simulations of V2X links
  • Figure 7 shows a diagram of results of example simulations of V2X links
  • Figure 8 is a block diagram alternatively illustrating apparatuses according to exemplary embodiments of the present invention.
  • the following description of the present invention and its embodiments mainly refers to specifications being used as non-limiting examples for certain exemplary network configurations and deployments. Namely, the present invention and its embodiments are mainly described in relation to 3GPP specifications in relation to V2X being used as non-limiting examples for certain exemplary network configurations and deployments. As such, the description of exemplary embodiments given herein specifically refers to terminology, which is directly related thereto. Such terminology is only used in the context of the presented non-limiting examples, and does naturally not limit the invention in any way. Rather, any other communication or communication related system deployment, etc. may also be utilized as long as compliant with the features described herein.
  • SD-CDD relevant information are indicated through a V2X control channel.
  • a signaling mechanism through the V2X control channel is provided to enable SD-CDD for V2X data channel in order to guarantee improved performance and backward compatibility.
  • Figure 1 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention.
  • the apparatus may be V2X control entity 10 comprising a determining circuitry 11, a deciding circuitry 12, and a transmitting circuitry 13.
  • the determining circuitry 11 determines at least one participant in a vehicle-to-X sidelink transmission.
  • the deciding circuitry 12 decides on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant.
  • the transmitting circuitry 13 transmits information indicative of said cyclic delay diversity setting.
  • Figure 4 is a schematic diagram of a procedure according to exemplary embodiments of the present invention.
  • the apparatus according to Figure 1 may perform the method of Figure 4 but is not limited to this method.
  • the method of Figure 4 may be performed by the apparatus of Figure 1 but is not limited to being performed by this apparatus.
  • a procedure comprises an operation of determining (S41) at least one participant in a vehicle-to-X sidelink transmission, an operation of deciding (S42) on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and an operation of transmitting (S43) information indicative of said cyclic delay diversity setting.
  • At least some of the functionalities of the apparatus shown in Figure 1 may be shared between two physically separate devices forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes.
  • said cyclic delay diversity setting comprises a cyclic delay diversity delay value for said vehicle-to-X sidelink transmission.
  • said cyclic delay diversity setting influences a detection algorithm utilized for said vehicle-to-X sidelink transmission.
  • said information being expressed by at least one bit, wherein one state of said at least one bit indicates that no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission.
  • said information being expressed by a one-bit field comprising said at least one bit, wherein the other state of said at least one bit indicates that a predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission.
  • the other state of said at least one bit indicates that said predetermined cyclic delay diversity delay value is to be selected from a predetermined cyclic delay diversity delay value set based on a data transmission bandwidth of said vehicle-to-X sidelink transmission.
  • said information being expressed by a multiple-bit field
  • one state of said multiple-bit field indicates that no cyclic diversity delay is decided for said vehicle-to-X sidelink transmission
  • each of the other states of said multiple-bit field respectively indicates that a respective predetermined cyclic delay diversity delay value out of a predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission
  • said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
  • said deciding is further based on at least one of a data transmission bandwidth of said vehicle-to-X sidelink transmission and an application scenario of said vehicle-to-X sidelink transmission.
  • said cyclic delay diversity setting is a small delay cyclic delay diversity setting.
  • said vehicle-to-X sidelink transmission is a vehicle-to-vehicle transmission.
  • said vehicle-to-X sidelink transmission is a transmission via a vehicle-to-X data channel.
  • said at least one participant comprises a target receiver of said vehicle-to-X sidelink transmission.
  • the V2X control entity may be an entity that is responsible for control/setting of V2X transmission parameters.
  • the V2X control entity may be located at a base station (e.g. in LTE V2X mode 3) or may be located at a V2X transmitter UE (e.g. in LTE V2X mode 4) .
  • the base station may control the CDD setting information and may indicate the information to a V2X transmitter UE.
  • the V2X transmitter UE may then convey this information in its control channel to its receivers to aid the receiver to detect the associated data transmission.
  • LTE V2X mode 4 the V2X transmitter UE may autonomously set the CDD setting information and indicate the CDD setting information to its receivers in the control channel.
  • FIG 2 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention.
  • the apparatus may be V2X user entity 20 comprising a receiving circuitry 21, and an adapting circuitry 22.
  • the receiving circuitry 21 receives information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission.
  • the adapting circuitry 22 adapts a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
  • Figure 5 is a schematic diagram of a procedure according to exemplary embodiments of the present invention.
  • the apparatus according to Figure 2 may perform the method of Figure 5 but is not limited to this method.
  • the method of Figure 5 may be performed by the apparatus of Figure 2 but is not limited to being performed by this apparatus.
  • a procedure according to exemplary embodiments of the present invention comprises an operation of receiving (S51) information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and an operation of adapting (S52) a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
  • Figure 3 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention.
  • Figure 3 illustrates a variation of the apparatus shown in Figure 2.
  • the apparatus according to Figure 3 may thus further comprise deriving circuitry 31.
  • At least some of the functionalities of the apparatus shown in Figure 2 may be shared between two physically separate devices forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes.
  • said cyclic delay diversity setting comprises a cyclic delay diversity delay value for said vehicle-to-X sidelink transmission.
  • said information being expressed by at least one bit, wherein one state of said at least one bit indicates that no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, and, if no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to a cyclic delay diversity delay value of Zero.
  • said information being expressed by a one-bit field comprising said at least one bit, wherein the other state of said at least one bit indicates that a predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission
  • said method may comprise an operation of deriving, if said predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, said predetermined cyclic delay diversity delay value from a configuration storage.
  • said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to said predetermined cyclic delay diversity delay value.
  • said configuration storage comprises a predetermined cyclic delay diversity delay value set assigning a plurality of predetermined cyclic delay diversity delay values to a respective predetermined plurality of transmission bandwidths or transmission bandwidth ranges, and said predetermined cyclic delay diversity delay value is derived by selection from said predetermined cyclic delay diversity delay value set based on a data transmission bandwidth of said vehicle-to-X sidelink transmission.
  • said information being expressed by a multiple-bit field
  • one state of said multiple-bit field indicates that no cyclic diversity delay is decided for said vehicle-to-X sidelink transmission
  • each of the other states of said multiple-bit field respectively indicates that a respective predetermined cyclic delay diversity delay value out of a predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission.
  • said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
  • said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to a cyclic delay diversity delay value of Zero
  • a configuration storage comprises said predetermined cyclic delay diversity delay value set assigning a plurality of predetermined cyclic delay diversity delay values respectively to a state of said multi-bit field
  • said method may comprise an operation of deriving, if said predetermined cyclic delay diversity delay value out of said predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission, said predetermined cyclic delay diversity delay value from said configuration storage based on said state of said multi-bit field.
  • said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to said predetermined cyclic delay diversity delay value.
  • said cyclic delay diversity setting is a small delay cyclic delay diversity setting.
  • said vehicle-to-X sidelink transmission is a vehicle-to-vehicle transmission.
  • said vehicle-to-X sidelink transmission is a transmission via a vehicle-to-X data channel.
  • the apparatus i.e. V2X user entity 20 may be a target receiver of said vehicle-to-X sidelink transmission
  • the V2X control channel dynamically indicates the SD-CDD relevant information on its associated V2X data channel.
  • the flexible signaling mechanism according to the explained options for implementing exemplary embodiments of the present invention enables a good tradeoff between CDD diversity gains and backward compatibility.
  • CDD could be turned off (with the first or second signaling option) or the SD-CDD delay value could be set to Zero or very small value (with the third signaling option) .
  • link simulations as shown in Figures 6 and 7 showed that a relatively large CDD delay value (e.g., 1 ⁇ s or even 2 ⁇ s) may negatively impact the detection performance for legacy UEs, since the legacy UEs are unaware of the used SD-CDD.
  • Figure 6 illustrates simulation results for 30 km/h (with QPSK+1/2TC over 20 PRBs)
  • Figure 7 illustrates simulation results for 280 km/h (with QPSK+1/2TC over 20 PRBs) .
  • legacy UEs are unaware of SD-CDD while new (non-legacy) UEs are aware of the SD-CDD and optimize detection operations with the notified SD-CDD delay value.
  • the dynamic indication information carried by V2X control channel is just the binary CDD-on or CDD-off information. If it indicates that SD-CDD is (to be) used for V2X data channel, according to the first option, the SD-CDD delay value is determined as follows.
  • a single small delay value is explicitly specified in the system specification. This is valid for all the V2X data channel transmissions with various transmission bandwidths (BW) . While the single small delay value may be explicitly specified in the system specification, alternatively, the single small delay value may be semi-statically configured (or preconfigured) by the cellular network via e.g. higher layer signaling. In either way, the single small delay value is well known to both the V2X transmitter UE and the receiver UEs.
  • the single SD-CDD delay value is fixed to 1 ⁇ s and is explicitly specified in the system specification (see above for further variants) .
  • a field with one bit is defined to indicate whether the SD-CDD is used, e.g.,
  • the associated V2X control will set the field of SD-CDD indicator to 1.
  • a new UE detects the V2X control channel and finds that SD-CDD indicator field is set to 1, then it knows that SD-CDD with delay of 1 ⁇ s is used for the V2X data channel and thus applies an optimized detection algorithm to detect the V2X data.
  • the UE may use two separate Demodulation Reference Signal (DMRS) waveforms (here the second DMRS waveform is the SD-CDD delayed version of the first DMRS waveform) to make correlation operations and then combine the two correlation results to get timing synchronization results and frequency synchronization results.
  • DMRS Demodulation Reference Signal
  • the associated V2X control will set the field of SD-CDD indicator to 0. In this way, the detection performance of the legacy UE will not degrade and the new UEs know that SD-CDD is not applied and appropriate receiving operations (same as legacy UEs) may be performed.
  • the dynamic indication information carried by the V2X control channel is just the binary CDD-on or CDD-off information. If it indicates that SD-CDD is (to be) used for the V2X data channel, according to the second option, the SD-CDD delay value is determined as follows.
  • a table of transmission bandwidth dependent SD-CDD delay values is explicitly specified in the system specification. While the table of transmission bandwidth dependent SD-CDD delay values may be explicitly specified in the system specification, alternatively, the table of transmission bandwidth dependent SD-CDD delay values may be semi-statically configured (or preconfigured) by the cellular network via e.g. higher layer signaling. In either way, the table of transmission bandwidth dependent SD-CDD delay values is well known to both the V2X transmitter UE and the receiver UEs.
  • the determination according to the present second option method is more flexible than the first option above since according to the present second option, multiple SD-CDD delay values are allowable depending on the transmission bandwidth of the V2X data channel.
  • the rationale of the present second option is that the use of the SD-CDD is to introduce additional frequency selectivity to get frequency diversity gains, thus in principle the narrower the transmission bandwidth is, the larger the small delay value is required, if similar amount of diversity gain is desired.
  • a field with one bit is defined to indicate whether the SD-CDD is (to be) used similar to the discussion in relation to the first option above.
  • the associated V2X control will set the field of SD-CDD indicator to 1.
  • the SD-CDD delay value will be determined according to the V2X data transmission bandwidth, e.g., if the V2X data is transmitted over 20 PRBs (PRB: physical resource block) , then the SD-CDD with delay value of 1 ⁇ s will be used.
  • the new UE receivers For the new UE receivers, it firstly decodes the V2X control channel and finds the SD-CDD indicator field is set to 1 and also knows that the associated data transmission is over 20 PRBs, then it will know that the SD-CDD delay value is 1 ⁇ s and may then take this information into account to make optimized receiving operations as already discussed in relation to the first option above.
  • the dynamic information carried by the V2X control channel indicates the SD-CDD delay value used by the V2X data channel.
  • a set of multiple SD-CDD delay values is pre-defined and the dynamic information may indicate the index of the used small delay value.
  • the set of multiple SD-CDD delay values may be explicitly specified in the system specification, alternatively, the set of multiple SD-CDD delay values may be semi-statically configured (or preconfigured) by the cellular network via e.g. higher layer signaling. In either way, the set of multiple SD-CDD delay values is well known to both the V2X transmitter UE and the receiver UEs.
  • a ′′0′′ (Zero) value may be defined in the delay value set which indicates that SD-CDD is not (to be) used for the V2X data channel or is (to be) used with the delay of Zero (this two cases are equivalent in essence) .
  • a delay value set is predefined in the system specification, which includes multiple SD-CDD delay values.
  • SD-CDD delay value set ⁇ 0, 0.5us, 1us, 2us ⁇ .
  • a field with two bits is defined to indicate which SD-CDD delay value is used, e.g.,
  • the associated V2X control may set the field of SD-CDD appropriately taking some factors into account e.g. transmission bandwidth and even application scenarios.
  • a relatively large SD-CDD delay value may be configured, e.g., SD-CDD indicator may be set to ′′11′′ .
  • SD-CDD indicator may be set to ′′11′′ .
  • the new UE receivers they firstly decode the V2X control channel and find that the SD-CDD indicator field is set to ′′11′′ and thus know that the SD-CDD is used with delay of 2 ⁇ s.
  • the new UE can make optimized receiving operations to decode the V2X data as described in relation to the first option above.
  • the network entity may comprise further units that are necessary for its respective operation. However, a description of these units is omitted in this specification.
  • the arrangement of the functional blocks of the devices is not construed to limit the invention, and the functions may be performed by one block or further split into sub-blocks.
  • the apparatus i.e. network entity (or some other means) is configured to perform some function
  • this is to be construed to be equivalent to a description stating that a (i.e. at least one) processor or corresponding circuitry, potentially in cooperation with computer program code stored in the memory of the respective apparatus, is configured to cause the apparatus to perform at least the thus mentioned function.
  • a (i.e. at least one) processor or corresponding circuitry potentially in cooperation with computer program code stored in the memory of the respective apparatus, is configured to cause the apparatus to perform at least the thus mentioned function.
  • such function is to be construed to be equivalently implementable by specifically configured circuitry or means for performing the respective function (i.e. the expression ′′unit configured to′′ is construed to be equivalent to an expression such as ′′means for′′ ) .
  • the apparatus e.g. V2X control entity 10′ (corresponding to the V2X control entity 10) comprises a processor 81, a memory 82 and an interface 83, which are connected by a bus 84 or the like.
  • the apparatus e.g. V2X user entity 20′ (corresponding to the V2X user entity 20) comprises a processor 85, a memory 86 and an interface 87, which are connected by a bus 88 or the like, and the apparatuses may be connected via link 89, respectively.
  • the processor 81/85 and/or the interface 83/87 may also include a modem or the like to facilitate communication over a (hardwire or wireless) link, respectively.
  • the interface 83/87 may include a suitable transceiver coupled to one or more antennas or communication means for (hardwire or wireless) communications with the linked or connected device (s) , respectively.
  • the interface 83/87 is generally configured to communicate with at least one other apparatus, i.e. the interface thereof.
  • the memory 82/86 may store respective programs assumed to include program instructions or computer program code that, when executed by the respective processor, enables the respective electronic device or apparatus to operate in accordance with the exemplary embodiments of the present invention.
  • the respective devices/apparatuses may represent means for performing respective operations and/or exhibiting respective functionalities, and/or the respective devices (and/or parts thereof) may have functions for performing respective operations and/or exhibiting respective functionalities.
  • the processor (or some other means) is configured to perform some function
  • this is to be construed to be equivalent to a description stating that at least one processor, potentially in cooperation with computer program code stored in the memory of the respective apparatus, is configured to cause the apparatus to perform at least the thus mentioned function.
  • function is to be construed to be equivalently implementable by specifically configured means for performing the respective function (i.e. the expression ′′processor configured to [cause the apparatus to] perform xxx-ing′′ is construed to be equivalent to an expression such as ′′means for xxx-ing′′ ) .
  • an apparatus representing the V2X control entity 10 comprises at least one processor 81, at least one memory 82 including computer program code, and at least one interface 83 configured for communication with at least another apparatus.
  • the processor i.e. the at least one processor 81, with the at least one memory 82 and the computer program code
  • the processor is configured to perform determining at least one participant in a vehicle-to-X sidelink transmission (thus the apparatus comprising corresponding means for determining) , to perform deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant (thus the apparatus comprising corresponding means for deciding) , and to perform transmitting information indicative of said cyclic delay diversity setting (thus the apparatus comprising corresponding means for transmitting) .
  • an apparatus representing the V2X user entity 20 comprises at least one processor 85, at least one memory 86 including computer program code, and at least one interface 87 configured for communication with at least another apparatus.
  • the processor i.e. the at least one processor 85, with the at least one memory 86 and the computer program code
  • the processor is configured to perform receiving information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission (thus the apparatus comprising corresponding means for receiving) , and to perform adapting a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting (thus the apparatus comprising corresponding means for adapting) .
  • method steps likely to be implemented as software code portions and being run using a processor at a network server or network entity are software code independent and can be specified using any known or future developed programming language as long as the functionality defined by the method steps is preserved;
  • any method step is suitable to be implemented as software or by hardware without changing the idea of the embodiments and its modification in terms of the functionality implemented;
  • CMOS Complementary MOS
  • BiMOS Bipolar MOS
  • BiCMOS Bipolar CMOS
  • ECL emitter Coupled Logic
  • TTL Transistor-Transistor Logic
  • ASIC Application Specific IC
  • FPGA Field-programmable Gate Arrays
  • CPLD Complex Programmable Logic Device
  • DSP Digital Signal Processor
  • -devices, units or means can be implemented as individual devices, units or means, but this does not exclude that they are implemented in a distributed fashion throughout the system, as long as the functionality of the device, unit or means is preserved;
  • an apparatus like the user equipment and the network entity /network register may be represented by a semiconductor chip, a chipset, or a (hardware) module comprising such chip or chipset; this, however, does not exclude the possibility that a functionality of an apparatus or module, instead of being hardware implemented, be implemented as software in a (software) module such as a computer program or a computer program product comprising executable software code portions for execution/being run on a processor;
  • -a device may be regarded as an apparatus or as an assembly of more than one apparatus, whether functionally in cooperation with each other or functionally independently of each other but in a same device housing, for example.
  • respective functional blocks or elements according to above-described aspects can be implemented by any known means, either in hardware and/or software, respectively, if it is only adapted to perform the described functions of the respective parts.
  • the mentioned method steps can be realized in individual functional blocks or by individual devices, or one or more of the method steps can be realized in a single functional block or by a single device.
  • any method step is suitable to be implemented as software or by hardware without changing the idea of the present invention.
  • Devices and means can be implemented as individual devices, but this does not exclude that they are implemented in a distributed fashion throughout the system, as long as the functionality of the device is preserved. Such and similar principles are to be considered as known to a skilled person.
  • Software in the sense of the present description comprises software code as such comprising code means or portions or a computer program or a computer program product for performing the respective functions, as well as software (or a computer program or a computer program product) embodied on a tangible medium such as a computer-readable (storage) medium having stored thereon a respective data structure or code means/portions or embodied in a signal or in a chip, potentially during processing thereof.
  • the present invention also covers any conceivable combination of method steps and operations described above, and any conceivable combination of nodes, apparatuses, modules or elements described above, as long as the above-described concepts of methodology and structural arrangement are applicable.
  • Such measures exemplarily comprise determining at least one participant in a vehicle-to-X sidelink transmission, deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and transmitting information indicative of said cyclic delay diversity setting.

Abstract

There are provided measures for flexible cyclic delay diversity control in V2X scenarios. Such measures exemplarily comprise determining at least one participant in a vehicle-to-X sidelink transmission, deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and transmitting information indicative of said cyclic delay diversity setting.

Description

FLEXIBLE CYCLIC DELAY DIVERSITY CONTROL IN V2X SCENARIOS Field
The present invention relates to flexible cyclic delay diversity (CDD) control in vehicle-to-X (V2X) scenarios. More specifically, the present invention exemplarily relates to measures (including methods, apparatuses and computer program products) for realizing flexible cyclic delay diversity control in V2X scenarios.
Background
The present specification generally relates to transmit diversity schemes for V2X.
There are attempts to use a small-delay cyclic delay diversity (SD-CDD) transmit diversity scheme for the V2X control channel (Physical Sidelink Control Channel (PSCCH) ) . Further, there are attempts to use a (transparent) small-delay cyclic delay diversity (SD-CDD) transmit diversity scheme for the V2X data channel (Physical Sidelink Shared Channel (PSSCH) ) as well rather than non-transparent schemes (e.g. Single Carrier Space Frequency Block Coding (SC-SFBC) /Single Carrier Space Time Block Coding (STBC) ) , especially in interference-limited scenarios.
In any case, a detailed SD-CDD implementation scheme is needed, which also ensures backward compatibility for legacy UEs.
According to present Rel-14 V2X definition, a single transmit antenna transmission mode is used. Further, presently, SD-CDD is specified only for downlink transmission. The basic principle of CDD is to transmit the same set of Orthogonal Frequency-Division Multiplexing (OFDM) symbols on the same set of subcarriers with different cyclic delay on each antenna before  adding the cyclic prefix. However, specifications/definitions to use SD-CDD for sidelink transmission is missing.
Hence, there is a need to provide for a detailed SD-CDD implementation scheme to enable flexible cyclic delay diversity control in V2X scenarios.
Summary
Various exemplary embodiments of the present invention aim at addressing at least part of the above issues and/or problems and drawbacks.
Various aspects of exemplary embodiments of the present invention are set out in the appended claims.
According to an exemplary aspect of the present invention, there is provided a method comprising determining at least one participant in a vehicle-to-X sidelink transmission, deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and transmitting information indicative of said cyclic delay diversity setting.
According to an exemplary aspect of the present invention, there is provided a method comprising receiving information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and adapting a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
According to an exemplary aspect of the present invention, there is provided an apparatus comprising at least one processor, at least one memory including computer program code, and at least one interface configured for communication with at least another apparatus, the at least one processor, with the at least one memory and the computer program code, being configured to cause the apparatus to perform determining at  least one participant in a vehicle-to-X sidelink transmission, deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and transmitting information indicative of said cyclic delay diversity setting.
According to an exemplary aspect of the present invention, there is provided an apparatus comprising at least one processor, at least one memory including computer program code, and at least one interface configured for communication with at least another apparatus, the at least one processor, with the at least one memory and the computer program code, being configured to cause the apparatus to perform receiving information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and adapting a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
According to an exemplary aspect of the present invention, there is provided an apparatus comprising determining circuitry configured to determine at least one participant in a vehicle-to-X sidelink transmission, deciding circuitry configured to decide on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and transmitting circuitry configured to transmit information indicative of said cyclic delay diversity setting.
According to an exemplary aspect of the present invention, there is provided an apparatus comprising receiving circuitry configured to receive information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and adapting circuitry configured to adapt a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
According to an exemplary aspect of the present invention, there is provided a computer program product comprising computer-executable  computer program code which, when the program is run on a computer (e.g. a computer of an apparatus according to any one of the aforementioned apparatus-related exemplary aspects of the present invention) , is configured to cause the computer to carry out the method according to any one of the aforementioned method-related exemplary aspects of the present invention.
Such computer program product may comprise (or be embodied) a (tangible) computer-readable (storage) medium or the like on which the computer-executable computer program code is stored, and/or the program may be directly loadable into an internal memory of the computer or a processor thereof.
Any one of the above aspects enables an efficient SD-CDD control for a V2X data channel to thereby guarantee improved performance and backward compatibility and to thereby solve at least part of the problems and drawbacks identified in relation to the prior art.
By way of exemplary embodiments of the present invention, there is provided flexible cyclic delay diversity control in V2X scenarios. More specifically, by way of exemplary embodiments of the present invention, there are provided measures and mechanisms for realizing flexible cyclic delay diversity control in V2X scenarios.
Thus, improvement is achieved by methods, apparatuses and computer program products enabling/realizing flexible cyclic delay diversity control in V2X scenarios.
Brief description of the drawings
In the following, the present invention will be described in greater detail by way of non-limiting examples with reference to the accompanying drawings, in which
Figure 1 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention,
Figure 2 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention,
Figure 3 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention,
Figure 4 is a schematic diagram of a procedure according to exemplary embodiments of the present invention,
Figure 5 is a schematic diagram of a procedure according to exemplary embodiments of the present invention,
Figure 6 shows a diagram of results of example simulations of V2X links,
Figure 7 shows a diagram of results of example simulations of V2X links, and
Figure 8 is a block diagram alternatively illustrating apparatuses according to exemplary embodiments of the present invention.
Detailed description of drawings and embodiments of the present invention
The present invention is described herein with reference to particular non-limiting examples and to what are presently considered to be conceivable embodiments of the present invention. A person skilled in the art will appreciate that the invention is by no means limited to these examples, and may be more broadly applied.
It is to be noted that the following description of the present invention and its embodiments mainly refers to specifications being used as non-limiting examples for certain exemplary network configurations and deployments. Namely, the present invention and its embodiments are mainly described in relation to 3GPP specifications in relation to V2X being used as non-limiting examples for certain exemplary network configurations and deployments. As such, the description of exemplary embodiments given herein specifically refers to terminology, which is directly related thereto. Such terminology is only used in the context of the presented non-limiting examples, and does naturally not limit the invention in any way. Rather, any other communication or communication related system deployment, etc. may also be utilized as long as compliant with the features described herein.
Hereinafter, various embodiments and implementations of the present invention and its aspects or embodiments are described using several variants and/or alternatives. It is generally noted that, according to certain needs and constraints, all of the described variants and/or alternatives may be provided alone or in any conceivable combination (also including combinations of individual features of the various variants and/or alternatives) .
According to exemplary embodiments of the present invention, in general terms, there are provided measures and mechanisms for (enabling/realizing) flexible cyclic delay diversity control in V2X scenarios.
In general, according to exemplary embodiments of the present invention, SD-CDD relevant information are indicated through a V2X control channel. In particular, a signaling mechanism through the V2X control channel is provided to enable SD-CDD for V2X data channel in order to guarantee improved performance and backward compatibility. Thus, according to exemplary embodiments of the present invention it is possible to indicate single or multiple SD-CDD delay values and to switch on and off SD-CDD dynamically.
Figure 1 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention. The apparatus may be V2X control entity 10 comprising a determining circuitry 11, a deciding circuitry 12, and a transmitting circuitry 13. The determining circuitry 11 determines at least one participant in a vehicle-to-X sidelink transmission. The deciding circuitry 12 decides on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant. The transmitting circuitry 13 transmits information indicative of said cyclic delay diversity setting. Figure 4 is a schematic diagram of a procedure according to exemplary embodiments of the present invention. The apparatus according to Figure 1 may perform the method of Figure 4 but is not limited to this method. The method of Figure 4 may be performed by the apparatus of Figure 1 but is not limited to being performed by this apparatus.
As shown in Figure 4, a procedure according to exemplary embodiments of the present invention comprises an operation of determining (S41) at least one participant in a vehicle-to-X sidelink transmission, an operation of deciding (S42) on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and an operation of transmitting (S43) information indicative of said cyclic delay diversity setting.
In an embodiment at least some of the functionalities of the apparatus shown in Figure 1 may be shared between two physically separate devices forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes.
According to exemplary embodiments of the present invention, said cyclic delay diversity setting comprises a cyclic delay diversity delay value for said vehicle-to-X sidelink transmission.
According to further exemplary embodiments of the present invention, said cyclic delay diversity setting influences a detection algorithm utilized for said vehicle-to-X sidelink transmission.
According to still further exemplary embodiments of the present invention, said information being expressed by at least one bit, wherein one state of said at least one bit indicates that no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission.
According to still further exemplary embodiments of the present invention, said information being expressed by a one-bit field comprising said at least one bit, wherein the other state of said at least one bit indicates that a predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission.
According to still further exemplary embodiments of the present invention, the other state of said at least one bit indicates that said predetermined cyclic delay diversity delay value is to be selected from a predetermined cyclic delay diversity delay value set based on a data transmission bandwidth of said vehicle-to-X sidelink transmission.
According to still further exemplary embodiments of the present invention, said information being expressed by a multiple-bit field, one state of said multiple-bit field indicates that no cyclic diversity delay is decided for said vehicle-to-X sidelink transmission, and each of the other states of said multiple-bit field respectively indicates that a respective predetermined cyclic delay diversity delay value out of a predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission
According to still further exemplary embodiments of the present invention, said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
According to still further exemplary embodiments of the present invention, said deciding is further based on at least one of a data transmission bandwidth of said vehicle-to-X sidelink transmission and an application scenario of said vehicle-to-X sidelink transmission.
According to still further exemplary embodiments of the present invention, said cyclic delay diversity setting is a small delay cyclic delay diversity setting.
According to still further exemplary embodiments of the present invention, said vehicle-to-X sidelink transmission is a vehicle-to-vehicle transmission.
According to still further exemplary embodiments of the present invention, said vehicle-to-X sidelink transmission is a transmission via a vehicle-to-X data channel.
According to still further exemplary embodiments of the present invention, said at least one participant comprises a target receiver of said vehicle-to-X sidelink transmission.
The V2X control entity may be an entity that is responsible for control/setting of V2X transmission parameters. The V2X control entity may be located at a base station (e.g. in LTE V2X mode 3) or may be located at a V2X transmitter UE (e.g. in LTE V2X mode 4) . In LTE V2X mode 3, the base station may control the CDD setting information and may indicate the information to a V2X transmitter UE. The V2X transmitter UE may then convey this information in its control channel to its receivers to aid the receiver to detect the associated data transmission. In LTE V2X mode 4, the V2X transmitter UE may autonomously set the CDD setting information and indicate the CDD setting information to its receivers in the control channel.
Figure 2 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention. The apparatus may be V2X user entity 20 comprising a receiving circuitry 21, and an adapting circuitry 22. The receiving circuitry 21 receives information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission. The adapting circuitry 22 adapts a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting. Figure 5 is a schematic diagram of a procedure according to exemplary embodiments of the present invention. The apparatus according to Figure 2 may perform the method of Figure 5 but is not limited to this method. The method of Figure 5 may be performed by the apparatus of Figure 2 but is not limited to being performed by this apparatus.
As shown in Figure 5, a procedure according to exemplary embodiments of the present invention comprises an operation of receiving (S51) information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and an operation of adapting (S52) a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
Figure 3 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention. In particular, Figure 3 illustrates a variation of the apparatus shown in Figure 2. The apparatus according to Figure 3 may thus further comprise deriving circuitry 31.
In an embodiment at least some of the functionalities of the apparatus shown in Figure 2 (or 3) may be shared between two physically separate devices forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes.
According to exemplary embodiments of the present invention, said cyclic delay diversity setting comprises a cyclic delay diversity delay value for said vehicle-to-X sidelink transmission.
According to further exemplary embodiments of the present invention, said information being expressed by at least one bit, wherein one state of said at least one bit indicates that no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, and, if no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to a cyclic delay diversity delay value of Zero.
According to a variation of the procedure shown in Figure 5, said information being expressed by a one-bit field comprising said at least one bit, wherein the other state of said at least one bit indicates that a predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, and said method may comprise an operation of deriving, if said predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, said predetermined cyclic delay diversity delay value from a configuration storage. Further, according to such variation, if said predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to said predetermined cyclic delay diversity delay value.
According to further exemplary embodiments of the present invention, said configuration storage comprises a predetermined cyclic delay diversity delay value set assigning a plurality of predetermined cyclic delay diversity delay values to a respective predetermined plurality of transmission bandwidths or transmission bandwidth ranges, and said predetermined cyclic delay diversity delay value is derived by selection from said predetermined cyclic delay diversity delay value set based on a data transmission bandwidth of said vehicle-to-X sidelink transmission.
According to still further exemplary embodiments of the present invention, said information being expressed by a multiple-bit field, one state of said multiple-bit field indicates that no cyclic diversity delay is decided for said vehicle-to-X sidelink transmission, and each of the other states of said multiple-bit field respectively indicates that a respective predetermined cyclic delay diversity delay value out of a predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission.
According to still further exemplary embodiments of the present invention, said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
According to a variation of the procedure shown in Figure 5, if no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to a cyclic delay diversity delay value of Zero, and a configuration storage comprises said predetermined cyclic delay diversity delay value set assigning a plurality of predetermined cyclic delay diversity delay values respectively to a state of said multi-bit field, and said method may comprise an operation of deriving, if said predetermined cyclic delay diversity delay value out of said predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission, said predetermined cyclic delay diversity delay value from said configuration storage based on said state of said multi-bit field. According to such variation, if said predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to said predetermined cyclic delay diversity delay value.
According to still further exemplary embodiments of the present invention, said cyclic delay diversity setting is a small delay cyclic delay diversity setting.
According to still further exemplary embodiments of the present invention, said vehicle-to-X sidelink transmission is a vehicle-to-vehicle transmission.
According to still further exemplary embodiments of the present invention, said vehicle-to-X sidelink transmission is a transmission via a vehicle-to-X data channel.
According to still further exemplary embodiments of the present invention, the apparatus (i.e. V2X user entity) 20 may be a target receiver of said vehicle-to-X sidelink transmission
That is, according to exemplary embodiments of the present invention, the V2X control channel dynamically indicates the SD-CDD relevant information on its associated V2X data channel. In the following, options for implementing exemplary embodiments of the present invention are explained in more specific terms.
The flexible signaling mechanism according to the explained options for implementing exemplary embodiments of the present invention enables a good tradeoff between CDD diversity gains and backward compatibility.
For example, if the V2X data packet is targeting both legacy UEs and new (non-legacy) UEs (i.e., UEs implementing aspects of the present invention) , then CDD could be turned off (with the first or second signaling option) or the SD-CDD delay value could be set to Zero or very small value (with the third signaling option) . The reason of this operation is that link simulations as shown in Figures 6 and 7 showed that a relatively large CDD delay value (e.g., 1μs or even 2μs) may negatively impact the detection performance for legacy UEs, since the legacy UEs are unaware of the used SD-CDD. On  the other hand, since new (non-legacy) UEs are aware of SD-CDD, they could know the SD-CDD delay value from the control signaling and optimize the detection operations accordingly, e.g., concerning time/frequency synchronization. Here, Figure 6 illustrates simulation results for 30 km/h (with QPSK+1/2TC over 20 PRBs) , and Figure 7 illustrates simulation results for 280 km/h (with QPSK+1/2TC over 20 PRBs) . For such consideration it is assumed that legacy UEs are unaware of SD-CDD while new (non-legacy) UEs are aware of the SD-CDD and optimize detection operations with the notified SD-CDD delay value.
According to a first option for implementing exemplary embodiments of the present invention, the dynamic indication information carried by V2X control channel is just the binary CDD-on or CDD-off information. If it indicates that SD-CDD is (to be) used for V2X data channel, according to the first option, the SD-CDD delay value is determined as follows.
A single small delay value is explicitly specified in the system specification. This is valid for all the V2X data channel transmissions with various transmission bandwidths (BW) . While the single small delay value may be explicitly specified in the system specification, alternatively, the single small delay value may be semi-statically configured (or preconfigured) by the cellular network via e.g. higher layer signaling. In either way, the single small delay value is well known to both the V2X transmitter UE and the receiver UEs.
For explaining the first option for implementing exemplary embodiments of the present invention in more detail, it is assumed that the single SD-CDD delay value is fixed to 1μs and is explicitly specified in the system specification (see above for further variants) . In the V2X control channel, a field with one bit is defined to indicate whether the SD-CDD is used, e.g.,
Figure PCTCN2017115260-appb-000001
Figure PCTCN2017115260-appb-000002
For the V2X data packet that targets for only new UEs (i.e., non-legacy UEs, UEs implementing aspects of the present invention) , the associated V2X control will set the field of SD-CDD indicator to 1. When a new UE detects the V2X control channel and finds that SD-CDD indicator field is set to 1, then it knows that SD-CDD with delay of 1μs is used for the V2X data channel and thus applies an optimized detection algorithm to detect the V2X data. In particular, in the time/frequency synchronization procedure, the UE may use two separate Demodulation Reference Signal (DMRS) waveforms (here the second DMRS waveform is the SD-CDD delayed version of the first DMRS waveform) to make correlation operations and then combine the two correlation results to get timing synchronization results and frequency synchronization results.
For the V2X data packet that targets for both legacy UEs and new UEs, the associated V2X control will set the field of SD-CDD indicator to 0. In this way, the detection performance of the legacy UE will not degrade and the new UEs know that SD-CDD is not applied and appropriate receiving operations (same as legacy UEs) may be performed.
According to a second option for implementing exemplary embodiments of the present invention, just like with the first option, the dynamic indication information carried by the V2X control channel is just the binary CDD-on or CDD-off information. If it indicates that SD-CDD is (to be) used for the V2X data channel, according to the second option, the SD-CDD delay value is determined as follows.
A table of transmission bandwidth dependent SD-CDD delay values is explicitly specified in the system specification. While the table of transmission bandwidth dependent SD-CDD delay values may be explicitly specified in the system specification, alternatively, the table of transmission bandwidth dependent SD-CDD delay values may be semi-statically configured (or preconfigured) by the cellular network via e.g. higher layer signaling. In either way, the table of transmission bandwidth dependent SD-CDD delay values is well known to both the V2X transmitter UE and the receiver UEs. The determination according to the present second option method is more flexible than the first option above since according to the present second option, multiple SD-CDD delay values are allowable depending on the transmission bandwidth of the V2X data channel.
The rationale of the present second option is that the use of the SD-CDD is to introduce additional frequency selectivity to get frequency diversity gains, thus in principle the narrower the transmission bandwidth is, the larger the small delay value is required, if similar amount of diversity gain is desired.
For explaining the second option for implementing exemplary embodiments of the present invention in more detail, it is assumed that a table of transmission bandwidth dependent SD-CDD delays is explicitly specified in the system specification (see above for further variants) . An example of such table is provided as follows.
V2X data transmission BW SD-CDD
[1~10] PRBs 2μs
[10~25] PRBs 1 μs
>=25PRBs 0.5 μs
In the V2X control channel, a field with one bit is defined to indicate whether the SD-CDD is (to be) used similar to the discussion in relation to the first option above.
For the V2X data packet that targets for only new (non-legacy) UEs, the associated V2X control will set the field of SD-CDD indicator to 1. The SD-CDD delay value will be determined according to the V2X data transmission bandwidth, e.g., if the V2X data is transmitted over 20 PRBs (PRB: physical resource block) , then the SD-CDD with delay value of 1μs will be used. For the new UE receivers, it firstly decodes the V2X control channel and finds the SD-CDD indicator field is set to 1 and also knows that the associated data transmission is over 20 PRBs, then it will know that the SD-CDD delay value is 1μs and may then take this information into account to make optimized receiving operations as already discussed in relation to the first option above.
According to a third option for implementing exemplary embodiments of the present invention, the dynamic information carried by the V2X control channel indicates the SD-CDD delay value used by the V2X data channel. In this method, a set of multiple SD-CDD delay values is pre-defined and the dynamic information may indicate the index of the used small delay value. While the set of multiple SD-CDD delay values may be explicitly specified in the system specification, alternatively, the set of multiple SD-CDD delay values may be semi-statically configured (or preconfigured) by the cellular network via e.g. higher layer signaling. In either way, the set of multiple SD-CDD delay values is well known to both the V2X transmitter UE and the receiver UEs. It is noted that a ″0″ (Zero) value may be defined in the delay value set which indicates that SD-CDD is not (to be) used for the V2X data channel or is (to be) used with the delay of Zero (this two cases are equivalent in essence) .
In more detail, according to exemplary embodiments of the present invention, a delay value set is predefined in the system specification, which includes multiple SD-CDD delay values.
An example of the delay value set is
SD-CDD delay value set = {0, 0.5us, 1us, 2us} .
In this case, in the V2X control channel, a field with two bits is defined to indicate which SD-CDD delay value is used, e.g.,
Figure PCTCN2017115260-appb-000003
For the V2X data packet that targets for only new (non-legacy) UEs, the associated V2X control may set the field of SD-CDD appropriately taking some factors into account e.g. transmission bandwidth and even application scenarios.
For example, if the V2X data transmission has small a bandwidth e.g., 3 PRBs or the application scenario has quite small channel delays e.g. in a freeway scenario, then a relatively large SD-CDD delay value may be configured, e.g., SD-CDD indicator may be set to ″11″ . For the new UE receivers, they firstly decode the V2X control channel and find that the SD-CDD indicator field is set to ″11″ and thus know that the SD-CDD is used with delay of 2μs. Thus such UE can make optimized receiving operations to decode the V2X data as described in relation to the first option above.
For the V2X data packet that targets for the legacy UEs and new UEs, the associated V2X control may set the SD-CDD delay value to a relatively small value, e.g., SD-CDD indicator = ″00″ , meaning that SD-CDD is not (to be) applied at the transmitter. In this way, the legacy UE performance will not be impacted.
The above-described procedures and functions may be implemented by respective functional elements, processors, or the like, as described below.
In the foregoing exemplary description of the network entity, only the units that are relevant for understanding the principles of the invention have been described using functional blocks. The network entity may comprise further units that are necessary for its respective operation. However, a description of these units is omitted in this specification. The arrangement of the functional blocks of the devices is not construed to limit the invention, and the functions may be performed by one block or further split into sub-blocks.
When in the foregoing description it is stated that the apparatus, i.e. network entity (or some other means) is configured to perform some function, this is to be construed to be equivalent to a description stating that a (i.e. at least one) processor or corresponding circuitry, potentially in cooperation with computer program code stored in the memory of the respective apparatus, is configured to cause the apparatus to perform at least the thus mentioned function. Also, such function is to be construed to be equivalently implementable by specifically configured circuitry or means for performing the respective function (i.e. the expression ″unit configured to″ is construed to be equivalent to an expression such as ″means for″ ) .
In Figure 8, an alternative illustration of apparatuses according to exemplary embodiments of the present invention is depicted. As indicated in Figure 8, according to exemplary embodiments of the present invention, the apparatus (e.g. V2X control entity) 10′ (corresponding to the V2X control entity 10) comprises a processor 81, a memory 82 and an interface 83, which are connected by a bus 84 or the like. Further, according to exemplary embodiments of the present invention, the apparatus (e.g. V2X user entity) 20′ (corresponding to the V2X user entity 20) comprises a processor 85, a memory 86 and an interface 87, which are connected by a  bus 88 or the like, and the apparatuses may be connected via link 89, respectively.
The processor 81/85 and/or the interface 83/87 may also include a modem or the like to facilitate communication over a (hardwire or wireless) link, respectively. The interface 83/87 may include a suitable transceiver coupled to one or more antennas or communication means for (hardwire or wireless) communications with the linked or connected device (s) , respectively. The interface 83/87 is generally configured to communicate with at least one other apparatus, i.e. the interface thereof.
The memory 82/86 may store respective programs assumed to include program instructions or computer program code that, when executed by the respective processor, enables the respective electronic device or apparatus to operate in accordance with the exemplary embodiments of the present invention.
In general terms, the respective devices/apparatuses (and/or parts thereof) may represent means for performing respective operations and/or exhibiting respective functionalities, and/or the respective devices (and/or parts thereof) may have functions for performing respective operations and/or exhibiting respective functionalities.
When in the subsequent description it is stated that the processor (or some other means) is configured to perform some function, this is to be construed to be equivalent to a description stating that at least one processor, potentially in cooperation with computer program code stored in the memory of the respective apparatus, is configured to cause the apparatus to perform at least the thus mentioned function. Also, such function is to be construed to be equivalently implementable by specifically configured means for performing the respective function (i.e. the expression ″processor configured to [cause the apparatus to] perform xxx-ing″ is construed to be equivalent to an expression such as ″means for xxx-ing″ ) .
According to exemplary embodiments of the present invention, an apparatus representing the V2X control entity 10 comprises at least one processor 81, at least one memory 82 including computer program code, and at least one interface 83 configured for communication with at least another apparatus. The processor (i.e. the at least one processor 81, with the at least one memory 82 and the computer program code) is configured to perform determining at least one participant in a vehicle-to-X sidelink transmission (thus the apparatus comprising corresponding means for determining) , to perform deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant (thus the apparatus comprising corresponding means for deciding) , and to perform transmitting information indicative of said cyclic delay diversity setting (thus the apparatus comprising corresponding means for transmitting) .
Further, according to exemplary embodiments of the present invention, an apparatus representing the V2X user entity 20 comprises at least one processor 85, at least one memory 86 including computer program code, and at least one interface 87 configured for communication with at least another apparatus. The processor (i.e. the at least one processor 85, with the at least one memory 86 and the computer program code) is configured to perform receiving information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission (thus the apparatus comprising corresponding means for receiving) , and to perform adapting a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting (thus the apparatus comprising corresponding means for adapting) .
For further details regarding the operability/functionality of the individual apparatuses, reference is made to the above description in connection with any one of Figures 1 to 7, respectively.
For the purpose of the present invention as described herein above, it should be noted that
method steps likely to be implemented as software code portions and being run using a processor at a network server or network entity (as examples of devices, apparatuses and/or modules thereof, or as examples of entities including apparatuses and/or modules therefore) , are software code independent and can be specified using any known or future developed programming language as long as the functionality defined by the method steps is preserved;
generally, any method step is suitable to be implemented as software or by hardware without changing the idea of the embodiments and its modification in terms of the functionality implemented;
-method steps and/or devices, units or means likely to be implemented as hardware components at the above-defined apparatuses, or any module (s) thereof, (e.g., devices carrying out the functions of the apparatuses according to the embodiments as described above) are hardware independent and can be implemented using any known or future developed hardware technology or any hybrids of these, such as MOS (Metal Oxide Semiconductor) , CMOS (Complementary MOS) , BiMOS (Bipolar MOS) , BiCMOS (Bipolar CMOS) , ECL (Emitter Coupled Logic) , TTL (Transistor-Transistor Logic) , etc., using for example ASIC (Application Specific IC (Integrated Circuit) ) components, FPGA (Field-programmable Gate Arrays) components, CPLD (Complex Programmable Logic Device) components or DSP (Digital Signal Processor) components;
-devices, units or means (e.g. the above-defined network entity or network register, or any one of their respective units/means) can be implemented as individual devices, units or means, but this does not exclude that they are implemented in a distributed fashion throughout the system, as long as the functionality of the device, unit or means is preserved;
-an apparatus like the user equipment and the network entity /network register may be represented by a semiconductor chip, a chipset, or a (hardware) module comprising such chip or chipset; this, however, does not exclude the possibility that a functionality of an apparatus or module,  instead of being hardware implemented, be implemented as software in a (software) module such as a computer program or a computer program product comprising executable software code portions for execution/being run on a processor;
-a device may be regarded as an apparatus or as an assembly of more than one apparatus, whether functionally in cooperation with each other or functionally independently of each other but in a same device housing, for example.
In general, it is to be noted that respective functional blocks or elements according to above-described aspects can be implemented by any known means, either in hardware and/or software, respectively, if it is only adapted to perform the described functions of the respective parts. The mentioned method steps can be realized in individual functional blocks or by individual devices, or one or more of the method steps can be realized in a single functional block or by a single device.
Generally, any method step is suitable to be implemented as software or by hardware without changing the idea of the present invention. Devices and means can be implemented as individual devices, but this does not exclude that they are implemented in a distributed fashion throughout the system, as long as the functionality of the device is preserved. Such and similar principles are to be considered as known to a skilled person.
Software in the sense of the present description comprises software code as such comprising code means or portions or a computer program or a computer program product for performing the respective functions, as well as software (or a computer program or a computer program product) embodied on a tangible medium such as a computer-readable (storage) medium having stored thereon a respective data structure or code means/portions or embodied in a signal or in a chip, potentially during processing thereof.
The present invention also covers any conceivable combination of method steps and operations described above, and any conceivable combination of nodes, apparatuses, modules or elements described above, as long as the above-described concepts of methodology and structural arrangement are applicable.
In view of the above, there are provided measures for flexible cyclic delay diversity control in V2X scenarios. Such measures exemplarily comprise determining at least one participant in a vehicle-to-X sidelink transmission, deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and transmitting information indicative of said cyclic delay diversity setting.
Even though the invention is described above with reference to the examples according to the accompanying drawings, it is to be understood that the invention is not restricted thereto. Rather, it is apparent to those skilled in the art that the present invention can be modified in many ways without departing from the scope of the inventive idea as disclosed herein.
List of acronyms and abbreviations
3GPP     Third Generation Partnership Project
BW       bandwidth
CDD      cyclic delay diversity
DMRS     Demodulation Reference Signal
LTE      Long Term Evolution
OFDM     Orthogonal Frequency-Division Multiplexing
PRB      physical resource block
PSCCH    Physical Sidelink Control Channel
PSSCH    Physical Sidelink Shared Channel
QPSK     Quadrature Phase-Shift Keying
SC-SFBC  Single Carrier Space Frequency Block Coding
SD-CDD   small-delay cyclic delay diversity
STBC  Single Carrier Space Time Block Coding
V2X   vehicle-to-X

Claims (38)

  1. A method comprising
    determining at least one participant in a vehicle-to-X sidelink transmission,
    deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and
    transmitting information indicative of said cyclic delay diversity setting.
  2. The method according to claim 1, wherein
    said cyclic delay diversity setting comprises a cyclic delay diversity delay value for said vehicle-to-X sidelink transmission.
  3. The method according to claim 1 or 2, wherein
    said cyclic delay diversity setting influences a detection algorithm utilized for said vehicle-to-X sidelink transmission.
  4. The method according to any of claims 1 to 3, wherein
    said information being expressed by at least one bit, wherein one state of said at least one bit indicates that no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission.
  5. The method according to claim 4, wherein
    said information being expressed by a one-bit field comprising said at least one bit, wherein the other state of said at least one bit indicates that a predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission.
  6. The method according to claim 5, wherein
    the other state of said at least one bit indicates that said predetermined cyclic delay diversity delay value is to be selected from a  predetermined cyclic delay diversity delay value set based on a data transmission bandwidth of said vehicle-to-X sidelink transmission, and wherein optionally
    said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
  7. The method according to any of claims 1 to 3, wherein
    said information being expressed by a multiple-bit field,
    one state of said multiple-bit field indicates that no cyclic diversity delay is decided for said vehicle-to-X sidelink transmission, and
    each of the other states of said multiple-bit field respectively indicates that a respective predetermined cyclic delay diversity delay value out of a predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission, and wherein optionally
    said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
  8. The method according to claim 7, wherein
    said deciding is further based on at least one of a data transmission bandwidth of said vehicle-to-X sidelink transmission and an application scenario of said vehicle-to-X sidelink transmission.
  9. The method according to any of claims 1 to 8, wherein
    the method is operable at or by a vehicle-to-X control entity of a cellular system, and/or
    said cyclic delay diversity setting is a small delay cyclic delay diversity setting, and/or
    said vehicle-to-X sidelink transmission is a vehicle-to-vehicle transmission, and/or
    said vehicle-to-X sidelink transmission is a transmission via a vehicle-to-X data channel, and/or
    said at least one participant comprises a target receiver of said vehicle-to-X sidelink transmission.
  10. A method comprising
    receiving information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and
    adapting a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
  11. The method according to claim 10, wherein
    said cyclic delay diversity setting comprises a cyclic delay diversity delay value for said vehicle-to-X sidelink transmission.
  12. The method according to claim 10 or 11, wherein
    said information being expressed by at least one bit, wherein one state of said at least one bit indicates that no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, and
    if no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to a cyclic delay diversity delay value of Zero.
  13. The method according to claim 12, wherein
    said information being expressed by a one-bit field comprising said at least one bit, wherein the other state of said at least one bit indicates that a predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, and
    said method further comprises deriving, if said predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, said predetermined cyclic delay diversity delay value from a configuration storage, and wherein
    if said predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to said predetermined cyclic delay diversity delay value.
  14. The method according to claim 13, wherein
    said configuration storage comprises a predetermined cyclic delay diversity delay value set assigning a plurality of predetermined cyclic delay diversity delay values to a respective predetermined plurality of transmission bandwidths or transmission bandwidth ranges,
    said predetermined cyclic delay diversity delay value is derived by selection from said predetermined cyclic delay diversity delay value set based on a data transmission bandwidth of said vehicle-to-X sidelink transmission, and wherein optionally
    said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
  15. The method according to claim 10 or 11, wherein
    said information being expressed by a multiple-bit field,
    one state of said multiple-bit field indicates that no cyclic diversity delay is decided for said vehicle-to-X sidelink transmission, and
    each of the other states of said multiple-bit field respectively indicates that a respective predetermined cyclic delay diversity delay value out of a predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission, and wherein optionally
    said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
  16. The method according to claim 15, wherein
    if no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to a cyclic delay diversity delay value of Zero, and
    a configuration storage comprises said predetermined cyclic delay diversity delay value set assigning a plurality of predetermined cyclic delay diversity delay values respectively to a state of said multi-bit field, and
    said method further comprises deriving, if said predetermined cyclic delay diversity delay value out of said predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission, said predetermined cyclic delay diversity delay value from said configuration storage based on said state of said multi-bit field, and wherein
    if said predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to said predetermined cyclic delay diversity delay value.
  17. The method according to any of claims 10 to 16, wherein
    the method is operable at or by a terminal, user equipment, mobile station or modem in a cellular system, and/or
    said cyclic delay diversity setting is a small delay cyclic delay diversity setting, and/or
    said vehicle-to-X sidelink transmission is a vehicle-to-vehicle transmission, and/or
    said vehicle-to-X sidelink transmission is a transmission via a vehicle-to-X data channel.
  18. An apparatus comprising
    at least one processor,
    at least one memory including computer program code, and
    at least one interface configured for communication with at least another apparatus,
    the at least one processor, with the at least one memory and the computer program code, being configured to cause the apparatus to perform:
    determining at least one participant in a vehicle-to-X sidelink transmission,
    deciding on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and
    transmitting information indicative of said cyclic delay diversity setting.
  19. The apparatus according to claim 18, wherein
    said cyclic delay diversity setting comprises a cyclic delay diversity delay value for said vehicle-to-X sidelink transmission.
  20. The apparatus according to claim 18 or 19, wherein
    said cyclic delay diversity setting influences a detection algorithm utilized for said vehicle-to-X sidelink transmission.
  21. The apparatus according to any of claims 18 to 20, wherein
    said information being expressed by at least one bit, wherein one state of said at least one bit indicates that no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission.
  22. The apparatus according to claim 21, wherein
    said information being expressed by a one-bit field comprising said at least one bit, wherein the other state of said at least one bit indicates that a predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission.
  23. The apparatus according to claim 22, wherein
    the other state of said at least one bit indicates that said predetermined cyclic delay diversity delay value is to be selected from a predetermined cyclic delay diversity delay value set based on a data transmission bandwidth of said vehicle-to-X sidelink transmission, and wherein optionally
    said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
  24. The apparatus according to any of claims 18 to 20, wherein
    said information being expressed by a multiple-bit field,
    one state of said multiple-bit field indicates that no cyclic diversity delay is decided for said vehicle-to-X sidelink transmission, and
    each of the other states of said multiple-bit field respectively indicates that a respective predetermined cyclic delay diversity delay value out of a predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission, and wherein optionally
    said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
  25. The apparatus according to claim 24, wherein
    said deciding is further based on at least one of a data transmission bandwidth of said vehicle-to-X sidelink transmission and an application scenario of said vehicle-to-X sidelink transmission.
  26. The apparatus according to any of claims 18 to 25, wherein
    the apparatus is operable as or at a vehicle-to-X control entity of a cellular system, and/or
    said cyclic delay diversity setting is a small delay cyclic delay diversity setting, and/or
    said vehicle-to-X sidelink transmission is a vehicle-to-vehicle transmission, and/or
    said vehicle-to-X sidelink transmission is a transmission via a vehicle-to-X data channel, and/or
    said at least one participant comprises a target receiver of said vehicle-to-X sidelink transmission.
  27. An apparatus comprising
    at least one processor,
    at least one memory including computer program code, and
    at least one interface configured for communication with at least another apparatus,
    the at least one processor, with the at least one memory and the computer program code, being configured to cause the apparatus to perform:
    receiving information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and
    adapting a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
  28. The apparatus according to claim 27, wherein
    said cyclic delay diversity setting comprises a cyclic delay diversity delay value for said vehicle-to-X sidelink transmission.
  29. The apparatus according to claim 27 or 28, wherein
    said information being expressed by at least one bit, wherein one state of said at least one bit indicates that no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, and
    if no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to a cyclic delay diversity delay value of Zero.
  30. The apparatus according to claim 29, wherein
    said information being expressed by a one-bit field comprising said at least one bit, wherein the other state of said at least one bit indicates that a predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, and
    the at least one processor, with the at least one memory and the computer program code, being configured to cause the apparatus to perform deriving, if said predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, said predetermined cyclic delay diversity delay value from a configuration storage, and wherein
    if said predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for  said vehicle-to-X sidelink transmission is adapted to said predetermined cyclic delay diversity delay value.
  31. The apparatus according to claim 30, wherein
    said configuration storage comprises a predetermined cyclic delay diversity delay value set assigning a plurality of predetermined cyclic delay diversity delay values to a respective predetermined plurality of transmission bandwidths or transmission bandwidth ranges,
    said predetermined cyclic delay diversity delay value is derived by selection from said predetermined cyclic delay diversity delay value set based on a data transmission bandwidth of said vehicle-to-X sidelink transmission, and wherein optionally
    said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
  32. The apparatus according to claim 27 or 28, wherein
    said information being expressed by a multiple-bit field,
    one state of said multiple-bit field indicates that no cyclic diversity delay is decided for said vehicle-to-X sidelink transmission, and
    each of the other states of said multiple-bit field respectively indicates that a respective predetermined cyclic delay diversity delay value out of a predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission, and wherein optionally
    said predetermined cyclic delay diversity delay value set is specified in a system specification and/or distributed via a configuration signaling.
  33. The apparatus according to claim 32, wherein
    if no cyclic delay diversity delay is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to a cyclic delay diversity delay value of Zero, and
    a configuration storage comprises said predetermined cyclic delay diversity delay value set assigning a plurality of predetermined cyclic delay diversity delay values respectively to a state of said multi-bit field, and
    the at least one processor, with the at least one memory and the computer program code, being configured to cause the apparatus to perform deriving, if said predetermined cyclic delay diversity delay value out of said predetermined cyclic delay diversity delay value set is decided for said vehicle-to-X sidelink transmission, said predetermined cyclic delay diversity delay value from said configuration storage based on said state of said multi-bit field, and wherein
    if said predetermined cyclic delay diversity delay value is decided for said vehicle-to-X sidelink transmission, said detection algorithm utilized for said vehicle-to-X sidelink transmission is adapted to said predetermined cyclic delay diversity delay value.
  34. The apparatus according to any of claims 27 to 33, wherein
    the apparatus is operable as or at a terminal, user equipment, mobile station or modem in a cellular system, and/or
    said cyclic delay diversity setting is a small delay cyclic delay diversity setting, and/or
    said vehicle-to-X sidelink transmission is a vehicle-to-vehicle transmission, and/or
    said vehicle-to-X sidelink transmission is a transmission via a vehicle-to-X data channel.
  35. An apparatus comprising
    determining circuitry configured to determine at least one participant in a vehicle-to-X sidelink transmission,
    deciding circuitry configured to decide on a cyclic delay diversity setting for said vehicle-to-X sidelink transmission based on said at least one participant, and
    transmitting circuitry configured to transmit information indicative of said cyclic delay diversity setting.
  36. An apparatus comprising
    receiving circuitry configured to receive information indicative of a cyclic delay diversity setting for a vehicle-to-X sidelink transmission, and
    adapting circuitry configured to adapt a detection algorithm utilized for said vehicle-to-X sidelink transmission based on said cyclic delay diversity setting.
  37. A computer program product comprising computer-executable computer program code which, when the program is run on a computer, is configured to cause the computer to carry out the method according to any one of claims 1 to 9 or 10 to 17.
  38. The computer program product according to claim 37, wherein the computer program product comprises a computer-readable medium on which the computer-executable computer program code is stored, and/or wherein the program is directly loadable into an internal memory of the computer or a processor thereof.
PCT/CN2017/115260 2017-12-08 2017-12-08 Flexible cyclic delay diversity control in v2x scenarios WO2019109344A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/115260 WO2019109344A1 (en) 2017-12-08 2017-12-08 Flexible cyclic delay diversity control in v2x scenarios
CN201780097538.0A CN111630799B (en) 2017-12-08 2017-12-08 Flexible cyclic delay diversity control in V2X scenarios

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/115260 WO2019109344A1 (en) 2017-12-08 2017-12-08 Flexible cyclic delay diversity control in v2x scenarios

Publications (1)

Publication Number Publication Date
WO2019109344A1 true WO2019109344A1 (en) 2019-06-13

Family

ID=66750709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115260 WO2019109344A1 (en) 2017-12-08 2017-12-08 Flexible cyclic delay diversity control in v2x scenarios

Country Status (2)

Country Link
CN (1) CN111630799B (en)
WO (1) WO2019109344A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1919115A2 (en) * 2006-10-31 2008-05-07 NTT DoCoMo Inc. Method, system, base station and user equipment for determining delay value of cyclic delay diversity
CN101569121A (en) * 2007-01-10 2009-10-28 松下电器产业株式会社 Base station device and radio communication device
CN101800713A (en) * 2009-02-06 2010-08-11 华为技术有限公司 Circulation delay diversity signal channel estimation method, a system and equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780771B2 (en) * 2007-02-06 2014-07-15 Qualcomm Incorporated Cyclic delay diversity and precoding for wireless communication
CN103430459A (en) * 2011-02-07 2013-12-04 英特尔公司 Co-phasing of transmissions from multiple infrastructure node

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1919115A2 (en) * 2006-10-31 2008-05-07 NTT DoCoMo Inc. Method, system, base station and user equipment for determining delay value of cyclic delay diversity
CN101569121A (en) * 2007-01-10 2009-10-28 松下电器产业株式会社 Base station device and radio communication device
CN101800713A (en) * 2009-02-06 2010-08-11 华为技术有限公司 Circulation delay diversity signal channel estimation method, a system and equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Evaluation of Candidate Transmit Diversity Schemes for LTE V2V", 3GPP TSG RAN WG1 MEETING #90 R1-1712485, 25 August 2017 (2017-08-25), XP051315301 *

Also Published As

Publication number Publication date
CN111630799A (en) 2020-09-04
CN111630799B (en) 2023-10-13

Similar Documents

Publication Publication Date Title
US11864204B2 (en) Terminal and communication method
US11736250B2 (en) Method for transmitting reference signal, and communication device
US11665039B2 (en) Communication apparatus and transmission method for transmitting a demodulation reference signal
EP2425574B1 (en) Demodulation reference signals in a communication system
CN108632193B (en) Resource indication method, network equipment and terminal equipment
CN103916962A (en) Obtaining control channel elements of physical downlink control channels for cross-carrier scheduling
US11910288B2 (en) Integrated circuit for transmitting a PUCCH repetition signal using a channel format that accommodates SRS transmission
WO2014117326A1 (en) Base station, terminal, transmission method, and reception method
EP3525504B1 (en) Method for transmitting uplink signal and terminal device
US20220303092A1 (en) Receiving device, transmitting device, receiving method, and transmitting method
CN111867038A (en) Communication method and device
EP3264646A1 (en) Terminal device, base-station device, and communication method
CN107733617B (en) Reference signal mapping method and device
EP3051896B1 (en) Pbch transmission method, and device
KR20100066255A (en) Method of transmitting and receiving uplink reference signal in a wireless communication system having multiple antennas
CN114450906B (en) Network access node and client device for adaptive DMRS patterns
CN107113268B (en) Method for transmission of signals, communication node and computer-readable storage medium
KR20230051449A (en) Method and apparatus for transmitting and receiving demodulation reference signal for nr system
WO2019109344A1 (en) Flexible cyclic delay diversity control in v2x scenarios
US20200187191A1 (en) Method for transmitting uplink data, network side device and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934285

Country of ref document: EP

Kind code of ref document: A1