WO2019107362A1 - Carbon nanotube growth substrate and carbon nanotube production method - Google Patents

Carbon nanotube growth substrate and carbon nanotube production method Download PDF

Info

Publication number
WO2019107362A1
WO2019107362A1 PCT/JP2018/043615 JP2018043615W WO2019107362A1 WO 2019107362 A1 WO2019107362 A1 WO 2019107362A1 JP 2018043615 W JP2018043615 W JP 2018043615W WO 2019107362 A1 WO2019107362 A1 WO 2019107362A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
carbon nanotube
layer
silica
nanotube growth
Prior art date
Application number
PCT/JP2018/043615
Other languages
French (fr)
Japanese (ja)
Inventor
健司 水田
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to JP2019557242A priority Critical patent/JP7060614B2/en
Publication of WO2019107362A1 publication Critical patent/WO2019107362A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders

Definitions

  • the present invention relates to a carbon nanotube growth substrate and the like used for producing carbon nanotubes.
  • Carbon nanotubes are attracting attention as materials having excellent electrical conductivity, thermal conductivity, and mechanical strength, and have been used in various fields.
  • Chemical vapor deposition (CVD) is used as a method for producing carbon nanotubes.
  • CVD chemical vapor deposition
  • a catalyst layer formed on the surface of the metal base, the intermediate layer made of aluminum, silicon, silicon dioxide or the like and the surface of the intermediate layer opposite to the substrate side is disclosed. It is disclosed that carbon nanotubes are produced by a CVD method using a carbon nanotube growth substrate provided with
  • the intermediate layer is made of aluminum, silicon, silicon dioxide or the like. Therefore, when heating the substrate for carbon nanotube growth to the growth temperature of carbon nanotubes, if the substrate is heated at a high temperature rising rate (for example, 400 ° C./min or more), rapid thermal expansion of the metal serving as the substrate A crack occurs in the intermediate layer (see FIG. 12). As a result, in the carbon nanotube growth substrate in which the crack is generated, a defect is generated in the carbon nanotube to be manufactured in the portion where the crack is generated, and the carbon nanotube can not be favorably manufactured. That is, in the techniques of Patent Document 1 and Patent Document 2, there is a problem that the substrate for carbon nanotube growth needs to be heated to the growth temperature of carbon nanotubes at a low temperature rising rate, and the productivity is low.
  • a high temperature rising rate for example, 400 ° C./min or more
  • One aspect of the present invention is to realize a carbon nanotube growth substrate which does not generate cracks in the intermediate layer even when heated at a high temperature rising rate when heating the carbon nanotube growth substrate to the growth temperature of carbon nanotubes. To aim.
  • a substrate for carbon nanotube growth concerning one mode of the present invention is a substrate which consists of metals, an intermediate layer which is formed on a surface of the substrate, and contains silicon oxide, and the intermediate layer. And a catalyst layer formed on the surface opposite to the substrate side, and the silicon oxide in the intermediate layer has a value of x smaller than 2 when represented by the composition formula SiO x .
  • a carbon nanotube growth substrate which does not generate cracks in the intermediate layer even when heated at a high temperature rise rate when heating the carbon nanotube growth substrate to the growth temperature of carbon nanotubes. It plays an effect.
  • FIG. 1 is a cross-sectional view showing the configuration of a carbon nanotube growth substrate according to Embodiment 1 of the present invention.
  • (A) is a structural view of silicon dioxide (SiO 2 )
  • (b) is a structural view of silicon oxide constituting a silica layer provided in the substrate for carbon nanotube growth.
  • It is a graph which shows the measurement result of the binding energy of the Si2p orbital of the conventional silica layer by XPS, and the measurement result of the binding energy of the Si2p orbital of the silica layer concerning Embodiment 1 by XPS.
  • 5 is a flowchart showing an example of the process of the method for producing a carbon nanotube according to the first embodiment.
  • FIG. 1 is a schematic view of a carbon nanotube production apparatus according to Embodiment 1. It is a graph which shows the measurement result of the binding energy of the Si2p track of the silica film in the substrate for carbon nanotube growth as an example of the present invention. It is a graph which shows the measurement result of the binding energy of the Si2p orbit of the silica film in the substrate for carbon nanotube growth as a comparative example of the present invention. It is a table
  • CNT carbon nanotube growth substrate 1
  • FIG. 1 is a cross-sectional view showing the configuration of a CNT growth substrate 1.
  • the CNT growth substrate 1 includes a base material 2, a silica layer 3 (intermediate layer), a catalyst layer 4, and a backing layer 5.
  • the substrate 2 is a thin film made of metal.
  • the substrate 2 needs to be a metal having heat resistance so as not to be deformed by the high temperature in the heating step and the CNT growth step described later.
  • a metal foil of stainless steel is preferable, and a metal foil of ferritic stainless steel (for example, SUS444) having a small thermal expansion coefficient is more preferable.
  • the substrate 2 preferably has a pliable thickness so that it can be rolled in the production of CNTs described later.
  • the thickness of the substrate 2 is preferably 10 to 500 ⁇ m in order to maintain flexibility.
  • the surface roughness of the substrate 2 is preferably 0.2 to 1 ⁇ m.
  • the surface roughness Ra of the base material 2 is larger than 1 ⁇ m, the surface roughness of the catalyst layer 4 described later becomes large, and the CNT can not be favorably manufactured.
  • the surface roughness Ra of the base material 2 is smaller than 0.2 ⁇ m, there is no great effect, and the processing cost such as polishing becomes large.
  • the silica layer 3 is a layer formed on the surface on one side of the substrate 2 and containing silicon oxide (SiO x ).
  • the silica layer 3 is a layer for preventing diffusion of a component such as Cr from the base material 2 to the catalyst layer 4 described later.
  • a component such as Cr from the base material 2 diffuses into the catalyst layer 4
  • the diffused atoms react with the metal constituting the catalyst layer 4 and the catalytic function of the catalyst layer 4 is degraded.
  • the silica layer 3 on the CNT growth substrate 1 the surface of the CNT growth substrate 1 can be made flat. As a result, micronization of the catalyst metal of the catalyst layer 4 can be promoted.
  • the silica layer 3 in the present embodiment is made of silicon oxide (SiO x ) having a lower oxygen content than silicon dioxide (SiO 2 ).
  • the silicon oxide in the silica layer 3 has a value of x smaller than 2 when represented by the composition formula SiO x .
  • (A) of FIG. 2 is a structural view of silicon dioxide (SiO 2 )
  • (b) is a structural view of silicon oxide constituting the silica layer 3 of the present embodiment.
  • silicon dioxide is a regular tetrahedral structure in which substantially all O atoms are bonded to two Si atoms.
  • the silicon oxide constituting the silica layer 3 of the present embodiment has a lower bonding ratio of Si atoms to O atoms than silicon dioxide as shown in FIG. Voids are formed in the structure.
  • the silicon oxide of the silica layer 3 is more stretchable than silicon dioxide (in other words, the rigidity is lower). Therefore, the silica layer 3 can expand and contract following the thermal expansion of the base material 2 due to a rapid temperature rise (specifically, a temperature rise of 700 ° C./minute or less) in the heating step described later.
  • the silicon oxide constituting the silica layer 3 has a value of x of 0.2 when it is expressed by the composition formula SiO x so that it can be followed by the thermal expansion of the base material 2 due to a rapid temperature rise in the heating step. It is preferable that it is above 1.4 and below.
  • FIG. 3 shows the measurement results of the bond energy of Si2p orbitals of the conventional silica layer by XPS (X-ray photoelectron spectroscopy) and the measurement results of the bond energy of the Si2p orbital of one example of the silica layer of the present invention by XPS. It is a graph. As shown in FIG. 3, the peak position of the binding energy of Si in the silica layer of the present invention, the binding energy of Si in SiO 2 (i.e., the binding energy of Si in case of SiO 2) is lower than the peak position of the ing. That is, the silica layer of the present invention, at least a part of Si is not the SiO 2, constitute the degree of oxidation is small silicon oxide than SiO 2.
  • the film thickness of the silica layer 3 is preferably 150 to 1500 nm.
  • the film thickness of the silica layer 3 is larger than 1500 nm, cracks easily occur in the silica layer 3 during high temperature treatment (specifically, a heating step and a CNT growth step described later).
  • the film thickness of the silica layer 3 is smaller than 150 nm, components such as Cr from the base material 2 diffuse into the catalyst layer 4 described later, and the catalyst metal of the catalyst layer 4 can not be finely divided. It is not preferable because it
  • the catalyst layer 4 is a layer formed on the surface of the silica layer 3 opposite to the substrate 2 side.
  • the catalyst layer 4 is a layer containing a metal.
  • the metal is preferably selected from the group consisting of iron, cobalt, nickel and alloys of these metals.
  • the film thickness of the catalyst layer 4 is 0.1 to 10 nm.
  • the backing layer 5 is a layer formed on the surface of the base 2 opposite to the surface on which the silica layer 3 is formed.
  • the backing layer 5 is made of silicon oxide having the same composition as the silicon oxide constituting the silica layer 3.
  • the CNT growth substrate is bent due to the difference in the thermal expansion coefficient between the base and the silica layer in the heating step and the CNT growth step described later.
  • layers composed of silicon oxide are formed on both sides of the base material 2, so the substrate for CNT growth 1 is bent in the heating step and the CNT growth step. Can be suppressed.
  • a catalyst layer may be formed on the backing layer 5 to manufacture CNTs on both sides of the CNT growth substrate.
  • the manufacturing process of the substrate for CNT growth in the present embodiment includes a silicon oxide film forming process and a catalyst layer forming process.
  • the silicon oxide film forming step is a step of forming the silica layer 3 on one surface of the substrate 2 and forming the backing layer 5 on the other surface of the substrate 2. Since the process of forming the silica layer 3 is the same as the process of forming the backing layer 5, the process of forming the silica layer 3 will be described here.
  • a solution method is used. Specifically, first, a precursor to be a raw material of the silica layer 3 is applied to the substrate 2.
  • the precursor includes ethyl polysilicate (partial hydrolytic condensate of tetraethoxysilane) and methyltriethoxysilane (an alkyl alkoxysilane) (a compound in which a part of ethyl groups of ethyl polysilicate is substituted with a methyl group)
  • a predetermined ratio is a ratio of 150 to 900 g of methyltriethoxysilane to 100 g of ethyl polysilicate.
  • the precursor applied to the substrate 2 is baked at 500 to 700 ° C. for 5 to 60 minutes. This cures the precursor and completely removes the solvent and moisture remaining in the precursor. As a result, the silica layer 3 is formed on the surface of the substrate 2.
  • the precursor in the present embodiment includes ethyl polysilicate and methyl triethoxysilane.
  • Ethyl polysilicate becomes silicon dioxide SiO 2 by being fired.
  • methyltriethoxysilane becomes silicon oxide by being fired, but no Si—O—Si bond is formed at the location corresponding to the methyl group (in other words, the crosslinking reaction of silica does not occur). Therefore, the silica layer 3 in the present embodiment is made of silicon oxide having a lower oxygen content than silicon dioxide.
  • methyl polysilicate may be used as a precursor instead of ethyl polysilicate.
  • tetraethoxysilane or tetramethoxysilane which is a monomer may be used.
  • a substance substituted with another functional group such as methyltrimethoxysilane may be used.
  • the silica layer 3 and the backing layer 5 may be formed using other methods.
  • vapor deposition or sputtering may be used to form the silica layer 3 and the backing layer 5.
  • a SiO target or raw material may be used, or a mixed target of SiO and SiO 2 may be used.
  • the catalyst layer forming step is a step of forming the catalyst layer 4 on the surface of the silica layer 3 opposite to the substrate 2 side.
  • a thin metal film is formed on the surface of the silica layer 3 on the opposite side to the base 2 side using a conventional method such as EB (electron beam, electron beam) method, sputtering method or solution method. Process.
  • FIG. 4 is a flowchart showing an example of processing of the method for producing CNT in the present embodiment.
  • FIG. 5 is a schematic view of a CNT manufacturing apparatus 30. As shown in FIG.
  • the method for producing CNTs in the present embodiment includes a heating step (S1), a CNT growth step (S2, a growth step), and a post-treatment step (S3).
  • the CNT manufacturing apparatus 30 includes a substrate supply chamber 31, a heating chamber 32, a reaction chamber 33, a post-processing chamber 34, a substrate winding chamber 35, and a heater 36. There is.
  • the heating step is a step of heating the CNT growth substrate 1 delivered from the substrate unwinding device 31 A of the substrate supply chamber 31 to the heating chamber 32 to a CNT growth temperature of 600 to 700 ° C. using the heater 36.
  • the heating chamber 32 includes a chamber 32A and a gas supply port 32B for supplying a gas to the chamber 32A.
  • a gas specifically, acetylene gas (C 2 H 2 )
  • the substrate for CNT growth 1 is heated while being supplied to the chamber 32A.
  • the temperature of the CNT growth substrate 1 is raised at a temperature rising rate of 200 to 700 ° C./min.
  • the silicon oxide of the silica layer 3 in the present embodiment is more stretchable than silicon dioxide. Therefore, even if the substrate 1 for CNT growth is heated at a high temperature rising rate of 200 to 700 ° C./min, preferably 500 to 700 ° C./min, the silica layer 3 follows the thermal expansion of the substrate 2 It can be expanded and contracted. As a result, formation of a crack in the silica layer 3 can be prevented.
  • the CNT growth step is a step of growing (producing) CNT on the surface of the catalyst layer 4 of the substrate for CNT growth 1 which is heated to the CNT growth temperature in the heating step and sent out to the reaction chamber 33.
  • the reaction chamber 33 includes three chambers 33A, and a gas supply port 33B for supplying a gas to each chamber 33A.
  • the interior of the chamber 33A is maintained at the CNT growth temperature by the heater 36.
  • CNTs are produced by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • a raw material gas for example, acetylene, methane, butane or the like may be used
  • CNTs are formed starting from the catalyst fine particles on the surface of the catalyst layer 4.
  • the post-treatment step is a step of cooling the CNT growth substrate on which the CNTs are formed in the CNT growth step in the post-treatment chamber 34 and inspecting the formed CNTs.
  • the CNT growth substrate 1 is transported to the substrate winding chamber 35, the protective film is attached to the upper surface thereof, and wound around the substrate winding device 35A provided in the substrate winding chamber 35. To be taken. That is, the substrate 1 for CNT growth on which CNTs are formed is collected as a product.
  • the CNT growth substrate 1 in the present embodiment includes the base material 2, the silica layer 3, the catalyst layer 4 and the backing layer 5, and the silica layer 3 is more than silicon dioxide (SiO 2 ). It is composed of silicon oxide (SiO x ) having a low content of oxygen (in other words, the silicon oxide in the silica layer 3 has a value of x smaller than 2 when represented by the composition formula SiO x ). Thereby, even if it heats at a rapid temperature rising rate in a heating process, the silica layer 3 can be expanded and contracted following the thermal expansion of the base material 2. As a result, no crack is formed, and CNT can be favorably grown in the CNT growth step.
  • the CNT growth substrate of Example 1 was produced as follows. First, a solution was prepared by mixing 40 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemical Co., Ltd., average molecular weight 1000) and 60 g of methyltriethoxysilane (manufactured by Tama Co., Ltd., average molecular weight 178). Next, 131.4 g of ethanol was mixed with this solution. Next, 113.6 g of water and a small amount of hydrochloric acid as a catalyst for accelerating the hydrolysis reaction of silica were added to this solution. After the addition, the mixture was stirred for about one day to prepare a precursor solution of silica.
  • ethyl polysilicate ethyl silicate 45, manufactured by Tama Chemical Co., Ltd., average molecular weight 1000
  • methyltriethoxysilane manufactured by Tama Co., Ltd., average molecular weight 178
  • 131.4 g of ethanol was mixed
  • the precursor solution was applied by roll coating on both sides of a stainless steel thin film (substrate 2 of the present invention) having a width of 400 mm and a thickness of 50 ⁇ m, and dried at 300 ° C. for about 10 minutes.
  • a silica film (the silica layer 3 and the backing layer 5 of the present invention) having a thickness of 400 nm was formed on both sides of the stainless steel thin film.
  • a thin film of Fe of 5 nm was formed on one surface of the silica film by an EB method, to prepare a substrate for CNT growth.
  • the substrate for CNT growth of Example 2 comprises 35 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemical Co., average molecular weight 1000) and 65 g of methyltriethoxysilane (Tama Chemical Co., Ltd.)
  • the CNT growth substrate of Example 1 was manufactured in the same manner as in Example 1 except that an average molecular weight of 178), 216.6 g of ethanol and 28.4 g of water were used.
  • the substrate for CNT growth of Example 3 comprises 30 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemical Co., average molecular weight 1000) and 70 g of methyltriethoxysilane (Tama Chemical Co., Ltd.)
  • the CNT growth substrate of Example 1 was manufactured in the same manner as in Example 1 except that an average molecular weight of 178), 234.4 g of ethanol and 10.7 g of water were used.
  • the CNT growth substrate of Example 4 comprises 30 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemical Co., average molecular weight 1000) and 70 g of methyltriethoxysilane (Tama Chemical Co., Ltd.)
  • the CNT growth substrate of Example 1 was manufactured in the same manner as in Example 1 except that an average molecular weight of 178), 239.3 g of ethanol and 5.7 g of water were used.
  • the substrate for CNT growth of Example 5 comprises 10 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemicals Co., average molecular weight 1000) and 90 g of methyltriethoxysilane (
  • the CNT growth substrate of Example 1 was manufactured in the same manner as in Example 1 except that an average molecular weight of 178), 241.4 g of ethanol and 3.6 g of water were used.
  • the substrate for CNT growth of Comparative Example 1 was prepared by mixing 100 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemicals Co., Ltd., average molecular weight of 1000), 131.4 g of ethanol, and 113.6 g in the preparation of a precursor solution of silica. Were prepared in the same manner as in the method for producing a substrate for CNT growth of Example 1 except that the following water and water were used.
  • FIG. 6 is a graph showing the measurement results of the bonding energy of the Si2p orbit of the silica film in the substrate for CNT growth of Examples 1 to 5.
  • FIG. 7 is a graph showing the measurement results of the bonding energy of the Si2p orbit of the silica film in the substrate for CNT growth of Comparative Example 1.
  • the peak position of the Si binding energy was approximately the position of SiO 2 . That is, the silica film of the substrate for CNT growth of Comparative Example 1 was made of SiO 2 .
  • the silica film in the CNT growth substrate of Examples 1 to 5 as shown in FIG.
  • the peak position of the Si binding energy was lower than the position of SiO 2 .
  • the silica film in the CNT growth substrate of Examples 1-5, at least a part of Si in SiO 2 rather than SiO 2 were composed oxidation degree is small silicon oxide.
  • the value of x in the composition formula SiO x of the silica film of the substrate for CNT growth of Examples 1 to 5 was calculated from the measurement results of XPS shown in FIG. As a result, the values (peak values) of x in the composition formula SiO x of the silica film of the CNT growth substrate of Examples 1 to 5 are 1.7, 1.4, 0.9, 0.5, 0, respectively. It was .2. That is, in the measurement results of XPS, the value (peak value) of x in the composition formula SiO x of the silica film of the substrate for CNT growth was smaller than 2.
  • the silica film in the substrate for CNT growth of Examples 1 to 5 comprises silicon oxide in which at least a part of Si has a smaller degree of oxidation than SiO 2 , the silica film follows the thermal expansion of the stainless steel thin film It is thought that it was because it was able to expand and contract.
  • the stretchability of silicon oxide is high, no crack was generated even when heated at a temperature rising rate of 700 ° C./min.
  • FIG. 9 is a view showing the appearance of the surface of the CNT growth substrate of Comparative Example 1 after the heating experiment.
  • FIG. 10 is a view showing the appearance of the surface of the substrate for CNT growth of Example 2 after a heating experiment.
  • the substrate for CNT growth of Comparative Example 1 as shown in FIG. 9, cracks were generated on the surface after the heating test.
  • the substrate for CNT growth of Example 2 as shown in FIG. 10, no crack was generated even after the heating test.
  • the film thickness of the silica film (the silica layer 3 and the backing layer 5 of the present invention) is changed will be described.
  • the substrate for CNT growth in the second example was produced in the same procedure as the substrate for CNT growth in example 3 in the first example except that the film thickness of the silica film was changed. That is, in the substrate for CNT growth in the second embodiment, x in the silicon oxide SiO x forming the silica film was 0.9.
  • the thickness of the silica film was changed from 50 nm to 2500 nm by changing the amount of application of the precursor solution of the silica film to the stainless steel thin film.
  • CNTs were produced using the produced CNT growth substrate, and the orientation length of the CNTs, the bulk density, and the presence or absence of cracks in the CNT growth substrate were evaluated.
  • the orientation length of the CNT was evaluated by the average value of three measurements performed by performing laser scanning three times in the width direction of the substrate for CNT growth.
  • the bulk density of CNT was calculated by measuring the weight of the exfoliated CNT after exfoliating the CNT produced using the adhesive tape.
  • the procedure for producing the CNT in the second embodiment is as follows. First, the substrate for CNT growth was heated to 680 ° C. at a heating rate of 600 ° C./min while supplying nitrogen gas into the chamber. Next, CNT was grown (made) while supplying acetylene gas into the chamber while maintaining the temperature at 680 ° C.
  • FIG. 11 is a table showing experimental results in the second embodiment.
  • the substrate for CNT growth in which the film thickness of the silica film is 50 to 1500 nm no crack was generated in the silica film.
  • the substrate for CNT growth in which the film thickness of the silica film is 2000 to 2500 nm a crack was generated in the silica film.
  • the occurrence of the crack is not due to the high temperature rising rate, but is due to the silica film being peeled off from the stainless steel thin film when the substrate for CNT growth is brought to a high temperature because the silica film is too thick. Conceivable.
  • the orientation length and bulk density of the produced CNT were manufactured using other substrates for CNT growth. It was less than the oriented length and bulk density of the resulting CNTs, and was not desirable as a product. It is considered that this is because, since the film thickness of the silica film is too small, a component such as Cr diffuses from the stainless steel thin film to the thin film of Fe which is a catalyst layer, and Fe as a catalyst can not be micronized.
  • substrate for carbon nanotube growth 2 substrate 3 silica layer (intermediate layer) 4 catalyst layer 5 backing layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The purpose of the present invention is to not cause cracking in an intermediary layer when heating a carbon nanotube growth substrate to a carbon nanotube growth temperature, even when heating at a high heating rate. This carbon nanotube growth substrate (1) is provided with a base material (2) formed from a metal, a silica layer (3) formed on the surface of the base material (2) and containing silicon oxide, and a catalyst layer (4) formed on the surface of the silica layer (3) opposite the side of the base material (2). Represented by the compositional formula SiOx, the siliconoxide in the silica layer (3) has an x value less than 2.

Description

カーボンナノチューブ成長用基板およびカーボンナノチューブの製造方法Substrate for growth of carbon nanotube and method of manufacturing carbon nanotube
 本発明は、カーボンナノチューブの製造に用いられるカーボンナノチューブ成長用基板などに関する。 The present invention relates to a carbon nanotube growth substrate and the like used for producing carbon nanotubes.
 カーボンナノチューブは、優れた電気伝導性や熱伝導性、機械的強度を備える材料として注目されており、様々な分野において利用されてきている。カーボンナノチューブの作製方法として、化学気相堆積(CVD:Chemical Vapor Deposition)法が用いられている。例えば、特許文献1および特許文献2には、金属からなる基材と、アルミニウム、シリコン、二酸化ケイ素などからなる中間層と、中間層の基材側とは反対側の表面に形成される触媒層とを備えたカーボンナノチューブ成長用基板を用いてCVD法によりカーボンナノチューブを製造することが開示されている。 Carbon nanotubes are attracting attention as materials having excellent electrical conductivity, thermal conductivity, and mechanical strength, and have been used in various fields. Chemical vapor deposition (CVD) is used as a method for producing carbon nanotubes. For example, in Patent Document 1 and Patent Document 2, a catalyst layer formed on the surface of the metal base, the intermediate layer made of aluminum, silicon, silicon dioxide or the like and the surface of the intermediate layer opposite to the substrate side is disclosed. It is disclosed that carbon nanotubes are produced by a CVD method using a carbon nanotube growth substrate provided with
「日本国公開特許公報特開2007-70137号公報」"Japanese Published Patent Application Publication No. 2007-70137" 「日本国公開特許公報特開2013-1598号公報」"Japanese Published Patent Application Publication No. 2013-1598"
 しかしながら、特許文献1および特許文献2に開示された技術では、中間層がアルミニウム、シリコン、二酸化ケイ素などで構成されている。そのため、カーボンナノチューブ成長用基板をカーボンナノチューブの成長温度まで加熱する際に、高い昇温速度(例えば、400℃/分以上)で加熱してしまうと、基材である金属の急激な熱膨張によって中間層にクラックが発生する(図12参照)。その結果、クラックが発生したカーボンナノチューブ成長用基板では、クラックが発生した箇所において、製造されるカーボンナノチューブに欠損が生じてしまい、カーボンナノチューブを良好に作製することができない。すなわち、特許文献1および特許文献2の技術では、低い昇温速度でカーボンナノチューブ成長用基板をカーボンナノチューブの成長温度まで昇温しなくてはならず、生産性が低いという問題があった。 However, in the techniques disclosed in Patent Document 1 and Patent Document 2, the intermediate layer is made of aluminum, silicon, silicon dioxide or the like. Therefore, when heating the substrate for carbon nanotube growth to the growth temperature of carbon nanotubes, if the substrate is heated at a high temperature rising rate (for example, 400 ° C./min or more), rapid thermal expansion of the metal serving as the substrate A crack occurs in the intermediate layer (see FIG. 12). As a result, in the carbon nanotube growth substrate in which the crack is generated, a defect is generated in the carbon nanotube to be manufactured in the portion where the crack is generated, and the carbon nanotube can not be favorably manufactured. That is, in the techniques of Patent Document 1 and Patent Document 2, there is a problem that the substrate for carbon nanotube growth needs to be heated to the growth temperature of carbon nanotubes at a low temperature rising rate, and the productivity is low.
 本発明の一態様は、カーボンナノチューブの成長温度までカーボンナノチューブ成長用基板を加熱する際に、高い昇温速度で加熱しても中間層にクラックが発生しないカーボンナノチューブ成長用基板を実現することを目的とする。 One aspect of the present invention is to realize a carbon nanotube growth substrate which does not generate cracks in the intermediate layer even when heated at a high temperature rising rate when heating the carbon nanotube growth substrate to the growth temperature of carbon nanotubes. To aim.
 上記の課題を解決するために、本発明の一態様に係るカーボンナノチューブ成長用基板は、金属からなる基材と、前記基材の表面に形成され、酸化ケイ素を含む中間層と、前記中間層の、前記基材側とは反対側の表面に形成される触媒層と、を備え、前記中間層における酸化ケイ素は、組成式SiOで表したときに、xの値が2より小さい。 In order to solve the above-mentioned subject, a substrate for carbon nanotube growth concerning one mode of the present invention is a substrate which consists of metals, an intermediate layer which is formed on a surface of the substrate, and contains silicon oxide, and the intermediate layer. And a catalyst layer formed on the surface opposite to the substrate side, and the silicon oxide in the intermediate layer has a value of x smaller than 2 when represented by the composition formula SiO x .
 本発明の一態様によれば、カーボンナノチューブの成長温度までカーボンナノチューブ成長用基板を加熱する際に、高い昇温速度で加熱しても中間層にクラックが発生しないカーボンナノチューブ成長用基板を実現するという効果を奏する。 According to one aspect of the present invention, there is provided a carbon nanotube growth substrate which does not generate cracks in the intermediate layer even when heated at a high temperature rise rate when heating the carbon nanotube growth substrate to the growth temperature of carbon nanotubes. It plays an effect.
本発明の実施形態1に係るカーボンナノチューブ成長用基板の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of a carbon nanotube growth substrate according to Embodiment 1 of the present invention. (a)は、二酸化ケイ素(SiO)の構造図であり、(b)は上記カーボンナノチューブ成長用基板が備えるシリカ層を構成する酸化ケイ素の構造図である。(A) is a structural view of silicon dioxide (SiO 2 ), and (b) is a structural view of silicon oxide constituting a silica layer provided in the substrate for carbon nanotube growth. XPSによる、従来のシリカ層のSi2p軌道の結合エネルギーの測定結果と、XPSによる、実施形態1に係るシリカ層のSi2p軌道の結合エネルギーの測定結果を示すグラフである。It is a graph which shows the measurement result of the binding energy of the Si2p orbital of the conventional silica layer by XPS, and the measurement result of the binding energy of the Si2p orbital of the silica layer concerning Embodiment 1 by XPS. 実施形態1に係るカーボンナノチューブの製造方法の処理の一例を示すフローチャートである。5 is a flowchart showing an example of the process of the method for producing a carbon nanotube according to the first embodiment. 実施形態1に係るカーボンナノチューブ製造装置の概略図である。FIG. 1 is a schematic view of a carbon nanotube production apparatus according to Embodiment 1. 本発明の実施例としてのカーボンナノチューブ成長用基板におけるシリカ膜のSi2p軌道の結合エネルギーの測定結果を示すグラフである。It is a graph which shows the measurement result of the binding energy of the Si2p track of the silica film in the substrate for carbon nanotube growth as an example of the present invention. 本発明の比較例としてのカーボンナノチューブ成長用基板におけるシリカ膜のSi2p軌道の結合エネルギーの測定結果を示すグラフである。It is a graph which shows the measurement result of the binding energy of the Si2p orbit of the silica film in the substrate for carbon nanotube growth as a comparative example of the present invention. 第1実施例における実験結果を示す表である。It is a table | surface which shows the experimental result in 1st Example. 上記比較例としてのカーボンナノチューブ成長用基板の加熱実験後の表面の様子を示す図である。It is a figure which shows the mode of the surface after the heating experiment of the board | substrate for carbon nanotube growth as said comparative example. 上記実施例としてのカーボンナノチューブ成長用基板の加熱実験後の表面の様子を示す図である。It is a figure which shows the mode of the surface after the heating experiment of the board | substrate for carbon nanotube growth as the said Example. 第2実施例における実験結果を示す表である。It is a table | surface which shows the experimental result in 2nd Example. 従来のカーボンナノチューブ成長用基板の表面の状態を示す拡大図である。It is an enlarged view which shows the state of the surface of the conventional substrate for carbon nanotube growth.
 〔実施形態1〕
 以下、本発明の一態様のカーボンナノチューブ成長用基板1について、詳細に説明する。以下では、カーボンナノチューブを「CNT」と略記する。
Embodiment 1
Hereinafter, the carbon nanotube growth substrate 1 according to one aspect of the present invention will be described in detail. Below, a carbon nanotube is abbreviated as "CNT."
 (カーボンナノチューブ成長用基板1の構造)
 図1は、CNT成長用基板1の構成を示す断面図である。図1に示すように、CNT成長用基板1は、基材2と、シリカ層3(中間層)と、触媒層4と、裏打ち層5とを備えている。
(Structure of substrate 1 for carbon nanotube growth)
FIG. 1 is a cross-sectional view showing the configuration of a CNT growth substrate 1. As shown in FIG. 1, the CNT growth substrate 1 includes a base material 2, a silica layer 3 (intermediate layer), a catalyst layer 4, and a backing layer 5.
 基材2は、金属からなる薄膜である。基材2は、後述する加熱工程およびCNT成長工程における高温によって変形しないように耐熱性を有する金属である必要がある。具体的には、基材2は、ステンレスの金属箔が好ましく、熱膨張率が小さいフェライト系ステンレス(例えば、SUS444)の金属箔がより好ましい。 The substrate 2 is a thin film made of metal. The substrate 2 needs to be a metal having heat resistance so as not to be deformed by the high temperature in the heating step and the CNT growth step described later. Specifically, a metal foil of stainless steel is preferable, and a metal foil of ferritic stainless steel (for example, SUS444) having a small thermal expansion coefficient is more preferable.
 基材2は、後述するCNTの製造においてロール状にすることができるように、柔軟性を有する厚さであることが好ましい。具体的には、基材2がフェライト系ステンレスからなる場合、基材2の厚さは、柔軟性を保持するために10~500μmであることが好ましい。基材2の表面粗さは、0.2~1μmであることが好ましい。基材2の表面粗さRaが1μmより大きい場合、後述する触媒層4の表面粗さが大きくなりCNTを良好に製造することができなくなってしまう。また、基材2の表面粗さRaを0.2μmよりも小さくしても大きな効果がなく、研磨などの処理コストが大きくなってしまう。 The substrate 2 preferably has a pliable thickness so that it can be rolled in the production of CNTs described later. Specifically, when the substrate 2 is made of ferritic stainless steel, the thickness of the substrate 2 is preferably 10 to 500 μm in order to maintain flexibility. The surface roughness of the substrate 2 is preferably 0.2 to 1 μm. When the surface roughness Ra of the base material 2 is larger than 1 μm, the surface roughness of the catalyst layer 4 described later becomes large, and the CNT can not be favorably manufactured. In addition, even if the surface roughness Ra of the base material 2 is smaller than 0.2 μm, there is no great effect, and the processing cost such as polishing becomes large.
 シリカ層3は、基材2の一方の側の表面に形成され、酸化ケイ素(SiO)を含む層である。シリカ層3は、基材2からのCrなどの成分が後述する触媒層4に拡散することを防ぐための層である。基材2からのCrなどの成分が触媒層4に拡散すると、拡散した原子が触媒層4を構成する金属と反応してしまい、触媒層4の触媒機能が低下してしまう。また、CNT成長用基板1にシリカ層3を形成することにより、CNT成長用基板1の表面を平坦にすることができる。その結果、触媒層4の触媒金属の微粒子化を促進させることができる。 The silica layer 3 is a layer formed on the surface on one side of the substrate 2 and containing silicon oxide (SiO x ). The silica layer 3 is a layer for preventing diffusion of a component such as Cr from the base material 2 to the catalyst layer 4 described later. When a component such as Cr from the base material 2 diffuses into the catalyst layer 4, the diffused atoms react with the metal constituting the catalyst layer 4 and the catalytic function of the catalyst layer 4 is degraded. Further, by forming the silica layer 3 on the CNT growth substrate 1, the surface of the CNT growth substrate 1 can be made flat. As a result, micronization of the catalyst metal of the catalyst layer 4 can be promoted.
 本実施形態におけるシリカ層3は、二酸化ケイ素(SiO)よりも酸素の含有量が少ない酸化ケイ素(SiO)によって構成されている。換言すれば、シリカ層3における酸化ケイ素は、組成式SiOで表したときに、xの値が2より小さい。図2の(a)は、二酸化ケイ素(SiO)の構造図であり、(b)は本実施形態のシリカ層3を構成する酸化ケイ素の構造図である。 The silica layer 3 in the present embodiment is made of silicon oxide (SiO x ) having a lower oxygen content than silicon dioxide (SiO 2 ). In other words, the silicon oxide in the silica layer 3 has a value of x smaller than 2 when represented by the composition formula SiO x . (A) of FIG. 2 is a structural view of silicon dioxide (SiO 2 ), and (b) is a structural view of silicon oxide constituting the silica layer 3 of the present embodiment.
 図2の(a)に示すように、二酸化ケイ素は、実質的にすべてのO原子が2つのSi原子と結合した正四面体構造である。これに対して、本実施形態のシリカ層3を構成する酸化ケイ素は、図2の(b)に示すように、二酸化ケイ素に比べてSi原子とO原子との結合割合が低く、また、結晶構造において空隙が形成されている。当該結晶構造を有することにより、シリカ層3の酸化ケイ素は、二酸化ケイ素よりも伸縮性が高くなっている(換言すれば、剛性が低い)。そのため、後述する加熱工程における急激な温度上昇(具体的には、700℃/分以下の温度上昇)による基材2の熱膨張に追随してシリカ層3が伸縮することができる。これにより、CNT成長用基板1では、加熱工程において、シリカ層3にクラックが形成されることを防ぐことができる。その結果、CNT成長用基板1では、CNTを良好に成長させることができるようになっている。加熱工程における急激な温度上昇による基材2の熱膨張により追随することができるように、シリカ層3を構成する酸化ケイ素は、組成式SiOで表したときに、xの値が0.2以上かつ1.4以下であることが好ましい。 As shown in (a) of FIG. 2, silicon dioxide is a regular tetrahedral structure in which substantially all O atoms are bonded to two Si atoms. On the other hand, the silicon oxide constituting the silica layer 3 of the present embodiment has a lower bonding ratio of Si atoms to O atoms than silicon dioxide as shown in FIG. Voids are formed in the structure. By having the crystal structure, the silicon oxide of the silica layer 3 is more stretchable than silicon dioxide (in other words, the rigidity is lower). Therefore, the silica layer 3 can expand and contract following the thermal expansion of the base material 2 due to a rapid temperature rise (specifically, a temperature rise of 700 ° C./minute or less) in the heating step described later. Thereby, in the substrate 1 for CNT growth, it can prevent that a crack is formed in the silica layer 3 in a heating process. As a result, in the substrate for CNT growth 1, CNTs can be favorably grown. The silicon oxide constituting the silica layer 3 has a value of x of 0.2 when it is expressed by the composition formula SiO x so that it can be followed by the thermal expansion of the base material 2 due to a rapid temperature rise in the heating step. It is preferable that it is above 1.4 and below.
 図3は、XPS(X-ray photoelectron spectroscopy)による、従来のシリカ層のSi2p軌道の結合エネルギーの測定結果と、XPSによる、本発明のシリカ層の一例のSi2p軌道の結合エネルギーの測定結果を示すグラフである。図3に示すように、本発明のシリカ層におけるSiの結合エネルギーのピーク位置は、SiOにおけるSiの結合エネルギー(すなわち、SiOである場合のSiの結合エネルギー)のピーク位置よりも低くなっている。すなわち、本発明のシリカ層は、Siの少なくとも一部がSiOではなく、SiOよりも酸化度が小さい酸化ケイ素を構成している。 FIG. 3 shows the measurement results of the bond energy of Si2p orbitals of the conventional silica layer by XPS (X-ray photoelectron spectroscopy) and the measurement results of the bond energy of the Si2p orbital of one example of the silica layer of the present invention by XPS. It is a graph. As shown in FIG. 3, the peak position of the binding energy of Si in the silica layer of the present invention, the binding energy of Si in SiO 2 (i.e., the binding energy of Si in case of SiO 2) is lower than the peak position of the ing. That is, the silica layer of the present invention, at least a part of Si is not the SiO 2, constitute the degree of oxidation is small silicon oxide than SiO 2.
 シリカ層3の膜厚は、150~1500nmであることが好ましい。シリカ層3の膜厚が1500nmよりも大きいと、高温処理時(具体的には、後述する加熱工程およびCNT成長工程)においてシリカ層3にクラックが生じやすくなってしまう。また、シリカ層3の膜厚が150nmよりも小さいと、基材2からのCrなどの成分が後述する触媒層4に拡散してしまい、触媒層4の触媒金属を微粒子化することができなくなってしまうため好ましくない。 The film thickness of the silica layer 3 is preferably 150 to 1500 nm. When the film thickness of the silica layer 3 is larger than 1500 nm, cracks easily occur in the silica layer 3 during high temperature treatment (specifically, a heating step and a CNT growth step described later). In addition, if the film thickness of the silica layer 3 is smaller than 150 nm, components such as Cr from the base material 2 diffuse into the catalyst layer 4 described later, and the catalyst metal of the catalyst layer 4 can not be finely divided. It is not preferable because it
 触媒層4は、シリカ層3の、基材2側とは反対側の表面に形成される層である。触媒層4は、金属を含む層である。上記金属は、好ましくは、鉄、コバルト、ニッケルおよびこれら金属の合金よりなる群から選択される。触媒層4の膜厚は、0.1~10nmである。 The catalyst layer 4 is a layer formed on the surface of the silica layer 3 opposite to the substrate 2 side. The catalyst layer 4 is a layer containing a metal. The metal is preferably selected from the group consisting of iron, cobalt, nickel and alloys of these metals. The film thickness of the catalyst layer 4 is 0.1 to 10 nm.
 裏打ち層5は、基材2の、シリカ層3が形成されている面とは反対側の面に形成される層である。裏打ち層5は、シリカ層3を構成する酸化ケイ素と同じ組成を有する酸化ケイ素によって構成される。CNT成長用基板において裏打ち層が形成されていない場合、後述する加熱工程およびCNT成長工程において、基材とシリカ層との熱膨張率の違いによりCNT成長用基板が曲がってしまう。これに対して、裏打ち層5を形成することにより、基材2の両面に酸化ケイ素で構成される層が形成されるので、加熱工程およびCNT成長工程においてCNT成長用基板1が曲がってしまうことを抑制することができる。加熱工程およびCNT成長工程においてCNT成長用基板1が曲がってしまうことを抑制するためには、裏打ち層5の膜厚とシリカ層3の膜厚との差を100nm以内にすることが好ましい。なお、本発明の一態様では、裏打ち層5にも触媒層を形成させ、CNT成長用基板の両面においてCNTを製造する構成としてもよい。 The backing layer 5 is a layer formed on the surface of the base 2 opposite to the surface on which the silica layer 3 is formed. The backing layer 5 is made of silicon oxide having the same composition as the silicon oxide constituting the silica layer 3. When the backing layer is not formed in the CNT growth substrate, the CNT growth substrate is bent due to the difference in the thermal expansion coefficient between the base and the silica layer in the heating step and the CNT growth step described later. On the other hand, by forming the backing layer 5, layers composed of silicon oxide are formed on both sides of the base material 2, so the substrate for CNT growth 1 is bent in the heating step and the CNT growth step. Can be suppressed. In order to suppress bending of the substrate for CNT growth 1 in the heating step and the CNT growth step, it is preferable to set the difference between the film thickness of the backing layer 5 and the film thickness of the silica layer 3 to 100 nm or less. In one aspect of the present invention, a catalyst layer may be formed on the backing layer 5 to manufacture CNTs on both sides of the CNT growth substrate.
 (カーボンナノチューブ成長用基板1の製造方法)
 本実施形態におけるCNT成長用基板の製造工程は、酸化ケイ素膜形成工程と、触媒層形成工程とを含む。
(Method of manufacturing substrate 1 for carbon nanotube growth)
The manufacturing process of the substrate for CNT growth in the present embodiment includes a silicon oxide film forming process and a catalyst layer forming process.
 酸化ケイ素膜形成工程は、基材2の一方の表面にシリカ層3を形成するとともに、基材2の他方の表面に裏打ち層5を形成する工程である。シリカ層3を形成する工程は、裏打ち層5を形成する工程と同様であるため、ここでは、シリカ層3を形成する工程について説明する。 The silicon oxide film forming step is a step of forming the silica layer 3 on one surface of the substrate 2 and forming the backing layer 5 on the other surface of the substrate 2. Since the process of forming the silica layer 3 is the same as the process of forming the backing layer 5, the process of forming the silica layer 3 will be described here.
 本実施形態におけるシリカ層3を形成する工程では、溶液法を用いる。具体的には、まず、シリカ層3の原料となる前駆体を基材2に塗布する。前記前駆体は、エチルポリシリケート(テトラエトキシシランの部分加水分解縮合物)と、アルキルアルコキシシランであるメチルトリエトキシシラン(エチルポリシリケートのエチル基の一部がメチル基で置換された化合物)とを所定の割合で混合した溶液である。上記所定の割合は、具体的には、エチルポリシリケート100gに対するメチルトリエトキシシランの重量が150~900gとなる割合である。 In the step of forming the silica layer 3 in the present embodiment, a solution method is used. Specifically, first, a precursor to be a raw material of the silica layer 3 is applied to the substrate 2. The precursor includes ethyl polysilicate (partial hydrolytic condensate of tetraethoxysilane) and methyltriethoxysilane (an alkyl alkoxysilane) (a compound in which a part of ethyl groups of ethyl polysilicate is substituted with a methyl group) In a predetermined ratio. Specifically, the predetermined ratio is a ratio of 150 to 900 g of methyltriethoxysilane to 100 g of ethyl polysilicate.
 次に、基材2に塗布した前記前駆体を、500~700℃で5~60分焼成する。これにより、前記前駆体を硬化させるとともに、前記前駆体に残留している溶媒および水分を完全に除去する。その結果、基材2の表面にシリカ層3が形成される。 Next, the precursor applied to the substrate 2 is baked at 500 to 700 ° C. for 5 to 60 minutes. This cures the precursor and completely removes the solvent and moisture remaining in the precursor. As a result, the silica layer 3 is formed on the surface of the substrate 2.
 ここで、本実施形態における前記前駆体には、上述したように、エチルポリシリケートとメチルトリエトキシシランとが含まれている。エチルポリシリケートは、焼成されることにより二酸化ケイ素SiOとなる。一方、メチルトリエトキシシランは、焼成されることにより酸化ケイ素になるが、メチル基に対応する箇所においてSi-O-Siの結合が形成されない(換言すれば、シリカの架橋反応が起こらない)。そのため、本実施形態におけるシリカ層3は、二酸化ケイ素よりも酸素の含有量が少ない酸化ケイ素によって構成される。 Here, as described above, the precursor in the present embodiment includes ethyl polysilicate and methyl triethoxysilane. Ethyl polysilicate becomes silicon dioxide SiO 2 by being fired. On the other hand, methyltriethoxysilane becomes silicon oxide by being fired, but no Si—O—Si bond is formed at the location corresponding to the methyl group (in other words, the crosslinking reaction of silica does not occur). Therefore, the silica layer 3 in the present embodiment is made of silicon oxide having a lower oxygen content than silicon dioxide.
 なお、本実施形態では、前駆体としてエチルポリシリケートとメチルトリエトキシシランとを用いる態様であったがこれに限られない。本発明の一態様では、前駆体として、エチルポリシリケートの代わりに、メチルポリシリケートを使用してもよい。また、前駆体として、エチルポリシリケートの代わりに、単量体であるテトラエトキシシラン、テトラメトキシシランを使用してもよい。また、本発明の一態様では、メチルトリエトキシシランの代わりに、メチルトリメトキシシランなどの他の官能基で置換された物質を使用してもよい。 In addition, although it is an aspect using ethyl polysilicate and methyl triethoxysilane as a precursor in this embodiment, it is not restricted to this. In one aspect of the present invention, methyl polysilicate may be used as a precursor instead of ethyl polysilicate. As a precursor, instead of ethylpolysilicate, tetraethoxysilane or tetramethoxysilane which is a monomer may be used. Also, in one aspect of the present invention, instead of methyltriethoxysilane, a substance substituted with another functional group such as methyltrimethoxysilane may be used.
 また、本実施形態では、溶液法を用いて、シリカ層3および裏打ち層5を形成する態様であったがこれに限られない。すなわち、シリカ層3および裏打ち層5を構成する酸化ケイ素が二酸化ケイ素よりも酸素の含有量が少ない酸化ケイ素であれば他の方法を用いてシリカ層3および裏打ち層5を形成してもよく、例えば、蒸着またはスパッタを用いてシリカ層3および裏打ち層5を形成してもよい。蒸着またはスパッタを用いる場合には、SiOのターゲットまたは原料を使用してもよいし、SiOとSiOとを混合したターゲットまたは原料を使用してもよい。 Moreover, in this embodiment, although it was an aspect which forms the silica layer 3 and the backing layer 5 using a solution method, it is not restricted to this. That is, if the silicon oxide constituting the silica layer 3 and the backing layer 5 is silicon oxide having a lower oxygen content than silicon dioxide, the silica layer 3 and the backing layer 5 may be formed using other methods. For example, vapor deposition or sputtering may be used to form the silica layer 3 and the backing layer 5. When vapor deposition or sputtering is used, a SiO target or raw material may be used, or a mixed target of SiO and SiO 2 may be used.
 触媒層形成工程は、シリカ層3の基材2側とは反対側の表面に触媒層4を形成する工程である。触媒層形成工程は、EB(電子ビーム、Electron Beam)法、スパッタリング法、溶液法などの従来の方法を用いて、シリカ層3の基材2側とは反対側の表面に金属の薄膜を形成する工程である。 The catalyst layer forming step is a step of forming the catalyst layer 4 on the surface of the silica layer 3 opposite to the substrate 2 side. In the catalyst layer forming step, a thin metal film is formed on the surface of the silica layer 3 on the opposite side to the base 2 side using a conventional method such as EB (electron beam, electron beam) method, sputtering method or solution method. Process.
 (カーボンナノチューブ成長用基板1を用いたカーボンナノチューブの製造方法)
 図4は、本実施形態におけるCNTの製造方法の処理の一例を示すフローチャートである。図5は、CNT製造装置30の概略図である。
(Manufacturing method of carbon nanotube using substrate 1 for carbon nanotube growth)
FIG. 4 is a flowchart showing an example of processing of the method for producing CNT in the present embodiment. FIG. 5 is a schematic view of a CNT manufacturing apparatus 30. As shown in FIG.
 図4に示すように、本実施形態におけるCNTの製造方法は、加熱工程(S1)と、CNT成長工程(S2、成長工程)と、後処理工程(S3)とを含む。また、図5に示すように、CNT製造装置30は、基板供給室31と、加熱室32と、反応室33と、後処理室34と、基板巻取室35と、ヒーター36とを備えている。 As shown in FIG. 4, the method for producing CNTs in the present embodiment includes a heating step (S1), a CNT growth step (S2, a growth step), and a post-treatment step (S3). Further, as shown in FIG. 5, the CNT manufacturing apparatus 30 includes a substrate supply chamber 31, a heating chamber 32, a reaction chamber 33, a post-processing chamber 34, a substrate winding chamber 35, and a heater 36. There is.
 加熱工程は、基板供給室31の基板巻出装置31Aから加熱室32へ送り出されたCNT成長用基板1を、ヒーター36を用いてCNT成長温度である600~700℃まで加熱する工程である。図5に示すように、加熱室32は、チャンバ32Aと、チャンバ32Aにガスを供給するためのガス供給口32Bとを備えている。加熱工程では、チャンバ32Aの内部を所定の真空度(数Pa~10000Pa)に維持しつつ、ガス供給口32Bから酸素を含まないガス(具体的には、アセチレンガス(C))をチャンバ32Aに供給しながら、CNT成長用基板1を加熱する。本実施形態における加熱工程では、200~700℃/分の昇温速度でCNT成長用基板1の温度を上昇させる。 The heating step is a step of heating the CNT growth substrate 1 delivered from the substrate unwinding device 31 A of the substrate supply chamber 31 to the heating chamber 32 to a CNT growth temperature of 600 to 700 ° C. using the heater 36. As shown in FIG. 5, the heating chamber 32 includes a chamber 32A and a gas supply port 32B for supplying a gas to the chamber 32A. In the heating step, while the inside of the chamber 32A is maintained at a predetermined degree of vacuum (several Pa to 10000 Pa), a gas (specifically, acetylene gas (C 2 H 2 )) containing no oxygen is The substrate for CNT growth 1 is heated while being supplied to the chamber 32A. In the heating step in the present embodiment, the temperature of the CNT growth substrate 1 is raised at a temperature rising rate of 200 to 700 ° C./min.
 上述したように、本実施形態におけるシリカ層3の酸化ケイ素は、二酸化ケイ素よりも伸縮性が高くなっている。そのため、200~700℃/分、好ましくは、500~700℃/分という高い昇温速度でCNT成長用基板1を加熱したとしても、シリカ層3が基材2の熱膨張に追随するように伸縮することができる。その結果、シリカ層3にクラックが形成されることを防ぐことができるようになっている。 As described above, the silicon oxide of the silica layer 3 in the present embodiment is more stretchable than silicon dioxide. Therefore, even if the substrate 1 for CNT growth is heated at a high temperature rising rate of 200 to 700 ° C./min, preferably 500 to 700 ° C./min, the silica layer 3 follows the thermal expansion of the substrate 2 It can be expanded and contracted. As a result, formation of a crack in the silica layer 3 can be prevented.
 CNT成長工程は、加熱工程においてCNT成長温度まで加熱され、反応室33へ送り出されたCNT成長用基板1の触媒層4の表面にCNTを成長(製造)させる工程である。図5に示すように、反応室33は、3つのチャンバ33Aと、各チャンバ33Aにガスを供給するためのガス供給口33Bとを備えている。 The CNT growth step is a step of growing (producing) CNT on the surface of the catalyst layer 4 of the substrate for CNT growth 1 which is heated to the CNT growth temperature in the heating step and sent out to the reaction chamber 33. As shown in FIG. 5, the reaction chamber 33 includes three chambers 33A, and a gas supply port 33B for supplying a gas to each chamber 33A.
 チャンバ33Aの内部は、ヒーター36によりCNT成長温度に保持されている。CNT成長工程では、化学気相堆積(CVD:Chemical Vapor Deposition)法によって、CNTを製造する。具体的には、チャンバ33Aの内部を所定の真空度(数Pa~10000Pa)に維持しつつ、CNTの形成用の原料ガス(例えば、アセチレン、メタン、ブタンなどが用いられる)をガス供給口33Bからチャンバ33Aに供給する。これにより、触媒層4の表面の触媒微粒子を起点としてCNTが形成される。 The interior of the chamber 33A is maintained at the CNT growth temperature by the heater 36. In the CNT growth step, CNTs are produced by a chemical vapor deposition (CVD) method. Specifically, while maintaining the inside of the chamber 33A at a predetermined degree of vacuum (several Pa to 10000 Pa), a raw material gas (for example, acetylene, methane, butane or the like may be used) for the formation of CNTs is supplied to the gas supply port 33B. To the chamber 33A. Thereby, CNTs are formed starting from the catalyst fine particles on the surface of the catalyst layer 4.
 後処理工程は、後処理室34においてCNT成長工程においてCNTが形成されたCNT成長用基板の冷却および形成したCNTの検査を行う工程である。後処理工程が終わると、CNT成長用基板1は、基板巻取室35へ搬送され、その上面に保護フィルムが貼り付けられるとともに、基板巻取室35に備えられた基板巻取装置35Aに巻き取られる。すなわち、CNTが形成されたCNT成長用基板1が製品として回収される。 The post-treatment step is a step of cooling the CNT growth substrate on which the CNTs are formed in the CNT growth step in the post-treatment chamber 34 and inspecting the formed CNTs. After the post-processing step, the CNT growth substrate 1 is transported to the substrate winding chamber 35, the protective film is attached to the upper surface thereof, and wound around the substrate winding device 35A provided in the substrate winding chamber 35. To be taken. That is, the substrate 1 for CNT growth on which CNTs are formed is collected as a product.
 以上のように、本実施形態におけるCNT成長用基板1は、基材2と、シリカ層3と、触媒層4と、裏打ち層5とを備え、シリカ層3が二酸化ケイ素(SiO)よりも酸素の含有量が少ない酸化ケイ素(SiO)によって構成されている(換言すれば、シリカ層3における酸化ケイ素は、組成式SiOで表したときに、xの値が2より小さい)。これにより、加熱工程において急激な昇温速度で加熱したとしても、シリカ層3が基材2の熱膨張に追随して伸縮できる。その結果、クラックが形成されず、CNT成長工程において良好にCNTを成長させることができるようになっている。 As described above, the CNT growth substrate 1 in the present embodiment includes the base material 2, the silica layer 3, the catalyst layer 4 and the backing layer 5, and the silica layer 3 is more than silicon dioxide (SiO 2 ). It is composed of silicon oxide (SiO x ) having a low content of oxygen (in other words, the silicon oxide in the silica layer 3 has a value of x smaller than 2 when represented by the composition formula SiO x ). Thereby, even if it heats at a rapid temperature rising rate in a heating process, the silica layer 3 can be expanded and contracted following the thermal expansion of the base material 2. As a result, no crack is formed, and CNT can be favorably grown in the CNT growth step.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 <第1実施例>
 本発明の実施例について以下に説明する。第1実施例では、本発明のCNT成長用基板の実施例としての実施例1~5、および本発明のCNT成長用基板の比較例としての比較例1について説明する。
First Embodiment
Examples of the invention are described below. In the first example, Examples 1 to 5 as Examples of the CNT growth substrate of the present invention and Comparative Example 1 as Comparative Example of the CNT growth substrate of the present invention will be described.
 実施例1のCNT成長用基板は、以下のようにして作製した。まず、40gのエチルポリシリケート(エチルシリケート45、多摩化学工業製、平均分子量1000)と、60gのメチルトリエトキシシラン(多摩化学工業製、平均分子量178)とを混合した溶液を作製した。次に、この溶液に131.4gのエタノールを混合した。次に、この溶液に113.6gの水と、シリカの加水分解反応を促進するための触媒としての塩酸を少量添加した。添加後、約一日撹拌し、シリカの前駆体溶液を作製した。 The CNT growth substrate of Example 1 was produced as follows. First, a solution was prepared by mixing 40 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemical Co., Ltd., average molecular weight 1000) and 60 g of methyltriethoxysilane (manufactured by Tama Co., Ltd., average molecular weight 178). Next, 131.4 g of ethanol was mixed with this solution. Next, 113.6 g of water and a small amount of hydrochloric acid as a catalyst for accelerating the hydrolysis reaction of silica were added to this solution. After the addition, the mixture was stirred for about one day to prepare a precursor solution of silica.
 次に、幅400mm、厚み50μmのステンレス薄膜(本発明の基材2)の両面に、上記前駆体溶液をロールコートにより塗布し、300℃で約10分間乾燥させた。次に、600℃で約15分焼成することにより、ステンレス薄膜の両面に膜厚400nmのシリカ膜(本発明のシリカ層3および裏打ち層5)を形成した。次に、シリカ膜の一方の表面に、EB法により5nmのFeの薄膜(本発明の触媒層4)を形成し、CNT成長用基板を作製した。 Next, the precursor solution was applied by roll coating on both sides of a stainless steel thin film (substrate 2 of the present invention) having a width of 400 mm and a thickness of 50 μm, and dried at 300 ° C. for about 10 minutes. Next, by baking for about 15 minutes at 600 ° C., a silica film (the silica layer 3 and the backing layer 5 of the present invention) having a thickness of 400 nm was formed on both sides of the stainless steel thin film. Next, a thin film of Fe of 5 nm (the catalyst layer 4 of the present invention) was formed on one surface of the silica film by an EB method, to prepare a substrate for CNT growth.
 実施例2のCNT成長用基板は、シリカの前駆体溶液の作製において、35gのエチルポリシリケート(エチルシリケート45、多摩化学工業製、平均分子量1000)と、65gのメチルトリエトキシシラン(多摩化学工業製、平均分子量178)と、216.6gのエタノールと、28.4gの水とを使用した点を除いて実施例1のCNT成長用基板の作製方法と同様に製造した。 In the preparation of a precursor solution of silica, the substrate for CNT growth of Example 2 comprises 35 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemical Co., average molecular weight 1000) and 65 g of methyltriethoxysilane (Tama Chemical Co., Ltd.) The CNT growth substrate of Example 1 was manufactured in the same manner as in Example 1 except that an average molecular weight of 178), 216.6 g of ethanol and 28.4 g of water were used.
 実施例3のCNT成長用基板は、シリカの前駆体溶液の作製において、30gのエチルポリシリケート(エチルシリケート45、多摩化学工業製、平均分子量1000)と、70gのメチルトリエトキシシラン(多摩化学工業製、平均分子量178)と、234.4gのエタノールと、10.7gの水とを使用した点を除いて実施例1のCNT成長用基板の作製方法と同様に製造した。 In the preparation of a precursor solution of silica, the substrate for CNT growth of Example 3 comprises 30 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemical Co., average molecular weight 1000) and 70 g of methyltriethoxysilane (Tama Chemical Co., Ltd.) The CNT growth substrate of Example 1 was manufactured in the same manner as in Example 1 except that an average molecular weight of 178), 234.4 g of ethanol and 10.7 g of water were used.
 実施例4のCNT成長用基板は、シリカの前駆体溶液の作製において、30gのエチルポリシリケート(エチルシリケート45、多摩化学工業製、平均分子量1000)と、70gのメチルトリエトキシシラン(多摩化学工業製、平均分子量178)と、239.3gのエタノールと、5.7gの水とを使用した点を除いて実施例1のCNT成長用基板の作製方法と同様に製造した。 In the preparation of a precursor solution of silica, the CNT growth substrate of Example 4 comprises 30 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemical Co., average molecular weight 1000) and 70 g of methyltriethoxysilane (Tama Chemical Co., Ltd.) The CNT growth substrate of Example 1 was manufactured in the same manner as in Example 1 except that an average molecular weight of 178), 239.3 g of ethanol and 5.7 g of water were used.
 実施例5のCNT成長用基板は、シリカの前駆体溶液の作製において、10gのエチルポリシリケート(エチルシリケート45、多摩化学工業製、平均分子量1000)と、90gのメチルトリエトキシシラン(多摩化学工業製、平均分子量178)と、241.4gのエタノールと、3.6gの水とを使用した点を除いて実施例1のCNT成長用基板の作製方法と同様に製造した。 In the preparation of a precursor solution of silica, the substrate for CNT growth of Example 5 comprises 10 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemicals Co., average molecular weight 1000) and 90 g of methyltriethoxysilane ( The CNT growth substrate of Example 1 was manufactured in the same manner as in Example 1 except that an average molecular weight of 178), 241.4 g of ethanol and 3.6 g of water were used.
 比較例1のCNT成長用基板は、シリカの前駆体溶液の作製において、100gのエチルポリシリケート(エチルシリケート45、多摩化学工業製、平均分子量1000)と、131.4gのエタノールと、113.6gの水とを使用した点を除いて実施例1のCNT成長用基板の作製方法と同様に製造した。 The substrate for CNT growth of Comparative Example 1 was prepared by mixing 100 g of ethyl polysilicate (ethyl silicate 45, manufactured by Tama Chemicals Co., Ltd., average molecular weight of 1000), 131.4 g of ethanol, and 113.6 g in the preparation of a precursor solution of silica. Were prepared in the same manner as in the method for producing a substrate for CNT growth of Example 1 except that the following water and water were used.
 図6は、実施例1~5のCNT成長用基板におけるシリカ膜のSi2p軌道の結合エネルギーの測定結果を示すグラフである。図7は、比較例1のCNT成長用基板におけるシリカ膜のSi2p軌道の結合エネルギーの測定結果を示すグラフである。図7に示すように、比較例1のCNT成長用基板におけるシリカ膜では、Siの結合エネルギーのピーク位置が略SiOの位置であった。すなわち、比較例1のCNT成長用基板のシリカ膜はSiOによって構成されていた。これに対して、実施例1~5のCNT成長用基板におけるシリカ膜では、図6に示すように、Siの結合エネルギーのピーク位置が、SiOの位置よりも低くなっていた。すなわち、実施例1~5のCNT成長用基板におけるシリカ膜は、Siの少なくとも一部がSiOではなく、SiOよりも酸化度が小さい酸化ケイ素を構成されていた。 FIG. 6 is a graph showing the measurement results of the bonding energy of the Si2p orbit of the silica film in the substrate for CNT growth of Examples 1 to 5. FIG. 7 is a graph showing the measurement results of the bonding energy of the Si2p orbit of the silica film in the substrate for CNT growth of Comparative Example 1. As shown in FIG. 7, in the silica film of the substrate for CNT growth of Comparative Example 1, the peak position of the Si binding energy was approximately the position of SiO 2 . That is, the silica film of the substrate for CNT growth of Comparative Example 1 was made of SiO 2 . On the other hand, in the silica film in the CNT growth substrate of Examples 1 to 5, as shown in FIG. 6, the peak position of the Si binding energy was lower than the position of SiO 2 . In other words, the silica film in the CNT growth substrate of Examples 1-5, at least a part of Si in SiO 2 rather than SiO 2 were composed oxidation degree is small silicon oxide.
 図6に示すXPSの測定結果から実施例1~5のCNT成長用基板のシリカ膜の組成式SiOにおけるxの値を算出した。その結果、実施例1~5のCNT成長用基板のシリカ膜の組成式SiOにおけるxの値(ピーク値)は、それぞれ、1.7、1.4、0.9、0.5、0.2であった。すなわち、XPSの測定結果において、CNT成長用基板のシリカ膜の組成式SiOにおけるxの値(ピーク値)が2よりも小さかった。 The value of x in the composition formula SiO x of the silica film of the substrate for CNT growth of Examples 1 to 5 was calculated from the measurement results of XPS shown in FIG. As a result, the values (peak values) of x in the composition formula SiO x of the silica film of the CNT growth substrate of Examples 1 to 5 are 1.7, 1.4, 0.9, 0.5, 0, respectively. It was .2. That is, in the measurement results of XPS, the value (peak value) of x in the composition formula SiO x of the silica film of the substrate for CNT growth was smaller than 2.
 次に、実施例1~5および比較例1のCNT成長用基板を高い昇温速度で加熱した加熱実験結果について説明する。本加熱実験では、CNT成長用基板を300~700℃/分の昇温速度で700℃まで加熱し、CNT成長用基板のシリカ膜にクラックが発生するかどうかを確認した。実験結果を図8に示す。ここで、図8に示す表における「○」はシリカ膜にクラックが発生しなかったことを示し、「△」はCNTを良好に成長させるには問題ない程度のクラックが発生したことを示し、「×」はCNTを良好に成長させることができないクラックが発生したことを示している。 Next, results of heating experiments in which the substrates for CNT growth of Examples 1 to 5 and Comparative Example 1 are heated at a high temperature rising rate will be described. In this heating experiment, the substrate for CNT growth was heated to 700 ° C. at a temperature rising rate of 300 to 700 ° C./min to confirm whether or not a crack was generated in the silica film of the substrate for CNT growth. The experimental results are shown in FIG. Here, “o” in the table shown in FIG. 8 indicates that no crack was generated in the silica film, and “Δ” indicates that a crack to a degree that causes no problem in growing CNT well was generated. "X" shows that the crack which can not make CNT grow favorably generate | occur | produced.
 図8に示すように、比較例1のCNT成長用基板のシリカ膜では、600℃/分または700℃/分の昇温速度で加熱した場合において、CNTを良好に成長させることができないクラックが発生した。これに対して、実施例1~5のCNT成長用基板のシリカ膜では、700℃/分の昇温速度で加熱した場合においても、CNTを成長させるのに問題がない程度にしかクラックが発生しなかった。これは、実施例1~5のCNT成長用基板におけるシリカ膜がSiの少なくとも一部がSiOよりも酸化度が小さい酸化ケイ素を構成されているため、シリカ膜がステンレス薄膜の熱膨張に追随して伸縮できたためであると考えられる。特に、実施例2~5のCNT成長用基板のシリカ膜では、酸化ケイ素の伸縮性が高いため、700℃/分の昇温速度で加熱した場合においても、全くクラックが発生しなかった。 As shown in FIG. 8, in the silica film of the substrate for CNT growth of Comparative Example 1, cracks can not be grown well when heated at a temperature rising rate of 600 ° C./min or 700 ° C./min. Occurred. On the other hand, in the silica film of the substrate for CNT growth of Examples 1 to 5, even when heated at a temperature rising rate of 700 ° C./min, cracks are generated only to the extent that there is no problem in growing CNT. I did not. This is because the silica film in the substrate for CNT growth of Examples 1 to 5 comprises silicon oxide in which at least a part of Si has a smaller degree of oxidation than SiO 2 , the silica film follows the thermal expansion of the stainless steel thin film It is thought that it was because it was able to expand and contract. In particular, in the silica film of the substrate for CNT growth of Examples 2 to 5, since the stretchability of silicon oxide is high, no crack was generated even when heated at a temperature rising rate of 700 ° C./min.
 図9は、比較例1のCNT成長用基板の加熱実験後の表面の様子を示す図である。図10は、実施例2のCNT成長用基板の加熱実験後の表面の様子を示す図である。比較例1のCNT成長用基板では、図9に示すように、加熱実験後の表面においてクラックが発生していた。これに対して、実施例2のCNT成長用基板では、図10に示すように、加熱実験後においてもクラックが発生しなかった。 FIG. 9 is a view showing the appearance of the surface of the CNT growth substrate of Comparative Example 1 after the heating experiment. FIG. 10 is a view showing the appearance of the surface of the substrate for CNT growth of Example 2 after a heating experiment. In the substrate for CNT growth of Comparative Example 1, as shown in FIG. 9, cracks were generated on the surface after the heating test. On the other hand, in the substrate for CNT growth of Example 2, as shown in FIG. 10, no crack was generated even after the heating test.
 <第2実施例>
 第2実施例では、シリカ膜(本発明のシリカ層3および裏打ち層5)の膜厚を変化させた実施例について説明する。第2実施例におけるCNT成長用基板は、シリカ膜の膜厚を変化させた点以外については、第1実施例における実施例3のCNT成長用基板と同じの手順で作製した。すなわち、第2実施例におけるCNT成長用基板は、シリカ膜を構成する酸化ケイ素SiOにおけるxが0.9であった。なお、第2実施例では、シリカ膜の前駆体溶液をステンレス薄膜に塗布する量を変化させることにより、シリカ膜の膜厚を50nmから2500nmまで変化させた。
Second Embodiment
In the second embodiment, an embodiment in which the film thickness of the silica film (the silica layer 3 and the backing layer 5 of the present invention) is changed will be described. The substrate for CNT growth in the second example was produced in the same procedure as the substrate for CNT growth in example 3 in the first example except that the film thickness of the silica film was changed. That is, in the substrate for CNT growth in the second embodiment, x in the silicon oxide SiO x forming the silica film was 0.9. In the second embodiment, the thickness of the silica film was changed from 50 nm to 2500 nm by changing the amount of application of the precursor solution of the silica film to the stainless steel thin film.
 第2実施例では、作製したCNT成長用基板を用いてCNTの作製を行い、CNTの配向長、嵩密度、およびCNT成長用基板のクラックの有無について評価を行った。CNTの配向長は、CNT成長用基板の幅方向にレーザースキャンを3回行い、3回の測定値の平均値で評価した。CNTの嵩密度は、粘着テープを用いて作製したCNTを剥離した後、剥離したCNTの重量を測定することにより算出した。 In the second embodiment, CNTs were produced using the produced CNT growth substrate, and the orientation length of the CNTs, the bulk density, and the presence or absence of cracks in the CNT growth substrate were evaluated. The orientation length of the CNT was evaluated by the average value of three measurements performed by performing laser scanning three times in the width direction of the substrate for CNT growth. The bulk density of CNT was calculated by measuring the weight of the exfoliated CNT after exfoliating the CNT produced using the adhesive tape.
 第2実施例におけるCNTの作製の手順は、以下のとおりである。まず、チャンバ内に窒素ガスを供給しながらCNT成長用基板を昇温速度600℃/分で680℃まで加熱した。次に、680℃に維持した状態でチャンバ内にアセチレンガスを供給しながらCNTを成長(作製)させた。 The procedure for producing the CNT in the second embodiment is as follows. First, the substrate for CNT growth was heated to 680 ° C. at a heating rate of 600 ° C./min while supplying nitrogen gas into the chamber. Next, CNT was grown (made) while supplying acetylene gas into the chamber while maintaining the temperature at 680 ° C.
 図11は、第2実施例における実験結果を示す表である。図11に示すように、シリカ膜の膜厚が50~1500nmのCNT成長用基板では、シリカ膜にクラックが発生しなかった。これに対して、シリカ膜の膜厚が2000~2500nmのCNT成長用基板では、シリカ膜にクラックが発生した。当該クラックの発生は、高い昇温速度に起因するものではなく、シリカ膜が厚すぎたためCNT成長用基板を高温にしたときにシリカ膜がステンレス薄膜から剥離してしまったことによるものであると考えられる。 FIG. 11 is a table showing experimental results in the second embodiment. As shown in FIG. 11, in the substrate for CNT growth in which the film thickness of the silica film is 50 to 1500 nm, no crack was generated in the silica film. On the other hand, in the substrate for CNT growth in which the film thickness of the silica film is 2000 to 2500 nm, a crack was generated in the silica film. The occurrence of the crack is not due to the high temperature rising rate, but is due to the silica film being peeled off from the stainless steel thin film when the substrate for CNT growth is brought to a high temperature because the silica film is too thick. Conceivable.
 また、シリカ膜の膜厚が50~100nmのCNT成長用基板では、シリカ膜にクラックは発生しなかったが、作製したCNTの配向長および嵩密度が、その他のCNT成長用基板を用いて作製したCNTの配向長および嵩密度よりも低く、製品として好ましくなかった。これは、シリカ膜の膜厚が小さすぎるため、ステンレス薄膜からCrなどの成分が触媒層であるFeの薄膜へ拡散してしまい、触媒としてのFeを微粒子化できなかったためであると考えられる。 Moreover, in the substrate for CNT growth with a film thickness of 50 to 100 nm of silica film, although the crack did not occur in the silica film, the orientation length and bulk density of the produced CNT were manufactured using other substrates for CNT growth. It was less than the oriented length and bulk density of the resulting CNTs, and was not desirable as a product. It is considered that this is because, since the film thickness of the silica film is too small, a component such as Cr diffuses from the stainless steel thin film to the thin film of Fe which is a catalyst layer, and Fe as a catalyst can not be micronized.
 1 カーボンナノチューブ成長用基板
 2 基材
 3 シリカ層(中間層)
 4 触媒層
 5 裏打ち層
1 substrate for carbon nanotube growth 2 substrate 3 silica layer (intermediate layer)
4 catalyst layer 5 backing layer

Claims (5)

  1.  金属からなる基材と、
     前記基材の表面に形成され、酸化ケイ素を含む中間層と、
     前記中間層の、前記基材側とは反対側の表面に形成される触媒層と、を備え、
     前記中間層における酸化ケイ素は、組成式SiOで表したときに、xの値が2より小さいことを特徴とするカーボンナノチューブ成長用基板。
    A substrate made of metal,
    An intermediate layer formed on the surface of the substrate and containing silicon oxide;
    A catalyst layer formed on the surface of the intermediate layer opposite to the substrate side,
    The substrate for carbon nanotube growth, wherein the silicon oxide in the intermediate layer has a value of x smaller than 2 when represented by a composition formula SiO x .
  2.  前記中間層における酸化ケイ素は、組成式SiOで表したときに、xの値が0.2以上かつ1.4以下であることを特徴とする請求項1に記載のカーボンナノチューブ成長用基板。 The substrate for carbon nanotube growth according to claim 1, wherein the silicon oxide in the intermediate layer has a value of x of 0.2 or more and 1.4 or less when represented by a composition formula SiO x .
  3.  前記基材における前記中間層が形成されている面とは反対側の面に、前記中間層に含まれる酸化ケイ素と同じ組成の酸化ケイ素を含む裏打ち層が形成されていることを特徴とする請求項1または2に記載のカーボンナノチューブ成長用基板。 On the surface of the substrate opposite to the surface on which the intermediate layer is formed, a backing layer containing silicon oxide having the same composition as the silicon oxide contained in the intermediate layer is formed. The substrate for carbon nanotube growth according to Item 1 or 2.
  4.  前記中間層の膜厚が150nm以上1500nm以下であることを特徴とする請求項1~3のいずれか1項に記載のカーボンナノチューブ成長用基板。 The carbon nanotube growth substrate according to any one of claims 1 to 3, wherein the film thickness of the intermediate layer is 150 nm or more and 1500 nm or less.
  5.  請求項1~4のいずれか1項に記載のカーボンナノチューブ成長用基板を用いたカーボンナノチューブの製造方法であって、
     前記カーボンナノチューブ成長用基板を、700℃/分以下の昇温速度でカーボンナノチューブ成長温度まで加熱する加熱工程と、
     前記加熱工程後において前記カーボンナノチューブ成長温度まで加熱された前記カーボンナノチューブ成長用基板に原料ガスを供給し、前記カーボンナノチューブ成長用基板上にカーボンナノチューブを成長させる成長工程と、を含むことを特徴とするカーボンナノチューブの製造方法。
    A method of producing a carbon nanotube using the substrate for carbon nanotube growth according to any one of claims 1 to 4,
    Heating the carbon nanotube growth substrate to a carbon nanotube growth temperature at a temperature rising rate of 700 ° C./min or less;
    And supplying a source gas to the carbon nanotube growth substrate heated to the carbon nanotube growth temperature after the heating step, and growing carbon nanotubes on the carbon nanotube growth substrate. Of producing carbon nanotubes.
PCT/JP2018/043615 2017-11-30 2018-11-27 Carbon nanotube growth substrate and carbon nanotube production method WO2019107362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019557242A JP7060614B2 (en) 2017-11-30 2018-11-27 Substrate for growing carbon nanotubes and method for manufacturing carbon nanotubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017230978 2017-11-30
JP2017-230978 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107362A1 true WO2019107362A1 (en) 2019-06-06

Family

ID=66664011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043615 WO2019107362A1 (en) 2017-11-30 2018-11-27 Carbon nanotube growth substrate and carbon nanotube production method

Country Status (3)

Country Link
JP (1) JP7060614B2 (en)
TW (1) TW201925084A (en)
WO (1) WO2019107362A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140268A (en) * 2010-12-28 2012-07-26 Nippon Zeon Co Ltd Determination method of substrate for producing carbon nanotube, and production method of carbon nanotube
JP2016147803A (en) * 2011-05-10 2016-08-18 国立大学法人静岡大学 Carbon nano-tube production method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140268A (en) * 2010-12-28 2012-07-26 Nippon Zeon Co Ltd Determination method of substrate for producing carbon nanotube, and production method of carbon nanotube
JP2016147803A (en) * 2011-05-10 2016-08-18 国立大学法人静岡大学 Carbon nano-tube production method and apparatus

Also Published As

Publication number Publication date
JPWO2019107362A1 (en) 2020-12-17
TW201925084A (en) 2019-07-01
JP7060614B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
JP5137066B2 (en) Graphene sheet manufacturing method
JP6196246B2 (en) Silicon carbide-tantalum carbide composite and susceptor
JP2006007213A (en) Production method of catalyst for producing carbon nanotube
CN109629004B (en) Method for forming atomic-level thin transition metal telluride two-dimensional metal material on dangling bond-free substrate through Van der Waals epitaxy
WO2020119639A1 (en) Composite diamond coating and preparation method therefor, microfluidic channel and microfluidic device
JP2012006824A (en) Method for synthesizing graphene and carbon molecule thin film
TWI307558B (en) Method of facbricating buffer layer on substrate
Sharma et al. Edge controlled growth of hexagonal boron nitride crystals on copper foil by atmospheric pressure chemical vapor deposition
KR101692514B1 (en) Formation method of large area, single crystal, single layered hexagonal boron nitride thin film on a substrate and hexagonal boron nitride thin film laminate thereby
JP6369566B2 (en) Composite substrate for producing nanocarbon film and method for producing nanocarbon film
JP2007182374A (en) Method for manufacturing single-walled carbon nanotube
WO2019107362A1 (en) Carbon nanotube growth substrate and carbon nanotube production method
JP5578699B2 (en) Carbon nanotube assembly
Maruyama et al. Low-temperature synthesis of single-walled carbon nanotubes by alcohol gas source growth in high vacuum
JP2012121751A (en) Graphene-diamond laminate
EP2484633B1 (en) Metal-salt-containing composition, substrate, and method for producing substrate
Shimada et al. Deposition of TiN films on various substrates from alkoxide solution by plasma-enhanced CVD
KR101758640B1 (en) Fabrication method of aligned carbon fiber arrays employing metal base
Xie et al. Growth of monolayer WS2 single crystals with atmospheric pressure CVD: Role of temperature
Soler et al. Hot-wire chemical vapor deposition of few-layer graphene on copper substrates
JP2009137805A (en) Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown
KR20210055903A (en) Method for forming bi-layer graphene
US11866336B2 (en) Method for producing reduced graphene oxide
CN107419220B (en) Method for forming amorphous carbon/M metal layer on substrate
TWI504555B (en) A method for coating a nanosheet structure network on a substrate and the application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884700

Country of ref document: EP

Kind code of ref document: A1