WO2019106910A1 - Adjacent twin-screw ship - Google Patents

Adjacent twin-screw ship Download PDF

Info

Publication number
WO2019106910A1
WO2019106910A1 PCT/JP2018/033937 JP2018033937W WO2019106910A1 WO 2019106910 A1 WO2019106910 A1 WO 2019106910A1 JP 2018033937 W JP2018033937 W JP 2018033937W WO 2019106910 A1 WO2019106910 A1 WO 2019106910A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
phase
prime mover
rotational
rotational phase
Prior art date
Application number
PCT/JP2018/033937
Other languages
French (fr)
Japanese (ja)
Inventor
舩野 功
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2019106910A1 publication Critical patent/WO2019106910A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller

Definitions

  • the present invention relates to a close two-axis ship in which a pair of propeller shafts for propulsion are disposed close to each other.
  • Patent No. 5582761 gazette
  • an object of the present invention is to provide a proximity two-axis vessel capable of reducing generation of vibration while closely arranging a pair of propellers to improve propulsion efficiency.
  • a proximity two-axis vessel comprising: a first propeller and a second propeller for propulsion disposed close to each other; at least one prime mover for driving the first propeller and the second propeller; And a phase setting device for setting the rotational phase of the first propeller with respect to the rotational phase of the two propellers, wherein the phase setting device sets the rotational phase of the first propeller relative to the rotational phase of the second propeller. Only the shift angle ⁇ is made different.
  • the at least one prime mover further comprises: a first rotation angle sensor capable of detecting a rotation phase of the first propeller; and a second rotation angle sensor capable of detecting a rotation phase of the second propeller, wherein the at least one prime mover comprises
  • the phase setting device is a control device that controls the first prime mover and the second prime mover, and the controller includes a first prime mover that drives a propeller and a second prime mover that drives the second propeller.
  • the first prime mover and the second prime mover are controlled based on detection signals of the first rotation angle sensor and the second rotation angle sensor, and the rotation phase of the first propeller is relative to the rotation phase of the second propeller.
  • the configuration may be different.
  • Each of the first propeller and the second propeller includes a shaft and a plurality of wings projecting radially from the shaft, and the wings of each of the first propeller and the second propeller
  • the phase setting device sets the relationship of ⁇ m ⁇ ⁇ 0.3 ⁇ ⁇ m + ⁇ ⁇ 0.3, where N is N, 360 ° / N is ⁇ , and ⁇ / 2 is ⁇ m.
  • the shift angle ⁇ is set to satisfy the condition.
  • (A) is a graph showing the force applied to the shaft of the first propeller when the shift angle ⁇ of the rotational phase of the first propeller and the second propeller is 0 °
  • (B) is a graph of the first propeller and the second propeller It is a graph which shows the force concerning the axial part of the 1st propeller at the time of setting angle alpha of rotation phase to 45 degrees.
  • Ratio of the amplitude value of the primary component obtained by Fourier analysis of the vibration wave of the force applied to the shaft of the first propeller at each shift angle ⁇ of the rotational phase of the first propeller and the second propeller to the average value of the axial force Is a graph showing Ratio of the amplitude value of the primary component obtained by Fourier analysis of the vibration wave of the moment applied to the shaft of the first propeller at each shift angle ⁇ of the rotational phase of the first propeller and the second propeller to the average value of moment around the axis Is a graph showing Force and axial direction of the amplitude value of the primary component obtained by Fourier analysis of the vibration wave of the force and moment applied to the shaft of the first propeller at each shift angle ⁇ of the rotational phase of the first propeller and the second propeller It is a graph which shows the ratio to the average value of the moment of. It is a schematic diagram of a proximity two-axis vessel concerning a 2nd embodiment.
  • FIG. 1 is a schematic view of a proximity two-axis ship 1 according to the first embodiment.
  • the proximity two-axis vessel 1 is provided with a first propeller 2 and a second propeller 5 for propulsion disposed close to each other.
  • Each of the first propeller 2 and the second propeller 5 has the shaft portions 3 and 6 and a plurality of wing portions 4 and 7 radially projecting from the shaft portions 3 and 6.
  • the shaft portions 3 and 6 of the first propeller 2 and the second propeller 5 are arranged in parallel to each other.
  • the shafts 3 and 6 of the first propeller 2 and the second propeller 5 are rotatably supported by the first bearing 8 and the second bearing 9, respectively.
  • the shaft portions 3 and 6 of the first propeller 2 and the second propeller 5 are respectively connected to a first engine 10 and a second engine 11 as prime movers, and the first propeller 2 and the second propeller 5 are respectively It is rotationally driven by the engine 10 and the second engine 11.
  • the first engine 10 and the second engine 11 are controlled by the controller 14.
  • the controller 14 is connected to a first rotation angle sensor 12 capable of detecting the rotation phase of the first propeller 5 and a second rotation angle sensor 13 capable of detecting the rotation phase of the second propeller 5.
  • FIG. 2 is a perspective view of the first propeller 2 shown in FIG.
  • the first propeller 2 and the second propeller 5 are symmetrical with respect to each other and are configured to rotate in opposite directions to each other. Therefore, the first propeller 2 will be representatively described.
  • the first propeller 2 is a four-blade propeller having four wings 4.
  • the propeller is not limited to four wings, and may be, for example, three wings or five wings.
  • the four wing portions 4 protrude radially outward from the shaft portion 3 in a state of being arranged at equal intervals in the circumferential direction around the shaft portion 3.
  • the axial direction of the shaft portion 3 of the propeller 2 is defined as an X direction, a horizontal direction perpendicular to the X direction as a Y direction, and a vertical direction perpendicular to the X direction as a Z direction.
  • the force generated in the X direction F X, the force generated in the Y direction F Y relative propeller 2, the force generated against the propeller 2 in the Z direction is defined as F Z relative to the propeller 2.
  • a moment generated around the X direction with respect to the propeller 2 is defined as M X
  • a moment generated around Y with respect to the propeller 2 is defined as M Y
  • a moment generated around the Z direction with respect to the propeller 2 is defined as M Z.
  • FIG. 3 is a block diagram for explaining the control system of the near twin shaft vessel 1 shown in FIG.
  • FIG. 4 is a front view of the first propeller 2 and the second propeller 5 shown in FIG.
  • each detection signal of the first rotation angle sensor 12 and the second rotation angle sensor 13 is input to the controller 14, and an input signal from the input device 15 operated by the user is input.
  • Control signals from the controller 14 are output to the first engine 10 and the second engine 11, respectively.
  • the controller 14 has a processor, volatile memory, nonvolatile memory, I / O interface, and the like.
  • the controller 14 includes a phase detection unit 16, an output determination unit 17, and a control unit 18.
  • the phase detection unit 16, the output determination unit 17, and the control unit 18 are realized by the processor performing arithmetic processing using a volatile memory based on the program stored in the nonvolatile memory.
  • the phase detection unit 16 detects the rotational phase of the first propeller 2 based on the detection signal of the first rotational angle sensor 12 and detects the rotational phase of the second propeller 5 based on the detection signal of the second rotational angle sensor 13.
  • the output determination unit 17 determines target outputs of the first engine 10 and the second engine 11 in accordance with a user input (command) from the input device 15.
  • the control unit 18 instructs each of the first engine 10 and the second engine 11 to obtain a target rotational speed according to the target output determined by the output determination unit 17, and the first detected by the phase detection unit 16.
  • the first engine 10 and the second engine 11 are commanded so that the difference between the rotational phase of the propeller 2 and the rotational phase of the second propeller 5 becomes a predetermined deviation angle ⁇ . That is, the controller 14 serves as a phase setting device that makes the rotational phase of the first propeller 2 different from the rotational phase of the second propeller 5 by a predetermined shift angle ⁇ .
  • the first propeller 2 and the second propeller 5 are set such that the distance between the first propeller 2 and the second propeller 5, that is, the inter-propeller clearance L is less than 30% of the propeller diameter D.
  • FIG. 5A is a graph showing forces F y and F z applied to the shaft portion 3 of the first propeller 2 when the shift angle ⁇ of the rotational phases of the first propeller 2 and the second propeller 5 is 0 °.
  • 4 (B) is a graph showing forces F y and F z applied to the shaft portion 3 of the first propeller 2 when the shift angle ⁇ of the rotational phase of the first propeller 2 and the second propeller 5 is 45 °.
  • the waveforms in FIGS. 5A and 5B are vibration waves obtained by estimating and calculating the fluid force acting on the propeller by numerical analysis in a uniform flow using a numerical fluid dynamics method. As shown in FIG.
  • FIG. 6 is obtained by Fourier analysis of vibration waves of forces F x , F y and F z applied to the shaft portion 3 of the first propeller 2 at respective shift angles ⁇ of rotational phases of the first propeller 2 and the second propeller 5 the amplitude value of the primary component is a graph showing the ratio of mean value of the force F x.
  • FIG. 7 shows the Fourier of the vibration wave of the moments M x , M y and M z (axial torque) applied to the shaft portion 3 of the first propeller 2 at the respective shift angles ⁇ of the rotational phases of the first propeller 2 and the second propeller 5. It is a graph which shows the ratio with respect to the average value of moment M x of the amplitude value of the primary component calculated
  • FIG. 9 is a schematic view of a proximity two-axis ship 101 according to the second embodiment.
  • the shift angle ⁇ of the rotational phase between the first propeller 2 and the second propeller 5 is generated by a mechanical structure.
  • the shaft portion 3 of the first propeller 2 and the shaft portion 6 of the second propeller 5 are connected at the same speed by the gear device 120 so as to maintain a predetermined shift angle ⁇ .
  • the gear device 120 serves as a phase setting device that makes the rotational phase of the first propeller 2 different from the rotational phase of the second propeller 5 by a predetermined shift angle ⁇ .
  • a first clutch 121 is interposed between the gear device 120 and the first engine 10, and a second clutch 122 is interposed between the gear device 120 and the second engine 11.
  • the controller 114 disconnects the clutches 121 and 122 when the engines 10 and 11 are activated, and connects the clutches 121 and 122 after it is detected that the rotational speeds of the engines 10 and 11 match.
  • description is abbreviate
  • the present invention is not limited to the embodiments described above, and its configuration can be changed, added or deleted.
  • the 4-blade propeller was illustrated in the said embodiment, even if it is 3 wings or 5 wings, it is the same principle.
  • the engine was illustrated as a prime mover which drives a propeller in the above-mentioned embodiment, an electric motor or a turbine may be used instead of an engine.

Abstract

This adjacent twin-screw ship is provided with: a first propeller and a second propeller which are for propulsion and arranged adjacent to each other; at least one engine that drives the first propeller and the second propeller; and a phase setting device that sets the rotational phase of the first propeller with respect to the rotational phase of the second propeller, wherein the phase setting device offsets the rotational phase of the first propeller by a predetermined offset angle α from the rotational phase of the second propeller.

Description

近接二軸船Proximity twin ship
 本発明は、推進用の一対のプロペラ軸を互いに近接配置してなる近接二軸船に関する。 The present invention relates to a close two-axis ship in which a pair of propeller shafts for propulsion are disposed close to each other.
 船舶の運用コストを低減するために、燃費を改善すべく船舶の推進効率を向上させるニーズがある。そこで、左右一対のプロペラを近接配置し、船幅方向中心の縦渦を効率良く回収することで推進効率を向上させる近接二軸船が提案されている(例えば、特許文献1参照)。 There is a need to improve the propulsion efficiency of a ship to improve fuel efficiency in order to reduce the operation cost of the ship. Therefore, there has been proposed a close two-axis ship that improves propulsion efficiency by closely arranging a pair of left and right propellers and efficiently collecting longitudinal vortices at the center in the ship width direction (see, for example, Patent Document 1).
特許第5582761号公報Patent No. 5582761 gazette
 しかし、一対のプロペラ間の距離が小さくなるほど、各プロペラが流体力学的に強い相互干渉を起こし、各プロペラの軸にかかる荷重やモーメントの変動により振動が発生し、ベアリングフォースの増大を招く可能性がある。このようにプロペラ軸に振動が生じると、当該軸を支持するベアリングの寿命が低下すると共に乗り心地にも影響する。 However, as the distance between the pair of propellers decreases, hydrodynamic interaction between the propellers may be strong and vibrations may be generated due to fluctuations in load and moment applied to the shafts of the propellers, which may cause an increase in bearing force. There is. When vibrations occur in the propeller shaft in this manner, the life of the bearing that supports the shaft is reduced and this affects the ride quality.
 そこで本発明は、一対のプロペラを近接配置して推進効率を向上させながらも振動の発生を低減できる近接二軸船を提供することを目的とする。 Then, an object of the present invention is to provide a proximity two-axis vessel capable of reducing generation of vibration while closely arranging a pair of propellers to improve propulsion efficiency.
 本発明の一態様に係る近接二軸船は、互いに近接配置された推進用の第1プロペラ及び第2プロペラと、前記第1プロペラ及び前記第2プロペラを駆動する少なくとも1つの原動機と、前記第2プロペラの回転位相に対する前記第1プロペラの回転位相を設定する位相設定装置と、を備え、前記位相設定装置は、前記第1プロペラの回転位相を前記第2プロペラの回転位相に対して所定のズレ角αだけ異ならせる。 According to an aspect of the present invention, there is provided a proximity two-axis vessel comprising: a first propeller and a second propeller for propulsion disposed close to each other; at least one prime mover for driving the first propeller and the second propeller; And a phase setting device for setting the rotational phase of the first propeller with respect to the rotational phase of the two propellers, wherein the phase setting device sets the rotational phase of the first propeller relative to the rotational phase of the second propeller. Only the shift angle α is made different.
 前記構成によれば、一対のプロペラの回転位相が互いにずれるため、一対のプロペラの翼端同士の距離が回転方向にずれ、一対のプロペラの翼端間の距離が増加する。そのため、各プロペラの流体力学的な相互干渉が低減され、各プロペラにかかる荷重やモーメントの変動が抑制される。よって、一対のプロペラを近接配置して推進効率を向上させながらも振動の発生を低減できる。 According to the above configuration, since the rotational phases of the pair of propellers are shifted from each other, the distance between the blade tips of the pair of propellers is shifted in the rotational direction, and the distance between the blade tips of the pair of propellers increases. Therefore, hydrodynamic interaction interference between the propellers is reduced, and fluctuations in load and moment applied to the propellers are suppressed. Therefore, generation | occurrence | production of a vibration can be reduced, arrange | positioning a pair of propeller closely and improving propulsion efficiency.
 前記第1プロペラの回転位相を検出可能な第1回転角センサと、前記第2プロペラの回転位相を検出可能な第2回転角センサと、を更に備え、前記少なくとも1つの原動機は、前記第1プロペラを駆動する第1原動機と、前記第2プロペラを駆動する第2原動機とを含み、前記位相設定装置は、前記第1原動機及び前記第2原動機を制御する制御装置であり、前記コントローラは、前記第1回転角センサ及び前記第2回転角センサの各検出信号に基づいて前記第1原動機及び前記第2原動機を制御し、前記第1プロペラの回転位相を前記第2プロペラの回転位相に対して異ならせる構成としてもよい。 The at least one prime mover further comprises: a first rotation angle sensor capable of detecting a rotation phase of the first propeller; and a second rotation angle sensor capable of detecting a rotation phase of the second propeller, wherein the at least one prime mover comprises The phase setting device is a control device that controls the first prime mover and the second prime mover, and the controller includes a first prime mover that drives a propeller and a second prime mover that drives the second propeller. The first prime mover and the second prime mover are controlled based on detection signals of the first rotation angle sensor and the second rotation angle sensor, and the rotation phase of the first propeller is relative to the rotation phase of the second propeller. The configuration may be different.
 前記構成によれば、電子制御により一対のプロペラの回転位相をずらすので、一対のプロペラの相対位相を機械的に固定せずに済み、装置の自由度が向上する。 According to the above configuration, since the rotational phase of the pair of propellers is shifted by electronic control, it is not necessary to mechanically fix the relative phase of the pair of propellers, and the degree of freedom of the device is improved.
 前記第1プロペラ及び前記第2プロペラの各々は、軸部と、前記軸部から径方向に突出する複数の翼部とを有し、前記第1プロペラ及び前記第2プロペラの各々の前記翼部の数をNとし、360°/NをΔθとし、Δθ/2をθmとすると、前記位相設定装置は、θm-Δθ・0.3<α<θm+Δθ・0.3の関係を満たすように前記ズレ角αを設定する。 Each of the first propeller and the second propeller includes a shaft and a plurality of wings projecting radially from the shaft, and the wings of each of the first propeller and the second propeller The phase setting device sets the relationship of θ m −Δθ · 0.3 <α <θ m + Δθ · 0.3, where N is N, 360 ° / N is Δθ, and Δθ / 2 is θ m. The shift angle α is set to satisfy the condition.
 前記構成によれば、一対のプロペラの回転位相を互いに一致させた場合に比べ、大幅に振動が低減される顕著な効果を得ることができる。 According to the above configuration, it is possible to obtain a remarkable effect of largely reducing the vibration as compared with the case where the rotational phases of the pair of propellers are matched with each other.
 本発明によれば、一対のプロペラを近接配置して推進効率を向上させながらも振動の発生を低減できる近接二軸船を提供することができる。 According to the present invention, it is possible to provide a close two-axis ship capable of reducing generation of vibration while closely arranging a pair of propellers to improve propulsion efficiency.
第1実施形態に係る近接二軸船の模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the proximity two-axis ship which concerns on 1st Embodiment. 図1に示す第1プロペラ(第2プロペラ)の斜視図である。It is a perspective view of the 1st propeller (2nd propeller) shown in FIG. 図1に示す近接二軸船の制御系統を説明するブロック図である。It is a block diagram explaining the control system of the proximity two-axis vessel shown in FIG. 図1に示す第1プロペラ及び第2プロペラの正面図である。It is a front view of the 1st propeller shown in FIG. 1, and a 2nd propeller. (A)は第1プロペラ及び第2プロペラの回転位相のズレ角αを0°とした場合の第1プロペラの軸部に掛かる力を示すグラフ、(B)は第1プロペラ及び第2プロペラの回転位相のズレ角αを45°とした場合の第1プロペラの軸部に掛かる力を示すグラフである。(A) is a graph showing the force applied to the shaft of the first propeller when the shift angle α of the rotational phase of the first propeller and the second propeller is 0 °, (B) is a graph of the first propeller and the second propeller It is a graph which shows the force concerning the axial part of the 1st propeller at the time of setting angle alpha of rotation phase to 45 degrees. 第1プロペラ及び第2プロペラの回転位相の各ズレ角αにおける第1プロペラの軸部に掛かる力の振動波のフーリエ解析で求めた一次成分の振幅値の、軸線方向の力の平均値に対する比率を示すグラフである。Ratio of the amplitude value of the primary component obtained by Fourier analysis of the vibration wave of the force applied to the shaft of the first propeller at each shift angle α of the rotational phase of the first propeller and the second propeller to the average value of the axial force Is a graph showing 第1プロペラ及び第2プロペラの回転位相の各ズレ角αにおける第1プロペラの軸部に掛かるモーメントの振動波のフーリエ解析で求めた一次成分の振幅値の、軸線周りのモーメントの平均値に対する比率を示すグラフである。Ratio of the amplitude value of the primary component obtained by Fourier analysis of the vibration wave of the moment applied to the shaft of the first propeller at each shift angle α of the rotational phase of the first propeller and the second propeller to the average value of moment around the axis Is a graph showing 第1プロペラ及び第2プロペラの回転位相の各ズレ角αにおける第1プロペラの軸部に掛かる力及びモーメントの振動波のフーリエ解析で求めた一次成分の振幅値の、軸線方向の力及び軸線周りのモーメントの平均値に対する比率を示すグラフである。Force and axial direction of the amplitude value of the primary component obtained by Fourier analysis of the vibration wave of the force and moment applied to the shaft of the first propeller at each shift angle α of the rotational phase of the first propeller and the second propeller It is a graph which shows the ratio to the average value of the moment of. 第2実施形態に係る近接二軸船の模式図である。It is a schematic diagram of a proximity two-axis vessel concerning a 2nd embodiment.
 以下、図面を参照して実施形態を説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 (第1実施形態)
 図1は、第1実施形態に係る近接二軸船1の模式図である。図1に示すように、近接二軸船1は、互いに近接配置された推進用の第1プロペラ2及び第2プロペラ5を備える。と、第1プロペラ2及び第2プロペラ5の各々は、軸部3,6と、軸部3,6から径方向に突出する複数の翼部4,7とを有する。第1プロペラ2及び第2プロペラ5の各軸部3,6は、互いに平行に配置されている。第1プロペラ2及び第2プロペラ5の各軸部3,6は、それぞれ第1ベアリング8及び第2ベアリング9により回転自在に支持されている。
First Embodiment
FIG. 1 is a schematic view of a proximity two-axis ship 1 according to the first embodiment. As shown in FIG. 1, the proximity two-axis vessel 1 is provided with a first propeller 2 and a second propeller 5 for propulsion disposed close to each other. Each of the first propeller 2 and the second propeller 5 has the shaft portions 3 and 6 and a plurality of wing portions 4 and 7 radially projecting from the shaft portions 3 and 6. The shaft portions 3 and 6 of the first propeller 2 and the second propeller 5 are arranged in parallel to each other. The shafts 3 and 6 of the first propeller 2 and the second propeller 5 are rotatably supported by the first bearing 8 and the second bearing 9, respectively.
 第1プロペラ2及び第2プロペラ5の軸部3,6は、原動機としての第1エンジン10及び第2エンジン11にそれぞれ接続されており、第1プロペラ2及び第2プロペラ5は、それぞれ第1エンジン10及び第2エンジン11により回転駆動される。第1エンジン10及び第2エンジン11は、コントローラ14により制御される。コントローラ14には、第1プロペラ5の回転位相を検出可能な第1回転角センサ12と、第2プロペラ5の回転位相を検出可能な第2回転角センサ13とが接続されている。 The shaft portions 3 and 6 of the first propeller 2 and the second propeller 5 are respectively connected to a first engine 10 and a second engine 11 as prime movers, and the first propeller 2 and the second propeller 5 are respectively It is rotationally driven by the engine 10 and the second engine 11. The first engine 10 and the second engine 11 are controlled by the controller 14. The controller 14 is connected to a first rotation angle sensor 12 capable of detecting the rotation phase of the first propeller 5 and a second rotation angle sensor 13 capable of detecting the rotation phase of the second propeller 5.
 図2は、図1に示す第1プロペラ2の斜視図である。本実施形態では、第1プロペラ2と第2プロペラ5とは互いに左右対称形状であり、互いに逆回転する構成であるため、第1プロペラ2について代表して説明する。図2に示すように、第1プロペラ2は、4個の翼部4を有する四翼プロペラである。但し、プロペラは四翼に限られず、例えば、三翼や五翼でもよい。4個の翼部4は、軸部3周りの周方向に等間隔をあけて配置された状態で軸部3から径方向外方に突出している。 FIG. 2 is a perspective view of the first propeller 2 shown in FIG. In the present embodiment, the first propeller 2 and the second propeller 5 are symmetrical with respect to each other and are configured to rotate in opposite directions to each other. Therefore, the first propeller 2 will be representatively described. As shown in FIG. 2, the first propeller 2 is a four-blade propeller having four wings 4. However, the propeller is not limited to four wings, and may be, for example, three wings or five wings. The four wing portions 4 protrude radially outward from the shaft portion 3 in a state of being arranged at equal intervals in the circumferential direction around the shaft portion 3.
 本実施形態では、図2に示すように、プロペラ2の軸部3の軸線方向をX方向、X方向に垂直な水平方向をY方向、X方向に垂直な鉛直方向をZ方向と定義する。また、プロペラ2に対してX方向に生じる力をFX、プロペラ2に対してY方向に生じる力をFY、プロペラ2に対してZ方向に生じる力をFZと定義する。また、プロペラ2に対してX方向周りに生じるモーメントをMX、プロペラ2に対してY周りに生じるモーメントをMY、プロペラ2に対してZ方向周りに生じるモーメントをMZと定義する。 In the present embodiment, as shown in FIG. 2, the axial direction of the shaft portion 3 of the propeller 2 is defined as an X direction, a horizontal direction perpendicular to the X direction as a Y direction, and a vertical direction perpendicular to the X direction as a Z direction. Also, the force generated in the X direction F X, the force generated in the Y direction F Y relative propeller 2, the force generated against the propeller 2 in the Z direction is defined as F Z relative to the propeller 2. Further, a moment generated around the X direction with respect to the propeller 2 is defined as M X , a moment generated around Y with respect to the propeller 2 is defined as M Y , and a moment generated around the Z direction with respect to the propeller 2 is defined as M Z.
 図3は、図1に示す近接二軸船1の制御系統を説明するブロック図である。図4は、図1に示す第1プロペラ2及び第2プロペラ5の正面図である。図3に示すように、コントローラ14には、第1回転角センサ12及び第2回転角センサ13の各検出信号が入力されると共に、ユーザが操作する入力装置15からの入力信号が入力される。コントローラ14からの制御信号は、第1エンジン10及び第2エンジン11にそれぞれ出力される。
コントローラ14は、プロセッサ、揮発性メモリ、不揮発性メモリ及びI/Oインターフェース等を有する。コントローラ14は、位相検出部16、出力決定部17及び制御部18を有する。位相検出部16、出力決定部17及び制御部18は、不揮発性メモリに保存されたプログラムに基づいてプロセッサが揮発性メモリを用いて演算処理することで実現される。
FIG. 3 is a block diagram for explaining the control system of the near twin shaft vessel 1 shown in FIG. FIG. 4 is a front view of the first propeller 2 and the second propeller 5 shown in FIG. As shown in FIG. 3, each detection signal of the first rotation angle sensor 12 and the second rotation angle sensor 13 is input to the controller 14, and an input signal from the input device 15 operated by the user is input. . Control signals from the controller 14 are output to the first engine 10 and the second engine 11, respectively.
The controller 14 has a processor, volatile memory, nonvolatile memory, I / O interface, and the like. The controller 14 includes a phase detection unit 16, an output determination unit 17, and a control unit 18. The phase detection unit 16, the output determination unit 17, and the control unit 18 are realized by the processor performing arithmetic processing using a volatile memory based on the program stored in the nonvolatile memory.
 位相検出部16は、第1回転角センサ12の検出信号により第1プロペラ2の回転位相を検出すると共に、第2回転角センサ13の検出信号により第2プロペラ5の回転位相を検出する。出力決定部17は、入力装置15からのユーザ入力(指令)に応じて第1エンジン10及び第2エンジン11の目標出力を決定する。制御部18は、出力決定部17で決定された目標出力に応じて第1エンジン10及び第2エンジン11の各々に対して目標回転数を指令すると共に、位相検出部16で検出された第1プロペラ2の回転位相と第2プロペラ5の回転位相との差が所定のズレ角αとなるように第1エンジン10及び第2エンジン11に指令する。即ち、コントローラ14は、第1プロペラ2の回転位相を第2プロペラ5の回転位相に対して所定のズレ角αだけ異ならせる位相設定装置の役目を果たす。 The phase detection unit 16 detects the rotational phase of the first propeller 2 based on the detection signal of the first rotational angle sensor 12 and detects the rotational phase of the second propeller 5 based on the detection signal of the second rotational angle sensor 13. The output determination unit 17 determines target outputs of the first engine 10 and the second engine 11 in accordance with a user input (command) from the input device 15. The control unit 18 instructs each of the first engine 10 and the second engine 11 to obtain a target rotational speed according to the target output determined by the output determination unit 17, and the first detected by the phase detection unit 16. The first engine 10 and the second engine 11 are commanded so that the difference between the rotational phase of the propeller 2 and the rotational phase of the second propeller 5 becomes a predetermined deviation angle α. That is, the controller 14 serves as a phase setting device that makes the rotational phase of the first propeller 2 different from the rotational phase of the second propeller 5 by a predetermined shift angle α.
 図4に示すように、第1プロペラ2と第2プロペラ5との間の距離、即ち、プロペラ間クリアランスLがプロペラ径Dの30%未満となるように、第1プロペラ2及び第2プロペラ5が近接配置されている。第1プロペラ2及び第2プロペラ5の各々の翼部4,7の数をN(本実施形態では4個)とし、翼間角度をΔθ(=360°/N)とし、Δθ/2をθmとすると、制御部18は、以下の数式1の関係を満たすようにズレ角αを設定するとよく、好ましくは以下の数式2の関係を満たすようにズレ角αを設定するとよく、より好ましくはα=θmとするとよい。例えば、翼数が4個の場合には、α=45°とすると好適である As shown in FIG. 4, the first propeller 2 and the second propeller 5 are set such that the distance between the first propeller 2 and the second propeller 5, that is, the inter-propeller clearance L is less than 30% of the propeller diameter D. Are placed close to each other. The number of wings 4 and 7 of each of the first propeller 2 and the second propeller 5 is N (four in this embodiment), the inter-wing angle is Δθ (= 360 ° / N), and Δθ / 2 is θ Assuming that m , the control unit 18 may set the displacement angle α so as to satisfy the relationship of the following equation 1, and preferably set the displacement angle α so as to satisfy the relationship of the following equation 2. It is preferable to set α = θ m . For example, when the number of wings is four, it is preferable to set α = 45 °
 [数1]
  θm-Δθ・0.3<α<θm+Δθ・0.3
[Equation 1]
θ m −Δθ 0.3 ≦ α <θ m + Δθ 0.3
 [数2]
  θm-Δθ・0.15<α<θm+Δθ・0.15
[Equation 2]
θ m −Δθ · 0.15 <α <θ m + Δθ · 0.15
 図5(A)は第1プロペラ2及び第2プロペラ5の回転位相のズレ角αを0°とした場合の第1プロペラ2の軸部3に掛かる力Fy,Fzを示すグラフ、図4(B)は第1プロペラ2及び第2プロペラ5の回転位相のズレ角αを45°とした場合の第1プロペラ2の軸部3に掛かる力Fy,Fzを示すグラフである。図5(A)(B)の波形は、数値流体力学手法を用いた一様流中における数値解析により、プロペラに作用する流体力を推定計算して得られる振動波である。図5(A)に示すように、第1プロペラ2及び第2プロペラ5の回転位相をずらさない場合には、第1プロペラ2に生じる力Fy,Fzが大きく変動している。他方、図5(B)に示すように、第1プロペラ2及び第2プロペラ5の回転位相のズレ角αを45°とした場合には、第1プロペラ2に生じる力Fy,Fzの変動が抑制されている。即ち、第1プロペラ2及び第2プロペラ5の回転位相をずらすことで、プロペラ間の相互干渉が低減されて振動が抑制されることになる。 FIG. 5A is a graph showing forces F y and F z applied to the shaft portion 3 of the first propeller 2 when the shift angle α of the rotational phases of the first propeller 2 and the second propeller 5 is 0 °. 4 (B) is a graph showing forces F y and F z applied to the shaft portion 3 of the first propeller 2 when the shift angle α of the rotational phase of the first propeller 2 and the second propeller 5 is 45 °. The waveforms in FIGS. 5A and 5B are vibration waves obtained by estimating and calculating the fluid force acting on the propeller by numerical analysis in a uniform flow using a numerical fluid dynamics method. As shown in FIG. 5 (A), when the rotational phases of the first propeller 2 and the second propeller 5 are not shifted, the forces F y and F z generated in the first propeller 2 are largely fluctuated. On the other hand, as shown in FIG. 5 (B), when the shift angle α of the rotational phase of the first propeller 2 and the second propeller 5 is 45 °, the forces F y and F z generated in the first propeller 2 are obtained. The fluctuation is suppressed. That is, by shifting the rotational phases of the first propeller 2 and the second propeller 5, mutual interference between the propellers is reduced and vibration is suppressed.
 図6は、第1プロペラ2及び第2プロペラ5の回転位相の各ズレ角αにおける第1プロペラ2の軸部3に掛かる力Fx,Fy,Fzの振動波のフーリエ解析により求めた一次成分の振幅値の、力Fxの平均値に対する比率を示すグラフである。図7は、第1プロペラ2及び第2プロペラ5の回転位相の各ズレ角αにおける第1プロペラ2の軸部3に掛かるモーメントMx,My,Mz(軸トルク)の振動波のフーリエ解析により求めた一次成分の振幅値の、モーメントMxの平均値に対する比率を示すグラフである。図8は、第1プロペラ2及び第2プロペラ5の回転位相の各ズレ角αにおける第1プロペラ2の軸部3に掛かる力Fx,Fy,Fz及びモーメントMx,My,Mzのフーリエ解析により求めた一次成分の振幅値の、軸線方向の力Fx及び軸線周りのモーメントMxの平均値に対する比率を示すグラフである。 FIG. 6 is obtained by Fourier analysis of vibration waves of forces F x , F y and F z applied to the shaft portion 3 of the first propeller 2 at respective shift angles α of rotational phases of the first propeller 2 and the second propeller 5 the amplitude value of the primary component is a graph showing the ratio of mean value of the force F x. FIG. 7 shows the Fourier of the vibration wave of the moments M x , M y and M z (axial torque) applied to the shaft portion 3 of the first propeller 2 at the respective shift angles α of the rotational phases of the first propeller 2 and the second propeller 5. It is a graph which shows the ratio with respect to the average value of moment M x of the amplitude value of the primary component calculated | required by analysis. FIG. 8 shows forces F x , F y , F z and moments M x , M y , M applied to the shaft portion 3 of the first propeller 2 at respective shift angles α of the rotational phases of the first propeller 2 and the second propeller 5. z amplitude value of the primary component obtained by Fourier analysis of a graph showing the ratio of the average value of the moment M x about axial force F x and the axis.
 図6及び8に示すように、力Fy,Fzに関し、第1プロペラ2と第2プロペラ5との間の回転位相のズレを生じさせることで(α>0)、回転位相のズレを生じさせない場合(α=0)に比べ、プロペラ2,5のY方向及びZ方向の力の変動を抑制できることが分かる。特に、ズレ角αを15°より大きくすることで、その振動を大きく抑制できることが分かる。また、図7及び8に示すように、モーメントMy,Mzに関し、第1プロペラ2と第2プロペラ5との間の回転位相のズレを生じさせることで(α>0)、回転位相のズレを生じさせない場合(α=0)に比べ、プロペラ2,5のY方向及びZ方向のモーメントの変動を抑制できることが分かる。特に、ズレ角αを15°より大きくすることで、その振動を大きく抑制できることが分かる。 As shown in FIGS. 6 and 8, with respect to the forces F y and F z , a rotational phase shift is generated between the first propeller 2 and the second propeller 5 (α> 0), thereby causing a rotational phase shift. It can be seen that the fluctuation of the forces in the Y direction and the Z direction of the propellers 2 and 5 can be suppressed as compared with the case where they are not generated (α = 0). In particular, it can be seen that the vibration can be largely suppressed by making the deviation angle α larger than 15 °. Further, as shown in FIGS. 7 and 8, the rotational phases of the first propeller 2 and the second propeller 5 are caused to shift with respect to the moments M y and M z (α> 0), It can be seen that fluctuations in the Y-direction and Z-direction moment of the propellers 2 and 5 can be suppressed as compared with the case where no shift occurs (α = 0). In particular, it can be seen that the vibration can be largely suppressed by making the deviation angle α larger than 15 °.
 (第2実施形態)
 図9は、第2実施形態に係る近接二軸船101の模式図である。図9に示すように、第2実施形態の近接二軸船101では、第1プロペラ2と第2プロペラ5との回転位相のズレ角αが機械的構造により生成されている。具体的には、第1プロペラ2の軸部3と第2プロペラ5の軸部6とは、互いに所定のズレ角αを保つようにギヤ装置120により等速接続されている。即ち、ギヤ装置120が、第1プロペラ2の回転位相を第2プロペラ5の回転位相に対して所定のズレ角αだけ異ならせる位相設定装置の役目を果たす。
Second Embodiment
FIG. 9 is a schematic view of a proximity two-axis ship 101 according to the second embodiment. As shown in FIG. 9, in the proximity two-axis vessel 101 of the second embodiment, the shift angle α of the rotational phase between the first propeller 2 and the second propeller 5 is generated by a mechanical structure. Specifically, the shaft portion 3 of the first propeller 2 and the shaft portion 6 of the second propeller 5 are connected at the same speed by the gear device 120 so as to maintain a predetermined shift angle α. That is, the gear device 120 serves as a phase setting device that makes the rotational phase of the first propeller 2 different from the rotational phase of the second propeller 5 by a predetermined shift angle α.
 ギヤ装置120と第1エンジン10との間には第1クラッチ121が介設され、ギヤ装置120と第2エンジン11との間には第2クラッチ122が介設されている。コントローラ114は、エンジン10,11の起動時にはクラッチ121,122を切断し、各エンジン10,11の回転数が一致したことが検出されてからクラッチ121,122を接続する。なお、他の構成は前述した第1実施形態と同様であるため説明を省略する。 A first clutch 121 is interposed between the gear device 120 and the first engine 10, and a second clutch 122 is interposed between the gear device 120 and the second engine 11. The controller 114 disconnects the clutches 121 and 122 when the engines 10 and 11 are activated, and connects the clutches 121 and 122 after it is detected that the rotational speeds of the engines 10 and 11 match. In addition, since the other structure is the same as that of 1st Embodiment mentioned above, description is abbreviate | omitted.
 本発明は前述した実施形態に限定されるものではなく、その構成を変更、追加、又は削除することができる。例えば、前記実施形態では4翼のプロペラを例示したが、3翼や5翼でも同じ原理である。前記実施形態ではプロペラを駆動する原動機としてエンジンを例示したが、エンジンの代わりに電動モータ又はタービンが用いられてもよい。 The present invention is not limited to the embodiments described above, and its configuration can be changed, added or deleted. For example, although the 4-blade propeller was illustrated in the said embodiment, even if it is 3 wings or 5 wings, it is the same principle. Although the engine was illustrated as a prime mover which drives a propeller in the above-mentioned embodiment, an electric motor or a turbine may be used instead of an engine.
 1,101 近接二軸船
 2 第1プロペラ
 3,4 軸部
 5 第2プロペラ
 10 第1エンジン(第1原動機)
 11 第2エンジン(第2原動機)
 12 第1回転角センサ
 13 第2回転角センサ
 14 コントローラ
 120 ギヤ装置
1,101 Proximity two-axis vessel 2 First propeller 3,4 Shaft 5 Second propeller 10 First engine (1st prime mover)
11 Second engine (second prime mover)
12 first rotation angle sensor 13 second rotation angle sensor 14 controller 120 gear system

Claims (3)

  1.  互いに近接配置された推進用の第1プロペラ及び第2プロペラと、
     前記第1プロペラ及び前記第2プロペラを駆動する少なくとも1つの原動機と、
     前記第2プロペラの回転位相に対する前記第1プロペラの回転位相を設定する位相設定装置と、を備え、
     前記位相設定装置は、前記第1プロペラの回転位相を前記第2プロペラの回転位相に対して所定のズレ角だけ異ならせる、近接二軸船。
    First and second propellers for propulsion disposed close to each other;
    At least one prime mover for driving the first propeller and the second propeller;
    A phase setting device for setting the rotational phase of the first propeller with respect to the rotational phase of the second propeller;
    The phase setting device makes the rotational phase of the first propeller different from the rotational phase of the second propeller by a predetermined deviation angle.
  2.  前記第1プロペラの回転位相を検出可能な第1回転角センサと、前記第2プロペラの回転位相を検出可能な第2回転角センサと、を更に備え、
     前記少なくとも1つの原動機は、前記第1プロペラを駆動する第1原動機と、前記第2プロペラを駆動する第2原動機とを含み、
     前記位相設定装置は、前記第1原動機及び前記第2原動機を制御するコントローラであり、
     前記コントローラは、前記第1回転角センサ及び前記第2回転角センサの各検出信号に基づいて前記第1原動機及び前記第2原動機を制御し、前記第1プロペラの回転位相を前記第2プロペラの回転位相に対して異ならせる、請求項1に記載の近接二軸船。
    It further comprises a first rotation angle sensor capable of detecting the rotation phase of the first propeller, and a second rotation angle sensor capable of detecting the rotation phase of the second propeller,
    The at least one prime mover includes a first prime mover driving the first propeller and a second prime mover driving the second propeller.
    The phase setting device is a controller that controls the first prime mover and the second prime mover,
    The controller controls the first prime mover and the second prime mover based on detection signals of the first rotation angle sensor and the second rotation angle sensor, and the rotation phase of the first propeller is controlled by the second propeller. The near-biaxial vessel according to claim 1, wherein the two-phase vessel is different with respect to the rotational phase.
  3.  前記第1プロペラ及び前記第2プロペラの各々は、軸部と、前記軸部から径方向に突出する複数の翼部とを有し、
     前記ズレ角をαとし、前記第1プロペラ及び前記第2プロペラの各々の前記翼部の数をNとし、360°/NをΔθとし、Δθ/2をθmとすると、
     前記位相設定装置は、
      θm-Δθ・0.3<α<θm+Δθ・0.3
     の関係を満たすように前記ズレ角αを設定する、請求項1又は2に記載の近接二軸船。
    Each of the first propeller and the second propeller has a shaft portion and a plurality of wing portions radially projecting from the shaft portion,
    Assuming that the shift angle is α, the number of the wing portions of each of the first propeller and the second propeller is N, 360 ° / N is Δθ, and Δθ / 2 is θ m .
    The phase setting device
    θ m −Δθ 0.3 ≦ α <θ m + Δθ 0.3
    The near biaxial boat according to claim 1 or 2, wherein the shift angle α is set so as to satisfy the following relationship.
PCT/JP2018/033937 2017-12-01 2018-09-13 Adjacent twin-screw ship WO2019106910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-231479 2017-12-01
JP2017231479A JP2019098900A (en) 2017-12-01 2017-12-01 Adjacently arranged twin-screw vessel

Publications (1)

Publication Number Publication Date
WO2019106910A1 true WO2019106910A1 (en) 2019-06-06

Family

ID=66665114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033937 WO2019106910A1 (en) 2017-12-01 2018-09-13 Adjacent twin-screw ship

Country Status (2)

Country Link
JP (1) JP2019098900A (en)
WO (1) WO2019106910A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021079928A (en) 2019-11-22 2021-05-27 ヤマハ発動機株式会社 Noise reduction system for outboard motor and noise reduction system for vessel propulsion machine
CN115123507B (en) * 2022-08-18 2023-07-14 江南造船(集团)有限责任公司 Double-engine double-propeller ship and propeller installation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299997A (en) * 1989-05-12 1990-12-12 Mitsubishi Heavy Ind Ltd Phase modifying device for multiengine multishaft propulsion ship
JPH05284778A (en) * 1992-03-30 1993-10-29 Toshiba Corp Variable-speed drive system for motor
JP2012166603A (en) * 2011-02-10 2012-09-06 Ihi Corp Control method for twin-screw vessel and twin-screw vessel
KR20150092959A (en) * 2014-02-06 2015-08-17 현대중공업 주식회사 Propulsion device for biaxial ship
WO2016055039A2 (en) * 2014-10-09 2016-04-14 Aventics Gmbh Drive system for a ship and method for operating the drive system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299997A (en) * 1989-05-12 1990-12-12 Mitsubishi Heavy Ind Ltd Phase modifying device for multiengine multishaft propulsion ship
JPH05284778A (en) * 1992-03-30 1993-10-29 Toshiba Corp Variable-speed drive system for motor
JP2012166603A (en) * 2011-02-10 2012-09-06 Ihi Corp Control method for twin-screw vessel and twin-screw vessel
KR20150092959A (en) * 2014-02-06 2015-08-17 현대중공업 주식회사 Propulsion device for biaxial ship
WO2016055039A2 (en) * 2014-10-09 2016-04-14 Aventics Gmbh Drive system for a ship and method for operating the drive system

Also Published As

Publication number Publication date
JP2019098900A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP5260390B2 (en) Ship propulsion device
WO2019106910A1 (en) Adjacent twin-screw ship
Altosole et al. Simulation of the dynamic behaviour of a CODLAG propulsion plant
KR101879515B1 (en) A hull pressure fluctuation reduction method for a ship with twin propellers using real-time vibration information and propeller rotation angle control
US20100206208A1 (en) Steering unit for a steer-by-wire ship&#39;s control system and method for operating the steering unit
Dubbioso et al. Analysis of fretting inception for marine propeller by single blade loads measurement in realistic operating conditions. Straight ahead and turning circle maneuver
JP5433336B2 (en) Swivel propeller device
CN113573976A (en) Method for controlling a hybrid power system for a ship
RU2519590C2 (en) Marine propulsive arrangement
CN102959217A (en) Device and method for controlling ship engine
KR20170096097A (en) Control device, ship equipped with the same, and integrated control method
US5445105A (en) Torque balanced postswirl propulsor unit and method for eliminating torque on a submerged body
JP2012166603A (en) Control method for twin-screw vessel and twin-screw vessel
CN111123705B (en) Design method for active vibration control of propeller and transmission shaft system
DK2990327T3 (en) Marine Vessel Power System and Procedure
WO2010113655A1 (en) Marine engine control system
JP6037864B2 (en) Ship
KR20230021122A (en) Apparatus, method and computer program for controlling ship propulsion
CN106976541A (en) The anti-overwinding control strategy of watercraft electric propulsion system under a kind of non-orderly sea
Nandy Design of nonlinear controllers and speed and angular position estimator for an electrically controlled cycloidal propeller
JPS5850920B2 (en) boat propeller
KR101884534B1 (en) A hull pressure fluctuation reduction method for a ship with twin propellers using propeller rotation angle control
Özyiğit et al. Aileron induced unbalanced torque compensation using contra‐rotating dynamic motor control for an AUV CRP
JP2006137336A (en) Hull vibration reduction method and low vibration vessel
KR102559167B1 (en) Active mechanical in-phase control device of ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883540

Country of ref document: EP

Kind code of ref document: A1