WO2019107317A1 - Nozzle-type steam trap - Google Patents

Nozzle-type steam trap Download PDF

Info

Publication number
WO2019107317A1
WO2019107317A1 PCT/JP2018/043450 JP2018043450W WO2019107317A1 WO 2019107317 A1 WO2019107317 A1 WO 2019107317A1 JP 2018043450 W JP2018043450 W JP 2018043450W WO 2019107317 A1 WO2019107317 A1 WO 2019107317A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
chamber
drain
steam
steam trap
Prior art date
Application number
PCT/JP2018/043450
Other languages
French (fr)
Japanese (ja)
Inventor
竜太郎 芦田
Original Assignee
株式会社Shinsei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Shinsei filed Critical 株式会社Shinsei
Publication of WO2019107317A1 publication Critical patent/WO2019107317A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • F16T1/38Component parts; Accessories

Definitions

  • the present invention relates to a nozzle type steam trap.
  • a steam trap is known as an apparatus for discharging a drain accumulated in steam piping in a plant facility or the like, that is, an apparatus in which vapor phase steam is liquefied.
  • the steam trap 20 has an introduction portion 21 into which steam is introduced from the outside, a drainage portion 22 that discharges water to the outside, and an exhaust portion 23.
  • a trap chamber 24 is provided inside.
  • the injection port of the nozzle 25 faces the trap chamber 24 and captures water mixed in the steam introduced from the introduction unit 21 as condensed water.
  • the top opening of the trap chamber 24 is shielded by the end cap 26.
  • the exhaust unit 23 discharges the residual steam whose water has been removed by the trap chamber 24 to the outside, and a strainer 27 is provided therein.
  • a drain having a specific gravity larger than that of the steam in the introduction portion 21 fills the exhaust portion 23 and the introduction portion 21 and then reaches the inlet to the nozzle 25. Since some steam first reaches the inlet to the nozzle 25 and is exhausted, a steam leak occurs. In particular, there is a problem that steam leakage is likely to occur at an installation point where the amount of drain is small.
  • a metal gasket is used as a sealing material for the trap chamber 24 in which the nozzle 25 is installed and the exhaust portion 23 in which the strainer 27 is installed.
  • a metal gasket is used as a sealing material for the trap chamber 24 in which the nozzle 25 is installed and the exhaust portion 23 in which the strainer 27 is installed.
  • an object of the present invention is to preferentially guide the drain to the inlet to the nozzle to reduce steam leakage. Another object of the present invention is to eliminate the burden of periodic inspection and replacement work of the sealing material.
  • the present invention relates to a nozzle type steam trap, And A nozzle provided in the housing; A first chamber provided in the housing and facing the suction port of the nozzle; A second chamber provided in the housing and facing the injection port of the nozzle; And a drain introducing member provided at the steam introducing port of the first chamber and having a notch formed therein, The drain introducing member is attached so that the notch is located in the lower part where the drain of the steam introducing port is accumulated.
  • the drain introducing member is formed of a cutaway disk in which the cutaway portion is formed.
  • the cutaway portion of the drain introducing member is formed in a straight line, and is formed in an arc shape with an inner wall surface of the steam introducing port.
  • the drain introducing member can be attached at different angles around the central axis of the steam introducing port.
  • the drain introducing member is a quadrangular attachment hole engaged with an octagonal boss formed on a wall surface of the first chamber of the casing and a wall of the first chamber on the side of the first chamber of the second chamber. It is preferable to have
  • the first chamber is An intermediate chamber facing the suction port of the nozzle;
  • a high pressure chamber in communication with the steam inlet; It consists of a communicating hole which connects the above-mentioned middle chamber and the above-mentioned high pressure chamber, It is preferable that the cutaway portion of the drain introducing member faces an inflow port of the communication hole.
  • the notch of the drain introducing member faces the lower half of the inlet of the communication hole.
  • the housing comprises a main body forming the first chamber and a lid forming the second chamber, It is preferable that a seal concave portion and a seal convex portion are formed in the main body portion and the lid portion by metal touch.
  • the steam introducing port of the first chamber is provided with the drain introducing member having the notched portion, and the notched portion is attached to the lower portion where the drain of the steam introducing port is accumulated.
  • the steam at the steam inlet is prevented from flowing to the inlet to the nozzle, and the drain is preferentially guided to the inlet to the nozzle.
  • the seal concave portion and the seal convex portion which are fitted by metal touch, there is no steam leakage due to deterioration of the seal member, and the seal member is not used.
  • the burden of periodic inspection and replacement work of the material is eliminated.
  • the steam leak from the nozzle and the seal part is reduced, the fuel cost and the CO 2 emission of the steam plant can be reduced.
  • FIG. IV-IV sectional view taken on the line of FIG. Sectional drawing which shows the seal structure of a main-body part and a lid part.
  • Sectional drawing (a) which shows the 1st attachment state of a drain introduction member, sectional drawing (b) which shows a 2nd attachment state, and sectional drawing (c) which shows the 3rd attachment state of a drain introduction member.
  • Sectional drawing which shows the operation
  • Sectional drawing which shows the flow of the suction part of a nozzle.
  • the disassembled perspective view which shows the conventional steam trap.
  • FIG. 1 is an external perspective view of a nozzle type steam trap according to the present embodiment.
  • the steam trap 1 has a housing 2, a steam inlet 3, and a drain outlet 4, and is a high temperature / high pressure steam introduced from the steam inlet 3, that is, a gas phase (steam) and a liquid phase
  • the fluid in the state of coexistence with water is treated and discharged from the drain outlet 4 as liquid phased drain (water).
  • the housing 2 is formed of metal such as stainless steel or cast iron, and the steam inlet 3 and the drain outlet 4 are provided coaxially.
  • a branch pipe of a steam piping system for transporting steam generated by a boiler or the like in a plant facility is attached to the steam introduction port 3.
  • a drain pipe for discharging the drain to the outside is attached to the drain discharge port 4.
  • FIG. 2 is an exploded perspective view of the steam trap 1.
  • the housing 2 is vertically divided into two parts, and has a main body 5 and a lid 6.
  • the main body 5 and the lid 6 are integrated by a plurality of bolts (not shown).
  • a high pressure chamber 5 a in communication with the steam inlet 3 and a discharge chamber 5 b in communication with the drain discharge port 4 are provided inside the main body 5.
  • These chambers 5a and 5b are mutually divided via the division wall 5c which makes a part of main-body part 5 (casing 2).
  • the main body 5 is provided with a pair of openings 5 d orthogonal to the direction connecting the steam inlet 3 and the drain outlet 4.
  • the closure plug 5e is detachably attached to these opening parts 5d.
  • a communication portion 5f is provided in the upper portion of the high pressure chamber 5a, and a communication port 5g is provided in the upper portion of the discharge chamber 5b.
  • an intermediate chamber 5 h having a diameter smaller than that of the communication portion 5 f is provided at the back of the communication portion 5 f.
  • the intermediate chamber 5h is in communication with the high pressure chamber 5a via a communication hole 5i bent in an L shape.
  • the lowest portion of the drain inflow port on the high pressure chamber 5a side of the communication hole 5i coincides with the lowest portion of the high pressure chamber 5a.
  • the opening 5d is in communication with the intermediate chamber 5h via the communication hole 5j, as shown in FIG.
  • a seal recess 5k is formed extending in an oval shape so as to surround the communication portion 5f and the communication port 5g.
  • a luer taper is provided on the side surface of the seal recess 5k.
  • a detachable nozzle 7 for closing the communication portion 5f is attached to the communication portion 5f opened on the upper surface of the main body portion 5 via a circular net-like strainer 7b to close the intermediate chamber 5h.
  • an inner thread is formed on the inner peripheral surface of the communication portion 5 f
  • an outer thread is formed on the outer peripheral surface of the nozzle 7.
  • a space including a low pressure chamber 6 a is provided inside the lid 6.
  • the lid portion 6 is formed with a seal convex portion 6b extending in an oval shape so as to surround the low pressure chamber 6a.
  • a luer taper is provided on the side surface of the seal convex portion 6b.
  • a substantially cylindrical recessed portion 7c is provided at an end on the suction port side of the nozzle hole 7a of the nozzle 7, that is, an end that forms a part of a wall that divides the high pressure chamber 5a. It is done. As shown in FIG. 6,
  • the depressed portion 7c has a cylindrical wall 7d having the same inner diameter as the inner diameter of the intermediate chamber 5h, a corner 7e having a curved surface positioned behind the suction port of the nozzle hole 7a, and the corner It has a continuous cross-sectional shape including an inclined portion 7f extending from the portion 7e toward the suction port of the nozzle hole 7a and a central portion 7g smoothly continuous from the inclined portion 7f to the suction port of the nozzle hole 7a.
  • the angle ⁇ of the inclined portion 7f with respect to the plane orthogonal to the center line of the nozzle hole 7a is preferably 20 to 40 °.
  • a drain introducing member 8 is attached to the high pressure chamber 5 a inside the steam introducing hole 3.
  • the drain introducing member 8 is provided with a cutaway disk 8 b having the same diameter as the inner diameter of the high pressure chamber 5 a and partially having a cutaway portion 8 a.
  • the cutaway portion 8a is formed in a straight line, and is formed in an arc shape with the inner wall surface of the high pressure chamber 5a.
  • the cutaway portion 8a of the cutaway disk 8b is formed to face approximately the lower half of the drain inflow port on the high pressure chamber 5a side of the communication hole 5i.
  • the notch 8a is not limited to a linear shape, and may be an arc shape or a semicircular shape.
  • a circular mounting seat 8c is formed on one surface of the disc 8b to be in contact with the wall surface on the high pressure chamber 5a side, and a projection 8d having an external screw formed on the outer periphery is formed on the other surface.
  • the mounting seat 8c is provided with a mounting hole 8e having a square cross section, and the protrusion 8d is provided with a screw insertion hole 8f having a circular cross section communicating with the mounting hole 8e.
  • the mounting hole 8e is adapted to engage with an octagonal boss 5l formed on the wall of the section wall 5c on the high pressure chamber 5a side.
  • the drain introducing member 8 inserts the mounting screw 8g into the screw insertion hole 8f and the mounting hole 8e, and screws it into the screw hole 5m formed in the octagonal boss 5l of the dividing wall 5c, thereby the high pressure chamber of the dividing wall 5c. It is attached to the wall on the 5a side.
  • the notch 8a is horizontal as shown in FIG. 8A by rotating the notch disc 8b of the drain introducing member 8 around the central axis of the steam introduction port 3 and changing the angle of the notch disc 8b.
  • the chipped portion 8a can be positioned at an angle of 45 degrees. Further, as shown in FIG.
  • the chipped portion 8a when the steam trap 1 is attached vertically, the chipped portion 8a is positioned at a lower portion where the drain of the steam introduction hole 3 is accumulated. In this case, the drain that has passed through the notch 8a flows into the drain inlet of the communication hole 5i through the gap 9 (see FIG. 9) between the drain introducing member 8 and the wall surface of the divided wall 5c on the high pressure chamber 5a side. Do.
  • FIG. 9 is a cross-sectional view of the steam trap 1.
  • the flow path of the fluid introduced from the steam introduction port 3 is the high pressure chamber 5a, the notch 8a of the drain introduction member 8, the communication hole 5i, the intermediate chamber 5h, the strainer 7b, the nozzle hole 7a, the low pressure chamber 6a, the communication port 5g, It passes through the discharge chamber 5 b in order and is discharged from the drain discharge port 4.
  • a part of the wall part which divides intermediate chamber 5h is constituted by nozzle 7, and the suction mouth of nozzle hole 7a formed in this nozzle 7 has faced in high pressure chamber 5a.
  • a part of the wall part which divides this is also comprised by the nozzle 7,
  • the injection opening of the nozzle hole 7a formed in this nozzle 7 is low pressure It faces in the chamber 6a.
  • the low pressure chamber 6a is in communication with the drain discharge port 4 through the communication port 5g and the discharge chamber 5b, and is maintained at an equivalent pressure (low pressure) to the atmospheric pressure.
  • a pressure difference occurs between the high pressure chamber 5a and the intermediate chamber 5h into which the high temperature and high pressure steam is introduced, and the low pressure chamber 6a opened to the atmospheric pressure.
  • the high pressure chamber 5a and the intermediate chamber 5h have substantially the same pressure.
  • the drain in the high pressure chamber 5a is frozen at the time of operation stop, so the drain may not be discharged. Therefore, as shown in FIG. 8 (b), the drain introducing member 8 is attached to the steam trap 1 for cold regions so that the notch 8a is directed obliquely at 45 ° or in the vertical direction, and the steam trap 1 is mounted on the top of the notch 8a.
  • the steam introduced from the opening 5d can be introduced to melt the frozen drain.
  • the nozzle hole 7a sucks the fluid in the high pressure chamber 5a and the intermediate chamber 5h from the suction port based on the pressure difference between the high pressure chamber 5a and the intermediate chamber 5h and the low pressure chamber 6a, and draws the sucked fluid to the low pressure Spray into the chamber 6a.
  • the upstream side strainer 7b covers the suction port of the nozzle hole 7a, dust in the fluid is removed prior to the flow into the nozzle hole 7a.
  • the fluid jetted from the nozzle hole 7a is cooled in the low pressure chamber 6a and becomes a drained liquid.
  • the drain in the low pressure chamber 6 a flows into the downstream discharge chamber 5 b via the communication port 5 g and is then discharged to the outside from the drain outlet 4.
  • FIG. 10 is an explanatory view of the flow of fluid in the intermediate chamber 5h.
  • an ejector effect occurs in the space A, and an action to draw the surrounding fluid occurs.
  • the fluid in the space B in the vicinity of the inner peripheral wall of the intermediate chamber 5h flows along the curved surface of the depressed portion 7c by the Coanda effect to be rectified, and is drawn to the suction port of the central nozzle hole 7a by the ejector effect.
  • the ejector effect is a phenomenon in which a low pressure space is generated by accelerating a fluid, and the fluid is drawn.
  • the Coanda effect is a property of a fluid in which a fluid (turbulence) is rectified to flow along a curved surface of a wall when there is a curved wall by the fluid.
  • the periphery of the suction port of the nozzle hole 7a is gently recessed concentrically with respect to the suction port, and thus the fluid having the flow disordered is rectified and led to the suction port of the nozzle hole 7a.
  • the fluid flowing through the nozzle holes 7a is amplified and accelerated by the amount of the fluid rectified along the curved surface shape of the wall.
  • the injection amount of the nozzle holes 7a is larger in the configuration in which the wall is curved than in the configuration in which the wall is not curved.
  • the drain introducing member 8 is attached to the high pressure chamber 5 a inside the steam introducing hole 3, and the drain introducing member 8 prevents the steam in the high pressure chamber 5 a from being released. Since only the drain collected in the chamber 5a is preferentially led to the inlet of the communication hole 5i and sent to the intermediate chamber 5h, it is possible to prevent steam leakage.
  • the periphery of the suction port of the nozzle hole 7a is gently recessed concentrically, and the fluid flows along the curved surface shape, so the nozzle hole is formed by the above-described ejector effect and Coanda effect.
  • the fluid drawn into 7a is amplified and accelerated. As a result, the cooling capacity of the fluid is enhanced, so that the fluid is reliably phased and can be effectively drained.
  • the present invention is not limited to the above embodiments, and can be variously modified within the scope of the invention described in the claims.
  • the main body portion may be provided with a seal convex portion
  • the lid portion may be provided with a seal concave portion.
  • the cooling capacity of the fluid in the nozzle type steam trap has a correlation with the amount and speed of the fluid ejected from the nozzle, and the larger the number, the finer the atomized fluid (atomized), The reduction efficiency to However, conventionally, little attention has been paid to enhancing the cooling capacity of the fluid.
  • the first chamber has an intermediate chamber facing the suction port of the nozzle hole,
  • the depression is A cylindrical wall of the same inner diameter as the intermediate chamber and the inner diameter, A corner made of a curved surface located behind the suction port of the nozzle hole;
  • An inclined portion extending from the corner toward the suction port of the nozzle hole;
  • the nozzle type steam trap of the means 1 which consists of a continuous curved surface which consists of a center part which continued smoothly from the said inclination part to the suction opening of a nozzle hole.
  • the periphery of the suction port of the nozzle is gently recessed concentrically, and the fluid flows along the curved surface shape, so that the fluid attracted to the nozzle is amplified by the ejector effect and the Coanda effect. ⁇ Speed up.
  • the cooling capacity of the fluid is enhanced, so that the fluid is reliably phased and can be effectively drained.

Abstract

The present invention relates to a nozzle-type steam trap and addresses the problem of guiding drainage preferentially to an inlet that leads to a nozzle, and reducing steam leakage. A steam trap (1) comprises: a housing (2); a nozzle (7) disposed in the housing; a first chamber (5a, 5h) which is disposed inside the housing and to which a suction port of the nozzle faces; a second chamber (6a) which is disposed inside the housing and to which an injection port of the nozzle faces; and a drainage introduction member (8) which is disposed in a steam introduction port (3) of the first chamber and in which a cutout section (8a) is formed. The drain introduction member (8) is attached so that the cutout section (8a) is located in a lower section where drainage from the steam introduction port (3) accumulates.

Description

ノズル式スチームトラップNozzle type steam trap
 本発明は、ノズル式スチームトラップに関する。 The present invention relates to a nozzle type steam trap.
 従来より、工場設備等におけるスチーム配管に溜まったドレン、すなわち、気相のスチームが液相化したものを排出する装置として、スチームトラップが知られている。スチームトラップには、ドレンの排出原理に応じて様々なタイプが存在するが、その一つとして、例えば、特許文献1に記載されているようなノズル式のスチームトラップが知られている。図11に示すように、このスチームトラップ20は、外部から蒸気が導入される導入部21と、外部に水を排出する排水部22と、排気部23とを有しており、スチームトラップ20の内部には、トラップ室24が設けられている。このトラップ室24には、ノズル25の噴射口が臨んでおり、導入部21から導入された蒸気に混在している水を凝縮水として捕捉する。トラップ室24の上部開口は、エンドキャップ26によって遮蔽されている。また、排気部23は、トラップ室24によって水が除去された残留蒸気を外部へ排出し、その内部には、ストレーナ27が設けられている。 BACKGROUND ART Conventionally, a steam trap is known as an apparatus for discharging a drain accumulated in steam piping in a plant facility or the like, that is, an apparatus in which vapor phase steam is liquefied. There are various types of steam traps according to the draining principle of drain, and one of them is, for example, a nozzle type steam trap as described in Patent Document 1 is known. As shown in FIG. 11, the steam trap 20 has an introduction portion 21 into which steam is introduced from the outside, a drainage portion 22 that discharges water to the outside, and an exhaust portion 23. A trap chamber 24 is provided inside. The injection port of the nozzle 25 faces the trap chamber 24 and captures water mixed in the steam introduced from the introduction unit 21 as condensed water. The top opening of the trap chamber 24 is shielded by the end cap 26. In addition, the exhaust unit 23 discharges the residual steam whose water has been removed by the trap chamber 24 to the outside, and a strainer 27 is provided therein.
特開2014-234868号公報JP 2014-234868 A
 特許文献1のスチームトラップ20では、導入部21の蒸気より比重が大きいドレンは、排気部23と導入部21を満たしてからノズル25への流入口に達するが、導入部21のドレンの上側にある蒸気が先にノズル25への流入口に達して排出されるので、蒸気漏れが発生する。特にドレン量が少ない設置個所では蒸気漏れが発生しやすいという問題がある。 In the steam trap 20 of Patent Document 1, a drain having a specific gravity larger than that of the steam in the introduction portion 21 fills the exhaust portion 23 and the introduction portion 21 and then reaches the inlet to the nozzle 25. Since some steam first reaches the inlet to the nozzle 25 and is exhausted, a steam leak occurs. In particular, there is a problem that steam leakage is likely to occur at an installation point where the amount of drain is small.
 また、特許文献1のスチームトラップ20では、ノズル25が設置されるトラップ室24及びストレーナ27が設置される排気部23にシール材としてメタルガスケットが用いられるが、高温の蒸気の環境下ではメタルガスケットが熱膨張により変形し、高圧の蒸気が漏洩する虞れがあるので、定期的に保守点検し、シール材を交換する必要があった。 Further, in the steam trap 20 of Patent Document 1, a metal gasket is used as a sealing material for the trap chamber 24 in which the nozzle 25 is installed and the exhaust portion 23 in which the strainer 27 is installed. However, there is a risk that high-pressure steam may be leaked due to thermal expansion, so it was necessary to periodically perform maintenance and inspection and replace the sealing material.
 そこで、本発明の目的は、ドレンを優先的にノズルへの流入口に誘導し、蒸気漏れを低減することにある。また、本発明の目的は、シール材の定期点検や交換作業の負担を排除することにある。 Therefore, an object of the present invention is to preferentially guide the drain to the inlet to the nozzle to reduce steam leakage. Another object of the present invention is to eliminate the burden of periodic inspection and replacement work of the sealing material.
 かかる課題を解決すべく、本発明は、ノズル式スチームトラップにおいて、
 筐体と、
 前記筐体内に設けられたノズルと、
 前記筐体内に設けられ、前記ノズルの吸引口が臨んだ第1のチャンバーと、
前記筐体内に設けられ、前記ノズルの噴射口が臨んだ第2のチャンバーと、
 前記第1のチャンバーのスチーム導入口に設けられ、欠け部が形成されたドレン導入部材とを有し、
 前記ドレン導入部材は、欠け部がスチーム導入口のドレンが溜まる下部に位置するように取り付けられているものである。
In order to solve such problems, the present invention relates to a nozzle type steam trap,
And
A nozzle provided in the housing;
A first chamber provided in the housing and facing the suction port of the nozzle;
A second chamber provided in the housing and facing the injection port of the nozzle;
And a drain introducing member provided at the steam introducing port of the first chamber and having a notch formed therein,
The drain introducing member is attached so that the notch is located in the lower part where the drain of the steam introducing port is accumulated.
 前記ドレン導入部材は、前記欠け部が形成された欠円板からなることが好ましい。 It is preferable that the drain introducing member is formed of a cutaway disk in which the cutaway portion is formed.
 前記ドレン導入部材の前記欠け部は、直線状に形成され、前記スチーム導入口の内壁面との間に弓形に形成されていることが好ましい。 It is preferable that the cutaway portion of the drain introducing member is formed in a straight line, and is formed in an arc shape with an inner wall surface of the steam introducing port.
 前記ドレン導入部材は、前記スチーム導入口の中心軸の回りに角度を変えて取り付け可能であることが好ましい。 Preferably, the drain introducing member can be attached at different angles around the central axis of the steam introducing port.
 前記ドレン導入部材は、前記筐体の前記第1のチャンバーと前記第2のチャンバーを仕切る仕切壁の前記第1のチャンバー側の壁面に形成された八角形のボスに係合する四角形の取付孔を有することが好ましい。 The drain introducing member is a quadrangular attachment hole engaged with an octagonal boss formed on a wall surface of the first chamber of the casing and a wall of the first chamber on the side of the first chamber of the second chamber. It is preferable to have
 前記第1のチャンバーは、
 前記ノズルの吸引口が臨む中間チャンバーと、
 前記スチーム導入口に連通する高圧チャンバーと、
 前記中間チャンバーと前記高圧チャンバーを連通する連通孔とからなり、
 前記ドレン導入部材の前記欠け部は前記連通孔の流入口に臨んでいることが好ましい、
The first chamber is
An intermediate chamber facing the suction port of the nozzle;
A high pressure chamber in communication with the steam inlet;
It consists of a communicating hole which connects the above-mentioned middle chamber and the above-mentioned high pressure chamber,
It is preferable that the cutaway portion of the drain introducing member faces an inflow port of the communication hole.
 前記ドレン導入部材の前記欠け部は、前記連通孔の流入口の下半分を臨んでいることが好ましい。 It is preferable that the notch of the drain introducing member faces the lower half of the inlet of the communication hole.
 前記筐体は、前記第1のチャンバーを形成する本体部と、前記第2のチャンバーを形成する蓋体部とからなり、
 前記本体部と前記蓋体部に、互いにメタルタッチで嵌合するシール凹部とシール凸部が形成されていることが好ましい。
The housing comprises a main body forming the first chamber and a lid forming the second chamber,
It is preferable that a seal concave portion and a seal convex portion are formed in the main body portion and the lid portion by metal touch.
 本発明によれば、第1のチャンバーのスチーム導入口に、欠け部が形成されたドレン導入部材が設けられ、欠け部がスチーム導入口のドレンが溜まる下部に位置するように取り付けられているので、スチーム導入口のスチームがノズルへの流入口に流れるのが阻止され、ドレンが優先的にノズルへの流入口に誘導される。
 また、筐体の本体部と蓋体部がメタルタッチで嵌合するシール凹部とシール凸部で密閉されているので、シール部材の劣化による蒸気漏れがなく、またシール部材を用いないので、シール材の定期点検や交換作業の負担が排除される。
 さらに、ノズルやシール部からの蒸気漏れが低減するため、蒸気プラントの燃料費とCO排出の低減が可能となる。
According to the present invention, the steam introducing port of the first chamber is provided with the drain introducing member having the notched portion, and the notched portion is attached to the lower portion where the drain of the steam introducing port is accumulated. The steam at the steam inlet is prevented from flowing to the inlet to the nozzle, and the drain is preferentially guided to the inlet to the nozzle.
In addition, since the main body portion of the housing and the lid portion are sealed by the seal concave portion and the seal convex portion which are fitted by metal touch, there is no steam leakage due to deterioration of the seal member, and the seal member is not used. The burden of periodic inspection and replacement work of the material is eliminated.
Furthermore, since the steam leak from the nozzle and the seal part is reduced, the fuel cost and the CO 2 emission of the steam plant can be reduced.
本発明の実施形態によるスチームトラップの外観斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The external appearance perspective view of the steam trap by embodiment of this invention. 図1のスチームトラップの分解斜視図。The disassembled perspective view of the steam trap of FIG. 図1のスチームトラップの分解断面図。The disassembled sectional view of the steam trap of FIG. 図3のIV-IV線断面図。IV-IV sectional view taken on the line of FIG. 本体部と蓋体部のシール構造を示す断面図。Sectional drawing which shows the seal structure of a main-body part and a lid part. ノズルの上方から見た斜視図(a)、下方から見た斜視図(b)及び断面図(c)。The perspective view (a) seen from the upper part of the nozzle, the perspective view (b) seen from the lower part, and a sectional view (c). ドレン導入部材の斜視図(a)及び断面図(b)。The perspective view (a) and sectional drawing (b) of a drain introducing member. ドレン導入部材の第1の取付状態を示す断面図(a)、第2の取付状態を示す断面図(b)、ドレン導入部材の第3の取付状態を示す断面図(c)。Sectional drawing (a) which shows the 1st attachment state of a drain introduction member, sectional drawing (b) which shows a 2nd attachment state, and sectional drawing (c) which shows the 3rd attachment state of a drain introduction member. スチームトラップの動作を示す断面図。Sectional drawing which shows the operation | movement of a steam trap. ノズルの吸込部の流れを示す断面図。Sectional drawing which shows the flow of the suction part of a nozzle. 従来のスチームトラップを示す分解斜視図。The disassembled perspective view which shows the conventional steam trap.
 図1は、本実施形態に係るノズル式スチームトラップの外観斜視図である。このスチームトラップ1は、筐体2と、スチーム導入口3と、ドレン排出口4とを有し、スチーム導入口3より導入された高温高圧のスチーム、すなわち、気相(蒸気)と液相(水)とが共存した状態の流体を処理して、液相化されたドレン(水)としてドレン排出口4より排出する。筐体2は、ステンレス鋼や鋳鉄などの金属によって形成されており、スチーム導入口3とドレン排出口4とが同軸上に設けられている。スチーム導入口3には、工場設備内のボイラ等で生成されたスチームを輸送するスチーム配管系の分岐管が取り付けられる。また、ドレン排出口4には、ドレンを外部に排出する排出管が取り付けられる。スチームトラップ1をスチーム配管系に適宜の間隔を空けて複数設置することで、潜熱を放出してスチーム本来の仕事能力を喪失した不要なドレンをスチーム配管系から有効に除去することができる。それとともに、スチーム配管系の圧力を内部が乾燥した状態で維持することもできる。 FIG. 1 is an external perspective view of a nozzle type steam trap according to the present embodiment. The steam trap 1 has a housing 2, a steam inlet 3, and a drain outlet 4, and is a high temperature / high pressure steam introduced from the steam inlet 3, that is, a gas phase (steam) and a liquid phase The fluid in the state of coexistence with water is treated and discharged from the drain outlet 4 as liquid phased drain (water). The housing 2 is formed of metal such as stainless steel or cast iron, and the steam inlet 3 and the drain outlet 4 are provided coaxially. A branch pipe of a steam piping system for transporting steam generated by a boiler or the like in a plant facility is attached to the steam introduction port 3. Further, a drain pipe for discharging the drain to the outside is attached to the drain discharge port 4. By installing a plurality of steam traps 1 at appropriate intervals in the steam piping system, it is possible to effectively remove from the steam piping system unnecessary drains that have released latent heat and lost the inherent work capacity of steam. At the same time, the pressure of the steam piping system can be maintained in a dry state.
 図2は、スチームトラップ1の分解斜視図である。筐体2は、上下に2分割されており、本体部5と、蓋体部6とを有する。本体部5および蓋体部6は、図示しない複数のボルトによって一体化されている。本体部5の内部には、図3に示すように、スチーム導入口3と連通した高圧チャンバー5aと、ドレン排出口4と連通した排出チャンバー5bとが設けられている。これらのチャンバー5a,5bは、本体部5(筐体2)の一部をなす区分壁5cを介して、互いに区分されている。本体部5には、図4に示すように、スチーム導入口3とドレン排出口4とを結ぶ方向と直交して、一対の開口部5dが設けられている。そして、これらの開口部5dには、閉塞栓5eが着脱自在に取り付けられている。高圧チャンバー5aの上部には連通部5fが設けられていると共に、排出チャンバー5bの上部には連通口5gが設けられている。 FIG. 2 is an exploded perspective view of the steam trap 1. The housing 2 is vertically divided into two parts, and has a main body 5 and a lid 6. The main body 5 and the lid 6 are integrated by a plurality of bolts (not shown). As shown in FIG. 3, a high pressure chamber 5 a in communication with the steam inlet 3 and a discharge chamber 5 b in communication with the drain discharge port 4 are provided inside the main body 5. These chambers 5a and 5b are mutually divided via the division wall 5c which makes a part of main-body part 5 (casing 2). As shown in FIG. 4, the main body 5 is provided with a pair of openings 5 d orthogonal to the direction connecting the steam inlet 3 and the drain outlet 4. And the closure plug 5e is detachably attached to these opening parts 5d. A communication portion 5f is provided in the upper portion of the high pressure chamber 5a, and a communication port 5g is provided in the upper portion of the discharge chamber 5b.
 連通部5fの奥には、図3に示すように、当該連通部5fより小径の中間チャンバー5hが設けられている。中間チャンバー5hは、L字形に曲がる連通孔5iを介して高圧チャンバー5aに連通している。連通孔5iの高圧チャンバー5a側のドレン流入口の最低部は、高圧チャンバー5aの最低部と一致している。開口部5dは、図4に示すように、連通孔5jを介して中間チャンバー5hに連通している。スチームトラップ1に排水バルブやボールバルブを取り付けて使用する場合、どちらかの開口部5dの閉塞栓5eを取り外し、露出した開口部5dに排水バルブやボールバルブが取り付けられる。排水バルブやボールバルブは、工場施設の稼働停止時(冷態時)及び停止状態からの立ち上がり時にスチーム配管内に生じた大量のドレンを迅速に排出するために用いられる。 As shown in FIG. 3, an intermediate chamber 5 h having a diameter smaller than that of the communication portion 5 f is provided at the back of the communication portion 5 f. The intermediate chamber 5h is in communication with the high pressure chamber 5a via a communication hole 5i bent in an L shape. The lowest portion of the drain inflow port on the high pressure chamber 5a side of the communication hole 5i coincides with the lowest portion of the high pressure chamber 5a. The opening 5d is in communication with the intermediate chamber 5h via the communication hole 5j, as shown in FIG. When the drainage valve or the ball valve is attached to the steam trap 1 and used, the closure plug 5e of one of the openings 5d is removed, and the drainage valve or the ball valve is attached to the exposed opening 5d. The drainage valve and the ball valve are used to quickly drain a large amount of drain generated in the steam piping at the time of shutdown (cold condition) of the factory facility and at the time of rising from the shutdown state.
 本体部5の上面には、図2に示すように、連通部5fと連通口5gを囲むように長円形に延びるシール凹部5kが形成されている。シール凹部5kの側面にはルアーテーパが設けられている。 On the upper surface of the main body 5, as shown in FIG. 2, a seal recess 5k is formed extending in an oval shape so as to surround the communication portion 5f and the communication port 5g. A luer taper is provided on the side surface of the seal recess 5k.
 本体部5の上面に開口とした連通部5fには、この連通部5fを閉塞する係脱自在なノズル7が円形網状のストレーナ7bを介して取り付けられ、中間チャンバー5hを閉塞している。具体的には、連通部5fの内周面には内ネジが形成されていると共に、ノズル7の外周面には外ネジが形成されている。これら内外のネジを螺合することによって、連通部5fにノズル7が係止され、連通部5fが閉塞される。ノズル7には、スチームトラップ1の処理対象となるスチームをドレン化する上で中心的な役割を担うノズル孔7aが一体形成されており、このノズル孔7aは、略円筒形状を有するノズル7の中心軸を上下に貫通している。 A detachable nozzle 7 for closing the communication portion 5f is attached to the communication portion 5f opened on the upper surface of the main body portion 5 via a circular net-like strainer 7b to close the intermediate chamber 5h. Specifically, an inner thread is formed on the inner peripheral surface of the communication portion 5 f, and an outer thread is formed on the outer peripheral surface of the nozzle 7. By screwing these inner and outer screws, the nozzle 7 is engaged with the communication portion 5f, and the communication portion 5f is closed. In the nozzle 7, a nozzle hole 7a that plays a central role in draining the steam to be treated by the steam trap 1 is integrally formed. The nozzle hole 7a is a nozzle 7 having a substantially cylindrical shape. It penetrates the central axis up and down.
 蓋体部6の内部には、図2,図3に示すように、低圧チャンバー6aを含む空間が設けられている。蓋体部6には、前記低圧チャンバー6aを囲むように長円形に延びるシール凸部6bが形成されている。シール凸部6bの側面には、ルアーテーパが設けられている。図5に示すように、本体部5の上部に蓋体部6を組み付けた状態において、本体部5と蓋体部6との隙間は、シール凹部5kとシール凸部6bとのメタルタッチの嵌合によって塞がれる。これにより、低圧チャンバー6aは、流体の漏れがない一つの区画室となる。 As shown in FIGS. 2 and 3, a space including a low pressure chamber 6 a is provided inside the lid 6. The lid portion 6 is formed with a seal convex portion 6b extending in an oval shape so as to surround the low pressure chamber 6a. A luer taper is provided on the side surface of the seal convex portion 6b. As shown in FIG. 5, in the state where the lid 6 is assembled to the upper part of the main body 5, the gap between the main body 5 and the lid 6 is a fit of the metal touch between the seal recess 5 k and the seal protrusion 6 b. It is closed by the case. As a result, the low pressure chamber 6a becomes one compartment in which no fluid leaks.
 図6に示すように、ノズル7のノズル孔7aの吸引口側の端部、すなわち、高圧チャンバー5aを区画する壁部の一部をなす端部には、略円筒状の陥没部7cが設けられている。陥没部7cは、図6(c)に示すように、中間チャンバー5hの内径と同じ内径の円筒壁7dと、ノズル孔7aの吸引口より奥に位置する曲面からなる角部7eと、該角部7eからノズル孔7aの吸引口に向かって延びる傾斜部7fと、該傾斜部7fからノズル孔7aの吸引口に滑らかに連続する中心部7gとからなる連続した断面形状を有している。ノズル孔7aの中心線に直交する面に対する傾斜部7fの角度θは、20~40°が好ましい。 As shown in FIG. 6, a substantially cylindrical recessed portion 7c is provided at an end on the suction port side of the nozzle hole 7a of the nozzle 7, that is, an end that forms a part of a wall that divides the high pressure chamber 5a. It is done. As shown in FIG. 6C, the depressed portion 7c has a cylindrical wall 7d having the same inner diameter as the inner diameter of the intermediate chamber 5h, a corner 7e having a curved surface positioned behind the suction port of the nozzle hole 7a, and the corner It has a continuous cross-sectional shape including an inclined portion 7f extending from the portion 7e toward the suction port of the nozzle hole 7a and a central portion 7g smoothly continuous from the inclined portion 7f to the suction port of the nozzle hole 7a. The angle θ of the inclined portion 7f with respect to the plane orthogonal to the center line of the nozzle hole 7a is preferably 20 to 40 °.
 図3に示すように、スチーム導入孔3の内部の高圧チャンバー5aには、ドレン導入部材8が取り付けられている。ドレン導入部材8には、図7に示すように、高圧チャンバー5aの内径と同径で、一部に欠け部8aを有する欠円板8bが設けられている。欠け部8aは、図8(a)示すように、直線状に形成され、高圧チャンバー5aの内壁面との間に弓形に形成されている。欠円板8bの欠け部8aは、連通孔5iの高圧チャンバー5a側のドレン流入口の約下半分を臨むように形成されている。欠け部8aは、直線状に限らず、円弧状や半円状でもよい。欠円板8bの一方の面には、高圧チャンバー5a側の壁面に当接する円形の取付座8cが形成され、他方の面には外周に外ネジが形成された突部8dが形成されている。取付座8cには、四角形断面の取付孔8eが設けられ、突部8dには取付孔8eと連通する円形断面のネジ挿通孔8fが設けられている。取付孔8eは、区分壁5cの高圧チャンバー5a側の壁面に形成された八角形のボス5lに係合するようになっている。 As shown in FIG. 3, a drain introducing member 8 is attached to the high pressure chamber 5 a inside the steam introducing hole 3. As shown in FIG. 7, the drain introducing member 8 is provided with a cutaway disk 8 b having the same diameter as the inner diameter of the high pressure chamber 5 a and partially having a cutaway portion 8 a. As shown in FIG. 8A, the cutaway portion 8a is formed in a straight line, and is formed in an arc shape with the inner wall surface of the high pressure chamber 5a. The cutaway portion 8a of the cutaway disk 8b is formed to face approximately the lower half of the drain inflow port on the high pressure chamber 5a side of the communication hole 5i. The notch 8a is not limited to a linear shape, and may be an arc shape or a semicircular shape. A circular mounting seat 8c is formed on one surface of the disc 8b to be in contact with the wall surface on the high pressure chamber 5a side, and a projection 8d having an external screw formed on the outer periphery is formed on the other surface. . The mounting seat 8c is provided with a mounting hole 8e having a square cross section, and the protrusion 8d is provided with a screw insertion hole 8f having a circular cross section communicating with the mounting hole 8e. The mounting hole 8e is adapted to engage with an octagonal boss 5l formed on the wall of the section wall 5c on the high pressure chamber 5a side.
 ドレン導入部材8は、取付ネジ8gをネジ挿通孔8fと取付孔8eに挿入し、区分壁5cの八角形のボス5lに形成されたネジ孔5mにネジ込むことにより、区分壁5cの高圧チャンバー5a側の壁面に取り付けられている。スチーム導入口3の中心軸の回りにドレン導入部材8の欠円板8bを回転させて、欠円板8bの角度を変えることにより、図8(a)に示すように、欠け部8aが水平な位置と、図8(b)に示すように欠け部8aが斜め45度の位置にすることができる。また、図8(c)に示すように、スチームトラップ1を縦に取り付けた場合には、欠け部8aがスチーム導入孔3のドレンが溜まる下部に位置するようにする。この場合、欠け部8aを通過したドレンは、ドレン導入部材8と区分壁5cの高圧チャンバー5a側の壁面との間の隙間9(図9参照)を通って連通孔5iのドレン流入口に流入する。 The drain introducing member 8 inserts the mounting screw 8g into the screw insertion hole 8f and the mounting hole 8e, and screws it into the screw hole 5m formed in the octagonal boss 5l of the dividing wall 5c, thereby the high pressure chamber of the dividing wall 5c. It is attached to the wall on the 5a side. As shown in FIG. 8A, the notch 8a is horizontal as shown in FIG. 8A by rotating the notch disc 8b of the drain introducing member 8 around the central axis of the steam introduction port 3 and changing the angle of the notch disc 8b. As shown in FIG. 8 (b), the chipped portion 8a can be positioned at an angle of 45 degrees. Further, as shown in FIG. 8C, when the steam trap 1 is attached vertically, the chipped portion 8a is positioned at a lower portion where the drain of the steam introduction hole 3 is accumulated. In this case, the drain that has passed through the notch 8a flows into the drain inlet of the communication hole 5i through the gap 9 (see FIG. 9) between the drain introducing member 8 and the wall surface of the divided wall 5c on the high pressure chamber 5a side. Do.
 次に、スチームトラップ1の動作について説明する。 Next, the operation of the steam trap 1 will be described.
 図9は、スチームトラップ1の断面図である。スチーム導入口3より導入された流体の流路は、高圧チャンバー5a、ドレン導入部材8の欠け部8a、連通孔5i、中間チャンバー5h、ストレーナ7b、ノズル孔7a、低圧チャンバー6a、連通口5g、排出チャンバー5bを順に経て、ドレン排出口4より排出される。ここで、中間チャンバー5hを区画する壁部の一部は、ノズル7によって構成されており、このノズル7に形成されたノズル孔7aの吸引口が高圧チャンバー5a内に臨んでいる。また、高圧チャンバー5aの下流に位置する低圧チャンバー6aについては、これを区画する壁部の一部も、ノズル7によって構成されており、このノズル7に形成されたノズル孔7aの噴射口が低圧チャンバー6a内に臨んでいる。なお、同図は、ノズル孔7aの吸引口が下で噴射口が上を向いた状態を示しているが、スチームトラップ1は天地無用であり、ノズル孔7aがどのような方向を向いていても、スチームトラップ1としては有効に機能する。 FIG. 9 is a cross-sectional view of the steam trap 1. The flow path of the fluid introduced from the steam introduction port 3 is the high pressure chamber 5a, the notch 8a of the drain introduction member 8, the communication hole 5i, the intermediate chamber 5h, the strainer 7b, the nozzle hole 7a, the low pressure chamber 6a, the communication port 5g, It passes through the discharge chamber 5 b in order and is discharged from the drain discharge port 4. Here, a part of the wall part which divides intermediate chamber 5h is constituted by nozzle 7, and the suction mouth of nozzle hole 7a formed in this nozzle 7 has faced in high pressure chamber 5a. Moreover, about the low pressure chamber 6a located in the downstream of the high pressure chamber 5a, a part of the wall part which divides this is also comprised by the nozzle 7, The injection opening of the nozzle hole 7a formed in this nozzle 7 is low pressure It faces in the chamber 6a. Although the drawing shows a state where the suction port of the nozzle hole 7a is downward and the injection port is upward, the steam trap 1 is useless for top and bottom, and the nozzle hole 7a is directed in any direction. Even as the steam trap 1, it functions effectively.
 一方、低圧チャンバー6aは、連通口5gおよび排出チャンバー5bを介してドレン排出口4と連通し、大気圧相当(低圧)に保たれる。その結果、高温高圧のスチームが導入される高圧チャンバー5a及び中間チャンバー5hと、大気圧相当に開放された低圧チャンバー6aとの間に、圧力差が生じる。なお、高圧チャンバー5aと中間チャンバー5hはほぼ同じ圧力である。 On the other hand, the low pressure chamber 6a is in communication with the drain discharge port 4 through the communication port 5g and the discharge chamber 5b, and is maintained at an equivalent pressure (low pressure) to the atmospheric pressure. As a result, a pressure difference occurs between the high pressure chamber 5a and the intermediate chamber 5h into which the high temperature and high pressure steam is introduced, and the low pressure chamber 6a opened to the atmospheric pressure. The high pressure chamber 5a and the intermediate chamber 5h have substantially the same pressure.
 高圧チャンバー5a内のスチームは、ドレン導入部材8の欠円板8bによって、連通孔5iのドレン流入口から流入するのが阻止される。また、高圧チャンバー5aの下部に溜まったドレンは、ドレン導入部材8の欠け部8aを通って連通孔5iのドレン流入口に導入され、連通孔5iを通って中間チャンバー5hに流入する。このように、ドレン導入部材8は、高圧チャンバー5a内のスチームを逃さず、高圧チャンバー5a内に溜まったドレンのみをドレン導入部材8の欠け部8aを介して優先的に連通孔5iの流入口に導き、中間チャンバー5hに送るため、蒸気漏れを防止できる。 Steam in the high pressure chamber 5a is blocked by the disc 8b of the drain introducing member 8 from flowing in from the drain inlet of the communication hole 5i. The drain collected in the lower part of the high pressure chamber 5a is introduced into the drain inflow port of the communication hole 5i through the notch 8a of the drain introducing member 8, and flows into the intermediate chamber 5h through the communication hole 5i. As described above, the drain introducing member 8 does not release the steam in the high pressure chamber 5a, and only the drain accumulated in the high pressure chamber 5a is preferentially supplied through the notch 8a of the drain introducing member 8 as an inlet of the communication hole 5i. To the intermediate chamber 5h, steam leakage can be prevented.
 なお、寒冷地においては、稼働停止時に高圧チャンバー5a内のドレンが凍結するので、ドレンが排出されないことがある。そこで、寒冷地向けのスチームトラップ1には、図8(b)に示すように、ドレン導入部材8を欠け部8aが斜め45°又は縦方向を向くように取り付けて、欠け部8aの上部に、開口部5dから導入したスチームを流入して凍結したドレンを溶融させることができる。 In a cold area, the drain in the high pressure chamber 5a is frozen at the time of operation stop, so the drain may not be discharged. Therefore, as shown in FIG. 8 (b), the drain introducing member 8 is attached to the steam trap 1 for cold regions so that the notch 8a is directed obliquely at 45 ° or in the vertical direction, and the steam trap 1 is mounted on the top of the notch 8a. The steam introduced from the opening 5d can be introduced to melt the frozen drain.
 ノズル孔7aは、高圧チャンバー5a及び中間チャンバー5hと、低圧チャンバー6aとの圧力差に基づいて、高圧チャンバー5a及び中間チャンバー5h内の流体を吸引口より吸引し、吸引した流体を噴射口より低圧チャンバー6a内に噴射する。その際、ノズル孔7aの吸引口の上流側ストレーナ7bで覆われているため、ノズル孔7aへの流入に先立ち、流体中のゴミが除去される。そして、ノズル孔7aから噴射された流体は、低圧チャンバー6a内で冷却され、液相化されたドレンとなる。低圧チャンバー6a内のドレンは、連通口5gを介して下流側の排出チャンバー5bを流入した上で、ドレン排出口4より外部に排出される。 The nozzle hole 7a sucks the fluid in the high pressure chamber 5a and the intermediate chamber 5h from the suction port based on the pressure difference between the high pressure chamber 5a and the intermediate chamber 5h and the low pressure chamber 6a, and draws the sucked fluid to the low pressure Spray into the chamber 6a. At this time, since the upstream side strainer 7b covers the suction port of the nozzle hole 7a, dust in the fluid is removed prior to the flow into the nozzle hole 7a. Then, the fluid jetted from the nozzle hole 7a is cooled in the low pressure chamber 6a and becomes a drained liquid. The drain in the low pressure chamber 6 a flows into the downstream discharge chamber 5 b via the communication port 5 g and is then discharged to the outside from the drain outlet 4.
 図10は、中間チャンバー5h内における流体の流れの説明図である。まず、ストレーナ7bを経た流体が広い通路から通路の狭いノズル孔7aに流入する際、空間Aにおいてエジェクター効果が生じ、周囲の流体を引き寄せようとする作用が生じる。一方、中間チャンバー5hの内周壁近傍の空間Bの流体は、コアンダ効果により陥没部7cの曲面に沿って流れて整流化され、エジェクター効果により中央のノズル孔7aの吸入口に引き寄せられる。エジェクター効果とは、流体を加速することによって低圧の空間を生成し、流体を吸引する現象のことである。コアンダ効果とは、流体のそばに湾曲した壁があると、壁の曲面に沿って流体(乱流)が整流化されて流れようとする流体の性質をいう。ノズル孔7aの吸引口の周囲は、この吸引口に対して同心円状になだらかに陥没しているため、流れの乱れた流体が整流化されてノズル孔7aの吸引口に導かれる。これにより、ノズル孔7aを流れる流体が、この壁の曲面形状に沿って整流化された流体の分だけ、増幅・増速される。その結果、高圧チャンバー5aと低圧チャンバー6aとの圧力差が同じ場合、壁を曲面形状としない構成よりも、壁を曲面形状とした構成の方が、ノズル孔7aの噴射量が増大する。 FIG. 10 is an explanatory view of the flow of fluid in the intermediate chamber 5h. First, when the fluid passing through the strainer 7b flows from the wide passage into the narrow nozzle hole 7a of the passage, an ejector effect occurs in the space A, and an action to draw the surrounding fluid occurs. On the other hand, the fluid in the space B in the vicinity of the inner peripheral wall of the intermediate chamber 5h flows along the curved surface of the depressed portion 7c by the Coanda effect to be rectified, and is drawn to the suction port of the central nozzle hole 7a by the ejector effect. The ejector effect is a phenomenon in which a low pressure space is generated by accelerating a fluid, and the fluid is drawn. The Coanda effect is a property of a fluid in which a fluid (turbulence) is rectified to flow along a curved surface of a wall when there is a curved wall by the fluid. The periphery of the suction port of the nozzle hole 7a is gently recessed concentrically with respect to the suction port, and thus the fluid having the flow disordered is rectified and led to the suction port of the nozzle hole 7a. Thus, the fluid flowing through the nozzle holes 7a is amplified and accelerated by the amount of the fluid rectified along the curved surface shape of the wall. As a result, when the pressure difference between the high-pressure chamber 5a and the low-pressure chamber 6a is the same, the injection amount of the nozzle holes 7a is larger in the configuration in which the wall is curved than in the configuration in which the wall is not curved.
 このように、本実施形態によれば、スチーム導入孔3の内部の高圧チャンバー5aには、ドレン導入部材8が取り付けられ、このドレン導入部材8により、高圧チャンバー5a内のスチームを逃さず、高圧チャンバー5a内に溜まったドレンのみを優先的に連通孔5iの流入口に導き、中間チャンバー5hに送るため、蒸気漏れを防止できる。 As described above, according to the present embodiment, the drain introducing member 8 is attached to the high pressure chamber 5 a inside the steam introducing hole 3, and the drain introducing member 8 prevents the steam in the high pressure chamber 5 a from being released. Since only the drain collected in the chamber 5a is preferentially led to the inlet of the communication hole 5i and sent to the intermediate chamber 5h, it is possible to prevent steam leakage.
 また、本実施形態によれば、ノズル孔7aの吸引口の周囲が同心円状になだらかに陥没しており、この曲面形状に沿って流体が流れるため、上述したエジェクター効果およびコアンダ効果によって、ノズル孔7aに吸引される流体が増幅・増速される。これにより、流体の冷却能力が高まるため、流体が確実に液相化され、ドレンとして効果的に排出できる。 Moreover, according to the present embodiment, the periphery of the suction port of the nozzle hole 7a is gently recessed concentrically, and the fluid flows along the curved surface shape, so the nozzle hole is formed by the above-described ejector effect and Coanda effect. The fluid drawn into 7a is amplified and accelerated. As a result, the cooling capacity of the fluid is enhanced, so that the fluid is reliably phased and can be effectively drained.
 本発明は以上の実施形態に限るものではなく、特許請求の範囲に記載した発明の範囲内において、種々変更することができる。例えば、本体部にシール凸部を設け、蓋体部にシール凹部を設けてもよい。 The present invention is not limited to the above embodiments, and can be variously modified within the scope of the invention described in the claims. For example, the main body portion may be provided with a seal convex portion, and the lid portion may be provided with a seal concave portion.
 また、ノズル式スチームトラップにおける流体の冷却能力は、ノズルから噴射される流体の量および速さと相関を有しており、これらが大きいほど噴射された流体が微粒化(霧化)して、ドレンへの還元効率が高まる。しかしながら、従来は、流体の冷却能力を高めることについては殆ど着目されていなかった。 In addition, the cooling capacity of the fluid in the nozzle type steam trap has a correlation with the amount and speed of the fluid ejected from the nozzle, and the larger the number, the finer the atomized fluid (atomized), The reduction efficiency to However, conventionally, little attention has been paid to enhancing the cooling capacity of the fluid.
 そこで、ノズル式スチームトラップより排出される流体の冷却能力を高めるために、以下の手段を講じることができる。 Therefore, in order to enhance the cooling capacity of the fluid discharged from the nozzle type steam trap, the following measures can be taken.
[手段1]
ノズル式スチームトラップにおいて、
筐体と、
前記筐体内に設けられ、ノズル孔を有するノズルと、
前記筐体内に設けられ、前記ノズル孔の吸引口が臨んだ第1のチャンバーと、
前記筐体内に設けられ、前記ノズル孔の噴射口が臨んだ第2のチャンバーとを有し、
前記ノズルのノズル孔の吸引口側の端部は、当該吸引口に対して同心円状になだらかに陥没している陥没部を有するノズル式スチームトラップ。
[手段2]
前記第1のチャンバーは、前記ノズル孔の吸引口が臨んだ中間チャンバーを有し、
前記陥没部は、
前記中間チャンバーと内径と同じ内径の円筒壁と、
前記ノズル孔の吸引口より奥に位置する曲面からなる角部と、
前記角部からノズル孔の吸引口に向かって延びる傾斜部と、
前記傾斜部からノズル孔の吸引口に滑らかに連続する中心部とからなる連続した曲面からなる手段1のノズル式スチームトラップ。
[手段3]
前記ノズル孔の中心線に直交する面に対する前記傾斜部の角度は、20~40°である手段2のノズル式スチームとラップ。
[Means 1]
In the nozzle type steam trap,
And
A nozzle provided in the housing and having a nozzle hole;
A first chamber provided in the housing and facing the suction port of the nozzle hole;
And a second chamber provided in the housing and facing the injection port of the nozzle hole,
A nozzle type steam trap having a recessed portion gently recessed concentrically with the suction port at an end portion on a suction port side of a nozzle hole of the nozzle.
[Means 2]
The first chamber has an intermediate chamber facing the suction port of the nozzle hole,
The depression is
A cylindrical wall of the same inner diameter as the intermediate chamber and the inner diameter,
A corner made of a curved surface located behind the suction port of the nozzle hole;
An inclined portion extending from the corner toward the suction port of the nozzle hole;
The nozzle type steam trap of the means 1 which consists of a continuous curved surface which consists of a center part which continued smoothly from the said inclination part to the suction opening of a nozzle hole.
[Means 3]
The nozzle type steam and wrap of the means 2, wherein the angle of the inclined portion with respect to a plane orthogonal to the center line of the nozzle hole is 20 to 40 °.
 以上の手段によれば、ノズルの吸引口の周囲が同心円状になだらかに陥没しており、その曲面形状に沿って流体が流れるため、エジェクター効果およびコアンダ効果によって、ノズルに吸引される流体が増幅・増速される。これにより、流体の冷却能力が高まるため、流体が確実に液相化され、ドレンとして効果的に排出できる。 According to the above-described means, the periphery of the suction port of the nozzle is gently recessed concentrically, and the fluid flows along the curved surface shape, so that the fluid attracted to the nozzle is amplified by the ejector effect and the Coanda effect.・ Speed up. As a result, the cooling capacity of the fluid is enhanced, so that the fluid is reliably phased and can be effectively drained.
  1 スチームトラップ
  2 筐体
  3 スチーム導入口
  4 ドレン排出口
  5 本体部
  5a 高圧チャンバー
  5b 排出チャンバー
  5c 区分壁
  5d 開口部
  5e 閉塞栓
  5f 連通部
  5g 連通口
  5h 中間チャンバー
  5i 連通孔
  5j 連通孔
  5k シール凹部
  5l ボス
  5m ネジ孔
  6 蓋体部
  6a 低圧チャンバー
  6b シール凸部
  7 ノズル
  7a ノズル孔
  7b ストレーナ
  7c 陥没部
  7d 円筒壁
  7e 角部
  7f 傾斜部
  7g 中心部
  8 ドレン導入部材
  8a 欠け部
  8b 欠円板
  8c 取付座
  8d 突部
  8e 取付孔
  8f ネジ挿通孔
  8g 取付ネジ
  9 隙間
 

 
DESCRIPTION OF SYMBOLS 1 steam trap 2 case 3 steam introduction port 4 drain discharge port 5 main body 5a high pressure chamber 5b discharge chamber 5c division wall 5d opening 5e closing plug 5f communication part 5g communication port 5h middle chamber 5i communication hole 5j communication hole 5k seal recess 5 l boss 5 m screw hole 6 lid body 6 a low pressure chamber 6 b seal convex portion 7 nozzle 7 a nozzle hole 7 b strainer 7 c recessed portion 7 d cylindrical wall 7 e corner portion 7 f inclined portion 7 g central portion 8 drain introducing member 8 a notched portion 8 b notched disk 8 c Mounting seat 8d Projection 8e Mounting hole 8f Screw insertion hole 8g Mounting screw 9 Clearance

Claims (8)

  1.  ノズル式スチームトラップにおいて、
     筐体と、
     前記筐体内に設けられたノズルと、
     前記筐体内に設けられ、前記ノズルの吸引口が臨んだ第1のチャンバーと、
    前記筐体内に設けられ、前記ノズルの噴射口が臨んだ第2のチャンバーと、
     前記第1のチャンバーのスチーム導入口に設けられ、欠け部が形成されたドレン導入部材とを有し、
     前記ドレン導入部材は、欠け部がスチーム導入口のドレンが溜まる下部に位置するように取り付けられていることを特徴とするノズル式スチームトラップ。
    In the nozzle type steam trap,
    And
    A nozzle provided in the housing;
    A first chamber provided in the housing and facing the suction port of the nozzle;
    A second chamber provided in the housing and facing the injection port of the nozzle;
    And a drain introducing member provided at the steam introducing port of the first chamber and having a notch formed therein,
    The nozzle-type steam trap, wherein the drain introducing member is attached so that the notch portion is located at a lower portion where the drain of the steam introducing port is accumulated.
  2.  前記ドレン導入部材は、前記欠け部が形成された欠円板からなることを特徴とする請求項1に記載のノズル式スチームトラップ。 The nozzle-type steam trap according to claim 1, wherein the drain introducing member is formed of a cutaway disk in which the cutaway portion is formed.
  3.  前記ドレン導入部材の前記欠け部は、直線状に形成され、前記スチーム導入口の内壁面との間に弓形に形成されていることを特徴とする請求項2に記載のノズル式スチームトラップ。 The nozzle-type steam trap according to claim 2, wherein the notch portion of the drain introducing member is formed in a straight line, and is formed in an arc shape with an inner wall surface of the steam introducing port.
  4.  前記ドレン導入部材は、前記スチーム導入口の中心軸の回りに角度を変えて取り付け可能であることを特徴とする請求項3に記載のノズル式スチームトラップ。 The nozzle type steam trap according to claim 3, wherein the drain introducing member is attachable at different angles around a central axis of the steam introducing port.
  5.  前記ドレン導入部材は、前記筐体の前記第1のチャンバーと前記第2のチャンバーを仕切る仕切壁の前記第1のチャンバー側の壁面に形成された八角形のボスに係合する四角形の取付孔を有することを特徴とする請求項4に記載のノズル式スチームトラップ。 The drain introducing member is a quadrangular attachment hole engaged with an octagonal boss formed on a wall surface of the first chamber of the casing and a wall of the first chamber on the side of the first chamber of the second chamber. The nozzle type steam trap according to claim 4, characterized in that:
  6.  前記第1のチャンバーは、
     前記ノズルの吸引口が臨む中間チャンバーと、
     前記スチーム導入口に連通する高圧チャンバーと、
     前記中間チャンバーと前記高圧チャンバーを連通する連通孔とからなり、
     前記ドレン導入部材の前記欠け部は前記連通孔の流入口に臨んでいることを特徴とする請求項1から5のいずれかに記載のノズル式スチームトラップ。
    The first chamber is
    An intermediate chamber facing the suction port of the nozzle;
    A high pressure chamber in communication with the steam inlet;
    It consists of a communicating hole which connects the above-mentioned middle chamber and the above-mentioned high pressure chamber,
    The nozzle-type steam trap according to any one of claims 1 to 5, wherein the notch portion of the drain introducing member faces an inflow port of the communication hole.
  7.  前記ドレン導入部材の前記欠け部は、前記連通孔の流入口の下半分を臨んでいることを特徴とする請求項6に記載のノズル式スチームトラップ。 The nozzle-type steam trap according to claim 6, wherein the notch of the drain introducing member faces the lower half of the inflow port of the communication hole.
  8.  前記筐体は、前記第1のチャンバーを形成する本体部と、前記第2のチャンバーを形成する蓋体部とからなり、
     前記本体部と前記蓋体部に、互いにメタルタッチで嵌合するシール凹部とシール凸部が形成されていることを特徴とする請求項1から7のいずれかに記載のノズル式スチームトラップ。
     

     
    The housing comprises a main body forming the first chamber and a lid forming the second chamber,
    The nozzle type steam trap according to any one of claims 1 to 7, wherein a seal concave portion and a seal convex portion which are fitted to each other by metal touch are formed in the main body portion and the lid portion.


PCT/JP2018/043450 2017-11-30 2018-11-26 Nozzle-type steam trap WO2019107317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-230604 2017-11-30
JP2017230604A JP6323701B1 (en) 2017-11-30 2017-11-30 Nozzle type steam trap

Publications (1)

Publication Number Publication Date
WO2019107317A1 true WO2019107317A1 (en) 2019-06-06

Family

ID=62143805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043450 WO2019107317A1 (en) 2017-11-30 2018-11-26 Nozzle-type steam trap

Country Status (2)

Country Link
JP (1) JP6323701B1 (en)
WO (1) WO2019107317A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1153766B (en) * 1962-05-30 1963-09-05 Gerdts Gustav F Kg Condensate drain
JPS4928928A (en) * 1972-07-14 1974-03-14
JPS55126195A (en) * 1979-03-23 1980-09-29 Mitsubishi Heavy Ind Ltd Method of drining out of pipe
JP2014234868A (en) * 2013-06-03 2014-12-15 株式会社スチームテック Steam trap

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628496U (en) * 1992-09-18 1994-04-15 博樹 東野 Steam condensate drain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1153766B (en) * 1962-05-30 1963-09-05 Gerdts Gustav F Kg Condensate drain
JPS4928928A (en) * 1972-07-14 1974-03-14
JPS55126195A (en) * 1979-03-23 1980-09-29 Mitsubishi Heavy Ind Ltd Method of drining out of pipe
JP2014234868A (en) * 2013-06-03 2014-12-15 株式会社スチームテック Steam trap

Also Published As

Publication number Publication date
JP2019100418A (en) 2019-06-24
JP6323701B1 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
KR100934742B1 (en) Washer & Exhaust Gas Treatment Unit
US20210268412A1 (en) Strainer for steam trap apparatus
US20110203671A1 (en) Apparatus and method for controlling the flow of fluid in a vortex amplifier
TW201732158A (en) Filtering element and associated mounting device for vacuum pump
TW201743379A (en) Apparatus for exhaust cooling
WO2019107317A1 (en) Nozzle-type steam trap
KR102320572B1 (en) gas scrubber
US20110186659A1 (en) Shatter jet nozzle with multiple steam sources and method for disrupting smelt flow to a boiler
CN217714524U (en) Nozzle type steam trap
KR20070103996A (en) Air-filter for compressor
WO2018100753A1 (en) Nozzle-type steam trap
CN216777027U (en) A water conservancy diversion structure and cleaning machine for cleaning machine
WO2018100752A1 (en) Nozzle-type steam trap
JP7458072B2 (en) Silencer
US3197141A (en) Steam trap
KR200399305Y1 (en) Filter for compressor
GB2440548A (en) Condensate Trap Including a Vortex Region
JP4209502B2 (en) Downward bucket type steam trap
JP5607489B2 (en) Float type steam trap
JP2709809B2 (en) Steam injection pump
KR20150001601U (en) A steam condensate drainer
KR830002215B1 (en) Combustion Gas Treatment Apparatus in Inner Gas Explosion Proof Systems
JP6346751B2 (en) Steam trap
KR20160012800A (en) Separator
KR100706937B1 (en) Knife gate valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882814

Country of ref document: EP

Kind code of ref document: A1