WO2019107642A1 - Method for manufacturing semiconductor ink and method for manufacturing diode and rectifier circuit using semiconductor ink - Google Patents

Method for manufacturing semiconductor ink and method for manufacturing diode and rectifier circuit using semiconductor ink Download PDF

Info

Publication number
WO2019107642A1
WO2019107642A1 PCT/KR2017/014426 KR2017014426W WO2019107642A1 WO 2019107642 A1 WO2019107642 A1 WO 2019107642A1 KR 2017014426 W KR2017014426 W KR 2017014426W WO 2019107642 A1 WO2019107642 A1 WO 2019107642A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
oxide semiconductor
powder
semiconductor
ink
Prior art date
Application number
PCT/KR2017/014426
Other languages
French (fr)
Korean (ko)
Inventor
조규진
라즈반다리그리스미
웨슬리 바나라프린스
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Publication of WO2019107642A1 publication Critical patent/WO2019107642A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Definitions

  • the present invention relates to a semiconductor ink production method, a diode using semiconductor ink, a rectification circuit, and a manufacturing method of a wireless energy harvesting circuit.
  • An energy harvesting circuit that utilizes an externally provided wireless signal as a DC power source may include a rectifier circuit implemented with a diode.
  • Schottky diodes can be used for the rectification circuit, which have a high response speed and are easy to manufacture. Techniques for fabricating Schottky diodes with silicon-based manufacturing methods are widely used, but the need for printable flexible Schottky diodes is increasing to produce a variety of flexible wireless devices at low cost.
  • the present invention relates to a process for producing an inorganic oxide semiconductor by a sol-gel process and a process for producing an inorganic oxide semiconductor in gel state as a non-crystalline particle or a crystalline particle through a high-temperature calcination (450 to 700 ° C)
  • a high-temperature calcination 450 to 700 ° C
  • the present invention relates to a method for producing a non-crystalline polyester resin by mixing and dispersing polystyrene sulfonic acid (PSSA) solution in a non-crystalline particle or a crystalline particle produced through a high-temperature firing process, using the PSSA solution as a binder to stably perform commercial printing,
  • PSSA polystyrene sulfonic acid
  • the present invention provides a semiconductor ink manufacturing method capable of exhibiting original electrical characteristics of a semiconductor by merely drying it.
  • a diode produced by laminating an aluminum foil on an upper surface of a printed semiconductor ink manufactured according to the present invention has a thin alumina layer to enable Schottky contact.
  • a method of manufacturing a semiconductor ink according to an embodiment of the present invention includes the steps of drying an inorganic oxide semiconductor in a gel state and then firing the inorganic oxide semiconductor powder at a predetermined temperature to produce an inorganic oxide semiconductor powder, 0.0 > (PSSA)) < / RTI > solution.
  • the predetermined temperature may be greater than or equal to 450 ° C and less than or equal to 700 ° C.
  • the inorganic oxide semiconductor powder calcined at such predetermined temperature may be amorphous or crystalline.
  • the step of dispersing the inorganic oxide semiconductor powder may further include the step of dispersing the inorganic oxide semiconductor powder in a solution of polyvinyl alcohol.
  • the inorganic oxide semiconductor powder may include at least one of indium gallium zinc oxide (IGZO), ZnO, and MoS 2 powder.
  • IGZO indium gallium zinc oxide
  • ZnO ZnO
  • MoS 2 powder MoS 2 powder
  • a method of manufacturing a diode using a semiconductor ink includes printing a conductive silver (Ag) electrode on a flexible substrate, printing a semiconductor ink prepared by dispersing an inorganic oxide semiconductor powder and a PSSA solution Printing the semiconductor ink on a flexible substrate on which the silver electrode is printed in at least one of a roll-to-roll gravure, an offset, a gravure-offset, a reverse offset, And laminating the aluminum foil over the semiconductor ink.
  • a conductive silver (Ag) electrode on a flexible substrate
  • a semiconductor ink prepared by dispersing an inorganic oxide semiconductor powder and a PSSA solution Printing the semiconductor ink on a flexible substrate on which the silver electrode is printed in at least one of a roll-to-roll gravure, an offset, a gravure-offset, a reverse offset, And laminating the aluminum foil over the semiconductor ink.
  • the step of laminating the aluminum foil may comprise the step of producing an ultra-thin alumina layer as the aluminum foil and the semiconductor ink are in direct contact and are oxidized.
  • a method of manufacturing a rectifying circuit using a semiconductor ink is a method of manufacturing a rectifying circuit using semiconductor ink in which at least one of roll-to-roll gravure, offset, gravure-offset, reverse offset,
  • An inorganic oxide semiconductor powder prepared by drying an inorganic oxide semiconductor in a gel state and firing at a preset temperature is mixed with a polystyrene sulfonic acid (PSSA) solution to disperse a step of forming a diode element on the flexible substrate by using a semiconductor ink having a dispersion and a rectifying circuit for electrically connecting the capacitor, the diode element, the resistor and the antenna to rectify the AC signal received through the antenna And < / RTI >
  • PSSA polystyrene sulfonic acid
  • the method of manufacturing the rectifying circuit may further include connecting a live part to be charged based on the voltage provided through the rectifying circuit or a sensor that operates based on the voltage to the flexible substrate .
  • the present invention can include both semiconductor ink, diode, and rectification circuit manufactured according to the above-described manufacturing method.
  • the semiconductor ink produced according to the present invention has semiconductor electric characteristics without high temperature baking after printing, it is possible to produce circuits that can be printed on a flexible printed substrate and deformed into various forms, in particular, a rectifier circuit including a diode It can be used for
  • the rectifier circuit manufactured according to the present invention has a diode manufactured by sequentially laminating a conductive ink, a semiconductor ink, and an aluminum foil by using a commercially available gravure printing machine, so that a rectification efficiency of 50% It is possible to provide an energy harvesting circuit which obtains a DC voltage with a high voltage.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a semiconductor ink according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining an embodiment of a semiconductor ink manufacturing method using IGZO as an inorganic oxide semiconductor.
  • FIG. 3 is an X-ray diffraction (Diffraction) graph for examining crystal characteristics of IGZO powder prepared according to an embodiment of the present invention.
  • 4 and 5 are graphs showing the viscosity according to the shear rate of the amorphous and crystalline IGZO powder, respectively.
  • FIG. 6 is a view showing a stacked structure of diodes manufactured according to the method of manufacturing a diode according to the present invention.
  • FIG. 7 is a schematic view showing a method of printing a silver electrode and a semiconductor layer on a plastic substrate through a flat gravure printing process.
  • IGZO 10 is a graph of log (I) -V characteristics of a diode made of an IGZO ink (IGZO 1) made of an amorphous first IGZO powder and an IGZO ink (IGZO 2) made of a crystalline second IGZO powder.
  • IGZO 1 IGZO ink
  • IGZO 2 IGZO ink
  • FIG. 11 is a circuit diagram of a rectifying circuit that can be constructed using a diode manufactured according to the present invention.
  • FIG. 12 is a graph showing rectification characteristics using a rectifier circuit manufactured according to an embodiment of the present invention.
  • FIG. 13 is a view showing an energy harvesting circuit implemented by including a power obtaining unit at an input voltage end of a rectifying circuit and a charging unit at an output voltage end of the rectifying circuit.
  • Figure 14 is a diagram of a wireless sensor circuit including a rectifier circuit fabricated in accordance with an embodiment of the present invention.
  • FIG. 15 is a conceptual diagram for explaining that a flexible device fabricated according to an embodiment of the present invention is powered by NFC from a smartphone.
  • FIG. 16 is a graph showing an experimental result of an energy harvesting circuit including a power obtaining unit and a rectifying circuit according to an embodiment of the present invention, which is supplied with power from a commercial smartphone and provides an output voltage.
  • Fig. 1 is a block diagram of a computer system according to an embodiment of the present invention. Fig. For convenience of explanation, the apparatus and method are described together when necessary.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a semiconductor ink according to an embodiment of the present invention.
  • an inorganic oxide semiconductor in a gel state is dried (step S110).
  • the inorganic oxide semiconductor may include at least one of indium gallium zinc oxide (IGZO), ZnO, and MoS 2 .
  • IGZO indium gallium zinc oxide
  • ZnO ZnO
  • MoS 2 MoS 2
  • Gel-state inorganic oxide semiconductors can be fabricated through a sol-gel process.
  • the inorganic oxide semiconductor in gel state can be produced as an inorganic oxide semiconductor powder by baking at a predetermined temperature (step S120).
  • the inorganic oxide semiconductor powder may be produced in amorphous or polycrystalline state as the inorganic oxide semiconductor in gel state is fired at a high temperature of 450 ° C or higher and 700 ° C or lower.
  • amorphous or polycrystalline powders may be appropriately mixed and used at a later stage.
  • the prepared inorganic oxide semiconductor powder is mixed and dispersed in a polystyrene sulfonic acid (PSSA) solution (step S130).
  • PSSA polystyrene sulfonic acid
  • the inorganic oxide semiconductor powder mixed in the PSSA solution may be dispersed for a predetermined time using a roll mill, wherein N-methylpyrrolidone can be used as a solvent.
  • PSSA is used as an electronically active binder. Specifically, the PSSA activates the movement of electrons at the interface between the inorganic oxide semiconductor particles even when the semiconductor ink is dried after printing.
  • the PSSA may also serve to promote the formation of an oxide layer on the contact surface when the printed semiconductor ink layer is in contact with the other layers at the top and bottom.
  • PSSA can realize the original electrical characteristics of the semiconductor without removing the semiconductor ink after high-temperature firing after printing, so that it is not necessary to remove the polymer binder through high-temperature firing like the conventional semiconductor ink.
  • the present invention there is no need for a process of burning a polymer binder at a high temperature after printing by printing a semiconductor layer using a semiconductor ink using an electronically active binder such as PSSA. Therefore, in the present invention, it is possible to provide a semiconductor ink manufacturing method capable of realizing the original electrical characteristics of a printed semiconductor by a low-temperature drying process alone.
  • a semiconductor ink can be produced using at least one inorganic oxide semiconductor of IGZO, ZnO and MoS 2 .
  • 2 is a flowchart for explaining an embodiment of a semiconductor ink manufacturing method using IGZO as an inorganic oxide semiconductor.
  • indium nitrate hydrate, gallium nitrate hydrate, and zinc acetate dihydrate are prepared in a nitrogen state (step S210).
  • a nitrogen state for example, about 5.11 g of indium hydrate nitrate, about 0.63 g of gallium nitrate hydrate, and 1.20 g of zinc acetate dihydrate can be prepared in a nitrogen flask with nitrogen gas after being placed in a 100 ml flask.
  • the mass of each component can be adjusted differently based on the relative ratio.
  • IGZO in a gel state can be prepared through a sol-gel process in a nitrogen atmosphere by adding 2-methoxyethanol with no nitrogen in the state of adding nitrogen gas (step S220). Methoxyethanol and a magnetic stir bar were added to the flask, the flask was sealed with a septa, and a nitrogen balloon was inserted to adjust the pressure inside the reactor automatically in a nitrogen atmosphere.
  • the transparent sol is stirred at 70 ° C for 2 hours, and the solvent is removed by using a vacuum rotary pump at the same temperature to obtain a gel-state IGZO.
  • Step S111 is a step in which step S110 in FIG. 1 is applied to the IGZO inorganic oxide semiconductor, and the method of drying the gel state may be different depending on the kind of the inorganic oxide semiconductor.
  • IGZO in gel form can be dried in an electric furnace at 150 ° C.
  • step S121 corresponds to step S120 of FIG. 2, according to the embodiment, the IGZO may be fired in air at a temperature of 450 ° C to 700 ° C for about 1 hour. The crystallization characteristics of the IGZO powder may be different depending on the temperature to be fired.
  • FIG. 3 is an X-ray diffraction (Diffraction) graph for examining crystal characteristics of IGZO powder prepared according to an embodiment of the present invention.
  • the diffraction characteristics of the IGZO powder (hereinafter referred to as "first IGZO powder ", IGZO 1) fired at 450 ° C and the diffraction characteristics of the IGZO powder Respectively.
  • the X-axis represents the diffraction angle of 2? Diffracted by irradiating the X-ray
  • the Y-axis represents the relative intensity (arbitrary unit) of the irradiated X-ray.
  • the first IGZO powder (IGZO 1) is in an amorphous state showing no crystallinity
  • the second IGZO powder (IGZO 2) has a polycrystalline property having a large number of crystal characteristics .
  • the amorphous IGZO powder and the crystalline IGZO powder may be mixed in various ratios according to the embodiments of the present invention. have.
  • step S230 N-methylpyrrolidone solution and PSSA solution may be added and dispersed using a roll mill (step S131).
  • step S131 is a step in which step S130 of FIG. 1 is applied to the IGZO powder, and viscosity and stability can be controlled according to the amount of N-methylpyrrolidone solution and IGZO according to the embodiment. Specifically, as the amount of IGZO powder increases, the viscosity increases while the stability of colloidal dispersion can be significantly reduced. Therefore, the viscosity and stability can be controlled by controlling the ratio between the IGZO powder and the N-methylpyrrolidone solvent. For example, for 4 g of IGZO powder, 20 ml of N-methylpyrrolidone solution and 2 ml of PSSA solution can be mixed. For example, the mixed solution can be dispersed for about 3 hours by using a roll mill.
  • IGZO powder may be dispersed with 1 to 5 wt% of PSSA mixed therein.
  • polyvinyl alcohol may be added and the roll mill may be further performed for 1 hour (step S240).
  • the polyvinyl alcohol added at this time may be a solution in which 1 g is dissolved in 20 ml of N-methylpyrrolidone.
  • Semiconductor inks made using amorphous IGZO powder and crystalline IGZO powder have typical non-Newtonian fluid properties.
  • 4 and 5 are graphs showing the viscosity according to the shear rate of the amorphous and crystalline IGZO powder, respectively.
  • the amorphous and crystalline IGZO powders differ in specific values, but their viscosity decreases as the rate of change in flow rate increases.
  • the amorphous IGZO powder i.e., the viscosity of the first IGZO powder is 400 cp
  • the crystalline IGZO The viscosity of the powder, i.e. the second IGZO powder, was found to be 200 cp.
  • the IGZO powders can be printed with different thicknesses even when they are made with semiconductor ink and perform the same printing step.
  • the diode can be manufactured by using the semiconductor ink produced by the method for manufacturing a semiconductor ink according to the present invention.
  • FIG. 6 is a view showing a stacked structure of diodes manufactured according to the method of manufacturing a diode according to the present invention.
  • a lower electrode for example, a conductive silver electrode is printed on a flexible plastic substrate, and an IGZO layer having a semiconductor property is printed.
  • an upper electrode for example, A diode can be manufactured.
  • a diode fabricated according to the present invention may include a metal-insulator-semiconductor (MIS) Schottky diode.
  • MIS metal-insulator-semiconductor
  • the silver electrode and the semiconductor layer constituting the diode may be printed in at least one of roll-to-roll gravure, offset, gravure-offset, reverse offset and screen printing.
  • the silver electrode can be printed using a silver ink that is conductive and the semiconductor layer can be printed using the above-described semiconductor ink.
  • FIG. 7 is a schematic view showing a method of printing a silver electrode and a semiconductor layer on a plastic substrate through a flat gravure printing process.
  • the silver electrode may be formed with a thickness of approximately 600 nm to 800 nm by printing a conductive silver ink on the flexible substrate.
  • the average surface roughness of the electrode printed by gravure printing using ink may correspond to 1 nm to 5 nm. Based on such surface roughness, the thickness of the semiconductor layer printed on the top, that is, the IGZO layer, can be determined.
  • the lower electrode (Ag lower electrode) has a thickness of about 570 nm and the upper IGZO layer has a thickness of about 520 nm to 590 nm in the case of a semiconductor ink made of amorphous IGZO powder (FIG. 8), and in the case of a semiconductor ink made of crystalline IGZO powder, it can be formed with a thickness of approximately 640 nm (FIG. 9).
  • the difference in thickness of the IGZO layer can be understood to be due to the viscosity difference of the IGZO powder.
  • the lower electrode and the upper semiconductor layer are laminated with the aluminum foil, so that both electrodes sandwiching the semiconductor layer are formed.
  • the PSSA contained in the semiconductor layer at the interface of the aluminum foil that directly contacts the semiconductor layer can generate the alumina oxide layer. Whereby the reverse current of the diode can be efficiently cut off.
  • IGZO 10 is a graph of log (I) -V characteristics of a diode made of an IGZO ink (IGZO 1) made of an amorphous first IGZO powder and an IGZO ink (IGZO 2) made of a crystalline second IGZO powder.
  • IGZO 1 IGZO ink
  • IGZO 2 IGZO ink
  • FIG. 11 is a circuit diagram of a rectifying circuit that can be constructed using a diode manufactured according to the present invention.
  • a resistor and a capacitor may be manufactured together on the flexible substrate on which the above-described diode is printed.
  • the two electrodes of the capacitor may be printed together when forming the lower electrode of the diode.
  • the resistive component can also be printed in at least one of a roll-to-roll gravure, an offset, a gravure-offset, a reverse offset, and a screen printing.
  • an antenna pattern can be formed on the flexible substrate.
  • the antenna pattern can be printed with conductive ink, and a rectifying circuit can be manufactured as the capacitor, the diode element, the resistor, and the antenna form an electrical connection like the circuit shown in Fig.
  • the electrical connection of such a rectifying circuit can be done in various ways depending on the design of the connection patterns constituting each capacitor, diode, resistor and antenna.
  • an electrode pattern is formed through a printing process using conductive ink, and various semiconductor elements including a diode can be completed through a printing process using a semiconductor ink.
  • FIG. 12 is a graph showing rectification characteristics using a rectifier circuit manufactured according to an embodiment of the present invention.
  • FIG. 12 shows the rectified output voltage (V OUT ) by providing an input voltage V IN of 13.56 MHz.
  • Fig. 12 shows experimental results when a load resistance (R L ) of 1 M ? And a capacitor (C L ) of 1 nF are used in the circuit of Fig.
  • the rectifier circuit manufactured according to the present invention provides a constant output voltage with a rectification efficiency of 60%.
  • the rectifier circuit manufactured according to the manufacturing method according to an embodiment of the present invention may be included in an energy harvesting circuit that operates by acquiring power.
  • 13 is a diagram showing an energy harvesting circuit implemented by including a power obtaining unit 1410 at an input voltage end of a rectifying circuit and a charging unit 1420 at an output voltage end of a rectifying circuit.
  • the power acquisition unit 1410 may include a circuit for receiving an external wireless signal such as an antenna and providing the received external wireless signal in the form of a voltage.
  • the charging unit may include a charging circuit and a secondary battery to charge the secondary battery. The operation of other electronic circuits can be performed through the charged secondary battery.
  • the power acquisition unit 1410 and the charging unit 1420 may be formed on the same flexible substrate as the above-described rectifying circuit through a printing process.
  • a secondary battery can be realized by interposing an electrolyte on a flexible substrate and laminating it with an aluminum foil.
  • Figure 14 is a diagram of a wireless sensor circuit including a rectifier circuit fabricated in accordance with an embodiment of the present invention.
  • the power supply acquisition unit 1410 is provided at the input voltage terminal of the rectification circuit, but the sensor unit 1520 may be provided at the output voltage end.
  • the sensor unit 1520 may include various kinds of sensors.
  • the sensor unit 1520 may sense various external values based on a voltage of a constant value provided through the power acquisition unit 1410 and the rectifying circuit to generate a sensing signal.
  • the sensing signal generated by the sensor unit 1520 may be provided to the outside through the antenna means included in the power obtaining unit 1410.
  • the sensor unit 1520 may be formed on a flexible substrate through a printing process or may be adhered onto a flexible substrate through a conductive adhesive or the like. When the sensors are attached, various kinds of sensors are detached and attached on the flexible substrate, and the wireless sensor circuit can be utilized as various types of sensor circuits. According to an embodiment, the sensor unit 1520 may be formed by printing on a flexible substrate in at least one of a roll-to-roll gravure, an offset, a gravure-offset, a reverse offset, and a screen printing method.
  • FIG. 15 is a conceptual diagram for explaining that a flexible device manufactured according to an embodiment of the present invention is powered by NFC from a smartphone
  • FIG. FIG. 2 is a graph showing an experimental result that an energy harvesting circuit including an acquiring unit and a rectifying circuit is supplied with power from a commercial smartphone and provided with an output voltage.
  • the energy harvesting circuit manufactured according to the present invention achieves a rectification efficiency of 50% using an AC signal of 13.56 MHz of a smartphone.
  • the energy harvesting circuit can be used as a wireless sensor tag or as an energy source for charging a secondary battery or driving a simple actuator, Function.
  • a semiconductor ink having good semiconductor characteristics without requiring high-temperature firing.
  • a low-temperature process ⁇ 150 ° C
  • a Schottky contact electrode is manufactured stably in the air using a semiconductor ink capable of printing a high-performance stable semiconductor, thereby providing a method of manufacturing a flexible NFC rectifier circuit by 100% printing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

The method for manufacturing a semiconductor ink according to the present invention comprises the steps of: manufacturing inorganic oxide semiconductor powder by drying an inorganic oxide semiconductor in a gel state, and then sintering same at a preset temperature; and mixing and dispersing the inorganic oxide semiconductor powder in a polystyrene sulfonic acid (PSSA) solution. The PSSA included in the semiconductor ink manufactured according to the present invention functions as an electron activation binder and provides viscosity and colloidal stability to the semiconductor ink, and, at the same time, when being manufactured into a diode, allows mobile interfacial electrons to be transferred efficiently.

Description

반도체 잉크 제조 방법, 반도체 잉크를 이용한 다이오드 및 정류 회로의 제조 방법 Method of manufacturing semiconductor ink, method of manufacturing diode and rectifier circuit using semiconductor ink
본 발명은 반도체 잉크 제조 방법, 반도체 잉크를 이용한 다이오드, 정류 회로 및 무선 에너지 하베스팅 회로의 제조 방법에 관한 것이다.The present invention relates to a semiconductor ink production method, a diode using semiconductor ink, a rectification circuit, and a manufacturing method of a wireless energy harvesting circuit.
외부에서 제공되는 무선 신호를 이용하여 직류 전원으로 활용하는 에너지 하베스팅 회로(energy harvesting circuit)는 다이오드로 구현된 정류 회로를 포함할 수 있다.An energy harvesting circuit that utilizes an externally provided wireless signal as a DC power source may include a rectifier circuit implemented with a diode.
정류 회로에는 응답 속도가 빠르고 제조가 간편한 쇼트키(Schottky) 다이오드가 사용될 수 있다. 실리콘 기술 기반의 제조 방식으로 쇼트키 다이오드를 제조하는 기술은 널리 활용되고 있으나, 다양한 유연 무선소자를 저렴하게 생산 하기 위해 인쇄 유연 쇼트키 다이오드의 필요성이 커지고 있다. Schottky diodes can be used for the rectification circuit, which have a high response speed and are easy to manufacture. Techniques for fabricating Schottky diodes with silicon-based manufacturing methods are widely used, but the need for printable flexible Schottky diodes is increasing to produce a variety of flexible wireless devices at low cost.
그런데 인쇄공정을 이용하여 쇼트키 다이오드를 제조하기 위해서는 인쇄 가능한 금속 잉크와 오믹 접촉을 할 수 있고, 또한 쇼트키 접촉을 할 수 있는 한편으로 공기 중에서 안정성을 갖는 반도체 잉크가 필요하다. However, in order to manufacture a Schottky diode using a printing process, a semiconductor ink capable of ohmic contact with a printable metal ink and capable of performing Schottky contact while having stability in air is required.
본 발명은 대기 중에서 안정성을 확보하기 위하여 무기 산화물 반도체를 솔-젤 공정으로 제조하고, 젤 상태의 무기 산화물 반도체를 고온소성 (450 내지 700 °C) 공정을 통해 무결정 입자 또는 결정성 입자로 제조함에 따라 반도체 잉크를 제조하는 방법을 제공한다. 이에 따라, 본 발명에 따른 반도체 잉크는 인쇄 이후에 고온소성을 하지 않아도 되므로 저가의 유연한 플라스틱 기판에 인쇄함으로써 다이오드 소자를 제조할 수 있다.The present invention relates to a process for producing an inorganic oxide semiconductor by a sol-gel process and a process for producing an inorganic oxide semiconductor in gel state as a non-crystalline particle or a crystalline particle through a high-temperature calcination (450 to 700 ° C) Thereby providing a method for producing a semiconductor ink. Accordingly, since the semiconductor ink according to the present invention does not require high-temperature firing after printing, the diode element can be manufactured by printing on a low-cost flexible plastic substrate.
본 발명은 고온소성 공정을 통해 제조된 무결정 입자 또는 결정성 입자에 폴리스티렌 술폰산(PSSA) 용액을 혼합하여 분산시킴에 따라 PSSA 용액을 바인더로 활용하여 안정적으로 상용 인쇄를 가능하게 함과 동시에 단순히 저온으로 건조하는 것만으로도 반도체 본래의 전기적 특성을 발현할 수 있는 반도체 잉크 제조 방법을 제공한다.The present invention relates to a method for producing a non-crystalline polyester resin by mixing and dispersing polystyrene sulfonic acid (PSSA) solution in a non-crystalline particle or a crystalline particle produced through a high-temperature firing process, using the PSSA solution as a binder to stably perform commercial printing, The present invention provides a semiconductor ink manufacturing method capable of exhibiting original electrical characteristics of a semiconductor by merely drying it.
본 발명에 따라 제조된 반도체 잉크를 인쇄한 상부에 알루미늄 호일을 라미네이팅하여 제조한 다이오드는, 박막 알루미나 층을 구비하여 쇼트키 접촉을 가능하게 한다.A diode produced by laminating an aluminum foil on an upper surface of a printed semiconductor ink manufactured according to the present invention has a thin alumina layer to enable Schottky contact.
본 발명의 일 실시예에 의한 반도체 잉크 제조 방법은 젤 상태의 무기 산화물 반도체를 건조한 후, 기 설정된 온도에서 소성하여 무기 산화물 반도체 분말을 제조하는 단계, 및 상기 무기 산화물 반도체 분말을 폴리스티렌 술폰산(Polystyrene sulfonic acid(PSSA)) 용액에 혼합하여 분산(dispersion)하는 단계를 포함한다.A method of manufacturing a semiconductor ink according to an embodiment of the present invention includes the steps of drying an inorganic oxide semiconductor in a gel state and then firing the inorganic oxide semiconductor powder at a predetermined temperature to produce an inorganic oxide semiconductor powder, 0.0 > (PSSA)) < / RTI > solution.
일 실시예에 있어서, 상기 기 설정된 온도는 450°C 이상 700°C 이하일 수 있다. 이러한 기 설정된 온도 하에서 소성된 무기 산화물 반도체 분말은 무정질 상태 또는 결정질 상태일 수 있다.In one embodiment, the predetermined temperature may be greater than or equal to 450 ° C and less than or equal to 700 ° C. The inorganic oxide semiconductor powder calcined at such predetermined temperature may be amorphous or crystalline.
일 실시예에 있어서, 상기 무기 산화물 반도체 분말을 분산하는 단계는, 상기 무기 산화물 반도체 분말을 폴리바이닐 알코올(polyvinyl alcohol) 용액을 넣고 분산하는 단계를 더 포함할 수 있다.In one embodiment, the step of dispersing the inorganic oxide semiconductor powder may further include the step of dispersing the inorganic oxide semiconductor powder in a solution of polyvinyl alcohol.
일 실시예에 있어서, 상기 무기 산화물 반도체 분말은 IGZO(Indium gallium zinc oxide), Zn0, MoS2 분말 중 적어도 하나를 포함할 수 있다.In one embodiment, the inorganic oxide semiconductor powder may include at least one of indium gallium zinc oxide (IGZO), ZnO, and MoS 2 powder.
본 발명의 일 실시예에 의한 반도체 잉크를 이용한 다이오드 제조 방법은 유연한 기판(Flexible substrate) 상에 전도성 은(Ag) 전극을 인쇄하는 단계, 무기 산화물 반도체 분말 및 PSSA 용액을 분산하여 제조한 반도체 잉크를 준비하는 단계, 롤투롤(Roll-to-Roll) 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋, 스크린 인쇄 방식 중 적어도 하나의 방식으로 상기 반도체 잉크를 상기 은 전극이 인쇄된 유연한 기판 상에 인쇄하는 단계, 및 상기 반도체 잉크 상부에 알루미늄 호일을 라미네이팅하는 단계를 포함한다.A method of manufacturing a diode using a semiconductor ink according to an embodiment of the present invention includes printing a conductive silver (Ag) electrode on a flexible substrate, printing a semiconductor ink prepared by dispersing an inorganic oxide semiconductor powder and a PSSA solution Printing the semiconductor ink on a flexible substrate on which the silver electrode is printed in at least one of a roll-to-roll gravure, an offset, a gravure-offset, a reverse offset, And laminating the aluminum foil over the semiconductor ink.
일 실시예에 있어서, 상기 알루미늄 호일을 라미네이팅하는 단계는 상기 알루미늄 호일과 상기 반도체 잉크가 직접 접촉하여 산화됨에 따라 초박막 알루미나 층을 생성하는 단계를 포함할 수 있다.In one embodiment, the step of laminating the aluminum foil may comprise the step of producing an ultra-thin alumina layer as the aluminum foil and the semiconductor ink are in direct contact and are oxidized.
본 발명의 일 실시예에 의한 반도체 잉크를 이용한 정류 회로 제조 방법은, 롤투롤(Roll-to-Roll) 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋, 스크린 인쇄 방식 중 적어도 하나의 방식으로 유연 기판에 안테나, 캐패시터, 및 저항을 인쇄하는 단계, 및 젤 상태의 무기 산화물 반도체를 건조한 후, 기 설정된 온도에서 소성하여 제조된 무기 산화물 반도체 분말을 폴리스티렌 술폰산(Polystyrene sulfonic acid(PSSA)) 용액에 혼합하여 분산(dispersion)한 반도체 잉크를 이용하여 상기 유연 기판에 다이오드 소자를 형성하는 단계, 및 상기 커패시터, 다이오드 소자, 저항, 및 안테나를 전기적으로 연결하여 상기 안테나를 통해 수신된 교류 신호를 정류하는 정류 회로를 구성하는 단계를 포함한다. A method of manufacturing a rectifying circuit using a semiconductor ink according to an embodiment of the present invention is a method of manufacturing a rectifying circuit using semiconductor ink in which at least one of roll-to-roll gravure, offset, gravure-offset, reverse offset, An inorganic oxide semiconductor powder prepared by drying an inorganic oxide semiconductor in a gel state and firing at a preset temperature is mixed with a polystyrene sulfonic acid (PSSA) solution to disperse a step of forming a diode element on the flexible substrate by using a semiconductor ink having a dispersion and a rectifying circuit for electrically connecting the capacitor, the diode element, the resistor and the antenna to rectify the AC signal received through the antenna And < / RTI >
다양한 실시예에 있어서, 상기 정류 회로의 제조 방법은 상기 정류 회로를 통해 제공되는 전압에 기초하여 충전되는 충전부 또는 그 전압에 기초하여 동작하는 센서를 상기 유연 기판에 연결하는 단계를 더 포함할 수 있다.In various embodiments, the method of manufacturing the rectifying circuit may further include connecting a live part to be charged based on the voltage provided through the rectifying circuit or a sensor that operates based on the voltage to the flexible substrate .
본 발명은 상술한 제조 방법에 따라 제조된 반도체 잉크, 다이오드, 및 정류 회로를 모두 포함할 수 있다.The present invention can include both semiconductor ink, diode, and rectification circuit manufactured according to the above-described manufacturing method.
본 발명에 따라 제조된 반도체 잉크는 인쇄한 이후에 고온소성을 하지 않아도 반도체 전기적 특성을 가지기 때문에, 유연한 인쇄 기판 상에 인쇄하여 다양한 형태로 변형이 가능한 회로들, 특히 다이오드를 포함한 정류 회로를 제조하는 데에 활용될 수 있다.Since the semiconductor ink produced according to the present invention has semiconductor electric characteristics without high temperature baking after printing, it is possible to produce circuits that can be printed on a flexible printed substrate and deformed into various forms, in particular, a rectifier circuit including a diode It can be used for
본 발명에 따라 제조된 정류 회로는, 상용화된 그라비아 인쇄기를 이용하여 먼저 전도성 잉크, 반도체 잉크, 그리고 알루미늄 호일을 순차적으로 적층하여 제조된 다이오드를 구비함에 따라, 스마트폰의 NFC 신호로부터 정류 효율 50%로 직류 전압을 획득하는 에너지 하베스팅 회로를 제공할 수 있다.The rectifier circuit manufactured according to the present invention has a diode manufactured by sequentially laminating a conductive ink, a semiconductor ink, and an aluminum foil by using a commercially available gravure printing machine, so that a rectification efficiency of 50% It is possible to provide an energy harvesting circuit which obtains a DC voltage with a high voltage.
도 1은 본 발명의 일 실시예에 따른 반도체 잉크 제조 방법을 설명하기 위한 흐름도이다.1 is a flowchart illustrating a method of manufacturing a semiconductor ink according to an embodiment of the present invention.
도 2는 무기 산화물 반도체로서 IGZO를 사용하는 반도체 잉크 제조 방법의 일 실시예를 설명하기 위한 흐름도이다.2 is a flowchart for explaining an embodiment of a semiconductor ink manufacturing method using IGZO as an inorganic oxide semiconductor.
도 3은 본 발명에 일 실시예에 따라 제조된 IGZO 분말의 결정 특성을 살펴보기 위한 X-ray 회절 분석(Diffraction) 그래프이다.FIG. 3 is an X-ray diffraction (Diffraction) graph for examining crystal characteristics of IGZO powder prepared according to an embodiment of the present invention.
도 4 및 도 5는 각각 무정질 및 결정질 IGZO 분말의 유속 변화율(Shear rate)에 따른 점성(viscosity)을 나타내는 그래프들이다.4 and 5 are graphs showing the viscosity according to the shear rate of the amorphous and crystalline IGZO powder, respectively.
도 6은 본 발명에 따른 다이오드 제조 방법에 따라 제조된 다이오드의 적층 구성을 나타내는 도면이다.6 is a view showing a stacked structure of diodes manufactured according to the method of manufacturing a diode according to the present invention.
도 7은 평판 그라비아 인쇄를 통하여 플라스틱 기판 상에 은 전극과 반도체층을 인쇄하는 방법을 나타낸 모식도이다.7 is a schematic view showing a method of printing a silver electrode and a semiconductor layer on a plastic substrate through a flat gravure printing process.
도 8 및 도 9는 본 발명의 실시예들에 따른 반도체 분말들이 은 하부전극 상에 형성된 상태의 SEM 단면 사진들이다.8 and 9 are SEM cross-sectional photographs of semiconductor powders formed on silver lower electrodes according to embodiments of the present invention.
도 10은 무정질의 제1 IGZO 분말로 제조된 IGZO 잉크(IGZO 1)와 결정질의 제2 IGZO 분말로 제조된 IGZO 잉크(IGZO 2)로 제조한 다이오드의 log(I)-V 특성 그래프이다. 10 is a graph of log (I) -V characteristics of a diode made of an IGZO ink (IGZO 1) made of an amorphous first IGZO powder and an IGZO ink (IGZO 2) made of a crystalline second IGZO powder.
도 11은 본 발명에 따라 제조된 다이오드를 이용하여 구성될 수 있는 정류 회로의 회로도이다. 11 is a circuit diagram of a rectifying circuit that can be constructed using a diode manufactured according to the present invention.
도 12는 본 발명의 일 실시예에 따라 제조된 정류 회로를 사용한 정류 특성을 나타내는 그래프이다. 12 is a graph showing rectification characteristics using a rectifier circuit manufactured according to an embodiment of the present invention.
도 13은 정류 회로의 입력 전압 단에 전원 획득부를 포함하고, 정류 회로의 출력 전압 단에 충전부를 구비하여 구현된 에너지 하베스팅 회로를 나타내는 도면이다.13 is a view showing an energy harvesting circuit implemented by including a power obtaining unit at an input voltage end of a rectifying circuit and a charging unit at an output voltage end of the rectifying circuit.
도 14는 본 발명의 일 실시예에 따라 제조된 정류 회로를 포함하는 무선 센서 회로를 나타내는 도면이다.Figure 14 is a diagram of a wireless sensor circuit including a rectifier circuit fabricated in accordance with an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따라 제조된 유연 소자가, 스마트 폰으로부터 근거리 통신(NFC)을 통해 전원을 제공받는 것을 설명하기 위한 개념도이다. FIG. 15 is a conceptual diagram for explaining that a flexible device fabricated according to an embodiment of the present invention is powered by NFC from a smartphone.
도 16은 본 발명의 일 실시예에 따른 전원 획득부와 정류 회로를 포함하는 에너지 하베스팅 회로가 상용 스마트 폰으로부터 전원을 제공받아 출력 전압을 제공한 실험 결과를 나타낸 그래프이다.16 is a graph showing an experimental result of an energy harvesting circuit including a power obtaining unit and a rectifying circuit according to an embodiment of the present invention, which is supplied with power from a commercial smartphone and provides an output voltage.
이하에서 본 발명의 기술적 사상을 명확하게 하기 위하여 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하도록 한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성요소에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략할 것이다. 도면들 중 실질적으로 동일한 기능구성을 갖는 구성요소들에 대하여는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호들 및 부호들을 부여하였다. 설명의 편의를 위하여 필요한 경우에는 장치와 방법을 함께 서술하도록 한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to make the technical idea of the present invention clear. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram of a computer system according to an embodiment of the present invention; Fig. For convenience of explanation, the apparatus and method are described together when necessary.
도 1은 본 발명의 일 실시예에 따른 반도체 잉크 제조 방법을 설명하기 위한 흐름도이다.1 is a flowchart illustrating a method of manufacturing a semiconductor ink according to an embodiment of the present invention.
도 1을 참조하면, 젤 상태의 무기 산화물 반도체를 건조한다 (단계 S110). 무기 산화물 반도체는 IGZO(Indium gallium zinc oxide), Zn0, MoS2 중 적어도 하나를 포함할 수 있다. 젤 상태의 무기 산화물 반도체는 솔-젤(Sol-gel) 공정을 통해 제조될 수 있다.Referring to FIG. 1, an inorganic oxide semiconductor in a gel state is dried (step S110). The inorganic oxide semiconductor may include at least one of indium gallium zinc oxide (IGZO), ZnO, and MoS 2 . Gel-state inorganic oxide semiconductors can be fabricated through a sol-gel process.
젤 상태의 무기 산화물 반도체를 기 설정된 온도에서 소성하여 무기 산화물 반도체 분말로 제조할 수 있다(단계 S120). 실시예에 따라, 젤 상태의 무기 산화물 반도체를 450°C 이상 700°C 이하의 고온에서 소성함에 따라 무기 산화물 반도체 분말은 무정질 상태 또는 다결정질 상태의 분말로 제조될 수 있다. 본 발명에 있어서 실시예에 따라 무정질 상태 또는 다결정질 상태의 분말을 적절히 혼합하여 이후 단계에서 사용할 수 있다.The inorganic oxide semiconductor in gel state can be produced as an inorganic oxide semiconductor powder by baking at a predetermined temperature (step S120). According to an embodiment, the inorganic oxide semiconductor powder may be produced in amorphous or polycrystalline state as the inorganic oxide semiconductor in gel state is fired at a high temperature of 450 ° C or higher and 700 ° C or lower. According to the embodiment of the present invention, amorphous or polycrystalline powders may be appropriately mixed and used at a later stage.
제조된 무기 산화물 반도체 분말을 폴리스티렌 술폰산(PSSA) 용액에 혼합하여 분산한다(단계 S130). 실시예에 따라 롤 밀을 사용하여 PSSA 용액에 혼합된 무기 산화물 반도체 분말을 기 설정된 시간 동안 분산할 수 있으며, 이 때에 N-메틸프롤리돈을 용매로 사용할 수 있다. The prepared inorganic oxide semiconductor powder is mixed and dispersed in a polystyrene sulfonic acid (PSSA) solution (step S130). According to the embodiment, the inorganic oxide semiconductor powder mixed in the PSSA solution may be dispersed for a predetermined time using a roll mill, wherein N-methylpyrrolidone can be used as a solvent.
본 발명에 따른 반도체 잉크 제조 방법에 따라 제조된 반도체 잉크에서 PSSA는 전자활성 바인더로 사용된다. 구체적으로 PSSA는 반도체 잉크가 인쇄 후에 건조되는 경우에도 무기 산화물 반도체 입자들 사이의 계면에서 전자의 이동을 활성화시켜주는 역할을 한다. 또한 PSSA는 인쇄된 반도체 잉크 층이 상부 및 하부의 다른 층들과 접촉 시, 그 접촉 표면에 산화층 생성을 촉진하는 역할을 할 수도 있다.In the semiconductor ink produced according to the method for producing a semiconductor ink according to the present invention, PSSA is used as an electronically active binder. Specifically, the PSSA activates the movement of electrons at the interface between the inorganic oxide semiconductor particles even when the semiconductor ink is dried after printing. The PSSA may also serve to promote the formation of an oxide layer on the contact surface when the printed semiconductor ink layer is in contact with the other layers at the top and bottom.
이에 따라, 반도체 잉크 내의 PSSA로 인하여 상용 인쇄에 사용 가능한 용매에 안정한 콜로이드 상태로 분산시킬 수 있으며, 또한 PSSA가 그라비아와 같은 상용 인쇄에 적합한 인쇄 점도(예를 들어, 200cp 내지 800cp)를 지니는 고분자 바인더로 기능한다. 더욱이 PSSA는 반도체 잉크가 인쇄된 이후에 고온소성을 통해 제거하지 않아도 반도체가 지닌 본래의 전기적 특성을 구현할 수 있으므로, 기존 반도체 잉크와 같이 고온소성을 통해 고분자 바인더를 제거할 필요가 없다.As a result, it is possible to disperse the PSSA in a stable colloid state in a solvent usable for commercial printing due to PSSA in the semiconductor ink, and also to provide a polymer binder (for example, . Moreover, PSSA can realize the original electrical characteristics of the semiconductor without removing the semiconductor ink after high-temperature firing after printing, so that it is not necessary to remove the polymer binder through high-temperature firing like the conventional semiconductor ink.
이에 따라 본 발명에서는 PSSA와 같은 전자활성 바인더를 적용한 반도체 잉크를 사용하여 반도체 층을 인쇄함에 따라 인쇄 이후에 고온에서 고분자 바인더를 태워서 제거하는 공정이 필요하지 않다. 따라서 본 발명에서는 저온 건조 과정 만으로도 인쇄된 반도체가 본래 지닌 전기적 특성을 구현할 수 있는 반도체 잉크 제조 방법을 제공할 수 있다.Accordingly, in the present invention, there is no need for a process of burning a polymer binder at a high temperature after printing by printing a semiconductor layer using a semiconductor ink using an electronically active binder such as PSSA. Therefore, in the present invention, it is possible to provide a semiconductor ink manufacturing method capable of realizing the original electrical characteristics of a printed semiconductor by a low-temperature drying process alone.
본 발명에 따른 반도체 잉크 제조 방법에서는 IGZO, Zn0, MoS2 중 적어도 하나의 무기 산화물 반도체를 이용하여 반도체 잉크를 제조할 수 있다. 도 2는 무기 산화물 반도체로서 IGZO를 사용하는 반도체 잉크 제조 방법의 일 실시예를 설명하기 위한 흐름도이다.In the method for producing a semiconductor ink according to the present invention, a semiconductor ink can be produced using at least one inorganic oxide semiconductor of IGZO, ZnO and MoS 2 . 2 is a flowchart for explaining an embodiment of a semiconductor ink manufacturing method using IGZO as an inorganic oxide semiconductor.
도 2를 참조하면, 질산 인듐 수화물(indium nitrate hydrate), 질산 갈륨 수화물(gallium nitrate hydrate), 및 아연 아세테이트 이수화물(zinc acetate dihydrate)을 질소 상태에서 준비한다(단계 S210). 예를 들어, 약 5.11g의 질산 인듐 수화물, 약 0.63g의 질산 갈륨 수화물, 및 1.20g의 아연 아세테이트 이수화물은, 100ml의 플라스크에 넣어진 이후에 질소 가스를 넣은 질소 상태에서 준비될 수 있다. 각 성분들의 질량은 상대적인 비율에 기초하여 상이하게 조절될 수 있다.Referring to FIG. 2, indium nitrate hydrate, gallium nitrate hydrate, and zinc acetate dihydrate are prepared in a nitrogen state (step S210). For example, about 5.11 g of indium hydrate nitrate, about 0.63 g of gallium nitrate hydrate, and 1.20 g of zinc acetate dihydrate can be prepared in a nitrogen flask with nitrogen gas after being placed in a 100 ml flask. The mass of each component can be adjusted differently based on the relative ratio.
이와 같이 질소 가스를 넣은 상태에서 수분이 없는 2-메톡시에탄올(2-metoxyethanol)을 첨가하여 질소 분위기에서 솔-젤 공정을 통해 젤 상태의 IGZO를 제조할 수 있다(단계 S220). 실시예에 따라 2-메톡시에탄올을 전하고 마그네틱 스터링 바를 추가한 후에 플라스크를 셉타로 실링한 후, 질소 풍선을 꽂아 질소 분위기에서 반응기 내부의 압력이 자동으로 조절될 수 있도록 설치할 수 있다.In this way, IGZO in a gel state can be prepared through a sol-gel process in a nitrogen atmosphere by adding 2-methoxyethanol with no nitrogen in the state of adding nitrogen gas (step S220). Methoxyethanol and a magnetic stir bar were added to the flask, the flask was sealed with a septa, and a nitrogen balloon was inserted to adjust the pressure inside the reactor automatically in a nitrogen atmosphere.
이후에 70°C 에서 2시간 동안 교반한 투명 솔을 추가하고 동일한 온도에서 진공 로타리 펌프를 이용하여 용매를 제거하는 과정을 통하여 젤 화하여 젤 상태의 IGZO를 제조할 수 있다.After that, the transparent sol is stirred at 70 ° C for 2 hours, and the solvent is removed by using a vacuum rotary pump at the same temperature to obtain a gel-state IGZO.
젤 상태의 IGZO를 건조(단계 S111)하여 흰색의 분말을 얻은 후에 분말을 기 설정된 온도에서 소성하여 최종적으로 IGZO 분말을 제조할 수 있다(단계 S121). 단계 S111은 도 1의 단계 S110을 IGZO 무기 산화물 반도체에 적용한 단계로, 무기 산화물 반도체의 종류에 따라서 젤 상태를 건조하는 방법은 상이해질 수 있다. 예를 들어 젤 상태의 IGZO는 150°C의 전기로에서 건조될 수 있다. 유사한 방식으로 단계 S121은 도 2의 단계 S120에 상응하는 단계로서, 실시예에 따라 IGZO는 공기 중에서 450°C 내지 700°C의 온도에서 1시간 정도 소성될 수 있다. 소성되는 온도에 따라서 IGZO 분말의 결정 특성이 상이해질 수 있다.IGZO in a gel state is dried (step S111) to obtain a white powder, and then the powder is calcined at a predetermined temperature to finally produce an IGZO powder (step S121). Step S111 is a step in which step S110 in FIG. 1 is applied to the IGZO inorganic oxide semiconductor, and the method of drying the gel state may be different depending on the kind of the inorganic oxide semiconductor. For example, IGZO in gel form can be dried in an electric furnace at 150 ° C. In a similar manner, step S121 corresponds to step S120 of FIG. 2, according to the embodiment, the IGZO may be fired in air at a temperature of 450 ° C to 700 ° C for about 1 hour. The crystallization characteristics of the IGZO powder may be different depending on the temperature to be fired.
도 3은 본 발명에 일 실시예에 따라 제조된 IGZO 분말의 결정 특성을 살펴보기 위한 X-ray 회절 분석(Diffraction) 그래프이다.FIG. 3 is an X-ray diffraction (Diffraction) graph for examining crystal characteristics of IGZO powder prepared according to an embodiment of the present invention.
도 3에 있어서, 450°C에서 소성된 IGZO 분말(이하 "제1 IGZO 분말", IGZO 1)의 회절 특성과 700°C에서 소성된 IGZO 분말(이하 "제2 IGZO 분말", IGZO 2)의 회절 특성을 각각 도시하였다. 도 3에 있어서, X축은 X선을 조사하여 회절된 2θ의 회절각을 나타내며, Y축은 조사한 X선의 상대적인 세기(arbitrary unit)를 나타낸다.3, the diffraction characteristics of the IGZO powder (hereinafter referred to as " first IGZO powder ", IGZO 1) fired at 450 ° C and the diffraction characteristics of the IGZO powder Respectively. In Fig. 3, the X-axis represents the diffraction angle of 2? Diffracted by irradiating the X-ray, and the Y-axis represents the relative intensity (arbitrary unit) of the irradiated X-ray.
도 3을 참조하면, 제1 IGZO 분말(IGZO 1)은 결정성을 보이지 않는 무정질 상태인 반면, 제2 IGZO 분말(IGZO 2)은 다수의 결정 특성을 가지는 다결정질 특성을 가지는 것을 확인할 수 있다.Referring to FIG. 3, it can be seen that the first IGZO powder (IGZO 1) is in an amorphous state showing no crystallinity, whereas the second IGZO powder (IGZO 2) has a polycrystalline property having a large number of crystal characteristics .
무정질 분말과 결정질 분말의 경우에 반도체 잉크로 제조되었을 때 상이한 특성을 가질 수 있는데, 본 발명에 있어서는 실시예에 따라 무정질 IGZO 분말과 결정질 IGZO 분말을 다양한 비율로 혼합하여 반도체 잉크로 제조할 수 있다. In the case of the amorphous powder and the crystalline powder, the amorphous IGZO powder and the crystalline IGZO powder may be mixed in various ratios according to the embodiments of the present invention. have.
IGZO 분말을 초산으로 세척한 후(단계 S230), N-메틸프롤리돈 용액과 PSSA 용액을 넣고 롤밀을 이용하여 분산할 수 있다(단계 S131). 마찬가지로 해당 단계는 도 1의 단계 S130이 IGZO 분말에 적용된 단계이며, 실시예에 따라 N-메틸프롤리돈 용액과 IGZO의 양에 따라 점도와 안정성이 제어될 수 있다. 구체적으로 IGZO 분말의 양이 증가함에 따라 점도는 증가하는 반면 콜로이드 분산 안정성은 현저히 감소할 수 있다. 따라서 IGZO 분말과 N-메틸프롤리돈 용매 사이의 비율을 조절하여 점도와 안정성을 조절할 수 있다. 예를 들어 4g의 IGZO 분말에 대하여 20ml의 N-메틸프롤리돈 용액과 2ml의 PSSA 용액을 혼합할 수 있다. 또한 예를 들어 롤 밀을 이용하여 혼합액을 3시간 정도 분산할 수 있다. After the IGZO powder is washed with acetic acid (step S230), N-methylpyrrolidone solution and PSSA solution may be added and dispersed using a roll mill (step S131). Similarly, the step is a step in which step S130 of FIG. 1 is applied to the IGZO powder, and viscosity and stability can be controlled according to the amount of N-methylpyrrolidone solution and IGZO according to the embodiment. Specifically, as the amount of IGZO powder increases, the viscosity increases while the stability of colloidal dispersion can be significantly reduced. Therefore, the viscosity and stability can be controlled by controlling the ratio between the IGZO powder and the N-methylpyrrolidone solvent. For example, for 4 g of IGZO powder, 20 ml of N-methylpyrrolidone solution and 2 ml of PSSA solution can be mixed. For example, the mixed solution can be dispersed for about 3 hours by using a roll mill.
다른 실시예에 있어서 5 내지 20 wt%의 IGZO 분말에 1 내지 5 wt%의 PSSA를 섞어서 분산할 수 있다. In another embodiment, 5 to 20 wt% of IGZO powder may be dispersed with 1 to 5 wt% of PSSA mixed therein.
1차적으로 분산을 수행한 후, 폴리비닐 알코올 6ml를 넣고 추가로 1시간 동안 롤 밀을 수행할 수 있다(단계 S240). 이 때 추가되는 폴리비닐 알코올은 1g을 20ml의 N-메틸프롤리돈에 녹인 용액일 수 있다. After the dispersion is performed primarily, 6 ml of polyvinyl alcohol may be added and the roll mill may be further performed for 1 hour (step S240). The polyvinyl alcohol added at this time may be a solution in which 1 g is dissolved in 20 ml of N-methylpyrrolidone.
무정질 IGZO 분말과 결정질 IGZO 분말을 이용하여 제조한 반도체 잉크는 전형적인 비뉴턴 유체의 특성을 가진다. Semiconductor inks made using amorphous IGZO powder and crystalline IGZO powder have typical non-Newtonian fluid properties.
도 4 및 도 5는 각각 무정질 및 결정질 IGZO 분말의 유속 변화율(Shear rate)에 따른 점성(viscosity)을 나타내는 그래프들이다.4 and 5 are graphs showing the viscosity according to the shear rate of the amorphous and crystalline IGZO powder, respectively.
도 4 및 도 5를 참조하면, 무정질 및 결정질 IGZO 분말들 모두 구체적인 수치는 상이하지만 유속 변화율이 증가함에 따라 점성이 감소하는데, 무정질 IGZO 분말, 즉 제1 IGZO 분말의 점도는 400cp, 결정질 IGZO 분말, 즉 제2 IGZO 분말의 점도는 200cp인 것으로 확인하였다.4 and 5, the amorphous and crystalline IGZO powders differ in specific values, but their viscosity decreases as the rate of change in flow rate increases. The amorphous IGZO powder, i.e., the viscosity of the first IGZO powder is 400 cp, the crystalline IGZO The viscosity of the powder, i.e. the second IGZO powder, was found to be 200 cp.
IGZO 분말들의 점도 특성에 따라, 반도체 잉크로 제조되었을 때 동일한 인쇄 단계를 수행한다고 하더라도 상이한 두께를 가지면서 인쇄될 수 있다. Depending on the viscosity characteristics of the IGZO powders, they can be printed with different thicknesses even when they are made with semiconductor ink and perform the same printing step.
본 발명에 따른 반도체 잉크 제조 방법으로 제조된 반도체 잉크를 이용하여 다이오드를 제조할 수 있다. The diode can be manufactured by using the semiconductor ink produced by the method for manufacturing a semiconductor ink according to the present invention.
도 6은 본 발명에 따른 다이오드 제조 방법에 따라 제조된 다이오드의 적층 구성을 나타내는 도면이다. 도 6을 참조하면, 유연한 플라스틱 기판(PET substrate) 상에 하부 전극, 예를 들어 도전성 은 전극(silver)을 인쇄하고, 반도체 특성을 가지는 IGZO 층을 인쇄한 후, 상부 전극, 예를 들어 알루미늄 호일을 적층하여 다이오드를 제조할 수 있다.6 is a view showing a stacked structure of diodes manufactured according to the method of manufacturing a diode according to the present invention. Referring to FIG. 6, a lower electrode, for example, a conductive silver electrode is printed on a flexible plastic substrate, and an IGZO layer having a semiconductor property is printed. Then, an upper electrode, for example, A diode can be manufactured.
예를 들어, 본 발명에 따라 제조되는 다이오드는 MIS(metal-insulator-semiconductor) 쇼트키 다이오드를 포함할 수 있다. For example, a diode fabricated according to the present invention may include a metal-insulator-semiconductor (MIS) Schottky diode.
상술한 바와 같이 종래 반도체 잉크를 통해 반도체층을 인쇄한 경우에 고분자 바인더를 제거하기 위하여 고온소성을 하는 경우, 하부의 기판과 하부 전극인 은 전극이 손상될 가능성이 매우 크다. 그러나 본 발명에 따른 반도체 잉크의 경우에는 전기적 특성을 저해하지 않는 PSSA가 전자활성 바인더로 기능하기 때문에 반도체층을 인쇄한 이후에도 고온소성 과정을 거칠 필요가 없다. 따라서 유연한 플라스틱 기판 상에 인쇄가 가능하므로 유연한 인쇄 소자들을 제조할 때에 유용하게 사용될 수 있다.As described above, when the semiconductor layer is printed through the semiconductor ink, when the high-temperature firing is performed in order to remove the polymer binder, there is a high possibility that the silver electrode as the lower substrate and the lower electrode are damaged. However, in the case of the semiconductor ink according to the present invention, since the PSSA which does not impair the electrical characteristics functions as an electron-active binder, there is no need to undergo a high-temperature firing process even after printing the semiconductor layer. Therefore, printing on a flexible plastic substrate is possible, which can be useful when manufacturing flexible printing elements.
실시예에 따라, 다이오드를 구성하는 은 전극과 반도체층은 롤투롤 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋, 스크린 인쇄 중 적어도 하나의 방식으로 인쇄될 수 있다. 은 전극은 도전성 은 잉크를 사용하여 인쇄될 수 있으며 반도체층은 상술한 반도체 잉크를 사용하여 인쇄될 수 있다. According to the embodiment, the silver electrode and the semiconductor layer constituting the diode may be printed in at least one of roll-to-roll gravure, offset, gravure-offset, reverse offset and screen printing. The silver electrode can be printed using a silver ink that is conductive and the semiconductor layer can be printed using the above-described semiconductor ink.
도 7은 평판 그라비아 인쇄를 통하여 플라스틱 기판 상에 은 전극과 반도체층을 인쇄하는 방법을 나타낸 모식도이다.7 is a schematic view showing a method of printing a silver electrode and a semiconductor layer on a plastic substrate through a flat gravure printing process.
은 전극은 전도성 은 잉크를 유연 기판 상에 인쇄하여 대략 600nm 내지 800nm 의 두께로 형성될 수 있다. 은 잉크를 이용하여 그라비아 방식으로 인쇄한 전극의 평균 표면 조도는 1nm 내지 5nm에 상응할 수 있다. 이러한 표면 조도에 기초하여 그 상부에 인쇄되는 반도체 층, 즉 IGZO층의 두께가 결정될 수 있다. The silver electrode may be formed with a thickness of approximately 600 nm to 800 nm by printing a conductive silver ink on the flexible substrate. The average surface roughness of the electrode printed by gravure printing using ink may correspond to 1 nm to 5 nm. Based on such surface roughness, the thickness of the semiconductor layer printed on the top, that is, the IGZO layer, can be determined.
도 8 및 도 9는 본 발명의 실시예들에 따른 반도체 분말들이 은 하부전극 상에 형성된 상태의 SEM 단면 사진들이다. 도 8 및 도 9를 참조하면 은 하부전극(Ag 하부전극)은 570nm 정도의 두께를 가지며 상부의 IGZO 층은, 무정질 IGZO 분말로 제조된 반도체 잉크의 경우에는 대략 520nm 내지 590nm의 두께를 가지면서 형성될 수 있으며(도 8), 결정질 IGZO 분말로 제조된 반도체 잉크의 경우에는 대략 640nm의 두께를 가지면서 형성될 수 있다(도 9). IGZO 층의 두께 차이는 IGZO 분말의 점도 차이에 기인한 것으로 이해될 수 있다.8 and 9 are SEM cross-sectional photographs of semiconductor powders formed on silver lower electrodes according to embodiments of the present invention. 8 and 9, the lower electrode (Ag lower electrode) has a thickness of about 570 nm and the upper IGZO layer has a thickness of about 520 nm to 590 nm in the case of a semiconductor ink made of amorphous IGZO powder (FIG. 8), and in the case of a semiconductor ink made of crystalline IGZO powder, it can be formed with a thickness of approximately 640 nm (FIG. 9). The difference in thickness of the IGZO layer can be understood to be due to the viscosity difference of the IGZO powder.
은 하부전극, 그 상부의 반도체층 상에 알루미늄 호일을 라미네이팅함에 따라 반도체층을 사이에 둔 양 전극이 모두 형성된다. 알루미늄 호일을 반도체층 상부에 라미네이팅하면, 반도체층과 직접적으로 접촉하는 알루미늄 호일의 계면에 반도체층에 포함된 PSSA가 알루미나 산화층을 생성할 수 있다. 이에 따라서 다이오드의 역방향 전류가 효율적으로 차단될 수 있다.The lower electrode and the upper semiconductor layer are laminated with the aluminum foil, so that both electrodes sandwiching the semiconductor layer are formed. When the aluminum foil is laminated on the semiconductor layer, the PSSA contained in the semiconductor layer at the interface of the aluminum foil that directly contacts the semiconductor layer can generate the alumina oxide layer. Whereby the reverse current of the diode can be efficiently cut off.
도 10은 무정질의 제1 IGZO 분말로 제조된 IGZO 잉크(IGZO 1)와 결정질의 제2 IGZO 분말로 제조된 IGZO 잉크(IGZO 2)로 제조한 다이오드의 log(I)-V 특성 그래프이다. 10 is a graph of log (I) -V characteristics of a diode made of an IGZO ink (IGZO 1) made of an amorphous first IGZO powder and an IGZO ink (IGZO 2) made of a crystalline second IGZO powder.
도 10을 참조하면, 두 IGZO 잉크로 생성된 다이오드들 모두 0.5V 이하의 낮은 턴 온 전압을 가지는 것을 확인할 수 있다. Referring to FIG. 10, it can be seen that all of the diodes generated by the two IGZO inks have a low turn-on voltage of 0.5 V or less.
도 11은 본 발명에 따라 제조된 다이오드를 이용하여 구성될 수 있는 정류 회로의 회로도이다. 11 is a circuit diagram of a rectifying circuit that can be constructed using a diode manufactured according to the present invention.
도 11을 참조하면, 입력 전압(VIN) 중 턴 온 전압 이상의 값이 제공되는 경우에 다이오드(D)를 통해 캐패시터(CL) 및 저항(RL) 단에 제공됨에 따라 출력 전압(VOUT)이 일정한 값을 유지하게 된다. Referring to FIG. 11, when a value equal to or larger than the turn-on voltage of the input voltage V IN is provided, the output voltage V OUT is supplied to the capacitor C L and the resistor R L through the diode D, ) Is maintained at a constant value.
이러한 정류 회로를 구성하기 위해, 상술한 다이오드가 인쇄된 유연 기판 상에 저항 및 캐패시터가 함께 제조될 수 있다. 실시예에 따라 캐패시터의 두 전극은 다이오드의 하부전극을 형성할 때 함께 인쇄될 수 있다. 또한 저항 성분 역시 반도체층은 롤투롤 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋, 스크린 인쇄 중 적어도 하나의 방식으로 인쇄될 수 있다.To constitute such a rectifying circuit, a resistor and a capacitor may be manufactured together on the flexible substrate on which the above-described diode is printed. According to an embodiment, the two electrodes of the capacitor may be printed together when forming the lower electrode of the diode. In addition, the resistive component can also be printed in at least one of a roll-to-roll gravure, an offset, a gravure-offset, a reverse offset, and a screen printing.
또한, 유연 기판에 안테나 패턴이 형성될 수 있다. 안테나 패턴은 도전성 잉크로 인쇄될 수 있으며, 캐패시터, 다이오드 소자, 저항 및 안테나가 도 12에 나타낸 회로와 같은 전기적 연결을 형성함에 따라 정류 회로가 제조될 수 있다.Further, an antenna pattern can be formed on the flexible substrate. The antenna pattern can be printed with conductive ink, and a rectifying circuit can be manufactured as the capacitor, the diode element, the resistor, and the antenna form an electrical connection like the circuit shown in Fig.
이러한 정류 회로의 전기적 연결은 각 캐패시터, 다이오드, 저항 및 안테나를 구성하는 연결 패턴들의 설계에 따라서 다양한 방식으로 이루어질 수 있다. 본 발명의 일 실시예에 따른 정류 회로 제조 방법에 있어서 도전성 잉크를 이용한 인쇄 공정을 통해 전극 패턴이 형성되고 반도체 잉크를 이용한 인쇄 공정을 통해 다이오드를 비롯한 다양한 반도체 소자들이 완성될 수 있다. The electrical connection of such a rectifying circuit can be done in various ways depending on the design of the connection patterns constituting each capacitor, diode, resistor and antenna. In the rectifying circuit manufacturing method according to an embodiment of the present invention, an electrode pattern is formed through a printing process using conductive ink, and various semiconductor elements including a diode can be completed through a printing process using a semiconductor ink.
도 12는 본 발명의 일 실시예에 따라 제조된 정류 회로를 사용한 정류 특성을 나타내는 그래프이다. 12 is a graph showing rectification characteristics using a rectifier circuit manufactured according to an embodiment of the present invention.
도 12에서는 13.56MHz의 입력 전압(VIN)을 제공하여 정류된 출력 전압(VOUT)을 나타내었다. 도 12는 도 11의 회로에 있어서 1MΩ의 부하저항(RL)과 1nF의 캐패시터(CL)를 이용한 경우의 실험 결과이다.12 shows the rectified output voltage (V OUT ) by providing an input voltage V IN of 13.56 MHz. Fig. 12 shows experimental results when a load resistance (R L ) of 1 M ? And a capacitor (C L ) of 1 nF are used in the circuit of Fig.
도 12를 참조하면, 본 발명에 따라 제조된 정류 회로가 60%의 정류효율을 가지면서 일정한 출력 전압을 제공하는 것을 확인할 수 있다. Referring to FIG. 12, it can be seen that the rectifier circuit manufactured according to the present invention provides a constant output voltage with a rectification efficiency of 60%.
본 발명의 일 실시예에 따른 제조 방법에 따라 제조된 정류 회로는 전원을 획득하여 동작하는 에너지 하베스팅 회로에 포함될 수 있다. 도 13은 정류 회로의 입력 전압 단에 전원 획득부(1410)를 포함하고, 정류 회로의 출력 전압 단에 충전부(1420)를 구비하여 구현된 에너지 하베스팅 회로를 나타내는 도면이다.The rectifier circuit manufactured according to the manufacturing method according to an embodiment of the present invention may be included in an energy harvesting circuit that operates by acquiring power. 13 is a diagram showing an energy harvesting circuit implemented by including a power obtaining unit 1410 at an input voltage end of a rectifying circuit and a charging unit 1420 at an output voltage end of a rectifying circuit.
도 13에 있어서, 전원 획득부(1410)는 안테나와 같이 외부 무선 신호를 수신하여 전압 형태로 제공하는 회로를 포함할 수 있다. 외부에서 무선 신호를 전압으로 제공받은 정류 회로가 일정한 출력 전압을 충전부(1420)로 제공하면, 충전부는 충전 회로 및 2차 전지를 구비하여 2차 전지를 충전할 수 있다. 이렇게 충전된 2차 전지를 통해 다른 전자 회로들의 동작이 이루어질 수 있다. 실시예에 따라 전원 획득부(1410)와 충전부(1420)는 상술한 정류 회로와 동일한 유연 기판 상에 인쇄 공정을 통해 형성될 수 있다. 일 실시예에 있어서 유연 기판 상에 전해액을 사이에 개재하고 알루미늄 호일로 라미네이팅 함에 따라 2차 전지를 구현할 수 있다.13, the power acquisition unit 1410 may include a circuit for receiving an external wireless signal such as an antenna and providing the received external wireless signal in the form of a voltage. When the rectifying circuit provided with a radio signal from outside externally provides a constant output voltage to the charging unit 1420, the charging unit may include a charging circuit and a secondary battery to charge the secondary battery. The operation of other electronic circuits can be performed through the charged secondary battery. The power acquisition unit 1410 and the charging unit 1420 may be formed on the same flexible substrate as the above-described rectifying circuit through a printing process. In one embodiment, a secondary battery can be realized by interposing an electrolyte on a flexible substrate and laminating it with an aluminum foil.
도 14는 본 발명의 일 실시예에 따라 제조된 정류 회로를 포함하는 무선 센서 회로를 나타내는 도면이다.Figure 14 is a diagram of a wireless sensor circuit including a rectifier circuit fabricated in accordance with an embodiment of the present invention.
도 14를 참조하면, 정류 회로의 입력 전압 단에 전원 획득부(1410)가 구비되는 것은 도 13과 동일하나, 출력 전압 단에 센서부(1520)가 구비될 수 있다. 센서부(1520)는 다양한 종류의 센서들을 포함할 수 있으며, 전원 획득부(1410)와 정류 회로를 통해 제공된 일정한 값의 전압에 기초하여 다양한 외부 값들을 감지하여 감지 신호를 생성할 수 있다. 센서부(1520)에서 생성된 감지 신호는 전원 획득부(1410)에 구비된 안테나 수단을 통하여 외부로 제공될 수 있다.Referring to FIG. 14, the power supply acquisition unit 1410 is provided at the input voltage terminal of the rectification circuit, but the sensor unit 1520 may be provided at the output voltage end. The sensor unit 1520 may include various kinds of sensors. The sensor unit 1520 may sense various external values based on a voltage of a constant value provided through the power acquisition unit 1410 and the rectifying circuit to generate a sensing signal. The sensing signal generated by the sensor unit 1520 may be provided to the outside through the antenna means included in the power obtaining unit 1410.
센서부(1520)에 구비되는 다양한 센서들은 유연 기판 상에 인쇄 공정을 통해 생성되거나 유연 기판 상에 도전성 점착제 등을 통하여 점착될 수 있다. 이와 같이 센서들이 점착되는 경우에 다양한 종류의 센서들이 유연 기판 상에서 탈부착되어, 무선 센서 회로가 다양한 종류의 센서 회로로 활용될 수 있다. 실시예에 따라, 센서부(1520)는 유연 기판 상에 롤투롤 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋, 스크린 인쇄 방식 중 적어도 하나의 방식으로 인쇄되어 형성될 수도 있다.Various sensors provided in the sensor unit 1520 may be formed on a flexible substrate through a printing process or may be adhered onto a flexible substrate through a conductive adhesive or the like. When the sensors are attached, various kinds of sensors are detached and attached on the flexible substrate, and the wireless sensor circuit can be utilized as various types of sensor circuits. According to an embodiment, the sensor unit 1520 may be formed by printing on a flexible substrate in at least one of a roll-to-roll gravure, an offset, a gravure-offset, a reverse offset, and a screen printing method.
결국 외부 무선 신호를 통해 전원을 획득하여 동작하는 다양한 전자 회로들이 모두 유연한 기판 상에 구현될 수 있으며 이러한 유연 기판 상에 구현되는 회로들은 고온소성 공정 없이 간단하게 구현될 수 있으므로 유연 소자가 널리 사용될 수 있도록 하는 기반이 될 수 있다.As a result, various electronic circuits that operate by acquiring power through an external radio signal can be implemented on a flexible substrate, and the circuits implemented on such a flexible substrate can be easily implemented without a high-temperature firing process, so flexible devices can be widely used Based on the results.
도 15는 본 발명의 일 실시예에 따라 제조된 유연 소자가, 스마트 폰으로부터 근거리 통신(NFC)을 통해 전원을 제공받는 것을 설명하기 위한 개념도이고, 도 16은 본 발명의 일 실시예에 따른 전원 획득부와 정류 회로를 포함하는 에너지 하베스팅 회로가 상용 스마트 폰으로부터 전원을 제공받아 출력 전압을 제공한 실험 결과를 나타낸 그래프이다.FIG. 15 is a conceptual diagram for explaining that a flexible device manufactured according to an embodiment of the present invention is powered by NFC from a smartphone, and FIG. FIG. 2 is a graph showing an experimental result that an energy harvesting circuit including an acquiring unit and a rectifying circuit is supplied with power from a commercial smartphone and provided with an output voltage. FIG.
도 16을 참조하면, 본 발명에 따라 제조된 에너지 하베스팅 회로가 스마트 폰의 13.56 MHz의 교류 신호를 이용하여 50%의 정류효율을 달성한 것을 확인할 수 있다. 이와 같이 스마트 폰과 연동하여 전원을 제공받을 수 있는 경우에 에너지 하베스팅 회로는 무선 센서와 연결되어 무선 센서 태그로 활용되거나 2차 전지를 충전시키거나 간단한 액츄에이터를 구동시키는 에너지 원으로 활용되는 등 다양한 기능을 구비하도록 구현될 수 있다.Referring to FIG. 16, it can be seen that the energy harvesting circuit manufactured according to the present invention achieves a rectification efficiency of 50% using an AC signal of 13.56 MHz of a smartphone. In the case where the power supply can be provided in cooperation with a smartphone, the energy harvesting circuit can be used as a wireless sensor tag or as an energy source for charging a secondary battery or driving a simple actuator, Function.
본 발명에 따르면 고온소성이 필요하지 않으면서 양호한 반도체 특성을 갖는 반도체 잉크를 제조할 수 있으며, 이러한 반도체 잉크를 이용함에 따라 저온공정(<150 °C)으로 제조될 수 있어 100% 양산 가능한 인쇄 공정으로 쇼트키 다이오드를 제조하는 방법을 제공할 수 있다. 특히 본 발명에 따르면 고성능의 안정한 반도체를 인쇄할 수 있는 반도체 잉크를 사용하여 공기중에서 안정적으로 쇼트키 접촉 전극을 제조함에 따라 유연 NFC 정류 회로를 100% 인쇄로 제조하는 방법을 제공할 수 있다.According to the present invention, it is possible to produce a semiconductor ink having good semiconductor characteristics without requiring high-temperature firing. By using such a semiconductor ink, a low-temperature process (< 150 ° C) To provide a method for fabricating a Schottky diode. In particular, according to the present invention, a Schottky contact electrode is manufactured stably in the air using a semiconductor ink capable of printing a high-performance stable semiconductor, thereby providing a method of manufacturing a flexible NFC rectifier circuit by 100% printing.

Claims (10)

  1. 젤 상태의 무기 산화물 반도체를 건조한 후, 기 설정된 온도에서 소성하여 무기 산화물 반도체 분말을 제조하는 단계; 및Drying an inorganic oxide semiconductor in a gel state and then firing at a predetermined temperature to produce an inorganic oxide semiconductor powder; And
    상기 무기 산화물 반도체 분말을 폴리스티렌 술폰산(Polystyrene sulfonic acid(PSSA)) 용액에 혼합하여 분산(dispersion)하는 단계를 포함하는 반도체 잉크 제조 방법.And mixing and dispersing the inorganic oxide semiconductor powder in a polystyrene sulfonic acid (PSSA) solution.
  2. 제1 항에 있어서, The method according to claim 1,
    상기 기 설정된 온도는 450°C 이상 700°C 이하인 것을 특징으로 하는 포함하는 반도체 잉크 제조 방법.Wherein the predetermined temperature is 450 ° C or more and 700 ° C or less.
  3. 제2 항에 있어서,3. The method of claim 2,
    상기 무기 산화물 반도체 분말은 무정질 상태 또는 결정질 상태인 것을 특징으로 하는 반도체 잉크 제조 방법.Wherein the inorganic oxide semiconductor powder is in an amorphous state or a crystalline state.
  4. 제3 항에 있어서,The method of claim 3,
    상기 무기 산화물 반도체 분말을 분산하는 단계는,Wherein the step of dispersing the inorganic oxide semiconductor powder comprises:
    상기 무기 산화물 반도체 분말을 폴리바이닐 알코올(polyvinyl alcohol) 용액을 넣고 분산하는 단계를 더 포함하는 반도체 잉크 제조 방법.Further comprising the step of adding and dispersing a polyvinyl alcohol solution into the inorganic oxide semiconductor powder.
  5. 제3 항에 있어서,The method of claim 3,
    상기 무기 산화물 반도체 분말은, The inorganic oxide semiconductor powder may include,
    IGZO(Indium gallium zinc oxide), Zn0, MoS2 분말 중 적어도 하나를 포함하는 반도체 잉크 제조 방법. (IGZO), ZnO, and MoS 2 powder.
  6. 유연한 기판(Flexible substrate) 상에 전도성 은(Ag) 전극을 인쇄하는 단계;Printing a conductive silver (Ag) electrode on a flexible substrate;
    무기 산화물 반도체 분말 및 PSSA 용액을 분산하여 제조한 반도체 잉크를 준비하는 단계;Preparing a semiconductor ink prepared by dispersing an inorganic oxide semiconductor powder and a PSSA solution;
    롤투롤(Roll-to-Roll) 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋, 스크린 인쇄 방식 중 적어도 하나의 방식으로 상기 반도체 잉크를 상기 은 전극이 인쇄된 유연한 기판 상에 인쇄하는 단계; 및Printing the semiconductor ink on a flexible substrate on which the silver electrode is printed in at least one of a roll-to-roll gravure, an offset, a gravure-offset, a reverse offset, and a screen printing method; And
    상기 반도체 잉크 상부에 알루미늄 호일을 라미네이팅하는 단계를 포함하는, 반도체 잉크를 이용한 다이오드 제조 방법.And laminating an aluminum foil on top of the semiconductor ink.
  7. 제6 항에 있어서,The method according to claim 6,
    상기 알루미늄 호일을 라미네이팅하는 단계는,Wherein the step of laminating the aluminum foil comprises:
    상기 알루미늄 호일과 상기 반도체 잉크가 직접 접촉하여 산화됨에 따라 초박막 알루미나 층을 생성하는 단계를 포함하는, 반도체 잉크를 이용한 다이오드 제조 방법.And forming an ultra thin alumina layer as the aluminum foil and the semiconductor ink are in direct contact and oxidized.
  8. 롤투롤(Roll-to-Roll) 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋, 스크린 인쇄 방식 중 적어도 하나의 방식으로 유연 기판에 안테나, 캐패시터, 및 저항을 인쇄하는 단계;Printing an antenna, a capacitor, and a resistor on a flexible substrate in at least one of a roll-to-roll gravure, an offset, a gravure-offset, a reverse offset, and a screen printing method;
    젤 상태의 무기 산화물 반도체를 건조한 후, 기 설정된 온도에서 소성하여 제조된 무기 산화물 반도체 분말을 폴리스티렌 술폰산(Polystyrene sulfonic acid(PSSA)) 용액에 혼합하여 분산(dispersion)한 반도체 잉크를 이용하여 상기 유연 기판에 다이오드 소자를 형성하는 단계; 및The inorganic oxide semiconductor powder obtained by drying the inorganic oxide semiconductor in a gel state and then firing at a predetermined temperature is mixed with polystyrene sulfonic acid (PSSA) solution and dispersed, Forming a diode element on the substrate; And
    상기 커패시터, 다이오드 소자, 저항, 및 안테나를 전기적으로 연결하여 상기 안테나를 통해 수신된 교류 신호를 정류하는 정류 회로를 구성하는 단계를 포함하는 정류 회로 제조 방법. And forming a rectifying circuit electrically connecting the capacitor, the diode element, the resistor, and the antenna to rectify the AC signal received through the antenna.
  9. 제8 항에 있어서,9. The method of claim 8,
    상기 정류 회로를 통해 제공되는 전압에 기초하여 충전되는 충전부를 상기 유연 기판에 연결하는 단계를 포함하는 정류 회로 제조 방법.And connecting a live part to be charged based on the voltage provided through the rectifying circuit to the flexible substrate.
  10. 제8 항에 있어서, 9. The method of claim 8,
    상기 정류 회로를 통해 제공되는 전압에 기초하여 동작하는 센서를 상기 유연 기판에 연결하는 단계를 포함하는 정류 회로 제조 방법.And connecting a sensor operating on the basis of the voltage provided through the rectifying circuit to the flexible substrate.
PCT/KR2017/014426 2017-11-29 2017-12-08 Method for manufacturing semiconductor ink and method for manufacturing diode and rectifier circuit using semiconductor ink WO2019107642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0162278 2017-11-29
KR1020170162278A KR101998290B1 (en) 2017-11-29 2017-11-29 Method for manufacturing semiconducting ink, and methods for manufacturing diode and rectifying circuit using the semiconducting ink

Publications (1)

Publication Number Publication Date
WO2019107642A1 true WO2019107642A1 (en) 2019-06-06

Family

ID=66665078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014426 WO2019107642A1 (en) 2017-11-29 2017-12-08 Method for manufacturing semiconductor ink and method for manufacturing diode and rectifier circuit using semiconductor ink

Country Status (2)

Country Link
KR (1) KR101998290B1 (en)
WO (1) WO2019107642A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111325301A (en) * 2020-02-16 2020-06-23 陕西科技大学 Anti-counterfeiting system prepared by organic conductive polymer ink and full printing and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102358327B1 (en) * 2020-02-06 2022-02-04 성균관대학교산학협력단 Methods for manufacturing roll-to-roll printing based printing rectenna and printing rectenna and electronic apparatuses using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028176A2 (en) * 2003-09-19 2005-03-31 Sipix Imaging, Inc. Process for forming a patterned thin film structure for in-mold decoration
KR20090105717A (en) * 2008-04-03 2009-10-07 (주) 파루 RF printing rectifier using Roll to Roll printing method
KR20120048436A (en) * 2010-11-05 2012-05-15 현대자동차주식회사 Oxide semiconductor ink for ink-jet printing and manufacturing method thereof, manufacturing method of photovoltaics using thereof
KR20130078156A (en) * 2011-12-30 2013-07-10 전북대학교산학협력단 Sintered body of ultra fine izto (indium zinc tin oxide) powders
KR101433638B1 (en) * 2013-05-07 2014-08-25 (주) 파루 Rfid tag production method for low driving volatage and rfid tag thereof
WO2017176003A1 (en) * 2016-04-04 2017-10-12 (주)파루 Semiconductor ink composition containing carbon nanotubes and method for manufacturing thin film transistor using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2858099A4 (en) * 2012-06-01 2015-05-20 Mitsubishi Chem Corp Method for producing metal oxide-containing semiconductor layer and electronic device
KR101680433B1 (en) * 2014-11-25 2016-11-29 순천대학교 산학협력단 Manufacturing method of roll-to-roll gravure printed thin film transistor, thin film transistor backplane, backplane pressure sensor and smart sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028176A2 (en) * 2003-09-19 2005-03-31 Sipix Imaging, Inc. Process for forming a patterned thin film structure for in-mold decoration
KR20090105717A (en) * 2008-04-03 2009-10-07 (주) 파루 RF printing rectifier using Roll to Roll printing method
KR20120048436A (en) * 2010-11-05 2012-05-15 현대자동차주식회사 Oxide semiconductor ink for ink-jet printing and manufacturing method thereof, manufacturing method of photovoltaics using thereof
KR20130078156A (en) * 2011-12-30 2013-07-10 전북대학교산학협력단 Sintered body of ultra fine izto (indium zinc tin oxide) powders
KR101433638B1 (en) * 2013-05-07 2014-08-25 (주) 파루 Rfid tag production method for low driving volatage and rfid tag thereof
WO2017176003A1 (en) * 2016-04-04 2017-10-12 (주)파루 Semiconductor ink composition containing carbon nanotubes and method for manufacturing thin film transistor using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111325301A (en) * 2020-02-16 2020-06-23 陕西科技大学 Anti-counterfeiting system prepared by organic conductive polymer ink and full printing and manufacturing method thereof
CN111325301B (en) * 2020-02-16 2023-04-28 苏州同里印刷科技股份有限公司 Organic conductive polymer ink, anti-counterfeiting system prepared by full printing and manufacturing method of anti-counterfeiting system

Also Published As

Publication number Publication date
KR20190063304A (en) 2019-06-07
KR101998290B1 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
KR101367613B1 (en) Lithium ion secondary battery and process for manufacturing the same
WO2019107642A1 (en) Method for manufacturing semiconductor ink and method for manufacturing diode and rectifier circuit using semiconductor ink
WO2018038584A1 (en) Separator for electrochemical device and electrochemical device comprising said separator
KR20130076802A (en) Lithium ion secondary battery
WO2009139295A1 (en) Thermoelectric generation apparatus
WO2016190521A1 (en) Battery module including heat radiation paint coating layer
WO2009150908A1 (en) Thermoelectric converter element and conductive member for thermoelectric converter element
WO2009148259A2 (en) Metallic paste composition for formation of an electrode, and ag-c composite electrodes and silicon solar cells using the same
US20190252690A1 (en) Flexible Battery
CN102185009A (en) Screen printing sintering method and system for crystalline silicon solar cell
WO2018080094A1 (en) Conductive paste for solar cell electrode and solar cell manufactured by using same
CN111727526B (en) Solid-state battery
US20220302506A1 (en) Solid-state battery
CN111081863A (en) Flexible composite film nano generator and preparation method thereof
CN103626489A (en) Preparation method of low-temperature sintering laminated sheet type barium titanate thermal sensitive ceramic
CN114556618B (en) All-solid battery
WO2018155756A1 (en) Flexible nfc sensor tag and method for manufacturing flexible nfc sensor tag
JP2013243281A (en) Method for manufacturing multilayer semiconductor ceramic capacitor and multilayer semiconductor ceramic capacitor
WO2022177335A1 (en) Method for determining microstructure of electrode using electrical conductivity
WO2020130188A1 (en) Nfc qr code label for preventing forgery and falsification and method for producing nfc qr code label
WO2020130186A1 (en) Method for manufacturing printed super capacitor provided in nfc tag, and method for manufacturing nfc tag comprising printed super capacitor
WO2011034261A1 (en) Printed rf label for display
WO2011132952A2 (en) Electrochemical device electrode, method for manufacturing same, and electrochemical device
JP5418993B2 (en) Manufacturing method of multilayer semiconductor ceramic capacitor and multilayer semiconductor ceramic capacitor
WO2021158093A2 (en) Roll-to-roll printing-based printed rectenna manufacturing method, printed rectenna, and electronic device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933404

Country of ref document: EP

Kind code of ref document: A1