WO2019107656A1 - 미세유체분석칩 제조 방법 - Google Patents

미세유체분석칩 제조 방법 Download PDF

Info

Publication number
WO2019107656A1
WO2019107656A1 PCT/KR2017/015443 KR2017015443W WO2019107656A1 WO 2019107656 A1 WO2019107656 A1 WO 2019107656A1 KR 2017015443 W KR2017015443 W KR 2017015443W WO 2019107656 A1 WO2019107656 A1 WO 2019107656A1
Authority
WO
WIPO (PCT)
Prior art keywords
main channel
microtubule
chip
subchannel
microtubes
Prior art date
Application number
PCT/KR2017/015443
Other languages
English (en)
French (fr)
Inventor
황현두
한동식
최재규
Original Assignee
(주)비비비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)비비비 filed Critical (주)비비비
Publication of WO2019107656A1 publication Critical patent/WO2019107656A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0214Biosensors; Chemical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/06Bio-MEMS

Definitions

  • the present invention relates to a method of manufacturing a microfluidic analysis chip, and more particularly, to a method of manufacturing a microfluidic analysis chip having an improved function and accuracy as compared with a conventional microfluidic analysis chip.
  • a biochip refers to an integrated product of DNA, protein, and other biomolecules on a small substrate made of glass, silicon, or nylon.
  • DNA When the DNA is integrated, it is called a DNA chip.
  • protein When the protein is integrated, Quot;
  • the biochip can be divided into a microarray chip and a micro fluidics chip.
  • a microarray chip refers to a biochip capable of arranging thousands or tens of thousands of DNAs or proteins at regular intervals, analyzing the target substance to analyze the binding pattern.
  • the microfluidics chip is a biochip capable of analyzing the reaction with various biomolecules or sensors integrated in a chip while flowing a small amount of analyte, which is also called a lab on a chip , Advanced technologies that combine the functions of pumps, valves, reactors, extractors, separation systems, etc., which are essential for the sample preparation process of automatic analyzers used in the analysis of biochemical materials, and sensor technology.
  • the lab-on-a-chip is designed to process sample injections, pretreatment, chemical reactions, separation / analysis, etc. that go through labs to analyze chemical and biochemical materials within a few cm2 of the chip It is a microanalysis device.
  • the lab-on-a-chip technology is a combination of micro flow control technology and MEMS microfabrication technology that precisely transfers, distributes and mixes tens of microliters ( ⁇ l) of sample from a few picoliter (pl) It is a core technology.
  • Rap-on-a-chip which uses trace amounts of samples and analyzes chemical components quickly and easily, is widely used to select useful new drugs at a high speed among a large number of new drug candidates. Recently, Type of lab-on-a-chip is under research and development.
  • lab-on-a-chip In contrast to micro-array chips such as DNA chips and protein chips, lab-on-a-chip is still in the R & D stage worldwide, and commercialization is limited and small. In the case of a lab-on-a-chip, the network of microchannels is simple, and the reaction process is also being carried out at an uncomplicated stage.
  • the present specification intends to provide a microfluidic analysis chip and a manufacturing method thereof that are not limited by the kind of protein and the bonding method of the chip.
  • a method of fabricating a microfluidic analysis chip comprising: (a) fabricating a chip housing having a microtubule for a main channel and a microtubule for a plurality of subchannels; (b) subjecting the surface of the microtubule for the main channel to a surface treatment for fixing the reaction material; And (c) injecting a reactant through the microtubule for the main channel or the microtubule for the subchannel.
  • the step (a) includes the steps of: fabricating a chip lower plate and a chip upper plate on which microtubules for a main channel and microtubes for a plurality of subchannels are formed; And bonding the chip bottom plate and the chip top plate.
  • the joining may be performed by using at least one of a heat treatment, an ultraviolet ray treatment, and a chemical treatment to join the chip bottom plate and the chip top plate.
  • the microtubes for the main channel or the subchannels are connected to the microtubes for the main channel or the subchannels,
  • the method comprising the steps of:
  • the method for fabricating a microfluidic analysis chip comprises the steps of: (d) (i) capping a cap or valve of a microtubule for the first or second subchannel, and (ii) Opening a cap or valve of a microtubule for use; And (e) injecting a removal liquid for removing unreacted reactant on the surface of the area between the first point and the second point via the microtubes for the subchannels or the main channel opened in step (d). As shown in FIG.
  • A a microtubule for a main channel which provides a space for reacting with a reagent while the sample introduced from a sample injection port formed at one end is moved to the other end, And a chip housing enclosing the plurality of sub-channel micro-tubes connected to the side of the micro-tube for the channel and the other end connected to the outside of the chip housing and the micro-tubes for the main channel and the plurality of sub-
  • I a first point at which a microtubule for a first subchannel and a microchannel for a main channel of the microchannels for the plurality of subchannels are connected to each other, and (ii) And a microchannel in which a reactive substance or a hydrogel is fixed on the surface of a region between a microtubule for the second subchannel among the plurality of microchannels for subchannels and a second point to which the microchannel for microchannel is connected, Injecting a sample through said sample injection port of the analysis chip body; (b) opening the cap or
  • a method of fabricating a microfluidic analysis chip comprising: (a) fabricating a chip housing having a microtubule for a main channel and a microtubule for a plurality of subchannels; (b) closing the ends of the microtubes for the main channel and the ends of the microtubes for the subchannels except for the first and second subchannel microtubules by a cap or a valve; And (c) injecting a hydrating gel through the microtubules for the first or second subchannels. Further, (b-1) a surface treatment for fixing the hydrogel on the surface of the microtubule for the main channel may be further included.
  • the method for fabricating a microfluidic analysis chip includes the steps of (d) determining whether a sample or a reagent is reached based on at least one of a measured impedance, a magnetic field, and an optical value for a target region, (ii) (Iii) a quantity of the sample or the reagent, and (iv) a type of the sample or the reagent, to the main channel microtubule .
  • a desired local area of the surface of the microtubule for the main channel can be fixed with a reactive substance or a hydrogel. This allows more precise reaction of the reagent and the sample in the desired region.
  • reaction substance such as a protein is fixed to a microtubule for a main channel after a chip upper plate and a chip lower plate are combined in a fabrication process, Is very low.
  • various materials can be detected through surface treatment of local areas of microtubules for main channels with materials of different properties.
  • hydrophilic and hydrophobic materials can be used to control the rate at which microfluid flows or to limit inflow.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a microfluidic analysis chip according to an embodiment of the present invention.
  • FIG. 2 is a plan view and a cross-sectional view of a microfluidic analysis chip fabricated according to the microfluidic analysis chip manufacturing method of the present specification.
  • FIG 3 is an exemplary view in which a cap is formed in a microfluidic analysis chip according to the present invention.
  • FIG. 4 is an exemplary view illustrating injection of a surface treatment solution and a reactant solution according to an embodiment of the present invention.
  • FIG. 4 is an exemplary view illustrating injection of a surface treatment solution and a reactant solution according to an embodiment of the present invention.
  • FIG. 5 is an exemplary view illustrating the injection of a surface treatment solution and a reactant solution according to another embodiment of the present invention.
  • FIG. 6 is an exemplary view illustrating the injection of a surface treatment solution and a reactant solution according to another embodiment of the present invention.
  • FIG. 7 is a partially enlarged cross-sectional view of a microtubule for a main channel according to the present specification.
  • FIG. 8 is an illustration of an example of a method for removing unnecessary reactants according to the present invention.
  • FIG. 9 is an exemplary view illustrating washing the interior of the microtubule for the main channel according to an embodiment of the present invention.
  • FIG. 10 is a partial enlarged view of a microfluidic analysis chip having a plurality of electrodes according to the present specification.
  • FIGS 11 and 12 are illustrations of microtubules for subchannels with valves in accordance with embodiments of the present disclosure.
  • spatially relative can be used to easily describe a correlation between an element and other elements.
  • Spatially relative terms should be understood in terms of the directions shown in the drawings, including the different directions of components at the time of use or operation. For example, when inverting an element shown in the figures, an element described as “below” or “beneath” of another element may be placed “above” another element .
  • the exemplary term “below” can include both downward and upward directions.
  • the components can also be oriented in different directions, so that spatially relative terms can be interpreted according to orientation.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a microfluidic analysis chip according to an embodiment of the present invention.
  • a method for fabricating a microfluidic analysis chip includes fabricating a chip housing having a microtubule for a main channel and microtubes for a plurality of subchannels (S10) (S20) a surface treatment for immobilizing a reaction material on the surface of the microtubule; and injecting a reaction material (S30) through the microtubule for the main channel or the microtubule for the subchannel.
  • FIG. 2 is a plan view and a cross-sectional view of a microfluidic analysis chip fabricated according to the microfluidic analysis chip manufacturing method of the present specification.
  • the microfluidic analysis chip 100 may include a chip housing 110, a main channel microtubule 120, and a plurality of subchannel microtubules 130.
  • the chip housing 110 may be made of a polymer material such as plastic.
  • the microtubule 120 for the main channel is a space through which a sample such as blood, urine, etc. is injected and moved. Inside the microtubule for the main channel, a reaction chamber for reaction with a reagent, Can be formed. Both ends of the microtubule 120 for the main channel may be connected to the outside of the chip housing 110. The outside does not necessarily mean a physically spaced space with respect to the end of the housing. Since the main channel microtubule 120 has to be supplied with a sample, one end of the microtubule 120 must be connected to the outside for injecting the sample.
  • the sample injected into the main channel microtubule 120 should be moved to the opposite side to confirm the result after reacting with the reagent, and the result should be confirmed from the outside.
  • an inlet and an outlet of a microtubule 120 for a main channel are formed on a top surface of a chip housing are shown in the figure
  • the microfluidic analysis chip according to the present invention is not limited to the drawings. It is apparent that the inlet and the outlet may be formed in various forms such as an upper end, a lower end, a side, and the like of the chip housing. Therefore, in this specification, both ends of the main channel micro-tube 120 are connected to the outside of the chip housing 110, and the reaction between the sample and the reagent in the main channel micro- And it should be understood in various forms.
  • One end of the plurality of sub-channel micro-tubes 130 may be connected to the side of the main channel micro-tube 120 and the other end may be connected to the outside of the chip housing 110.
  • the side of the micro-tube for the main channel' refers to a side of the direction of movement of the fluid flowing in the micro-tube for the main channel. Therefore, it is not necessary that the microtubes for the subchannels are vertically connected to the surface of the microchannels for the main channel, and the microchannels for the subchannels are variously connected to the interior of the microchannels for the subchannels do. 2 there is shown an embodiment having two sub-channel micro-tubes 130, but the present invention is not limited to the illustrated embodiments, and the number thereof may vary according to need.
  • the chip housing 110 may be integrally formed by an injection method, or may be manufactured by a combination of a chip lower plate 111 and a chip upper plate 112. If the chip housing 110 is divided into a chip lower plate 111 and a chip upper plate 112, the step S10 may include forming a main channel micro tube 120 and a plurality of sub channel micro tubes 130 Fabricating the chip lower plate 111 and the chip top plate 112 and joining the chip lower plate 111 and the chip top plate 112. The bonding step may be performed by using at least one of a heat treatment, an ultraviolet treatment, and a chemical treatment to bond the chip lower plate 111 and the chip upper plate 112 together. In this case, the main channel microtubes 120 may be formed on a surface to which the chip lower plate 111 and the chip top plate 112 are coupled.
  • FIG 3 is an exemplary view in which a cap is formed in a microfluidic analysis chip according to the present invention.
  • the caps 140 are formed at the ends of the microtubes for the main channel and the sub-channels.
  • the cap 140 is configured to open or close the microtubule for the main channel or the sub channel when the cap is closed, and the microtubule is blocked from the outside, .
  • the step (S10) may further include forming a cap or a valve for blocking the micro-tube for the main channel or the micro-tube for the sub-channel to the micro-tube for the main channel or the sub- have. A method of using the cap 140 will be described below.
  • the first subchannel for the first subchannel and the first branch And (ii) a surface of a region between the microtubules for the second subchannel among the plurality of microchannels for subchannels and the second point where the microchannels for the main channel are connected, .
  • the step S20 includes the steps of removing both the ends of the main channel microtubes, the microtubes for the first subchannel and the second subchannel among the microtubules for the plurality of subchannels
  • the method comprising the steps of: closing an end of the microtubule for subchannels to be connected to the outside with a cap or a valve; and (i) connecting the microchannel for the first subchannel to the microchannel for the mainchannel (Ii) a surface of a region between a microtubule for the second subchannel and a second point to which the microchannel for the main channel is connected, Or injecting the surface treatment solution through the microtubes for the second subchannel.
  • the step S30 may include the step of connecting the ends of the microtubes for the main channel and the ends connected to the outside of the microtubes for the subchannels except the microtubules for the first and second subchannels, (I) a first point at which the microtubule for the first subchannel and the microtubule for the main channel are connected, and (ii) a second point at which the microchannel for the second subchannel is connected to the microchannel, Injecting a reagent solution through the microtubules for the first subchannel or the microchannel for the second subchannel to immobilize the reactive material on the surface of the region between the tubule and the second point to which the microchannel for the main channel is connected .
  • FIG. 4 is an exemplary view illustrating injection of a surface treatment solution and a reactant solution according to an embodiment of the present invention.
  • FIG. 4 is an exemplary view illustrating injection of a surface treatment solution and a reactant solution according to an embodiment of the present invention.
  • the surface treatment and the reaction material are fixed in a part of the microtubule for the main channel.
  • a point where the microtubes for the first subchannel and the microchannel for the main channel are connected to each other among the plurality of subchannels for the subchannels (Ii) a point at which the microtubule for the second subchannel and the microtubule for the main channel are connected, among the microtubules for the plurality of subchannels, will be referred to as a 'second point'.
  • the 'microtubes for the first subchannel' are subcellular microtubes corresponding to the first point and the 'microtubes for the second subchannel' are microtubules for the subchannel corresponding to the second point.
  • the cap formed in the main channel micro-tube 120 is closed, and the cap formed in the sub-channel micro-channel 130 is opened.
  • the ends of the microtubes for the main channel and the ends of the microtubes for the subchannels except for the first and second subchannel microtubes are capped. Since only the microtubes for the first and second subchannels are shown in Fig. 4, the way of blocking the microtubules for the remaining subchannels is not shown.
  • microtubules for subchannels other than the microtubules for the first and second subchannels may be formed according to various embodiments.
  • the surface treatment solution for fixing the reaction material is injected through the sub-channel micro tube 130, the surface between the first point and the second point is treated as shown in FIG. 4B.
  • the surface treatment solution may be bovine serum albumin (BSA), hydroxyethyl cellulose (HEC), methyl cellulose (MC), polyvinyl alcohol (PVA), pluronic polyol (PP) or dextransulfate
  • BSA bovine serum albumin
  • HEC hydroxyethyl cellulose
  • MC methyl cellulose
  • PVA polyvinyl alcohol
  • PP pluronic polyol
  • dextransulfate dextransulfate
  • the reactant solution may be injected through one end of the microtubule for the first subchannel and the other end of the microchannel for the second subchannel as shown in FIG. 4 (c)
  • the reaction material is fixed on the surface between the first point and the second point as shown in Fig. 4 (d).
  • the reactant may be a substance that chemically reacts with a specific substance, an antigen-antibody reaction substance, or a protein that binds to a specific component. That is, it may be various substances that react with the target substance depending on the characteristics of the substance to be sought in the sample.
  • FIG. 5 is an exemplary view illustrating the injection of a surface treatment solution and a reactant solution according to another embodiment of the present invention.
  • Figures 5 (a) and 5 (b) are the same as Figures 4 (a) and 4 (b). Therefore, the description of the repeated portions will be omitted and the difference will be described from the portion (c) of FIG.
  • the cap formed in the main channel micro-tube 120 is opened and the cap formed in the sub-channel micro-channel 130 is closed.
  • the reactant solution may be injected through one of the opposite ends of the main channel micro tube 120.
  • the reactive substance-fixing substance is surface-treated only between the first point and the second point, the reactive substance is fixed to the surface between the first point and the second point as shown in FIG. 5 (d).
  • FIG. 6 is an exemplary view illustrating the injection of a surface treatment solution and a reactant solution according to another embodiment of the present invention.
  • the cap formed in the main channel micro-tube 120 is opened and the cap formed in the sub-channel micro-tube 130 is closed.
  • the surface treatment solution for immobilizing the reaction material is injected through the main channel microtubes 120, as shown in FIG. 6 (b)
  • the surfaces of all the areas of the microtubules for the main channel are surface- Processing.
  • FIG. 6 (c) it is found that the cap formed in the micro-tube 120 for the main channel is closed and the cap formed in the sub-channel micro-tube 130 is opened.
  • the reactant solution may be injected through one end of the microtubule for the first sub-channel and the other end of the microtubule for the second sub-channel. As a result, the reaction material is fixed on the surface between the first point and the second point as shown in Fig. 6 (d).
  • the reactant can be fixed beyond the required first point or second point and is likely to remain on the surface of the microtubes for the subchannels.
  • FIG. 7 is a partially enlarged cross-sectional view of a microtubule for a main channel according to the present specification.
  • the microtubule for the main channel is blocked with a cap or a valve, and the surface treatment solution and the reactant solution are injected through the sub-channel microtubes corresponding to the desired local region.
  • the surface treatment solution or the reactant solution may deviate from the first point or the second point that is expected.
  • the left side is expressed as a region in which the reaction material is not fixed. Further, a part of the reactive material remained on the surface of the microtubes for the first sub-channel.
  • the manufacturing method according to the present invention is capable of removing the reactants in the undesired regions.
  • FIG. 8 is an illustration of an example of a method for removing unnecessary reactants according to the present invention.
  • the protein is immobilized between the first point and the second point according to the method of FIG. At this time, it is assumed that unwanted reactive substances are to be removed on the surface of the microchannel for the first subchannel, the surface of the microchannel for the second subchannel, the left side of the first point and the right side of the second point.
  • the left end of the microtubule for the main channel and the cap of the microtubule for the first sub-channel are opened, and the right end of the microtubule for the main channel and the microtubule for the second sub- The cap closes. Then, the remover is injected through the left end of the micro-tube for the main channel or the micro-tube for the first sub-channel.
  • FIG. 8 shows an embodiment in which microtubules for two subchannels are provided, and thus an example in which microtubules for a main channel are used together is shown.
  • the microtubes for the adjacent subchannels can perform the role of the microchannels for the main channel.
  • the microtubes for the four subchannels are provided, and the points of the microtubes for the main channel corresponding to the microtubes for the respective subchannels are referred to as the first point, the second point, the third point, and the fourth point I will name it.
  • the reaction material is fixed between the second point and the third point and the unnecessary reaction material is removed in the remaining part.
  • the microtubes for the first subchannel and the second subchannel are opened and the remaining microchannels are closed, and the remover is injected through the microchannel for the first subchannel or the microchannel for the second subchannel.
  • the third subchannel microtubule and the fourth subchannel microchannel are opened and the remaining microchannels are closed, and the remover is injected through the microchannel for the third subchannel or the microchannel for the fourth subchannel. In this way, unnecessary reaction materials will be removed from the remaining region except for the reactive substance fixed between the second point and the third point.
  • a cap or valve of the microtubule for the first or second subchannel and (ii) a cap or valve for the main channel for the main channel adjacent to the cap or valve selected in (i) And opening the valve.
  • 15 g glycine, 1 g SDS, 10 ml Tween 20, Adjust pH to 2.2, Bring volume up to 1 L, and the like are selected according to the method of bonding the surface to be removed with the substance to be removed.
  • ultrapure water solution or 20 ml SDS 10%, 12.5 ml Tris HCl pH 6.8 0.5 M, 67.5 ml ultra pure water, 0.8 ml ß-mercaptoethanol solution can be used.
  • the sample reacts with (or binds to) the reactant, but a sample that does not react with the reactant or an amount exceeding the amount of the reactant may remain in the microtubule for the main channel. Therefore, there is a need to clean the microtubes for the main channel.
  • FIG. 9 is an exemplary view illustrating washing the interior of the microtubule for the main channel according to an embodiment of the present invention.
  • the sample is injected first.
  • the sample was expressed as containing a substance that binds to the reactant.
  • FIG. 9 (b) it can be seen that the sample reacted with the reactant, but a part of the sample remained in the microtubule for the main channel.
  • the cap or valve connected to both ends of the micro-tube for the main channel is opened, (ii) the end connected to the outside of the micro- Or valve.
  • a washing liquid for washing the sample remaining in the main channel micro-tube without reacting with the reactive material through either end of the micro-tube for the main channel is injected.
  • the residual material can be removed through the washing liquid.
  • the operation of removing the residual material through the washing liquid may be performed by the user when the microfluidic analysis chip is manufactured or the user uses the microfluidic analysis chip according to the embodiment.
  • the washing solution may be variously selected according to the use environment conditions of the micro channel for the main channel and may be DIW (deionized water), PBS (phosphate buffered saline) or TBS (tris buffered saline) .
  • the hydrogel may be fixed between the first point and the second point.
  • the first subchannels for the first subchannel and the first branch And (ii) the hydration gel 160 may be fixed on the surface of a region between the microtubules for the second subchannel among the microtubules for the plurality of subchannels and the second point where the microchannels for the main channel are connected. At this time, it may further comprise a surface treatment for fixing the hydrogel on the surface of the microtubule for the main channel.
  • the above-mentioned 'hydrogel' is a polymer material and is widely used in diapers, contact lenses, medical electrodes, cell cultures, and is used for molding materials, soil moisture storage, and wound scarring for special purposes.
  • This is a hydrophilic polymer crosslinked by a cohesive force such as covalent bond, hydrogen bond, van der waals bond or physical bond, and has a three-dimensional polymer network structure capable of swelling a large amount of water in an aqueous solution Lt; / RTI >
  • Matrigel, Puramatrix, Collagen, or the like are used to form a concentration gradient of the chemical by cultivating the cells in three dimensions or through diffusion of a specific chemical through the three- Fibrin gel, PEGDA, and alginate.
  • the hydrated gel formed by ionic cross-linking method has alginate (Ca2 + ion added together), UV curable gel (photo-polymerization required) contains PEGDA And temperature sensitive gels such as collagen and matrigel. Since the kind of the hydrated gel is well known to those skilled in the art, a detailed description thereof will be omitted.
  • the hydrogel may be the reactant itself according to the present invention, or may be an agent containing the reactant according to the present invention. Also, after the reaction material according to the present invention is fixed to the surface of the microtubule for the main channel, the microtubule for the main channel may be filled by injecting the hydrogel.
  • the chip top plate and the chip housing are coupled to each other in advance, compared with the conventional manufacturing method, before the reaction material used as a reagent is fixed to the surface of the microchannel for main channel, And the bottom plate of the chip are joined first. Since the microtubule for the main channel of the microfluidic chip is very small, if the reactive substance is a protein, the protein is first fixed on the surface of the microtubule, and then the chip top plate and the chip bottom plate are bonded. At this time, since the heat treatment, the ultraviolet ray treatment and the chemical treatment are used in the process of bonding the chip top plate and the bottom plate, deformation of the protein may occur.
  • Protein structure denaturation may cause degradation of analytical performance, so it has been restricted for use in microfluidic analysis chips depending on the nature of the protein.
  • the microfluidic analysis chip 100 according to the present invention since the chip upper plate 112 and the chip lower plate 111 are first bonded to each other, and then the protein is fixed on the surface of the microtubule for the main channel, The probability of occurrence is very low.
  • the microfluidic analysis chip 100 may be configured such that (i) whether a sample or a reagent is reached, (ii) whether the sample or reagent is reached, (Iii) the amount of the sample or the reagent, and (iv) the type of the sample or the reagent, to the main channel microtubule have.
  • the control unit may include a plurality of electrodes provided at both ends of a target region of the micro channel for the main channel and a sensor for measuring impedance between the plurality of electrodes.
  • control unit may include a magnetic field measurement sensor provided at both ends of the target region of the microtubes for the main channel.
  • the optical unit may include a light source provided at one end of a target area of the micro-tube for the main channel and an optical sensor provided at the other end of the target area of the micro-tube for the main channel.
  • FIG. 10 is a partial enlarged view of a microfluidic analysis chip having a plurality of electrodes according to the present specification.
  • FIG. 10 it can be seen that two electrodes are provided in a part of the microtubule, and a voltage sensor for impedance measurement is connected between the two electrodes. Since the gas has an infinite impedance and the liquid has a relatively close impedance to zero, it is possible to electrically measure the arrival of the liquid on the region of interest when the liquid and the gas are injected in series, Injection information can be utilized as an accurate feedback control method. It is possible to measure the arrival of a liquid in a specific region, that is, a target region, by changing a magnetic field by adding a substance that affects a magnetic field in a sample or a reagent as well as an impedance change.
  • the microfluidic analysis chip including the control part is configured such that (i) whether the sample or reagent is reached, (ii) the flow rate of the sample or the reagent, (iii) The kind of the sample or the reagent, and the like.
  • a microtubule microfluidic analysis chip 100 for a plurality of subchannels is provided with a cap or a valve for shutting off the fluid flow in the subchannel microchannels for microchannels for some of the microchannels for the subchannels .
  • the control unit may control opening / closing of at least one of the fluid flow blocking cap or the valve based on any one of the measured impedance, the magnetic field, and the optical numerical value.
  • FIGS 11 and 12 are illustrations of microtubules for subchannels with valves in accordance with embodiments of the present disclosure.
  • electrodes and sensors for impedance measurement are provided on the micro-tubes for the main channel in the transverse direction.
  • a valve is provided in the micro tube for the sub channel in the longitudinal direction.
  • (a) shows that the microtubule for the main channel is filled with gas, and the valve for the sub-channel microtubule for the liquid injection is closed.
  • the sub-channel valve is opened to start the injection. Then, the liquid reaches between the electrodes as shown in (c).
  • the valve is closed after the target amount of liquid has been injected to limit inflow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

본 명세서는 단백질의 종류와 칩의 접착 방법에 제약을 받지 않는 미세유체분석칩 및 그 제작 방법을 개시한다. 본 명세서에 따른 미세유체분석칩 제작 방법은 (a) 메인채널용 미세관 및 복수의 서브채널용 미세관이 형성된 칩하우징을 제작하는 단계; (b) 상기 메인채널용 미세관의 표면에 반응물질 고정을 위한 표면 처리를 하는 단계; 및 (c) 상기 메인채널용 미세관 또는 서브채널용 미세관을 통해 반응물질을 주입하는 단계;를 포함할 수 있다.

Description

미세유체분석칩 제조 방법
본 발명은 미세유체분석칩 제조 방법에 관한 것이며, 보다 상세하게는 종래 미세유체분석칩에 비해 향상된 기능 및 정확도를 가진 미세유체분석칩 제조 방법에 관한 것이다.
바이오칩이란 유리, 실리콘 또는 나일론 등의 재질로 된 작은 기판 위에 DNA, 단백질 등의 생물분자 (Biomolecule)들을 집적시켜 놓은 것을 말하며, 이때 DNA를 집적시켜 놓으면 DNA칩이라 칭하고, 단백질을 집적 시켜 놓으면 단백질칩이라 칭한다. 또한 바이오칩은 마이크로어레이칩(Microarray Chip)과 마이크로플루이딕스 칩(Micro fluidics chip)으로 크게 나눌 수 있다.
마이크로어레이칩은 수천 혹은 수만개 이상의 DNA나 단백질 등을 일정 간격으로 배열하여 붙이고, 분석 대상 물질을 처리하여 그 결합 양상을 분석할 수 있는 바이오칩을 말한다. 그리고 마이크로플루이딕스칩은 미량의 분석 대상물질을 흘려보내면서 칩에 집적되어 있는 각종 생물분자 혹은 센서와 반응하는 양상을 분석할 수 있는 바이오칩으로서, 랩온어칩(Lab on a chip)이라 불리기도 하며, 생화학물질의 분석시 사용되는 자동분석장 치의 시료 전처리 과정에 필수적인 펌프, 밸브, 반응기, 추출기, 분리 시스템 등의 기능과 센서기술이 같이 접목된 첨단 기술이다.
랩온어칩을 좀 더 살펴보면, 랩온어칩은 화학 및 생화학 물질을 분석하기 위해 연구실 단위에서 거치 게 되는 시료주입, 전처리, 화학반응, 분리/분석 등의 과정을 수 cm2의 칩 내부에서 이루어지도록 제작한 미세 분석장치이다.
랩온어칩 기술은 수 피코 리터(pl)에서 수십 마이크로 리터(μl) 용량의 시료를 정확하게 이송, 분배, 혼합하는 극미량 유동 제어 기술과 멤스(MEMS) 미세가공기술이 복합된 것으로 미세종합분석시스템의 핵심기술이다.
극미량의 시료를 사용하고 화학성분을 빠르고 간편하게 분석하는 랩온어칩은 수많은 신약후보물질 중 유용한 신약을 고속으로 선별하기 위해 많이 사용되고 있으며, 최근 들어서는 환경오염물질의 검출, 질병진단 등을 목적으로 하는 여러 종류의 랩온어칩이 연구개발 중에 있다.
DNA칩이나 단백질(protein)칩과 같은 마이크로어레이칩(micro-array chip)과는 달리 랩온어칩은 아직 세계적으로 연구개발 단계에 머물러 있으며, 상용화도 제한적이며 소규모로 이루어지고 있는 실정이고, 현재 상용화되어 있는 랩온어칩의 경우 미세 채널의 네트워크가 단순하며 반응과정 역시 복잡하지 않은 단계에서 구현 되고 있다.
본 명세서는 단백질의 종류와 칩의 접착 방법에 제약을 받지 않는 미세유체분석칩 및 그 제작 방법을 제공하고자 한다.
본 명세서는 상기 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 명세서에 따른 미세유체분석칩 제작 방법은, (a) 메인채널용 미세관 및 복수의 서브채널용 미세관이 형성된 칩하우징을 제작하는 단계; (b) 상기 메인채널용 미세관의 표면에 반응물질 고정을 위한 표면 처리를 하는 단계; 및 (c) 상기 메인채널용 미세관 또는 서브채널용 미세관을 통해 반응물질을 주입하는 단계;를 포함할 수 있다.
본 명세서의 일 실시예에 따르면, 상기 (a)단계는 메인채널용 미세관 및 복수의 서브채널용 미세관이 형성된 칩하부판 및 칩상부판을 제작하는 단계; 및 상기 칩하부판과 상기 칩상부판을 결합하는 단계;를 포함할 수 있다.
이 경우, 상기 결합하는 단계는, 열처리, 자외선처리 및 화학처리 중 적어도 하나의 방법을 이용하여 상기 칩하부판과 상기 칩상부판을 결합할 수 있다.
본 명세서의 일 실시예에 따르면, 상기 (a)단계는, 상기 메인채널용 미세관 또는 서브채널용 미세관에는 상기 메인채널용 미세관 또는 서브채널용 미세관과 외부를 차단하는 캡 또는 밸브를 형성하는 단계;를 더 포함할 수 있다.
본 명세서의 일 실시예에 따르면, 상기 (b) 단계는, 상기 메인채널용 미세관의 양단, 상기 복수의 서브채널용 미세관 중 제1 서브채널용 미세관 및 제2 서브채널용 미세관을 제외한 나머지 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄하는 단계; 및 상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제1 지점과 (ii) 상기 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제2 지점 사이의 영역의 표면에 반응물질 고정을 위한 표면 처리를 위해 상기 제1 서브채널용 미세관 또는 제2 서브채널용 미세관을 통해 표면 처리 용액을 주입하는 하는 단계;를 포함할 수 있다.
본 명세서의 일 실시예에 따르면, 상기 (c) 단계는, 상기 메인채널용 미세관의 양단 및 상기 제1, 2 서브채널용 미세관을 제외한 나머지 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄하는 단계; 및 상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제1 지점과 (ii) 상기 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제2 지점 사이의 영역의 표면에 반응물질 고정하기 위해 상기 제1 서브채널용 미세관 또는 제2 서브채널용 미세관을 통해 반응 물질 용액을 주입하는 단계;를 포함할 수 있다.
본 명세서에 따른 미세유체분석칩 제작 방법은, (d) (i) 상기 제1 또는 제2 서브채널용 미세관의 캡 또는 밸브 및 (ii) 상기 (i)에서 선택된 캡 또는 밸브와 인접한 메인채널용 미세관의 캡 또는 밸브를 개방하는 단계; 및 (e) 상기 (d)에서 개방된 서브채널용 미세관 또는 메인채널용 미세관을 통해 제1 지점과 제2 지점 사이 영역의 표면에 고정되지 않은 반응물질을 제거하는 제거액을 주입하는 단계;를 더 포함할 수 있다.
본 명세서에 따른 미세유체분석칩 사용 방법은, (a) 한 쪽 끝에는 형성된 시료 주입구로부터 투입된 시료가 다른 쪽 끝으로 이동하는 동안 시약과 반응하는 공간을 제공하는 메인채널용 미세관, 일단은 상기 메인채널용 미세관의 측면과 연결되고, 타단은 상기 칩하우징의 외부와 연결되는 복수의 서브채널용 미세관 및 상기 메인채널용 미세관 및 복수의 서브채널 용 미세관을 감싸는 칩하우징을 포함하는 미세유체분석칩으로서, 상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 복수의 서브채널용 미세관 중 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제1 지점과 (ii) 상기 복수의 서브채널용 미세관 중 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제2 지점 사이의 영역의 표면에 반응물질 또는 수화젤이 고정된 미세유체분석칩의 상기 시료 주입구를 통해 시료를 주입하는 단계; (b) (i) 상기 메인채널용 미세관의 양단에 연결된 캡 또는 벨브는 개방하고, (ii) 상기 복수의 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄하는 단계; 및 (c) 상기 메인채널용 미세관의 양단 중 어느 일단을 통해 상기 반응물질과 반응하지 않고 상기 메인채널용 미세관에 잔류하는 시료를 세척하는 세척액을 주입하는 단계;를 포함할 수 있다.
상술한 과제를 해결하기 위한 본 명세서에 따른 미세유체분석칩 제작 방법은, (a) 메인채널용 미세관 및 복수의 서브채널용 미세관이 형성된 칩하우징을 제작하는 단계; (b) 상기 메인채널용 미세관의 양단 및 상기 제1, 2 서브채널용 미세관을 제외한 나머지 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄하는 단계; 및 (c) 상기 제1 또는 제2 서브채널용 미세관을 통해 수화젤을 주입하는 단계;를 포함할 수 있다. 나아가, (b-1) 상기 메인채널용 미세관의 표면에 수화젤 고정을 위한 표면 처리를 하는 단계;를 더 포함할 수 있다.
본 명세서에 따른 미세유체분석칩 제작 방법은 (d) 타겟 영역에 대한 측정된 임피던스, 자기장 및 광학수치 중 적어도 어느 하나의 값에 기반하여 (i) 시료 또는 시약의 도달 여부, (ii) 상기 시료 또는 상기 시약의 유속, (iii) 상기 시료 또는 상기 시약의 양 및 (iv) 상기 시료 또는 상기 시약의 종류 중 적어도 하나를 판단하는 제어부를 상기 메인채널용 미세관에 연결하는 단계;를 더 포함할 수 있다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 명세서의 일 측면에 따르면, 메인채널용 미세관의 표면 중 원하는 국소영역을 반응물질 또는 수화젤로 고정시킬 수 있다. 이를 통해 보다 정확하게 원하는 영역에서 시약과 시료의 반응이 가능하다.
본 명세서의 다른 측면에 따르면, 제작 과정에서 칩상부판 및 칩하부판이 결합된 다음에 단백질 등 반응물질이 메인채널용 미세관에 고정되기 때문에, 제작 과정에서 열처리등에 의한 단백질 등 반응물질의 변성 가능성이 매우 낮아진다.
본 명세서의 또 다른 측면에 따르면, 서로 다른 성질의 물질로 메인채널용 미세관의 국소영역 표면처리를 통해 다양한 물질 검출이 가능하다. 또한, 친수성 및 소수성 물질을 통해 구간별로 미세 유체가 흐르는 속도를 조절하거나 유입을 제한할 수 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 명세서의 일 실시예에 따른 미세유체분석칩의 제작 방법을 도시한 흐름도이다.
도 2는 본 명세서의 미세유체분석칩 제작 방법에 따라 제작된 미세유체분석칩의 평면도 및 단면도이다.
도 3은 본 명세서에 따른 미세유체분석칩에 캡이 형성된 예시도이다.
도 4는 본 명세서의 일 실시예에 따라 표면 처리 용액 및 반응물질 용액을 주입하는 예시도이다.
도 5는 본 명세서의 다른 실시예에 따라 표면 처리 용액 및 반응물질 용액을 주입하는 예시도이다.
도 6은 본 명세서의 또 다른 실시예에 따라 표면 처리 용액 및 반응물질 용액을 주입하는 예시도이다.
도 7은 본 명세서에 따른 메인채널용 미세관의 일부 확대 단면도이다.
도 8은 본 명세서에 따른 불필요한 반응물질 제거 방법의 예시도이다.
도 9는 본 명세서의 일 실시예에 따라 메인채널용 미세관 내부를 세척하는 예시도이다.
도 10은 본 명세서에 따라 복수의 전극을 가진 미세유체분석칩의 일부 확대도이다.
도 11 및 도 12는 본 명세서의 실시예에 따라 밸브가 포함된 서브채널용 미세관의 예시도이다.
본 명세서에 개시된 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 명세서가 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 명세서의 개시가 완전하도록 하고, 본 명세서가 속하는 기술 분야의 통상의 기술자에게 본 명세서의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 명세서의 권리 범위는 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 명세서의 권리 범위를 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 명세서가 속하는 기술분야의 통상의 기술자(이하 '당업자')에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성요소와 다른 구성요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들어, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)"또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있으며, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
도 1은 본 명세서의 일 실시예에 따른 미세유체분석칩의 제작 방법을 도시한 흐름도이다.
도 1을 참조하면, 본 명세서의 일 실시예에 따른 미세유체분석칩 제작 방법은 메인채널용 미세관 및 복수의 서브채널용 미세관이 형성된 칩하우징을 제작하는 단계(S10), 상기 메인채널용 미세관의 표면에 반응물질 고정을 위한 표면 처리를 하는 단계(S20) 및 상기 메인채널용 미세관 또는 서브채널용 미세관을 통해 반응물질을 주입하는 단계(S30)를 포함할 수 있다.
도 2는 본 명세서의 미세유체분석칩 제작 방법에 따라 제작된 미세유체분석칩의 평면도 및 단면도이다.
도 2를 참조하면, 본 명세서에 따른 미세유체분석칩(100)은 칩하우징(110), 메인채널용 미세관(120), 복수의 서브채널용 미세관(130)을 포함할 수 있다.
상기 칩하우징(110)은 플라스틱과 같은 고분자 물질로 제작될 수 있다.
본 명세서에서 메인채널용 미세관(120)은 혈액, 소변 등과 같은 시료(sample)가 투입되어 이동하는 공간으로서, 메인채널용 미세관 내에서는 시약(reagent)과 반응을 위한 반응실(reaction chamber)이 형성될 수 있다. 그리고 상기 메인채널용 미세관(120)은 양단이 상기 칩하우징(110)의 외부와 연결될 수 있다. 상기 외부는 반드시 상기 하우징의 끝 단을 기준으로 물리적으로 이격된 공간을 의미하지 않는다. 상기 메인채널용 미세관(120)은 시료가 투입되어야 하기 때문에 한 쪽 끝이 시료 투입을 위해 외부와 연결이 되어야 한다. 또한 상기 메인채널용 미세관(120)에 투입된 시료가 시약과 반응한 후 그 결과를 확인하기 위해 투입된 반대편으로 이동하여야 하며, 그 결과를 외부에서 확인할 수 있어야 한다. 도면에서는 메인채널용 미세관(120)의 입구와 출구가 칩하우징의 상단면에 형성된 예시가 도시되어 있으나, 본 명세서에 따른 미세유체분석칩이 상기 도면에 제한되는 것은 아니다. 상기 입구 및 출구는 칩하우징의 상단, 하단, 측면 등 다양하게 형성될 수 있음은 자명하다. 따라서 본 명세서에서 상기 메인채널용 미세관(120)의 양단이 상기 칩하우징(110)의 외부와 연결된 것이란, 상기 메인채널용 미세관(120)에서 이루어진 시료와 시약의 반응을 외부에서 주도하고 확인할 수 있도록 다양하게 형성된 형태로 이해해야 한다.
상기 복수의 서브채널용 미세관(130)의 일단은 상기 메인채널용 미세관(120)의 측면과 연결되고, 타단은 상기 칩하우징(110)의 외부와 연결될 수 있다. 본 명세서에서 '상기 메인채널용 미세관의 측면'이란, 메인채널용 미세관 내에 흐르는 유체의 이동 방향을 기준을 측면을 의미한다. 따라서, 서브채널용 미세관이 메인채널용 미세관의 표면과 반듯이 수직으로 연결될 필요는 없으며, 상기 메인채널용 미세관의 내부와 서브채널용 미세관의 내부가 연결이 될 수 있는 다양한 형태를 의미한다. 한편, 도 2에서는 2개의 서브채널용 미세관(130)을 가진 실시예가 도시되어 있으나, 도면 실시예에 제한되는 것이 아니며 필요에 따라 그 개수는 다양하다.
상기 칩하우징(110)은 사출방식에 의해 일체형으로 제작될 수도 있으며, 칩하부판(111) 및 칩상부판(112)이 결합된 방식으로 제작될 수도 있다. 상기 칩하우징(110)이 칩하부판(111) 및 칩상부판(112)으로 구분되는 경우, 상기 S10 단계는, 메인채널용 미세관(120) 및 복수의 서브채널용 미세관(130)이 형성된 칩하부판(111) 및 칩상부판(112)을 제작하는 단계 및 상기 칩하부판(111)과 상기 칩상부판(112)을 결합하는 단계를 포함할 수 있다. 상기 결합하는 단계는, 열처리, 자외선처리 및 화학처리 중 적어도 하나의 방법을 이용하여 상기 칩하부판(111)과 상기 칩상부판(112)을 결합할 수 있다. 이 경우, 상기 메인채널용 미세관(120)은 상기 칩하부판(111)과 상기 칩상부판(112)이 결합되는 면에 형성될 수 있다.
도 3은 본 명세서에 따른 미세유체분석칩에 캡이 형성된 예시도이다.
도 3을 참조하면, 상기 메인채널용 미세관 및 서브채널용 미세관의 끝단에 캡(140)이 형성된 것을 확인할 수 있다. 상기 캡(140)은에는 상기 메인채널용 미세관 또는 서브채널용 미세관을 개방 또는 밀폐하기 위한 구성으로서 상기 캡이 닫혔을 때 해당 미세관은 외부와 차단되어 공기가 유입되거나 유체가 침투할 없다. 이 경우, 상기 S10 단계는, 상기 메인채널용 미세관 또는 서브채널용 미세관에는 상기 메인채널용 미세관 또는 서브채널용 미세관과 외부를 차단하는 캡 또는 밸브를 형성하는 단계를 더 포함할 수 있다. 한편, 상기 캡(140)의 사용 방법에 대해서는 이하에서 설명하도록 하겠다.
본 명세서의 일 실시예에 따르면, 상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 복수의 서브채널용 미세관 중 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제1 지점과 (ii) 상기 복수의 서브채널용 미세관 중 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제2 지점 사이의 영역의 표면에 단백질 고정용 물질이 화학적으로 표면 처리된 상태일 수 있다.
본 명세서의 일 실시예에 따르면, 상기 S20 단계는, 상기 메인채널용 미세관의 양단, 상기 복수의 서브채널용 미세관 중 제1 서브채널용 미세관 및 제2 서브채널용 미세관을 제외한 나머지 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄하는 단계 및 상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제1 지점과 (ii) 상기 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제2 지점 사이의 영역의 표면에 반응물질 고정을 위한 표면 처리를 위해 상기 제1 서브채널용 미세관 또는 제2 서브채널용 미세관을 통해 표면 처리 용액을 주입하는 하는 단계를 포함할 수 있다.
본 명세서의 일 실시예에 따르면, 상기 S30 단계는, 상기 메인채널용 미세관의 양단 및 상기 제1, 2 서브채널용 미세관을 제외한 나머지 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄하는 단계 및 상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제1 지점과 (ii) 상기 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제2 지점 사이의 영역의 표면에 반응물질 고정하기 위해 상기 제1 서브채널용 미세관 또는 제2 서브채널용 미세관을 통해 반응 물질 용액을 주입하는 단계를 포함할 수 있다.
도 4는 본 명세서의 일 실시예에 따라 표면 처리 용액 및 반응물질 용액을 주입하는 예시도이다.
도 4의 (d)를 잠시 먼저 참조하면, 메인채널용 미세관의 일부 영역에 표면처리 및 반응물질이 고정된 것을 확인할 수 있다. 본 명세서에서는 이해의 편의를 위해 상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 복수의 서브채널용 미세관 중 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 지점을 '제1 지점'이라고 명명하고, (ii) 상기 복수의 서브채널용 미세관 중 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 지점을 '제2 지점'이라 명명하겠다. 상기 '제1 서브채널용 미세관'이란 상기 제1 지점에 대응하는 서브채널용 미세관이고, '제2 서브채널용 미세관'이란 상기 제2 지점에 대응하는 서브채널용 미세관이다.
먼저 도 4의 (a)에서 메인채널용 미세관(120)에 형성된 캡은 닫혔으며, 서브채널용 미세관(130)에 형성된 캡은 개방된 것을 확인할 수 있다. 상기 메인채널용 미세관의 양단 및 상기 제1, 2 서브채널용 미세관을 제외한 나머지 서브채널용 미세관의 외부로 연결되는 끝단을 캡으로 막는다. 도 4에서는 제1, 2 서브채널용 미세관만 도시되어 있기 때문에 나머지 서브채널용 미세관을 막는 모습은 도시되어 있지 않다. 그러나 다양한 실시예에 따라 제1, 2 서브채널용 미세관 외에 다른 서브채널용 미세관이 형성될 수 있다. 이때, 상기 서브채널용 미세관(130)을 통해 반응물질 고정을 위한 표면 처리 용액을 주입하면, 도 4의 (b)와 같이 제1 지점과 제2 지점 사이 표면이 처리가 된다. 상기 표면 처리 용액으로 BSA (bovine serum albumin), HEC (hydroxyethyl-cellulose), MC (methyl-cellulose), PVA (poly(vinyl alcohol), PP(pluronic polyol) 또는 DS (dextransulfate) 가 될 수 있다. 다음으로 도 4의 (c)와 같이 상기 제1 서브채널용 미세관의 외부로 연결되는 끝단 및 상기 제2 서브채널용 미세관의 외부로 연결되는 끝단 중 어느 하나를 통하여 반응물질 용액을 주입할 수 있다. 그 결과 도 4의(d)와 같이 제1 지점과 제2 지점 사이 표면에 반응물질이 고정된다.
상기 반응물질은 특정 물질과 화학 반응하는 물질 또는 항원-항체 반응 물질, 또는 특정 성분과 결합하는 단백질 등이 될 수 있다. 즉, 시료에서 찾고자 하는 물질의 특성에 따라 대상 물질과 반응하는 다양한 물질이 될 수 있다.
도 5는 본 명세서의 다른 실시예에 따라 표면 처리 용액 및 반응물질 용액을 주입하는 예시도이다.
도 5의 (a) 및 (b)는 도 4의 (a) 및 (b)와 동일하다. 따라서 반복되는 부분의 설명은 생략하고 차이나는 도 5의 (c)부분부터 설명하겠다. 도 5의 (c)를 참조하면, 메인채널용 미세관(120)에 형성된 캡은 개방되어 있으며, 서브채널용 미세관(130)에 형성된 캡은 폐쇄된 것을 확인할 수 있다. 상기 메인채널용 미세관(120)의 양 끝단 중 어느 한 끝단을 통해 반응물질 용액을 주입할 수 있다. 이 경우, 상기 제1 지점과 제2 지점 사이에만 반응물질 고정용 물질이 표면 처리되어 있기 때문에, 도 5의(d)와 같이 제1 지점과 제2 지점 사이 표면에 반응물질이 고정된다.
도 6은 본 명세서의 또 다른 실시예에 따라 표면 처리 용액 및 반응물질 용액을 주입하는 예시도이다.
먼저 도 6의 (a)에서 메인채널용 미세관(120)에 형성된 캡은 개방되어 있으며, 서브채널용 미세관(130)에 형성된 캡은 폐쇄된 것을 확인할 수 있다. 상기 메인채널용 미세관(120)을 통해 반응물질 고정을 위한 표면처리 용액을 주입하면, 도 6의 (b)와 같이 상기 메인채널용 미세관의 모든 영역의 표면이 반응물질 고정용 물질로 표면 처리가 된다. 다음으로 도 6의 (c)를 확인하면, 메인채널용 미세관(120)에 형성된 캡은 폐쇄되어 있으며, 서브채널용 미세관(130)에 형성된 캡은 개방된 것을 확인할 수 있다. 상기 제1 서브채널용 미세관의 외부로 연결되는 끝단 및 상기 제2 서브채널용 미세관의 외부로 연결되는 끝단 중 어느 하나를 통하여 반응물질 용액을 주입할 수 있다. 그 결과 도 6의(d)와 같이 제1 지점과 제2 지점 사이 표면에 반응물질이 고정된다.
도 4 내지 도 6을 통해 국소영역의 표면을 반응물질로 고정하는 실시예를 살펴보았다. 도 4 내지 6에서는 설명의 간소화 및 이해의 편의를 위해 2개의 서브채널용 미세관이 형성된 실시예를 중심으로 설명하였으나, 상기 제1, 2 서브채널용 미세관 외 추가적인 서브채널용 미세관을 구성하면, 하나의 메인채널용 미세관 내에서도 복수개의 반응물질 고정 영역을 만들 수 있다. 이때, 이종의 반응물질을 사용하면 한 채널 내에서 다중 표적 물질에 대한 분석을 수행할 수 있다.
한편, 상기 반응물질은 요구된 제1 지점 또는 제2 지점을 넘어서 고정될 수 있으며, 상기 서브채널용 미세관의 표면에 잔류할 가능성이 있다.
도 7은 본 명세서에 따른 메인채널용 미세관의 일부 확대 단면도이다.
본 명세서에 따른 제작 방법은 상기 메인채널용 미세관을 캡 또는 밸브로 막고 원하는 국소 영역에 해당하는 서브채널용 미세관을 통해 표면처리 용액 및 반응물질 용액을 주입하지만, 도 7에 도시된 것과 같이, 상기 표면처리용 용액 또는 반응물질 용액이 예상했던 제1 지점 또는 제2 지점을 벗어날 수 있다. 도 7에서는 제1 서브채널용 미세관의 우측 벽면을 기준으로 왼쪽은 원치 않게 반응물질이 고정된 영역으로 표현하였다. 또한, 제1 서브채널용 미세관의 표면에 반응물질의 일부가 잔류한 것으로 표현하였다. 본 명세서에 따른 제작 방법은 상기 원치 않는 영역의 반응물질 제거가 가능하다.
도 8은 본 명세서에 따른 불필요한 반응물질 제거 방법의 예시도이다.
도 8의 (a)를 참조하면, 도 6의 방법에 따라 제1 지점과 제2 지점 사이에 단백질이 고정된 상태이다. 이 때, 제1 서브채널용 미세관의 표면, 제2 서브채널용 미세관의 표면, 제1 지점의 좌측 및 제2 지점의 우측에 불필요한 반응물질을 제거하려고 하는 것으로 가정하겠다. 이를 위해 도 8의 (b)와 같이, 메인채널용 미세관의 좌측 끝단과 제1 서브채널용 미세관의 캡은 개방하고, 메인채널용 미세관의 우측 끝단과 제2 서브채널용 미세관의 캡은 폐쇄한다. 그리고 메인채널용 미세관의 좌측 끝단 또는 제1 서브채널용 미세관을 통해 제거액을 주입한다. 이를 통해 제1 서브채널용 미세관의 표면 및 제1 지점의 좌측에 존재하는 불필요한 반응물질이 제거된다. 다음으로, 도 8의 (c)와 같이, 메인채널용 미세관의 우측 끝단과 제2 서브채널용 미세관의 캡은 개방하고, 메인채널용 미세관의 좌측 끝단과 제1 서브채널용 미세관의 캡은 폐쇄한다. 그리고 메인채널용 미세관의 우측 끝단 또는 제2 서브채널용 미세관을 통해 제거액을 주입한다. 이를 통해 제2 서브채널용 미세관의 표면 및 제2 지점의 우측에 존재하는 불필요한 반응물질이 제거된다. 그 결과, 도 8의 (d)와 같이, 제거액을 통해 불필요한 반응물질을 제거할 수 있다.
한편, 도 8에는 2개의 서브채널용 미세관이 구비된 실시예를 도시하였기 때문에 메인채널용 미세관을 함께 이용하는 예시를 도시하였다. 그러나 2개를 초과하는 서브채널용 미세관이 구비된 경우, 메인채널용 미세관의 역할을 인접한 다른 서브채널용 미세관이 수행할 수 있다. 예를 들어, 4개의 서브채널용 미세관이 구비되어 있고, 각각의 서브채널용 미세관과 대응하는 메인채널용 미세관의 지점을 제1 지점, 제2 지점, 제3 지점 및 제4 지점이라고 명명하겠다. 그리고 이때, 제2 지점과 제3 지점 사이에 반응물질이 고정된 상태이며, 나머지 부분에 불필요한 반응물질을 제거하려는 것으로 가정하겠다. 이를 위해 제1 서브채널용 미세관과 제2 서브채널용 미세관을 개방하고 나머지는 모두 폐쇄하고 상기 제1 서브채널용 미세관 또는 제2 서브채널용 미세관을 통해 제거액을 주입한다. 그리고 제3 서브채널용 미세관과 제4 서브채널용 미세관을 개방하고 나머지는 모두 폐쇄하고 상기 제3 서브채널용 미세관 또는 제4 서브채널용 미세관을 통해 제거액을 주입한다. 이를 통해 제2 지점과 제3 지점 사이에 고정된 반응물질을 제외한 나머지 영역에 불필요한 반응물질이 제거될 것이다.
즉, (i) 상기 제1 또는 제2 서브채널용 미세관의 캡 또는 밸브 및 (ii) 상기 (i)에서 선택된 캡 또는 밸브와 인접한 메인채널용 미세관의 캡 또는 밸브 또는 서브채널용 캡 또는 밸브를 개방하는 단계이다. 그리고, 상기 개방된 서브채널용 미세관 또는 메인채널용 미세관을 통해 제1 지점과 제2 지점 사이 영역의 표면에 고정되지 않은 반응물질을 제거는 제거액을 주입하는 단계이다.
상기 제거액은 제거하고자 하는 물질과 표면과의 결합 방식에 따라 적합한 용액을 선택하며, 일 예로 단백질 제거 용액은 15 g glycine, 1 g SDS, 10 ml Tween20, Adjust pH to 2.2, Bring volume up to 1 L with ultrapure water 용액 또는 20 ml SDS 10%, 12.5 ml Tris HCl pH 6.8 0.5M, 67.5 ml ultra pure water, 0.8 ml ß-mercaptoethanol 용액을 사용할 수 있다.
한편, 시료는 상기 반응물질과 반응(또는 결합)되지만, 일부 반응하지 않은 물질 또는 반응물질의 양을 초과하는 시료는 상기 메인채널용 미세관에 잔류할 수 있다. 따라서, 상기 메인채널용 미세관을 세척할 필요성이 있다.
도 9는 본 명세서의 일 실시예에 따라 메인채널용 미세관 내부를 세척하는 예시도이다.
도 9의 (a)를 참조하면, 먼저 시료를 주입하는 단계이다. 상기 시료 내에는 반응물질과 결합하는 물질이 함유된 것으로 표현하였다. 다음 도 9의 (b)를 참조하면, 시료가 반응물질과 모두 반응하였으나, 시료의 일부가 메인채널용 미세관 내에 잔류한 것을 확인할 수 있다. 다음으로 도 9의 (c)와 같이, (i) 상기 메인채널용 미세관의 양단에 연결된 캡 또는 벨브는 개방하고, (ii) 상기 복수의 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄한다. 그리고 상기 메인채널용 미세관의 양단 중 어느 일단을 통해 상기 반응물질과 반응하지 않고 상기 메인채널용 미세관에 잔류하는 시료를 세척하는 세척액을 주입한다. 그 결과 도 9의 (d)와 같이, 세척액을 통해 잔류물질을 제거할 수 있다. 이와 같은 세척액을 통해 잔류물질을 제거하는 동작은, 실시예에 따라서는, 미세유체분석칩을 제작 시 수행되거나, 또는 제작된 미세유체분석칩을 사용자가 사용할 때 사용자에 의해 수행될 수 있다.
상기 세척액은 메인채널용 미세관의 사용 환경 조건에 따라 사용자가 다양하게 선택 가능하며, 일반적으로 바이오 분야에서 널리 쓰이는 DIW (deionized water), PBS(phosphate buffered saline) 또는 TBS(tris buffered saline)가 될 수 있다.
도 1 내지 도 8은 모두 반응물질을 메인채널용 미세관의 표면에 고정시키는 실시예에 해당하였다. 그러나 본 명세서에 따라 수화젤이 제1 지점과 제2 지점 사이에 고정될 수 있다.
본 명세서의 다른 실시예에 따르면, 상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 복수의 서브채널용 미세관 중 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제1 지점과 (ii) 상기 복수의 서브채널용 미세관 중 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제2 지점 사이의 영역의 표면에 수화젤(160)이 고정될 수 있다. 이 때, 상기 메인채널용 미세관의 표면에 수화젤 고정을 위한 표면 처리를 하는 단계를 더 포함할 수도 있다.
상기 '수화젤(hydrogel)'은 고분자 물질로서 일반적으로 기저귀, 콘텍트 렌즈, 의료용 전극, 세포 배양시 많이 쓰이고 특수한 용도로 성형 재료나 토양 수분 저장용, 화상 상처용 붕대류에도 다양하게 쓰인다. 이는 공유 결합, 수소결합, 반데르발스(van der waals) 결합 또는 물리적 결합 등과 같은 응집력에 의해 가교된 친수성 고분자로서, 수용액상에서 다량의 물을 내부에 함유하여 팽윤할 수 있는 3차원 고분자 네트워크 구조를 갖는 물질이다. 일 예로, 세포를 3차원으로 배양하거나 3차원 골격을 통한 특정 화학물질의 확산을 통해 상기 화학물질의 농도 구배를 형성시키기 위한 것으로 매트리젤(Matrigel), 퓨라메트릭스 (Puramatrix), 콜라겐(Collagen), 피브린 겔(Fibrin gel), PEGDA, 알지네이트(Alginate) 등이 있다. 또한, 특성에 따라, 이온 가교(Ionic cross-linking)법을 이용하여 형성한 수화젤은 alginate (Ca2+ 이온을 함께 넣음)이 있고, UV 경화성 젤 (photo-polymerization이 필요)에는 PEGDA (initiator material을 함께 넣음)이 있고, 온도 감응성 젤은 collagen, matrigel 등이 있다. 상기 수화젤의 종류는 당업자에게 공지의 기술이므로 상세한 설명은 생략하겠다.
한편, 상기 수화젤은 본 명세서에 따른 반응물질 그 자체가 될 수 있으며, 본 명세서에 따른 반응물질을 포함하는 매개체가 될 수도 있다. 또한, 본 명세서에 따른 반응물질이 메인채널용 미세관의 표면에 고정된 후, 수화젤을 주입하여 상기 메인채널용 미세관을 채울 수도 있다.
한편, 본 명세서에 따라 칩상부판과 칩하우판을 먼저 결합하는 방식의 경우, 종래 제작 방법과 비교할 때, 시약으로 사용되는 반응물질을 메인채널용 미세관의 표면에 고정시키기 전에 상기 칩상부판과 칩하부판을 먼저 결합시킨다는 것이 큰 차이점이다. 종래 제작 방법은 미세유체분석칩의 메인채널용 미세관이 아주 작기 때문에 반응물질이 단백질인 경우, 단백질을 미세관의 표면에 먼저 고정시킨 후, 칩상부판과 칩하부판을 결합시켰다. 이때, 칩상부판과 칩하부판을 결합시키는 과정에서 열처리, 자외선처리 및 화학처리 등이 사용되기 때문에 단백질의 변형이 발생할 수 있다. 단백질 구조 변성은 분석 성능의 하락을 유발할 수 있기 때문에, 단백질의 특성에 따라 미세유체분석칩에 사용 제약이 되었다. 반면, 본 명세서에 따른 미세유체분석칩(100)은 칩상부판(112)과 칩하부판(111)을 먼저 결합시킨 후 이후 단백질을 메인채널용 미세관의 표면에 고정시키기 때문에 단백질 구조의 변성이 발생할 가능성이 매우 낮다.
한편, 본 명세서에 따른 미세유체분석칩(100)은 타겟 영역에 대한 측정된 임피던스, 자기장 및 광학수치 중 적어도 어느 하나의 값에 기반하여 (i) 시료 또는 시약의 도달 여부, (ii) 상기 시료 또는 상기 시약의 유속, (iii) 상기 시료 또는 상기 시약의 양 및 (iv) 상기 시료 또는 상기 시약의 종류 중 적어도 하나를 판단하는 제어부를 상기 메인채널용 미세관에 연결하는 단계를 더 포함할 수 있다.
임피던스 변화 측정을 위해 상기 제어부는 상기 메인채널용 미세관의 타겟 영역의 양단에 설치되는 복수의 전극 및 상기 복수의 전극 사이의 임피던스를 측정하는 센서를 포함할 수 있다.
자기장 변화 측정을 위해 상기 제어부는 상기 메인채널용 미세관의 타겟 영역의 양단에 설치되는 자기장 측정 센서를 포함할 수 있다.
광학 수치 변화 측정을 위해 상기 제어부는 상기 메인채널용 미세관의 타겟 영역의 일단에 설치된 광원 및 상기 메인채널용 미세관의 타겟 영역의 타단에 설치된 광학센서를 포함할 수 있다.
도 10은 본 명세서에 따라 복수의 전극을 가진 미세유체분석칩의 일부 확대도이다.
도 10을 참조하면, 미세관의 일부 영역에 두 개의 전극이 설치되어 있고, 두 전극 사이에 임피던스 측정을 위한 전압센서가 연결된 것을 확인할 수 있다. 기체는 무한대의 임피던스를 가지고, 액체는 상대적으로 0에 가까운 임피던스를 가지므로, 액체와 기체가 직렬로 주입될 때 관심영역 상의 액체의 도달 유무를 전기적으로 측정할 수 있으며, 이렇게 실시간으로 확인되는 액체의 주입 정보는 정확한 피드백 조정법(feedback control)으로 활용할 수 있다. 임피던스 변화뿐만 아니라, 시료 또는 시약에 자기장에 영향을 주는 물질을 첨가하여 자기장이 변화하는 것을 통해 특정 영역 즉, 타겟 영역에 액체의 도달 유무를 측정할 수 있다. 또한, 광원으로부터 조사된 빛이 시료 또는 시약을 투과하는 과정에서 산란된 빛의 양을 측정하거나 반사된 빛을 측정하여 역시 타겟 영역에 액체의 도달 유무를 측정할 수 있다. 이를 통해 상기 제어부는 상기 측정된 임피던스, 자기장 또는 광학 수치 값에 기반하여 상기 타겟 영역에 대한 (i) 시료 또는 시약의 도달 여부, (ii) 상기 시료 또는 상기 시약의 유속, (iii) 상기 시료 또는 상기 시약의 양 및 (iv) 상기 시료 또는 상기 시약의 종류 중 적어도 하나를 판단할 수 있다.
다종의 시료 및 시약이 미세관 내에 순차적으로 주입될 때, 기존에는 기 주입된 순서와 용량 정보를 저장해두고 인가한 유체의 유속에 따라 특정 지역의 통과시점을 예상하여 수행했다. 이러한 경우, 사전에 설정된 사항에 의존하기 때문에 시료 및 시약의 실제 통과 시점을 정확히 알 수 없고, 예상치 못 한 상황이 발생하거나 사전 설정에 오류가 있는 경우에는 비정상적인 유체구동이 일어날 수 있었다. 반면 본 명세서에 따라 제어부를 포함하는 미세유체분석칩은 (i) 시료 또는 시약의 도달 여부, (ii) 상기 시료 또는 상기 시약의 유속, (iii) 상기 시료 또는 상기 시약의 양 및 (iv) 상기 시료 또는 상기 시약의 종류 등을 판단할 수 있다. 따라서, 특히 생물학적 분석을 수행하는 경우, 시료 및 시약의 도달 시점을 파악하고 후속 유체 구동을 조절이 가능하다.
한편, 전기전도도가 비슷한 다종의 액체가 주입될 경우, 임피던스 차이로 액체를 구별하는데 제약이 있을 수 있다. 이러한 경우에 전기전도도가 확연히 다른 색인 액체를 사용하여 간접적으로 모니터링이 가능하다. 즉, 이미 알고 있는 색인 액체의 임피던스 정보를 기반으로 유속 및 통과 시점을 파악할 수 있다. 이 방법은 자기장 또는 광학 수치 측정 방법에도 유사하게 적용이 가능하다.
본 명세서에 따라 복수개의 서브채널용 미세관 미세유체분석칩(100)은 상기 서브채널용 미세관 중 일부 서브채널용 미세관에는 상기 서브채널용 미세관내 유체 흐름을 차단하는 캡 또는 밸브가 형성될 수 있다. 이 경우, 상기 제어부는 상기 측정된 임피던스, 자기장 및 광학수치값 중 어느 하나에 기반하여 유체 흐름 차단용 캡 또는 밸브 중 적어도 하나의 개폐를 제어할 수 있다.
도 11 및 도 12는 본 명세서의 실시예에 따라 밸브가 포함된 서브채널용 미세관의 예시도이다.
도 11을 참조하면, 가로 방향의 메인채널용 미세관에는 임피던스 측정을 위한 전극 및 센서가 설치되어 있다. 세로 방향의 서브채널용 미세관에는 밸브가 설치되어 있다. (a)는 메인채널용 미세관은 기체로 채워진 상태이며, 액체 주입을 위한 서브채널용 미세관의 밸브는 닫힌 상태다. 그리고 (b)와 같이, 액체의 주입이 필요한 시점에 부채널의 밸브를 열어 주입을 시작한다. 그러면 (c)와 같이 전극 사이에 액체가 도달하게 된다. 전극 사이의 임피던스를 측정하면, 이전까지 기체는 임피던스가 무한대였으나 액체가 도달하여 0에 가까운 임피던스값이 측정되므로, 액체의 관심영역 도달 유무, 유속 등을 모니터링 할 수 있다. 다음 (d)에서 액체의 목표량이 주입된 이후에 밸브를 닫아 유입을 제한한다.
도 12를 참조하면, (a)에서 메인채널용 미세관에는 분홍 액체가 흐르고 있으며, 서브채널용 미세관의 밸브는 닫힌 상태이다. 다음 (b)에서 파란 액체의 주입이 필요한 시점에 서브채널용 미세관의 밸브를 열어 주입을 시작한다. (c)에서는 전극 사이의 임피던스를 측정함으로써, 파란 액체의 관심영역 도달 유무, 유속 등을 모니터링 할 수 있다. 마지막으로 (d)에서 파란 액체가 목표량이 주입된 이후에 밸브를 닫아 유입을 제한한다.
이상, 첨부된 도면을 참조로 하여 본 명세서의 실시예를 설명하였지만, 본 명세서가 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.

Claims (11)

  1. (a) 메인채널용 미세관 및 복수의 서브채널용 미세관이 형성된 칩하우징을 제작하는 단계;
    (b) 상기 메인채널용 미세관의 표면에 반응물질 고정을 위한 표면 처리를 하는 단계; 및
    (c) 상기 메인채널용 미세관 또는 서브채널용 미세관을 통해 반응물질을 주입하는 단계;를 포함하는 미세유체분석칩 제작 방법.
  2. 청구항 1에 있어서,
    상기 (a)단계는,
    메인채널용 미세관 및 복수의 서브채널용 미세관이 형성된 칩하부판 및 칩상부판을 제작하는 단계; 및
    상기 칩하부판과 상기 칩상부판을 결합하는 단계;를 포함하는 것을 특징으로 하는 미세유체분석칩 제작 방법.
  3. 청구항 2에 있어서,
    상기 결합하는 단계는, 열처리, 자외선처리 및 화학처리 중 적어도 하나의 방법을 이용하여 상기 칩하부판과 상기 칩상부판을 결합하는 것을 특징으로 하는 미세유체분석칩 제작 방법.
  4. 청구항 1에 있어서,
    상기 (a)단계는, 상기 메인채널용 미세관 또는 서브채널용 미세관에는 상기 메인채널용 미세관 또는 서브채널용 미세관과 외부를 차단하는 캡 또는 밸브를 형성하는 단계;를 더 포함하는 것을 특징으로 하는 미세유체분석칩 제작 방법.
  5. 청구항 1에 있어서,
    상기 (b) 단계는,
    상기 메인채널용 미세관의 양단, 상기 복수의 서브채널용 미세관 중 제1 서브채널용 미세관 및 제2 서브채널용 미세관을 제외한 나머지 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄하는 단계; 및
    상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제1 지점과 (ii) 상기 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제2 지점 사이의 영역의 표면에 반응물질 고정을 위한 표면 처리를 위해 상기 제1 서브채널용 미세관 또는 제2 서브채널용 미세관을 통해 표면 처리 용액을 주입하는 하는 단계;를 포함하는 것을 특징으로 하는 미세유체분석칩 제작 방법.
  6. 청구항 1에 있어서,
    상기 (c) 단계는,
    상기 메인채널용 미세관의 양단 및 상기 제1, 2 서브채널용 미세관을 제외한 나머지 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄하는 단계; 및
    상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제1 지점과 (ii) 상기 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제2 지점 사이의 영역의 표면에 반응물질 고정하기 위해 상기 제1 서브채널용 미세관 또는 제2 서브채널용 미세관을 통해 반응 물질 용액을 주입하는 단계;를 포함하는 것을 특징으로 하는 미세유체분석칩 제작 방법.
  7. 청구항 1에 있어서,
    (d) (i) 상기 제1 또는 제2 서브채널용 미세관의 캡 또는 밸브 및 (ii) 상기 (i)에서 선택된 캡 또는 밸브와 인접한 메인채널용 미세관의 캡 또는 밸브를 개방하는 단계; 및
    (e) 상기 (d)에서 개방된 서브채널용 미세관 또는 메인채널용 미세관을 통해 제1 지점과 제2 지점 사이 영역의 표면에 고정되지 않은 반응물질을 제거하는 제거액을 주입하는 단계;를 더 포함하는 것을 특징으로 하는 미세유체분석칩 제작 방법.
  8. (a) 한 쪽 끝에는 형성된 시료 주입구로부터 투입된 시료가 다른 쪽 끝으로 이동하는 동안 시약과 반응하는 공간을 제공하는 메인채널용 미세관, 일단은 상기 메인채널용 미세관의 측면과 연결되고, 타단은 상기 칩하우징의 외부와 연결되는 복수의 서브채널용 미세관 및 상기 메인채널용 미세관 및 복수의 서브채널 용 미세관을 감싸는 칩하우징을 포함하는 미세유체분석칩으로서,
    상기 메인채널용 미세관의 전체 영역 중에서 (i) 상기 복수의 서브채널용 미세관 중 제1 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제1 지점과 (ii) 상기 복수의 서브채널용 미세관 중 제2 서브채널용 미세관과 상기 메인채널용 미세관이 연결된 제2 지점 사이의 영역의 표면에 반응물질 또는 수화젤이 고정된 미세유체분석칩의 상기 시료 주입구를 통해 시료를 주입하는 단계;
    (b) (i) 상기 메인채널용 미세관의 양단에 연결된 캡 또는 벨브는 개방하고, (ii) 상기 복수의 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄하는 단계; 및
    (c) 상기 메인채널용 미세관의 양단 중 어느 일단을 통해 상기 반응물질과 반응하지 않고 상기 메인채널용 미세관에 잔류하는 시료를 세척하는 세척액을 주입하는 단계;를 포함하는 것을 특징으로 하는 미세유체분석칩 사용 방법.
  9. (a) 메인채널용 미세관 및 복수의 서브채널용 미세관이 형성된 칩하우징을 제작하는 단계;
    (b) 상기 메인채널용 미세관의 양단 및 상기 제1, 2 서브채널용 미세관을 제외한 나머지 서브채널용 미세관의 외부로 연결되는 끝단을 캡 또는 밸브로 폐쇄하는 단계; 및
    (c) 상기 제1 또는 제2 서브채널용 미세관을 통해 수화젤을 주입하는 단계;를 포함하는 미세유체분석칩 제작 방법.
  10. 청구항 9에 있어서,
    (b-1) 상기 메인채널용 미세관의 표면에 수화젤 고정을 위한 표면 처리를 하는 단계;를 더 포함하는 것을 특징으로 하는 미세유체분석칩 제작 방법.
  11. 청구항 1에 있어서,
    (d) 타겟 영역에 대한 측정된 임피던스, 자기장 및 광학수치 중 적어도 어느 하나의 값에 기반하여 (i) 시료 또는 시약의 도달 여부, (ii) 상기 시료 또는 상기 시약의 유속, (iii) 상기 시료 또는 상기 시약의 양 및 (iv) 상기 시료 또는 상기 시약의 종류 중 적어도 하나를 판단하는 제어부를 상기 메인채널용 미세관에 연결하는 단계;를 더 포함하는 것을 특징으로 하는 미세유체분석칩 제작 방법.
PCT/KR2017/015443 2017-12-01 2017-12-26 미세유체분석칩 제조 방법 WO2019107656A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0164293 2017-12-01
KR1020170164293A KR102013996B1 (ko) 2017-12-01 2017-12-01 미세유체분석칩 제조 방법

Publications (1)

Publication Number Publication Date
WO2019107656A1 true WO2019107656A1 (ko) 2019-06-06

Family

ID=66664030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015443 WO2019107656A1 (ko) 2017-12-01 2017-12-26 미세유체분석칩 제조 방법

Country Status (2)

Country Link
KR (1) KR102013996B1 (ko)
WO (1) WO2019107656A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299041A1 (en) * 2012-05-09 2013-11-14 David J. Beebe Functionalized Microfluidic Device And Method
KR20150117186A (ko) * 2014-04-09 2015-10-19 이성동 바이오센서
KR20160032917A (ko) * 2014-09-17 2016-03-25 서울대학교산학협력단 마이크로유체 칩을 이용한 나노크기의 알지네이트 하이드로겔의 제조방법
KR101776187B1 (ko) * 2016-11-18 2017-09-08 한양대학교 산학협력단 미세유체칩 및 그 제조방법
KR20170105825A (ko) * 2016-03-10 2017-09-20 삼성전자주식회사 미세 유체 소자, 및 이를 이용한 단일 세포 처리 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065614B1 (ko) 2008-11-28 2011-09-20 한국전기연구원 랩온어칩용 마이크로 펌프 및 마이크로 펌프 제조 방법.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299041A1 (en) * 2012-05-09 2013-11-14 David J. Beebe Functionalized Microfluidic Device And Method
KR20150117186A (ko) * 2014-04-09 2015-10-19 이성동 바이오센서
KR20160032917A (ko) * 2014-09-17 2016-03-25 서울대학교산학협력단 마이크로유체 칩을 이용한 나노크기의 알지네이트 하이드로겔의 제조방법
KR20170105825A (ko) * 2016-03-10 2017-09-20 삼성전자주식회사 미세 유체 소자, 및 이를 이용한 단일 세포 처리 방법
KR101776187B1 (ko) * 2016-11-18 2017-09-08 한양대학교 산학협력단 미세유체칩 및 그 제조방법

Also Published As

Publication number Publication date
KR102013996B1 (ko) 2019-10-21
KR20190064941A (ko) 2019-06-11

Similar Documents

Publication Publication Date Title
AU2002329526B2 (en) Microfluidic chemical assay apparatus and method
US6251343B1 (en) Microfluidic devices and systems incorporating cover layers
US6979424B2 (en) Integrated sample analysis device
KR102168912B1 (ko) 통합형 전달 모듈을 구비한 테스트 카트리지
EP3698872B1 (en) Microfluidic detection chip for multi-channel quick detecting
AU2002329526A1 (en) Microfluidic chemical assay apparatus and method
US20040063217A1 (en) Miniaturized fluid delivery and analysis system
EP1064090B1 (en) Device for analyzing a sample
US20090130658A1 (en) Arrangement for integrated and automated dna or protein analysis in a single-use cartridge, method for producing such a cartridge and operating method for dna or protein analysis using such a cartridge
US20200408752A1 (en) Fluidic system for performing assays
CN111774111B (zh) 一种用于检测糖化血红蛋白的微流控芯片及其检测方法
WO2019107656A1 (ko) 미세유체분석칩 제조 방법
KR102065300B1 (ko) 미세 주입기를 가진 미세유체분석칩 및 그 제조 방법 및 그 사용 방법
WO2006047757A1 (en) Systems and methods for transferring a fluid sample
KR102065301B1 (ko) 미세 주입기를 가진 미세유체분석칩 및 그 제조 방법 및 그 사용 방법
KR102013997B1 (ko) 미세 주입기를 가진 미세유체분석칩 및 그 제조 방법 및 그 사용 방법
KR100661930B1 (ko) 미세 유체 채널을 이용한 효소 활성도 분석용 칩 및 이를이용한 효소 활성도 측정 방법
WO2019103236A1 (ko) 시료의 흐름을 조절할 수 있는 미세유체분석칩
WO2022136248A1 (en) Analysis system for testing a sample

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933405

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 17933405

Country of ref document: EP

Kind code of ref document: A1