WO2019109339A1 - 数据传输方法、装置及无人机 - Google Patents

数据传输方法、装置及无人机 Download PDF

Info

Publication number
WO2019109339A1
WO2019109339A1 PCT/CN2017/115235 CN2017115235W WO2019109339A1 WO 2019109339 A1 WO2019109339 A1 WO 2019109339A1 CN 2017115235 W CN2017115235 W CN 2017115235W WO 2019109339 A1 WO2019109339 A1 WO 2019109339A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
threshold
quality
data
network communication
Prior art date
Application number
PCT/CN2017/115235
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2017/115235 priority Critical patent/WO2019109339A1/zh
Priority to CN201780002119.4A priority patent/CN108401501B/zh
Priority to US16/766,492 priority patent/US11610491B2/en
Priority to EP17933980.9A priority patent/EP3716688A4/en
Publication of WO2019109339A1 publication Critical patent/WO2019109339A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a data transmission method, apparatus, and drone.
  • Unmanned Aerial Vehicle UAV
  • UAV Unmanned Aerial Vehicle
  • the 3rd Generation Partnership Project (3GPP) proposed in the discussion of the "Enhanced Support for UAVs" project to provide cellular networks for drones. More standardized research on services that meet demand.
  • the data is usually transmitted between the UAV and the UAV controller through a Wireless-Fidelity (WIFI) network, and the WIFI network has problems such as occupied channels, large interference, and limited coverage, so
  • WIFI Wireless-Fidelity
  • the data transmission performance between the human-machine and the drone controller is low, and the data transmission based on the cellular network has the characteristics of continuous coverage and data transmission, but the related technology has not solved how to control the drone in the cellular network.
  • the technical problem of transmitting data to the drone controller through the uplink in the WIFI network is referred to provide cellular networks.
  • the embodiments of the present disclosure provide a data transmission method, a device, and a drone to improve the relationship between the UAV controller and the UAV through the WIFI network and the cellular network. Data transmission efficiency.
  • a data transmission method comprising:
  • a link quality of a first link between the drone and a drone controller Determining a link quality of a first link between the drone and a drone controller, a link quality of a second link between the drone and a base station, and the base station and the a link quality of a third link between the drone controllers, the first link being a WIFI network communication link, and the second link and the third link being a mobile network communication link;
  • the data transmission chain of the data to be transmitted is determined based on the link quality of the first link, the link quality of the second link, and the link quality of the third link. Road, including:
  • a link quality of the second link is higher than a third threshold and not higher than a fourth threshold, the third When the link quality of the link is higher than the fifth threshold and not higher than the sixth threshold, determining the WIFI network communication link and the mobile network communication link as the data transmission link;
  • the link quality of the first link is lower than the second threshold
  • the link quality of the second link is higher than the fourth threshold
  • the link quality of the third link is higher than the
  • the mobile network communication link is determined as the data transmission link.
  • the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, and the sixth threshold are set by the base station; or
  • the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, and the sixth threshold are set by the drone controller.
  • the data transmission chain of the data to be transmitted is determined based on the link quality of the first link, the link quality of the second link, and the link quality of the third link. Road, including:
  • the method further includes:
  • the data to be transmitted is divided into two groups of data according to a set ratio
  • the set ratio is set by the drone controller.
  • the determining a link quality of a third link between the base station and the UAV controller includes:
  • a data transmission apparatus comprising:
  • a first determining module configured to determine a link quality of a first link between the drone and a drone controller, and a link quality of a second link between the drone and a base station And a link quality of a third link between the base station and the drone controller, the first link being a WIFI network communication link, the second link and the third chain
  • the road is a mobile network communication link
  • the second determining module is configured to determine a data transmission link based on a link quality of the first link, a link quality of the second link, and a link quality of the third link.
  • the second determining module comprises:
  • a first determining submodule configured to determine the WIFI network communication link as the data transmission link when a link quality of the first link is higher than a first threshold
  • a second determining submodule configured to: when a link quality of the first link is lower than a first threshold and higher than a second threshold, a link quality of the second link is higher than a third threshold and is not high And determining, at a fourth threshold, the WIFI network communication link and the mobile network communication link as the data transmission when a link quality of the third link is higher than a fifth threshold and not higher than a sixth threshold link;
  • a third determining submodule configured to: when a link quality of the first link is lower than the second threshold, a link quality of the second link is higher than the fourth threshold, and the third When the link quality of the link is higher than the sixth threshold, the mobile network communication link is determined as the data transmission link.
  • the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, and the sixth threshold are set by the base station; or
  • the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, and the sixth threshold are set by the drone controller.
  • the second determining module comprises:
  • a fourth determining submodule configured to determine the WIFI network communication link and the mobile network communication link as the data transmission link when the data amount of the data to be transmitted is greater than a first quantity threshold
  • Comparing the submodule configured to compare the first link, the second link, and the third link when the amount of data of the data to be transmitted is not greater than the first number of thresholds Link quality
  • a fifth determining submodule configured to have a link quality of the second link and the third link And determining, when equal to or equal to the link quality of the first link, the mobile network communication link as the data transmission link;
  • a sixth determining submodule configured to: when the link quality unevenness of the second link and the third link is greater than or equal to a link quality of the first link, the WIFI network communication The link is determined to be the data transmission link.
  • the apparatus further includes:
  • a grouping module configured to divide the data to be transmitted into two sets of data according to a set ratio when determining the WIFI network communication link and the mobile network communication link as the data transmission link;
  • a sending module configured to send one set of the two sets of data to the drone controller through the first link, and send another set of data to the base station through the second link, and then pass by the base station
  • the third link transmits the other set of data to the drone controller.
  • the set ratio is set by the drone controller.
  • the first determining module is configured to receive a link quality of the third link sent by the drone controller.
  • a drone including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a link quality of a first link between the drone and a drone controller Determining a link quality of a first link between the drone and a drone controller, a link quality of a second link between the drone and a base station, and the base station and the a link quality of a third link between the drone controllers, the first link being a WIFI network communication link, and the second link and the third link being a mobile network communication link;
  • a data transmission link is determined based on a link quality of the first link, a link quality of the second link, and a link quality of the third link.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the following steps:
  • a link quality of a first link between the drone and a drone controller Determining a link quality of a first link between the drone and a drone controller, a link quality of a second link between the drone and a base station, and the base station and the a link quality of a third link between the drone controllers, the first link being a WIFI network communication link, and the second link and the third link being a mobile network communication link;
  • the mobile network and the WIFI network accessed by the drone are two independent communication networks.
  • the drone can be based on the first link between the UAV and the UAV controller.
  • the data transmission link can better integrate the mobile network accessed by the drone with the resources of the WIFI network, and solve the problem that the data is transmitted between the UAV and the UAV controller through the WIFI network in the related art. The resulting problem of low data transfer performance.
  • FIG. 1A is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 1B is a scene diagram of a data transmission method according to an exemplary embodiment.
  • FIG. 2 is a flowchart of another data transmission method according to an exemplary embodiment.
  • FIG. 3 is a flowchart of still another data transmission method according to an exemplary embodiment.
  • FIG. 4 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 5 is a block diagram of another data transmission apparatus, according to an exemplary embodiment.
  • FIG. 6 is a block diagram of a data transmission apparatus suitable for use in accordance with an exemplary embodiment.
  • FIG. 1A is a flowchart of a data transmission method according to an exemplary embodiment
  • FIG. 1B is a scene diagram of a data transmission method according to an exemplary embodiment; the data transmission method may be applied to a drone
  • the data transmission method includes the following steps 101-102:
  • step 101 determining the link quality of the first link between the drone and the drone controller, The link quality of the second link between the base station and the base station, and the link quality of the third link between the base station and the drone controller.
  • the first link is a WIFI network communication link
  • the drone can directly transmit data to the drone controller through the first link in the WIFI network
  • the second chain The road and the third link are mobile network communication links, and the drone can transmit data to the base station through the second link in the mobile network, and then the base station transmits data to the drone controller through the third base station.
  • the UAV can determine the link quality of the corresponding link by detecting the signal power of the reference signal transmitted on the first link and the second link;
  • the UAV can receive the link quality of the third link sent by the UAV controller, and the UAV controller can periodically send the chain of the third link to the UAV.
  • the quality of the road may also be used to transmit the link quality of the third link to the drone when receiving a request from the drone to obtain the link quality of the third link.
  • a data transmission link of data to be transmitted is determined based on the link quality of the first link, the link quality of the second link, and the link quality of the third link.
  • the data to be transmitted may be a packet that is buffered in a buffer of a Packet Data Convergence Protocol (PDCP) of the UAV and needs to be sent to the UAV controller.
  • PDCP Packet Data Convergence Protocol
  • the WIFI network communication link that is, the first link
  • the WIFI network communication link may be preferentially determined when the link quality of the first link is relatively high.
  • the WIFI network communication link and the mobile network communication chain can be used.
  • the path, that is, the first link and the second link are both determined as data transmission links, or only the mobile network communication link is determined as a data transmission link.
  • the specific implementation manner of determining the data transmission link of the data to be transmitted is based on the link quality of the first link, the second link, and the third link. For details, refer to the description of the embodiment shown in FIG. 2 to FIG. Not detailed.
  • the data to be transmitted can be transmitted through the transmission link.
  • the mobile network is a Long Term Evolution (LTE) network and the base station is an evolved base station (eNB) as an example.
  • LTE Long Term Evolution
  • eNB evolved base station
  • the mobile network is not limited to The LTE network may also be other cellular networks such as 5G.
  • the eNB 10, the drone 20, and the drone controller 30 are included, wherein the drone 20 is located within the coverage of the eNB 10. And located in the same WIFI network as the drone controller 30.
  • the drone 20 Based on the link quality of the first link, the link quality of the second link, and the link quality of the third link, in one case, the drone 20 can pass through the WIFI network.
  • the first link 141 in the network transmits data to the drone controller 30.
  • part or all of the data may be Data is transmitted to the eNB 10 via the second link 142, which in turn forwards this portion of the data or all of the data to the drone controller 30 via the third link 143.
  • the efficiency of data transmission between the drone 20 and the drone controller 30 is effectively improved.
  • the mobile network and the WIFI network accessed by the drone are two independent communication networks.
  • the drone can be based on the first between the UAV and the UAV controller.
  • the data transmission link can better integrate the mobile network accessed by the drone with the resources of the WIFI network, and solve the related technology in which the data is transmitted between the UAV and the UAV controller through the WIFI network. The resulting problem of low data transfer performance.
  • FIG. 2 is a flowchart of another data transmission method according to an exemplary embodiment of the present disclosure.
  • the present embodiment utilizes the foregoing method provided by the embodiment of the present disclosure to use a drone based on a first link, a second link, and a second
  • the link quality of the three links determines the data transmission link and transmits the data as an example and is exemplarily illustrated in FIG. 1B. As shown in FIG. 2, the following steps are included:
  • step 201 determining the link quality of the first link between the drone and the drone controller, the link quality of the second link between the drone and the base station, and the base station and the drone
  • the link quality of the third link between the controllers is performed, and step 202, or step 203, or step 204 is performed according to the link quality of the first link, the second link, and the third link.
  • step 202 when the link quality of the first link is higher than the first threshold, the WIFI network communication link is determined as a data transmission link, and the data to be transmitted is sent through the WIFI network communication link, and the process ends.
  • the first threshold may be a relatively high value.
  • the first threshold is -60 dB
  • the link quality of the first link is higher than the first threshold, which may be used to indicate that the signal quality of the WIFI network is very good. It is enough to transmit the service data of the drone, so only the first link corresponding to the WIFI network can be determined as the transmission link.
  • step 203 when the link quality of the first link is lower than the second threshold, the link quality of the second link is higher than the fourth threshold, and the link quality of the third link is higher than the sixth threshold,
  • the mobile network communication link is determined as a data transmission link, and the data to be transmitted is transmitted to the base station through the second link, and the process ends.
  • the link quality of the first link is lower than the second threshold for indicating that the signal quality of the WIFI network is relatively poor, the data transmission rate is very low, and the link quality of the second link is higher than the fourth.
  • the threshold, the link quality of the third link is higher than the sixth threshold, and is used to indicate that the signal quality of the mobile network communication link is very good, so To avoid data loss when transmitting data through the WIFI network, only the mobile network communication link can be used as a data transmission link.
  • step 204 when the link quality of the first link is lower than the first threshold and higher than the second threshold, the link quality of the second link is higher than the third threshold and not higher than the fourth threshold, the third chain
  • the WIFI network communication link and the mobile network communication link are determined as data transmission links.
  • the second threshold is a value smaller than the first threshold, for example, the second threshold is -80 dB, the link quality of the first link is lower than the first threshold, and the second threshold is higher than the second threshold.
  • the signal quality of the WIFI network is generally used to transmit the service data of the drone, but the rate of transmitting the data may be relatively low; in an embodiment, the third threshold is a value smaller than the fourth threshold, and the fifth threshold is a value less than the sixth threshold, the link quality of the second link is higher than the third threshold and not higher than the fourth threshold, and the link quality of the third link is higher than the fifth threshold and not higher than the sixth threshold.
  • the signal quality indicating the mobile network is better. Therefore, in order to improve the data transmission efficiency of the data to be transmitted, the data to be transmitted can be simultaneously transmitted through the mobile network and the WIFI network.
  • the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, and the sixth threshold may be set by the base station; in an embodiment, the first threshold, the second threshold, and the first threshold The three thresholds, the fourth threshold, the fifth threshold, and the sixth threshold may also be set by the drone controller.
  • the third threshold may be the same as the fifth threshold, and the fourth threshold may be the same as the sixth threshold.
  • step 205 when the WIFI network communication link and the mobile network communication link are determined as data transmission links, the data to be transmitted is divided into two sets of data according to a set ratio.
  • the setting ratio may be set by the UAV controller, wherein the setting ratio may be a fixed value, such as 2:1, and the setting ratio may also be based on the link of the WIFI network communication link.
  • the quality of the link between the quality and the mobile network communication link is determined. For example, if the link quality of the WIFI network communication link is similar to the link quality of the mobile network communication link, the set ratio can be 1:1, and the WIFI network communication chain The link quality of the road is much higher than the link quality of the mobile network communication link, and the set ratio can be 3:1. The link quality of the WIFI network communication link is higher than the link quality of the mobile network communication link. Then the setting ratio can be 3:2.
  • the link quality of the mobile network communication link may be determined based on the poor quality link in the second link and the third link, for example, the link quality of the second link is -80 dB, and the third link The link quality is -75dB, which determines the link quality of the mobile network communication link is -80dB.
  • the data to be transmitted may be grouped according to the bit unit, for example, the data of the first half of the data to be transmitted is divided into a group of data, and the data of the last half of the bits is divided into another group of data, such as The first 6 bits out of 12 bits are taken as a set of data in the present disclosure, and the last 6 bits are taken as another set of data in the present disclosure.
  • step 206 one set of data of the two sets of data is sent to the drone controller through the first link, and another set of data is sent to the base station through the second link, and then the third link is passed by the base station. Send another set of data to the drone controller.
  • which group of data is sent to the base station via the mobile network communication link based on the link quality of the WIFI network communication link and the link quality of the mobile network communication link, which group of data is passed through the WIFI
  • the network communication link is sent to the drone controller. For example, when the link quality of the WIFI network communication link is higher than the link quality of the mobile network communication link, a group of data with a large amount of data can be communicated through the WIFI network.
  • the link is sent to the drone controller.
  • the network communication link acts as a data transmission link to save the cost of transmitting data using the mobile network; and if the link quality of the WIFI network communication link is general, and the link quality of the mobile network communication link is also normal, the WIFI can be simultaneously
  • the network communication link and the mobile network communication link act as data transmission links to ensure that the data of the drone can be quickly uploaded to the drone controller, while the link quality of the communication link in the WIFI network is relatively low, and the mobile When the link quality of the network communication link is very good, the mobile network communication link can be used as a data transmission link, thereby ensuring that the drone 20 can transmit to the drone controller 30 through the most suitable data transmission link. data.
  • the transmission link of the data transmission of the drone is adjusted according to the link quality of the first link, the second link, and the third link, thereby ensuring that the drone can transmit data through the optimal network. , effectively improve the performance of the drone when transmitting data.
  • FIG. 3 is a flowchart of still another data transmission method according to an exemplary embodiment; the embodiment uses the above method provided by the embodiment of the present disclosure to take the data amount of the data to be transmitted by the drone based on the drone, And the link quality of the WIFI network communication link, the link quality of the mobile network communication link, the data transmission link is determined, and the data is transmitted as an example.
  • the method includes the following steps:
  • step 301 the data quantity of the data to be transmitted is determined.
  • step 302 is performed.
  • step 305 is performed.
  • the amount of data of the data to be transmitted may be obtained based on the amount of data of the buffered data in the buffer, for example, the amount of data is 12 bits.
  • the first number of thresholds may be set by the drone controller and typically does not exceed the amount of data that the buffer can buffer.
  • step 302 the WIFI network communication link and the mobile network communication link are determined as data transmission links.
  • the amount of data of the data to be transmitted of the drone is relatively large, and the data may be divided into two groups in order to transmit the data as soon as possible.
  • the data is transmitted through the first link and the second link, respectively.
  • step 303 when the WIFI network communication link and the mobile network communication link are determined as data transmission links, the data to be transmitted is divided into two sets of data according to a set ratio.
  • step 304 one set of data of the two sets of data is sent to the drone controller through the first link, and another set of data is sent to the base station through the second link, and then the third link is passed by the base station. Send another set of data to the drone controller.
  • step 303 and step 304 can be referred to the description of step 205 and step 206 of the embodiment shown in FIG. 2, and details are not described herein.
  • step 305 the link quality of the first link, the second link, and the third link is compared, and the link quality of the second link and the third link are both greater than or equal to the link of the first link.
  • step 306 is performed, when the link quality unevenness of the second link and the third link is greater than or equal to the link quality of the first link, step 307 is performed.
  • the link quality of the second link and the third link is compared with the first.
  • the link quality of the link which in turn selects a link with better signal quality to transmit data. If the link quality of the second link and the third link are both greater than the link quality of the first link, it indicates that the link quality of the mobile network communication link is better than the link quality of the WIFI network communication link, if The quality of one link in the second link and the third link is smaller than the link quality of the first link, indicating that the link quality of the mobile network communication link is lower than the link quality of the WIFI network communication link.
  • step 306 the mobile network communication link is determined to be the data transmission link to determine the second link corresponding to the mobile network as the transmission link.
  • step 307 the WIFI network communication link is determined to be a data transmission link.
  • the size of the data volume of the data to be transmitted it may be first determined whether data is transmitted through one link or data is transmitted through two links, and when it is determined that data is transmitted through one link, a signal quality is preferentially selected.
  • a good link acts as a transmission link, so that the mobile network accessed by the drone can be better integrated with the resources of the WIFI network, and the WIFI network is passed between the UAV and the UAV controller in the related art.
  • the problem of low data transmission performance caused by data transmission improves the performance of data transmitted by drones.
  • FIG. 4 is a block diagram of a data transmission apparatus according to an exemplary embodiment. As shown in FIG. 4, the data transmission apparatus includes:
  • a first determining module 41 configured to determine a link quality of a first link between the drone and the drone controller, a link quality of a second link between the drone and the base station, and a base station
  • the link quality of the third link with the drone controller, the first link is a WIFI network communication link, and the second link and the third link are mobile network communication links;
  • the second determining module 42 is configured to determine a data transmission link based on a link quality of the first link, a link quality of the second link, and a link quality of the third link.
  • the drone can be based on the link quality of the first link between the UAV and the UAV controller, the link quality of the second link between the UAV and the base station, and the base station.
  • the link quality of the third link with the UAV controller dynamically adjusts the data transmission link for transmitting the data to be transmitted, so that the resources of the mobile network and the WIFI network accessed by the UAV can be better.
  • the fusion solves the problem of low data transmission performance caused by data transmission between the UAV and the UAV controller through the WIFI network in the related art.
  • FIG. 5 is a block diagram of another data transmission apparatus according to an exemplary embodiment. As shown in FIG. 5, based on the foregoing embodiment shown in FIG. 4, in an embodiment, the second determining module 42 includes :
  • the first determining submodule 421 is configured to determine the WIFI network communication link as a data transmission link when the link quality of the first link is higher than the first threshold;
  • the second determining submodule 422 is configured to: when the link quality of the first link is lower than the first threshold and higher than the second threshold, the link quality of the second link is higher than the third threshold and not higher than the fourth a threshold, when the link quality of the third link is higher than the fifth threshold and not higher than the sixth threshold, determining the WIFI network communication link and the mobile network communication link as a data transmission link;
  • the third determining submodule 423 is configured to: when the link quality of the first link is lower than the second threshold, the link quality of the second link is higher than the fourth threshold, and the link quality of the third link is higher than the first At six thresholds, the mobile network communication link is determined to be a data transmission link.
  • the transmission link of the data transmission of the drone is adjusted according to the link quality of the first link, the second link, and the third link, thereby ensuring that the drone can transmit data through the optimal network. , effectively improve the performance of the drone when transmitting data.
  • the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, and the sixth threshold are set by the base station; or
  • the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, and the sixth threshold are set by the drone controller.
  • each threshold used by the drone is disclosed, and each threshold can be set by the base station and the drone controller and indicated to the drone.
  • the second determining module 42 includes:
  • the fourth determining sub-module 424 is configured to determine the WIFI network communication link and the mobile network communication link as a data transmission link when the data amount of the data to be transmitted is greater than the first quantity threshold;
  • the comparing sub-module 425 is configured to compare link quality of the first link, the second link, and the third link when the data volume of the data to be transmitted is not greater than the first quantity threshold;
  • the fifth determining sub-module 426 is configured to determine the mobile network communication link as a data transmission link when the link quality of the second link and the third link are both greater than or equal to the link quality of the first link. ;
  • the sixth determining submodule 427 is configured to determine the WIFI network communication link as the data transmission chain when the link quality unevenness of the second link and the third link is greater than or equal to the link quality of the first link. road.
  • the amount of data of the data to be transmitted by the amount of data of the data to be transmitted, whether data is transmitted through one link or transmitted through two links can be first determined, and when it is determined that data is transmitted through one link, a signal quality is preferentially selected.
  • a good link acts as a transmission link, so that the mobile network accessed by the drone can be better integrated with the resources of the WIFI network, and the WIFI network is passed between the UAV and the UAV controller in the related art.
  • the problem of low data transmission performance caused by data transmission improves the performance of data transmitted by drones.
  • the apparatus further includes:
  • the grouping module 43 is configured to divide the data to be transmitted into two sets of data according to a set ratio when determining the WIFI network communication link and the mobile network communication link as the data transmission link;
  • the sending module 44 is configured to send one set of data of the two sets of data to the UAV controller through the first link, and send another set of data to the base station by using the second link, and then pass the third pass by the base station The link sends another set of data to the drone controller.
  • the set ratio is set by the drone controller.
  • the first determining module 41 is configured to receive the link quality of the third link transmitted by the drone controller.
  • a manner in which the drone acquires the link quality of the third link between the drone controller and the base station is disclosed, that is, it can be acquired from the drone controller.
  • FIG. 6 is a block diagram of a data transmission apparatus suitable for use in accordance with an exemplary embodiment.
  • device 600 can be a drone.
  • device 600 can include one or more of the following components: processing component 602, memory 604, power component 606, multimedia component 608, audio component 610, input/output (I/O) interface 612, sensor component 614, And a communication component 616.
  • processing component 602 memory 604, power component 606, multimedia component 608, audio component 610, input/output (I/O) interface 612, sensor component 614, And a communication component 616.
  • Processing component 602 typically controls the overall operation of device 600, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 602 can include one or more processors 620 to execute instructions to perform all or part of the steps described above.
  • processing component 602 can include one or more modules to facilitate interaction between component 602 and other components.
  • processing component 602 can include a multimedia module to facilitate interaction between multimedia component 608 and processing component 602.
  • Memory 604 is configured to store various types of data to support operation at device 600. Examples of such data include instructions for any application or method operating on device 600, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 604 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 606 provides power to various components of device 600.
  • Power component 606 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 600.
  • the multimedia component 608 includes a screen between the device 600 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 608 includes a front camera and/or a rear camera. When the device 600 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 610 is configured to output and/or input an audio signal.
  • audio component 610 includes a microphone (MIC) that is configured to receive an external audio signal when device 600 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal can be further stored in the memory
  • the reservoir 604 is either transmitted via the communication component 616.
  • audio component 610 also includes a speaker for outputting an audio signal.
  • the I/O interface 612 provides an interface between the processing component 602 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 614 includes one or more sensors for providing device 600 with a status assessment of various aspects.
  • sensor component 614 can detect an open/closed state of device 600, a relative positioning of components, such as a display and a keypad of device 600, and sensor component 614 can also detect a change in position of one component of device 600 or device 600, user The presence or absence of contact with device 600, device 600 orientation or acceleration/deceleration and temperature variation of device 600.
  • Sensor assembly 614 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 614 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 614 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 616 is configured to facilitate wired or wireless communication between device 600 and other devices.
  • the device 600 can access a wireless network based on a communication standard, such as WIFI, 2G or 3G, or a combination thereof.
  • communication component 616 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 616 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 600 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 604 comprising instructions executable by processor 620 of apparatus 600 to perform the above method.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • the processor 620 is configured to:
  • the link quality of the first link between the drone and the drone controller Determining the link quality of the first link between the drone and the drone controller, the link quality of the second link between the drone and the base station, and between the base station and the drone controller Link quality of the third link, the first chain
  • the road is a WIFI network communication link
  • the second link and the third link are mobile network communication links
  • the data transmission link is determined based on the link quality of the first link, the link quality of the second link, and the link quality of the third link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种数据传输方法、装置及无人机。数据传输方法包括:确定无人机与无人机控制器之间的第一链路的链路质量、无人机与基站之间的第二链路的链路质量,以及基站与无人机控制器之间的第三链路的链路质量;基于第一链路的链路质量、第二链路的链路质量、第三链路的链路质量,确定待传输数据的数据传输链路。本公开技术方案可以实现无人机基于所接入的移动网络通信链路和WIFI网络通信链路的链路质量,动态调整发送待传输数据的数据传输链路,从而可以将无人机所接入的移动网络与WIFI网络的资源更好地融合,解决了相关技术中无人机和无人机控制器之间通过WIFI网络传输数据的所导致的数据传输性能较低的问题。

Description

数据传输方法、装置及无人机 技术领域
本公开涉及通信技术领域,尤其涉及一种数据传输方法、装置及无人机。
背景技术
无人驾驶飞机(Unmanned Aerial Vehicle,简称为UAV)简称为“无人机”,已应用到某些特定的场景中,可以执行诸如高空摄像、无人探测侦察、测量测绘、公路勘测、城市规划、生态环保监控、科学考察、石油勘探、航空遥感、边防巡逻、森林防火、灾情评估等任务。
为了进一步拓展无人机的应用范围,第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)在对“无人机的增强支持”项目的讨论中提出了使蜂窝网络为无人机提供满足需求的服务更加标准化的研究。由于相关技术中,无人机和无人机控制器之间通常通过无线保真(Wireless-Fidelity,WIFI)网络传输数据,WIFI网络存在信道被占用、干扰大以及覆盖范围有限等问题,因此无人机和无人机控制器之间的数据传输性能较低,而基于蜂窝网络的数据传输具有可以达到连续覆盖以及数据传输有保障的特点,但是相关技术尚未解决如何控制无人机在蜂窝网络和WIFI网络中通过上行链路向无人机控制器传输数据的技术问题。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种数据传输方法、装置及无人机,用以通过WIFI网络和蜂窝网络两种网络提高无人机控制器与无人机之间的数据传输效率。
根据本公开实施例的第一方面,提供一种数据传输方法,所述方法包括:
确定所述无人机与无人机控制器之间的第一链路的链路质量、所述无人机与基站之间的第二链路的链路质量,以及所述基站与所述无人机控制器之间的第三链路的链路质量,所述第一链路为WIFI网络通信链路,所述第二链路和所述第三链路为移动网络通信链路;
基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定待传输数据的数据传输链路。
在一实施例中,所述基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定待传输数据的数据传输链路,包括:
当所述第一链路的链路质量高于第一阈值时,将所述WIFI网络通信链路确定为所述数据传输链路;
当所述第一链路的链路质量低于第一阈值并且高于第二阈值,所述第二链路的链路质量高于第三阈值并且不高于第四阈值,所述第三链路的链路质量高于第五阈值不高于第六阈值时,将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路;
当所述第一链路的链路质量低于所述第二阈值,所述第二链路的链路质量高于所述第四阈值并且所述第三链路的链路质量高于所述第六阈值时,将所述移动网络通信链路确定为所述数据传输链路。
在一实施例中,所述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值由基站设定;或者,
所述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值由无人机控制器设定。
在一实施例中,所述基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定待传输数据的数据传输链路,包括:
当所述待传输数据的数据量大于第一数量阈值时,将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路;
当所述待传输数据的数据量不大于所述第一数量阈值时,比较所述第一链路、所述第二链路和所述第三链路所述的链路质量;
当所述第二链路以及所述第三链路的链路质量均大于或者等于所述第一链路的链路质量时,将所述移动网络通信链路确定为所述数据传输链路;
当所述第二链路以及所述第三链路的链路质量不均大于或者等于所述第一链路的链路质量时,将所述WIFI网络通信链路确定为所述数据传输链路。
在一实施例中,所述方法还包括:
在将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路时,按照设定比例将待传输数据分为两组数据;
将所述两组数据中的一组数据通过第一链路发送至无人机控制器,并将另一组数据通过第二链路发送至基站,进而由基站通过所述第三链路将所述另一组数据发送至所述无人机控制器。
在一实施例中,所述设定比例由无人机控制器设定。
在一实施例中,所述确定所述基站与所述无人机控制器之间的第三链路的链路质量,包括:
接收所述无人机控制器发送的所述第三链路的链路质量。
根据本公开实施例的第二方面,提供一种数据传输装置,所述装置包括:
第一确定模块,被配置为确定所述无人机与无人机控制器之间的第一链路的链路质量、所述无人机与基站之间的第二链路的链路质量,以及所述基站与所述无人机控制器之间的第三链路的链路质量,所述第一链路为WIFI网络通信链路,所述第二链路和所述第三链路为移动网络通信链路;
第二确定模块,被配置为基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定数据传输链路。
在一实施例中,第二确定模块包括:
第一确定子模块,被配置为当所述第一链路的链路质量高于第一阈值时,将所述WIFI网络通信链路确定为所述数据传输链路;
第二确定子模块,被配置为当所述第一链路的链路质量低于第一阈值并且高于第二阈值,所述第二链路的链路质量高于第三阈值并且不高于第四阈值,所述第三链路的链路质量高于第五阈值不高于第六阈值时,将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路;
第三确定子模块,被配置为当所述第一链路的链路质量低于所述第二阈值,所述第二链路的链路质量高于所述第四阈值并且所述第三链路的链路质量高于所述第六阈值时,将所述移动网络通信链路确定为所述数据传输链路。
在一实施例中,所述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值由基站设定;或者,
所述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值由无人机控制器设定。
在一实施例中,所述第二确定模块包括:
第四确定子模块,被配置为当所述待传输数据的数据量大于第一数量阈值时,将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路;
比较子模块,被配置为当所述待传输数据的数据量不大于所述第一数量阈值时,比较所述第一链路、所述第二链路和所述第三链路所述的链路质量;
第五确定子模块,被配置为当所述第二链路以及所述第三链路的链路质量均大 于或者等于所述第一链路的链路质量时,将所述移动网络通信链路确定为所述数据传输链路;
第六确定子模块,被配置为当所述第二链路以及所述第三链路的链路质量不均大于或者等于所述第一链路的链路质量时,将所述WIFI网络通信链路确定为所述数据传输链路。
在一实施例中,所述装置还包括:
分组模块,被配置为在将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路时,按照设定比例将待传输数据分为两组数据;
发送模块,被配置为将所述两组数据中的一组数据通过第一链路发送至无人机控制器,并将另一组数据通过第二链路发送至基站,进而由基站通过所述第三链路将所述另一组数据发送至所述无人机控制器。
在一实施例中,所述设定比例由无人机控制器设定。
在一实施例中,所述第一确定模块被配置为接收所述无人机控制器发送的所述第三链路的链路质量。
根据本公开实施例的第三方面,提供一种无人机,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
确定所述无人机与无人机控制器之间的第一链路的链路质量、所述无人机与基站之间的第二链路的链路质量,以及所述基站与所述无人机控制器之间的第三链路的链路质量,所述第一链路为WIFI网络通信链路,所述第二链路和所述第三链路为移动网络通信链路;
基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定数据传输链路。
根据本公开实施例的第四方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述指令被处理器执行时实现以下步骤:
确定所述无人机与无人机控制器之间的第一链路的链路质量、所述无人机与基站之间的第二链路的链路质量,以及所述基站与所述无人机控制器之间的第三链路的链路质量,所述第一链路为WIFI网络通信链路,所述第二链路和所述第三链路为移动网络通信链路;
基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链 路质量,确定数据传输链路。
本公开的实施例提供的技术方案可以包括以下有益效果:
无人机所接入的移动网络与WIFI网络是两个独立的通信网络,本实施例通过上述技术方案,无人机可基于无人机与无人机控制器之间的第一链路的链路质量、无人机与基站之间的第二链路的链路质量,以及基站与所述无人机控制器之间的第三链路的链路质量,动态调整发送待传输数据的数据传输链路,从而可以将无人机所接入的移动网络与WIFI网络的资源更好地融合,解决了相关技术中无人机和无人机控制器之间通过WIFI网络传输数据的所导致的数据传输性能较低的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A是根据一示例性实施例示出的一种数据传输方法的流程图。
图1B是根据一示例性实施例示出的一种数据传输方法的场景图。
图2是根据一示例性实施例示出的另一种数据传输方法的流程图。
图3是根据一示例性实施例示出的又一种数据传输方法的流程图。
图4是根据一示例性实施例示出的一种数据传输装置的框图。
图5是根据一示例性实施例示出的另一种数据传输装置的框图。
图6是根据一示例性实施例示出的一种适用于数据传输装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1A是根据一示例性实施例示出的一种数据传输方法的流程图,图1B是根据一示例性实施例示出的一种数据传输方法的场景图;该数据传输方法可以应用在无人机上,如图1A所示,该数据传输方法包括以下步骤101-102:
在步骤101中,确定无人机与无人机控制器之间的第一链路的链路质量、无人 机与基站之间的第二链路的链路质量,以及基站与无人机控制器之间的第三链路的链路质量。
在一实施例中,第一链路为WIFI网络通信链路,无人机可以通过WIFI网络中的第一链路直接将数据发送至无人机控制器;在一实施例中,第二链路和第三链路为移动网路通信链路,无人机可以通过移动网络中的第二链路将数据发送至基站,再由基站通过第三基站将数据发送至无人机控制器。
在一实施例中,对于第一链路、第二链路,无人机可通过检测第一链路和第二链路上传输的参考信号的信号功率确定对应链路的链路质量;在一实施例中,对于第三链路,无人机可接收无人机控制器发送的第三链路的链路质量,无人机控制器可周期性向无人机发送第三链路的链路质量,也可在接收到无人机发送的获取第三链路的链路质量的请求时向无人机发送第三链路的链路质量。
在步骤102中,基于第一链路的链路质量、第二链路的链路质量、第三链路的链路质量,确定待传输数据的数据传输链路。
在一实施例中,待传输数据可以为无人机的分组数据汇聚协议(Packet Data Convergence Protocol,简称为PDCP)的缓存器中缓存的需要发送给无人机控制器的数据包。
在一实施例中,由于WIFI网络为免费网络,移动网络为计费网络,因此可以在第一链路的链路质量比较高时,优先将WIFI网络通信链路,也即第一链路确定为数据传输链路,而在第一链路的链路质量较低,而第二链路和第三链路的链路质量都较高时,可将WIFI网络通信链路和移动网络通信链路,也即第一链路和第二链路均确定为数据传输链路,或者只将移动网络通信链路确定为数据传输链路。基于第一链路、第二链路、第三链路的链路质量,确定待传输数据的数据传输链路的具体实现方式,可参见图2-图3所示实施例的描述,这里先不详述。
在一实施例中,在确定出待传输数据的数据传输链路之后,即可通过传输链路发送该待传输数据。
在一示例性场景中,如图1B所示,以移动网络为长期演进(Long Term Evolution,简称为LTE)网络并且基站为演进型基站(eNB)为例进行示例性说明(移动网络不限制为LTE网络,还可以为5G等其他的蜂窝网络),在图1B所示的场景中,包括eNB10、无人机20、无人机控制器30,其中,无人机20位于eNB10的覆盖范围内,并且与无人机控制器30位于同一个WIFI网络中。基于第一链路的链路质量、第二链路的链路质量和第三链路的链路质量,在一种情形下,无人机20可通过WIFI网 络中的第一链路141向无人机控制器30传输数据,当在第一链路141的链路质量比较低时,为了提升无人机20传输数据的效率,可以将部分数据或者全部数据通过第二链路142传输给eNB10,eNB10再将这部分数据或者全部数据通过第三链路143转发给无人机控制器30。有效提升了无人机20和无人机控制器30之间传输数据的效率。
无人机所接入的移动网络与WIFI网络是两个独立的通信网络,本实施例通过上述步骤101和步骤102,无人机可基于无人机与无人机控制器之间的第一链路的链路质量、无人机与基站之间的第二链路的链路质量,以及基站与无人机控制器之间的第三链路的链路质量,动态调整发送待传输数据的数据传输链路,从而可以将无人机所接入的移动网络与WIFI网络的资源更好地融合,解决了相关技术中无人机和无人机控制器之间通过WIFI网络传输数据的所导致的数据传输性能较低的问题。
具体如何传输数据的,请参考后续实施例。
下面以具体实施例来说明本公开实施例提供的技术方案。
图2是根据一示例性实施例示出的另一种数据传输方法的流程图;本实施例利用本公开实施例提供的上述方法,以无人机基于第一链路、第二链路、第三链路的链路质量确定数据传输链路并传输数据为例并结合图1B进行示例性说明,如图2所示,包括如下步骤:
在步骤201中,确定无人机与无人机控制器之间的第一链路的链路质量、无人机与基站之间的第二链路的链路质量,以及基站与无人机控制器之间的第三链路的链路质量,并根据第一链路、第二链路、第三链路的链路质量,对应执行步骤202,或者步骤203,或者步骤204。
在步骤202中,当第一链路的链路质量高于第一阈值时,将WIFI网络通信链路确定为数据传输链路,并通过WIFI网络通信链路发送待传输数据,流程结束。
在一实施例中,第一阈值可以为一个比较高的数值,例如,第一阈值为-60dB,第一链路的链路质量高于第一阈值可以用于指示WIFI网络的信号质量非常好,足以用来传输无人机的业务数据,因此可只将WIFI网络对应的第一链路确定为传输链路。
在步骤203中,当第一链路的链路质量低于第二阈值,第二链路的链路质量高于第四阈值并且第三链路的链路质量高于第六阈值时,将移动网络通信链路确定为数据传输链路,并通过第二链路发送待传输数据至基站,流程结束。
在一实施例中,第一链路的链路质量低于第二阈值用于指示WIFI网络的信号质量比较差,数据传输的速率非常低,而第二链路的链路质量高于第四阈值、第三链路的链路质量高于第六阈值用于指示移动网络通信链路的信号质量非常好,因此为了 避免通过WIFI网络传输数据时导致数据丢失,可只将移动网络通信链路作为数据传输链路。
在步骤204中,当第一链路的链路质量低于第一阈值并且高于第二阈值,第二链路的链路质量高于第三阈值并且不高于第四阈值,第三链路的链路质量高于第五阈值不高于第六阈值时,将WIFI网络通信链路和移动网络通信链路确定为数据传输链路。
在一实施例中,第二阈值为一个小于第一阈值的数值,例如,第二阈值为-80dB,第一链路的链路质量低于第一阈值并且高于第二阈值可以用于指示WIFI网络的信号质量一般,能够用来传输无人机的业务数据,但是传输数据的速率可能会比较低;在一实施例中,第三阈值为一个小于第四阈值的数值,第五阈值为一个小于第六阈值的数值,第二链路的链路质量高于第三阈值并且不高于第四阈值以及第三链路的链路质量高于第五阈值不高于第六阈值可以用于指示移动网络的信号质量比较好。因此,为了提高待传输数据的数据传输效率,可将待传输数据同时通过移动网络和WIFI网络进行传输。
在一实施例中,第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值可以由基站设定;在一实施例中,第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值还可以由无人机控制器设定。
在一实施例中,第三阈值可以与第五阈值相同,第四阈值可以与第六阈值相同。
在步骤205中,在将WIFI网络通信链路和移动网络通信链路确定为数据传输链路时,按照设定比例将待传输数据分为两组数据。
在一实施例中,设定比例可以由无人机控制器设定,其中,设定比例可以为一个固定值,如为2:1,设定比例还可以基于WIFI网络通信链路的链路质量和移动网络通信链路的链路质量确定,例如,WIFI网络通信链路的链路质量和移动网络通信链路的链路质量相似,则设定比例可以为1:1,WIFI网络通信链路的链路质量比移动网络通信链路的链路质量高很多,则设定比例可以为3:1,WIFI网络通信链路的链路质量比移动网络通信链路的链路质量高一点,则设定比例可以为3:2。其中,移动网络通信链路的链路质量可以基于第二链路和第三链路中质量较差的链路确定,例如,第二链路的链路质量为-80dB,而第三链路的链路质量为-75dB,则可确定移动网络通信链路的链路质量为-80dB。
在一实施例中,可按照比特为单位对待传输数据进行分组,例如,将待传输数据的前一半比特的数据划分为一组数据,后一半比特的数据划分为另一组数据,如可 以将12比特中的前6比特作为本公开中的一组数据,后6比特作为本公开中的另一组数据。
在步骤206中,将两组数据中的一组数据通过第一链路发送至无人机控制器,并将另一组数据通过第二链路发送至基站,进而由基站通过第三链路将另一组数据发送至无人机控制器。
在一实施例中,可基于WIFI网络通信链路的链路质量和移动网络通信链路的链路质量确定将哪一组数据通过移动网络通信链路发送至基站,将哪一组数据通过WIFI网络通信链路发送至无人机控制器,例如,在WIFI网络通信链路的链路质量高于移动网络通信链路的链路质量时,可将数据量多的一组数据通过WIFI网络通信链路发送至无人机控制器。
在一示例性场景中,如图1B所示,在无人机20同时能够接入到移动网络与WIFI网络的情况下,如果WIFI网络通信链路的链路质量非常好,则可只将WIFI网络通信链路作为数据传输链路,以节省使用移动网络传输数据的费用;而如果WIFI网络通信链路的链路质量一般,移动网络通信链路的链路质量也一般时,可同时将WIFI网络通信链路和移动网络通信链路作为数据传输链路,以确保无人机的数据能快速地上传至无人机控制器,而在WIFI网络通信链路的链路质量比较低,而移动网络通信链路的链路质量非常好时,可将移动网络通信链路作为数据传输链路,由此可以确保无人机20能够通过最合适的数据传输链路向无人机控制器30传输数据。
本实施例中,根据第一链路、第二链路、第三链路的链路质量来调整无人机传输数据的传输链路,从而可以确保无人机能够通过最佳的网络传输数据,有效提升无人机传输数据时的性能。
图3是根据一示例性实施例示出的又一种数据传输方法的流程图;本实施例利用本公开实施例提供的上述方法,以无人机基于无人机的待传输数据的数据量,以及WIFI网络通信链路的链路质量、移动网络通信链路的链路质量确定数据传输链路并传输数据为例进行示例性说明,如图3所示,包括如下步骤:
在步骤301中,确定待传输数据的数据量,当待传输数据的数据量大于第一数量阈值时,执行步骤302,当待传输数据的数据量不大于第一数量阈值时,执行步骤305。
在一实施例中,待传输数据的数据量可以基于缓存器中的缓存数据的数据量得到,例如,数据量为12比特。在一实施例中,第一数量阈值可以由无人机控制器设定,通常不会超过缓存器所能缓存的数据的数据量。
在步骤302中,将WIFI网络通信链路和移动网络通信链路确定为数据传输链路。
在一实施例中,在待传输数据的数据量大于第一数量阈值时,说明无人机的待传输数据的数据量比较大,为了尽快地传输完这些数据,可将这些数据分为两组数据,分别通过第一链路和第二链路进行发送。
在步骤303中,在将WIFI网络通信链路和移动网络通信链路确定为数据传输链路时,按照设定比例将待传输数据分为两组数据。
在步骤304中,将两组数据中的一组数据通过第一链路发送至无人机控制器,并将另一组数据通过第二链路发送至基站,进而由基站通过第三链路将另一组数据发送至无人机控制器。
在一实施例中,步骤303和步骤304的描述可参见图2所示实施例的步骤205和步骤206的描述,这里不再详述。
在步骤305中,比较第一链路、第二链路、第三链路的链路质量,当第二链路以及第三链路的链路质量均大于或者等于第一链路的链路质量时,执行步骤306,当第二链路以及第三链路的链路质量不均大于或者等于第一链路的链路质量时,执行步骤307。
在一实施例中,在数据量小于第一数量阈值时,说明待传输数据比较少,因此可只通过一个链路传输数据,比较第二链路和第三链路的链路质量与第一链路的链路质量,进而选择一个信号质量更好的链路传输数据。如果第二链路和第三链路的链路质量均大于第一链路的链路质量,则说明移动网络通信链路的链路质量好于WIFI网络通信链路的链路质量,如果第二链路和第三链路中有一个链路的质量小于第一链路的链路质量,则说明移动网络通信链路的链路质量低于WIFI网络通信链路的链路质量。
在步骤306中,将移动网络通信链路确定为数据传输链路将移动网络对应的第二链路确定为传输链路。
在步骤307中,将WIFI网络通信链路确定为数据传输链路。
本实施例中,通过待传输数据的数据量的大小,可以首先确定通过一个链路传输数据还是通过两个链路传输数据,并在确定通过一个链路传输数据时,优先选择一个信号质量更好的链路作为传输链路,从而可以将无人机所接入的移动网络与WIFI网络的资源更好地融合,解决了相关技术中无人机和无人机控制器之间通过WIFI网络传输数据的所导致的数据传输性能较低的问题,提升了无人机传输数据的性能。
图4是根据一示例性实施例示出的一种数据传输装置的框图,如图4所示,数据传输装置包括:
第一确定模块41,被配置为确定无人机与无人机控制器之间的第一链路的链路质量、无人机与基站之间的第二链路的链路质量,以及基站与无人机控制器之间的第三链路的链路质量,第一链路为WIFI网络通信链路,第二链路和第三链路为移动网络通信链路;
第二确定模块42,被配置为基于第一链路的链路质量、第二链路的链路质量、第三链路的链路质量,确定数据传输链路。
本实施例中,无人机可基于无人机与无人机控制器之间的第一链路的链路质量、无人机与基站之间的第二链路的链路质量,以及基站与无人机控制器之间的第三链路的链路质量,动态调整发送待传输数据的数据传输链路,从而可以将无人机所接入的移动网络与WIFI网络的资源更好地融合,解决了相关技术中无人机和无人机控制器之间通过WIFI网络传输数据的所导致的数据传输性能较低的问题
图5是根据一示例性实施例示出的另一种数据传输装置的框图,如图5所示,在上述图4所示实施例的基础上,在一实施例中,第二确定模块42包括:
第一确定子模块421,被配置为当第一链路的链路质量高于第一阈值时,将WIFI网络通信链路确定为数据传输链路;
第二确定子模块422,被配置为当第一链路的链路质量低于第一阈值并且高于第二阈值,第二链路的链路质量高于第三阈值并且不高于第四阈值,第三链路的链路质量高于第五阈值不高于第六阈值时,将WIFI网络通信链路和移动网络通信链路确定为数据传输链路;
第三确定子模块423,被配置为当第一链路的链路质量低于第二阈值,第二链路的链路质量高于第四阈值并且第三链路的链路质量高于第六阈值时,将移动网络通信链路确定为数据传输链路。
该实施例中,根据第一链路、第二链路、第三链路的链路质量来调整无人机传输数据的传输链路,从而可以确保无人机能够通过最佳的网络传输数据,有效提升无人机传输数据时的性能。
在一实施例中,第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值由基站设定;或者,
第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值由无人机控制器设定。
该实施例中,公开了无人机使用的每一个阈值的获取方式,每一个阈值均可以由基站和无人机控制器设定,并指示给无人机。
在一实施例中,第二确定模块42包括:
第四确定子模块424,被配置为当待传输数据的数据量大于第一数量阈值时,将WIFI网络通信链路和移动网络通信链路确定为数据传输链路;
比较子模块425,被配置为当待传输数据的数据量不大于第一数量阈值时,比较第一链路、第二链路和第三链路的链路质量;
第五确定子模块426,被配置为当第二链路以及第三链路的链路质量均大于或者等于第一链路的链路质量时,将移动网络通信链路确定为数据传输链路;
第六确定子模块427,被配置为当第二链路以及第三链路的链路质量不均大于或者等于第一链路的链路质量时,将WIFI网络通信链路确定为数据传输链路。
该实施例中,通过待传输数据的数据量的大小,可以首先确定通过一个链路传输数据还是通过两个链路传输数据,并在确定通过一个链路传输数据时,优先选择一个信号质量更好的链路作为传输链路,从而可以将无人机所接入的移动网络与WIFI网络的资源更好地融合,解决了相关技术中无人机和无人机控制器之间通过WIFI网络传输数据的所导致的数据传输性能较低的问题,提升了无人机传输数据的性能。
在一实施例中,装置还包括:
分组模块43,被配置为在将WIFI网络通信链路和移动网络通信链路确定为数据传输链路时,按照设定比例将待传输数据分为两组数据;
发送模块44,被配置为将两组数据中的一组数据通过第一链路发送至无人机控制器,并将另一组数据通过第二链路发送至基站,进而由基站通过第三链路将另一组数据发送至无人机控制器。
在一实施例中,设定比例由无人机控制器设定。
该实施例中,公开了在确定通过WIFI网络通信链路和移动网络通信链路两个链路传输数据时,将待传输数据分为两组,并将两组数据分别通过WIFI网络通信链路和移动网络通信链路传输的实现方式。
在一实施例中,第一确定模块41被配置为接收无人机控制器发送的第三链路的链路质量。
该实施例中,公开了无人机获取无人机控制器和基站之间的第三链路的链路质量的方式,也即,可从无人机控制器获取。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方 法的实施例中进行了详细描述,此处将不做详细阐述说明。
图6是根据一示例性实施例示出的一种适用于数据传输装置的框图。例如,装置600可以是无人机。
参照图6,装置600可以包括以下一个或多个组件:处理组件602,存储器604,电源组件606,多媒体组件608,音频组件610,输入/输出(I/O)的接口612,传感器组件614,以及通信组件616。
处理组件602通常控制装置600的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件602可以包括一个或多个处理器620来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件602可以包括一个或多个模块,便于处理组件602和其他组件之间的交互。例如,处理部件602可以包括多媒体模块,以方便多媒体组件608和处理组件602之间的交互。
存储器604被配置为存储各种类型的数据以支持在设备600的操作。这些数据的示例包括用于在装置600上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件606为装置600的各种组件提供电力。电力组件606可以包括电源管理系统,一个或多个电源,及其他与为装置600生成、管理和分配电力相关联的组件。
多媒体组件608包括在装置600和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件608包括一个前置摄像头和/或后置摄像头。当设备600处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件610被配置为输出和/或输入音频信号。例如,音频组件610包括一个麦克风(MIC),当装置600处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存 储器604或经由通信组件616发送。在一些实施例中,音频组件610还包括一个扬声器,用于输出音频信号。
I/O接口612为处理组件602和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件614包括一个或多个传感器,用于为装置600提供各个方面的状态评估。例如,传感器组件614可以检测到设备600的打开/关闭状态,组件的相对定位,例如组件为装置600的显示器和小键盘,传感器组件614还可以检测装置600或装置600一个组件的位置改变,用户与装置600接触的存在或不存在,装置600方位或加速/减速和装置600的温度变化。传感器组件614可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件614还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件614还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件616被配置为便于装置600和其他设备之间有线或无线方式的通信。装置600可以接入基于通信标准的无线网络,如WIFI,2G或3G,或它们的组合。在一个示例性实施例中,通信部件616经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件616还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置600可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器604,上述指令可由装置600的处理器620执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
其中,处理器620被配置为:
确定无人机与无人机控制器之间的第一链路的链路质量、无人机与基站之间的第二链路的链路质量,以及基站与无人机控制器之间的第三链路的链路质量,第一链 路为WIFI网络通信链路,第二链路和第三链路为移动网络通信链路;
基于第一链路的链路质量、第二链路的链路质量、第三链路的链路质量,确定数据传输链路。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    确定所述无人机与无人机控制器之间的第一链路的链路质量、所述无人机与基站之间的第二链路的链路质量,以及所述基站与所述无人机控制器之间的第三链路的链路质量,所述第一链路为WIFI网络通信链路,所述第二链路和所述第三链路为移动网络通信链路;
    基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定待传输数据的数据传输链路。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定待传输数据的数据传输链路,包括:
    当所述第一链路的链路质量高于第一阈值时,将所述WIFI网络通信链路确定为所述数据传输链路;
    当所述第一链路的链路质量低于第一阈值并且高于第二阈值,所述第二链路的链路质量高于第三阈值并且不高于第四阈值,所述第三链路的链路质量高于第五阈值不高于第六阈值时,将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路;
    当所述第一链路的链路质量低于所述第二阈值,所述第二链路的链路质量高于所述第四阈值并且所述第三链路的链路质量高于所述第六阈值时,将所述移动网络通信链路确定为所述数据传输链路。
  3. 根据权利要求2所述的方法,其特征在于,所述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值由基站设定;或者,
    所述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值由无人机控制器设定。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定待传输数据的数据传输链路,包括:
    当所述待传输数据的数据量大于第一数量阈值时,将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路;
    当所述待传输数据的数据量不大于所述第一数量阈值时,比较所述第一链路、所述第二链路和所述第三链路所述的链路质量;
    当所述第二链路以及所述第三链路的链路质量均大于或者等于所述第一链路的链路质量时,将所述移动网络通信链路确定为所述数据传输链路;
    当所述第二链路以及所述第三链路的链路质量不均大于或者等于所述第一链路的链路质量时,将所述WIFI网络通信链路确定为所述数据传输链路。
  5. 根据权利要求2或者4所述的方法,其特征在于,所述方法还包括:
    在将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路时,按照设定比例将待传输数据分为两组数据;
    将所述两组数据中的一组数据通过第一链路发送至无人机控制器,并将另一组数据通过第二链路发送至基站,进而由基站通过所述第三链路将所述另一组数据发送至所述无人机控制器。
  6. 根据权利要求5所述的方法,其特征在于,所述设定比例由无人机控制器设定。
  7. 根据权利要求1所述的方法,其特征在于,所述确定所述基站与所述无人机控制器之间的第三链路的链路质量,包括:
    接收所述无人机控制器发送的所述第三链路的链路质量。
  8. 一种数据传输装置,其特征在于,所述装置包括:
    第一确定模块,被配置为确定所述无人机与无人机控制器之间的第一链路的链路质量、所述无人机与基站之间的第二链路的链路质量,以及所述基站与所述无人机控制器之间的第三链路的链路质量,所述第一链路为WIFI网络通信链路,所述第二链路和所述第三链路为移动网络通信链路;
    第二确定模块,被配置为基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定数据传输链路。
  9. 根据权利要求8所述的装置,其特征在于,所述第二确定模块包括:
    第一确定子模块,被配置为当所述第一链路的链路质量高于第一阈值时,将所述WIFI网络通信链路确定为所述数据传输链路;
    第二确定子模块,被配置为当所述第一链路的链路质量低于第一阈值并且高于第二阈值,所述第二链路的链路质量高于第三阈值并且不高于第四阈值,所述第三链路的链路质量高于第五阈值不高于第六阈值时,将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路;
    第三确定子模块,被配置为当所述第一链路的链路质量低于所述第二阈值,所述第二链路的链路质量高于所述第四阈值并且所述第三链路的链路质量高于所述第六阈值时,将所述移动网络通信链路确定为所述数据传输链路。
  10. 根据权利要求9所述的装置,其特征在于,所述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值由基站设定;或者,
    所述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值由无人机控制器设定。
  11. 根据权利要求8所述的方法,其特征在于,所述第二确定模块包括:
    第四确定子模块,被配置为当所述待传输数据的数据量大于第一数量阈值时,将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路;
    比较子模块,被配置为当所述待传输数据的数据量不大于所述第一数量阈值时,比较所述第一链路、所述第二链路和所述第三链路所述的链路质量;
    第五确定子模块,被配置为当所述第二链路以及所述第三链路的链路质量均大于或者等于所述第一链路的链路质量时,将所述移动网络通信链路确定为所述数据传输链路;
    第六确定子模块,被配置为当所述第二链路以及所述第三链路的链路质量不均大于或者等于所述第一链路的链路质量时,将所述WIFI网络通信链路确定为所述数据传输链路。
  12. 根据权利要求9或者11所述的装置,其特征在于,所述装置还包括:
    分组模块,被配置为在将所述WIFI网络通信链路和所述移动网络通信链路确定为所述数据传输链路时,按照设定比例将待传输数据分为两组数据;
    发送模块,被配置为将所述两组数据中的一组数据通过第一链路发送至无人机控制器,并将另一组数据通过第二链路发送至基站,进而由基站通过所述第三链路将所述另一组数据发送至所述无人机控制器。
  13. 根据权利要求12所述的装置,其特征在于,所述设定比例由无人机控制器设定。
  14. 根据权利要求8所述的装置,其特征在于,所述第一确定模块被配置为接收所述无人机控制器发送的所述第三链路的链路质量。
  15. 一种无人机,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    确定所述无人机与无人机控制器之间的第一链路的链路质量、所述无人机与基站之间的第二链路的链路质量,以及所述基站与所述无人机控制器之间的第三链路的链 路质量,所述第一链路为WIFI网络通信链路,所述第二链路和所述第三链路为移动网络通信链路;
    基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定数据传输链路。
  16. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述指令被处理器执行时实现以下步骤:
    确定所述无人机与无人机控制器之间的第一链路的链路质量、所述无人机与基站之间的第二链路的链路质量,以及所述基站与所述无人机控制器之间的第三链路的链路质量,所述第一链路为WIFI网络通信链路,所述第二链路和所述第三链路为移动网络通信链路;
    基于所述第一链路的链路质量、所述第二链路的链路质量、所述第三链路的链路质量,确定数据传输链路。
PCT/CN2017/115235 2017-12-08 2017-12-08 数据传输方法、装置及无人机 WO2019109339A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/115235 WO2019109339A1 (zh) 2017-12-08 2017-12-08 数据传输方法、装置及无人机
CN201780002119.4A CN108401501B (zh) 2017-12-08 2017-12-08 数据传输方法、装置及无人机
US16/766,492 US11610491B2 (en) 2017-12-08 2017-12-08 Data transmission method and apparatus, and unmanned aerial vehicle
EP17933980.9A EP3716688A4 (en) 2017-12-08 2017-12-08 DATA TRANSFER METHOD AND DEVICE AND UNMANNED AIRCRAFT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/115235 WO2019109339A1 (zh) 2017-12-08 2017-12-08 数据传输方法、装置及无人机

Publications (1)

Publication Number Publication Date
WO2019109339A1 true WO2019109339A1 (zh) 2019-06-13

Family

ID=63095100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115235 WO2019109339A1 (zh) 2017-12-08 2017-12-08 数据传输方法、装置及无人机

Country Status (4)

Country Link
US (1) US11610491B2 (zh)
EP (1) EP3716688A4 (zh)
CN (1) CN108401501B (zh)
WO (1) WO2019109339A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109257799A (zh) * 2018-10-09 2019-01-22 清华大学 适用于机场数据通信的自适应网络选择方法
CN109326110B (zh) * 2018-10-18 2020-05-22 朱泉昊 无人机控制装置、无人机、无人机系统及控制方法
WO2020156211A1 (zh) * 2019-01-31 2020-08-06 华为技术有限公司 数据发送方法及终端设备
CN110290544A (zh) * 2019-05-24 2019-09-27 菜鸟智能物流控股有限公司 数据传输装置和方法以及电子设备
CN112770376B (zh) * 2020-12-29 2022-05-24 深圳市微网力合信息技术有限公司 一种基于5G与Wi-Fi 6的通信方法及通信设备
US11582690B2 (en) * 2021-01-19 2023-02-14 Qualcomm Incorporated Cell selection, network selection, tracking area management, and paging for aerial operation
CN113380074B (zh) * 2021-08-13 2021-11-05 中国民用航空总局第二研究所 通航低空监视系统及方法
CN113993103B (zh) * 2021-10-22 2024-01-19 安徽江淮汽车集团股份有限公司 用于车载终端的网络自动互联方法
CN114448496B (zh) * 2022-03-21 2022-08-16 北京国电高科科技有限公司 一种应用于卫星物联网半双工终端的数据传输方法与系统
CN116744267B (zh) * 2022-11-16 2024-05-21 荣耀终端有限公司 数据处理方法、系统、电子设备和存储介质
US11985186B1 (en) * 2023-02-10 2024-05-14 Nanjing University Of Posts And Telecommunications Method of drone-assisted caching in in-vehicle network based on geographic location

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070284474A1 (en) * 2006-06-09 2007-12-13 The Insitu Group, Inc. Wirelessly controlling unmanned aircraft and accessing associated surveillance data
CN105052203A (zh) * 2014-02-10 2015-11-11 深圳市大疆创新科技有限公司 自适应通信模式切换
US20160029243A1 (en) * 2014-07-22 2016-01-28 Honda Motor Co., Ltd. In-vehicle communication device
CN105682158A (zh) * 2016-01-05 2016-06-15 陈昊 一种无人飞行器的通信控制方法及装置
CN107079365A (zh) * 2017-01-17 2017-08-18 深圳市大疆创新科技有限公司 无人机、遥控器及其控制方法
CN107396426A (zh) * 2016-05-16 2017-11-24 天津航天中为数据系统科技有限公司 用于无人机的机载终端及相应的数据传输系统和传输方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5887023A (en) * 1995-11-29 1999-03-23 Nec Corporation Method and apparatus for a frequency hopping-spread spectrum communication system
US9306657B2 (en) * 2005-04-08 2016-04-05 The Boeing Company Soft handoff method and apparatus for mobile vehicles using directional antennas
WO2015135144A1 (zh) * 2014-03-11 2015-09-17 深圳市大疆创新科技有限公司 无人机的定位方法及无人机、个人无线终端、定位系统
EP3192298A4 (en) * 2014-09-08 2018-02-28 Liveu Ltd. Methods and systems for managing bonded communications across multiple communication networks
US10586464B2 (en) * 2015-07-29 2020-03-10 Warren F. LeBlanc Unmanned aerial vehicles
US10123371B2 (en) 2015-10-02 2018-11-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for LTE-WAN aggregation
US9622133B1 (en) * 2015-10-23 2017-04-11 The Florida International University Board Of Trustees Interference and mobility management in UAV-assisted wireless networks
CN106982345A (zh) * 2015-12-31 2017-07-25 沈玮 通过uav网络来促进广角视野视频会议
WO2017137632A1 (en) * 2016-02-12 2017-08-17 Aeronet Global Communications Labs Dac System and method for managing data connectivity links for aviation vehicles
CN105764079A (zh) 2016-02-19 2016-07-13 努比亚技术有限公司 数据传输方法及装置
US20170351254A1 (en) * 2016-06-07 2017-12-07 Hunter Arey LISTWIN Unmanned aerial vehicle control system
CN106716871A (zh) 2016-11-28 2017-05-24 深圳市大疆创新科技有限公司 控制方法、遥控器及无人机
US20180270679A1 (en) * 2017-03-20 2018-09-20 Nokia Technologies Oy Reliability-based multi-link communications
CN110800221B (zh) * 2017-05-05 2022-04-08 瑞典爱立信有限公司 用于管理无人航空载具的方法、装置和介质
CN107248881A (zh) * 2017-06-15 2017-10-13 北京佰才邦技术有限公司 一种信息传输的方法及无人机
CN107380443A (zh) * 2017-09-08 2017-11-24 深圳市道通智能航空技术有限公司 无人机控制系统及实现方法、地面控制设备和中继站
US10554375B2 (en) * 2017-09-11 2020-02-04 Micron Technology, Inc. Full duplex device-to-device cooperative communication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070284474A1 (en) * 2006-06-09 2007-12-13 The Insitu Group, Inc. Wirelessly controlling unmanned aircraft and accessing associated surveillance data
CN105052203A (zh) * 2014-02-10 2015-11-11 深圳市大疆创新科技有限公司 自适应通信模式切换
US20160029243A1 (en) * 2014-07-22 2016-01-28 Honda Motor Co., Ltd. In-vehicle communication device
CN105682158A (zh) * 2016-01-05 2016-06-15 陈昊 一种无人飞行器的通信控制方法及装置
CN107396426A (zh) * 2016-05-16 2017-11-24 天津航天中为数据系统科技有限公司 用于无人机的机载终端及相应的数据传输系统和传输方法
CN107079365A (zh) * 2017-01-17 2017-08-18 深圳市大疆创新科技有限公司 无人机、遥控器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3716688A4 *

Also Published As

Publication number Publication date
EP3716688A4 (en) 2020-12-09
US20200380872A1 (en) 2020-12-03
US11610491B2 (en) 2023-03-21
EP3716688A1 (en) 2020-09-30
CN108401501B (zh) 2021-10-26
CN108401501A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
WO2019109339A1 (zh) 数据传输方法、装置及无人机
WO2019100259A1 (zh) 数据传输方法、装置及无人机
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
US11638293B2 (en) Data transmission method and device, user equipment, and base station
WO2019148317A1 (zh) 无人机服务的支持方法及装置
US20210144712A1 (en) Method and apparatus for reporting buffer status report
WO2019095105A1 (zh) 通信链路的配置方法及装置
EP4057549A1 (en) Feedback method, feedback apparatus and storage medium
WO2019024053A1 (zh) 无人机控制方法及装置、无人机和遥控设备
WO2019023885A1 (zh) 蜂窝网络中实现全双工传输的方法、装置、设备及基站
US11917562B2 (en) Vehicle-to-everything synchronization method and device
WO2022205385A1 (zh) 测量间隔处理方法、装置、通信设备及存储介质
WO2019153197A1 (zh) 无人机指示方法及装置
WO2018201392A1 (zh) 为多模终端配置工作模式的方法及装置
WO2020164052A1 (zh) 资源确定方法及装置
US20220303063A1 (en) Method and device for determining resource multiplexing, method and device for information demodulation and medium thereof
WO2020258050A1 (zh) 确定无线资源的方法及装置
US20220346083A1 (en) Methods and apparatuses for determining network allocation vector, and storage media
WO2019090723A1 (zh) 数据传输方法及装置
WO2022204889A1 (zh) 波束测量的方法、装置、通信设备及存储介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022073238A1 (zh) Pucch资源确定方法及装置
JP2023501409A (ja) ダウンリンク制御情報の構成方法、装置、通信機器及び記憶媒体
WO2023155111A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2022170500A1 (zh) Ue能力处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017933980

Country of ref document: EP

Effective date: 20200624