WO2019107392A1 - Combustor and gas turbine - Google Patents

Combustor and gas turbine Download PDF

Info

Publication number
WO2019107392A1
WO2019107392A1 PCT/JP2018/043723 JP2018043723W WO2019107392A1 WO 2019107392 A1 WO2019107392 A1 WO 2019107392A1 JP 2018043723 W JP2018043723 W JP 2018043723W WO 2019107392 A1 WO2019107392 A1 WO 2019107392A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion cylinder
introduction pipe
combustion
combustor
connection portion
Prior art date
Application number
PCT/JP2018/043723
Other languages
French (fr)
Japanese (ja)
Inventor
貴也 甲田
敬介 松山
友仁 中森
佐藤 賢治
剣太郎 徳山
裕行 武石
健太 谷口
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2019107392A1 publication Critical patent/WO2019107392A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/24Heat or noise insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers

Definitions

  • the present invention relates to a combustor and a gas turbine.
  • Priority is claimed on Japanese Patent Application No. 2017-229553, filed Nov. 29, 2017, the content of which is incorporated herein by reference.
  • the combustor which comprises a gas turbine is provided in the vehicle interior inside into which the compressed air produced
  • the combustor generates high-temperature and high-pressure combustion gas inside a cylindrical combustion cylinder.
  • a plurality of combustors are disposed adjacent to each other in the circumferential direction of the turbine to which the combustion gas is supplied.
  • Patent Document 1 discloses a technology for suppressing combustion vibration generated during operation of a combustor by attaching an acoustic damper to the combustor.
  • Patent No. 5693293 gazette
  • air column resonance may occur in which the upstream end of the flow of combustion gas is opened and the downstream end serving as the outlet connected to the turbine is closed.
  • combustion oscillations of an acoustic mode in which a plurality of combustors are coupled to one another via respective outlets are generated.
  • the present invention provides a combustor and a gas turbine that can effectively suppress combustion vibration based on air column resonance.
  • the combustor according to the first aspect of the present invention includes a cylindrical combustion cylinder through which combustion gas flows, and an introduction pipe connected to an outer peripheral surface of the combustion cylinder such that one end thereof communicates with the inside of the combustion cylinder.
  • An acoustic space forming part connected to the other end of the introduction pipe in a communicating state to form an acoustic space inside, and provided between one end of the introduction pipe and the combustion cylinder, the inner surface is the combustion cylinder
  • An acoustic device having a connecting portion which is continuous with the inner circumferential surface of the connecting portion and whose diameter is reduced in a convex curved shape toward the introduction pipe.
  • air column resonance in the combustion cylinder of the combustor occurs according to the following principle.
  • a traveling wave traveling downstream in the combustion cylinder is reflected at the downstream end of the combustion cylinder.
  • a reflected wave that travels in the reverse direction of the traveling wave, that is, the upstream side is generated inside the combustion cylinder.
  • the reflection at the downstream end of the combustion liner occurs because the acoustic impedances of the combustor and the turbine are different.
  • the greater the difference between the two impedances the greater the energy of the reflected wave.
  • the air column resonance is generated by the interference between the reflected wave and the traveling wave.
  • an acoustic device is provided in communication with the combustion cylinder.
  • the acoustic impedance of the entire combustor can be adjusted.
  • the difference between the acoustic impedance of the turbine and the acoustic impedance of the combustor as a whole can be reduced, and the generation of a reflected wave that causes the air column resonance can be suppressed.
  • connection point with the combustion cylinder in the acoustic impedance is a connection part having a convex curved surface on the inner surface side.
  • the curvatures of the convex curved surfaces on the inner surface of the connection portion may be different between the downstream side and the upstream side in the flow direction of the combustion gas.
  • the center of curvature of the convex curved surface on the inner surface downstream of the flow direction of the combustion gas of the connection portion is upstream in the cross-sectional view of the surface including the central axis of the introduction pipe of the connection portion. It may be provided in the diameter direction outside of the above-mentioned combustion pipe rather than the curvature center of the convex curve in the inside of the side.
  • the above-described combustor may have a protruding portion which is raised toward a central axis of the combustion cylinder on a part of a convex curved surface on the inner surface of the connection portion.
  • the combustor has a radius of curvature r 1 of the convex curved surface in the connecting portion inner surface, the radius r 0 of the inner diameter of the inlet tube, in the relationship represented by 3r 0 ⁇ r 1 ⁇ 0.2r 0 It is also good.
  • the above-mentioned combustor is an ellipse having a circular shape or a long axis extending in any direction along the inner surface of the combustion cylinder when viewed in the central axis direction of the introduction pipe, and the radius of the circular shape or the oval and r 2 is in the form of the long axis radius, the radius r 0 of the inner diameter of the inlet pipe, may be in a relationship represented by 4r 0 ⁇ r 2 ⁇ r 0.
  • the combustor has a projected area A 1 in the central axis direction as viewed in the inlet pipe of the connecting portion, and the inner area A 0 of the inlet tube, represented by 12A 0 ⁇ A 1 ⁇ A 0 It may be in a relationship.
  • a gas turbine according to the present invention includes a compressor that generates high pressure air, a combustor having any of the above-described configurations, and a turbine driven by the combustion gas.
  • combustion vibration based on air column resonance can be effectively suppressed.
  • FIG. 3 is a view in the direction of the central axis line of the introduction pipe of the main part of the combustor according to the first embodiment of the present invention. It is a longitudinal cross-sectional view containing the central axis of the introductory pipe of the principal part in the burner concerning a second embodiment of the present invention. It is a longitudinal cross-sectional view containing the central axis of the introductory pipe of the principal part in the burner concerning a third embodiment of the present invention.
  • FIG. 1 is an overall configuration view shown as a longitudinal cross-sectional view of a gas turbine 1 having a combustor 11 according to the present embodiment.
  • the gas turbine 1 includes a compressor 4 provided at an upstream position along a flow direction F in which the fluid flows, and a plurality of combustors 11 provided downstream of the compressor 4. And a turbine 5 provided downstream of the combustor 11 and operatively coupled to the compressor. A plurality of combustors 11 are disposed adjacent to each other along the circumferential direction of the rotor 6.
  • the compressor 4 takes in external air from the air intake port 7 and compresses the air to generate compressed air.
  • the compressor 4 has a compressor rotor 14 extending along the gas turbine rotation axis O1, and a compressor casing 24 covering the compressor rotor from the outer peripheral side.
  • the compressor rotor 14 has a substantially cylindrical shape with the gas turbine rotation axis O1 as a central axis.
  • a compressor moving blade 34 is attached to the outer peripheral surface between the outer peripheral surface of the compressor rotor 14 and the inner peripheral surface of the compressor casing 24.
  • the compressor moving blades 34 are configured as a moving blade row formed by attaching a plurality of pieces on the outer peripheral surface of the compressor rotor 14 along the circumferential direction.
  • a plurality of moving blade rows are disposed at intervals in the fluid flow direction along the direction of the rotation axis O1.
  • a compressor stator blade 44 is attached to the inner peripheral side of the compressor casing 24.
  • the compressor stator blades 44 are configured as a stator blade row in which a plurality of compressor stator blades 44 are attached to the inner circumferential surface of the compressor casing 24 along the circumferential direction.
  • a plurality of stator blade rows are disposed at intervals in the fluid flow direction along the axial direction of the compressor rotor 14.
  • the stationary blade rows are arranged so as to alternate with the moving blade rows in the direction of the gas turbine rotation axis O1.
  • FIG. 1 shows an example in which six rows of moving blade rows and six rows of stationary blade rows are provided, the number of moving blade rows and fixed blade rows is not limited thereto.
  • the combustor 11 generates a high temperature and high pressure combustion gas flow B by injecting fuel to the compressed air generated by the compressor 4 and burning it. Further, the turbine 5 receives the combustion gas flow B supplied from the combustor 11 and converts it into rotational energy of the rotor 6 to extract driving force.
  • the turbine 5 has a turbine rotor 15 extending along the gas turbine rotation axis O1, and a turbine casing 25 covering the turbine rotor from the outer peripheral side.
  • the configuration of the turbine 5 is similar to that of the compressor 4. That is, the turbine rotor 15 has a substantially cylindrical shape whose center axis is the gas turbine rotation axis O1.
  • a turbine blade 35 is attached to the outer peripheral surface between the outer peripheral surface of the turbine rotor 15 and the inner peripheral surface of the turbine casing 25.
  • the turbine moving blades 35 are configured as a moving blade row formed by mounting a plurality of pieces on the outer peripheral surface of the turbine rotor 15 along the circumferential direction. Furthermore, on the turbine rotor 15, a plurality of moving blade rows are disposed at intervals in the fluid flow direction along the direction of the rotation axis O1.
  • a turbine stator blade 44 is attached to the inner circumferential side of the turbine casing 25.
  • the turbine stator blade 45 is configured as a stator blade row in which a plurality of turbine stator blades 45 are attached to the inner circumferential surface of the turbine casing 25 along the circumferential direction.
  • FIG. 1 shows an example in which four rows of moving blade rows and four rows of stationary blade rows are provided, the number of moving blade rows and fixed blade rows is not limited to this.
  • the high-temperature, high-pressure combustion gas flow B generated by the combustor flows toward the flow direction F while accelerating at the same time as the turbine 5 expands, and the turbine stator blades 45 (the stator blade row) and the turbine blades 35 Pass through (moving blade row) sequentially.
  • the turbine stator 45 rectifies the gas flow.
  • the turbine blades 35 convert kinetic energy in the flow direction F of the combustion gas flow B into rotational movement of the turbine rotor 15 about the gas turbine rotation axis O1.
  • the turbine rotor 15 shares the rotational axis O1 with the compressor rotor 14 and is interlockably coupled.
  • the rotational force of the rotating turbine rotor 15 is immediately transmitted to the coaxial compressor rotor 14 and the compressor rotor 14 is rotated.
  • the compressor rotor 14 rotates the compressor moving blades 34 around the rotation axis O1 to allow the air taken from the outside inside the compressor 4 to be compressed by the moving blades 34 (moving blade row) and the compressor stationary blades 44
  • the stator blade row is sent in the flow direction F while being compressed while sequentially passing through.
  • the high pressure compressed air thus generated is mixed with the fuel in the combustor 11 to become a high temperature / high pressure combustion gas flow B, and flows to the turbine 5. Further, the rotational force generated as described above is transmitted to the generator 20 connected to the rotor 6 to generate electric power.
  • FIG. 1 Although the example which provided the generator 20 coaxially with the rotor 6 is shown in FIG. 1, the generator 20 does not necessarily need to be provided coaxially with the rotor 6.
  • FIG. The rotational force of the rotor 6 may be transmitted to the generator 20 by a gear mechanism or the like.
  • FIG. 2 is a partially enlarged cross-sectional view of one of the combustors 11 of the first embodiment.
  • the combustor 11 is provided with a cylindrical combustion cylinder 21 provided inside the casing 8 of the gas turbine 1 and an acoustic device 31 provided in the middle of the combustion cylinder 21.
  • the combustion cylinder 21 has a tubular shape whose cross-sectional shape gradually changes from a cylindrical shape to a rectangular shape as it goes downstream.
  • the downstream end (combustion gas outlet) of the combustion cylinder 21 is connected to the turbine 5.
  • a combustion region of combustion gas is formed in the combustion cylinder 21.
  • the combustion area of the combustion gas is generated by burning the fuel ejected by the pilot nozzle and the main nozzle by compressed air.
  • the acoustic device 31 includes an acoustic chamber 32, an introduction pipe 41, and a connection portion 51.
  • the introduction pipe 41 is cylindrical.
  • a cylindrical acoustic chamber 32 having an inner diameter larger than its inner diameter is provided.
  • the introductory pipe 41 and the acoustic chamber 32 share a central axis on the introductory pipe central axis O3.
  • a member made of the same material as the member forming the cylindrical shape covers the opening end of the introduction pipe 41 on the acoustic chamber 32 side without closing it.
  • the introduction pipe 41 communicates with the end of the acoustic chamber 32.
  • the end of the introduction pipe 41 extends to the inside of the acoustic chamber 32.
  • the end on the side not connected to the introduction pipe 41 is closed by a member made of the same material as the member forming the cylindrical shape.
  • the acoustic chamber 32 has a sealed structure except for one end where the introduction pipe 41 is in communication.
  • the space inside the enclosed acoustic chamber 32 is an acoustic space R.
  • One end of the introduction pipe 41 is connected in communication with the inside of the combustion cylinder 21 via the connection portion 51.
  • the connection portion 51 is also a tube diameter expansion portion of the introduction tube 41.
  • the connection portion 41 has a substantially cylindrical shape sharing a central axis with the introduction pipe 41.
  • the portion where the connection portion 51 and the introduction pipe 41 are connected is formed to be smoothly connected.
  • the tube diameter expansion from the introduction tube 41 to the connection portion 51 is stepless in the central axis direction. In that point, it differs from the part to which the introductory pipe 41 and the acoustic chamber 32 are connected.
  • connection portion of the connection portion 51 to the combustion cylinder 21 is preferably a portion including the combustion region of the combustion cylinder 21 or a portion downstream of the combustion region.
  • the acoustic space R is connected to the space inside the combustion cylinder 21 via the space inside the introduction pipe 41.
  • all of the acoustic chamber 32, the introductory tube 41, and the connection part 51 are circular in cross section, and are cylindrical shapes which share a central axis. Therefore, it is possible for the entire device to vibrate evenly in the circumferential direction. Furthermore, it is advantageous in terms of strength because there are few places where stress concentration occurs.
  • tube 21 are connected is mentioned later.
  • FIG. 3 is a longitudinal cross-sectional view of the periphery of the connection portion 51, including the central axis O3 of the introduction pipe 41 which is the central axis of the introduction pipe 41.
  • the connecting portion inner surface 51A which is the inner surface of the connecting portion 51, is connected to the combustion cylinder inner surface 21A, which is the inner peripheral surface of the combustion cylinder 21, and the inner peripheral surface 41A, which is the inner peripheral surface of the inlet pipe 41
  • the diameter is reduced in a convex curved surface shape toward the pipe 41.
  • the connection portion 51 is a member separate from the combustion cylinder 21 and the introduction pipe 41.
  • the connection portion 51 is made of, for example, metal of the same material as the introduction pipe 41, and is joined to the combustion cylinder 21 and the introduction pipe 41 by welding.
  • an overlap portion 51 B with the combustion cylinder 21 is provided at the peripheral edge portion of the end portion of the connection portion 51 on the side connected to the combustion cylinder 21.
  • the overlap portion 51B is a peripheral portion of the end portion of the connection portion 51 connected to the combustion cylinder 21 and is formed by cutting only the inner peripheral surface side over the entire circumference only a predetermined distance from the peripheral edge ing.
  • the connection portion 51 is provided such that the overlap portion 51B is in contact with the outer surface of the combustion cylinder 21.
  • the depth of the notch (that is, the radial length of the combustion cylinder 21 when assembled to the combustion cylinder 21) is a wall constituting the combustion cylinder 21. Equal to the thickness of With this configuration, it is possible to secure the strength of the connection portion while connecting the inner peripheral surface of the connection portion 51 and the inner surface of the combustion cylinder 21 in a smooth connection. Further, with this configuration, the connection portion 51 (or the entire acoustic device 31) can be easily assembled from the outside of the combustion cylinder 21. Furthermore, since the positioning operation at the time of assembly becomes easy, the workability is improved.
  • the notches are not formed in the combustion cylinder 21 and the notches are provided only in the peripheral portion of the connecting portion 51 which is relatively thick. This, in addition to the above-mentioned advantages, does not generate a special operation process other than opening the holes for the combustion cylinder which has already been assembled. Therefore, it is also advantageous in terms of working because an acoustic device can be attached.
  • connection portion 51 is connected to the inner surface of the combustion cylinder 21.
  • connection portion inner surface 51A and the combustion cylinder inner surface 21A are formed as a smooth integral curved surface.
  • the curved surface is a curved surface convex toward the inner surface of the connection portion 51 in a cross-sectional view of the surface including the axial center of the introduction tube 41 of the connection portion 51. Subsequently, the shape of the convex curved surface will be described in detail.
  • Convex surface of curvature radius r 1 of the connecting portion inside surface 51A in the combustor 11 according to the first embodiment of the present invention as an example, compared to the radius r 0 of the inner diameter of the inlet pipe 41, 3r 0 ⁇ r 1 ⁇ 0. it may be set within a range of a relation represented by 2r 0. Further, the size of the connection portion 51 is, for example, as an outline shown in FIG. 4 as a contour of a portion of the connection portion 51 excluding the overlap portion 51B in the axial direction of the introduction pipe 41 from the inside of the combustion cylinder 21.
  • a connecting portion 51 radius r 2 is the radius of the circle
  • the radius r 0 of the inner diameter of the inlet pipe 41 may be set within a range of a relation represented by 4r 0 ⁇ r 2 ⁇ r 0.
  • the cross section of the connection portion 51 is circular, but the connection portion 51 may have a cylindrical shape which gradually deforms from circular to elliptical toward the side connected to the combustion cylinder 21.
  • connection portion 51 radius r 2 the long axis radius of ⁇ as the contour of the portion excluding the overlapping portion 51B of the connecting portion 51 in the axial direction as viewed in the introduction pipe 41 from the interior of the combustion cylinder 21
  • the major axis of the oval may extend in any direction along the inner surface of the combustion cylinder.
  • the size of the connection portion 51 is, for example, the connection portion 51 projected area A 1 which is the area of the introduction tube 41 in the axial direction, and the inner area A 0 of the introduction tube 41: 12A 0 AA 1 it may be set within a range of a relation represented by ⁇ a 0.
  • the inner area A 0 means the area of a region surrounded by an axial view which has the inner circumferential surface of the introduction pipe 41 as a contour.
  • connection portion inner surface 51A and the combustion cylinder inner surface 21A are formed into a smooth integral curved surface. Therefore, the combustion gas flow B can flow while bending relatively gently along the connecting portion upstream convex curved surface 51Aa, which is the upstream convex curved surface of the connecting portion 51. Thereby, the combustion gas flow in the vicinity of the introduction pipe combustion cylinder side end 41 B which is the combustion cylinder 21 side end of the introduction pipe 41 is rectified. Therefore, the dissipation of the sound energy due to the turbulent flow is suppressed, and the rise of the acoustic impedance in the vicinity of the connection portion 51 can be suppressed.
  • the acoustic impedance in the vicinity of the connection portion 51 largely increases, the acoustic impedance of the entire combustor 11 increases. As a result, the difference in acoustic impedance between the entire combustor 11 and the turbine 5 becomes large. For this reason, the energy of the reflected wave generated at the downstream end of the combustion cylinder 21 is increased based on the traveling wave traveling downstream in the combustion cylinder 21. As a result, the interference between the reflected wave and the traveling wave is increased, and the air column resonance is largely generated.
  • the acoustic device 31 also functions as a Helmholtz resonance type acoustic damper.
  • an increase in acoustic impedance in the vicinity of the connection portion 51 between the acoustic device 31 and the combustion cylinder 21 can be suppressed. Therefore, the acoustic energy in the combustion liner 21 can be effectively introduced into the acoustic device 31.
  • the muffling function as an acoustic damper can be exhibited effectively.
  • the radius of curvature r 1 of the convex curved surface of the connecting portion 51 as compared to the radius r 0 of the inner diameter of the inlet pipe 41, satisfy the relation represented by 3r 0 ⁇ r 1 ⁇ 0.2r 0 .
  • the combustion gas flow can be controlled by the convex curved surface with an appropriate curvature in consideration of the combustion gas flow velocity and pressure. For this reason, while having the curvature necessary to rectify the combustion gas flow B in the vicinity of the end of the introduction pipe 41 on the side of the combustion cylinder 21, the structure of the minimum size can be obtained.
  • connection portion 51 is, for example, the radius of the circle when the connection portion 51 is circular in the axial direction view of the introduction tube 41, or is elliptical when the same direction view and elliptic r 2 is a circular long axis radius, and the radius r 0 of the inner diameter of the inlet pipe 41 is defined within a range where the relation represented by 4r 0 ⁇ r 2 ⁇ r 0.
  • the connecting portion 51 can be configured to have a size necessary to rectify the combustion gas flow B in the vicinity of the end of the introduction pipe 41 on the side of the combustion cylinder 21.
  • connection portion 51 the connection portion projection area A1 in the axial direction view of the introduction tube 41 and the inner area A 0 of the introduction tube 41 are represented by 12A 0 AA 1 AA 0
  • the connecting portion 51 can be configured to have a size necessary to rectify the combustion gas flow B in the vicinity of the end of the introduction pipe 41 on the side of the combustion cylinder 21.
  • the same components as those of the first embodiment are denoted by the same reference numerals and the detailed description thereof is omitted.
  • the second embodiment is different from the first embodiment in the configuration of the connection portion 52.
  • the curvature of the convex curved surface in the connection portion inner surface 52A has a smaller value as it goes downstream in the flow direction of the combustion gas. That is, as it goes to the circulation direction downstream of the combustion gas, it has a gentle curved surface.
  • the downstream convex curved surface radius of curvature rr2 which is the radius of curvature downstream of the flow direction of the combustion gas flow B, is larger than the upstream convex curved surface radius of curvature rr1 which is the upstream radius of curvature. It has become.
  • the positions of the curvature centers Or of the convex curved surfaces in the connection portion inner surface 52A are different from each other on the upstream side and the downstream side in the flow direction of the combustion gas flow B.
  • the downstream convex curved surface curvature center Or2 that is the curvature center downstream of the combustion gas flow B in the flow direction is more than the upstream convex curved surface curvature center Or1 that is the upstream curvature center
  • the combustion cylinder 22 is positioned radially outward.
  • the combustor 12 having the above configuration, it is possible to relatively reduce the dynamic pressure of the combustion gas flow B received by the connecting portion downstream convex surface 52Ab, which is the flow direction downstream side of the combustion gas flow, among the connection portions 52. . More specifically, as described above, the combustion gas flow B is led to the introduction pipe 42 side along the connecting portion upstream convex surface 52Aa which is the curved surface on the upstream side of the connecting portion 52 in the flow direction. .
  • a flow of returning the combustion gas flow B led to the introduction pipe 42 side by the connection portion downstream convex surface 52Ab with the above configuration to the combustion cylinder 22 side is created.
  • the connecting portion downstream side convex curved surface 52Ab in the present embodiment is located further downstream in the gas flow direction, and exists radially outward of the combustion cylinder 22, and is more gentle. It is a convex surface.
  • the combustion gas flow B flows on the surface of the portion lying more toward the combustion cylinder inner surface 22A in the connecting portion downstream convex surface 52Ab.
  • the concentration of collisions with respect to the connecting portion downstream side curved surface 52Ab is alleviated. Therefore, overheating and stress concentration of the portion can be suppressed, and the reliability of the combustor 12 can be enhanced.
  • the connecting portion 53 is provided with a convex curved surface raised portion 63 in which a part of the convex curved surface is raised in the direction of the central axis O2 of the combustion cylinder 23 on the inner surface on the upstream side in the combustion gas flow direction.
  • the convex curved surface raised portion 63 is formed as a thick portion of the connection portion 53.
  • the combustion gas flow B is led to the introduction pipe 43 side along the upstream convex curved surface 53Aa of the connection portion as described above.
  • the convex curved surface protruding portion 63 on the upstream side in the flow direction of the combustion gas flow B in the connection portion 53 having the above configuration it is once guided inward in the radial direction of the combustion cylinder 23.
  • the combustion gas flow B introduced in this manner is led outward in the combustion cylinder radial direction by the connecting portion upstream convex surface 53Aa. Therefore, the combustion gas flow B passing near the connection portion 53 can flow relatively inward in the combustion cylinder radial direction.
  • the combustion gas flow B is directed in the circumferential direction of the combustion cylinder 23 so as to avoid the protrusion by the convex curved surface raised portion 63 on the upstream side of the flow direction of the combustion gas flow B in the connection portion 53 with the above configuration.
  • concentration of collision on the downstream convex surface 53Ab of the connection portion is alleviated. Therefore, overheating and stress concentration of the portion can be suppressed, and the reliability of the combustor can be enhanced.
  • it is formed as a thick portion of the connection portion 53. Therefore, it is advantageous in terms of strength, and the above effect can be obtained without increasing the number of special parts.
  • the acoustic device 31 includes the box-shaped acoustic chamber 32, the acoustic device 31 may have a cylindrical shape provided by being wound in the circumferential direction of the combustion cylinder.
  • the convex-curved convex part 63 in 3rd embodiment presupposed that it is formed as a part of the thickness of the connection part 53, it is not restricted to this.
  • the thickness may be the same as the thickness of the member constituting the other connection portion 53.
  • combustion vibration based on air column resonance can be effectively suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

The present invention comprises: a cylindrical combustion tube (21) through which a combustion gas (B) flows; an introduction pipe (41) connected to the outer peripheral surface of the combustion tube (21) such that one end of the introduction pipe (41) communicates with the interior of the combustion tube (21); an acoustic space formation part (32) connected in a communicating manner to the other end of the introduction pipe (41), an acoustic space being formed in the acoustic space formation part (32); and a connection part (51) provided between the one end of the introduction pipe (41) and the combustion tube (21), the inner surface of the connection part (51) being continuous with an inner peripheral surface (21A) of the combustion tube (21), and the diameter of the connection part (51) decreasing in a convex-curved-surface shape toward the introduction pipe (41).

Description

燃焼器及びガスタービンCombustor and gas turbine
 本発明は、燃焼器及びガスタービンに関する。
 本願は、2017年11月29日に日本に出願された特願2017-229553号について優先権を主張し、その内容をここに援用する。
The present invention relates to a combustor and a gas turbine.
Priority is claimed on Japanese Patent Application No. 2017-229553, filed Nov. 29, 2017, the content of which is incorporated herein by reference.
 ガスタービンを構成する燃焼器は、圧縮機によって生成された圧縮空気が導入される車室内部に設けられている。燃焼器は、筒状をなす燃焼筒の内部で高温かつ高圧の燃焼ガスを発生させる。燃焼器は、燃焼ガスが供給されるタービンの周方向に複数個が互いに隣接するように配置されている。 The combustor which comprises a gas turbine is provided in the vehicle interior inside into which the compressed air produced | generated by the compressor is introduce | transduced. The combustor generates high-temperature and high-pressure combustion gas inside a cylindrical combustion cylinder. A plurality of combustors are disposed adjacent to each other in the circumferential direction of the turbine to which the combustion gas is supplied.
 例えば特許文献1には、燃焼器に音響ダンパを取り付けることによって、燃焼器の運転時に発生する燃焼振動を抑制する技術が開示されている。 For example, Patent Document 1 discloses a technology for suppressing combustion vibration generated during operation of a combustor by attaching an acoustic damper to the combustor.
特許第5693293号公報Patent No. 5693293 gazette
 ここで、燃焼筒では、燃焼ガスの流れの上流側の端部を開とし、タービンにつながる出口となる下流側の端部を閉とした気柱共鳴が発生する場合がある。このような気柱共鳴が発生すると、複数の燃焼器がそれぞれの出口を介して互いに連成する音響モードの燃焼振動が発生する。 Here, in the combustion cylinder, air column resonance may occur in which the upstream end of the flow of combustion gas is opened and the downstream end serving as the outlet connected to the turbine is closed. When such air column resonance occurs, combustion oscillations of an acoustic mode in which a plurality of combustors are coupled to one another via respective outlets are generated.
 本発明は、気柱共鳴に基づく燃焼振動を効果的に抑制することができる燃焼器及びガスタービンを提供する。 The present invention provides a combustor and a gas turbine that can effectively suppress combustion vibration based on air column resonance.
 本発明の第一態様に係る燃焼器は、燃焼ガスが流通する筒状の燃焼筒と、前記燃焼筒の外周面に、一端が前記燃焼筒の内側に連通するように接続された導入管、該導入管の他端に連通状態で接続されて内部に音響空間が形成された音響空間形成部、及び、前記導入管の一端と前記燃焼筒との間に設けられて、内面が前記燃焼筒の内周面に連なるとともに前記導入管に向かうに従って凸曲面状に縮径する接続部とを有する音響デバイスと、を備える。 The combustor according to the first aspect of the present invention includes a cylindrical combustion cylinder through which combustion gas flows, and an introduction pipe connected to an outer peripheral surface of the combustion cylinder such that one end thereof communicates with the inside of the combustion cylinder. An acoustic space forming part connected to the other end of the introduction pipe in a communicating state to form an acoustic space inside, and provided between one end of the introduction pipe and the combustion cylinder, the inner surface is the combustion cylinder An acoustic device having a connecting portion which is continuous with the inner circumferential surface of the connecting portion and whose diameter is reduced in a convex curved shape toward the introduction pipe.
 ここで、燃焼器の燃焼筒内の気柱共鳴は以下の原理で発生する。燃焼筒内を下流側に向かう進行波は、燃焼筒の下流側の端部で反射する。これによって、燃焼筒内部には、進行波の逆方向、即ち、上流側に向かって進む反射波が発生する。このように燃焼筒の下流側の端部での反射が起こるのは、燃焼器とタービンとの音響インピーダンスが異なるためである。両者のインピーダンスの差が大きい程、反射波のエネルギーも大きくなる。そして、このような反射波と進行波とが干渉することによって上記気柱共鳴が発生する。
 本発明では燃焼筒には音響デバイスが連通状態で設けられている。このような音響デバイスが設けられていることにより、燃焼器全体としての音響インピーダンスを調整することができる。これによって、タービンの音響インピーダンスと燃焼器全体としての音響インピーダンスとの差を小さくし、上記気柱共鳴の要因となる反射波の発生を抑えることができる。
Here, air column resonance in the combustion cylinder of the combustor occurs according to the following principle. A traveling wave traveling downstream in the combustion cylinder is reflected at the downstream end of the combustion cylinder. As a result, a reflected wave that travels in the reverse direction of the traveling wave, that is, the upstream side is generated inside the combustion cylinder. Thus, the reflection at the downstream end of the combustion liner occurs because the acoustic impedances of the combustor and the turbine are different. The greater the difference between the two impedances, the greater the energy of the reflected wave. Then, the air column resonance is generated by the interference between the reflected wave and the traveling wave.
In the present invention, an acoustic device is provided in communication with the combustion cylinder. By providing such an acoustic device, the acoustic impedance of the entire combustor can be adjusted. As a result, the difference between the acoustic impedance of the turbine and the acoustic impedance of the combustor as a whole can be reduced, and the generation of a reflected wave that causes the air column resonance can be suppressed.
 ここで、仮に燃焼筒と音響デバイスとの接続箇所で燃焼ガスの剥離が生じ、流れが大きく乱された場合、即ち、渦流が発生した場合には、当該接続箇所での音響インピーダンスが大きく上昇する。これにより、燃焼器全体の音響インピーダンスとタービンの音響インピーダンスとの差が大きくなる。その結果、燃焼筒の下流側の端部での反射波のエネルギーが大きくなり、気柱共鳴が大きく発生してしまう。
 これに対して本発明では、音響インピーダンスにおける燃焼筒との接続箇所は、内面側に凸曲面状をなす接続部とされている。これによって、燃焼筒内の燃焼ガスが音響デバイスとの接続箇所で剥離することを抑制できる。このため、燃焼器全体の音響インピーダンスが意図した値から大きく外れることを回避できる。その結果、燃焼筒内で発生する反射波の増大を抑制することができる。
Here, if the separation of the combustion gas occurs temporarily at the connection point between the combustion cylinder and the acoustic device and the flow is greatly disturbed, that is, if an eddy current occurs, the acoustic impedance at the connection point is greatly increased. . This increases the difference between the acoustic impedance of the entire combustor and the acoustic impedance of the turbine. As a result, the energy of the reflected wave at the downstream end of the combustion cylinder becomes large, and air column resonance occurs largely.
On the other hand, in the present invention, the connection point with the combustion cylinder in the acoustic impedance is a connection part having a convex curved surface on the inner surface side. By this, it can suppress that the combustion gas in a combustion pipe | tube peels in a connection location with an acoustic device. For this reason, it can be avoided that the acoustic impedance of the entire combustor deviates largely from the intended value. As a result, it is possible to suppress an increase in the reflected wave generated in the combustion cylinder.
 また、上記の燃焼器は、前記接続部内面における凸曲面の曲率が、前記燃焼ガスの流通方向下流側と上流側で互いに異なっていてもよい。 Further, in the above-described combustor, the curvatures of the convex curved surfaces on the inner surface of the connection portion may be different between the downstream side and the upstream side in the flow direction of the combustion gas.
 この構成によれば、前記接続部の特に前記燃焼ガスの流通方向下流側が受ける熱量や動圧を制御することができ当該部分の過熱を抑制することができる。 According to this configuration, it is possible to control the amount of heat and dynamic pressure received by the downstream side of the flow direction of the combustion gas, particularly of the connection portion, and to suppress overheating of the portion.
 また、上記の燃焼器は、前記接続部の前記導入管の中心軸線を含む面の断面視にて、前記接続部の前記燃焼ガスの流通方向下流側の内面における凸曲面の曲率中心が、上流側の内面における凸曲面の曲率中心よりも、前記燃焼筒の径方向外側に設けられていてもよい。 Further, in the above-described combustor, the center of curvature of the convex curved surface on the inner surface downstream of the flow direction of the combustion gas of the connection portion is upstream in the cross-sectional view of the surface including the central axis of the introduction pipe of the connection portion. It may be provided in the diameter direction outside of the above-mentioned combustion pipe rather than the curvature center of the convex curve in the inside of the side.
 この構成によれば、前記接続部の特に前記燃焼ガスの流通方向下流側が受ける熱量や動圧をより効果的に制御することができ、当該部分の過熱を抑制することができる。 According to this configuration, it is possible to more effectively control the amount of heat and dynamic pressure received by the downstream side of the flow direction of the combustion gas, particularly in the connection portion, and to suppress overheating of the portion.
 また、上記の燃焼器は、前記接続部内面における凸曲面の一部に前記燃焼筒の中心軸線に向かって隆起している隆起部を有していてもよい。 Further, the above-described combustor may have a protruding portion which is raised toward a central axis of the combustion cylinder on a part of a convex curved surface on the inner surface of the connection portion.
 この構成によれば、前記接続部の特に前記燃焼ガスの流通方向下流側への衝突を回避する流れを創出することにより、当該部分の過熱を抑制することができる。 According to this configuration, it is possible to suppress the overheating of the portion by creating a flow that avoids the collision of the connection portion particularly toward the downstream side of the flow direction of the combustion gas.
 また、上記の燃焼器は、前記接続部内面における凸曲面の曲率半径rと、導入管の内径の半径rが、3r≧r≧0.2rで表される関係にあってもよい。 Also, the combustor has a radius of curvature r 1 of the convex curved surface in the connecting portion inner surface, the radius r 0 of the inner diameter of the inlet tube, in the relationship represented by 3r 0 ≧ r 1 ≧ 0.2r 0 It is also good.
 この構成によれば、剥離に起因する接続部付近での渦流の発生をより効果的に抑制することができる。 According to this configuration, it is possible to more effectively suppress the generation of the eddy current in the vicinity of the connection portion due to the separation.
 また、上記の燃焼器は、前記接続部が前記導入管の中心軸方向に見て円形又は燃焼筒内面に沿う任意の方向に延びる長軸を有する楕円形であり、該円形の半径又は該楕円形の長軸半径であるrと、導入管の内径の半径rが、4r≧r≧rで表される関係にあってもよい。 Further, the above-mentioned combustor is an ellipse having a circular shape or a long axis extending in any direction along the inner surface of the combustion cylinder when viewed in the central axis direction of the introduction pipe, and the radius of the circular shape or the oval and r 2 is in the form of the long axis radius, the radius r 0 of the inner diameter of the inlet pipe, may be in a relationship represented by 4r 0r 2r 0.
 この構成によれば、剥離に起因する接続部付近での渦流の発生がより効果的に抑制される。 According to this configuration, the generation of the eddy current in the vicinity of the connection portion due to the separation is more effectively suppressed.
 また、上記の燃焼器は、前記接続部の前記導入管の中心軸方向視における投影面積Aと、前記導入管の内面積Aとが、12A≧A≧Aで表される関係にあってもよい。 Also, the combustor has a projected area A 1 in the central axis direction as viewed in the inlet pipe of the connecting portion, and the inner area A 0 of the inlet tube, represented by 12A 0 ≧ A 1 ≧ A 0 It may be in a relationship.
 この構成によれば、剥離に起因する接続部付近での渦流の発生がより効果的に抑制される。 According to this configuration, the generation of the eddy current in the vicinity of the connection portion due to the separation is more effectively suppressed.
 また、本発明に係るガスタービンは、高圧空気を生成する圧縮機と、上記のいずれかの構成による燃焼器と、前記燃焼ガスによって駆動されるタービンと、を備える。 A gas turbine according to the present invention includes a compressor that generates high pressure air, a combustor having any of the above-described configurations, and a turbine driven by the combustion gas.
 本発明によれば、気柱共鳴に基づく燃焼振動を効果的に抑制することができる。 According to the present invention, combustion vibration based on air column resonance can be effectively suppressed.
本発明の第一実施形態に係る燃焼器を有するガスタービンの縦断面図である。It is a longitudinal section of a gas turbine which has a burner concerning a first embodiment of the present invention. 本発明の第一実施形態に係る燃焼器の部分断面図である。It is a fragmentary sectional view of a burner concerning a first embodiment of the present invention. 本発明の第一実施形態に係る燃焼器における要部の、導入管の中心軸線を含む縦断面図である。It is a longitudinal cross-sectional view containing the central axis of the introductory pipe of the principal part in the burner concerning a first embodiment of the present invention. 本発明の第一実施形態に係る燃焼器における要部の、導入管の中心軸線方向視図である。FIG. 3 is a view in the direction of the central axis line of the introduction pipe of the main part of the combustor according to the first embodiment of the present invention. 本発明の第二実施形態に係る燃焼器における要部の、導入管の中心軸線を含む縦断面図である。It is a longitudinal cross-sectional view containing the central axis of the introductory pipe of the principal part in the burner concerning a second embodiment of the present invention. 本発明の第三実施形態に係る燃焼器における要部の、導入管の中心軸線を含む縦断面図である。It is a longitudinal cross-sectional view containing the central axis of the introductory pipe of the principal part in the burner concerning a third embodiment of the present invention.
 [第一実施形態]
 以下、本発明の第一実施形態に係る燃焼器11ついて図面を参照して詳細に説明する。
 まず、本発明の第一実施形態に係るガスタービン1の構成について説明する。図1は、本実施形態に係る燃焼器11を有するガスタービン1の縦断面図として示す全体構成図である。
First Embodiment
Hereinafter, a combustor 11 according to a first embodiment of the present invention will be described in detail with reference to the drawings.
First, the configuration of the gas turbine 1 according to the first embodiment of the present invention will be described. FIG. 1 is an overall configuration view shown as a longitudinal cross-sectional view of a gas turbine 1 having a combustor 11 according to the present embodiment.
 ガスタービン1は、流体が流れる方向である流れ方向Fに沿って、上流側の位置に設けられた圧縮機4と、この圧縮機4の下流側に設けられた複数個の燃焼器11と、この燃焼器11の下流側に設けられ、圧縮機と連動可能に連結されたタービン5と、を備える。燃焼器11は、ロータ6の周方向に沿って複数個が互いに隣接するようにそれぞれ配置されている。 The gas turbine 1 includes a compressor 4 provided at an upstream position along a flow direction F in which the fluid flows, and a plurality of combustors 11 provided downstream of the compressor 4. And a turbine 5 provided downstream of the combustor 11 and operatively coupled to the compressor. A plurality of combustors 11 are disposed adjacent to each other along the circumferential direction of the rotor 6.
 圧縮機4は、空気取込口7から外部の空気を取り込み、この空気を圧縮することにより、圧縮空気を生成する。圧縮機4は、ガスタービン回転軸線O1に沿って延びる圧縮機ロータ14と、圧縮機ロータを外周側から覆う圧縮機ケーシング24とを有している。圧縮機ロータ14は、ガスタービン回転軸線O1を中心軸とする略円柱状を成している。圧縮機ロータ14の外周面と圧縮機ケーシング24の内周面との間には圧縮機動翼34が該外周面に取り付けられている。圧縮機動翼34は、圧縮機ロータ14の外周面に周方向に沿って複数枚取り付けられてなる動翼列として構成されている。さらに、圧縮機ロータ14には、回転軸線O1方向に沿って流体の流れ方向に間隔をあけて複数の動翼列が配置されている。圧縮機ケーシング24の内周側には圧縮機静翼44が取り付けられている。圧縮機静翼44は、圧縮機ケーシング24の内周面に周方向に沿って複数枚の圧縮機静翼44を取り付けられてなる静翼列として構成されている。さらに、圧縮機ケーシング24の内周面には圧縮機ロータ14の軸方向に沿って流体の流れ方向に間隔をあけて複数の静翼列が配置されている。静翼列はガスタービン回転軸線O1方向に動翼列と互い違いになるように配置されている。
 図1では6列の動翼列と6列の静翼列を設けた例を示しているが、動翼列および静翼列の数はこれに限定されるものではない。
The compressor 4 takes in external air from the air intake port 7 and compresses the air to generate compressed air. The compressor 4 has a compressor rotor 14 extending along the gas turbine rotation axis O1, and a compressor casing 24 covering the compressor rotor from the outer peripheral side. The compressor rotor 14 has a substantially cylindrical shape with the gas turbine rotation axis O1 as a central axis. A compressor moving blade 34 is attached to the outer peripheral surface between the outer peripheral surface of the compressor rotor 14 and the inner peripheral surface of the compressor casing 24. The compressor moving blades 34 are configured as a moving blade row formed by attaching a plurality of pieces on the outer peripheral surface of the compressor rotor 14 along the circumferential direction. Furthermore, on the compressor rotor 14, a plurality of moving blade rows are disposed at intervals in the fluid flow direction along the direction of the rotation axis O1. A compressor stator blade 44 is attached to the inner peripheral side of the compressor casing 24. The compressor stator blades 44 are configured as a stator blade row in which a plurality of compressor stator blades 44 are attached to the inner circumferential surface of the compressor casing 24 along the circumferential direction. Furthermore, on the inner peripheral surface of the compressor casing 24, a plurality of stator blade rows are disposed at intervals in the fluid flow direction along the axial direction of the compressor rotor 14. The stationary blade rows are arranged so as to alternate with the moving blade rows in the direction of the gas turbine rotation axis O1.
Although FIG. 1 shows an example in which six rows of moving blade rows and six rows of stationary blade rows are provided, the number of moving blade rows and fixed blade rows is not limited thereto.
 燃焼器11は、圧縮機4が生成した圧縮空気に燃料を噴射して燃焼させることにより高温及び高圧の燃焼ガス流Bを発生させる。
 また、タービン5は、燃焼器11から供給される燃焼ガス流Bを受けてロータ6の回転エネルギーに変換して駆動力を取り出す。タービン5は、ガスタービン回転軸線O1に沿って延びるタービンロータ15と、タービンロータを外周側から覆うタービンケーシング25とを有している。タービン5の構成は、圧縮機4の構成と類似している。即ち、タービンロータ15は、ガスタービン回転軸線O1を中心軸とする略円柱状を成している。タービンロータ15の外周面とタービンケーシング25の内周面との間にはタービン動翼35が該外周面に取り付けられている。タービン動翼35は、タービンロータ15の外周面に周方向に沿って複数枚取り付けられてなる動翼列として構成されている。さらに、タービンロータ15には、回転軸線O1方向に沿って流体の流れ方向に間隔をあけて複数の動翼列が配置されている。タービンケーシング25の内周側にはタービン静翼44が取り付けられている。タービン静翼45は、タービンケーシング25の内周面に周方向に沿って複数枚のタービン静翼45を取り付けられてなる静翼列として構成されている。さらに、タービンケーシング25の内周面にはタービンロータ15の軸方向に沿って流体の流れ方向に間隔をあけて複数の静翼列が配置されている。静翼列はガスタービン回転軸線O1方向に動翼列と互い違いになるように配置されている。図1では4列の動翼列と4列の静翼列を設けた例を示しているが、動翼列および静翼列の数はこれに限定されるものではない。
The combustor 11 generates a high temperature and high pressure combustion gas flow B by injecting fuel to the compressed air generated by the compressor 4 and burning it.
Further, the turbine 5 receives the combustion gas flow B supplied from the combustor 11 and converts it into rotational energy of the rotor 6 to extract driving force. The turbine 5 has a turbine rotor 15 extending along the gas turbine rotation axis O1, and a turbine casing 25 covering the turbine rotor from the outer peripheral side. The configuration of the turbine 5 is similar to that of the compressor 4. That is, the turbine rotor 15 has a substantially cylindrical shape whose center axis is the gas turbine rotation axis O1. A turbine blade 35 is attached to the outer peripheral surface between the outer peripheral surface of the turbine rotor 15 and the inner peripheral surface of the turbine casing 25. The turbine moving blades 35 are configured as a moving blade row formed by mounting a plurality of pieces on the outer peripheral surface of the turbine rotor 15 along the circumferential direction. Furthermore, on the turbine rotor 15, a plurality of moving blade rows are disposed at intervals in the fluid flow direction along the direction of the rotation axis O1. A turbine stator blade 44 is attached to the inner circumferential side of the turbine casing 25. The turbine stator blade 45 is configured as a stator blade row in which a plurality of turbine stator blades 45 are attached to the inner circumferential surface of the turbine casing 25 along the circumferential direction. Furthermore, on the inner peripheral surface of the turbine casing 25, a plurality of stator blade cascades are disposed at intervals in the fluid flow direction along the axial direction of the turbine rotor 15. The stationary blade rows are arranged so as to alternate with the moving blade rows in the direction of the gas turbine rotation axis O1. Although FIG. 1 shows an example in which four rows of moving blade rows and four rows of stationary blade rows are provided, the number of moving blade rows and fixed blade rows is not limited to this.
 ここで、上述の構成からなるタービン5の作用について説明する。燃焼器で生み出された高温かつ高圧の燃焼ガス流Bは、タービン5にて膨張を伴って増速しつつ流れ方向Fに向かって流れ、タービン静翼45(静翼列)及びタービン動翼35(動翼列)を順次通過する。タービン静翼45はガス流を整流する。整流された燃焼ガス流Bを受けてタービン動翼35は燃焼ガス流Bの持つ流れ方向F向きの運動エネルギーを、タービンロータ15のガスタービン回転軸線O1回りの回転運動に変換する。本実施形態では、タービンロータ15は圧縮機ロータ14と回転軸線O1を共有して連動可能に連結されている。このため、回転するタービンロータ15の回転力は即時に同軸上の圧縮機ロータ14に伝達され、圧縮機ロータ14が回転することとなる。圧縮機ロータ14は、圧縮機動翼34を回転軸線O1回りに回転させることで、圧縮機4内部にて、外部から取り込んだ空気を圧縮機動翼34(動翼列)及び圧縮機静翼44(静翼列)を順次通過させつつ圧縮しながら流れ方向Fへと送る。このようにして生成された高圧の圧縮空気は、燃焼器11で燃料と混合されることで高温高圧の燃焼ガス流Bとなり、タービン5へと流れる。また、上述のようにして生成された回転力が、ロータ6に連結された発電機20に伝達され、電力を生成することができるものとなっている。なお、図1ではロータ6と同軸に発電機20を設けた例を示しているが、発電機20はロータ6と必ずしも同軸に設ける必要はない。ギヤ機構などによりロータ6の回転力を発電機20に伝達できれば良い。 Here, the operation of the turbine 5 configured as described above will be described. The high-temperature, high-pressure combustion gas flow B generated by the combustor flows toward the flow direction F while accelerating at the same time as the turbine 5 expands, and the turbine stator blades 45 (the stator blade row) and the turbine blades 35 Pass through (moving blade row) sequentially. The turbine stator 45 rectifies the gas flow. In response to the rectified combustion gas flow B, the turbine blades 35 convert kinetic energy in the flow direction F of the combustion gas flow B into rotational movement of the turbine rotor 15 about the gas turbine rotation axis O1. In the present embodiment, the turbine rotor 15 shares the rotational axis O1 with the compressor rotor 14 and is interlockably coupled. Therefore, the rotational force of the rotating turbine rotor 15 is immediately transmitted to the coaxial compressor rotor 14 and the compressor rotor 14 is rotated. The compressor rotor 14 rotates the compressor moving blades 34 around the rotation axis O1 to allow the air taken from the outside inside the compressor 4 to be compressed by the moving blades 34 (moving blade row) and the compressor stationary blades 44 The stator blade row is sent in the flow direction F while being compressed while sequentially passing through. The high pressure compressed air thus generated is mixed with the fuel in the combustor 11 to become a high temperature / high pressure combustion gas flow B, and flows to the turbine 5. Further, the rotational force generated as described above is transmitted to the generator 20 connected to the rotor 6 to generate electric power. In addition, although the example which provided the generator 20 coaxially with the rotor 6 is shown in FIG. 1, the generator 20 does not necessarily need to be provided coaxially with the rotor 6. FIG. The rotational force of the rotor 6 may be transmitted to the generator 20 by a gear mechanism or the like.
 次に、本発明の第一実施形態に係る燃焼器11の構成について説明する。図2は、第1実施形態の燃焼器11の1つを拡大した部分拡大断面図である。燃焼器11は、ガスタービン1の車室8の内部に設けられた筒状の燃焼筒21と、この燃焼筒21の中途に設けられた音響デバイス31とが設けられている。
 燃焼筒21はその断面形状が、下流側に向かうに従って円筒形状から四角形状に徐々に変化する筒状をなしている。燃焼筒21の下流側の端部(燃焼ガスの出口)は、タービン5に接続されている。燃焼筒21内には、燃焼ガスの燃焼領域が形成される。燃焼ガスの燃焼領域は、パイロットノズル及びメインノズルによって噴出される燃料が圧縮空気によって燃焼されることで生成される。
 音響デバイス31は、音響室32と導入管41と接続部51を有している。一例として、本実施形態では、導入管41は円筒形である。導入管41の端部にはその内径よりも大きい内径とされた円筒形の音響室32が設けられている。導入管41と音響室32とは、導入管中心軸線O3上に中心軸を共有している。円筒形の音響室32のうち導入管41が存在する側の端部では、円筒形を形成する部材と同一材質の部材が、導入管41の音響室32側の開口端を塞ぐことなく覆っている。つまり、導入管41が音響室32の端部に連通している。とくに、本実施形態では、一例として導入管41は音響室32の内部にまでその端部が伸びて構成されている。一方、導入管41と接続されない側の端部は、円筒形を形成する部材と同一材質の部材により塞がれている。換言すれば、音響室32は、導入管41が連通している片方の端部を除いて密閉構造となっている。この密閉された音響室32内部の空間が音響空間Rである。
 導入管41は、一端が接続部51を介して燃焼筒21の内側に連通して接続されている。接続部51も、導入管41の管径拡張部分である。接続部41は、導入管41と中心軸を共有するおおよそ筒状を成している。接続部51と導入管41とが接続されている部分は、滑らかに連なるように形成されている。この導入管41から接続部51にかけての管径拡張は中心軸方向で無段階となっている。その点で、導入管41と音響室32とが接続されている部分とは異なっている。接続部51の燃焼筒21への接続箇所は燃焼筒21の燃焼領域を含む部分、又は、燃焼領域よりも下流側の部分とされていることが好ましい。
 上記の構成により、音響空間Rは導入管41内部の空間を介して燃焼筒21内部の空間へと接続されることとなる。また、上記構成の音響デバイスは、音響室32、導入管41及び接続部51がいずれも横断面が円形であって、中心軸を共有する円筒形である。このため、周方向においてデバイス全体が均等に振動することが可能である。さらに、応力集中が発生する箇所が少ないために強度的に有利でもある。接続部51と燃焼筒21とが接続されている部分についての構成は、後述する。
Next, the configuration of the combustor 11 according to the first embodiment of the present invention will be described. FIG. 2 is a partially enlarged cross-sectional view of one of the combustors 11 of the first embodiment. The combustor 11 is provided with a cylindrical combustion cylinder 21 provided inside the casing 8 of the gas turbine 1 and an acoustic device 31 provided in the middle of the combustion cylinder 21.
The combustion cylinder 21 has a tubular shape whose cross-sectional shape gradually changes from a cylindrical shape to a rectangular shape as it goes downstream. The downstream end (combustion gas outlet) of the combustion cylinder 21 is connected to the turbine 5. A combustion region of combustion gas is formed in the combustion cylinder 21. The combustion area of the combustion gas is generated by burning the fuel ejected by the pilot nozzle and the main nozzle by compressed air.
The acoustic device 31 includes an acoustic chamber 32, an introduction pipe 41, and a connection portion 51. As an example, in the present embodiment, the introduction pipe 41 is cylindrical. At the end of the introduction tube 41, a cylindrical acoustic chamber 32 having an inner diameter larger than its inner diameter is provided. The introductory pipe 41 and the acoustic chamber 32 share a central axis on the introductory pipe central axis O3. At the end of the cylindrical acoustic chamber 32 on the side where the introduction pipe 41 exists, a member made of the same material as the member forming the cylindrical shape covers the opening end of the introduction pipe 41 on the acoustic chamber 32 side without closing it. There is. That is, the introduction pipe 41 communicates with the end of the acoustic chamber 32. In particular, in the present embodiment, as an example, the end of the introduction pipe 41 extends to the inside of the acoustic chamber 32. On the other hand, the end on the side not connected to the introduction pipe 41 is closed by a member made of the same material as the member forming the cylindrical shape. In other words, the acoustic chamber 32 has a sealed structure except for one end where the introduction pipe 41 is in communication. The space inside the enclosed acoustic chamber 32 is an acoustic space R.
One end of the introduction pipe 41 is connected in communication with the inside of the combustion cylinder 21 via the connection portion 51. The connection portion 51 is also a tube diameter expansion portion of the introduction tube 41. The connection portion 41 has a substantially cylindrical shape sharing a central axis with the introduction pipe 41. The portion where the connection portion 51 and the introduction pipe 41 are connected is formed to be smoothly connected. The tube diameter expansion from the introduction tube 41 to the connection portion 51 is stepless in the central axis direction. In that point, it differs from the part to which the introductory pipe 41 and the acoustic chamber 32 are connected. The connection portion of the connection portion 51 to the combustion cylinder 21 is preferably a portion including the combustion region of the combustion cylinder 21 or a portion downstream of the combustion region.
With the above configuration, the acoustic space R is connected to the space inside the combustion cylinder 21 via the space inside the introduction pipe 41. Moreover, as for the acoustic device of the said structure, all of the acoustic chamber 32, the introductory tube 41, and the connection part 51 are circular in cross section, and are cylindrical shapes which share a central axis. Therefore, it is possible for the entire device to vibrate evenly in the circumferential direction. Furthermore, it is advantageous in terms of strength because there are few places where stress concentration occurs. The structure about the part to which the connection part 51 and the combustion pipe | tube 21 are connected is mentioned later.
 以下、本発明の第一実施形態に係る燃焼器11の要部について詳述する。図3は、接続部51周辺部の、導入管41の中心軸線である導入管中心軸線O3を含む縦断面図である。本実施形態では、接続部51の内面である接続部内面51Aは、燃焼筒21の内周面である燃焼筒内面21A及び導入管41の内周面である導入管内周面41Aに連なるとともに導入管41に向かうに従って凸曲面状に縮径している。
 接続部51は、燃焼筒21及び導入管41とは別体の部材である。接続部51は、例えば、導入管41と同一素材の金属から成り、燃焼筒21及び導入管41とは溶接により接合されている。ここで、接続部51の燃焼筒21と接続する側の終端部の周縁部には燃焼筒21とのオーバーラップ部51Bを有している。オーバーラップ部51Bは、接続部51の燃焼筒21に接続される側の終端部の周縁部であって内周面側のみを、周縁から所定距離だけを全周に渡って切り欠いて形成されている。接続部51は、このオーバーラップ部51Bが燃焼筒21の外面に接するようにして設けられることとなる。ここで、本実施形態でのオーバーラップ部51Bは、上記切欠きの深さ(つまり、燃焼筒21に組み付けられたときは燃焼筒21の径方向長さ)は、燃焼筒21を構成する壁の厚さに等しい。この構成により、接続部51の内周面と燃焼筒21の内面とを滑らかに連なるように接続しつつ、接続箇所の強度を確保することができる。また、この構成により燃焼筒21の外部から容易に接続部51(又は音響デバイス31全体)を組み付けることができる。さらに、組立時の位置決め作業が容易となるため、工作性が向上する。さらに、本実施形態では、一例として、燃焼筒21には切欠きを構成せず、相対的に肉厚とした接続部51の周縁部のみに切欠きを設けている。このことは、上記の利点に加え、すでに組み立てが完了した燃焼筒に対して、孔を開口させる以外の特段の作業工程を発生させない。そのため、音響デバイスを取り付けることができるという点でも、工作上有利である。
Hereinafter, the principal part of the combustor 11 according to the first embodiment of the present invention will be described in detail. FIG. 3 is a longitudinal cross-sectional view of the periphery of the connection portion 51, including the central axis O3 of the introduction pipe 41 which is the central axis of the introduction pipe 41. In the present embodiment, the connecting portion inner surface 51A, which is the inner surface of the connecting portion 51, is connected to the combustion cylinder inner surface 21A, which is the inner peripheral surface of the combustion cylinder 21, and the inner peripheral surface 41A, which is the inner peripheral surface of the inlet pipe 41 The diameter is reduced in a convex curved surface shape toward the pipe 41.
The connection portion 51 is a member separate from the combustion cylinder 21 and the introduction pipe 41. The connection portion 51 is made of, for example, metal of the same material as the introduction pipe 41, and is joined to the combustion cylinder 21 and the introduction pipe 41 by welding. Here, an overlap portion 51 B with the combustion cylinder 21 is provided at the peripheral edge portion of the end portion of the connection portion 51 on the side connected to the combustion cylinder 21. The overlap portion 51B is a peripheral portion of the end portion of the connection portion 51 connected to the combustion cylinder 21 and is formed by cutting only the inner peripheral surface side over the entire circumference only a predetermined distance from the peripheral edge ing. The connection portion 51 is provided such that the overlap portion 51B is in contact with the outer surface of the combustion cylinder 21. Here, in the overlap portion 51B in the present embodiment, the depth of the notch (that is, the radial length of the combustion cylinder 21 when assembled to the combustion cylinder 21) is a wall constituting the combustion cylinder 21. Equal to the thickness of With this configuration, it is possible to secure the strength of the connection portion while connecting the inner peripheral surface of the connection portion 51 and the inner surface of the combustion cylinder 21 in a smooth connection. Further, with this configuration, the connection portion 51 (or the entire acoustic device 31) can be easily assembled from the outside of the combustion cylinder 21. Furthermore, since the positioning operation at the time of assembly becomes easy, the workability is improved. Furthermore, in the present embodiment, as an example, the notches are not formed in the combustion cylinder 21 and the notches are provided only in the peripheral portion of the connecting portion 51 which is relatively thick. This, in addition to the above-mentioned advantages, does not generate a special operation process other than opening the holes for the combustion cylinder which has already been assembled. Therefore, it is also advantageous in terms of working because an acoustic device can be attached.
 上記の構成により、接続部51はその内面が燃焼筒21の内面に連なっている。換言すれば、接続部内面51Aと燃焼筒内面21Aは滑らかな一体の曲面になっている。また、このとき曲面は接続部51の導入管41の軸中心を含む面の断面視にて、接続部51の内面に向かって凸である曲面状になっている。続いて、凸曲面の形状について詳述する。 With the above configuration, the inner surface of the connection portion 51 is connected to the inner surface of the combustion cylinder 21. In other words, the connection portion inner surface 51A and the combustion cylinder inner surface 21A are formed as a smooth integral curved surface. At this time, the curved surface is a curved surface convex toward the inner surface of the connection portion 51 in a cross-sectional view of the surface including the axial center of the introduction tube 41 of the connection portion 51. Subsequently, the shape of the convex curved surface will be described in detail.
 本発明の第一実施形態に係る燃焼器11における接続部内面51Aの凸曲面曲率半径rは、一例として、導入管41の内径の半径rと比較し、3r≧r≧0.2rで表される関係となる範囲内に設定されてもよい。また、接続部51の大きさは、例えば図4に示す一例として、燃焼筒21の内部からの導入管41の軸方向視にて接続部51のうちオーバーラップ部51Bを除いた部分の輪郭としての円の半径である接続部51半径rと、導入管41の内径の半径rとが、4r≧r≧rで表される関係となる範囲内に設定されてもよい。本実施形態では、接続部51の断面は円形であるとしたが、接続部51は燃焼筒21に接続される側に向かうに従い徐々に円形から楕円形に変形する筒状であってもよい。この場合、接続部51半径rは、燃焼筒21の内部からの導入管41の軸方向視にて接続部51のうちオーバーラップ部51Bを除いた部分の輪郭としての惰円の長軸半径であってもよい。このとき、該楕円形の長軸は、燃焼筒内面に沿ったいずれの方向に延びていてもよい。さらに、接続部51の大きさは、一例として、前記導入管41の軸方向視における面積である接続部51投影面積Aと、導入管41の内面積Aとが、12A≧A≧Aで表される関係となる範囲内に設定されてもよい。ここで内面積Aとは、導入管41の内周面を輪郭とする軸方向視で囲まれた領域の面積を意味する。 Convex surface of curvature radius r 1 of the connecting portion inside surface 51A in the combustor 11 according to the first embodiment of the present invention, as an example, compared to the radius r 0 of the inner diameter of the inlet pipe 41, 3r 0 ≧ r 1 ≧ 0. it may be set within a range of a relation represented by 2r 0. Further, the size of the connection portion 51 is, for example, as an outline shown in FIG. 4 as a contour of a portion of the connection portion 51 excluding the overlap portion 51B in the axial direction of the introduction pipe 41 from the inside of the combustion cylinder 21. a connecting portion 51 radius r 2 is the radius of the circle, the radius r 0 of the inner diameter of the inlet pipe 41 may be set within a range of a relation represented by 4r 0 ≧ r 2 ≧ r 0. In the present embodiment, the cross section of the connection portion 51 is circular, but the connection portion 51 may have a cylindrical shape which gradually deforms from circular to elliptical toward the side connected to the combustion cylinder 21. In this case, the connection portion 51 radius r 2, the long axis radius of惰円as the contour of the portion excluding the overlapping portion 51B of the connecting portion 51 in the axial direction as viewed in the introduction pipe 41 from the interior of the combustion cylinder 21 It may be At this time, the major axis of the oval may extend in any direction along the inner surface of the combustion cylinder. Furthermore, the size of the connection portion 51 is, for example, the connection portion 51 projected area A 1 which is the area of the introduction tube 41 in the axial direction, and the inner area A 0 of the introduction tube 41: 12A 0 AA 1 it may be set within a range of a relation represented by ≧ a 0. Here, the inner area A 0 means the area of a region surrounded by an axial view which has the inner circumferential surface of the introduction pipe 41 as a contour.
 上記構成の燃焼器11では、接続部内面51Aと燃焼筒内面21Aは滑らかな一体の曲面になっている。このため、燃焼ガス流Bは、接続部51における上流側の凸曲面である接続部上流側凸曲面51Aaに沿って比較的緩やかに曲がりながら流れることができる。これにより、導入管41の燃焼筒21側端部である導入管燃焼筒側端部41B付近における燃焼ガス流が整流となる。そのため、乱流による音エネルギーの消散が抑制され、接続部51付近における音響インピーダンスの上昇を抑えることができる。 In the combustor 11 configured as described above, the connection portion inner surface 51A and the combustion cylinder inner surface 21A are formed into a smooth integral curved surface. Therefore, the combustion gas flow B can flow while bending relatively gently along the connecting portion upstream convex curved surface 51Aa, which is the upstream convex curved surface of the connecting portion 51. Thereby, the combustion gas flow in the vicinity of the introduction pipe combustion cylinder side end 41 B which is the combustion cylinder 21 side end of the introduction pipe 41 is rectified. Therefore, the dissipation of the sound energy due to the turbulent flow is suppressed, and the rise of the acoustic impedance in the vicinity of the connection portion 51 can be suppressed.
 ここで、仮に接続部51付近での音響インピーダンスが大きく上昇した場合、燃焼器11全体としての音響インピーダンスが増大する。その結果、燃焼器11全体とタービン5との音響インピーダンスの差が大きくなる。このため、燃焼筒21内を下流側に向かう進行波に基づいて該燃焼筒21の下流側の端部で発生する反射波のエネルギーが大きくなる。その結果、反射波と進行波との干渉作用が増大し、上記気柱共鳴が大きく発生してしまう。 Here, if the acoustic impedance in the vicinity of the connection portion 51 largely increases, the acoustic impedance of the entire combustor 11 increases. As a result, the difference in acoustic impedance between the entire combustor 11 and the turbine 5 becomes large. For this reason, the energy of the reflected wave generated at the downstream end of the combustion cylinder 21 is increased based on the traveling wave traveling downstream in the combustion cylinder 21. As a result, the interference between the reflected wave and the traveling wave is increased, and the air column resonance is largely generated.
 これに対して本実施形態では、上記の通り、音響デバイス31と燃焼筒21との接続部51付近での燃焼ガスの剥離を抑制することができる。このため、燃焼器11全体の音響インピーダンスが意図した値から大きく外れてしまうことを抑制できる。そのため、燃焼筒21の下流側の端部を、無反射境界に近づけることができる。その結果、燃焼筒21内で発生する反射波の増大を回避し、気柱共鳴の増大を抑えることができる。したがって、複数の燃焼器11が連成することで発生する燃焼振動を抑制することができる。 On the other hand, in the present embodiment, as described above, it is possible to suppress the separation of the combustion gas in the vicinity of the connection portion 51 between the acoustic device 31 and the combustion cylinder 21. Therefore, it is possible to suppress that the acoustic impedance of the entire combustor 11 is largely deviated from the intended value. Therefore, the downstream end of the combustion liner 21 can be brought close to the non-reflecting boundary. As a result, it is possible to avoid an increase in the reflected wave generated in the combustion cylinder 21 and to suppress an increase in air column resonance. Therefore, the combustion vibration which generate | occur | produces by couple | bonding a several combustor 11 can be suppressed.
 なお、音響デバイス31は、ヘルムホルツ共鳴型の音響ダンパとしても機能する。本実施形態では、音響デバイス31と燃焼筒21との接続部51付近での音響インピーダンスの増大を抑えることができる。そのため、燃焼筒21内の音響エネルギーを効果的に音響デバイス31内に導入することができる。これによって、音響ダンパとしての消音機能を効果的に発揮することができる。 The acoustic device 31 also functions as a Helmholtz resonance type acoustic damper. In the present embodiment, an increase in acoustic impedance in the vicinity of the connection portion 51 between the acoustic device 31 and the combustion cylinder 21 can be suppressed. Therefore, the acoustic energy in the combustion liner 21 can be effectively introduced into the acoustic device 31. By this, the muffling function as an acoustic damper can be exhibited effectively.
 また、接続部51の凸曲面の曲率半径rは、導入管41の内径の半径rと比較し、3r≧r≧0.2rで表される関係を満たしている。このことにより、燃焼ガス流速や圧力を考慮して、適切な曲率の凸曲面にて燃焼ガス流を制御することができる。このため、導入管41の燃焼筒21側端部付近における燃焼ガス流Bを整流とするために必要な曲率でありながら、最小限の大きさの構造とすることができる。 Moreover, the radius of curvature r 1 of the convex curved surface of the connecting portion 51, as compared to the radius r 0 of the inner diameter of the inlet pipe 41, satisfy the relation represented by 3r 0 ≧ r 1 ≧ 0.2r 0 . As a result, the combustion gas flow can be controlled by the convex curved surface with an appropriate curvature in consideration of the combustion gas flow velocity and pressure. For this reason, while having the curvature necessary to rectify the combustion gas flow B in the vicinity of the end of the introduction pipe 41 on the side of the combustion cylinder 21, the structure of the minimum size can be obtained.
 また、接続部51の大きさは、一例として、接続部51が導入管41の軸方向視にて円形である場合はその円の半径であり、同方向視にて楕円形である場合は又は該楕円形の長軸半径であるrと、導入管41の内径の半径rとが、4r≧r≧rで表される関係となる範囲内で規定されている。このことにより、接続部51について、導入管41の燃焼筒21側端部付近における燃焼ガス流Bを整流とするために必要な大きさの構造とすることができる。 Further, the size of the connection portion 51 is, for example, the radius of the circle when the connection portion 51 is circular in the axial direction view of the introduction tube 41, or is elliptical when the same direction view and elliptic r 2 is a circular long axis radius, and the radius r 0 of the inner diameter of the inlet pipe 41 is defined within a range where the relation represented by 4r 0 ≧ r 2 ≧ r 0. As a result, the connecting portion 51 can be configured to have a size necessary to rectify the combustion gas flow B in the vicinity of the end of the introduction pipe 41 on the side of the combustion cylinder 21.
 さらに、接続部51の大きさは、一例として、導入管41の軸方向視における接続部投影面積A1と、導入管41の内面積Aとが、12A≧A≧Aで表される関係となる範囲内で規定されている。このことにより、接続部51について、導入管41の燃焼筒21側端部付近における燃焼ガス流Bを整流とするために必要な大きさの構造とすることができる。 Furthermore, as an example of the size of the connection portion 51, the connection portion projection area A1 in the axial direction view of the introduction tube 41 and the inner area A 0 of the introduction tube 41 are represented by 12A 0 AA 1 AA 0 Defined within the scope of As a result, the connecting portion 51 can be configured to have a size necessary to rectify the combustion gas flow B in the vicinity of the end of the introduction pipe 41 on the side of the combustion cylinder 21.
[第二実施形態]
 次に第二実施形態について図5を参照して説明する。第二実施形態では第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
 第二実施形態は、第一実施形態と比較し、接続部52の構成が異なっている。
 本実施形態では、接続部内面52Aにおける凸曲面の曲率が、前記燃焼ガスの流通方向下流側に向かうにしたがって、小さい値となっている。つまり、前記燃焼ガスの流通方向下流側に向かうにしたがって、緩慢な曲面となっている。一例として、曲率半径rrのうち、燃焼ガス流Bの流通方向下流側の曲率半径である下流側凸曲面曲率半径rr2が、上流側の曲率半径である上流側凸曲面曲率半径rr1よりも大きい値となっている。
Second Embodiment
Next, a second embodiment will be described with reference to FIG. In the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals and the detailed description thereof is omitted.
The second embodiment is different from the first embodiment in the configuration of the connection portion 52.
In the present embodiment, the curvature of the convex curved surface in the connection portion inner surface 52A has a smaller value as it goes downstream in the flow direction of the combustion gas. That is, as it goes to the circulation direction downstream of the combustion gas, it has a gentle curved surface. As an example, in the radius of curvature rr, the downstream convex curved surface radius of curvature rr2, which is the radius of curvature downstream of the flow direction of the combustion gas flow B, is larger than the upstream convex curved surface radius of curvature rr1 which is the upstream radius of curvature. It has become.
 また、本実施形態では、接続部内面52Aにおける凸曲面の曲率中心Orの位置が、燃焼ガス流Bの流通方向上流側と下流側で互いに異なっている。本実施形態では、曲率中心Orのうち、燃焼ガス流Bの流通方向下流側の曲率中心である下流側凸曲面曲率中心Or2が、上流側の曲率中心である上流側凸曲面曲率中心Or1よりも燃焼筒22の径方向外方に位置するようになっている。 Further, in the present embodiment, the positions of the curvature centers Or of the convex curved surfaces in the connection portion inner surface 52A are different from each other on the upstream side and the downstream side in the flow direction of the combustion gas flow B. In the present embodiment, among the curvature centers Or, the downstream convex curved surface curvature center Or2 that is the curvature center downstream of the combustion gas flow B in the flow direction is more than the upstream convex curved surface curvature center Or1 that is the upstream curvature center The combustion cylinder 22 is positioned radially outward.
 上記構成の燃焼器12では、接続部52のうち、特に燃焼ガス流の流通方向下流側である接続部下流側凸曲面52Abが受ける燃焼ガス流Bの動圧を相対的に低減することができる。より具体的には、燃焼ガス流Bは、上記のように、接続部52の流通方向上流側の曲面である接続部上流側凸曲面52Aaに沿うようにして、導入管42側へと導かれる。ここで、その下流側では、上記構成による接続部下流側凸曲面52Abによって導入管42側に導かれた燃焼ガス流Bに、燃焼筒22側に戻す流れが作られる。本実施例における接続部下流側凸曲面52Abは、第一実施形態と比較して、よりガス流通方向下流側であって燃焼筒22の径方向外方に存在することとなり、かつ、より緩やかな凸曲面となっている。これにより、燃焼ガス流Bは、接続部下流側凸曲面52Abのうち、より燃焼筒内面22Aに向かって寝ている部分の面上を流れることとな。その結果、該接続部下流側曲面52Abに対しての衝突の集中が緩和される。そのため、当該部分の過熱や応力集中を抑制することができ、燃焼器12の信頼性を高めることができる。 In the combustor 12 having the above configuration, it is possible to relatively reduce the dynamic pressure of the combustion gas flow B received by the connecting portion downstream convex surface 52Ab, which is the flow direction downstream side of the combustion gas flow, among the connection portions 52. . More specifically, as described above, the combustion gas flow B is led to the introduction pipe 42 side along the connecting portion upstream convex surface 52Aa which is the curved surface on the upstream side of the connecting portion 52 in the flow direction. . Here, on the downstream side, a flow of returning the combustion gas flow B led to the introduction pipe 42 side by the connection portion downstream convex surface 52Ab with the above configuration to the combustion cylinder 22 side is created. As compared with the first embodiment, the connecting portion downstream side convex curved surface 52Ab in the present embodiment is located further downstream in the gas flow direction, and exists radially outward of the combustion cylinder 22, and is more gentle. It is a convex surface. As a result, the combustion gas flow B flows on the surface of the portion lying more toward the combustion cylinder inner surface 22A in the connecting portion downstream convex surface 52Ab. As a result, the concentration of collisions with respect to the connecting portion downstream side curved surface 52Ab is alleviated. Therefore, overheating and stress concentration of the portion can be suppressed, and the reliability of the combustor 12 can be enhanced.
[第三実施形態]
 次に第三実施形態について図6を参照して説明する。第三実施形態では第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
 第三実施形態は、第一実施形態と比較し、接続部53の構成が異なっている。
 本実施形態では、接続部53は、燃焼ガス流通方向上流側の内面に、凸曲面の一部が燃焼筒23の中心軸線O2方向に向かって隆起した凸曲面隆起部63を備えている。本実施形態では、一例として、凸曲面隆起部63は接続部53の肉厚の部分として形成されている。
Third Embodiment
Next, a third embodiment will be described with reference to FIG. In the third embodiment, the same components as those of the first embodiment are denoted by the same reference numerals and the detailed description thereof is omitted.
The third embodiment is different from the first embodiment in the configuration of the connection portion 53.
In the present embodiment, the connecting portion 53 is provided with a convex curved surface raised portion 63 in which a part of the convex curved surface is raised in the direction of the central axis O2 of the combustion cylinder 23 on the inner surface on the upstream side in the combustion gas flow direction. In the present embodiment, as an example, the convex curved surface raised portion 63 is formed as a thick portion of the connection portion 53.
 上記構成の燃焼器13では、燃焼ガス流Bは、上記のように、接続部上流側凸曲面53Aaに沿うようにして、導入管43側へと導かれる。ここで、上記構成による接続部53における燃焼ガス流Bの流れ方向上流側の凸曲面隆起部63によって、燃焼筒23径方向内方に一旦導かれることとなる。このようにして導かれた燃焼ガス流Bが、接続部上流側凸曲面53Aaによって燃焼筒径方向外方へと導かれることとなる。そのため、接続部53付近を通過する燃焼ガス流Bを、相対的に燃焼筒径方向内方を流れるものとすることができる。
 さらに、上記構成による接続部53における燃焼ガス流Bの流れ方向上流側の凸曲面隆起部63によって、該隆起を避けるように、燃焼筒23周方向にそれて燃焼ガス流Bが導かれることとなる。
 上述の作用により、接続部下流側凸曲面53Abに対しての衝突の集中が緩和される。そのため、当該部分の過熱や応力集中を抑制することができ、燃焼器の信頼性を高めることができる。また、接続部53の肉厚の部分として形成されている。そのため、強度的に有利であり、かつ、特段の部品点数を増やすことなく上記の効果を得ることができる。
In the combustor 13 configured as described above, the combustion gas flow B is led to the introduction pipe 43 side along the upstream convex curved surface 53Aa of the connection portion as described above. Here, by the convex curved surface protruding portion 63 on the upstream side in the flow direction of the combustion gas flow B in the connection portion 53 having the above configuration, it is once guided inward in the radial direction of the combustion cylinder 23. The combustion gas flow B introduced in this manner is led outward in the combustion cylinder radial direction by the connecting portion upstream convex surface 53Aa. Therefore, the combustion gas flow B passing near the connection portion 53 can flow relatively inward in the combustion cylinder radial direction.
Further, the combustion gas flow B is directed in the circumferential direction of the combustion cylinder 23 so as to avoid the protrusion by the convex curved surface raised portion 63 on the upstream side of the flow direction of the combustion gas flow B in the connection portion 53 with the above configuration. Become.
By the above-described operation, concentration of collision on the downstream convex surface 53Ab of the connection portion is alleviated. Therefore, overheating and stress concentration of the portion can be suppressed, and the reliability of the combustor can be enhanced. In addition, it is formed as a thick portion of the connection portion 53. Therefore, it is advantageous in terms of strength, and the above effect can be obtained without increasing the number of special parts.
 以上、本発明の第一、第二、第三実施形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、音響デバイス31は箱型の音響室32を備えるものとしたが、燃焼筒の周方向に巻きつけられて設けられた円筒状であってもよい。
 また、第三実施形態における凸曲面隆起部63は、接続部53の肉厚の部分として形成されているとしたが、これに限られるものではない。例えば、凸曲面隆起部付近であっても、他の接続部53を構成する部材と共通の厚さとなるように構成してもよい。
The first, second, and third embodiments of the present invention have been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the scope without departing from the scope of the present invention And design changes etc. are also included.
For example, although the acoustic device 31 includes the box-shaped acoustic chamber 32, the acoustic device 31 may have a cylindrical shape provided by being wound in the circumferential direction of the combustion cylinder.
Moreover, although the convex-curved convex part 63 in 3rd embodiment presupposed that it is formed as a part of the thickness of the connection part 53, it is not restricted to this. For example, even in the vicinity of the convex curved surface protuberance, the thickness may be the same as the thickness of the member constituting the other connection portion 53.
 本発明によれば、気柱共鳴に基づく燃焼振動を効果的に抑制することができる。 According to the present invention, combustion vibration based on air column resonance can be effectively suppressed.
1、2、3     ガスタービン
11、12、13  燃焼器
4         圧縮機
14        圧縮機ロータ
24        圧縮機ケーシング
34        圧縮機動翼
44        圧縮機静翼
5         タービン
15        タービンロータ
25        タービンケーシング
35        タービン動翼
45        タービン静翼
6         ロータ
7         空気取込口
8         車室
21、22、23  燃焼筒
21A    、22A、23A、
  燃焼筒内面
31        音響デバイス
32        音響室
41、42、43  導入管
41A、42A、43A   導入管内周面
41B          導入管燃焼筒側端部
51、52、53  接続部
51A、52A   接続部内面
51Aa      接続部上流側凸曲面
52Aa      接続部上流側凸曲面
52Ab      接続部下流側凸曲面
53Ab      接続部下流側凸曲面
51B          オーバーラップ部
63        凸曲面隆起部
F         流体流通方向
B         燃焼ガス流
R         音響空間
、rr      凸曲面曲率半径
        接続部半径
        導入管の内径の半径
        接続部投影面積
        導入管内面積
O1        ガスタービン回転軸線
O2        燃焼筒中心軸線
O3        導入管中心軸線
Or        凸曲面曲率中心
Or1          上流側凸曲面曲率中心
Or2          下流側凸曲面曲率中心
rr1          上流側凸曲面曲率半径
rr2          下流側凸曲面曲率半径
1, 2, 3 Gas turbines 11, 12, 13 Combustor 4 Compressor 14 Compressor rotor 24 Compressor casing 34 Compression blade 44 Compressor vane 5 Turbine 15 Turbine rotor 25 Turbine casing 35 Turbine bucket 45 Turbine vane 6 Rotor 7 Air intake port 8 compartments 21, 22, 23 combustion cylinders 21A, 22A, 23A,
Combustion cylinder inner surface 31 Acoustic device 32 Acoustic chamber 41, 42, 43 Introduction tube 41A, 42A, 43A Introduction tube inner circumferential surface 41B Introduction tube combustion tube side end 51, 52, 53 Connection 51A, 52A Connection inner surface 51Aa Connection upstream Side convex curved surface 52Aa Connection portion upstream convex surface 52Ab Connection portion downstream convex surface 53Ab Connection portion downstream convex surface 51B Overlap portion 63 convex curved surface raised portion F fluid flow direction B combustion gas flow R acoustic space r 1 , rr convex curved surface radius a 1 connecting portion projected area a 0 introducing tube area O1 gas turbine rotation axis O2 combustion tube central axis O3 introducing tube central axis Or convex curved center of curvature Or1 upstream-side convex of the inner diameter of the curvature radius r 2 connecting portion radius r 0 inlet tube Curved surface curvature center Or2 downstream convex Surface curvature center rr1 upstream convex curved surface curvature radius rr2 downstream convex curved surface curvature radius

Claims (8)

  1.  燃焼ガスが流通する筒状の燃焼筒と、
     前記燃焼筒の外周面に、一端が前記燃焼筒の内側に連通するように接続された導入管、該導入管の他端に連通状態で接続されて内部に音響空間が形成された音響空間形成部、及び、前記導入管の一端と前記燃焼筒との間に設けられて、内面が前記燃焼筒の内周面に連なるとともに前記導入管に向かうに従って凸曲面状に縮径する接続部を有する音響デバイスと、
     を備える燃焼器。
    A cylindrical combustion cylinder through which combustion gas flows,
    An introduction pipe connected to the outer peripheral surface of the combustion cylinder so that one end is in communication with the inside of the combustion cylinder, and an acoustic space formed in the inside of which an acoustic space is formed by being connected to the other end of the introduction pipe in communication. And a connecting portion provided between one end of the introduction pipe and the combustion cylinder, the inner surface being continuous with the inner circumferential surface of the combustion cylinder and having a diameter decreasing toward a convex curved surface toward the introduction pipe An acoustic device,
    A combustor comprising:
  2.  前記接続部内面における凸曲面の曲率が、前記燃焼ガスの流通方向下流側と上流側で互いに異なる請求項1に記載の燃焼器。 The combustor according to claim 1, wherein the curvatures of the convex curved surface on the inner surface of the connection portion are different between the flow direction downstream of the combustion gas and the upstream side.
  3.  前記接続部の前記導入管の中心軸線を含む面の断面視にて、前記接続部の前記燃焼ガスの流通方向下流側の内面における凸曲面の曲率中心が、上流側の内面における凸曲面の曲率中心よりも、前記燃焼筒の径方向外側に設けられている請求項1に記載の燃焼器。 The center of curvature of the convex curved surface on the inner surface of the connecting portion on the downstream side of the flow direction of the combustion gas is the curvature of the convex curved surface on the upstream side in a sectional view of the surface including the central axis of the introducing pipe of the connecting portion. The combustor according to claim 1, wherein the combustor is provided radially outward of the combustion cylinder than a center.
  4.  前記接続部内面における凸曲面の一部に前記燃焼筒の中心軸線に向かって隆起している隆起部を有する請求項1に記載の燃焼器。 The combustor according to claim 1, further comprising: a protruding portion protruding toward a central axis of the combustion cylinder on a part of a convex curved surface on the inner surface of the connection portion.
  5.  前記接続部内面における凸曲面の曲率半径rと、導入管の内径の半径rが、3r≧r≧0.2rで表される関係にある請求項1に記載の燃焼器。 The radius of curvature r 1 of the convex curved surface in the connection portion inner surface, the radius r 0 of the inner diameter of the inlet tube, the combustor according to claim 1 having a relationship represented by 3r 0 ≧ r 1 ≧ 0.2r 0 .
  6.  前記接続部が前記導入管の中心軸方向に見て円形又は燃焼筒内面に沿う任意の方向に延びる長軸を有する楕円形であり、該円形の半径又は該楕円形の長軸半径であるrと、導入管の内径の半径rが、4r≧r≧rで表される関係にある請求項1に記載の燃焼器。 The connecting portion is circular as viewed in the central axis direction of the introduction tube, or elliptical with a long axis extending in any direction along the inner surface of the combustion cylinder, and the radius of the circular or the long axis radius of the oval r The combustor according to claim 1, wherein 2 and the radius r 0 of the inner diameter of the introduction pipe are in a relationship represented by 4 r 0 rr 2 rr 0 .
  7.  前記接続部の前記導入管の中心軸方向視における投影面積Aと、前記導入管の内面積Aとが、12A≧A≧Aで表される関係にある請求項1に記載の燃焼器。 The projected area A 1 of the connection portion in the central axis direction of the introduction pipe and the inner area A 0 of the introduction pipe are in a relationship represented by 12A 0 AA 1 AA 0. Burner.
  8.  圧縮空気を生成する圧縮機と、
     請求項1から7のいずれか一項に記載の燃焼器と、
     前記燃焼ガスによって駆動されるタービンと、
    を備えるガスタービン。
    A compressor that produces compressed air;
    A combustor according to any one of claims 1 to 7;
    A turbine driven by the combustion gas;
    A gas turbine equipped with
PCT/JP2018/043723 2017-11-29 2018-11-28 Combustor and gas turbine WO2019107392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017229553A JP6978912B2 (en) 2017-11-29 2017-11-29 Combustor and gas turbine
JP2017-229553 2017-11-29

Publications (1)

Publication Number Publication Date
WO2019107392A1 true WO2019107392A1 (en) 2019-06-06

Family

ID=66664638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043723 WO2019107392A1 (en) 2017-11-29 2018-11-28 Combustor and gas turbine

Country Status (2)

Country Link
JP (1) JP6978912B2 (en)
WO (1) WO2019107392A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246220A (en) * 1991-01-31 1992-09-02 Toyoda Gosei Co Ltd Noise suppressing device
JPH05215027A (en) * 1992-01-31 1993-08-24 Suzuki Motor Corp Wide band resonator
DE19640980A1 (en) * 1996-10-04 1998-04-16 Asea Brown Boveri Device for damping thermo-acoustic vibrations in combustion chamber of gas turbine
JP2001141240A (en) * 1999-11-12 2001-05-25 Tokyo Electric Power Co Inc:The Gas turbine combustor
US6430933B1 (en) * 1998-09-10 2002-08-13 Alstom Oscillation attenuation in combustors
WO2004051063A1 (en) * 2002-12-02 2004-06-17 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor, and gas turbine with the combustor
US20060000220A1 (en) * 2004-07-02 2006-01-05 Siemens Westinghouse Power Corporation Acoustically stiffened gas-turbine fuel nozzle
JP2006300052A (en) * 2005-04-19 2006-11-02 United Technol Corp <Utc> Resonator and engine incorporating the same
JP2008169840A (en) * 2007-01-09 2008-07-24 General Electric Co <Ge> Thimble, sleeve and method for cooling combustor assembly
JP2015075116A (en) * 2013-10-09 2015-04-20 アルストム テクノロジー リミテッドALSTOM Technology Ltd Acoustic damping device
JP2015086877A (en) * 2013-10-28 2015-05-07 アルストム テクノロジー リミテッドALSTOM Technology Ltd Damper for gas turbine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246220A (en) * 1991-01-31 1992-09-02 Toyoda Gosei Co Ltd Noise suppressing device
JPH05215027A (en) * 1992-01-31 1993-08-24 Suzuki Motor Corp Wide band resonator
DE19640980A1 (en) * 1996-10-04 1998-04-16 Asea Brown Boveri Device for damping thermo-acoustic vibrations in combustion chamber of gas turbine
US6430933B1 (en) * 1998-09-10 2002-08-13 Alstom Oscillation attenuation in combustors
JP2001141240A (en) * 1999-11-12 2001-05-25 Tokyo Electric Power Co Inc:The Gas turbine combustor
WO2004051063A1 (en) * 2002-12-02 2004-06-17 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor, and gas turbine with the combustor
US20060000220A1 (en) * 2004-07-02 2006-01-05 Siemens Westinghouse Power Corporation Acoustically stiffened gas-turbine fuel nozzle
JP2006300052A (en) * 2005-04-19 2006-11-02 United Technol Corp <Utc> Resonator and engine incorporating the same
JP2008169840A (en) * 2007-01-09 2008-07-24 General Electric Co <Ge> Thimble, sleeve and method for cooling combustor assembly
JP2015075116A (en) * 2013-10-09 2015-04-20 アルストム テクノロジー リミテッドALSTOM Technology Ltd Acoustic damping device
JP2015086877A (en) * 2013-10-28 2015-05-07 アルストム テクノロジー リミテッドALSTOM Technology Ltd Damper for gas turbine

Also Published As

Publication number Publication date
JP2019100583A (en) 2019-06-24
JP6978912B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
JP5808036B2 (en) Centrifugal compressor
JP6025961B2 (en) Turbine blade
EP2527596B1 (en) Turbine rotor blade and turbo machine
CN107250491B (en) Attenuating device, burner and gas turbine
CN107407484B (en) Burner and gas turbine
JP2002174427A (en) Gas turbine combustor and gas turbine, and jet engine
CN102472109B (en) Turbine and turbine rotor blade
JP5863460B2 (en) Gas turbine combustor
JP2009097841A (en) Gas turbine
WO2014147942A1 (en) Blower device
JP2019526028A (en) Gas turbine engine with resonator ring
WO2019107392A1 (en) Combustor and gas turbine
JP2018115656A (en) Strut for exhaust frame of turbine system
JP6640581B2 (en) Acoustic dampers, combustors and gas turbines
US11834957B2 (en) Strut cover, exhaust casing, and gas turbine
RU2546140C2 (en) Gas turbine engine with exhaust gas guide cone with noise killer
WO2020183933A1 (en) Rotating machine, and seal ring
JP6785368B2 (en) gas turbine
KR102665612B1 (en) Filter mufflers for exhaust gas turbochargers of internal combustion engines
WO2021039531A1 (en) Compressor and gas turbine
JP7184987B2 (en) gas turbine
JP5010517B2 (en) gas turbine
CN111520229A (en) acoustic resonator
JP6258042B2 (en) Damping device, combustor and gas turbine
WO2018037456A1 (en) Sound-absorbing liner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883200

Country of ref document: EP

Kind code of ref document: A1