WO2019109205A1 - 结晶聚合物的3d打印方法及3d打印机 - Google Patents

结晶聚合物的3d打印方法及3d打印机 Download PDF

Info

Publication number
WO2019109205A1
WO2019109205A1 PCT/CN2017/114425 CN2017114425W WO2019109205A1 WO 2019109205 A1 WO2019109205 A1 WO 2019109205A1 CN 2017114425 W CN2017114425 W CN 2017114425W WO 2019109205 A1 WO2019109205 A1 WO 2019109205A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern layer
printing
print
crystalline polymer
print head
Prior art date
Application number
PCT/CN2017/114425
Other languages
English (en)
French (fr)
Inventor
董现明
韩成超
秦少伍
Original Assignee
东莞远铸智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞远铸智能科技有限公司 filed Critical 东莞远铸智能科技有限公司
Priority to PCT/CN2017/114425 priority Critical patent/WO2019109205A1/zh
Priority to US16/762,503 priority patent/US20210178660A1/en
Publication of WO2019109205A1 publication Critical patent/WO2019109205A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline

Definitions

  • the invention belongs to the technical field of rapid prototyping, and in particular relates to a 3D printing method for a crystalline polymer and a 3D printer.
  • 3D printing is a rapid prototyping technology.
  • the working process is as follows: firstly build a model through computer software, and then “partition” the built 3D model into a layer-by-layer cross section to guide the printer to print layer by layer and stack the thin layers. Until a solid object is formed.
  • the printable polymer is divided into a crystalline polymer and an amorphous polymer, wherein the amorphous polymer is amorphous, and the crystalline polymer is in a crystalline state and an amorphous state because it cannot be completely crystallized.
  • FDM Fused Deposition Modeling
  • heat compensation is generally performed by increasing the temperature of the molding chamber, that is, increasing the temperature of the printed layer, thereby achieving effective fusion between the layers.
  • this design implementation process is difficult because the high molding chamber temperature poses a great challenge to the motion mechanism and circuit system design, and the reliability and life of the system are reduced.
  • the crystallinity of the printed workpiece is high, resulting in large brittleness and low toughness of the printed workpiece.
  • the technical problem to be solved by the present invention is to provide a 3D printing method and a 3D printing device for a crystalline polymer in view of the technical defects in the prior art that the temperature of the molding chamber causes a decrease in system reliability and life.
  • an embodiment of the present invention provides a 3D printing method for a crystalline polymer, including:
  • At least one print pattern layer constituting a print pattern layer unit
  • Each of the print pattern layer units is heat treated during printing.
  • the print pattern layer unit is an amorphous polymer.
  • the temperature of the heat treatment is within a glass transition interval of the amorphous polymer.
  • the temperature of the heat treatment is greater than a glass transition temperature of the amorphous polymer, and the temperature of the heat treatment is less than a crystallization temperature of the amorphous polymer.
  • the print pattern layer unit has a thickness of less than 2 mm.
  • the print pattern layer unit is a second crystalline polymer comprising an amorphous region.
  • the first crystalline polymer is one or more of polyetheretherketone and composite materials thereof, nylon and composite materials thereof, polyethylene terephthalate, and composite materials thereof.
  • an embodiment of the present invention further provides a 3D printer, including a motion platform, a print head, a printing platform, a cooling device, a print head heating device, and a printing pattern layer heating device, wherein the print head heating device is disposed in the printing An upper end of the head, and the print head heating device is connected between the print head and the moving platform, and the motion platform is configured to drive the print head to move according to a preset printing track on the printing platform,
  • the cooling device is disposed above the printing platform and for cooling a print pattern layer formed on the printing platform, the print pattern layer heating device being disposed at the printing Above the platform and for heating the cooled printed pattern layer formed on the printing platform.
  • the heating device comprises one or more combinations of air heating, infrared heating, and laser heating.
  • the print pattern layer heating device and the cooling device are rotatably coupled to both sides of the print head, and the print pattern layer heating device is at the same height as the cooling device.
  • the 3D printing method of the crystalline polymer provided by the embodiment of the present invention cools the molten printed pattern layer to form a solid printed pattern layer containing the amorphous polymer, that is, the molten printed pattern layer is rapidly cooled so that It does not have time to crystallize or is too late to completely crystallize, thereby forming a solid printed pattern layer containing an amorphous region.
  • the heat supplied by the print head does not need to break the crystal structure and melt the crystalline polymer, and only needs to be made compared to the printed pattern layer of the crystalline combination.
  • the amorphous polymer of the cooled printing pattern layer is in a viscous flow state to achieve interlayer bonding, thereby greatly reducing the energy required for achieving the inter-layer bonding of the printing pattern, and greatly reducing the temperature inside the printing head and Print Time. Since the crystallinity of the obtained printed workpiece is greatly reduced, the toughness is enhanced.
  • each print pattern layer unit formed in the printing process is subjected to heat treatment such that internal stress between the plurality of print pattern layers in the print pattern layer unit and internal stress in each print pattern layer are in the printing process. It can be released in time, avoiding the deformation of the workpiece caused by the accumulation of internal stress during the printing of the workpiece, thereby increasing the dimensional stability of the printed workpiece, making it less prone to warping or cracking.
  • the 3D printer provided by the embodiment of the invention does not need to provide a closed high temperature molding chamber, and does not need to increase the temperature of the print head, thereby reducing the wear of the high temperature on the motion mechanism and circuit design in the 3D printer, and prolonging the use of the 3D printer. Lifetime reduces the energy consumption of 3D printing and reduces the manufacturing cost of 3D printers.
  • FIG. 1 is a schematic view of a 3D printer according to a first embodiment of the present invention in a printed state
  • FIG. 2 is a schematic view of a 3D printer according to a first embodiment of the present invention in a heat treatment state.
  • An embodiment of the present invention provides a 3D printing method for a crystalline polymer, comprising heating a print head to melt a first crystalline polymer in the print head, driving the print head to perform single layer printing, and obtaining a molten print pattern layer. Cooling the molten print pattern layer to form a solid printed pattern layer containing an amorphous region, and repeating the above operation on top of the cooled printed pattern layer until a print pattern layer composed of a plurality of layers stacked one above another is obtained The workpiece is printed, and at least one of the print pattern layers constitutes a print pattern layer unit; each of the print pattern layer units is heat treated during printing.
  • the print pattern layer unit includes a plurality of print pattern layers, a plurality of the print pattern layers are stacked one on another.
  • the 3D printing method of the above crystalline polymer further comprises obtaining a 3D model of the printed workpiece, the print head performing single layer printing based on the 3D model to obtain a plurality of images adapted to the 3D model A printed workpiece composed of layers of printed pattern layers stacked on top of each other.
  • the cooling rate during cooling cools at a faster temperature to allow for molten crystallization.
  • the polymer is completely out of phase to form an amorphous polymer, thus making the printed pattern layer unit a solid amorphous polymer.
  • each layer of the printing pattern layer is solid amorphous polymer after cooling, it is not necessary to destroy the structure of the crystal compared with the corresponding crystalline polymer, and the energy required for the bonding between the printing pattern layers is reduced, and it is easy to obtain.
  • the workpiece is printed with good adhesion between layers, so that the quality of the entire printed workpiece can be improved.
  • the cooling rate during cooling and the temperature of cooling cause the molten crystalline polymer to be less than completely crystallized, thereby forming the cooled printed pattern layer into a second crystalline polymer comprising an amorphous region.
  • the temperature of the heat treatment is at the non- The glass transition zone of the crystalline polymer. This not only increases the activity level in the molecular segment, but also does not cause secondary crystallization, which releases the internal stress and ensures the dimensional accuracy of the printed workpiece.
  • the vitrification region is located between the glass state and the high elastic state. Since the amorphous polymer transitions from a glassy state to a high elastic state in a temperature range, the glass transition temperature generally referred to is a specific value within this temperature range.
  • the glass transition zone is a temperature range that includes the glass transition temperature such that the amorphous polymer is between a glassy state and a high elastic state.
  • the temperature of the heat treatment may also be greater than the glass transition temperature of the amorphous polymer and less than the crystallization temperature of the amorphous polymer, and the heat treatment temperature is appropriately increased while ensuring that the heat treatment process does not occur. Crystallize so as not to affect the dimensional accuracy of the printed workpiece.
  • the print pattern layer unit is a solid second crystalline polymer comprising an amorphous region.
  • the temperature of the heat treatment at this time is in the glass transition region of the second crystalline polymer, and may be greater than the glass transition temperature of the second crystalline polymer and smaller than the crystallization temperature of the second crystalline polymer, thereby It is ensured that the heat treatment temperature is below the crystallization temperature of the second crystalline polymer, thereby ensuring that crystallization does not occur during the heat treatment.
  • the heat treatment method of the above embodiment can actively move the molecular segments in the polymer, and can also avoid the technical problem of deformation due to crystallization and reduction in toughness of the workpiece.
  • the internal stress between the layers of the printing pattern layer and the internal stress in each of the printing pattern layers can be effectively and timely eliminated, and the accumulation of internal stress during the printing process is avoided, thereby ensuring dimensional stability of the printed workpiece.
  • the thickness of the print pattern layer unit subjected to the heat treatment is less than 2 mm.
  • the transformation of the molecular conformation is insufficient to deform the multilayer printed pattern layer in the Z direction, thereby ensuring that the printed pattern layer unit does not deform during the heat treatment.
  • This method of heat treatment while printing can not only cause accumulated internal stress in the obtained printed workpiece, but also does not adversely affect the shape accuracy of the printed workpiece.
  • the thickness of the printing pattern layer unit is greater than 2 mm, the internal stress is accumulated more, and the transformation of the molecular conformation during the heat treatment causes a certain degree of deformation of the printing pattern layer unit, thereby affecting the shape accuracy of the entire printed workpiece.
  • the first crystalline polymer is one or more of polyetheretherketone and composites thereof, nylon and composites thereof, polyethylene terephthalate, and composites thereof.
  • the speed and temperature of cooling are adaptively adjusted to ensure that the first crystalline polymer does not crystallize or not crystallize during cooling, thereby forming A second crystalline polymer of different crystallinity.
  • the number of printed pattern layers is heat-treated to eliminate the internal stress of the plurality of printed pattern layers, and then continue printing. Cooling, it is also possible to heat-treat the printing pattern layer every time a printing pattern layer is formed, thereby forming a printing step of printing, cooling, and heat treatment, which improves the interlayer bonding force of the printed workpiece and improves printing.
  • the quality of the workpiece also greatly simplifies the subsequent processing steps for the printed workpiece.
  • the first embodiment of the present invention also provides a 3D printing of the crystalline polymer implementing the above embodiment.
  • the 3D printer of the method includes a motion platform (not shown), a print head 1, a printing platform 2, a cooling device 3, a print head heating device 4, and a printing pattern layer heating device 5,
  • the print head heating device 4 is disposed at an upper end of the print head 1, and the print head heating device 4 is coupled between the print head 1 and the motion platform, and the motion platform is used to drive the printing
  • the head 1 moves on the printing platform 2 in accordance with a preset printing trajectory, the cooling device 3 being disposed above the printing platform 2 and for cooling a printing pattern layer formed on the printing platform 2,
  • a print pattern layer heating device 5 is disposed above the printing platform and is used to heat the cooled print pattern layer formed on the printing platform 2.
  • the printhead heating device 4 is used to melt crystallize the polymer 8 to cause the printhead 1 to form a molten print pattern layer on the printing platform 2.
  • the cooling device 3 can inject cooling air onto a print pattern layer formed on the printing platform 2.
  • the cooling device 3 may spray a rare gas such as cooling nitrogen gas to the printing pattern layer formed on the printing platform 2.
  • the print pattern layer heating device 5 can spray heated air onto the cooled print pattern layer formed on the printing platform 2.
  • the print pattern layer heating device 5 may also be an infrared heating device or a laser heating device or a combination of both.
  • the printing pattern layer heating device 5 and the cooling device 3 are rotatably connected to both sides of the printing head 1, and the printing pattern layer heating device 5 and the cooling device 3 are located in the same height.
  • the rotating cooling device 3 can ensure that the cooling medium sprayed by the cooling device 3 completely covers the printing pattern layer formed on the printing platform 2 during cooling, and the rotating printing pattern layer heating device 5 can ensure injection during heat treatment.
  • the hot air can completely cover the print pattern layer formed on the printing platform 2, thereby ensuring uniform and stable quality of the printed workpiece.
  • a control system 6 including a print head heating device control unit, a cooling device control unit, and a print pattern layer heating device control unit.
  • the printhead heating device control unit is for controlling the temperature within the printhead 1 so that its temperature can be adjusted in time according to the difference of the first polymer to melt the first polymer.
  • the cooling device control unit is configured to implement control of a speed at which the cooling device 3 injects cooling air and a temperature of the cooling air thereof, the printing pattern layer heating device control unit is configured to implement a printing pattern layer heating device 5 to print a pattern
  • the layer unit sprays the speed and temperature of the hot air.
  • a second embodiment of the present invention provides a 3D printing method for a crystalline polymer obtained by self-constructing a model or 3D scanning to obtain a 3D model of a printed workpiece.
  • the 3D model of the printed workpiece is introduced into the slicing software to perform a slicing operation, and the generated code is transmitted to the above-described 3D printer.
  • the printhead is heated by a printhead heating device to melt the crystalline polymer (polyetheretherketone) in the printhead.
  • the motion platform drives the printhead to perform a single layer printing on the printing platform to obtain a molten printed pattern layer, activates a cooling system, and sprays cooling air onto the molten printing pattern layer formed on the printing platform to make the molten crystalline polymer less late.
  • the crystals may not be completely crystallized to form a solid printed pattern layer containing amorphous regions.
  • the printing and cooling steps are repeated on top of the cooled printed pattern layer until a printed workpiece composed of a plurality of layers of printed pattern layers stacked one on top of the other is obtained.
  • each layer of the printing pattern layer has a thickness of 0.3 mm.
  • the formed two layers of the printing pattern layer are heat-treated after each two layers of the printing pattern layer are formed.
  • the multi-layer printing pattern layer when the thickness of each layer of the printing pattern layer is small, the multi-layer printing pattern layer may be heat-treated after forming two or more printing pattern layers, as long as the heat-treated multilayer printing pattern
  • the thickness of the layer may be less than 2 mm, or the printed pattern layer may be heat treated every time a print pattern layer is formed.
  • the 3D printing method of the crystalline polymer provided by the above embodiment cools the molten printed pattern layer to form a solid printed pattern layer containing the amorphous polymer, that is, the molten printed pattern layer is rapidly cooled to make it It is too late to crystallize or has time to completely crystallize, thereby forming a solid printed pattern layer containing an amorphous region.
  • the heat supplied by the print head does not need to break the crystal structure and crystallize the crystal as compared with the printed pattern layer of the crystalline combination.
  • each print pattern layer unit formed in the printing process is subjected to heat treatment such that internal stress between the plurality of print pattern layers in the print pattern layer unit and internal stress in each print pattern layer are in the printing process. It can be released in time, avoiding the deformation of the workpiece caused by the accumulation of internal stress during the printing of the workpiece, thereby increasing the dimensional stability of the printed workpiece, making it less prone to warping or cracking.
  • the 3D printer provided by the above embodiment does not need to provide a closed high temperature molding chamber, and does not need to increase the temperature of the print head, thereby reducing the wear of the moving mechanism and circuit design in the 3D printer, and prolonging the service life of the 3D printer. Reduces the energy consumption of 3D printing and reduces the manufacturing cost of 3D printers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种结晶聚合物的3D打印方法,包括加热打印头,使所述打印头内的第一结晶聚合物熔融,驱动打印头进行单层打印,得到熔融的打印图案层,冷却所述熔融的打印图案层,使其形成固态的包含有非晶区的打印图案层,在冷却后的打印图案层的顶部重复上述操作直至得到由多层上下层叠的打印图案层组成的打印工件,至少一个打印图案层组成一打印图案层单元;打印过程中对每一所述打印图案层单元进行热处理。该结晶聚合物的3D打印方法以边打印边热处理的方法获得韧性好、尺寸稳定性好的打印工件。还提供了一种3D打印机。

Description

结晶聚合物的3D打印方法及3D打印机 技术领域
本发明属于快速成型的技术领域,尤其涉及一种结晶聚合物的3D打印方法及3D打印机。
背景技术
随着3D打印技术的飞速发展,3D打印技术已被广泛应用到诸多领域中。其3D打印是一种快速成形技术,其工作过程为:先通过计算机软件建立模型,再将建成的三维模型“分区”成逐层的截面,从而指导打印机逐层打印,并将薄型层面堆叠起来,直到一个固态物体成型。
可打印的聚合物分为结晶聚合物及非晶聚合物,其中非晶聚合物为非晶态,结晶聚合物由于不能够完全结晶,因此存在结晶态和非晶态两种状态。根据熔融沉积成型FDM(Fused Deposition Modeling)的成型原理,要实现层与层之间的有效粘接,必须在打印层之间实现分子维度的相互扩散,从而实现打印层之间的融合。在实现打印层之间的相互融合过程中,打印机提供的热量必须使晶态聚合物的聚合物融化,或使非晶态的聚合物达到粘流态。
现有技术中,一般是通过提高成型室温度,即提高已打印层的温度来进行热量补偿,实现层间的有效融合。但这种设计实施过程难度较大,因为高的成型室温度对其中的运动机构和电路系统设计带来很大挑战,系统的可靠性及寿命降低。同时,高的成型室温度下,打印工件结晶度高,从而导致打印工件脆性大、韧性低。
发明内容
本发明所要解决的技术问题是:针对现有技术中高的成型室温度导致系统可靠性及寿命降低的技术缺陷,提供一种结晶聚合物的3D打印方法及3D打印设备。
为解决上述技术问题,一方面,本发明实施例提供一种结晶聚合物的3D打印方法,包括:
加热打印头,使所述打印头内的第一结晶聚合物熔融;
驱动打印头进行单层打印,得到熔融的打印图案层,冷却所述熔融的打印图案层,使其形成固态的包含有非晶区的打印图案层;
在冷却后的打印图案层的顶部重复上述操作直至得到由多层上下层叠的打印图案层组成的打印工件;
至少一个打印图案层组成一打印图案层单元;
打印过程中对每一所述打印图案层单元进行热处理。
可选地,所述打印图案层单元为非晶态聚合物。
可选地,所述热处理的温度处于所述非晶态聚合物的玻璃化转变区间内。
可选地,所述热处理的温度大于所述非晶态聚合物的玻璃化转变温度,且所述热处理的温度小于所述非晶态聚合物的结晶温度。
可选地,所述打印图案层单元的厚度小于2mm。
可选地,所述打印图案层单元为包含有非晶区的第二结晶聚合物。
可选地,所述第一结晶聚合物为聚醚醚酮及其复合材料、尼龙及其复合材料、聚对苯二甲酸乙二醇酯及其复合材料的一种或多种。
另一方面,本发明实施例还提供一种3D打印机,包括运动平台、打印头、打印平台、冷却装置、打印头加热装置及打印图案层加热装置,所述打印头加热装置设置在所述打印头的上端,且所述打印头加热装置连接在所述打印头与所述运动平台之间,所述运动平台用于驱动所述打印头在所述打印平台上按照预设的打印轨迹运动,所述冷却装置设置在所述打印平台的上方且用于冷却形成在所述打印平台上的打印图案层,所述打印图案层加热装置设置在所述打印 平台的上方且用于加热形成在所述打印平台上的冷却后的打印图案层。
可选地,所述加热装置包括空气加热、红外加热和激光加热的一种或多种组合。
可选地,所述打印图案层加热装置与所述冷却装置可转动地连接在所述打印头的两侧,且所述打印图案层加热装置与所述冷却装置位于同一高度。
本发明实施例提供的结晶聚合物的3D打印方法,冷却熔融的打印图案层,使其形成固态的包含有非晶态聚合物的打印图案层,即,使熔融的打印图案层快速冷却以使其来不及结晶或者来不及完全结晶,从而形成固态的包含有非晶区的打印图案层。这样,与晶态结合物的打印图案层相比,在冷却后的打印图案层的顶部进行单层打印时,打印头提供的热量不需要破坏晶体结构且使晶态聚合物融化,只需要使其冷却后的打印图案层的非晶态聚合物处于粘流状态即可实现层间的结合,进而大大降低了实现打印图案层间结合所需要的能量,也大大降低了打印头内的温度以及打印时间。由于得到的打印工件的结晶度大大降低,其韧性增强。另外,对打印过程中形成的每一打印图案层单元进行热处理,使所述打印图案层单元内的多层打印图案层之间的内应力及每一打印图案层内的内应力在打印过程中能够及时地得到释放,避免了打印工件过程中内应力的积累而导致的工件易变形,从而增加了打印工件的尺寸稳定性,使其不易翘曲或开裂。
本发明实施例提供的3D打印机,不需要设置封闭的高温成型室,也不需要提高打印头的温度,从而减少了高温对3D打印机内的运动机构及电路设计的磨损,延长了3D打印机的使用寿命,降低了3D打印的能耗,减少了3D打印机的制造成本。
附图说明
图1是本发明第一实施例提供的3D打印机在打印状态下的示意图;
图2是本发明第一实施例提供的3D打印机在热处理状态下的示意图。
说明书中的附图标记如下:
1、打印头;
2、打印平台;
3、冷却装置;
4、打印头加热装置;
5、打印图案层加热装置;
6、控制系统;
7、打印工件;
8、结晶聚合物。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明一实施例提供了一种结晶聚合物的3D打印方法,包括加热打印头,使所述打印头内的第一结晶聚合物熔融,驱动打印头进行单层打印,得到熔融的打印图案层,冷却所述熔融的打印图案层,使其形成固态的包含有非晶区的打印图案层,在冷却后的打印图案层的顶部重复上述操作直至得到由多层上下层叠的打印图案层组成的打印工件,至少一个打印图案层组成一打印图案层单元;打印过程中对每一所述打印图案层单元进行热处理。
需要说明的是,当所述打印图案层单元包括多个打印图案层时,多个所述打印图案层上下层叠。
在一实施例中,上述结晶聚合物的3D打印方法还包括获得打印工件的3D模型,所述打印头基于所述3D模型进行单层打印,以得到与所述3D模型相适配的由多层上下层叠的打印图案层组成的打印工件。
在一实施例中,冷却过程中冷却的速度冷却的温度较快,以使熔融的结晶 聚合物完全来不及结晶,从而形成非晶态聚合物,这样就使得所述打印图案层单元为固态的非晶态聚合物。当每一层打印图案层冷却后均为固态的非晶态聚合物时,与对应的结晶聚合物相比,不需要破坏晶体的结构,打印图案层之间的结合需要的能量降低,容易获得层间粘接力好的打印工件,从而能够提高整个打印工件的质量。
然而,在其他实施例中,冷却过程中的冷却速度及冷却的温度使熔融的结晶聚合物来不及完全结晶,从而使冷却后的打印图案层形成为包含有非晶区的第二结晶聚合物。
因此,可以通过改变冷却装置的冷却速度以及冷却温度,以获得包含有不同结晶度的打印工件。
在一实施例中,当组成所述打印图案层单元的打印图案层均为非晶态聚合物,即所述打印图案层单元为非晶态聚合物,所述热处理的温度处在所述非晶态聚合物的玻璃化转变区间内。这样既增加了分子链段内的活跃程度,又不至于发生二次结晶,使内应力得到释放,又保证了打印工件的尺寸精度。其中玻璃化转变区位于玻璃态与高弹态之间。由于非晶态聚合物由玻璃态向高弹态转变发生在一温度范围内,而通常所指的玻璃化转变温度为这一温度范围内的一具体数值。因此,玻璃化转变区为包含有玻璃化转变温度在内的使所述非晶态聚合物处于玻璃态与高弹态之间的温度范围。所述热处理的温度还可以是大于所述非晶态聚合物的玻璃化转变温度且小于所述非晶态聚合物的结晶温度,在适当地提高热处理温度的同时,保证热处理过程中不会出现结晶,从而不会影响打印工件的尺寸精度。
在一实施例中,所述打印图案层单元为固态的包含有非晶区的第二结晶聚合物。此时热处理的温度处在第二结晶聚合物的玻璃化转变区间内,也可以是大于所述第二结晶聚合物的玻璃化转变温度且小于所述第二结晶聚合物的结晶温度,从而可以保证热处理温度处于所述第二结晶聚合物的结晶温度以下,从而保证热处理过程中不会发生结晶。
上述实施例的热处理方法能够使聚合物内的分子链段活跃运动,也能够避免结晶导致的变形及工件韧性降低的技术问题。既能够有效及时地消除数层打印图案层之间的内应力以及每一打印图案层内的内应力,避免了内应力在打印过程中的积累,从而保证了打印工件的尺寸稳定性。
为了避免热处理过程中可能导致的变形对打印工件的影响,进行热处理的所述打印图案层单元的厚度小于2mm。这样,消除内应力时,分子构象的转变不足以使多层打印图案层在Z向上发生形变,从而能够保证在热处理过程中打印图案层单元不会发生变形。这种边打印边热处理的方式既能使获得的打印工件内不存在积累的内应力,也使得热处理不会对打印工件的外形精度产生不利的影响。
而当打印图案层单元的厚度大于2mm时,内应力积累较多,热处理过程中分子构象的转化会使打印图案层单元发生一定程度的变形,从而影响整个打印工件的外形精度。
在一实施例中,所述第一结晶聚合物为聚醚醚酮及其复合材料、尼龙及其复合材料、聚对苯二甲酸乙二醇酯及其复合材料的一种或多种。当需要打印获得具有不同结晶度的结晶聚合物的打印工件时,适应性地调整冷却的速度及温度,以保证在冷却过程中第一结晶聚合物不发生结晶,或者不全部结晶,从而形成具有不同结晶度的第二结晶聚合物。
为了保证冷却效果与热处理的效果不受彼此影响,可以是,打印、冷却得到数层打印图案层后,对数层打印图案层进行热处理,消除数层打印图案层的内应力,再继续打印、冷却,也可以是每形成一打印图案层,就对这一打印图案层进行热处理,从而形成边打印、边冷却、边热处理的打印步骤,既提高了打印工件的层间结合力,提高了打印工件的质量,也大大简化了后续对打印工件的处理步骤。
第一实施例
本发明第一实施例还提供了一种实施上述实施例的结晶聚合物的3D打印 方法的3D打印机,如图1及图2所示,包括运动平台(图中未示出)、打印头1、打印平台2、冷却装置3、打印头加热装置4及打印图案层加热装置5,所述打印头加热装置4设置在所述打印头1的上端,且所述打印头加热装置4连接在所述打印头1与所述运动平台之间,所述运动平台用于驱动所述打印头1在所述打印平台2上按照预设的打印轨迹运动,所述冷却装置3设置在所述打印平台2的上方且用于冷却形成在所述打印平台2上的打印图案层,所述打印图案层加热装置5设置在所述打印平台的上方且用于加热形成在所述打印平台2上的冷却后的打印图案层。所述打印头加热装置4用于熔融结晶聚合物8以使所述打印头1在所述打印平台2上形成熔融的打印图案层。多个所述打印图案层上下层叠形成打印工件7。
在图1所示的实施例中,所述冷却装置3可向形成在所述打印平台2上的打印图案层喷射冷却空气。
然而,在其他实施例中,所述冷却装置3可向形成在所述打印平台2上的打印图案层喷射冷却氮气等稀有气体。
在图1及图2所示的实施例中,所述打印图案层加热装置5可向形成在所述打印平台2上的冷却后的打印图案层喷射加热后的空气。
然而,在其他实施例中,所述打印图案层加热装置5还可以是红外加热装置或者是激光加热装置或者是其二者组合。
本实施例中,所述打印图案层加热装置5与所述冷却装置3可转动地连接在所述打印头1的两侧,且所述打印图案层加热装置5与所述冷却装置3位于同一高度。转动的所述冷却装置3能够保证冷却时所述冷却装置3喷射的冷却介质完全覆盖形成在所述打印平台2上的打印图案层,转动的所述打印图案层加热装置5能够保证热处理时喷射的热空气能够完全覆盖形成在所述打印平台2上的打印图案层,从而能够保证打印工件的质量均匀、稳定。
在图1及图2所示的3D打印机内还包括控制系统6,所述控制系统6包括打印头加热装置控制单元、冷却装置控制单元及打印图案层加热装置控制单元, 所述打印头加热装置控制单元用于控制所述打印头1内的温度,从而能够根据第一聚合物的不同适时调整其温度以使所述第一聚合物熔融。所述冷却装置控制单元用以实现对所述冷却装置3喷射冷却空气的速度及其冷却空气的温度的控制,所述打印图案层加热装置控制单元用于实现打印图案层加热装置5向打印图案层单元喷射热空气的速度及温度的控制。
第二实施例
本发明第二实施例提供了一种结晶聚合物的3D打印方法,通过自建模型或者3D扫描获得打印工件的3D模型。将所述打印工件的3D模型导入切片软件进行切片运算,将生成的代码传输至上述的3D打印机。利用打印头加热装置加热打印头,以使所述打印头内的结晶聚合物(聚醚醚酮)熔融。运动平台驱动打印头在打印平台进行单层打印,得到熔融的打印图案层,启动冷却系统,向形成在所述打印平台上的熔融的打印图案层喷射冷却空气,以使熔融的结晶聚合物来不及结晶或者来不及完全结晶,以形成包含有非晶区的固态的打印图案层。在冷却后的打印图案层的顶部重复打印、冷却步骤直至得到由多层上下层叠的打印图案层组成的打印工件。本实施例中,每层打印图案层的厚度为0.3mm,在打印过程中,每形成两层打印图案层后,对这一形成的两层打印图案层进行热处理。
然而,在其他实施例中,当每层打印图案层的厚度较小时,可以在形成两层以上的打印图案层后,对这一多层的打印图案层进行热处理,只要热处理的多层打印图案层的厚度小于2mm即可,也可以是每形成一打印图案层,就对这一打印图案层进行热处理。
上述实施例提供的结晶聚合物的3D打印方法,冷却熔融的打印图案层,使其形成固态的包含有非晶态聚合物的打印图案层,即,使熔融的打印图案层快速冷却以使其来不及结晶或者来不及完全结晶,从而形成固态的包含有非晶区的打印图案层。这样,与晶态结合物的打印图案层相比,在冷却后的打印图案层的顶部进行单层打印时,打印头提供的热量不需要破坏晶体结构且使晶态聚 合物融化,只需要使其冷却后的打印图案层的非晶态聚合物处于粘流状态即可实现层间的结合,进而大大降低了实现打印图案层间结合所需要的能量,也大大降低了打印头内的温度以及打印时间。由于得到的打印工件的结晶度大大降低,其韧性增强。另外,对打印过程中形成的每一打印图案层单元进行热处理,使所述打印图案层单元内的多层打印图案层之间的内应力及每一打印图案层内的内应力在打印过程中能够及时地得到释放,避免了打印工件过程中内应力的积累而导致的工件易变形,从而增加了打印工件的尺寸稳定性,使其不易翘曲或开裂。
上述实施例提供的3D打印机,不需要设置封闭的高温成型室,也不需要提高打印头的温度,从而减少了高温对3D打印机内的运动机构及电路设计的磨损,延长了3D打印机的使用寿命,降低了3D打印的能耗,减少了3D打印机的制造成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种结晶聚合物的3D打印方法,其特征在于,包括:
    加热打印头,使所述打印头内的第一结晶聚合物熔融;
    驱动打印头进行单层打印,得到熔融的打印图案层,冷却所述熔融的打印图案层,使其形成固态的包含有非晶区的打印图案层;
    在冷却后的打印图案层的顶部重复上述操作直至得到由多层上下层叠的打印图案层组成的打印工件;
    至少一个打印图案层组成一打印图案层单元;
    打印过程中对每一所述打印图案层单元进行热处理。
  2. 根据权利要求1所述的结晶聚合物的3D打印方法,其特征在于,所述打印图案层单元为非晶态聚合物。
  3. 根据权利要求2所述的结晶聚合物的3D打印方法,其特征在于,所述热处理的温度处于所述非晶态聚合物的玻璃化转变区间内。
  4. 根据权利要求2所述的结晶聚合物的3D打印方法,其特征在于,所述热处理的温度大于所述非晶态聚合物的玻璃化转变温度,且所述热处理的温度小于所述非晶态聚合物的结晶温度。
  5. 根据权利要求1所述的结晶聚合物的3D打印方法,其特征在于,所述打印图案层单元的厚度小于2mm。
  6. 根据权利要求1所述的结晶聚合物的3D打印方法,其特征在于,所述打印图案层单元为包含有非晶区的第二结晶聚合物。
  7. 根据权利要求1所述的结晶聚合物的3D打印方法,其特征在于,所述第一结晶聚合物为聚醚醚酮及其复合材料、尼龙及其复合材料、聚对苯二甲酸乙二醇酯及其复合材料的一种或多种。
  8. 一种3D打印机,其特征在于,包括运动平台、打印头、打印平台、冷却装置、打印头加热装置及打印图案层加热装置,所述打印头加热装置设置在 所述打印头的上端,且所述打印头加热装置连接在所述打印头与所述运动平台之间,所述运动平台用于驱动所述打印头在所述打印平台上按照预设的打印轨迹运动,所述冷却装置设置在所述打印平台的上方且用于冷却形成在所述打印平台上的打印图案层,所述打印图案层加热装置设置在所述打印平台的上方且用于加热形成在所述打印平台上的冷却后的打印图案层。
  9. 根据权利要求8所述的3D打印机,其特征在于,所述加热装置包括空气加热、红外加热和激光加热的一种或多种组合。
  10. 根据权利要求8所述的3D打印机,其特征在于,所述打印图案层加热装置与所述冷却装置可转动地连接在所述打印头的两侧,且所述打印图案层加热装置与所述冷却装置位于同一高度。
PCT/CN2017/114425 2017-12-04 2017-12-04 结晶聚合物的3d打印方法及3d打印机 WO2019109205A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/114425 WO2019109205A1 (zh) 2017-12-04 2017-12-04 结晶聚合物的3d打印方法及3d打印机
US16/762,503 US20210178660A1 (en) 2017-12-04 2017-12-04 3D printing of crystalline polymeric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/114425 WO2019109205A1 (zh) 2017-12-04 2017-12-04 结晶聚合物的3d打印方法及3d打印机

Publications (1)

Publication Number Publication Date
WO2019109205A1 true WO2019109205A1 (zh) 2019-06-13

Family

ID=66750692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114425 WO2019109205A1 (zh) 2017-12-04 2017-12-04 结晶聚合物的3d打印方法及3d打印机

Country Status (2)

Country Link
US (1) US20210178660A1 (zh)
WO (1) WO2019109205A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113492529A (zh) * 2020-04-07 2021-10-12 中国科学院化学研究所 一种以近红外光半导体激光器作为加热源的3d打印方法及打印系统
CN114872319A (zh) * 2022-04-20 2022-08-09 杭州正向增材制造技术有限公司 空间打印装置及打印方法
FR3121863A1 (fr) * 2021-04-19 2022-10-21 Blachere Illumination Procédé et système de fabrication d’un objet décoratif à partir d’un cordon extrudé.
WO2022223889A1 (fr) * 2021-04-19 2022-10-27 Blachere Illumination Procede et systeme de fabrication d'un objet decoratif

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103707507A (zh) * 2013-12-13 2014-04-09 吉林大学 聚醚醚酮仿生人工骨的3d打印制造方法
CN105690778A (zh) * 2016-04-21 2016-06-22 东华大学 一种纤维级基于反应挤出的3d打印方法
WO2017108477A1 (en) * 2015-12-22 2017-06-29 Philips Lighting Holding B.V. Use of semi-crystalline polymer with low tg and post-crystallization for easy 3d printing and temperature stable products
CN107139455A (zh) * 2017-06-30 2017-09-08 宁夏共享模具有限公司 一种fdm打印应力消除装置及其消应力打印方法
CN107160676A (zh) * 2017-06-26 2017-09-15 陕西聚高增材智造科技发展有限公司 一种面向peek材料的控性冷沉积3d打印方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103707507A (zh) * 2013-12-13 2014-04-09 吉林大学 聚醚醚酮仿生人工骨的3d打印制造方法
WO2017108477A1 (en) * 2015-12-22 2017-06-29 Philips Lighting Holding B.V. Use of semi-crystalline polymer with low tg and post-crystallization for easy 3d printing and temperature stable products
CN105690778A (zh) * 2016-04-21 2016-06-22 东华大学 一种纤维级基于反应挤出的3d打印方法
CN107160676A (zh) * 2017-06-26 2017-09-15 陕西聚高增材智造科技发展有限公司 一种面向peek材料的控性冷沉积3d打印方法
CN107139455A (zh) * 2017-06-30 2017-09-08 宁夏共享模具有限公司 一种fdm打印应力消除装置及其消应力打印方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113492529A (zh) * 2020-04-07 2021-10-12 中国科学院化学研究所 一种以近红外光半导体激光器作为加热源的3d打印方法及打印系统
FR3121863A1 (fr) * 2021-04-19 2022-10-21 Blachere Illumination Procédé et système de fabrication d’un objet décoratif à partir d’un cordon extrudé.
WO2022223889A1 (fr) * 2021-04-19 2022-10-27 Blachere Illumination Procede et systeme de fabrication d'un objet decoratif
CN114872319A (zh) * 2022-04-20 2022-08-09 杭州正向增材制造技术有限公司 空间打印装置及打印方法
CN114872319B (zh) * 2022-04-20 2024-04-09 浙江正向增材制造有限公司 空间打印装置及打印方法

Also Published As

Publication number Publication date
US20210178660A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
WO2019109205A1 (zh) 结晶聚合物的3d打印方法及3d打印机
US11642851B2 (en) Multiple axis robotic additive manufacturing system and methods
JP6306907B2 (ja) 立体造形物の製造方法及び製造装置
US20200031057A1 (en) Polymer multi-material high-flexibility laser additive manufacturing system and method thereof
US10821675B2 (en) Independently temperature-controlled high-temperature selective laser sintering frame structure
CN108527839B (zh) 结晶聚合物的3d打印方法及3d打印机
US10946480B2 (en) Foil fusion additive manufacturing system and method
KR20200049868A (ko) 폴리에테르케톤케톤(pekk)의 압출 적층 제조방법 및 제품
US20160361843A1 (en) Laser sintering apparatus and laser sintering method
CN109159421A (zh) 一种聚合物丝材的激光增材制造系统及其方法
US20210170682A1 (en) Methods and systems for increasing layer-to-layer bond strength
JP2020131700A (ja) 造形装置、造形方法および造形システム
JP2008512333A (ja) ガラスシートの加熱方法およびその装置
JP2019155691A (ja) 三次元積層造形方法および三次元積層造形装置
CN111421809A (zh) 高致密3d打印的方法及应用该方法的打印机
KR20170075446A (ko) 입체 형상물 조형 장치
CN107900331A (zh) 一种有效防止金属合金构件开裂的激光3d打印成型装置
CN109382517A (zh) 一种基于激冷技术的激光沉积制造装置和方法
KR102008066B1 (ko) 보호가스 냉각형 아크 수축노즐을 이용한 3d프린터의 냉각 시스템
WO2020123721A1 (en) 3d printer
CN111037916B (zh) 一种非平面热床的增材制造成形方法
CN107866972A (zh) 一种3d打印机熔融沉积过程的热环境控制结构及方法
CN116135520A (zh) 一种结晶度可控的熔融沉积建模设备和方法
KR102431776B1 (ko) 이중 챔버 구조를 갖는 3d 프린터
KR102237867B1 (ko) 연속 출력가능한 3d 프린팅 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933933

Country of ref document: EP

Kind code of ref document: A1