WO2019107208A1 - Method for controlling operation of working machine - Google Patents

Method for controlling operation of working machine Download PDF

Info

Publication number
WO2019107208A1
WO2019107208A1 PCT/JP2018/042722 JP2018042722W WO2019107208A1 WO 2019107208 A1 WO2019107208 A1 WO 2019107208A1 JP 2018042722 W JP2018042722 W JP 2018042722W WO 2019107208 A1 WO2019107208 A1 WO 2019107208A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
command sequence
correction
created
original
Prior art date
Application number
PCT/JP2018/042722
Other languages
French (fr)
Japanese (ja)
Inventor
康彦 橋本
信恭 下村
掃部 雅幸
繁次 田中
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2019107208A1 publication Critical patent/WO2019107208A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/425Teaching successive positions by numerical control, i.e. commands being entered to control the positioning servo of the tool head or end effector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36043Correction or modification of program
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45083Manipulators, robot

Definitions

  • the present invention relates to an operation control method of a working machine such as an industrial robot.
  • Patent Document 1 discloses an example of teaching operation in which the robot arm stores the trajectory of the operation by direct teaching.
  • a time-sequential operation instruction (operation instruction sequence) for operating the robot is created.
  • the controller robot controller
  • Patent Document 2 discloses that the operation of a robot is controlled using information created by a machine learning device.
  • the information created by the machine learning device is a time-sequential operation command (operation command sequence) for operating the robot.
  • JP 2013-71231 A JP, 2017-64910, A
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide an operation control method of a working machine capable of improving work by the working machine.
  • an operation control method of a working machine comprises: a first step of preparing a former operation command sequence; and an operation of a working machine driven based on the former operation command sequence
  • the original operation history may be created based on the original operation command sequence. That is, regardless of whether the work machine is actually operated or not, the original operation history may be created by calculation based on the original operation command sequence.
  • the original operation history may be created by detecting an operation state of the work machine driven according to the original operation command sequence. That is, it may be created by actually operating the working machine and detecting the operating state (position, speed, etc.) of the working machine at that time by the sensor.
  • the original motion command sequence is a set of time-sequential motion commands created when the work machine is operated in the manual mode or the correction automatic mode, or machine learning
  • the manual mode is a mode in which the operator operates the operating device to sequentially command the operation of the work machine
  • the manual mode is the correction automatic mode.
  • the mode may be a mode in which the operator operates the operating device to correct the operation of the work machine while the work machine is automatically executing the operation according to the predetermined procedure. .
  • the present invention has an effect that it is possible to provide an operation control method of a working machine which has the configuration described above and can improve the work by the working machine.
  • FIG. 1 is a schematic view showing a configuration of a robot system to which the motion control method of a working machine according to the present embodiment can be applied.
  • FIG. 2 is a schematic view showing a configuration of a control system of the robot system shown in FIG.
  • FIG. 3 is a diagram showing an example of a block diagram of a control system of the operation control unit shown in FIG.
  • FIG. 4 is a flowchart showing an example of the operation control method of the working machine of the present embodiment.
  • FIGS. 5A and 5B are diagrams used for describing the first embodiment.
  • FIGS. 6A to 6C are diagrams used for explaining the second embodiment.
  • FIG. 1 is a schematic view showing a configuration of a robot system to which the motion control method of a working machine according to the present embodiment can be applied.
  • the robot 1 when the operator at a position away from the work area of the robot 1 (outside the work area) operates the operation device 2 and inputs a command, the robot 1 performs an operation corresponding to the command. , Can do specific work. Further, in the robot system 100, the robot 1 can also automatically perform predetermined work without the operation of the operating device 2 by the operator.
  • an operation mode in which the robot 1 is operated according to a command input through the operating device 2 is referred to as a “manual mode”.
  • the control device 3 receives operation information (operation command) from the operation device 2 operated by the operator without using the automatic operation information stored in the storage device 4, and the control device 3 based on the operation information. Controls the operation of the robot 1.
  • an operation mode for operating the robot 1 in accordance with a preset task program is referred to as an "automatic mode".
  • the control device 3 controls the operation of the robot 1 based on the automatic operation information (operation command sequence) stored in the storage device 4.
  • the operation of the controller device 2 is reflected in the operation of the robot 1 to correct the operation that was supposed to be performed automatically. It is configured to be able to.
  • an operation mode in which the robot 1 is operated in accordance with a task program set in advance in a state capable of reflecting a command input via the operation device 2 is referred to as a “correction automatic mode”.
  • the operation corrected from the operation based on the automatic operation information is received by receiving the operation information from the operating device 2 operated by the operator.
  • An operation command to be performed is created, and the control device 3 controls operation of the robot 1 based on the operation command.
  • the robot system 100 includes an articulated robot 1 which is an example of a work machine, an operation device 2, a control device 3, a storage device 4, a camera 5, and a monitor 6.
  • an articulated robot 1 which is an example of a work machine
  • an operation device 2 a control device 3
  • a storage device 4 a camera 5
  • a monitor 6 a monitor 6
  • each component of the robot system 100 will be described in detail.
  • the robot device unit 10 includes a robot 1, a control device 3 that controls the operation of the robot 1, and a storage device 4.
  • the robot 1 is supported by a base 15, an arm 13 supported by the base 15, and a tip of the arm 13, and is attached to a wrist 14 to which an end effector is attached and a tip of the wrist 14 And an end effector (not shown) serving as a hand unit.
  • the end effector is also controlled by the controller 3.
  • the robot 1 is an articulated robot arm having a plurality of joints JT1 to JT6 as shown in FIG. 1, and is configured by sequentially connecting a plurality of links 11a to 11f.
  • the arm 13 of the robot 1 is formed by a link-joint combination including the first joint JT1, the first link 11a, the second joint JT2, the second link 11b, the third joint JT3, and the third link 11c. It is done.
  • the link 14 of the fourth joint JT4, the fourth link 11d, the fifth joint JT5, the fifth link 11e, the sixth joint JT6, and the sixth link 11f causes the wrist portion 14 of the robot 1 to be connected. Is formed.
  • a mechanical interface is provided at the tip of the sixth link 11 f of the wrist portion 14.
  • An end effector corresponding to the work content is detachably mounted on the mechanical interface.
  • Each of the joints JT1 to JT6 is provided with a drive motor M (see FIG. 3) as an example of an actuator for relatively rotating two members to which it is coupled.
  • the drive motor M is, for example, a servomotor servo-controlled by the control device 3.
  • a rotation sensor E for detecting the rotational position of drive motor M and a current sensor C (for detecting current for controlling the rotation of drive motor M ( See FIG. 3).
  • the rotation sensor E is, for example, an encoder.
  • the control device 3 includes, for example, an operation unit (not shown) including a microcontroller, MPU, PLC (Programmable Logic Controller), logic circuit and the like, and a memory unit (not shown) including ROM and RAM. be able to.
  • an operation unit including a microcontroller, MPU, PLC (Programmable Logic Controller), logic circuit and the like
  • a memory unit including ROM and RAM. be able to.
  • FIG. 2 is a schematic view showing a configuration of a control system of the robot system 100.
  • the control device 3 includes an operation control unit 31 and an improvement operation information generation unit 32 as functional blocks. These functional blocks can be realized, for example, by the arithmetic unit of the control device 3 reading and executing a program stored in the memory unit.
  • the operation control unit 31 controls the operation of the robot 1. Details of control of the operation of the robot 1 by the operation control unit 31 will be described later.
  • the storage device 4 is a readable and writable recording medium, and information created to cause the robot 1 to perform a predetermined operation automatically is stored as storage operation information 41.
  • the storage operation information 41 is an operation command series composed of a set of time-series operation commands (time-series data of operation commands).
  • the storage operation information 41 is information including trajectory information including time-series data and a velocity along the trajectory.
  • the storage device 4 stores at least one save operation information 41.
  • the storage device 4 is provided separately from the control device 3, but may be provided integrally with the control device 3.
  • the improved operation information generating unit 32 of the control device 3 and the improved operation information 42 stored in the storage device 4 will be described later, and in the following, the operation of the improved operation information generating unit 32 is not described. Is described as that the improvement operation information 42 is not stored in the storage device 4.
  • the controller device 2 is an input device that receives an operation instruction from an operator and inputs the received operation instruction to the control device 3.
  • the operating device 2 is configured to be operable, and can be exemplified by a portable terminal such as a switch, an adjustment knob, an operating lever or a tablet.
  • the controller device 2 includes a mode selection unit 21, an operation information selection unit 22, an input operation unit 23, and an operation command generation unit 24.
  • the mode selection unit 21 is for the operator to select one of the operation modes (operation modes) for operating the robot 1 from the above-described automatic mode, correction automatic mode, and manual mode. .
  • a selection signal based on this selection operation is input to the operation control unit 31.
  • the operation information selection unit 22 uses any one of a plurality of operation information (storage operation information 41) stored in the storage device 4 that the operation control unit 31 uses. It is for the operator to select one operation information. A selection signal based on this selection operation is input to the operation control unit 31.
  • Input operation unit 23 receives an input operation (instruction) for operating robot 1 from the operator in the manual mode or the correction automatic mode, and outputs an instruction signal according to the operation (instruction) to operation command generation unit 24. Do.
  • the operation command generation unit 24 generates an operation command (operation information) for operating the robot 1 based on an instruction signal from the input operation unit 23, and transmits the operation command to the operation control unit 31.
  • the operation information when the operation information is sent to the control device 3 in the manual mode, the operation of the robot 1 is controlled based on the operation information. Further, when the operation information is sent to the control device 3 in the correction automatic mode, the operation of the robot 1 in the process of being automatically operated is corrected by the operation information.
  • the camera 5 is installed in the space where the robot 1 is provided, and is a camera for capturing the work situation of the robot 1, and the monitor 6 is for displaying an image captured by the camera And a monitor for the operator to confirm the work status of the robot 1.
  • the operator can operate the operation device 2 (input operation unit 23) while observing the work status of the robot 1 displayed on the monitor 6 in the manual mode or the correction automatic mode. Of course, the operator may look at the robot 1 directly and operate the operation device 2.
  • the operation control unit 31 controls the operation of the robot 1 according to the operation information (input command) sent from the operation device 2. At this time, the operation control unit 31 creates an operation command sequence from the series of operation information, and causes the storage device 4 to store the operation command sequence as the stored operation information 41.
  • one save operation information 41 stored in the storage device 4 is sent to the operation control unit 31 as automatic operation information for causing the robot 1 to operate automatically.
  • operation information generated by operating the operation device 2 is sent to the operation control unit 31.
  • the operation control unit 31 uses both automatic operation information and operation information. In this case, when the operation information is not sent to the operation control unit 31, the operation control unit 31 uses only the automatic operation information. More specifically, when the operation control unit 31 receives operation information while the robot 1 is operating automatically using the automatic operation information, the operation control unit 31 controls the operation of the robot 1 using both the automatic operation information and the operation information. Do. Thereby, the robot 1 performs the operation based on the automatic operation information, that is, the operation corrected from the operation which is to be performed automatically.
  • FIG. 3 is a diagram showing an example of a block diagram of a control system of the operation control unit 31.
  • the automatic operation information and the operation information are, for example, trajectory information including time-series data.
  • the operation control unit 31 includes an adder 31a, subtractors 31b, 31e, and 31g, a position controller 31c, a differentiator 31d, and a speed controller 31f, and uses a command value based on automatic operation information and a command value based on operation information.
  • the rotational position of the drive motor M of the robot 1 is controlled.
  • the adder 31a generates a corrected position command value by adding the command value based on the operation information to the position command value based on the automatic operation information, and sends this to the subtractor 31b.
  • the subtractor 31b subtracts the current position value detected by the rotation sensor E from the corrected position command value to generate an angular deviation, and sends this to the position controller 31c.
  • the position controller 31c generates a speed command value from the angular deviation sent from the subtractor 31b by calculation processing based on a predetermined transfer function or proportional coefficient, and sends this to the subtractor 31e.
  • the differentiator 31d differentiates the position current value information detected by the rotation sensor E to generate the amount of change per unit time of the rotation angle of the drive motor M, that is, the current speed value, and sends this to the subtractor 31e. .
  • the subtractor 31e subtracts the current speed value sent from the differentiator 31d from the speed command value sent from the position controller 31c to generate a speed deviation, and sends this to the speed controller 31f.
  • the speed controller 31f generates a torque command value (current command value) from the speed deviation sent from the subtractor 31e by calculation processing based on a predetermined transfer function or proportional coefficient, and sends it to the subtractor 31g. send.
  • the subtractor 31 g subtracts the current current value detected by the current sensor C from the torque command value sent from the speed controller 31 f to generate a current deviation, and sends this to the drive motor M, and the drive motor M Drive.
  • the operation control unit 31 controls the drive motor M, and controls the robot 1 to perform an operation corrected from the operation based on the automatic operation information.
  • a position command value based on the automatic operation information is input to the subtractor 31b.
  • a position command value based on the operation information is input to the subtractor 31b.
  • the motion control unit 31 stores, in the storage device 4, correction motion information (motion command sequence) for the robot 1 to perform the corrected motion when the robot 1 performs the above-described corrected motion.
  • correction motion information motion command sequence
  • the save operation information 41 can be created in each of the manual mode and the correction automatic mode, but is not limited thereto.
  • the storage operation information 41 may be generated by, for example, a machine learning device.
  • the storage operation information 41 may be teaching information 41 a created by teaching, and the teaching method is not particularly limited.
  • the teaching information 41a may be information created by direct teaching, may be information created by teaching by a master slave, or is information created by teaching using a teaching pendant. May be
  • the improvement operation information generation unit 32 creates information (i.e., improvement operation information 42) obtained by correcting the storage operation information 41 and uses it in the automatic mode. This will be described below.
  • FIG. 4 is a flowchart showing an example of an operation control method of the work machine (robot 1) of the present embodiment.
  • the operation control unit 31 performs the first step S1 and the sixth step S6 in FIG. 4, and the improvement operation information generation unit 32 performs the second step S2 to the fifth step S5.
  • an original operation command sequence is prepared.
  • the original operation command sequence is the storage operation information 41, and is a set of time-series operation commands capable of operating the work machine (time-series data of operation commands).
  • the save operation information 41 prepared here is, for example, any one save operation information 41 stored in the storage device 4.
  • the operation history of the working machine driven based on the original operation command sequence is created as the original operation history.
  • a section satisfying a predetermined operation condition is searched and extracted from the original operation history created in the second step S2.
  • a correction operation history is created by correcting the original operation history based on a predetermined rule.
  • a fifth step S5 an operation command sequence capable of reproducing the correction operation history created in the fourth step S4 is generated as a correction operation command sequence.
  • This correction operation sequence is stored in the storage device 4 as the improvement operation information 42.
  • a sixth step S6 the work machine is made to execute a task by reproducing the correction operation command sequence created in the fifth step S5.
  • the operation control unit 31 reads the improved operation information 42 from the storage device 4 and is repeatedly processed, whereby the above-described work is repeatedly performed.
  • the original operation history may be created based on the original operation command sequence. That is, regardless of whether the work machine is actually operated or not, the original operation history may be created by calculation based on the original operation command sequence.
  • the original operation history may be created by detecting the operation state of the work machine driven according to the original operation command sequence. That is, it may be created by actually operating the working machine and detecting the operating state (position, speed, etc.) of the working machine at that time by the sensor.
  • the work 51 is flat and has a planar shape as shown in FIG. 5A.
  • a case will be considered where the robot 1 performs an operation of applying a uniform paint to the entire surface of the work 51 with a paint gun.
  • the original operation instruction sequence (storage operation information 41) when the robot 1 performs this operation is stored in the storage device 4 (first step S1).
  • the storage operation information 41 may be generated by the manual mode or the correction automatic mode, or may be generated by the machine learning device.
  • the coating gun moves on the workpiece 51 along the trajectory indicated by the solid line L1.
  • the position of the coating gun is stored in the storage device (for example, the storage device 4 or another storage device) over the entire time range or a partial time range during the painting operation.
  • the moving speed of the coating gun is also stored corresponding to each of the positions (second step S2).
  • condition a As a predetermined operation condition (condition a), the coating gun moves linearly at a distance of 10 cm or more within 0.5 cm of the horizontal shake, and this section (condition a is satisfied) Search and extract the interval).
  • the fourth step S4 the following correction is performed on the original operation history data.
  • the original operation history is corrected so that the operation of the paint gun in the first to fourth sections is linearly moved without lateral blurring, and a correction operation history is created.
  • the moving speed of the coating gun at each position in the section may not be corrected from that in the original operation history, or the moving speed of the coating gun in the section in the original operation history
  • the average moving speed Va may be determined, and the moving speed of the coating gun may be corrected to the average moving speed Va over the entire section.
  • the movement trajectory of the coating gun based on the correction operation history created here is indicated by a solid line L2 in FIG. 5 (B).
  • a fifth step S5 an operation command sequence is created such that the correction operation history described above is reproduced.
  • the operation command sequence thus created is called a correction operation command sequence.
  • the corrected operation command sequence is stored in the storage device 4 as the improved operation information 42.
  • the work of painting the workpiece by the painting gun is executed by giving the correction operation command sequence (improved motion information 42) to the control device 3 in the automatic mode, for example (sixth step S6).
  • Second Embodiment As a second embodiment, it is possible to think of an operation in which the robot 1 grips a work in which a hole is formed, and operates the work so that the hole of the work is fitted to a pin fixed in a predetermined position.
  • description will be made with reference to FIGS. 6 (A), (B) and (C).
  • the pins 62 are provided on a frame 63 of a certain product, and the frame 63 is fixed to the floor of a factory.
  • the pins 62 project from the frame 63 in the direction of the vertically upper side.
  • the work 61 is a bracket to be attached to the frame 63 and is flat.
  • the work 61 is held by the hand unit 12 of the robot 1.
  • the operator operates the operation device 2 (input operation unit 23) to operate the robot 1, and the operation control unit 31 creates the save operation information 41 and stores it in the storage device 4. Then, in this case, the robot 1 performs the following operation.
  • the hand unit 12 of the robot 1 moves to the position of the work 61 placed at a predetermined position, and holds the work 61 in a posture parallel to the horizontal plane.
  • the hand portion 12 is moved until the hole 61a of the work 61 is positioned above the pin 62 while maintaining the horizontal attitude of the work 61 (for example, the state shown by the solid line in FIG. 6A).
  • the movement operation of the hand unit 12 when moving the work 61 until the hole 61a of the work 61 is positioned above the pin 62 after the hand unit 12 holds the work 61 is referred to as a first operation.
  • the workpiece 61 (indicated by a two-dot chain line) is lowered until the bottom surface of the workpiece 61 is in contact with the tip of the pin 62. Thereafter, the workpiece 61 is moved in the horizontal plane at random by moving the hand portion 12 at random within the predetermined range Q1 (see FIG. 6B).
  • the random operation of the hand unit 12 at this time is referred to as a second operation. During the second operation, the hand unit 12 randomly moves in the horizontal plane but hardly moves in the vertical direction.
  • the hand portion 12 applies a small downward pressure to the work 61, and when the hole 61 a matches the position of the pin 62, the work 61 And the hand portion 12 descend rapidly, and the hole 61 a is fitted to the pin 62.
  • the rapid lowering of the hand unit 12 at this time is referred to as a third operation. In the third operation, the hand 12 hardly moves in the horizontal plane.
  • the operation command sequence from the first operation to the third operation in the manual mode as described above is created as the original operation command sequence, and is stored in the storage device 4 as the storage operation information 41 (first step S1).
  • an operation history of the hand unit 12 of the robot 1 corresponding to the original operation command sequence is created as an original operation history.
  • the movement trajectory (the trajectory in plan view) of the hand unit 12 based on this original operation history is indicated by, for example, a solid line L3 in FIG. 6 (B).
  • FIG. 6B is an enlarged view of a movement trajectory of the hand unit 12 in a plan view.
  • the position i on the movement trajectory indicated by the solid line L3 is the start position (end position of the first operation) of the second operation in which the hand unit 12 performs random movement, and the position j is the end position of the second operation , And the position where the third operation is performed.
  • the random movement means, for example, a movement in which the hand portion 12 does not move linearly within a distance of 0.5 cm or more within a distance of 5 cm or more.
  • the condition b is set so that the section to be extracted is a section from the end position of the first operation (a position identical to the position i but different in height in plan view) to the end position j of the second operation. It may be set.
  • the fourth step S4 the following correction is performed on the original operation history data.
  • the original operation history is corrected so that the operation of the hand unit 12 in the section from the position i to the position j moves linearly, and a correction operation history is created.
  • the movement trajectory of the hand unit 12 based on the correction operation history created here is indicated by a solid line L4 in FIG. 6 (C).
  • the hand unit 12 After moving to the position j, the hand unit 12 performs a predetermined random motion within a predetermined range Q2 centered on the position j (for example, inside a circle with a radius of 1 cm in the horizontal plane) Let's do it. Then, when the random movement is actually operated, the rapid lowering operation (the operation corresponding to the third operation) of the hand unit 12 is performed, and the random movement is ended.
  • an operation command sequence (correction operation command sequence) is created such that the correction operation history is reproduced.
  • the corrected operation command sequence is stored in the storage device 4 as the improved operation information 42. Thereafter, the work of operating the work 61 such that the pin 62 is fitted into the hole 61 a of the work 61 is performed by giving the control device 3 a correction operation command sequence (improved movement information 42) in the automatic mode, for example. Is performed (sixth step S6).
  • the pins 62 of the frame 63 can be fitted into the holes 61 a of the workpiece 61 by the random movement of the hand portion 12.
  • a correction operation history in which the original operation history is corrected is created, and an operation command sequence (correction operation command sequence) as it is reproduced is created, and the work machine is created based on the correction operation command sequence.
  • the present invention is useful as an operation control method and the like of a working machine capable of improving work by the working machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

Provided is a method for controlling the operation of a working machine, with which the work done by the working machine can be improved. One example of the method for controlling an operation of a working machine according to the present invention has: a first step (S1) for preparing a primary series of operation commands; a second step (S2) for recording as a primary operation history, an operation history of the working machine driven on the basis of the primary series of operation commands; a third step (S3) for searching and extracting a section satisfying a predetermined operation condition from the primary operation history recorded by means of the second step; a fourth step (S4) for recording a modified operation history by performing, in the section extracted by means of the third step, a modification of the primary operation history on the basis of a predetermined rule; a fifth step (S5) for recording, as a modified series of operation commands, a series of operation commands that can reproduce the modified operation history recorded in the fourth step; and a sixth step (S6) for instructing the working machine to perform the work by reproducing the modified series of operation commands recorded in the fifth step.

Description

作業機の動作制御方法Operation control method of work machine
 本発明は、産業用ロボット等の作業機の動作制御方法に関する。 The present invention relates to an operation control method of a working machine such as an industrial robot.
 従来から、製造現場では溶接、塗装、部品の組付け、シール剤の塗布などの繰り返し作業が産業用ロボットにより自動で行われている。ロボットに作業を行わせるためには、作業に必要な情報をロボットに指示し、記憶させる教示が必要になる。ロボットの教示方式としては、例えば、教示者がロボットを直接触って動かすことによるダイレクト教示、マスタースレーブによる教示、ティーチングペンダントを用いた遠隔操縦による教示などがある。 Conventionally, at manufacturing sites, repetitive operations such as welding, painting, assembly of parts, application of a sealing agent, and the like are automatically performed by an industrial robot. In order to cause the robot to perform a task, it is necessary to instruct the robot to store information necessary for the task and to store the information. As a robot teaching method, there are, for example, direct teaching by direct movement of a robot by a teacher, teaching by a master slave, teaching by remote control using a teaching pendant, and the like.
 例えば、特許文献1には、ダイレクト教示によりロボットアームに作業の軌道を記憶させる教示作業の一例が開示されている。 For example, Patent Document 1 discloses an example of teaching operation in which the robot arm stores the trajectory of the operation by direct teaching.
 このように教示が行われることによって、ロボットを動作させるための時系列的な動作指令(動作指令系列)が作成される。この動作指令系列に基づいて制御装置(ロボットコントローラ)がロボットを動作制御することができる。 By teaching in this manner, a time-sequential operation instruction (operation instruction sequence) for operating the robot is created. The controller (robot controller) can control the operation of the robot based on the operation command sequence.
 また、特許文献2には、機械学習装置によって作成された情報を用いてロボットの動作を制御することが開示されている。機械学習装置によって作成された情報は、ロボットを動作させるための時系列的な動作指令(動作指令系列)である。 Further, Patent Document 2 discloses that the operation of a robot is controlled using information created by a machine learning device. The information created by the machine learning device is a time-sequential operation command (operation command sequence) for operating the robot.
特開2013-71231号公報JP 2013-71231 A 特開2017-64910号公報JP, 2017-64910, A
 上記のように、ロボットに代表される作業機を動作させるための動作指令系列を作成する方法はいくつかある。このうちのいずれの方法によって作成された動作指令系列であっても、その動作指令系列が作業機を制御する制御装置に入力されると、その制御装置が作業機の動作制御を行い、その作業機によってある作業が実行される。このような作業機による作業の改善を図ることが求められている。 As described above, there are several methods for creating an operation command sequence for operating a working machine represented by a robot. When the operation command sequence is input to the control device that controls the work machine, the operation control sequence of the work device is controlled by the operation command sequence generated by any of these methods, and the operation is performed by the control device. An operation is performed by the machine. It is required to improve the work by such a work machine.
 本発明は上記のような課題を解決するためになされたもので、作業機による作業の改善を図ることができる作業機の動作制御方法を提供することを目的としている。 The present invention has been made to solve the problems as described above, and it is an object of the present invention to provide an operation control method of a working machine capable of improving work by the working machine.
 上記目的を達成するために、本発明のある態様に係る作業機の動作制御方法は、元動作指令系列を準備する第1ステップと、前記元動作指令系列に基づいて駆動される作業機の動作履歴を元動作履歴として作成する第2ステップと、前記第2ステップにより作成された元動作履歴から、所定の動作条件を満たす区間を探索して抽出する第3ステップと、前記第3ステップによって抽出された区間において、前記元動作履歴に対して所定の規則に基づいて修正を施すことによって修正動作履歴を作成する第4ステップと、前記第4ステップにおいて作成された修正動作履歴を再現することのできる動作指令系列を、修正動作指令系列として作成する第5ステップと、前記第5ステップにより作成された修正動作指令系列を再生することによって前記作業機に作業を実行させる第6ステップと、を有する。 In order to achieve the above object, an operation control method of a working machine according to an aspect of the present invention comprises: a first step of preparing a former operation command sequence; and an operation of a working machine driven based on the former operation command sequence A second step of creating a history as an original operation history, a third step of searching and extracting a section satisfying a predetermined operation condition from the original operation history created in the second step, and extraction in the third step A fourth step of creating a correction operation history by applying correction to the original operation history based on a predetermined rule, and reproducing the correction operation history created in the fourth step, in the section A fifth step of creating a motion command sequence that can be performed as a correction motion command sequence, and reproducing the correction motion command sequence created in the fifth step. Having a sixth step of performing work on the working machine.
 この作業機の動作制御方法によれば、作業機による作業の改善を図り、作業性を向上することができる。 According to the operation control method of the working machine, it is possible to improve the work by the working machine and to improve the workability.
 上記作業機の動作制御方法においては、前記元動作履歴を前記元動作指令系列に基づいて作成してもよい。つまり、作業機を実際に動作させるか否かに関わらず、元動作指令系列に基づいて演算により元動作履歴を作成してもよい。 In the operation control method of the work machine, the original operation history may be created based on the original operation command sequence. That is, regardless of whether the work machine is actually operated or not, the original operation history may be created by calculation based on the original operation command sequence.
 また、上記作業機の動作制御方法においては、前記元動作履歴を前記元動作指令系列に従って駆動する前記作業機の動作状態を検出することによって作成してもよい。つまり、作業機を実際に動作させて、そのときの作業機の動作状態(位置や速度など)をセンサーで検出することによって作成してもよい。 Further, in the operation control method of the work machine, the original operation history may be created by detecting an operation state of the work machine driven according to the original operation command sequence. That is, it may be created by actually operating the working machine and detecting the operating state (position, speed, etc.) of the working machine at that time by the sensor.
 また、上記作業機の動作制御方法においては、前記元動作指令系列は、前記作業機を手動モード又は修正自動モードで動作させるときに作成された時系列的な動作指令の集合、または、機械学習装置によって作成された時系列的な動作指令の集合であり、前記手動モードは、操作者が操作装置を操作して前記作業機の動作を逐次指令して動作させるモードであり、前記修正自動モードは、前記作業機に予め定められた手順に従った動作を自動で実行させている途中に、操作者が操作装置を操作して前記作業機の動作を修正するモードであるようにしてもよい。 Further, in the motion control method of the work machine, the original motion command sequence is a set of time-sequential motion commands created when the work machine is operated in the manual mode or the correction automatic mode, or machine learning The manual mode is a mode in which the operator operates the operating device to sequentially command the operation of the work machine, and the manual mode is the correction automatic mode. The mode may be a mode in which the operator operates the operating device to correct the operation of the work machine while the work machine is automatically executing the operation according to the predetermined procedure. .
 本発明は、以上に説明した構成を有し、作業機による作業の改善を図ることができる作業機の動作制御方法を提供することができるという効果を奏する。 The present invention has an effect that it is possible to provide an operation control method of a working machine which has the configuration described above and can improve the work by the working machine.
図1は、本実施形態に係る作業機の動作制御方法を適用できるロボットシステムの構成を示す模式図である。FIG. 1 is a schematic view showing a configuration of a robot system to which the motion control method of a working machine according to the present embodiment can be applied. 図2は、図1に示すロボットシステムの制御系統の構成を示す模式図である。FIG. 2 is a schematic view showing a configuration of a control system of the robot system shown in FIG. 図3は、図2に示す動作制御部の制御系のブロック図の一例を示す図である。FIG. 3 is a diagram showing an example of a block diagram of a control system of the operation control unit shown in FIG. 図4は、本実施形態の作業機の動作制御方法の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the operation control method of the working machine of the present embodiment. 図5(A),(B)は、第1実施例の説明に用いる図である。FIGS. 5A and 5B are diagrams used for describing the first embodiment. 図6(A)~(C)は、第2実施例の説明に用いる図である。FIGS. 6A to 6C are diagrams used for explaining the second embodiment.
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。また、本発明は、以下の実施形態に限定されない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following, the same or corresponding elements are denoted by the same reference numerals throughout all the drawings, and the redundant description will be omitted. Further, the present invention is not limited to the following embodiments.
 (実施形態)
 図1は、本実施形態に係る作業機の動作制御方法を適用できるロボットシステムの構成を示す模式図である。
(Embodiment)
FIG. 1 is a schematic view showing a configuration of a robot system to which the motion control method of a working machine according to the present embodiment can be applied.
 このロボットシステム100では、ロボット1の作業領域から離れた位置(作業領域外)にいる操作者が操作装置2を操作して指令を入力することで、ロボット1が該指令に対応した動作を行い、特定の作業を行うことができる。また、ロボットシステム100では、ロボット1は、操作者による操作装置2の操作なしに、所定の作業を自動的に行うこともできる。 In this robot system 100, when the operator at a position away from the work area of the robot 1 (outside the work area) operates the operation device 2 and inputs a command, the robot 1 performs an operation corresponding to the command. , Can do specific work. Further, in the robot system 100, the robot 1 can also automatically perform predetermined work without the operation of the operating device 2 by the operator.
 本明細書では、操作装置2を介して入力された指令に従って、ロボット1を動作させる運転モードを「手動モード」と称する。この手動モードでは、記憶装置4に記憶されている自動動作情報を用いることなく、操作者が操作する操作装置2からの操作情報(動作指令)を受けて、その操作情報に基づいて制御装置3がロボット1を動作制御する。 In the present specification, an operation mode in which the robot 1 is operated according to a command input through the operating device 2 is referred to as a “manual mode”. In this manual mode, the control device 3 receives operation information (operation command) from the operation device 2 operated by the operator without using the automatic operation information stored in the storage device 4, and the control device 3 based on the operation information. Controls the operation of the robot 1.
 また、予め設定されたタスクプログラムに従ってロボット1を動作させる運転モードを「自動モード」と称する。この自動モードでは、記憶装置4に記憶されている自動動作情報(動作指令系列)に基づいて制御装置3がロボット1を動作制御する。 Further, an operation mode for operating the robot 1 in accordance with a preset task program is referred to as an "automatic mode". In this automatic mode, the control device 3 controls the operation of the robot 1 based on the automatic operation information (operation command sequence) stored in the storage device 4.
 更に、本実施形態のロボットシステム100では、ロボット1が自動で動作している途中に、操作装置2の操作をロボット1の動作に反映させて、自動で行うことになっていた動作を修正することができるように構成されている。本明細書では、操作装置2を介して入力された指令を反映可能な状態で、予め設定されたタスクプログラムに従ってロボット1を動作させる運転モードを「修正自動モード」と称する。この修正自動モードでは、ロボット1が自動動作情報を用いて動作している途中に、操作者が操作する操作装置2からの操作情報を受けて、自動動作情報に基づく動作から修正された動作を行うような動作指令が作成され、その動作指令に基づいて制御装置3がロボット1を動作制御する。 Furthermore, in the robot system 100 according to the present embodiment, while the robot 1 is operating automatically, the operation of the controller device 2 is reflected in the operation of the robot 1 to correct the operation that was supposed to be performed automatically. It is configured to be able to. In the present specification, an operation mode in which the robot 1 is operated in accordance with a task program set in advance in a state capable of reflecting a command input via the operation device 2 is referred to as a “correction automatic mode”. In this correction automatic mode, while the robot 1 is operating using the automatic operation information, the operation corrected from the operation based on the automatic operation information is received by receiving the operation information from the operating device 2 operated by the operator. An operation command to be performed is created, and the control device 3 controls operation of the robot 1 based on the operation command.
 このロボットシステム100は、作業機の一例である多関節ロボット1と、操作装置2と、制御装置3と、記憶装置4と、カメラ5と、モニタ6とを備えている。以下、ロボットシステム100の各構成要素について詳細に説明する。 The robot system 100 includes an articulated robot 1 which is an example of a work machine, an operation device 2, a control device 3, a storage device 4, a camera 5, and a monitor 6. Hereinafter, each component of the robot system 100 will be described in detail.
 (ロボット装置部10)
 ロボット装置部10は、ロボット1と、ロボット1の動作を制御する制御装置3と、記憶装置4とを備えている。ロボット1は、基台15と、基台15に支持された腕部13と、腕部13の先端に支持され、エンドエフェクタが装着される手首部14と、手首部14の先端に装着されるハンド部となるエンドエフェクタ(図示略)とを備えている。エンドエフェクタも制御装置3によって制御される。
(Robot equipment part 10)
The robot device unit 10 includes a robot 1, a control device 3 that controls the operation of the robot 1, and a storage device 4. The robot 1 is supported by a base 15, an arm 13 supported by the base 15, and a tip of the arm 13, and is attached to a wrist 14 to which an end effector is attached and a tip of the wrist 14 And an end effector (not shown) serving as a hand unit. The end effector is also controlled by the controller 3.
 ロボット1は、図1に示すように3以上の複数の関節JT1~JT6を有する多関節ロボットアームであって、複数のリンク11a~11fが順次連結されて構成されている。そして、第1関節JT1、第1リンク11a、第2関節JT2、第2リンク11b、第3関節JT3、及び第3リンク11cから成るリンクと関節の連結体によって、ロボット1の腕部13が形成されている。また、上記の第4関節JT4、第4リンク11d、第5関節JT5、第5リンク11e、第6関節JT6、及び第6リンク11fから成るリンクと関節の連結体によって、ロボット1の手首部14が形成されている。そして、手首部14の第6リンク11fの先端部にはメカニカルインターフェースが設けられている。このメカニカルインターフェースには、作業内容に対応したエンドエフェクタが着脱可能に装着される。 The robot 1 is an articulated robot arm having a plurality of joints JT1 to JT6 as shown in FIG. 1, and is configured by sequentially connecting a plurality of links 11a to 11f. The arm 13 of the robot 1 is formed by a link-joint combination including the first joint JT1, the first link 11a, the second joint JT2, the second link 11b, the third joint JT3, and the third link 11c. It is done. In addition, the link 14 of the fourth joint JT4, the fourth link 11d, the fifth joint JT5, the fifth link 11e, the sixth joint JT6, and the sixth link 11f causes the wrist portion 14 of the robot 1 to be connected. Is formed. A mechanical interface is provided at the tip of the sixth link 11 f of the wrist portion 14. An end effector corresponding to the work content is detachably mounted on the mechanical interface.
 関節JT1~JT6の各々には、それが連結する2つの部材を相対的に回転させるアクチュエータの一例としての駆動モータM(図3参照)が設けられている。駆動モータMは、例えば、制御装置3によってサーボ制御されるサーボモータである。また、関節JT1~JT6の各々には、駆動モータMの回転位置を検出するための回転センサE(図3参照)と、駆動モータMの回転を制御する電流を検出するための電流センサC(図3参照)とが設けられている。回転センサEは、例えばエンコーダである。 Each of the joints JT1 to JT6 is provided with a drive motor M (see FIG. 3) as an example of an actuator for relatively rotating two members to which it is coupled. The drive motor M is, for example, a servomotor servo-controlled by the control device 3. In each of joints JT1 to JT6, a rotation sensor E (see FIG. 3) for detecting the rotational position of drive motor M and a current sensor C (for detecting current for controlling the rotation of drive motor M ( See FIG. 3). The rotation sensor E is, for example, an encoder.
 制御装置3は、例えば、マイクロコントローラ、MPU、PLC(Programmable Logic Controller)、論理回路等からなる演算部(図示せず)と、ROMやRAM等からなるメモリ部(図示せず)とにより構成することができる。 The control device 3 includes, for example, an operation unit (not shown) including a microcontroller, MPU, PLC (Programmable Logic Controller), logic circuit and the like, and a memory unit (not shown) including ROM and RAM. be able to.
 図2は、ロボットシステム100の制御系統の構成を示す模式図である。制御装置3は、図2に示すように、機能ブロックとして、動作制御部31と改良動作情報生成部32とを備えている。これらの機能ブロックは、例えば、制御装置3の演算部がメモリ部に格納されているプログラムを読み出し実行することにより実現できる。動作制御部31は、ロボット1の動作を制御する。動作制御部31によるロボット1の動作の制御についての詳細は後述する。 FIG. 2 is a schematic view showing a configuration of a control system of the robot system 100. As shown in FIG. As shown in FIG. 2, the control device 3 includes an operation control unit 31 and an improvement operation information generation unit 32 as functional blocks. These functional blocks can be realized, for example, by the arithmetic unit of the control device 3 reading and executing a program stored in the memory unit. The operation control unit 31 controls the operation of the robot 1. Details of control of the operation of the robot 1 by the operation control unit 31 will be described later.
 (記憶装置4)
 記憶装置4は、読み書き可能な記録媒体であり、ロボット1に自動で所定の動作をさせるために作成された情報が保存動作情報41として記憶されている。保存動作情報41は、時系列的な動作指令の集合(動作指令の時系列データ)からなる動作指令系列である。例えば、保存動作情報41は、時系列データを含む軌道情報や軌道に沿った速度を含む情報である。記憶装置4には、少なくとも1つの保存動作情報41が記憶されている。なお、本例では、記憶装置4は、制御装置3と別体に設けられているが、制御装置3と一体として設けられていてもよい。
(Storage device 4)
The storage device 4 is a readable and writable recording medium, and information created to cause the robot 1 to perform a predetermined operation automatically is stored as storage operation information 41. The storage operation information 41 is an operation command series composed of a set of time-series operation commands (time-series data of operation commands). For example, the storage operation information 41 is information including trajectory information including time-series data and a velocity along the trajectory. The storage device 4 stores at least one save operation information 41. In the present embodiment, the storage device 4 is provided separately from the control device 3, but may be provided integrally with the control device 3.
 なお、制御装置3の改良動作情報生成部32及び記憶装置4に記憶される改良動作情報42については、後で説明することとし、以下では、改良動作情報生成部32についての説明をする前までは、記憶装置4に改良動作情報42が記憶されていないものとして説明する。 The improved operation information generating unit 32 of the control device 3 and the improved operation information 42 stored in the storage device 4 will be described later, and in the following, the operation of the improved operation information generating unit 32 is not described. Is described as that the improvement operation information 42 is not stored in the storage device 4.
 (操作装置2)
 操作装置2は、操作者からの操作指示を受け付け、受け付けた操作指示を制御装置3に入力する入力装置である。操作装置2は、操作可能に構成されており、例えば、スイッチ、調整ツマミ、操作レバー又はタブレットなどの携帯端末が例示できる。
(Operating device 2)
The controller device 2 is an input device that receives an operation instruction from an operator and inputs the received operation instruction to the control device 3. The operating device 2 is configured to be operable, and can be exemplified by a portable terminal such as a switch, an adjustment knob, an operating lever or a tablet.
 図2に示すように、操作装置2は、モード選択部21と、動作情報選択部22と、入力操作部23と、動作指令生成部24とを備えている。 As shown in FIG. 2, the controller device 2 includes a mode selection unit 21, an operation information selection unit 22, an input operation unit 23, and an operation command generation unit 24.
 モード選択部21は、ロボット1を動作させる運転モード(動作モード)を、上述した自動モード、修正自動モード及び手動モードのなかからいずれか1つのモードを操作者が選択操作するためのものである。この選択操作に基づく選択信号は動作制御部31へ入力される。 The mode selection unit 21 is for the operator to select one of the operation modes (operation modes) for operating the robot 1 from the above-described automatic mode, correction automatic mode, and manual mode. . A selection signal based on this selection operation is input to the operation control unit 31.
 動作情報選択部22は、例えば修正自動モードにおいてロボット1を動作させるときに、記憶装置4に記憶されている複数の動作情報(保存動作情報41)の中から、動作制御部31が用いるいずれか1つの動作情報を操作者が選択操作するためのものである。この選択操作に基づく選択信号は動作制御部31へ入力される。 For example, when operating the robot 1 in the correction automatic mode, the operation information selection unit 22 uses any one of a plurality of operation information (storage operation information 41) stored in the storage device 4 that the operation control unit 31 uses. It is for the operator to select one operation information. A selection signal based on this selection operation is input to the operation control unit 31.
 入力操作部23は、手動モード又は修正自動モードにおいて操作者からのロボット1を動作させるための入力操作(指示)を受け付けて、操作(指示)に応じた指示信号を動作指令生成部24へ出力する。 Input operation unit 23 receives an input operation (instruction) for operating robot 1 from the operator in the manual mode or the correction automatic mode, and outputs an instruction signal according to the operation (instruction) to operation command generation unit 24. Do.
 動作指令生成部24は、入力操作部23からの指示信号に基づいて、ロボット1を動作させるための動作指令(操作情報)を生成し、動作制御部31へ送信する。 The operation command generation unit 24 generates an operation command (operation information) for operating the robot 1 based on an instruction signal from the input operation unit 23, and transmits the operation command to the operation control unit 31.
 本実施形態のロボットシステム100では、手動モードであるときに操作情報が制御装置3に送られると、ロボット1の動作が操作情報に基づいて制御される。また、修正自動モードであるときに操作情報が制御装置3に送られると、自動で動作している途中のロボット1の動作が操作情報により修正される。 In the robot system 100 of the present embodiment, when the operation information is sent to the control device 3 in the manual mode, the operation of the robot 1 is controlled based on the operation information. Further, when the operation information is sent to the control device 3 in the correction automatic mode, the operation of the robot 1 in the process of being automatically operated is corrected by the operation information.
 (カメラ5及びモニタ6)
 図1に戻って、カメラ5は、ロボット1が設けられている空間に設置されており、ロボット1の作業状況を撮影するカメラであり、モニタ6は、カメラで撮影された映像を表示するためのディスプレイであり、操作者がロボット1による作業状況を確認するためのモニタである。操作者は、手動モードまたは修正自動モードにおいて、モニタ6に表示されたロボット1の作業状況を見ながら操作装置2(入力操作部23)を操作することができる。勿論、操作者は、ロボット1を直接見て操作装置2を操作してもよい。
(Camera 5 and monitor 6)
Returning to FIG. 1, the camera 5 is installed in the space where the robot 1 is provided, and is a camera for capturing the work situation of the robot 1, and the monitor 6 is for displaying an image captured by the camera And a monitor for the operator to confirm the work status of the robot 1. The operator can operate the operation device 2 (input operation unit 23) while observing the work status of the robot 1 displayed on the monitor 6 in the manual mode or the correction automatic mode. Of course, the operator may look at the robot 1 directly and operate the operation device 2.
 次に、動作制御部31によるロボット1の動作の制御について説明する。 Next, control of the operation of the robot 1 by the operation control unit 31 will be described.
 まず、運転モードが手動モードである場合、動作制御部31は、操作装置2から送られた操作情報(入力指令)に従って、ロボット1の動作を制御する。このとき、動作制御部31は、一連の操作情報から動作指令系列を作成し、保存動作情報41として記憶装置4に記憶させる。 First, when the operation mode is the manual mode, the operation control unit 31 controls the operation of the robot 1 according to the operation information (input command) sent from the operation device 2. At this time, the operation control unit 31 creates an operation command sequence from the series of operation information, and causes the storage device 4 to store the operation command sequence as the stored operation information 41.
 次に、運転モードが修正自動モードの場合、動作制御部31には、記憶装置4に記憶されている1つの保存動作情報41が、ロボット1に自動で動作させるための自動動作情報として送られる。さらに、動作制御部31には、操作装置2を操作することにより生成された操作情報が送られる。 Next, when the operation mode is the correction automatic mode, one save operation information 41 stored in the storage device 4 is sent to the operation control unit 31 as automatic operation information for causing the robot 1 to operate automatically. . Furthermore, operation information generated by operating the operation device 2 is sent to the operation control unit 31.
 この修正自動モードである場合、動作制御部31は、自動動作情報と操作情報の両方を用いる。この場合、操作情報が動作制御部31に送られていないときは、動作制御部31は自動動作情報のみを用いる。より詳しくは、動作制御部31は、ロボット1が自動動作情報を用いて自動で動作している途中に操作情報を受けると、自動動作情報と操作情報の両方を用いてロボット1の動作を制御する。これにより、ロボット1は、自動動作情報に基づく動作、すなわち自動で行うことになっていた動作から修正された動作を行う。 In this correction automatic mode, the operation control unit 31 uses both automatic operation information and operation information. In this case, when the operation information is not sent to the operation control unit 31, the operation control unit 31 uses only the automatic operation information. More specifically, when the operation control unit 31 receives operation information while the robot 1 is operating automatically using the automatic operation information, the operation control unit 31 controls the operation of the robot 1 using both the automatic operation information and the operation information. Do. Thereby, the robot 1 performs the operation based on the automatic operation information, that is, the operation corrected from the operation which is to be performed automatically.
 次に、運転モードが修正自動モードであるときのロボット1の動作修正について、図3を参照して説明する。図3は、動作制御部31の制御系のブロック図の一例を示す図である。この例では、自動動作情報及び操作情報は、例えば時系列データを含む軌道情報である。 Next, the operation correction of the robot 1 when the operation mode is the correction automatic mode will be described with reference to FIG. FIG. 3 is a diagram showing an example of a block diagram of a control system of the operation control unit 31. As shown in FIG. In this example, the automatic operation information and the operation information are, for example, trajectory information including time-series data.
 動作制御部31は、加算器31a、減算器31b,31e,31g、位置制御器31c、微分器31d、速度制御器31fを備え、自動動作情報に基づく指令値及び操作情報に基づく指令値により、ロボット1の駆動モータMの回転位置を制御する。 The operation control unit 31 includes an adder 31a, subtractors 31b, 31e, and 31g, a position controller 31c, a differentiator 31d, and a speed controller 31f, and uses a command value based on automatic operation information and a command value based on operation information. The rotational position of the drive motor M of the robot 1 is controlled.
 加算器31aは、自動動作情報に基づく位置指令値に、操作情報に基づく指令値を加算することによって、修正された位置指令値を生成し、これを減算器31bに送る。 The adder 31a generates a corrected position command value by adding the command value based on the operation information to the position command value based on the automatic operation information, and sends this to the subtractor 31b.
 減算器31bは、修正された位置指令値から、回転センサEで検出された位置現在値を減算して、角度偏差を生成し、これを位置制御器31cに送る。位置制御器31cは、予め定められた伝達関数や比例係数に基づいた演算処理により、減算器31bから送られた角度偏差から速度指令値を生成し、これを減算器31eに送る。 The subtractor 31b subtracts the current position value detected by the rotation sensor E from the corrected position command value to generate an angular deviation, and sends this to the position controller 31c. The position controller 31c generates a speed command value from the angular deviation sent from the subtractor 31b by calculation processing based on a predetermined transfer function or proportional coefficient, and sends this to the subtractor 31e.
 微分器31dは、回転センサEで検出された位置現在値情報を微分して、駆動モータMの回転角度の単位時間あたりの変化量、すなわち速度現在値を生成し、これを減算器31eに送る。 The differentiator 31d differentiates the position current value information detected by the rotation sensor E to generate the amount of change per unit time of the rotation angle of the drive motor M, that is, the current speed value, and sends this to the subtractor 31e. .
 減算器31eは、位置制御器31cから送られた速度指令値から、微分器31dから送られた速度現在値を減算して、速度偏差を生成し、これを速度制御器31fに送る。速度制御器31fは、予め定められた伝達関数や比例係数に基づいた演算処理により、減算器31eから送られた速度偏差からトルク指令値(電流指令値)を生成し、これを減算器31gに送る。 The subtractor 31e subtracts the current speed value sent from the differentiator 31d from the speed command value sent from the position controller 31c to generate a speed deviation, and sends this to the speed controller 31f. The speed controller 31f generates a torque command value (current command value) from the speed deviation sent from the subtractor 31e by calculation processing based on a predetermined transfer function or proportional coefficient, and sends it to the subtractor 31g. send.
 減算器31gは、速度制御器31fから送られたトルク指令値から、電流センサCで検出された電流現在値を減算して、電流偏差を生成し、これを駆動モータMに送り、駆動モータMを駆動する。 The subtractor 31 g subtracts the current current value detected by the current sensor C from the torque command value sent from the speed controller 31 f to generate a current deviation, and sends this to the drive motor M, and the drive motor M Drive.
 このようにして動作制御部31は駆動モータMを制御し、自動動作情報に基づく動作から修正された動作を行うようロボット1を制御する。 Thus, the operation control unit 31 controls the drive motor M, and controls the robot 1 to perform an operation corrected from the operation based on the automatic operation information.
 なお、運転モードが自動モードであるときには、減算器31bに自動動作情報に基づく位置指令値が入力される。また、運転モードが手動モードであるときには、減算器31bに操作情報に基づく位置指令値が入力される。 When the operation mode is the automatic mode, a position command value based on the automatic operation information is input to the subtractor 31b. When the operation mode is the manual mode, a position command value based on the operation information is input to the subtractor 31b.
 動作制御部31は、上述の修正された動作をロボット1が行ったときに、修正された動作をロボット1が行うための修正動作情報(動作指令系列)を、記憶装置4に保存動作情報41として記憶させる。 The motion control unit 31 stores, in the storage device 4, correction motion information (motion command sequence) for the robot 1 to perform the corrected motion when the robot 1 performs the above-described corrected motion. Remember.
 以上のように、手動モード及び修正自動モードの各モードにおいて、保存動作情報41を作成することができるが、これに限られない。保存動作情報41は、例えば、機械学習装置によって作成されたものでもよい。また、保存動作情報41は、ティーチングによって作成された教示情報41aであってもよく、教示方式は特に限定されない。例えば、教示情報41aは、ダイレクト教示により作成された情報であってもよいし、マスタースレーブによる教示により作成された情報であってもよいし、ティーチングペンダントを用いた教示により作成された情報であってもよい。 As described above, the save operation information 41 can be created in each of the manual mode and the correction automatic mode, but is not limited thereto. The storage operation information 41 may be generated by, for example, a machine learning device. Also, the storage operation information 41 may be teaching information 41 a created by teaching, and the teaching method is not particularly limited. For example, the teaching information 41a may be information created by direct teaching, may be information created by teaching by a master slave, or is information created by teaching using a teaching pendant. May be
 本実施形態では、改良動作情報生成部32が、保存動作情報41を修正した情報(改良動作情報42)を作成し、それを自動モードで用いるようにしている。以下、これについて説明する。 In the present embodiment, the improvement operation information generation unit 32 creates information (i.e., improvement operation information 42) obtained by correcting the storage operation information 41 and uses it in the automatic mode. This will be described below.
 図4は、本実施形態の作業機(ロボット1)の動作制御方法の一例を示すフローチャートである。 FIG. 4 is a flowchart showing an example of an operation control method of the work machine (robot 1) of the present embodiment.
 本実施形態では、例えば、図4の第1ステップS1及び第6ステップS6が動作制御部31によって行われ、第2ステップS2~第5ステップS5が改良動作情報生成部32によって行われる。 In the present embodiment, for example, the operation control unit 31 performs the first step S1 and the sixth step S6 in FIG. 4, and the improvement operation information generation unit 32 performs the second step S2 to the fifth step S5.
 まず、第1ステップS1では、元動作指令系列を準備する。この元動作指令系列は、保存動作情報41であり、作業機を動作させることができる時系列的な動作指令の集合(動作指令の時系列データ)である。ここで準備される保存動作情報41は、例えば、記憶装置4に記憶されるいずれか1つの保存動作情報41である。 First, in the first step S1, an original operation command sequence is prepared. The original operation command sequence is the storage operation information 41, and is a set of time-series operation commands capable of operating the work machine (time-series data of operation commands). The save operation information 41 prepared here is, for example, any one save operation information 41 stored in the storage device 4.
 次に、第2ステップS2では、元動作指令系列に基づいて駆動される作業機の動作履歴を元動作履歴として作成する。 Next, in the second step S2, the operation history of the working machine driven based on the original operation command sequence is created as the original operation history.
 次に、第3ステップS3では、第2ステップS2により作成された元動作履歴から、所定の動作条件を満たす区間を探索して抽出する。 Next, in the third step S3, a section satisfying a predetermined operation condition is searched and extracted from the original operation history created in the second step S2.
 次に、第4ステップS4では、第3ステップS3によって抽出された区間において、元動作履歴に対して所定の規則に基づいて修正を施すことによって修正動作履歴を作成する。 Next, in the fourth step S4, in the section extracted in the third step S3, a correction operation history is created by correcting the original operation history based on a predetermined rule.
 次に、第5ステップS5では、第4ステップS4において作成された修正動作履歴を再現することのできる動作指令系列を、修正動作指令系列として作成する。この修正動作系列は、改良動作情報42として記憶装置4に記憶される。 Next, in a fifth step S5, an operation command sequence capable of reproducing the correction operation history created in the fourth step S4 is generated as a correction operation command sequence. This correction operation sequence is stored in the storage device 4 as the improvement operation information 42.
 次に、第6ステップS6では、第5ステップS5により作成された修正動作指令系列を再生することによって作業機に作業を実行させる。この第6ステップS6は、例えば自動モードにおいて、動作制御部31が記憶装置4から改良動作情報42を読み出して繰り返し処理されることによって、上記作業が繰り返し行われる。 Next, in a sixth step S6, the work machine is made to execute a task by reproducing the correction operation command sequence created in the fifth step S5. In the sixth step S6, for example, in the automatic mode, the operation control unit 31 reads the improved operation information 42 from the storage device 4 and is repeatedly processed, whereby the above-described work is repeatedly performed.
 なお、上述の第2ステップS2において、元動作履歴を元動作指令系列に基づいて作成してもよい。つまり、作業機を実際に動作させるか否かに関わらず、元動作指令系列に基づいて演算により元動作履歴を作成してもよい。 In the second step S2 described above, the original operation history may be created based on the original operation command sequence. That is, regardless of whether the work machine is actually operated or not, the original operation history may be created by calculation based on the original operation command sequence.
 また、第2ステップS2において、元動作履歴を元動作指令系列に従って駆動する作業機の動作状態を検出することによって作成してもよい。つまり、作業機を実際に動作させて、そのときの作業機の動作状態(位置や速度など)をセンサーで検出することによって作成してもよい。 In addition, in the second step S2, the original operation history may be created by detecting the operation state of the work machine driven according to the original operation command sequence. That is, it may be created by actually operating the working machine and detecting the operating state (position, speed, etc.) of the working machine at that time by the sensor.
 次に、第1ステップS1~第6ステップS6についての実施例を説明する。 Next, an embodiment of the first step S1 to the sixth step S6 will be described.
 (第1実施例)
 第1実施例として、基台に固定されたワークに対して、エンドエフェクタ(ハンド部)として塗装用のスプレーガン(以下、「塗装ガン」という)が取り付けられたロボット1によって塗装を施す作業を考えることができる。ここで、図5(A),(B)を参照して説明する。
(First embodiment)
As a first embodiment, the work of applying a paint to a workpiece fixed to a base by a robot 1 attached with a spray gun for painting (hereinafter referred to as a "painting gun") as an end effector (hand unit) I can think of it. Here, description will be made with reference to FIGS. 5 (A) and 5 (B).
 ワーク51は、平板状で、平面形状が図5(A)に示すような輪郭形状を有する。ロボット1がこのワーク51の表面全体に塗装ガンで均一な塗装を施す作業を行う場合を考える。 The work 51 is flat and has a planar shape as shown in FIG. 5A. A case will be considered where the robot 1 performs an operation of applying a uniform paint to the entire surface of the work 51 with a paint gun.
 この作業をロボット1が行う場合の元動作指令系列(保存動作情報41)が、記憶装置4に記憶される(第1ステップS1)。この保存動作情報41は、先に述べたように、手動モードまたは修正自動モードによって作成されたものでもよいし、機械学習装置によって作成されたものでもよい。 The original operation instruction sequence (storage operation information 41) when the robot 1 performs this operation is stored in the storage device 4 (first step S1). As described above, the storage operation information 41 may be generated by the manual mode or the correction automatic mode, or may be generated by the machine learning device.
 次に、ロボット1を記憶装置4に記憶されている元動作指令系列(保存動作情報41)に基づいて動作させる場合、塗装ガンは、ワーク51上を実線L1で示されるような軌跡で移動する。このとき、塗装ガンの元動作履歴としては、塗装作業中の全時間範囲または一部時間範囲において塗装ガンの位置が記憶装置(例えば記憶装置4または別の記憶装置)に記憶され、また、記憶された各位置に対応して塗装ガンの移動速度も記憶される(第2ステップS2)。 Next, when the robot 1 is operated based on the original operation command sequence (storage operation information 41) stored in the storage device 4, the coating gun moves on the workpiece 51 along the trajectory indicated by the solid line L1. . At this time, as the original operation history of the coating gun, the position of the coating gun is stored in the storage device (for example, the storage device 4 or another storage device) over the entire time range or a partial time range during the painting operation. The moving speed of the coating gun is also stored corresponding to each of the positions (second step S2).
 次に、第3ステップS3において、所定の動作条件(条件a)として、塗装ガンが10cm以上の距離を、横ブレ0.5cm以内で直線的に移動することとし、この区間(条件aを満たす区間)を探索し、抽出する。 Next, in the third step S3, as a predetermined operation condition (condition a), the coating gun moves linearly at a distance of 10 cm or more within 0.5 cm of the horizontal shake, and this section (condition a is satisfied) Search and extract the interval).
 この第3ステップS3によって、条件aを満たす区間として、点aから点bまでの区間(第1区間)と、点cから点dまでの区間(第2区間)と、点eから点fまでの区間(第3区間)と、点gから点hまでの区間(第4区間)とが抽出されたとする。 In the third step S3, as a section satisfying the condition a, a section from the point a to the point b (first section), a section from the point c to the point d (second section), and a point e to the point f It is assumed that the section (third section) of and the section (fourth section) from the point g to the point h are extracted.
 次に、第4ステップS4において、元動作履歴データに対して次のような修正を施す。第1~4区間の塗装ガンの動作を、横ブレなしに直線的に移動する動作となるように元動作履歴を修正し、修正動作履歴を作成する。この際、当該区間(第1~4区間)中の各位置での塗装ガンの移動速度は、元動作履歴におけるものから修正しなくてもよいし、元動作履歴における当該区間中の塗装ガンの平均移動速度Vaを求め、当該区間全体に渡って塗装ガンの移動速度を平均移動速度Vaに修正してもよい。ここで作成された修正動作履歴による塗装ガンの移動軌跡を図5(B)の実線L2で示す。 Next, in the fourth step S4, the following correction is performed on the original operation history data. The original operation history is corrected so that the operation of the paint gun in the first to fourth sections is linearly moved without lateral blurring, and a correction operation history is created. At this time, the moving speed of the coating gun at each position in the section (sections 1 to 4) may not be corrected from that in the original operation history, or the moving speed of the coating gun in the section in the original operation history The average moving speed Va may be determined, and the moving speed of the coating gun may be corrected to the average moving speed Va over the entire section. The movement trajectory of the coating gun based on the correction operation history created here is indicated by a solid line L2 in FIG. 5 (B).
 次に、第5ステップS5において、上記の修正動作履歴が再現されるような、動作指令系列を作成する。こうして作成された動作指令系列を修正動作指令系列と呼ぶ。 Next, in a fifth step S5, an operation command sequence is created such that the correction operation history described above is reproduced. The operation command sequence thus created is called a correction operation command sequence.
 この修正動作指令系列は、改良動作情報42として記憶装置4に記憶される。以降は、例えば自動モードによって、修正動作指令系列(改良動作情報42)を制御装置3に与えることによって、塗装ガンによるワーク塗装の作業が実行される(第6ステップS6)。 The corrected operation command sequence is stored in the storage device 4 as the improved operation information 42. After that, the work of painting the workpiece by the painting gun is executed by giving the correction operation command sequence (improved motion information 42) to the control device 3 in the automatic mode, for example (sixth step S6).
 (第2実施例)
 第2実施例として、孔が形成されたワークをロボット1が把持して、ワークの孔が所定位置に固定されたピンに嵌合するようにワークを操作するという作業を考えることができる。ここで、図6(A),(B),(C)を参照して説明する。
Second Embodiment
As a second embodiment, it is possible to think of an operation in which the robot 1 grips a work in which a hole is formed, and operates the work so that the hole of the work is fitted to a pin fixed in a predetermined position. Here, description will be made with reference to FIGS. 6 (A), (B) and (C).
 図6(A)に示すように、ピン62はある製品のフレーム63に設けられたものであり、そのフレーム63は工場の床に固定されている。ピン62はフレーム63から鉛直上方の方向に突出している。そして、ワーク61は、フレーム63に取り付けるべきブラケットであり、平板状である。ワーク61はロボット1のハンド部12に保持される。 As shown in FIG. 6A, the pins 62 are provided on a frame 63 of a certain product, and the frame 63 is fixed to the floor of a factory. The pins 62 project from the frame 63 in the direction of the vertically upper side. The work 61 is a bracket to be attached to the frame 63 and is flat. The work 61 is held by the hand unit 12 of the robot 1.
 この作業において、例えば、手動モードによって、操作者が操作装置2(入力操作部23)を操作してロボット1を動作させ、動作制御部31が保存動作情報41を作成し、記憶装置4に記憶するとすれば、この場合、ロボット1が次のような動作を行う。 In this work, for example, in the manual mode, the operator operates the operation device 2 (input operation unit 23) to operate the robot 1, and the operation control unit 31 creates the save operation information 41 and stores it in the storage device 4. Then, in this case, the robot 1 performs the following operation.
 まず、ロボット1のハンド部12が、所定箇所に置かれているワーク61のところまで移動して、そのワーク61を水平面と平行な姿勢となるように保持する。次に、そのワーク61の水平姿勢を維持したまま、ワーク61の孔61aがピン62の上方に位置するまでハンド部12が移動する(例えば、図6(A)の実線で示される状態)。 First, the hand unit 12 of the robot 1 moves to the position of the work 61 placed at a predetermined position, and holds the work 61 in a posture parallel to the horizontal plane. Next, the hand portion 12 is moved until the hole 61a of the work 61 is positioned above the pin 62 while maintaining the horizontal attitude of the work 61 (for example, the state shown by the solid line in FIG. 6A).
 上述のハンド部12がワーク61を保持してから、そのワーク61の孔61aがピン62の上方に位置するまでワーク61を移動させるときのハンド部12の移動動作を、第1動作と呼ぶ。 The movement operation of the hand unit 12 when moving the work 61 until the hole 61a of the work 61 is positioned above the pin 62 after the hand unit 12 holds the work 61 is referred to as a first operation.
 ワーク61の孔61aがピン62の上方に位置した後は、ワーク61の下面をピン62の先端に当接した状態になるまでワーク61(二点鎖線で示す)を下降させる。その後、ハンド部12を所定範囲Q1(図6(B)参照)内でランダムに移動させることにより、ワーク61をランダムに水平面内において移動させる。このときのハンド部12のランダムな動作を第2動作と呼ぶ。第2動作中は、ハンド部12は水平面内においてランダムな動きをしているが、鉛直方向にはほとんど移動しない。 After the hole 61a of the workpiece 61 is positioned above the pin 62, the workpiece 61 (indicated by a two-dot chain line) is lowered until the bottom surface of the workpiece 61 is in contact with the tip of the pin 62. Thereafter, the workpiece 61 is moved in the horizontal plane at random by moving the hand portion 12 at random within the predetermined range Q1 (see FIG. 6B). The random operation of the hand unit 12 at this time is referred to as a second operation. During the second operation, the hand unit 12 randomly moves in the horizontal plane but hardly moves in the vertical direction.
 そして、そのようなランダムな動きをハンド部12に与えているとき、ハンド部12がワーク61に対して下方へ向かう小さな圧力を与えており、孔61aがピン62の位置に一致すると、ワーク61とハンド部12とが急激に下降し、孔61aがピン62に嵌合される。このときのハンド部12の急激な下降を第3動作と呼ぶ。第3動作においてハンド部12は水平面内においてはほとんど移動しない。 Then, when such random movement is given to the hand portion 12, the hand portion 12 applies a small downward pressure to the work 61, and when the hole 61 a matches the position of the pin 62, the work 61 And the hand portion 12 descend rapidly, and the hole 61 a is fitted to the pin 62. The rapid lowering of the hand unit 12 at this time is referred to as a third operation. In the third operation, the hand 12 hardly moves in the horizontal plane.
 以上のような手動モードによる、第1動作から第3動作までの動作指令系列が元動作指令系列として作成され、保存動作情報41として記憶装置4に記憶される(第1ステップS1)。 The operation command sequence from the first operation to the third operation in the manual mode as described above is created as the original operation command sequence, and is stored in the storage device 4 as the storage operation information 41 (first step S1).
 次に、第2ステップS2において、元動作指令系列に対応するロボット1のハンド部12の動作履歴が元動作履歴として作成される。この元動作履歴によるハンド部12の移動軌跡(平面視における軌跡)が、例えば、図6(B)の実線L3で示される。 Next, in a second step S2, an operation history of the hand unit 12 of the robot 1 corresponding to the original operation command sequence is created as an original operation history. The movement trajectory (the trajectory in plan view) of the hand unit 12 based on this original operation history is indicated by, for example, a solid line L3 in FIG. 6 (B).
 図6(B)は、平面視におけるハンド部12の移動軌跡を拡大して示した図である。実線L3で示す移動軌跡上の位置iは、ハンド部12がランダムな動きを行う第2動作の開始位置(第1動作の終了位置)であり、位置jは、第2動作の終了位置であり、第3動作が行われる位置でもある。 FIG. 6B is an enlarged view of a movement trajectory of the hand unit 12 in a plan view. The position i on the movement trajectory indicated by the solid line L3 is the start position (end position of the first operation) of the second operation in which the hand unit 12 performs random movement, and the position j is the end position of the second operation , And the position where the third operation is performed.
 次に、第3ステップS3において、所定の動作条件(条件b)として、ハンド部12がランダムな動きをしていることとし、この区間(条件bを満たす区間)を探索し、抽出する。すなわち、ハンド部12が第2動作によってランダムな動きを開始してから第3動作によって急激に下降する直前までの区間を探索し、この区間を抽出する。ここで、ランダムな動きとは、例えば、ハンド部12が5cm以上の距離を、横ブレ0.5cm以内で直線的に移動しない動きを言う。 Next, in the third step S3, as the predetermined operation condition (condition b), it is assumed that the hand unit 12 is randomly moving, and this section (section satisfying the condition b) is searched and extracted. That is, the section from the start of the random movement by the second operation by the second operation to the immediately before the sudden decrease by the third operation is searched, and this interval is extracted. Here, the random movement means, for example, a movement in which the hand portion 12 does not move linearly within a distance of 0.5 cm or more within a distance of 5 cm or more.
 この第3ステップS3によって、第2動作の区間に相当する、第2動作の開始位置iからその終了位置jまでの区間が抽出されたとする。なお、抽出する区間が、第1動作の終了位置(平面視では位置iと同位置であるが高さが異なる位置)から、第2動作の終了位置jまでの区間となるように条件bを設定してもよい。 It is assumed that the section from the start position i of the second operation to the end position j corresponding to the section of the second operation is extracted by the third step S3. The condition b is set so that the section to be extracted is a section from the end position of the first operation (a position identical to the position i but different in height in plan view) to the end position j of the second operation. It may be set.
 次に、第4ステップS4において、元動作履歴データに対して次のような修正を施す。位置iから位置jまでの区間のハンド部12の動作を、直線的に移動する動作となるように元動作履歴を修正し、修正動作履歴を作成する。ここで作成された修正動作履歴によるハンド部12の移動軌跡を図6(C)の実線L4で示す。この修正動作履歴では、ハンド部12は、位置jまで移動した後、位置jを中心とする所定範囲Q2内(例えば水平面内の半径1cmの円の内側)で、予め決められたランダムな動きを行うようにする。そして、このランダムな動きは、実際に動作させたときに、ハンド部12の急激な下降動作(第3動作に相当する動作)が実施されることにより、終了させることとする。 Next, in the fourth step S4, the following correction is performed on the original operation history data. The original operation history is corrected so that the operation of the hand unit 12 in the section from the position i to the position j moves linearly, and a correction operation history is created. The movement trajectory of the hand unit 12 based on the correction operation history created here is indicated by a solid line L4 in FIG. 6 (C). In this correction operation history, after moving to the position j, the hand unit 12 performs a predetermined random motion within a predetermined range Q2 centered on the position j (for example, inside a circle with a radius of 1 cm in the horizontal plane) Let's do it. Then, when the random movement is actually operated, the rapid lowering operation (the operation corresponding to the third operation) of the hand unit 12 is performed, and the random movement is ended.
 次に、第5ステップS5において、上記の修正動作履歴が再現されるような、動作指令系列(修正動作指令系列)を作成する。 Next, in a fifth step S5, an operation command sequence (correction operation command sequence) is created such that the correction operation history is reproduced.
 この修正動作指令系列は、改良動作情報42として記憶装置4に記憶される。以降は、例えば自動モードによって、修正動作指令系列(改良動作情報42)を制御装置3に与えることによって、ピン62がワーク61の孔61aに嵌合するようにワーク61を操作するという作業が実行される(第6ステップS6)。 The corrected operation command sequence is stored in the storage device 4 as the improved operation information 42. Thereafter, the work of operating the work 61 such that the pin 62 is fitted into the hole 61 a of the work 61 is performed by giving the control device 3 a correction operation command sequence (improved movement information 42) in the automatic mode, for example. Is performed (sixth step S6).
 各ワーク61及びフレーム63には個体差があるので、ハンド部12のランダムな動きによって、フレーム63のピン62をワーク61の孔61aに嵌合させることができる。 Since the workpieces 61 and the frame 63 have individual differences, the pins 62 of the frame 63 can be fitted into the holes 61 a of the workpiece 61 by the random movement of the hand portion 12.
 本実施形態によれば、元動作履歴を修正した修正動作履歴を作成し、それが再現されるような動作指令系列(修正動作指令系列)を作成し、その修正動作指令系列に基づいて作業機(ロボット1)を動作制御することにより、作業機による作業の改善を図り、作業性を向上することができる。 According to the present embodiment, a correction operation history in which the original operation history is corrected is created, and an operation command sequence (correction operation command sequence) as it is reproduced is created, and the work machine is created based on the correction operation command sequence. By controlling the movement of the (robot 1), it is possible to improve the work by the work machine and to improve the workability.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention will be apparent to those skilled in the art. Accordingly, the above description should be taken as exemplary only, and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the present invention. The structural and / or functional details may be substantially altered without departing from the spirit of the present invention.
 本発明は、作業機による作業の改善を図ることができる作業機の動作制御方法等として有用である。 The present invention is useful as an operation control method and the like of a working machine capable of improving work by the working machine.
1 ロボット
2 操作装置
3 制御装置
4 記憶装置
S1~S6 第1~第6ステップ
1 Robot 2 Operation Device 3 Control Device 4 Storage Device S1 to S6 First to Sixth Steps

Claims (4)

  1.  元動作指令系列を準備する第1ステップと、
     前記元動作指令系列に基づいて駆動される作業機の動作履歴を元動作履歴として作成する第2ステップと、
     前記第2ステップにより作成された元動作履歴から、所定の動作条件を満たす区間を探索して抽出する第3ステップと、
     前記第3ステップによって抽出された区間において、前記元動作履歴に対して所定の規則に基づいて修正を施すことによって修正動作履歴を作成する第4ステップと、
     前記第4ステップにおいて作成された修正動作履歴を再現することのできる動作指令系列を、修正動作指令系列として作成する第5ステップと、
     前記第5ステップにより作成された修正動作指令系列を再生することによって前記作業機に作業を実行させる第6ステップと、を有する、
     作業機の動作制御方法。
    A first step of preparing a source operation command sequence;
    A second step of creating, as an original operation history, an operation history of a work machine driven based on the original operation command sequence;
    A third step of searching for and extracting a section satisfying a predetermined operation condition from the original operation history created in the second step;
    A fourth step of creating a correction operation history by correcting the original operation history based on a predetermined rule in the section extracted in the third step;
    A fifth step of creating an operation command sequence capable of reproducing the correction operation history created in the fourth step as a correction operation command sequence;
    A sixth step of causing the work machine to execute an operation by reproducing the correction operation command sequence generated in the fifth step;
    Operation control method of work machine.
  2.  前記元動作履歴を前記元動作指令系列に基づいて作成する、
     請求項1に記載の作業機の動作制御方法。
    Creating the original operation history based on the original operation command sequence;
    A method of controlling operation of a working machine according to claim 1.
  3.  前記元動作履歴を前記元動作指令系列に従って駆動する前記作業機の動作状態を検出することによって作成する、
     請求項1に記載の作業機の動作制御方法。
    The source operation history is created by detecting an operation state of the work machine driven according to the source operation command sequence.
    A method of controlling operation of a working machine according to claim 1.
  4.  前記元動作指令系列は、前記作業機を手動モード又は修正自動モードで動作させるときに作成された時系列的な動作指令の集合、または、機械学習装置によって作成された時系列的な動作指令の集合であり、
     前記手動モードは、操作者が操作装置を操作して前記作業機の動作を逐次指令して動作させるモードであり、
     前記修正自動モードは、前記作業機に予め定められた手順に従った動作を自動で実行させている途中に、操作者が操作装置を操作して前記作業機の動作を修正するモードである、
     請求項1~3のいずれかに記載の作業機の動作制御方法。
    The original motion command sequence is a set of time-series motion commands created when the work machine is operated in the manual mode or the correction automatic mode, or a time-series motion command created by a machine learning device. It is a set,
    The manual mode is a mode in which the operator operates the operating device to sequentially command and operate the work machine.
    The correction automatic mode is a mode in which the operator operates the operating device to correct the operation of the work machine while the work machine is automatically executing an operation according to a predetermined procedure.
    The method of controlling operation of a working machine according to any one of claims 1 to 3.
PCT/JP2018/042722 2017-11-28 2018-11-19 Method for controlling operation of working machine WO2019107208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-227562 2017-11-28
JP2017227562A JP2021035697A (en) 2017-11-28 2017-11-28 Work machine operation control method

Publications (1)

Publication Number Publication Date
WO2019107208A1 true WO2019107208A1 (en) 2019-06-06

Family

ID=66664841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042722 WO2019107208A1 (en) 2017-11-28 2018-11-19 Method for controlling operation of working machine

Country Status (2)

Country Link
JP (1) JP2021035697A (en)
WO (1) WO2019107208A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021144935A1 (en) * 2020-01-16 2021-07-22

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251476A1 (en) 2020-06-12 2021-12-16 日東電工株式会社 Film mirror laminate, and mirror member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214634A (en) * 1993-01-20 1994-08-05 Tokico Ltd Industrial robot
JPH07291461A (en) * 1994-04-26 1995-11-07 Ishikawajima Harima Heavy Ind Co Ltd Controlling method and device for continuous type unloader
JPH0876829A (en) * 1994-09-07 1996-03-22 Sumitomo Metal Ind Ltd Teaching method for robot of continuous work path

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214634A (en) * 1993-01-20 1994-08-05 Tokico Ltd Industrial robot
JPH07291461A (en) * 1994-04-26 1995-11-07 Ishikawajima Harima Heavy Ind Co Ltd Controlling method and device for continuous type unloader
JPH0876829A (en) * 1994-09-07 1996-03-22 Sumitomo Metal Ind Ltd Teaching method for robot of continuous work path

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021144935A1 (en) * 2020-01-16 2021-07-22
WO2021144935A1 (en) * 2020-01-16 2021-07-22 オムロン株式会社 Control device, control method, and control program
JP7260002B2 (en) 2020-01-16 2023-04-18 オムロン株式会社 Control device, control method, and control program
EP4091777A4 (en) * 2020-01-16 2023-05-03 OMRON Corporation Control device, control method, and control program

Also Published As

Publication number Publication date
JP2021035697A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP6924142B2 (en) Robot system
TWI630081B (en) Direct teaching method of robot
WO2017064851A1 (en) Method for teaching robot and device for controlling robot arm
US11040451B2 (en) Teaching device and teaching method
WO2019116891A1 (en) Robot system and robot control method
JP7041492B2 (en) Robot system
US11865697B2 (en) Robot system and method for operating same
WO2019107208A1 (en) Method for controlling operation of working machine
WO2021166842A1 (en) Deburring device and control system
US11878423B2 (en) Robot system
US11964391B2 (en) Robot system
JP3705045B2 (en) Creating robot teaching data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP