WO2019107431A1 - Haploidentical transplantation enhancer - Google Patents

Haploidentical transplantation enhancer Download PDF

Info

Publication number
WO2019107431A1
WO2019107431A1 PCT/JP2018/043819 JP2018043819W WO2019107431A1 WO 2019107431 A1 WO2019107431 A1 WO 2019107431A1 JP 2018043819 W JP2018043819 W JP 2018043819W WO 2019107431 A1 WO2019107431 A1 WO 2019107431A1
Authority
WO
WIPO (PCT)
Prior art keywords
haplo
transplantation
cyclophosphamide
hematopoietic cells
recipient
Prior art date
Application number
PCT/JP2018/043819
Other languages
French (fr)
Japanese (ja)
Inventor
賢市 松岡
真 中村
嘉信 前田
絵美 川口
秀俊 秋元
保之 石井
Original Assignee
株式会社レグイミューン
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レグイミューン, 国立大学法人 岡山大学 filed Critical 株式会社レグイミューン
Publication of WO2019107431A1 publication Critical patent/WO2019107431A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/51Umbilical cord; Umbilical cord blood; Umbilical stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a haplo transplantation enhancer that prevents the development of graft-versus-host disease while enhancing the anti-tumor effect of Leukocytes Antigen (HLA) semi-conforming (haplo) transplantation.
  • HLA Leukocytes Antigen
  • Allogeneic hematopoietic stem cell transplantation is useful as a treatment for hematologic diseases such as leukemia and other malignant hematologic cancer and aplastic anemia etc.
  • hematologic diseases such as leukemia and other malignant hematologic cancer and aplastic anemia etc.
  • donors compatible with human HLA type are found from relatives or unrelated bone marrow bank registrants.
  • transplantation of bone marrow cells or peripheral blood stem cells from a HLA-matched donor is desired, but in the case of blood cancer, there is insufficient graft versus leukemia (GVL) reaction to prevent recurrence Is the problem.
  • VTL graft versus leukemia
  • haplo transplantation is performed.
  • advantages of haplo transplantation are cancer recurrence prevention and remission induction by strong GVL effect, high survival failure and acute GVHD incidence are disadvantageous, and a method different from standard therapy is required.
  • liposomal ⁇ -GalCer liposomal ⁇ -GalCer
  • iNKT cells compared to ⁇ -GalCer in aqueous solution state. It has been reported that the effect on immune regulation is high (Non-patent documents 4 and 5), and when liposomal ⁇ -GalCer is administered during myeloablative bone marrow transplantation, Treg grows even when Full chimera is formed. It has been reported that GVHD is suppressed by doing this (Non-Patent Documents 6 to 9, Patent Document 2).
  • the liposome containing KRN7000 as ⁇ -GalCer has an induction action of IL-10 producing T cells which is not exerted by ⁇ -GalCer alone in aqueous solution and an action of suppressing IgE antibody production, and allergic diseases, autoimmune diseases and It is reported that it is also useful as a preventive or therapeutic agent for GVHD (Patent Document 1).
  • Patent Document 1 the effect of a liposome preparation containing ⁇ -galactosylceramide has not been studied in PTCy therapy after haplo transplantation.
  • An object of the present invention is to create a haplograft enhancer capable of preventing or developing graft vs. host disease while maintaining or enhancing the antitumor effect of haplograft.
  • the inventors of the present invention conducted intensive studies to solve the above problems and found that the combination of ⁇ -GalCer-containing liposome and cyclophosphamide is used to enhance the antitumor effect of haplodonor hematopoietic cell transplantation. Meanwhile, it was found that it is possible to prevent the onset of graft versus host disease. The present invention has been completed by further studies based on such findings.
  • Item 1 It is a haplo-graft enhancing agent used for a therapy for enhancing the anti-tumor effect on recipient cancer cells and for preventing graft-versus-host disease by transplanting haploido hematopoietic cells into the recipient, A haplo transplantation enhancer comprising a combination of a liposome containing ⁇ -galactosylceramide and cyclophosphamide.
  • a haplo transplantation enhancer comprising a combination of a liposome containing ⁇ -galactosylceramide and cyclophosphamide.
  • Item 2 The haplo-transplant enhancer according to item 1, wherein the haplo donor hematopoietic cells to be transplanted are hematopoietic cells derived from bone marrow, umbilical cord blood or peripheral blood.
  • Item 4. The haplo transplantation enhancer according to any one of Items 1 to 3, wherein the ⁇ -galactosylceramide is KRN7000.
  • Item 5. The haplo transplantation enhancer according to any one of Items 1 to 4, which is a two-drug form comprising a first preparation comprising a liposome containing ⁇ -galactosylceramide and a second preparation comprising cyclophosphamide.
  • a haplo-transplant-enhancing agent for use in a therapy that enhances anti-tumor activity and prevents graft-versus-host disease in cyclophosphamide therapy treated for a recipient transplanted with haplo donor hematopoietic cells Haplo transplantation enhancer comprising liposomalized ⁇ -GalCer.
  • Haplo transplantation enhancer comprising liposomalized ⁇ -GalCer.
  • a method for enhancing anti-tumor activity and preventing graft-versus-host disease in cyclophosphamide therapy to be treated for a recipient transplanted with haplo donor hematopoietic cells comprising the step of administering liposomalized ⁇ -galactosylceramide to a recipient who received cyclophosphamide after transplantation of haplo donor hematopoietic cells.
  • haplo transplantation enhancing agent of the present invention transplantation of haplo donor hematopoietic cells into a recipient enhances anti-tumor activity, and at the same time induces immune tolerance to the recipient cells, tissues and / or organs to the donor cells. Anti-tumor activity can be enhanced while preventing graft-versus-host disease.
  • the haplo transplantation enhancer of the present invention can facilitate the expansion of regulatory T cells in the recipient, which also contributes to the effective prevention of graft-versus-host disease. It is thought that
  • haplo transplantation enhancer of the present invention when used, immune tolerance can be effectively induced.
  • the dose of phosphamide can be reduced to enhance the anti-tumor effect while reducing the burden on the recipient.
  • Test Example 1 clophosfamide is administered to bone marrow transplanted mice (GVHD onset model mice), and the results of evaluating the survival rate for 100 days and the GVHD score for 70 days are shown.
  • Test Example 2 cyclophosphamide and / or KRN7000-containing liposomes are administered to bone marrow transplanted mice (GVHD onset model mice), and the results of evaluation of 100 day survival rate and GVHD score are shown.
  • Test Example 3 CD4 positive cells were isolated from spleen and mesenteric lymph nodes 14 days after bone marrow transplantation using bone marrow transplanted mice (GVHD onset model mice) administered with liposomes containing cyclophosphamide and KRN7000.
  • CD25 and Foxp3 The result of observing the expression of CD25 and Foxp3 is shown.
  • CD4 positive cells were isolated from spleen and mesenteric lymph nodes 28 days after bone marrow transplantation using bone marrow transplanted mice (GVHD onset model mice) administered with liposomes containing cyclophosphamide and KRN7000. The result of observing the expression of CD25 and Foxp3 is shown.
  • cyclophosphamide is administered to a mouse transplanted with bone marrow with a luciferase expression leukemia strain, and the results of evaluating the survival rate for 100 days and the distribution of the luciferase expression leukemia strain in the mouse body are shown.
  • Test Example 5 cyclophosphamide and / or KRN7000-containing liposomes are administered to mice transplanted with bone marrow together with a luciferase expression leukemia strain, and the results of evaluation of the survival rate for 100 days are shown.
  • the haplo transplantation enhancing agent of the present invention is used as a therapy for enhancing the antitumor effect on recipient cancer cells by transplanting haplo donor hematopoietic cells into the recipient and for preventing graft-versus-host disease.
  • the enhancer is characterized in that it comprises a liposome containing ⁇ -galactosylceramide, and cyclophosphamide.
  • the ⁇ -galactosylceramide ( ⁇ -GalCer) used in the present invention is a glycosphingolipid in which galactose and ceramide are linked by ⁇ coordination, and specifically, WO94 / 09020, WO94 / 02168, WO94 Examples thereof are disclosed in U.S. Pat. No. 4,824,142, WO 98/44928, Science, 278, p. 1626-1629, 1997 and the like.
  • KRN7000 that is, (2S, 3S, 4R) -1-O- ( ⁇ ) as ⁇ -GalCer, from the viewpoint of further improving the antitumor effect and the GVHD preventing effect on cancer cells of the recipient.
  • -D-Galactopyranosyl) -2-hexacosanoylamino-1,3,4-octadecanetriol is preferably used.
  • ⁇ -GalCer is used in the state of being contained in a liposome. That is, in the present invention, a liposome containing ⁇ -GalCer is used. Since the ceramide portion of ⁇ -GalCer exhibits lipid solubility, ⁇ -GalCer contained in the liposome usually has a structure in which ⁇ -GalCer is localized in the lipid bilayer membrane layer of the liposome.
  • the liposome containing ⁇ -GalCer may be referred to as liposomalized ⁇ -GalCer.
  • the KRN7000 containing liposome manufactured using KRN7000 as alpha-GalCer can be mentioned as a preferable example.
  • a KRN7000-containing liposome preparation RGI-2001 manufactured by Leguimune Co., Ltd.
  • RGI-2001 prepared by the same method as described in Biol Blood Marrow Transplant. 1-15 (2011) can be mentioned as a particularly preferable example.
  • the ratio of the lipid component of the liposome to the ⁇ -GalCer can be appropriately set by the person skilled in the art according to the application, and is not particularly limited.
  • 0.05 to 100 parts by weight, preferably 0.5 to 20 parts by weight of ⁇ -GalCer is exemplified per part.
  • the lipid used for the liposomal ⁇ -GalCer is not particularly limited as long as it can form a bilayer membrane structure.
  • Specific examples of liposome-constituting lipids include diacyl phosphatidyl cholines such as dipalmitoyl phosphatidyl choline (DPPC), dioleoylphosphatidyl choline (DOPC), dimyristoyl phosphatidyl choline (DMPC), and disteroyl phosphatidyl choline (DSPC); dipalmitoyl phosphatidyl glycerol (DPPG), dioleoylphosphatidyl glycerol (DOPG), dimyristoyl phosphatidyl glycerol (DMPG), diacyl phosphatidyl glycerols such as disteroyl phosphatidyl glycerol (DSPG); cholesterol, 3 ⁇ - [N-
  • the said liposome structure lipid may be used individually by 1 type, it is preferable to use in combination of 2 or more types.
  • Preferred examples of combinations of liposome-constituting lipids include a combination of diacylphosphatidylcholines, diacylphosphatidylglycerols and sterols, and a combination of diacylphosphatidylcholines and sterols; more preferably, DPPC, DOPC, DPPG, DPPG, DOPG, cholesterol and / or Or a combination with DC-Chol.
  • the blending ratio of each lipid is appropriately set in consideration of the size, fluidity, etc. required for the liposome.
  • DPPC DOPC: DPPG: cholesterol in a molar ratio of 1: 0.16 to 1.65: 0.16 to 1.0: 0.16 to 1.3, preferably 1: 0.4 to 0.75: 0.2 to 0.5: 0.3 to 0.75.
  • diacylphosphatidylcholines preferably DOPC
  • sterols preferably cholesterol and / or DC-Chol
  • the diacylphosphatidylcholines: sterols are in a molar ratio of 1: 1: 0.05 to 4, preferably 1: 0.1 to 1 can be mentioned.
  • the liposomalized ⁇ -GalCer may contain cationic compounds such as stearylamine and oleylamine; anionic compounds such as dicetyl phosphate; and membrane proteins, if necessary.
  • cationic compounds such as stearylamine and oleylamine
  • anionic compounds such as dicetyl phosphate
  • membrane proteins if necessary.
  • the blending ratio of these may be appropriately set. be able to.
  • the liposome size of the liposomal ⁇ -GalCer is not particularly limited, but the average particle size is usually 5 to 1000 nm, preferably 100 to 400 nm. The mean particle size of the liposomes is measured by dynamic light scattering. Further, the structure of liposomalized ⁇ -GalCer is also not particularly limited, and any of MLV (multilamellar vesicles), DRV (dehydration-rehydration vesicles), LUV (large umilamella vesicles) or SUV (small unilamellar vesicles) may be used. Good.
  • MLV multilamellar vesicles
  • DRV dehydration-rehydration vesicles
  • LUV large umilamella vesicles
  • SUV small unilamellar vesicles
  • Examples of the solution to be encapsulated in the liposomal ⁇ -GalCer include pharmaceutically acceptable aqueous carriers such as water, buffer and physiological saline.
  • Liposomeized ⁇ -GalCer is prepared by using known liposome production methods such as hydration method, sonication method, ethanol injection method, ether injection method, ether injection method, reverse phase evaporation method, surfactant method, freeze / thaw method Be done.
  • the particle size distribution of the liposome can be adjusted by passing through a filter of a predetermined pore size.
  • conversion of MLV to unilamellar liposome, or conversion of MLV to unilamellar liposome can also be performed according to a known method.
  • Cyclophosphamide In the haplo transplantation enhancer of the present invention, cyclophosphamide is used together with the liposomalized ⁇ -GalCer. Cyclophosphamide is a compound known as an antitumor agent classified as an alkylating agent and an immunosuppressant.
  • cyclophosphamide is used in combination with liposomal ⁇ -GalCer and cyclophosphamide to suppress survival failure after haplo transplantation and to prevent GVHD as well as liposomal alpha -It becomes possible to enhance anti-tumor action (GVL action etc.) while maintaining or enhancing the GVHD preventive effect by GalCer.
  • liposomalized ⁇ -GalCer and cyclophosphamide are usually administered separately, but in the case of coadministration, liposomalized ⁇ -GalCer and cyclophosphamide are in the same preparation. It may be contained, and may be contained in two different formulations.
  • haplo transplantation enhancing agent of the present invention includes liposomalized ⁇ -GalCer, and a one-part form haplo transplantation enhancing agent containing cyclophosphamide, and in another embodiment, liposomalized ⁇ -GalCer Examples include haplograft enhancers in a two-drug form consisting of a preparation containing GalCer and a preparation containing cyclophosphamide.
  • the dosage form of the haplo transplantation enhancer of the present invention can be appropriately set according to the administration form, and may be any dosage form such as liquid, powder, granule, tablet, capsule and the like.
  • the haplo transplantation enhancer of the present invention is a two-drug form
  • the preparation containing liposomal ⁇ -GalCer and the preparation containing cyclophosphamide may be the same dosage form or different dosage forms. It may be
  • the haplo-graft enhancing agent of the present invention comprises a pharmaceutically acceptable carrier, as required, in addition to liposomal ⁇ -GalCer and cyclophosphamide, and is prepared in a desired dosage form.
  • the pharmaceutically acceptable carrier examples include aqueous carriers such as distilled water, physiological saline, phosphate buffer, citrate buffer, acetate buffer and the like; sucrose, fructose, sucrose, glucose, lactose, mannitol, sorbitol Saccharides such as glycerin; polyhydric alcohols such as glycerin, propylene glycol and butylene glycol; nonionic surfactants, cationic surfactants, anionic surfactants, surfactants such as amphoteric surfactants; hydroxypropyl methylcellulose Cellulose derivatives such as hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl methyl cellulose phthalate, hydroxypropyl methyl cellulose acetate succinate, carboxymethyl ethyl cellulose; antioxidants; pH adjusters and the like.
  • aqueous carriers such as distilled water, physiological saline, phosphate buffer, citrate buffer, a
  • the haplo transplantation enhancer of the present invention is administered to a patient (recipient) who has been transplanted with haplo donor hematopoietic cells for the purpose of enhancing the antitumor action (GVL action and the like) while preventing GVHD.
  • Recipients to whom the haplograft enhancer of the present invention is administered suffer from hematopoietic diseases such as hematologic malignancies (eg, acute myeloid leukemia, chronic leukemia, malignant lymphoma, multiple myeloma, etc.), myelodysplastic syndrome, etc. And those who have transplanted haplodonor hematopoietic cells.
  • hematopoietic diseases such as hematologic malignancies (eg, acute myeloid leukemia, chronic leukemia, malignant lymphoma, multiple myeloma, etc.), myelodysplastic syndrome, etc.
  • haplodonor hematopoietic cells eg, acute myeloid leukemia, chronic leukemia, malignant lymphoma, multiple myeloma, etc.
  • the recipient is subjected to myeloablative treatment prior to transplantation of haplo donor hematopoietic cells, but preferably weight loss strength pretreatment is desirable.
  • the weight loss pretreatment is not particularly limited, and may be a combination of various anticancer agents and radiation.
  • the following two weight loss intensity pretreatments can be mentioned.
  • the first was intravenous injection of fludarabine (20 to 50 mg / m 2 ) 7 to 5 days prior to transplantation and cyclophosphamide (10 to 20 mg / kg) daily for 2 days before It is a treatment in which 100 to 400 cGy whole-body radiation of the day before transplantation is added to intravenous administration 1 to 3 times before and after 6 to 5 days before.
  • the second is the administration of flufarabine (20 to 50 mg / m 2 ) intravenously four times daily from 2 days to 5 days prior to transplantation with melfarfan (50 to 150 mg / m 2 ) It is a treatment that adds 150 to 400 cGy whole-body radiation the day before transplantation to a single intravenous administration in the period of 5 to 6 days before transplantation.
  • intravenous administration of fludarabine (30 mg / m 2 ) 5 days a day from 6 days to 2 days before transplantation and 2 days of veins of cyclophosphamide (14.5 mg / kg) 6 days before and 5 days before transplantation It is a treatment to which 200 cGy whole body irradiation of the day before transplantation is added to internal administration.
  • Intravenous administration of fludarabine 40 mg / m 2 ) 4 days daily from 5 days to 2 days before transplantation and melfarfan (100 mg / m 2 ) on the day 6 days before transplantation with a single intravenous administration 200 cGy the day before transplantation It is a treatment that adds whole body radiation.
  • donor hematopoietic cells refer to hematopoietic cells on the donor side to be transplanted to a recipient, which are stem cells capable of differentiating into hematologic cells.
  • the origin tissue of hematopoietic cells to be transplanted into the recipient is not particularly limited, and may be, for example, bone marrow, umbilical cord blood, or peripheral blood itself, or hematopoietic cells derived from bone marrow, umbilical cord blood, or peripheral blood It may be The hematopoietic cells to be transplanted into the recipient preferably include hematopoietic cells derived from bone marrow, umbilical cord blood or peripheral blood.
  • the amount of donor hematopoietic cells to be transplanted may be appropriately set according to the condition of the recipient, age, etc., but it is usually about 1 ⁇ 10 6 to 3 ⁇ 10 8 cells / kg.
  • Hematopoietic cells derived from peripheral blood are preadministered to donors with G-CSF to mobilize blood stem cells into peripheral blood.
  • CD34 positive cells are 4-5 ⁇ 10 6 cells / kg, at least 2 ⁇ 10 6
  • cells / kg or more are present.
  • the administration mode of the haplo transplantation enhancer of the present invention may be any of parenteral administration and oral administration. Specifically, intravenous administration, intramuscular administration, intraperitoneal administration, subcutaneous administration, intraarticular administration And mucosal administration. Among these administration forms, parenteral administration, particularly intravenous administration, is preferable from the viewpoint of further improving induction of immune tolerance.
  • administration targets of the haplo transplantation enhancer of the present invention include humans, monkeys, mice, rats, dogs, rabbits, cats, mammals such as cats, cattle, horses, and goats; and birds such as chickens and ostrich. Preferably it is a human.
  • the administration timing of the haplo transplantation enhancer of the present invention is not particularly limited as long as it is performed after haploid donor hematopoietic cell transplantation.
  • cyclophosphamide is preferably administered twice on the third and fourth day after transplantation of haploid donor hematopoietic cells.
  • liposomalized ⁇ -GalCer may be administered multiple times before reconstruction of donor bone marrow cells starts, and in animal studies, day 4 and day 9 of the day after transplantation of haplo donor hematopoietic cells (the day of final administration of cyclophosphamide) It is suggested that a total of 3 doses of eye and day 14 should be administered.
  • the dose of the haplo transplantation enhancer of the present invention may be appropriately set according to the degree of symptoms of the patient, age and the like.
  • cyclophosphamide is administered twice at a dose of 50 mg / kg or less per dose, but further reduced (for example, a dose of 25-40 mg / kg of cyclophosphamide per dose) It can be set.
  • the amount of liposomal ⁇ -GalCer may be about 1 to 100 ⁇ g / kg in terms of the amount of ⁇ -GalCer to be administered.
  • Drugs that can be used in combination with the haplo transplantation enhancer of the present invention are limited to immunosuppressants that do not adversely affect Treg in the body.
  • rapamycin and mycophenolate mofetil may be used after haplo-transplantation, but steroids and calicheurinulin inhibitors tacrolimus and cyclosporin can not be used.
  • the haplotransplant enhancer of the present invention may be practiced to reduce the relapse rate, which is a drawback, without losing the benefits of PTCy therapy.
  • the inclusion of liposomal ⁇ -GalCer as an active ingredient of the haplo transplantation enhancer having such a remarkable effect has not been described in any of the known non-patent documents, and it is easily possible even by those skilled in the art. I can not think.
  • Haplo transplantation enhancer (2) The strong haplo-graft agent of the present invention is used in a therapy that enhances anti-tumor activity and prevents graft-versus-host disease in cyclophosphamide therapy to be treated for recipients transplanted with haplo donor hematopoietic cells.
  • Haplo-graft enhancing agent characterized in that it comprises liposomalized ⁇ -GalCer.
  • the strong haplo-graft agent of the present invention contains liposomalized ⁇ -GalCer as an active ingredient, and in the therapy by administration of cyclophosphamide, which is performed after haplo-grafting, the antitumor effect (GVHD suppression effect is maintained) ( It is used to enhance GVL action etc.).
  • the type and composition of liposomalized ⁇ -GalCer as an active ingredient, formulation form, application subject, administration form, administration timing, dose and the like of liposomalized ⁇ -GalCer are described in “1. As described in the column "Haplo transplantation enhancer (1)”.
  • Test Example 1 The graft-versus-host disease (GVHD) inhibitory effect by cyclophosphamide (PTCy) administration after bone marrow transplantation
  • the mouse is a female B6 mouse (C57BL / 8 to 12 weeks old from (NSC)). 6JJmsSlc, H-2 b ), 8 weeks old (10 or 11 weeks old at transplantation) female BDF1 mice (C57BL / 6NCrScm female x DBA / 2CrSlc male, F1, H-2 b / d ) purchased did.
  • the mice were bred under the Specific Pathogen Free (SPF) environment at the Central Research Facility of Okayama University in accordance with the NIH animal management guidelines.
  • SPF Specific Pathogen Free
  • femurs and tibiae were harvested and bone marrow was washed out of the marrow cavity using a 21 gauge needle.
  • the bone marrow cells were suspended in 4% FCS (RPMI medium containing fetal bovine serum (4% FCS-RPMI) and passed through a 70 ⁇ m nylon mesh and centrifuged at 1800 rpm for 5 minutes. The supernatant was removed, and again, 1800 rpm, After centrifuging for 5 minutes and resuspending in 2% FCS-PBS to count the number of cells, bone marrow cells from which T cells have been removed (TCD-BM) are prepared using CD 90. 2 Micro Beads (Miltenyi).
  • the spleen was isolated from the same mouse and squeezed between 2 slide glasses, then the spleen cells were suspended with 4% FCS-RPMI, passed through a 70 ⁇ m nylon mesh, and further centrifuged at 1800 rpm for 5 minutes. The supernatant was removed, centrifuged again at 1800 rpm for 5 minutes, and the number of cells was counted
  • the cell suspension containing 5 ⁇ 10 6 TCD-BMs and 1 ⁇ 10 7 spleen cells suspended in 250 ⁇ L is a recipe Intravenous injection was performed from the tail vein of an enter BDF1 mouse to prepare a GVHD onset model mouse.
  • TBI Total body Irradiation 12 Gy (X-ray generator (MBR-1520R-3, Hitachi medical Corp), divided into recipient's BDF1 mice 6 times before bone marrow transplantation and twice before transplantation Then, three days after bone marrow transplantation, cyclophosphamide (Sigma Aidrich) was diluted in saline and administered intraperitoneally at a dose of 25 mg / kg or 50 mg / kg.
  • FIG. 1 shows the survival rate and GVHD (graft versus host disease) scores for 100 days after bone marrow transplantation.
  • Vehicle is a group to which only saline was administered
  • PTCy 25 mg / kg is a group to which cyclophosphamide was administered at a dose of 25 mg / kg
  • PTCy 50 mg / kg is 50 mg of cyclophosphamide. The group administered by the / kg dose is shown.
  • the GVHD score was calculated from the observation results according to the following criteria.
  • the GVHD score criteria were evaluated on a total of 7 points for the following 5 items.
  • Body weight change after transplantation 0.5 points: body weight change after transplantation is 95% or less and over 90% 1 point: body weight change after transplantation is 90% or less over 85% 1.5 points: body weight change after transplantation is 85% or less and over 75% 2 points: body weight change less than 75% after transplantation
  • the cyclophosphamide (PTCy) 25 mg / kg-administered group after bone marrow transplantation showed almost the same change in survival rate and GVHD score as the non-administered group.
  • PTCy 50 mg / kg group showed high survival rate and suppression of GVHD onset.
  • Test Example 2 Graft-versus-host disease (GVHD) suppressive effect by PTCy and RGI-2001 administration after bone marrow transplantation to a GVHD onset model mouse prepared under the same conditions as in Test Example 1 above, bone marrow transplantation with 25 mg / kg of bone marrow transplantation for 3 days Thereafter, it was intraperitoneally administered once, and 1 ⁇ g / kg of KRN7000-containing liposome (RGI-2001) was administered once a total of 3 times via tail vein after 3, 5 and 7 days of bone marrow transplantation.
  • the KRN7000-containing liposome contains 10% of KRN7000 in terms of lipid weight, and was prepared by the same method as in WO 2005/120574.
  • FIG. 2 shows the survival rate and GVHD score for 100 days after bone marrow transplantation.
  • "Allo NS + NS” is a group to which only saline was administered
  • “Allo NS + PTCy 50 mg / kg” is a group to which only cyclophosphamide was administered
  • “Allo ⁇ GC + NS” is a liposome containing KRN7000.
  • “Alo ⁇ GC + PTCy 50 mg / kg” represents a group administered with cyclophosphamide and KRN7000-containing liposomes.
  • Test Example 3 Increase effect of regulatory T cells by administration of PTCy and RGI-2001 after bone marrow transplantation
  • a GVHD onset model mouse is prepared under the same conditions as in Test Example 1 except that the radiation dose at the time of bone marrow transplantation is changed to 10 Gy. did.
  • PTCy 25 mg / kg was administered once intraperitoneally 3 days after bone marrow transplantation to the GVHD onset model mice prepared, and 1 ⁇ g / kg of KRN7000-containing liposome (RGI-2001) per bone marrow transplantation 3,5, And after 7 days, a total of 3 doses were given via the tail vein.
  • Spleen and mesenteric lymph nodes were collected 14 and 28 days after bone marrow transplantation of GVHD onset model mice.
  • 3 x 10 6 cells from the obtained cells are suspended in 100 ⁇ l of 2% FCS-PBS, and eFluor 450 labeled anti-CD4 antibody (eBioscience), APC eFluor 780 labeled anti CD8a antibody (eBioscience) and PE-Cy7 labeled anti CD25 antibody After addition of (eBioscience), the reaction was performed at 4 ° C. for 30 minutes. Furthermore, cells are fixed and permeabilized using FoxP3 staining kit (eBioscience, San Diego, CA, USA), and after intranuclear staining with APC labeled anti-FoxP3, measured by MACS Quant (Myltenyi), Flowjo ver .10 (Tomy Digital Biology).
  • NS + NS and PTCy ( ⁇ ), ⁇ GalCer ( ⁇ ) are groups to which only saline was administered, “PTCy + NS” and “PTCy 25 mg / kg, ⁇ GalCer ( ⁇ )”.
  • Group treated with cyclophosphamide only “NS + ⁇ GC” and “PTCy (-), ⁇ GalCer (+)” group treated with KRN7000 containing liposome only, "PTCy + ⁇ GC” and PTCy 25 mg / kg, ⁇ Gal Cer (+) Indicates a group to which cyclophosphamide and KRN7000-containing liposomes were administered.
  • Treg regulatory T cell
  • Test Example 4 Verification of graft-leukemia (GVL) effect by PTCy administration after bone marrow transplantation
  • the radiation dose at the time of bone marrow transplantation is changed to 8 Gy, and 5 ⁇ 10 5 luciferase expression leukemia strains (P815L) are simultaneously treated with bone marrow transplantation.
  • Tests were conducted under the same conditions as in Test Example 1 except that administration was performed from the tail vein (allo transplantation).
  • tests were performed under the same conditions as described above except that syngeneic transplantation was performed using BDF1 mice as donor mice and recipient mice (syn transplantation).
  • the distribution of P815L cells in the mouse body was measured by luminescence imaging of luciferase protein with an electron multiplying CCD (Electron Multiplying-CCD: EM-CCD) camera.
  • CCD Electrode Multiplying-CCD
  • Test Example 5 Graft vs. leukemia (GVL) effect by co-administration of PTCy and RGI-2001 after bone marrow transplantation PTCy 25 mg / kg once in the same experimental system as in Test Example 4 (3 days after bone marrow transplantation) peritoneal cavity
  • 1 ⁇ g / kg of KRN7000-containing liposome (RGI-2001) was administered 3 times (3, 5 and 7 days after bone marrow transplantation) from the tail vein.

Abstract

The purpose of the present invention is to provide a haploidentical transplantation enhancer capable of maintaining or enhancing an antitumor effect of haploidentical transplantation and at the same time preventing the onset of graft-versus-host disease. The onset of graft-versus-host disease can be prevented while enhancing the antitumor effect of haploidentical donor hematopoietic cell transplantation by using liposomes containing α-galactosylceramide in combination with cyclophosphamide.

Description

ハプロ移植増強剤Haplo transplantation enhancer
 本発明は、Leukocytes Antigen (HLA)半合致(ハプロ)移植による抗腫瘍作用を増強しつつ、移植片対宿主病の発症を予防するハプロ移植増強剤に関する。 The present invention relates to a haplo transplantation enhancer that prevents the development of graft-versus-host disease while enhancing the anti-tumor effect of Leukocytes Antigen (HLA) semi-conforming (haplo) transplantation.
 同種造血幹細胞移植は、白血病等の悪性血液癌や再生不良性貧血等の血液疾患の治療法として有用であるが、ヒトHLAの型が適合したドナーを血縁者か非血縁骨髄バンク登録者から見つける必要がある。理想的にはHLA完全適合ドナーの骨髄細胞または末梢血幹細胞の移植が望まれるが、血液癌の場合には再発を予防する移植片対白血病(Graft versus leukemia; GVL)反応が不十分であることが問題である。この問題を解決する一つの方法は、HLA一座不適合ドナーの造血幹細胞を移植してGVL効果を高めることであるが、同時に移植片対宿主病(Graft versus host disease; GVHD)を引き起こすリスクが高まるため、その予防としてカルシニューリン阻害薬(タクロリムスやシクロスポリン)とメソトレキセートを併用する標準療法が施される。 Allogeneic hematopoietic stem cell transplantation is useful as a treatment for hematologic diseases such as leukemia and other malignant hematologic cancer and aplastic anemia etc. However, donors compatible with human HLA type are found from relatives or unrelated bone marrow bank registrants. There is a need. Ideally, transplantation of bone marrow cells or peripheral blood stem cells from a HLA-matched donor is desired, but in the case of blood cancer, there is insufficient graft versus leukemia (GVL) reaction to prevent recurrence Is the problem. One way to solve this problem is to transplant hematopoietic stem cells from HLA single-locus mismatched donors to enhance GVL effect, but at the same time increase the risk of causing graft versus host disease (GVHD). As the prevention, the standard therapy which combines a calcineurin inhibitor (tacrolimus and cyclosporin) and methotrexate is given.
 一方、HLA適合ドナーが見つからない場合や移植後寛解に到達しなかった場合には、HLA半合致(ハプロ)移植が実施される。ハプロ移植の利点は強力なGVL効果によるがん再発予防と寛解誘導であるが、高い生着不全と急性GVHD発症率が欠点であり、標準療法とは異なる方法が求められている。 On the other hand, if no HLA-matched donor is found or remission is not achieved after transplantation, HLA half-match (haplo) transplantation is performed. Although the advantages of haplo transplantation are cancer recurrence prevention and remission induction by strong GVL effect, high survival failure and acute GVHD incidence are disadvantageous, and a method different from standard therapy is required.
 近年、ハプロ移植のGVL効果を維持しつつGVHDを予防する方法として、移植後シクロフォスファミド(PTCy)療法が注目されている。シクロフォスファミドの免疫抑制作用は、BerenbaumらがMHC不適合の皮膚移植後の投与で報告している(非特許文献1)。その後、Etoらによって、PTCyの作用機序がアロ応答性T細胞の選択的傷害活性によることが明らかにされている(非特許文献2)。また、ハプロ移植の臨床応用では、Luznikらが報告した方法が現行のPTCy療法の原点だと言われている(非特許文献3)。 In recent years, post-transplant cyclophosphamide (PTCy) therapy has attracted attention as a method for preventing GVHD while maintaining the GVL effect of haplo transplantation. The immunosuppressive action of cyclophosphamide has been reported by Berenbaum et al. After administration of MHC mismatched skin grafts (Non-patent Document 1). Subsequently, Eto et al. Revealed that the mechanism of action of PTCy is due to the selective cytotoxic activity of alloresponsive T cells (Non-patent Document 2). Also, in the clinical application of haplo transplantation, it is said that the method reported by Luznik et al. Is the starting point of the current PTCy therapy (Non-patent Document 3).
 LuznikらのPTCy療法によってハプロ移植後の生着不全とGVHDがかなり解消された一方で、ハプロ移植の利点であったGVL効果が低下し、がんの再発率が上昇していることが新たな問題となっている。 While PTCy therapy by Luznik et al. Has substantially resolved engraftment failure and GVHD after haplo transplantation, the GVL effect, which is an advantage of haplo transplantation, is reduced, and the recurrence rate of cancer is rising. It is a problem.
 一方、本発明者を含むグループは、リポソーム化されたα-GalCer(liposomal α-GalCer)が抗原提示細胞のCD1dを介してiNKT細胞に提示されることで、水溶液状のα-GalCerと比べて免疫制御に関する作用が高いことを報告しており(非特許文献4及び5)、また、骨髄破壊的骨髄移植の際にリポソーム化α-GalCerを投与すると、Full chimeraが形成されてもTregが増殖することでGVHDが抑制されることを報告している(非特許文献6~9、特許文献2)。更に、α-GalCerとしてKRN7000を含有するリポソームは、水溶液状のα-GalCer単独では発揮されないIL-10産生T細胞の誘導作用とIgE抗体産生抑制作用を有し、アレルギー性疾患、自己免疫疾患およびGVHDの予防ないし治療剤としても有用であることを報告している(特許文献1)。しかしながら、従来、ハプロ移植後のPTCy療法において、α-ガラクトシルセラミドを含むリポソーム製剤が及ぼす影響については検討されていない。 On the other hand, in the group including the present inventors, liposomal α-GalCer (liposomal α-GalCer) is presented to iNKT cells via CD1d of antigen-presenting cells, compared to α-GalCer in aqueous solution state. It has been reported that the effect on immune regulation is high (Non-patent documents 4 and 5), and when liposomal α-GalCer is administered during myeloablative bone marrow transplantation, Treg grows even when Full chimera is formed. It has been reported that GVHD is suppressed by doing this (Non-Patent Documents 6 to 9, Patent Document 2). Furthermore, the liposome containing KRN7000 as α-GalCer has an induction action of IL-10 producing T cells which is not exerted by α-GalCer alone in aqueous solution and an action of suppressing IgE antibody production, and allergic diseases, autoimmune diseases and It is reported that it is also useful as a preventive or therapeutic agent for GVHD (Patent Document 1). However, hitherto, the effect of a liposome preparation containing α-galactosylceramide has not been studied in PTCy therapy after haplo transplantation.
国際公開第2005/120574号パンフレットWO 2005/120574 pamphlet 国際公開第2014/696554号パンフレットWO 2014/696554 brochure
 本発明の目的は、ハプロ移植による抗腫瘍効果を維持又は増強すると同時に、移植片対宿主病の発症を予防することができるハプロ移植増強剤を創出することである。 An object of the present invention is to create a haplograft enhancer capable of preventing or developing graft vs. host disease while maintaining or enhancing the antitumor effect of haplograft.
 本発明者らは、上記課題を解決すべく鋭意検討を行ったところ、α-GalCerを含有するリポソームとシクロフォスファミドを組み合わせて使用することによって、ハプロドナー造血細胞移植による抗腫瘍効果を増強しつつ、移植片対宿主病の発症予防が可能になることを見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。 The inventors of the present invention conducted intensive studies to solve the above problems and found that the combination of α-GalCer-containing liposome and cyclophosphamide is used to enhance the antitumor effect of haplodonor hematopoietic cell transplantation. Meanwhile, it was found that it is possible to prevent the onset of graft versus host disease. The present invention has been completed by further studies based on such findings.
 即ち、本発明は、以下に掲げる態様の発明を提供する。
項1. ハプロドナー造血細胞をレシピエントに移植することにより、レシピエントの癌細胞への抗腫瘍作用を増強し且つ、移植片対宿主病を予防する療法に用いられるハプロ移植増強剤であって、
 α-ガラクトシルセラミドを含有するリポソーム、及びシクロフォスファミドを組み合わせてなる、ハプロ移植増強剤。
項2. 移植されるハプロドナー造血細胞が、骨髄、臍帯血又は末梢血由来の造血細胞である、項1に記載のハプロ移植増強剤。
項3. 移植されるハプロドナー造血細胞が、骨髄である、項1又は2に記載のハプロ移植増強剤。
項4. α-ガラクトシルセラミドがKRN7000である、項1~3のいずれかに記載のハプロ移植増強剤。
項5. α-ガラクトシルセラミドを含有するリポソームを含む第1製剤と、シクロフォスファミドを含む第2製剤とを含む2剤形態である、項1~4のいずれかに記載のハプロ移植増強剤。
項6. ハプロドナー造血細胞をレシピエントに移植することにより、レシピエントの癌細胞への抗腫瘍作用を増強し且つ、移植片対宿主病を予防する療法に用いられるハプロ移植増強剤の製造のための、α-ガラクトシルセラミドを含有するリポソーム、及びシクロフォスファミドの使用。
項7. ハプロドナー造血細胞を移植したレシピエントの癌細胞への抗腫瘍作用を増強し、且つ移植片対宿主病を予防する方法であって、
 ハプロドナー造血細胞を移植したレシピエントに、α-ガラクトシルセラミドを含有するリポソーム、及びシクロフォスファミドを投与する工程を含む、方法。
項8. ハプロドナー造血細胞を移植したレシピエントに対して処置されるシクロフォスファミド療法において、抗腫瘍作用を増強し、且つ、移植片対宿主病を予防する療法に用いられるハプロ移植増強剤であって、
 リポソーム化α-GalCerを含む、ハプロ移植増強剤。
項9. ハプロドナー造血細胞を移植したレシピエントに対して処置されるシクロフォスファミド療法において、抗腫瘍作用を増強し、且つ、移植片対宿主病を予防する療法に用いられるハプロ移植増強剤の製造のための、リポソーム化α-ガラクトシルセラミドの使用。
項10. ハプロドナー造血細胞を移植したレシピエントに対して処置されるシクロフォスファミド療法において、抗腫瘍作用を増強し、且つ移植片対宿主病を予防する方法であって、
 ハプロドナー造血細胞の移植後にシクロフォスファミドを投与したレシピエントに対して、リポソーム化α-ガラクトシルセラミドを投与する工程を含む、方法。
That is, the present invention provides the invention of the aspects listed below.
Item 1. It is a haplo-graft enhancing agent used for a therapy for enhancing the anti-tumor effect on recipient cancer cells and for preventing graft-versus-host disease by transplanting haploido hematopoietic cells into the recipient,
A haplo transplantation enhancer comprising a combination of a liposome containing α-galactosylceramide and cyclophosphamide.
Item 2. The haplo-transplant enhancer according to item 1, wherein the haplo donor hematopoietic cells to be transplanted are hematopoietic cells derived from bone marrow, umbilical cord blood or peripheral blood.
Item 3. The haplo transplantation enhancing agent according to Item 1 or 2, wherein the haplo donor hematopoietic cells to be transplanted are bone marrow.
Item 4. The haplo transplantation enhancer according to any one of Items 1 to 3, wherein the α-galactosylceramide is KRN7000.
Item 5. The haplo transplantation enhancer according to any one of Items 1 to 4, which is a two-drug form comprising a first preparation comprising a liposome containing α-galactosylceramide and a second preparation comprising cyclophosphamide.
Item 6. Transplanting haplodonor hematopoietic cells into a recipient to enhance the anti-tumor effect on recipient cancer cells and to produce a haplograft enhancer for use in therapy to prevent graft-versus-host disease Use of liposomes containing galactosylceramide and cyclophosphamide.
Item 7. A method for enhancing the antitumor effect on recipient cancer cells transplanted with haplo donor hematopoietic cells and preventing graft-versus-host disease,
Administering a liposome containing α-galactosylceramide and cyclophosphamide to a recipient transplanted with haplo donor hematopoietic cells.
Item 8. A haplo-transplant-enhancing agent for use in a therapy that enhances anti-tumor activity and prevents graft-versus-host disease in cyclophosphamide therapy treated for a recipient transplanted with haplo donor hematopoietic cells,
Haplo transplantation enhancer comprising liposomalized α-GalCer.
Item 9. In the cyclophosphamide therapy to be treated for recipients transplanted with haplo donor hematopoietic cells, for the production of haplo transplantation enhancing agent to be used as a therapy for enhancing the antitumor effect and preventing graft-versus-host disease Use of Liposomal α-Galactosylceramide.
Item 10. A method for enhancing anti-tumor activity and preventing graft-versus-host disease in cyclophosphamide therapy to be treated for a recipient transplanted with haplo donor hematopoietic cells,
A method comprising the step of administering liposomalized α-galactosylceramide to a recipient who received cyclophosphamide after transplantation of haplo donor hematopoietic cells.
 本発明のハプロ移植増強剤によれば、ハプロドナー造血細胞をレシピエントに移植することにより、抗腫瘍作用が増強され、同時にレシピエント細胞、組織及び/又は臓器に対する免疫寛容をドナー細胞に誘導する療法において、移植片対宿主病を予防しつつ、抗腫瘍作用を増強することができる。また、本発明のハプロ移植増強剤は、レシピエント体内で、制御性T細胞を増殖し易くすることができ、このことも、移植片対宿主病を効果的に
予防していることに寄与していると考えられる。
According to the haplo transplantation enhancing agent of the present invention, transplantation of haplo donor hematopoietic cells into a recipient enhances anti-tumor activity, and at the same time induces immune tolerance to the recipient cells, tissues and / or organs to the donor cells. Anti-tumor activity can be enhanced while preventing graft-versus-host disease. In addition, the haplo transplantation enhancer of the present invention can facilitate the expansion of regulatory T cells in the recipient, which also contributes to the effective prevention of graft-versus-host disease. It is thought that
 更に、従来ハプロ移植後にシクロフォスファミドを投与する治療法では、癌の再発が問題であったが、本発明のハプロ移植増強剤を使用する場合、効果的に免疫寛容を誘導できるので、シクロフォスファミドの投与量を低下させて、レシピエントの負担の軽減しながら抗腫瘍作用を増強できる。 Furthermore, although treatment with cyclophosphamide conventionally administered after haplo transplantation has had a problem with cancer recurrence, when the haplo transplantation enhancer of the present invention is used, immune tolerance can be effectively induced. The dose of phosphamide can be reduced to enhance the anti-tumor effect while reducing the burden on the recipient.
試験例1において、骨髄移植マウス(GVHD発症モデルマウス)にクロフォスファミドを投与し、100日間の生存率と70日間のGVHDスコアを評価した結果を示す。In Test Example 1, clophosfamide is administered to bone marrow transplanted mice (GVHD onset model mice), and the results of evaluating the survival rate for 100 days and the GVHD score for 70 days are shown. 試験例2において、骨髄移植マウス(GVHD発症モデルマウス)にシクロフォスファミド及び/又はKRN7000含有リポソームを投与し、100日間の生存率とGVHDスコアを評価した結果を示す。In Test Example 2, cyclophosphamide and / or KRN7000-containing liposomes are administered to bone marrow transplanted mice (GVHD onset model mice), and the results of evaluation of 100 day survival rate and GVHD score are shown. 試験例3において、シクロフォスファミド及びKRN7000含有リポソームを投与した骨髄移植マウス(GVHD発症モデルマウス)を用いて、骨髄移植から14日後に脾臓と腸間膜リンパ節からCD4陽性細胞を単離し、CD25とFoxp3の発現を観察した結果を示す。In Test Example 3, CD4 positive cells were isolated from spleen and mesenteric lymph nodes 14 days after bone marrow transplantation using bone marrow transplanted mice (GVHD onset model mice) administered with liposomes containing cyclophosphamide and KRN7000. The result of observing the expression of CD25 and Foxp3 is shown. 試験例3において、シクロフォスファミド及びKRN7000含有リポソームを投与した骨髄移植マウス(GVHD発症モデルマウス)を用いて、骨髄移植から28日後に脾臓と腸間膜リンパ節からCD4陽性細胞を単離し、CD25とFoxp3の発現を観察した結果を示す。In Test Example 3, CD4 positive cells were isolated from spleen and mesenteric lymph nodes 28 days after bone marrow transplantation using bone marrow transplanted mice (GVHD onset model mice) administered with liposomes containing cyclophosphamide and KRN7000. The result of observing the expression of CD25 and Foxp3 is shown. 試験例4において、ルシフェラーゼ発現白血病株と共に骨髄を移植したマウスにシクロフォスファミドを投与し、100日間の生存率と、マウス体内でのルシフェラーゼ発現白血病株の分布を評価した結果を示す。In Test Example 4, cyclophosphamide is administered to a mouse transplanted with bone marrow with a luciferase expression leukemia strain, and the results of evaluating the survival rate for 100 days and the distribution of the luciferase expression leukemia strain in the mouse body are shown. 試験例5において、ルシフェラーゼ発現白血病株と共に骨髄を移植したマウスにシクロフォスファミド及び/又はKRN7000含有リポソームを投与し、100日間の生存率を評価した結果を示す。In Test Example 5, cyclophosphamide and / or KRN7000-containing liposomes are administered to mice transplanted with bone marrow together with a luciferase expression leukemia strain, and the results of evaluation of the survival rate for 100 days are shown.
1.ハプロ移植増強剤(1)
 本発明のハプロ移植増強剤は、ハプロドナー造血細胞をレシピエントに移植することにより、レシピエントの癌細胞への抗腫瘍作用を増強し且つ、移植片対宿主病を予防する療法に用いられるハプロ移植増強剤であって、α-ガラクトシルセラミドを含有するリポソーム、及びシクロフォスファミドを含むことを特徴とする。以下、本発明について詳細に説明する。
1. Haplo transplantation enhancer (1)
The haplo transplantation enhancing agent of the present invention is used as a therapy for enhancing the antitumor effect on recipient cancer cells by transplanting haplo donor hematopoietic cells into the recipient and for preventing graft-versus-host disease. The enhancer is characterized in that it comprises a liposome containing α-galactosylceramide, and cyclophosphamide. Hereinafter, the present invention will be described in detail.
[α-ガラクトシルセラミドを含有するリポソーム]
 本発明に使用されるα-ガラクトシルセラミド(α-GalCer)とは、ガラクトースとセラミドとがα配位にて結合したスフィンゴ糖脂質であり、具体的には、WO94/09020、WO94/02168、WO94/24142、WO98/44928、Science, 278, p.1626-1629, 1997等に開示されているものを挙げることができる。本発明では、レシピエントの癌細胞に対する抗腫瘍効果及びGVHD予防効果をより一層向上させるとの観点から、α-GalCerとして、所謂KRN7000、即ち(2S,3S,4R)-1-O-(α-D-ガラクトピラノシル)-2-ヘキサコサノイルアミノ-1,3,4-オクタデカントリオールが好適に使用される。
[Liposome containing α-galactosylceramide]
The α-galactosylceramide (α-GalCer) used in the present invention is a glycosphingolipid in which galactose and ceramide are linked by α coordination, and specifically, WO94 / 09020, WO94 / 02168, WO94 Examples thereof are disclosed in U.S. Pat. No. 4,824,142, WO 98/44928, Science, 278, p. 1626-1629, 1997 and the like. In the present invention, so-called KRN7000, that is, (2S, 3S, 4R) -1-O- (α) as α-GalCer, from the viewpoint of further improving the antitumor effect and the GVHD preventing effect on cancer cells of the recipient. -D-Galactopyranosyl) -2-hexacosanoylamino-1,3,4-octadecanetriol is preferably used.
 本発明において、α-GalCerはリポソームに包含された状態で使用される。即ち、本発明では、α-GalCerを含有するリポソームを使用する。α-GalCerのセラミド部分は脂溶性を示すため、リポソームに包含されたα-GalCerは、通常、リポソームの脂質二重膜層にα-GalCerが局在化した構造になる。以下、α-GalCerを含有するリポソームについて、リポソーム化α-GalCerと表記することもある。 In the present invention, α-GalCer is used in the state of being contained in a liposome. That is, in the present invention, a liposome containing α-GalCer is used. Since the ceramide portion of α-GalCer exhibits lipid solubility, α-GalCer contained in the liposome usually has a structure in which α-GalCer is localized in the lipid bilayer membrane layer of the liposome. Hereinafter, the liposome containing α-GalCer may be referred to as liposomalized α-GalCer.
 本発明に使用されるリポソーム化α-GalCerとしては、α-GalCerとしてKRN7000を使用して製造されたKRN7000含有リポソームを好ましい例として挙げることができる。またBiol Blood Marrow Transplant. 1-15 (2011)に記載の方法と同様の方法で調製した、KRN7000含有リポソーム製剤であるRGI-2001(株式会社レグイミューン製)を特に好ましい例として挙げることができる。 As a liposomal-ized alpha-GalCer used for this invention, the KRN7000 containing liposome manufactured using KRN7000 as alpha-GalCer can be mentioned as a preferable example. In addition, a KRN7000-containing liposome preparation RGI-2001 (manufactured by Leguimune Co., Ltd.) prepared by the same method as described in Biol Blood Marrow Transplant. 1-15 (2011) can be mentioned as a particularly preferable example.
 リポソーム化α-GalCerにおいて、リポソームの構成脂質とα-GalCerの比率については、当業者であれば用途に応じて適宜設定することができ、特に制限されないが、例えば、リポソーム構成脂質の総量100重量部当たり、α-GalCerが0.05~100重量部、好ましくは0.5~20重量部が例示される。 In the liposomal α-GalCer, the ratio of the lipid component of the liposome to the α-GalCer can be appropriately set by the person skilled in the art according to the application, and is not particularly limited. For example, 0.05 to 100 parts by weight, preferably 0.5 to 20 parts by weight of α-GalCer is exemplified per part.
 リポソーム化α-GalCerに使用される脂質(リポソーム構成脂質)は、二重膜構造を形成可能であることを限度として、特に制限されない。リポソーム構成脂質としては、具体的には、ジパルミトイルホスファチジルコリン(DPPC)、ジオレオイルホスファチジルコリン(DOPC)、ジミリストイルホスファチジルコリン(DMPC)、ジステロイルホスファチジルコリン(DSPC)等のジアシルホスファチジルコリン類;ジパルミトイルホスファチジルグリセロール(DPPG)、ジオレオイルホスファチジルグリセロール(DOPG)、ジミリストイルホスファチジルグリセロール(DMPG)、ジステロイルホスファチジルグリセロール(DSPG)等のジアシルホスファチジルグリセロール類;コレステロール、3β-[N-(ジメチルアミノエタン)カルバモイル]コレステロール(DC-Chol)、N-(トリメチルアンモニオエチル)カルバモイルコレステロール(TC-Chol)、トコフェロール、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロール、チモステロール、エルゴステロール、スチグマステロール、シトステロール、カンペステロール、ブラシカステロール等のステロール類;ジオレオイルホスファチジルエタノールアミン(DOPE)、ジステロイルホスファチジルエタノールアミン(DSPE)、ポリエチレングリコールホスファチジルエタノールアミン(PEG-PE)等のホスファチジルエタノールアミン類;ジミリストイルホスファチジン酸等のホスファチジン類;ガングリオシドGM1等のガングリオシド類;ポリエチレングリコールパルミテート、ポリエチレングリコールミリスチレート等のポリエチレングリコール脂肪酸エステル類等が挙げられる。 The lipid used for the liposomal α-GalCer (liposome-constituting lipid) is not particularly limited as long as it can form a bilayer membrane structure. Specific examples of liposome-constituting lipids include diacyl phosphatidyl cholines such as dipalmitoyl phosphatidyl choline (DPPC), dioleoylphosphatidyl choline (DOPC), dimyristoyl phosphatidyl choline (DMPC), and disteroyl phosphatidyl choline (DSPC); dipalmitoyl phosphatidyl glycerol (DPPG), dioleoylphosphatidyl glycerol (DOPG), dimyristoyl phosphatidyl glycerol (DMPG), diacyl phosphatidyl glycerols such as disteroyl phosphatidyl glycerol (DSPG); cholesterol, 3β- [N- (dimethylaminoethane) carbamoyl] Cholesterol (DC-Chol), N- (trimethylammonioethyl) carbamoyl cholesterol (TC-Chol), tocopherol, cholesterol succinate, rano Sterols such as sterols, dihydrolanosterol, desmosterol, dihydrocholesterol, timosterol, ergosterol, stigmasterol, sitosterol, campesterol, brashicosterol; dioleoylphosphatidylethanolamine (DOPE), disteroylphosphatidylethanolamine ( DSPE), phosphatidyl ethanolamines such as polyethylene glycol phosphatidyl ethanolamine (PEG-PE); phosphatidines such as dimyristoyl phosphatidic acid; gangliosides such as ganglioside GM1; polyethylene glycols such as polyethylene glycol palmitate and polyethylene glycol myristylate Fatty acid esters and the like can be mentioned.
 上記リポソーム構成脂質は、一種単独で使用してもよいが、二種以上を組み合わせて使用することが好ましい。リポソーム構成脂質の組み合わせの好適な例として、ジアシルホスファチジルコリン類とジアシルホスファチジルグリセロール類とステロール類の組み合わせ、並びにジアシルホスファチジルコリン類とステロール類の組み合わせ;更に好ましくは、DPPCとDOPCとDPPGとDOPGとコレステロール及び/又はDC-Cholとの組み合わせが挙げられる。 Although the said liposome structure lipid may be used individually by 1 type, it is preferable to use in combination of 2 or more types. Preferred examples of combinations of liposome-constituting lipids include a combination of diacylphosphatidylcholines, diacylphosphatidylglycerols and sterols, and a combination of diacylphosphatidylcholines and sterols; more preferably, DPPC, DOPC, DPPG, DPPG, DOPG, cholesterol and / or Or a combination with DC-Chol.
 2種以上のリポソーム構成脂質を組み合わせて使用する場合、各脂質の配合比率については、リポソームに必要とされる大きさや流動性等を考慮に入れて適宜設定される。例えば、ジアシルホスファチジルコリン類とジアシルホスファチジルグリセロール類とステロール類との組み合わせを採用する場合であれば、ジアシルホスファチジルコリン類:ジアシルホスファチジルグリセロール類:ステロール類が、モル比で1:0.125~0.75:0.125~1、好ましくは1:0.14~0.4:0.14~0.6が挙げられる。また、例えば、DPPCとDOPCとDPPGとコレステロールとの組み合わせを採用する場合であれば、DPPC:DOPC:DPPG:コレステロールが、モル比で1:0.16~1.65:0.16~1.0:0.16~1.3、好ましくは1:0.4~0.75:0.2~0.5:0.3~0.75が挙げられる。また、例えば、ジアシルホスファチジルコリン類(好ましくはDOPC)とステロール類(好ましくはコレステロール及び/又はDC-Chol)との組み合わせを採用する場合であれば、ジアシルホスファチジルコリン類:ステロール類が、モル比で1:0.05~4、好ましくは1:0.1~1が挙げられる。 When two or more types of liposome-constituting lipids are used in combination, the blending ratio of each lipid is appropriately set in consideration of the size, fluidity, etc. required for the liposome. For example, when a combination of diacylphosphatidylcholines, diacylphosphatidylglycerols and sterols is employed, the diacylphosphatidylcholines: diacylphosphatidyl glycerols: sterols in a molar ratio of 1: 0.125 to 0.75: 0.125-1, Preferably, 1: 0.14 to 0.4: 0.14 to 0.6 can be mentioned. Further, for example, in the case of employing a combination of DPPC, DOPC, DPPG and cholesterol, DPPC: DOPC: DPPG: cholesterol in a molar ratio of 1: 0.16 to 1.65: 0.16 to 1.0: 0.16 to 1.3, preferably 1: 0.4 to 0.75: 0.2 to 0.5: 0.3 to 0.75. Also, for example, in the case of employing a combination of diacylphosphatidylcholines (preferably DOPC) and sterols (preferably cholesterol and / or DC-Chol), the diacylphosphatidylcholines: sterols are in a molar ratio of 1: 1: 0.05 to 4, preferably 1: 0.1 to 1 can be mentioned.
 リポソーム化α-GalCerには、必要に応じて、ステアリルアミン、オレイルアミン等のカチオン性化合物;ジセチルホスフェート等のアニオン性化合物;膜タンパク質を含有させてもよく、これらの配合比率については適宜設定することができる。 The liposomalized α-GalCer may contain cationic compounds such as stearylamine and oleylamine; anionic compounds such as dicetyl phosphate; and membrane proteins, if necessary. The blending ratio of these may be appropriately set. be able to.
 リポソーム化α-GalCerのリポソームサイズについては、特に制限されないが、通常は平均粒径が5~1000nm、好ましくは100~400nmが挙げられる。リポソームの平均粒径は、動的光散乱法により測定される。また、リポソーム化α-GalCerの構造についても特に制限されず、MLV(multilamellar vesicles)、DRV(dehydration-rehydration vesicles)、LUV(large umilamellar vesicles)、又はSUV(small unilamellar vesicles)のいずれであってもよい。 The liposome size of the liposomal α-GalCer is not particularly limited, but the average particle size is usually 5 to 1000 nm, preferably 100 to 400 nm. The mean particle size of the liposomes is measured by dynamic light scattering. Further, the structure of liposomalized α-GalCer is also not particularly limited, and any of MLV (multilamellar vesicles), DRV (dehydration-rehydration vesicles), LUV (large umilamella vesicles) or SUV (small unilamellar vesicles) may be used. Good.
 リポソーム化α-GalCerに内包される溶液としては、水、緩衝液、生理食塩水等の薬学的に許容される水性担体が挙げられる。 Examples of the solution to be encapsulated in the liposomal α-GalCer include pharmaceutically acceptable aqueous carriers such as water, buffer and physiological saline.
 リポソーム化α-GalCerは、水和法、超音波処理法、エタノール注入法、エーテル注入法、逆相蒸発法、界面活性剤法、凍結・融解法等の公知のリポソームの製造方法を用いて作製される。また、所定のポアサイズのフィルターを通過させることにより、リポソームの粒度分布を調整することができる。また、公知の方法に従って、MLVから一枚膜リポソームへの転換、一枚膜リポソームからMLVの転換を行うこともできる。 Liposomeized α-GalCer is prepared by using known liposome production methods such as hydration method, sonication method, ethanol injection method, ether injection method, ether injection method, reverse phase evaporation method, surfactant method, freeze / thaw method Be done. In addition, the particle size distribution of the liposome can be adjusted by passing through a filter of a predetermined pore size. In addition, conversion of MLV to unilamellar liposome, or conversion of MLV to unilamellar liposome can also be performed according to a known method.
[シクロフォスファミド]
 本発明のハプロ移植増強剤では、前記リポソーム化α-GalCerと共に、シクロフォスファミドを使用する。シクロフォスファミドは、アルキル化剤に分類される抗腫瘍剤、免疫抑制剤として公知の化合物である。
[Cyclophosphamide]
In the haplo transplantation enhancer of the present invention, cyclophosphamide is used together with the liposomalized α-GalCer. Cyclophosphamide is a compound known as an antitumor agent classified as an alkylating agent and an immunosuppressant.
 本発明のハプロ移植増強剤では、リポソーム化α-GalCerとシクロフォスファミドを併用することにより、シクロフォスファミドによってハプロ移植後の生着不全を抑制し、GVHDを予防すると共に、リポソーム化α-GalCerによってGVHD予防効果を維持又は増強しつつ抗腫瘍作用(GVL作用等)を増強することが可能になる。 In the haplo transplantation enhancing agent of the present invention, cyclophosphamide is used in combination with liposomal α-GalCer and cyclophosphamide to suppress survival failure after haplo transplantation and to prevent GVHD as well as liposomal alpha -It becomes possible to enhance anti-tumor action (GVL action etc.) while maintaining or enhancing the GVHD preventive effect by GalCer.
[製剤形態]
 本発明のハプロ移植増強剤において、通常、リポソーム化α-GalCerとシクロフォスファミドは別々に投与されるが、同時投与の場合はリポソーム化α-GalCerとシクロフォスファミドは、同一製剤中に含まれていてもよく、また、それぞれ異なる2つの製剤に含まれていてもよい。即ち、本発明のハプロ移植増強剤の一態様として、リポソーム化α-GalCer、及びシクロフォスファミドを含む1剤形態のハプロ移植増強剤が挙げられ、また他の一態様として、リポソーム化α-GalCerを含む製剤と、シクロフォスファミドを含む製剤からなる2剤形態のハプロ移植増強剤が挙げられる。
[Formulation form]
In the haplo transplantation enhancer of the present invention, liposomalized α-GalCer and cyclophosphamide are usually administered separately, but in the case of coadministration, liposomalized α-GalCer and cyclophosphamide are in the same preparation. It may be contained, and may be contained in two different formulations. That is, one embodiment of the haplo transplantation enhancing agent of the present invention includes liposomalized α-GalCer, and a one-part form haplo transplantation enhancing agent containing cyclophosphamide, and in another embodiment, liposomalized α-GalCer Examples include haplograft enhancers in a two-drug form consisting of a preparation containing GalCer and a preparation containing cyclophosphamide.
 本発明のハプロ移植増強剤の剤型については、その投与形態に応じて適宜設定でき、液剤、散剤、顆粒剤、錠剤、カプセル剤等のいずれの剤型であってもよい。また、本発明のハプロ移植増強剤が2剤形態である場合、リポソーム化α-GalCerを含む製剤と、シクロフォスファミドを含む製剤は、それぞれ同じ剤型であってもよく、また異なる剤型であってもよい。 The dosage form of the haplo transplantation enhancer of the present invention can be appropriately set according to the administration form, and may be any dosage form such as liquid, powder, granule, tablet, capsule and the like. In addition, when the haplo transplantation enhancer of the present invention is a two-drug form, the preparation containing liposomal α-GalCer and the preparation containing cyclophosphamide may be the same dosage form or different dosage forms. It may be
[他の配合成分]
 本発明のハプロ移植増強剤は、リポソーム化α-GalCerとシクロフォスファミド以外に、必要に応じて、薬学的に許容される担体を含み、所望の剤型に調製される。薬学的に許容される担体としては、例えば、蒸留水、生理食塩水、リン酸緩衝液,クエン緩衝液,酢酸緩衝液等の水性担体;ショ糖、果糖、白糖、グルコース、乳糖、マンニトール、ソルビトール等の糖類;グリセリン、プロピレングリコール、ブチレングリコール等の多価アルコール;非イオン界面活性剤、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤等の界面活性剤;ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシプロピルメチルセルロースアセテートサクシネート、カルボキシメチルエチルセルロース等のセルロース誘導体;抗酸化剤;pH調節剤等が挙げられる。
[Other compounding ingredients]
The haplo-graft enhancing agent of the present invention comprises a pharmaceutically acceptable carrier, as required, in addition to liposomal α-GalCer and cyclophosphamide, and is prepared in a desired dosage form. Examples of the pharmaceutically acceptable carrier include aqueous carriers such as distilled water, physiological saline, phosphate buffer, citrate buffer, acetate buffer and the like; sucrose, fructose, sucrose, glucose, lactose, mannitol, sorbitol Saccharides such as glycerin; polyhydric alcohols such as glycerin, propylene glycol and butylene glycol; nonionic surfactants, cationic surfactants, anionic surfactants, surfactants such as amphoteric surfactants; hydroxypropyl methylcellulose Cellulose derivatives such as hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl methyl cellulose phthalate, hydroxypropyl methyl cellulose acetate succinate, carboxymethyl ethyl cellulose; antioxidants; pH adjusters and the like.
[用途・用量・用法]
 本発明のハプロ移植増強剤は、ハプロドナー造血細胞の移植を行った患者(レシピエント)に対して、GVHDを予防しつつ、抗腫瘍作用(GVL作用等)を増強する目的で投与される。
[Use, dose, usage]
The haplo transplantation enhancer of the present invention is administered to a patient (recipient) who has been transplanted with haplo donor hematopoietic cells for the purpose of enhancing the antitumor action (GVL action and the like) while preventing GVHD.
 本発明のハプロ移植増強剤が投与されるレシピエントは、血液悪性疾患(例えば、急性骨髄性白血病、慢性白血病、悪性リンパ腫、多発性骨髄腫等)、骨髄異形成症候群等の造血器疾患を罹患し、ハプロドナー造血細胞の移植を行った者であればよい。 Recipients to whom the haplograft enhancer of the present invention is administered suffer from hematopoietic diseases such as hematologic malignancies (eg, acute myeloid leukemia, chronic leukemia, malignant lymphoma, multiple myeloma, etc.), myelodysplastic syndrome, etc. And those who have transplanted haplodonor hematopoietic cells.
 本発明において、レシピエントはハプロドナー造血細胞の移植前に骨髄破壊処置を施されるが、好ましくは減量強度前処置が望ましい。減量強度前処置には、特に制限はなく、様々な抗癌剤や放射線照射を組み合わせた方法でよい。例えば、以下の2つの減量強度前処置が挙げられる。1つ目は、フルダラビン(20~50 mg/m2)の移植7~5日前のいずれかの日から2日前までの連日回静脈内投与とシクロフォスファミド(10~20mg/kg)の移植6~5日前の前後で1~3回静脈内投与に移植前日の100~400 cGy全身放射線照射を加える処置である。第2つ目は、フルダラビン(20~50mg/m2)の移植7~5日前のいずれかの日から2日前までの連日4回静脈内投与とメルファルファン(50~150mg/m2)の移植5~6日前の期間に単回静脈内投与に移植前日の150~400 cGy全身放射線照射を加える処置である。具体的には、フルダラビン(30 mg/m2)の移植6日前から2日前までの連日5回静脈内投与とシクロフォスファミド(14.5 mg/kg)の移植6日前と5日前の2回静脈内投与に移植前日の200 cGy全身放射線照射を加える処置である。フルダラビン(40 mg/m2)の移植5日前から2日前までの連日4回静脈内投与とメルファルファン(100 mg/m2)の移植6日前の単回静脈内投与に移植前日の200 cGy全身放射線照射を加える処置である。 In the present invention, the recipient is subjected to myeloablative treatment prior to transplantation of haplo donor hematopoietic cells, but preferably weight loss strength pretreatment is desirable. The weight loss pretreatment is not particularly limited, and may be a combination of various anticancer agents and radiation. For example, the following two weight loss intensity pretreatments can be mentioned. The first was intravenous injection of fludarabine (20 to 50 mg / m 2 ) 7 to 5 days prior to transplantation and cyclophosphamide (10 to 20 mg / kg) daily for 2 days before It is a treatment in which 100 to 400 cGy whole-body radiation of the day before transplantation is added to intravenous administration 1 to 3 times before and after 6 to 5 days before. The second is the administration of flufarabine (20 to 50 mg / m 2 ) intravenously four times daily from 2 days to 5 days prior to transplantation with melfarfan (50 to 150 mg / m 2 ) It is a treatment that adds 150 to 400 cGy whole-body radiation the day before transplantation to a single intravenous administration in the period of 5 to 6 days before transplantation. Specifically, intravenous administration of fludarabine (30 mg / m 2 ) 5 days a day from 6 days to 2 days before transplantation and 2 days of veins of cyclophosphamide (14.5 mg / kg) 6 days before and 5 days before transplantation It is a treatment to which 200 cGy whole body irradiation of the day before transplantation is added to internal administration. Intravenous administration of fludarabine (40 mg / m 2 ) 4 days daily from 5 days to 2 days before transplantation and melfarfan (100 mg / m 2 ) on the day 6 days before transplantation with a single intravenous administration 200 cGy the day before transplantation It is a treatment that adds whole body radiation.
 本発明において、「ドナー造血細胞」とは、レシピエントに移植されるドナー側の造血細胞であって、血球系細胞に分化可能な幹細胞のことをいう。レシピエントに移植される造血細胞の由来組織については、特に制限されず、例えば、骨髄、臍帯血、又は末梢血そのものであってもよく、また骨髄、臍帯血、又は末梢血に由来する造血細胞であってもよい。レシピエントに移植される造血細胞として、好ましくは、骨髄、臍帯血又は末梢血由来の造血細胞が挙げられる。ドナー造血細胞の移植量については、レシピエントの症状、年齢等に応じて適宜設定すればよいが、通常1×106~3×108cells/kg程度が挙げられる。末梢血由来の造血細胞は、G-CSFを予めドナーに投与して末梢血中に血液幹細胞を動員し、好ましくはCD34陽性細胞が4-5×106 cells/kg、少なとも2×106 cells/kg以上存在することが好適である。 In the present invention, “donor hematopoietic cells” refer to hematopoietic cells on the donor side to be transplanted to a recipient, which are stem cells capable of differentiating into hematologic cells. The origin tissue of hematopoietic cells to be transplanted into the recipient is not particularly limited, and may be, for example, bone marrow, umbilical cord blood, or peripheral blood itself, or hematopoietic cells derived from bone marrow, umbilical cord blood, or peripheral blood It may be The hematopoietic cells to be transplanted into the recipient preferably include hematopoietic cells derived from bone marrow, umbilical cord blood or peripheral blood. The amount of donor hematopoietic cells to be transplanted may be appropriately set according to the condition of the recipient, age, etc., but it is usually about 1 × 10 6 to 3 × 10 8 cells / kg. Hematopoietic cells derived from peripheral blood are preadministered to donors with G-CSF to mobilize blood stem cells into peripheral blood. Preferably, CD34 positive cells are 4-5 × 10 6 cells / kg, at least 2 × 10 6 Preferably, cells / kg or more are present.
 本発明のハプロ移植増強剤の投与形態については、非経口投与、経口投与のいずれであってもよく、具体的には、静脈内投与、筋肉内投与、腹腔内投与、皮下投与、関節内投与、粘膜投与等が挙げられる。これらの投与形態の中でも、免疫寛容の誘導をより一層向上させるという観点から、非経口投与、とりわけ静脈内投与が好適である。 The administration mode of the haplo transplantation enhancer of the present invention may be any of parenteral administration and oral administration. Specifically, intravenous administration, intramuscular administration, intraperitoneal administration, subcutaneous administration, intraarticular administration And mucosal administration. Among these administration forms, parenteral administration, particularly intravenous administration, is preferable from the viewpoint of further improving induction of immune tolerance.
 本発明のハプロ移植増強剤の投与対象としては、例えば、ヒト、サル、マウス、ラット、イヌ、ウサギ、ネコ、ウシ、ウマ、ヤギ等の哺乳動物;ニワトリ、ダチョウ等の鳥類が挙げられる。好ましくはヒトである。 Examples of administration targets of the haplo transplantation enhancer of the present invention include humans, monkeys, mice, rats, dogs, rabbits, cats, mammals such as cats, cattle, horses, and goats; and birds such as chickens and ostrich. Preferably it is a human.
 本発明のハプロ移植増強剤の投与タイミングについては、ハプロドナー造血細胞の移植を行った後に行われる限り、特に制限されない。例えば、シクロフォスファミドは、ハプロドナー造血細胞の移植後3日目と4日目の合計2回投与することが好ましい。また、リポソーム化α-GalCerは、ドナー骨髄細胞の再構築が始まるまでに複数回投与すればよく、動物試験ではハプロドナー造血細胞の移植後4日目(シクロフォスファミド最終投与日)と9日目及び14日目の合計3回投与すれば良いことが示唆される。ヒトではハプロドナー造血細胞の移植後5日目から毎週1回の静脈内投与を4回以上、好ましくは5回以上、更に好ましくは6回以上継続することが好ましい。 The administration timing of the haplo transplantation enhancer of the present invention is not particularly limited as long as it is performed after haploid donor hematopoietic cell transplantation. For example, cyclophosphamide is preferably administered twice on the third and fourth day after transplantation of haploid donor hematopoietic cells. In addition, liposomalized α-GalCer may be administered multiple times before reconstruction of donor bone marrow cells starts, and in animal studies, day 4 and day 9 of the day after transplantation of haplo donor hematopoietic cells (the day of final administration of cyclophosphamide) It is suggested that a total of 3 doses of eye and day 14 should be administered. In humans, it is preferable to continue intravenous administration once a week four times or more, preferably five times or more, more preferably six times or more from the fifth day after transplantation of haplo donor hematopoietic cells.
 本発明のハプロ移植増強剤の投与量については、患者の症状の程度、年齢等に応じて適宜設定すればよい。例えば、シクロフォスファミドは、1回当たり、50mg/kg以下の投与を2回実施するが、さらに減量した投与(例えば、1回当たりのシクロフォスファミドの投与量25~40mg/kg)も設定しうる。また、リポソーム化α-GalCerは、1回当たり、投与されるα-GalCer量換算で1~100μg/kg程度が挙げられる。 The dose of the haplo transplantation enhancer of the present invention may be appropriately set according to the degree of symptoms of the patient, age and the like. For example, cyclophosphamide is administered twice at a dose of 50 mg / kg or less per dose, but further reduced (for example, a dose of 25-40 mg / kg of cyclophosphamide per dose) It can be set. The amount of liposomal α-GalCer may be about 1 to 100 μg / kg in terms of the amount of α-GalCer to be administered.
 本発明のハプロ移植増強剤と併用できる薬剤は、体内のTregに悪影響を及ぼさない免疫抑制剤に限定される。例えば、ラパマイシンやミコフェノール酸モフェチルはハプロ移植後から使用してよいが、ステロイド剤やカリシュニューリン阻害薬であるタクロリムスやシクロスポリンは使用できない。 Drugs that can be used in combination with the haplo transplantation enhancer of the present invention are limited to immunosuppressants that do not adversely affect Treg in the body. For example, rapamycin and mycophenolate mofetil may be used after haplo-transplantation, but steroids and calicheurinulin inhibitors tacrolimus and cyclosporin can not be used.
 本発明のハプロ移植増強剤は、PTCy療法の利点を損なわずに欠点である再発率を低下させることを実用化し得る。このような顕著な効果を有するハプロ移植増強剤の有効成分として、リポソーム化α-GalCerが含まれることは、公知の非特許文献のいずれにも記載が無く、たとえ当業者であっても容易に想到することはできない。 The haplotransplant enhancer of the present invention may be practiced to reduce the relapse rate, which is a drawback, without losing the benefits of PTCy therapy. The inclusion of liposomal α-GalCer as an active ingredient of the haplo transplantation enhancer having such a remarkable effect has not been described in any of the known non-patent documents, and it is easily possible even by those skilled in the art. I can not think.
2.ハプロ移植増強剤(2)
 本発明のハプロ移植強剤は、ハプロドナー造血細胞を移植したレシピエントに対して処置されるシクロフォスファミド療法において、抗腫瘍作用を増強し、且つ、移植片対宿主病を予防する療法に用いられるハプロ移植増強剤であって、リポソーム化α-GalCerを含むことを特徴とする。
2. Haplo transplantation enhancer (2)
The strong haplo-graft agent of the present invention is used in a therapy that enhances anti-tumor activity and prevents graft-versus-host disease in cyclophosphamide therapy to be treated for recipients transplanted with haplo donor hematopoietic cells. Haplo-graft enhancing agent, characterized in that it comprises liposomalized α-GalCer.
 本発明のハプロ移植強剤は、リポソーム化α-GalCerを有効成分とするものであり、ハプロ移植後に行われるシクロフォスファミドの投与による療法において、GVHD抑制効果を維持しつつ、抗腫瘍作用(GVL作用等)を増強するために使用される。 The strong haplo-graft agent of the present invention contains liposomalized α-GalCer as an active ingredient, and in the therapy by administration of cyclophosphamide, which is performed after haplo-grafting, the antitumor effect (GVHD suppression effect is maintained) ( It is used to enhance GVL action etc.).
 本発明のハプロ移植強剤において、有効成分であるリポソーム化α-GalCerの種類や組成、製剤形態、適用対象、リポソーム化α-GalCerの投与形態、投与タイミング、投与量等は、前記「1.ハプロ移植増強剤(1)」の欄に記載の通りである。 In the haplo-graft strong drug of the present invention, the type and composition of liposomalized α-GalCer as an active ingredient, formulation form, application subject, administration form, administration timing, dose and the like of liposomalized α-GalCer are described in “1. As described in the column "Haplo transplantation enhancer (1)".
 以下に実施例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the examples.
試験例1:骨髄移植後シクロフォスファミド(PTCy)投与による移植片対宿主病(GVHD)抑制効果
 マウスは(日本エルエスシー)社より8週齢から12週齢の雌のB6マウス(C57BL/6JJmsSlc, H-2b)、8週齢(移植時は10若しくは11週齢)週齢の雌のBDF1マウス(C57BL/6NCrScm雌×DBA/2CrSlc雄,F1, H-2b/d)を購入した。マウスは岡山大学の実験動物中央施設のSPF(Specific Pathogen Free)環境下にて、NIHの動物管理ガイドラインに準じて飼育した。
Test Example 1: The graft-versus-host disease (GVHD) inhibitory effect by cyclophosphamide (PTCy) administration after bone marrow transplantation The mouse is a female B6 mouse (C57BL / 8 to 12 weeks old from (NSC)). 6JJmsSlc, H-2 b ), 8 weeks old (10 or 11 weeks old at transplantation) female BDF1 mice (C57BL / 6NCrScm female x DBA / 2CrSlc male, F1, H-2 b / d ) purchased did. The mice were bred under the Specific Pathogen Free (SPF) environment at the Central Research Facility of Okayama University in accordance with the NIH animal management guidelines.
 ドナーB6マウスを安楽死させた後に、大腿骨及び脛骨を採取し、21ゲージ注射針を用いて骨髄腔より骨髄を洗い出した。骨髄細胞を4%のFCS(ウシ胎児血清を含むRPMI培地(4%FCS-RPMI)に懸濁し、70μmのナイロンメッシュを通した後に1800rpm, 5分間遠心した。上清を取り除き、再度、1800rpm, 5分間遠心し、2%FCS-PBSに再懸濁して細胞数をカウントした。骨髄細胞からCD90.2 Micro Beads(Miltenyi社)を使ってT細胞を除去した骨髄細胞(TCD-BM)を調製した。また同じマウスから脾臓を摘出し、スライドグラス2枚に挟んですり潰した後、4%FCS-RPMIで脾臓細胞を懸濁した。70μmのナイロンメッシュを通し、更に、1800rpm, 5分間遠心。上清を取り除き、再度、1800rpm, 5分間遠心し、細胞数をカウントした。TCD-BMを5×106個及び脾臓細胞を1×107個を250μLに懸濁した細胞懸濁液をレシピエントBDF1マウスの尾静脈より静注し、GVHD発症モデルマウスを作製した。 After euthanasia of donor B6 mice, femurs and tibiae were harvested and bone marrow was washed out of the marrow cavity using a 21 gauge needle. The bone marrow cells were suspended in 4% FCS (RPMI medium containing fetal bovine serum (4% FCS-RPMI) and passed through a 70 μm nylon mesh and centrifuged at 1800 rpm for 5 minutes. The supernatant was removed, and again, 1800 rpm, After centrifuging for 5 minutes and resuspending in 2% FCS-PBS to count the number of cells, bone marrow cells from which T cells have been removed (TCD-BM) are prepared using CD 90. 2 Micro Beads (Miltenyi). Also, the spleen was isolated from the same mouse and squeezed between 2 slide glasses, then the spleen cells were suspended with 4% FCS-RPMI, passed through a 70 μm nylon mesh, and further centrifuged at 1800 rpm for 5 minutes. The supernatant was removed, centrifuged again at 1800 rpm for 5 minutes, and the number of cells was counted The cell suspension containing 5 × 10 6 TCD-BMs and 1 × 10 7 spleen cells suspended in 250 μL is a recipe Intravenous injection was performed from the tail vein of an enter BDF1 mouse to prepare a GVHD onset model mouse.
 骨髄移植の6時間前、及び移植前の2回に分けて、レシピエントBDF1マウスに、致死量放射線(Total body Irradiation; TBI)12 Gy (X線発生装置(MBR-1520R-3、Hitachi medical Corp. Tokyo, Japan)を照射した。次いで骨髄移植3日後に、シクロフォスファミド(Sigma Aidrich)を生理食塩水に希釈して、25 mg/kg又は50 mg/kgの用量で腹腔内投与した。 Total body Irradiation (TBI) 12 Gy (X-ray generator (MBR-1520R-3, Hitachi medical Corp), divided into recipient's BDF1 mice 6 times before bone marrow transplantation and twice before transplantation Then, three days after bone marrow transplantation, cyclophosphamide (Sigma Aidrich) was diluted in saline and administered intraperitoneally at a dose of 25 mg / kg or 50 mg / kg.
 図1に骨髄移植から100日間の生存率とGVHD(graft versus host disease)スコアを示す。図1中、「Vehicle」は生理食塩水のみを投与した群、「PTCy 25mg/kg」はシクロフォスファミド25mg/kgの用量で投与した群、「PTCy 50mg/kg」はシクロフォスファミド50mg/kgの用量で投与した群を示す。 FIG. 1 shows the survival rate and GVHD (graft versus host disease) scores for 100 days after bone marrow transplantation. In FIG. 1, "Vehicle" is a group to which only saline was administered, "PTCy 25 mg / kg" is a group to which cyclophosphamide was administered at a dose of 25 mg / kg, and "PTCy 50 mg / kg" is 50 mg of cyclophosphamide. The group administered by the / kg dose is shown.
 なお、GVHDスコアは観察結果から以下の基準に則り算出した。GVHDスコア基準は以下の5項目について合計7満点で評価した。
移植後の体重変化
 0.5点:移植後の体重変化が95%以下90%超
 1点 :移植後の体重変化が90%以下85%超
 1.5点:移植後の体重変化が85%以下75%超
 2点 :移植後の体重変化が75%以下
体表に占める脱毛の面積
 0.5点:体表に占める脱毛の面積の比率が0%以上25%未満
 1点 :体表に占める脱毛の面積の比率が25%以上50%未満
 1.5点:体表に占める脱毛の面積の比率が50%以上
姿勢
 0.5点:体安静時の脊柱後彎がある
 1点 :体動時も脊柱後彎がある
体動
 1点 :刺激があるまで静止している
 1.5点:刺激があっても静止している
毛並み
 1点 :逆立っている
The GVHD score was calculated from the observation results according to the following criteria. The GVHD score criteria were evaluated on a total of 7 points for the following 5 items.
Body weight change after transplantation 0.5 points: body weight change after transplantation is 95% or less and over 90% 1 point: body weight change after transplantation is 90% or less over 85% 1.5 points: body weight change after transplantation is 85% or less and over 75% 2 points: body weight change less than 75% after transplantation
The area of hair loss occupied on the body surface 0.5 point: The ratio of the area of hair loss occupied on the body surface is 0% to less than 25% 1 point: the ratio of the area of hair loss occupied on the body surface is 25% or more but less than 50% 1.5 points: body surface 50% or more of the area of hair loss in
Posture 0.5 point: backrest at body rest 1 point: backbone also at movement
Movement point 1 point: Resting until stimulation occurs 1.5 points: Resting even if stimulation occurs
One line of hair : standing upside down
 図1から分かるように、骨髄移植後シクロフォスファミド(PTCy)25 mg/kg投与群は非投与群とほぼ同様の生存率とGVHDスコアの変化を示した。一方、PTCy 50 mg/kg投与群は高い生存率とGVHD発症抑制が認められた。 As can be seen from FIG. 1, the cyclophosphamide (PTCy) 25 mg / kg-administered group after bone marrow transplantation showed almost the same change in survival rate and GVHD score as the non-administered group. On the other hand, PTCy 50 mg / kg group showed high survival rate and suppression of GVHD onset.
試験例2:骨髄移植後PTCyとRGI-2001投与による移植片対宿主病(GVHD)抑制効果
 前記試験例1と同条件で作製したGVHD発症モデルマウスに、PTCy 25 mg/kgを骨髄移植3日後に腹腔内に1回投与し、また1回当たりKRN7000含有リポソーム(RGI-2001) 1 μg/kgを骨髄移植3,5,及び7日後に尾静脈から合計3回投与した。なお、KRN7000含有リポソームは、脂質重量換算でKRN7000を10%含有しており、国際公開第2005/120574号パンフレットと同様の方法で作製した。
Test Example 2: Graft-versus-host disease (GVHD) suppressive effect by PTCy and RGI-2001 administration after bone marrow transplantation to a GVHD onset model mouse prepared under the same conditions as in Test Example 1 above, bone marrow transplantation with 25 mg / kg of bone marrow transplantation for 3 days Thereafter, it was intraperitoneally administered once, and 1 μg / kg of KRN7000-containing liposome (RGI-2001) was administered once a total of 3 times via tail vein after 3, 5 and 7 days of bone marrow transplantation. The KRN7000-containing liposome contains 10% of KRN7000 in terms of lipid weight, and was prepared by the same method as in WO 2005/120574.
 図2に骨髄移植から100日間の生存率とGVHDスコアを示す。図2中、「Allo NS+NS」は生理食塩水のみを投与した群、「Allo NS+PTCy 50mg/kg」はシクロフォスファミドのみを投与した群、「Allo αGC+NS」はKRN7000含有リポソームのみを投与した群、「Allo αGC+PTCy 50mg/kg」はシクロフォスファミドとKRN7000含有リポソームを投与した群を示す。図2から明らかなように、PTCyとRGI-2001の両方が投与された群では、生存率の上昇とGVHDスコアの低下が認められた。 FIG. 2 shows the survival rate and GVHD score for 100 days after bone marrow transplantation. In FIG. 2, "Allo NS + NS" is a group to which only saline was administered, "Allo NS + PTCy 50 mg / kg" is a group to which only cyclophosphamide was administered, and "Allo α GC + NS" is a liposome containing KRN7000. “Alo α GC + PTCy 50 mg / kg” represents a group administered with cyclophosphamide and KRN7000-containing liposomes. As apparent from FIG. 2, in the group to which both PTCy and RGI-2001 were administered, an increase in survival rate and a decrease in GVHD score were observed.
試験例3:骨髄移植後PTCyとRGI-2001投与による制御性T細胞の増加効果
 骨髄移植時の放射線量を10Gyに変更したこと以外は、前記試験例1と同条件でGVHD発症モデルマウスを作製した。作製したGVHD発症モデルマウスに、PTCy 25 mg/kgを骨髄移植3日後に腹腔内に1回投与し、また1回当たりKRN7000含有リポソーム(RGI-2001) 1 μg/kgを骨髄移植3,5,及び7日後に尾静脈から合計3回投与した。GVHD発症モデルマウスの骨髄移植から14日後と28日後に、脾臓と腸間膜リンパ節を採取した。得られた細胞から3×106個の細胞を100μlの2% FCS-PBSに懸濁し、eFluor450標識抗CD4抗体(eBioscience)、APC eFluor780標識抗CD8a抗体(eBioscience)とPE-Cy7標識抗CD25抗体(eBioscience)を添加後4℃で30分間反応させた。更に細胞はFoxP3染色キット(eBioscience, San Diego, CA, USA)を用いて細胞を固定、透過化し、APC標識抗FoxP3にて核内染色をした後、MACS Quant (Myltenyi)にて測定しFlowjo ver.10 (トミーデジタルバイオロジー)にて解析した。
Test Example 3: Increase effect of regulatory T cells by administration of PTCy and RGI-2001 after bone marrow transplantation A GVHD onset model mouse is prepared under the same conditions as in Test Example 1 except that the radiation dose at the time of bone marrow transplantation is changed to 10 Gy. did. PTCy 25 mg / kg was administered once intraperitoneally 3 days after bone marrow transplantation to the GVHD onset model mice prepared, and 1 μg / kg of KRN7000-containing liposome (RGI-2001) per bone marrow transplantation 3,5, And after 7 days, a total of 3 doses were given via the tail vein. Spleen and mesenteric lymph nodes were collected 14 and 28 days after bone marrow transplantation of GVHD onset model mice. 3 x 10 6 cells from the obtained cells are suspended in 100 μl of 2% FCS-PBS, and eFluor 450 labeled anti-CD4 antibody (eBioscience), APC eFluor 780 labeled anti CD8a antibody (eBioscience) and PE-Cy7 labeled anti CD25 antibody After addition of (eBioscience), the reaction was performed at 4 ° C. for 30 minutes. Furthermore, cells are fixed and permeabilized using FoxP3 staining kit (eBioscience, San Diego, CA, USA), and after intranuclear staining with APC labeled anti-FoxP3, measured by MACS Quant (Myltenyi), Flowjo ver .10 (Tomy Digital Biology).
 解析結果を図3及び4に示す。図3及び4中、「NS+NS」及び「PTCy(-), αGalCer(-)」は生理食塩水のみを投与した群、「PTCy+NS」及び「PTCy 25mg/kg, αGalCer(-)」はシクロフォスファミドのみを投与した群、「NS+αGC」及び「PTCy(-), αGalCer(+)」はKRN7000含有リポソームのみを投与した群、「PTCy+αGC」及びPTCy 25mg/kg, αGalCer(+)」はシクロフォスファミドとKRN7000含有リポソームを投与した群を示す。CD4陽性細胞中のCD25とFoxp3が共陽性である制御性T細胞(Treg)集団の割合は、PTCy投与の有無に関わらずRGI-2001投与群で増加した。特に、脾臓よりも腸間膜リンパ節におけるTreg増加の割合は顕著であった。 The analysis results are shown in FIGS. In FIGS. 3 and 4, “NS + NS” and “PTCy (−), αGalCer (−)” are groups to which only saline was administered, “PTCy + NS” and “PTCy 25 mg / kg, αGalCer (−)”. Group treated with cyclophosphamide only, "NS + α GC" and "PTCy (-), αGalCer (+)" group treated with KRN7000 containing liposome only, "PTCy + α GC" and PTCy 25 mg / kg, αGal Cer (+) Indicates a group to which cyclophosphamide and KRN7000-containing liposomes were administered. The percentage of regulatory T cell (Treg) populations copositive for CD25 and Foxp3 among CD4 positive cells was increased in the RGI-2001 group regardless of whether or not PTCy was administered. In particular, the rate of Treg increase in mesenteric lymph nodes was more pronounced than in the spleen.
試験例4:骨髄移植後PTCy投与による移植片対白血病(GVL)効果の検証
 骨髄移植時の放射線量を8Gyに変更し、5×105個のルシフェラーゼ発現白血病株(P815L)を骨髄移植と同時に尾静脈から投与したこと以外は、前記試験例1と同条件で試験を行った(allo移植)。また、ドナーマウス及びレシピエントマウスとしてBDF1マウスを使用して同系移植したこと以外は、前記と同条件で試験を行った(syn移植)。マウス体内でのP815L細胞の分布は、電子増倍型CCD(Electron Multiplying-CCD: EM-CCD)カメラによるルシフェラーゼ蛋白質の発光イメージングにより測定した。
Test Example 4: Verification of graft-leukemia (GVL) effect by PTCy administration after bone marrow transplantation The radiation dose at the time of bone marrow transplantation is changed to 8 Gy, and 5 × 10 5 luciferase expression leukemia strains (P815L) are simultaneously treated with bone marrow transplantation. Tests were conducted under the same conditions as in Test Example 1 except that administration was performed from the tail vein (allo transplantation). In addition, tests were performed under the same conditions as described above except that syngeneic transplantation was performed using BDF1 mice as donor mice and recipient mice (syn transplantation). The distribution of P815L cells in the mouse body was measured by luminescence imaging of luciferase protein with an electron multiplying CCD (Electron Multiplying-CCD: EM-CCD) camera.
 結果を図5に示す。図5中、「allo NS+NS」及び「NS+NS」はallo移植において生理食塩水のみを投与した群、「allo NS+PTCy 25mg/kg」及び「NS+PTCy 25mg/kg」はallo移植においてシクロフォスファミドを25mg/kgの用量で投与した群、「allo NS+PTCy 50mg/kg」及び「NS+PTCy 50mg/kg」はallo移植においてシクロフォスファミドを50mg/kgの用量で投与した群、「syn NS+NS」はsyn移植において生理食塩水のみを投与した群、「syn NS+PTCy 25mg/kg」はsyn移植においてシクロフォスファミドを25mg/kgの用量で投与した群を示す。 The results are shown in FIG. In FIG. 5, "allo NS + NS" and "NS + NS" are groups to which only saline was administered in allo transplantation, "allo NS + PTCy 25 mg / kg" and "NS + PTCy 25 mg / kg" allo transplantation "Allo NS + PTCy 50 mg / kg" and "NS + PTCy 50 mg / kg" received cyclophosphamide at a dose of 50 mg / kg in allo transplantation The group "syn NS + NS" received saline alone in syn transplantation, the group "syn NS + PTCy 25 mg / kg" received cyclophosphamide in syn transplantation at a dose of 25 mg / kg. Show.
 allo移植の50 mg/kgのPTCy投与群では、GVHD抑制効果で上回るにも関わらず、25mg/kgのPTCy投与群と比較して、むしろ生存率が悪化していた。移植から38日目の発光イメージング測定の結果、allo移植の25mg/kgのPTCy投与群中で生存していた5匹中1匹には弱い発光が認められたが、残り4匹には発光は認められなかった。一方、allo移植の50mg/kgのPTCy投与群中で生存していた1匹には最大発光が認められた。これからの結果から、高用量PTCyによるアロ応答性T細胞除去に伴い、GVL効果が減弱した可能性が示唆
された。
In the 50 mg / kg PTCy administration group of allo transplantation, the survival rate was rather deteriorated as compared with the 25 mg / kg PTCy administration group, although the GVHD inhibitory effect was exceeded. As a result of luminescence imaging measurement on day 38 after transplantation, weak luminescence was observed in 1 of 5 mice surviving in the 25 mg / kg PTCy administration group of allo transplantation, but luminescence was observed in the remaining 4 mice. I was not able to admit. On the other hand, the maximum light emission was observed in one animal surviving in the 50 mg / kg PTCy administration group of allo transplantation. These results suggest that the GVL effect might be attenuated following allo-responsive T cell removal by high dose PTCy.
 一方、陰性対照の非投与群では、25mg/kgのPTCy投与群と比較して、GVL効果を上回るGVHD増悪のために、生存率が悪化した可能性が示唆された。 On the other hand, in the negative control non-administration group, it was suggested that the survival rate might be deteriorated due to the GVHD exacerbation over the GVL effect as compared with the 25 mg / kg PTCy administration group.
試験例5:骨髄移植後PTCyとRGI-2001の同時投与による移植片対白血病(GVL)効果
 前記試験例4と同様の実験系で、PTCy 25 mg/kgを1回(骨髄移植3日後)腹腔内に、またKRN7000含有リポソーム(RGI-2001) 1 μg/kgを3回(骨髄移植3,5,7日後に)尾静脈から投与した。
Test Example 5: Graft vs. leukemia (GVL) effect by co-administration of PTCy and RGI-2001 after bone marrow transplantation PTCy 25 mg / kg once in the same experimental system as in Test Example 4 (3 days after bone marrow transplantation) peritoneal cavity In addition, 1 μg / kg of KRN7000-containing liposome (RGI-2001) was administered 3 times (3, 5 and 7 days after bone marrow transplantation) from the tail vein.
 結果を図6に示す。図5中、「allo NS+NS」は生理食塩水のみを投与した群、「allo NS+PTCy 25mg/kg」はシクロフォスファミドのみを投与した群、「allo αGC+NS」はKRN7000含有リポソームのみを投与した群、「「allo αGC+ PTCy 25mg/kg」は、シクロフォスファミドとKRN7000含有リポソームを投与した群を示す。この結果、PTCyとRGI-2001の両方を投与された群の生存率は、PTCy単独投与群と同様もしくはやや向上することが認められた。 The results are shown in FIG. In FIG. 5, "allo NS + NS" is a group to which only saline was administered, "allo NS + PTCy 25 mg / kg" is a group to which only cyclophosphamide was administered, and "allo α GC + NS" is a liposome containing KRN7000. The group administered only, "allo α GC + PTCy 25 mg / kg", represents a group administered cyclophosphamide- and KRN7000-containing liposomes. As a result, it was found that the survival rate of the group receiving both PTCy and RGI-2001 was similar to or slightly improved as that of the PTCy single administration group.
 この結果から、本発明の低用量PTCyとRGI-2001の共投与は、高用量PTCyの利点であるGVHDの発症抑制効果を維持しつつ、重大な欠点である抗腫瘍効果を著しく改善することが確認された。 From this result, co-administration of low dose PTCy and RGI-2001 of the present invention can significantly improve the serious defect anti-tumor effect while maintaining the suppressive effect of GVHD which is an advantage of high dose PTCy. confirmed.

Claims (10)

  1.  ハプロドナー造血細胞をレシピエントに移植することにより、レシピエントの癌細胞への抗腫瘍作用を増強し且つ、移植片対宿主病を予防する療法に用いられるハプロ移植増強剤であって、α-ガラクトシルセラミドを含有するリポソーム、及びシクロフォスファミドを組み合わせてなる、ハプロ移植増強剤。 Alpha-galactosyl, which is a haplograft enhancing agent for use in therapy to enhance the antitumor effect on recipient cancer cells and to prevent graft-versus-host disease by transplanting haploido hematopoietic cells into the recipient. A haplo transplantation enhancer comprising a combination of a ceramide-containing liposome and cyclophosphamide.
  2.  移植されるハプロドナー造血細胞が、骨髄、臍帯血又は末梢血由来の造血細胞である、請求項1に記載のハプロ移植増強剤。 The haplo-transfer enhancing agent according to claim 1, wherein the haplo donor hematopoietic cells to be transplanted are hematopoietic cells derived from bone marrow, umbilical cord blood or peripheral blood.
  3.  移植されるハプロドナー造血細胞が、骨髄である、請求項1又は2に記載のハプロ移植増強剤。 The haplo transplantation enhancing agent according to claim 1 or 2, wherein the haplo donor hematopoietic cells to be transplanted are bone marrow.
  4.  α-ガラクトシルセラミドがKRN7000である、請求項1~3のいずれかに記載のハプロ移植増強剤。 The haplo transplantation enhancer according to any one of claims 1 to 3, wherein the α-galactosylceramide is KRN7000.
  5.  α-ガラクトシルセラミドを含有するリポソームを含む第1製剤と、シクロフォスファミドを含む第2製剤とを含む2剤形態である、請求項1~4のいずれかに記載のハプロ移植増強剤。 The haplo transplantation enhancer according to any one of claims 1 to 4, which is a two-drug form comprising a first preparation containing a liposome containing α-galactosylceramide and a second preparation containing cyclophosphamide.
  6.  ハプロドナー造血細胞をレシピエントに移植することにより、レシピエントの癌細胞への抗腫瘍作用を増強し且つ、移植片対宿主病を予防する療法に用いられるハプロ移植増強剤の製造のための、α-ガラクトシルセラミドを含有するリポソーム、及びシクロフォスファミドの使用。 Transplanting haplodonor hematopoietic cells into a recipient to enhance the anti-tumor effect on recipient cancer cells and to produce a haplograft enhancer for use in therapy to prevent graft-versus-host disease Use of liposomes containing galactosylceramide and cyclophosphamide.
  7.  ハプロドナー造血細胞を移植したレシピエントの癌細胞への抗腫瘍作用を増強し、且つ移植片対宿主病を予防する方法であって、
     ハプロドナー造血細胞を移植したレシピエントに、α-ガラクトシルセラミドを含有するリポソーム、及びシクロフォスファミドを投与する工程を含む、方法。
    A method for enhancing the antitumor effect on recipient cancer cells transplanted with haplo donor hematopoietic cells and preventing graft-versus-host disease,
    Administering a liposome containing α-galactosylceramide and cyclophosphamide to a recipient transplanted with haplo donor hematopoietic cells.
  8.  ハプロドナー造血細胞を移植したレシピエントに対して処置されるシクロフォスファミド療法において、抗腫瘍作用を増強し、且つ、移植片対宿主病を予防する療法に用いられるハプロ移植増強剤であって、
     リポソーム化α-ガラクトシルセラミドを含む、ハプロ移植増強剤。
    A haplo-transplant-enhancing agent for use in a therapy that enhances anti-tumor activity and prevents graft-versus-host disease in cyclophosphamide therapy treated for a recipient transplanted with haplo donor hematopoietic cells,
    A haplo transplantation enhancer comprising liposomalized α-galactosylceramide.
  9.  ハプロドナー造血細胞を移植したレシピエントに対して処置されるシクロフォスファミド療法において、抗腫瘍作用を増強し、且つ、移植片対宿主病を予防する療法に用いられるハプロ移植増強剤の製造のための、リポソーム化α-ガラクトシルセラミドの使用。 In the cyclophosphamide therapy to be treated for recipients transplanted with haplo donor hematopoietic cells, for the production of haplo transplantation enhancing agent to be used as a therapy for enhancing the antitumor effect and preventing graft-versus-host disease Use of Liposomal α-Galactosylceramide.
  10.  ハプロドナー造血細胞を移植したレシピエントに対して処置されるシクロフォスファミド療法において、抗腫瘍作用を増強し、且つ移植片対宿主病を予防する方法であって、
     ハプロドナー造血細胞の移植後にシクロフォスファミドを投与したレシピエントに対して、リポソーム化α-ガラクトシルセラミドを投与する工程を含む、方法。
    A method for enhancing anti-tumor activity and preventing graft-versus-host disease in cyclophosphamide therapy to be treated for a recipient transplanted with haplo donor hematopoietic cells,
    A method comprising the step of administering liposomalized α-galactosylceramide to a recipient who received cyclophosphamide after transplantation of haplo donor hematopoietic cells.
PCT/JP2018/043819 2017-11-28 2018-11-28 Haploidentical transplantation enhancer WO2019107431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-228443 2017-11-28
JP2017228443A JP2021028296A (en) 2017-11-28 2017-11-28 Haploidentical transplantation enhancer

Publications (1)

Publication Number Publication Date
WO2019107431A1 true WO2019107431A1 (en) 2019-06-06

Family

ID=66663988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043819 WO2019107431A1 (en) 2017-11-28 2018-11-28 Haploidentical transplantation enhancer

Country Status (2)

Country Link
JP (1) JP2021028296A (en)
WO (1) WO2019107431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111249451A (en) * 2020-01-20 2020-06-09 成都医学院 Glycolipid antigen injection and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069655A1 (en) * 2012-11-05 2014-05-08 株式会社レグイミューン Immune-tolerance inducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069655A1 (en) * 2012-11-05 2014-05-08 株式会社レグイミューン Immune-tolerance inducer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HOW, J. ET AL.: "T Cell -Replete Peripheral Blood Haploidentical Hematopoietic Cell Transplantation with Post-Transplantation Cyclophosphamide Results in Outcomes Similar to Transplantation from Traditionally Matched Donors in Active Disease Acute Myeloid Leukemia", BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, vol. 23, no. 4, April 2017 (2017-04-01), pages 648 - 653, XP029940065 *
MORECKI, S. ET AL.: "Effect of KRN7000 on induced graft-vs-host disease", EXPERIMENTAL HEMATOLOGY, vol. 32, no. 7, 2004, pages 630 - 637, XP003008270 *
NAKAMURA, M. ET AL.: "Liposomal Alpha- Galactosylceramide Ameliorates Graft-Versus-Host Disease with Remaining Intensified GVL Gained By Dose-Reduction of Posttransplant Cyclophosphamaide after Haploidentical HSCT", BLOOD, vol. 130, no. suppl. 1, December 2017 (2017-12-01), pages 1897, XP055615788 *
SANO, HIDEKI: "Haplo transplantation as immune cell therapy for relapsed and refractory pediatric acute leukemia", THE JAPANESE JOURNAL OF PEDIATRIC HEMATOLOGY/ONCOLOGY, vol. 53, no. 5, 2016, pages 365 - 370 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111249451A (en) * 2020-01-20 2020-06-09 成都医学院 Glycolipid antigen injection and preparation method thereof

Also Published As

Publication number Publication date
JP2021028296A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
EP1767216B1 (en) Drug having regulatory cell ligand contained in liposome
AU2014244744B2 (en) Pharmaceutical composition for inhibiting immune response through inducing differentiation into regulator T cells and promoting proliferation of regulator T cells
EP1846029A2 (en) Vaccination adjuvants pam3cys, poly(i:c), imiquimod, loxoribine, r-848 and cpg-dna together with mhc i or mhc ii epitopes
ORITA et al. Effect of splenectomy in tumor-bearing mice and gastric cancer patients
US20060211646A1 (en) Formulations with anti-tumour action
EP3703718B1 (en) Liposomal formulation of bacterial lipopolysaccharide combined with a cytotoxic agent, and its use as anti-tumor agent
WO2016130845A1 (en) A method for utilizing engineered dendritic cells to induce gut-homing regulatory t cells and treat gut inflammation
JP2022058449A (en) Use of adjuvants for prevention and/or treatment of autoimmune diseases
JP6361004B2 (en) Immune tolerance inducer
WO2019107431A1 (en) Haploidentical transplantation enhancer
JPWO2013176223A1 (en) Pharmaceutical composition for the treatment of inflammatory diseases
Fändrich et al. Future strategies for tolerance induction:: A comparative study between hematopoietic stem cells and macrophages
WO2021092059A1 (en) Cytotoxic lipid particles for treating glioblastoma
EP2889039A1 (en) Preparation for preventing or treating type i diabetes
Bergers et al. Effect of immunomodulators on specific tumor immunity induced by liposome‐encapsulated tumor‐associated antigens
EP3000471A1 (en) Novel immunostimulatory molecules
Warm et al. Improvement of safety profile of docetaxel by weekly administration in patients with metastatic breast cancer
Hojo et al. Cytotoxic lymphocytes in rat tumor in situ: effect of intraperitoneal injections of Propionibacterium avidum
Lumb et al. On the value of thymectomy in adult mice as a means of potentiating the immunosuppressive action of Melphalan (L-phenylalanine mustard)
Kassis Nanoparticle use in the modulation of transplant rejection in a murine model
JP2002255835A (en) Combination therapy for cancer immunotherapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP