WO2019106855A1 - Light source drive device, illuminating device, and current setting method - Google Patents

Light source drive device, illuminating device, and current setting method Download PDF

Info

Publication number
WO2019106855A1
WO2019106855A1 PCT/JP2018/006910 JP2018006910W WO2019106855A1 WO 2019106855 A1 WO2019106855 A1 WO 2019106855A1 JP 2018006910 W JP2018006910 W JP 2018006910W WO 2019106855 A1 WO2019106855 A1 WO 2019106855A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
light source
circuit
current
terminal
Prior art date
Application number
PCT/JP2018/006910
Other languages
French (fr)
Japanese (ja)
Inventor
亮平 多田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2019556536A priority Critical patent/JP6944538B2/en
Publication of WO2019106855A1 publication Critical patent/WO2019106855A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the present disclosure relates to a light source drive device, a lighting device, and a current setting method.
  • This application claims priority based on Japanese Patent Application No. 2017-231636 filed on Dec. 1, 2017. The entire contents of the description of the Japanese patent application are incorporated herein by reference.
  • a light source drive device which controls lighting of a light source such as a light emitting diode (LED) with a constant current.
  • a light source driving device for example, a lighting device used in a signboard, a showcase, etc., an LED lighting used in home, etc.
  • the demand for brightness is determined by the user or the installation location. It is different. Therefore, it was necessary to prepare various products in line with each request.
  • disassemble the lighting device when changing the brightness after installing the lighting device in a ceiling, a store, etc., disassemble the lighting device, replace the internal light source drive device or light source, or modify the light source drive device to output current I needed to change it.
  • Patent Document 1 discloses a light emitting diode drive device in which the output current is variable.
  • the user setting unit sends the user side setting signal to the pulse width modulation control unit
  • the light adjustment unit sends the light adjustment signal to the pulse width modulation control unit
  • the pulse width modulation control unit makes the user side setting signal
  • the output current control signal is acquired by multiplying the value of D by the value of the dimming signal and sent to the light emitting diode driver.
  • the light emitting diode drive unit drives the light emitting diode with a drive current obtained by multiplying the value of the output current control signal by the value of the maximum output current.
  • the light emitting diode is electrically connected to the light emitting diode driving unit, and the user setting unit is electrically connected to the pulse width modulation control unit. From this, the light emitting diode drive device needs to be provided with a dedicated connection terminal for connecting the user setting unit, which may make the device configuration complicated.
  • the present disclosure in one aspect, aims to provide a light source drive capable of easily changing the current output from the light source drive to the light source. In another aspect, the present disclosure aims to provide a lighting device including the above-described light source driving device. In still another aspect, the present disclosure aims to provide a current setting method capable of easily changing the current output from a light source driver to a light source.
  • the light source can be connected and the first terminal to which the setting unit for setting the current flowing to the light source can be connected, and the current flowing to the light source becomes a constant current
  • a conversion circuit for converting the voltage supplied from the setting unit connected to the first terminal and outputting the converted voltage signal, and based on the converted voltage signal.
  • a control circuit configured to set a current value of the constant current and to output a setting signal indicating the set current value to the constant current drive circuit.
  • a lighting device includes the above light source driving device and a light source.
  • a current setting method is provided for setting the current supplied from the light source driver to the light source.
  • the light source driving device includes a light source, a terminal to which a setting unit for setting a current flowing to the light source can be connected, and a constant current driving circuit that controls the current flowing to the light source to be a constant current.
  • the current setting method converts the voltage supplied from the setting unit connected to the terminal and outputs the converted voltage signal, and sets the current value of the constant current based on the converted voltage signal. And a step of outputting a setting signal indicating a current value set in the setting step to the constant current drive circuit.
  • FIG. 1 is a conceptual diagram for illustrating an overview of a current setting system according to a first embodiment.
  • FIG. 7 is a diagram for describing an example of a signal conversion method according to the first embodiment. 7 is a flowchart for illustrating an example of a current setting method according to the first embodiment.
  • FIG. 7 is a diagram showing an example of a circuit configuration of a current setting unit according to the first embodiment.
  • FIG. 1 is a block diagram showing a configuration of a light source drive device according to a first embodiment.
  • FIG. 7 is a block diagram showing a light source drive device according to a first modification of the first embodiment.
  • FIG. 10 is a block diagram showing a light source drive device according to a second modification of the first embodiment.
  • FIG. 1 is a conceptual diagram for illustrating an overview of a current setting system according to a first embodiment.
  • FIG. 10 is a block diagram of a light source drive device according to a second embodiment.
  • FIG. 16 is a block diagram of a light source drive device according to a first modification of the second embodiment.
  • FIG. 17 is a block diagram of a light source drive device according to a second modification of the second embodiment.
  • FIG. 17 is a block diagram of a light source drive device according to a third modification of the second embodiment.
  • FIG. 16 is a block diagram showing an example of a configuration of a lighting device according to a third embodiment.
  • FIG. 17 is a block diagram showing an example of a configuration of a lighting device according to a modification of the third embodiment.
  • FIG. 16 is a conceptual diagram for illustrating an overview of a current setting system according to a fourth embodiment.
  • FIG. 16 is a flowchart for illustrating an example of a current setting method according to the fourth embodiment. It is a block diagram which shows the light source drive device according to other embodiment.
  • FIG. 1 is a conceptual diagram for illustrating an outline of a current setting system according to the first embodiment.
  • FIG. 1A is a diagram showing a connection form of each device in the case of setting the output current of the light source drive device 100.
  • FIG. 1B is a diagram showing a connection form of each device in the case of confirming the value of the set output current.
  • the current setting system is a system for setting the current output (supplied) to the light source from the light source driving device 100 (that is, flowing to the light source).
  • the current setting system includes a light source drive device 100, a light source 80, an ammeter 82, a voltage source 84, and a current setting unit 90.
  • the light source drive device 100 includes a constant current drive circuit 10, a constant voltage circuit 20, a conversion circuit 30, a control circuit 40, and an input terminal 51. And an output terminal 52.
  • the output terminal 52 is configured to be able to connect the light source 80 and the current setting unit 90.
  • the constant current drive circuit 10 controls the current flowing through the light source 80 to be a constant current. Specifically, during the normal operation in which the light source drive device 100 drives the light source 80, the constant current drive circuit 10 receives power from the voltage source 84 and executes constant current drive control of the light source 80.
  • the constant voltage circuit 20 converts the voltage applied to the output terminal 52 into a constant voltage, and outputs the constant voltage to the control circuit 40.
  • the constant voltage is a power supply voltage of the control circuit 40.
  • the conversion circuit 30 converts the voltage supplied from the current setting unit 90 via the output terminal 52, and outputs the converted voltage signal to the control circuit 40.
  • FIG. 2 is a diagram for explaining an example of a signal conversion method according to the first embodiment.
  • a voltage here, 10 V or more
  • the power supply voltage here, 5 V
  • 6 V is applied to the positive electrode side of the output terminal 52.
  • a reference voltage used for signal conversion is set to 8V.
  • the conversion circuit 30 compares the voltage (for example, 10 V or 6 V) applied from the current setting unit 90 to the output terminal 52 with the reference voltage (for example, 5 V), and outputs a binary signal indicating the comparison result. Are output to the control circuit 40.
  • the conversion circuit 30 when the voltage applied to the output terminal 52 is equal to or higher than the reference voltage, the conversion circuit 30 outputs a High signal to the control circuit 40, and the voltage applied to the output terminal 52 is the reference voltage. If it is less than this, a Low signal is output to the control circuit 40.
  • control circuit 40 sets the current value of the constant current output from constant current drive circuit 10 based on the binary signal converted by conversion circuit 30.
  • the High signal corresponds to data “1”
  • the Low signal corresponds to data “0”.
  • the High signal may correspond to data "0” and the Low signal may correspond to data "1".
  • the control circuit 40 recognizes the signal received from the conversion circuit 30 as data “101010” because the conversion circuit 30 alternately outputs the High signal and the Low signal three times in this order.
  • the control circuit 40 specifies the value of the constant current corresponding to the data with reference to the information table in which each data is associated with the current value of the constant current.
  • the information table is stored in an internal memory (for example, non-volatile memory) of the control circuit 40.
  • the control circuit 40 sets (that is, stores) the current value of the specified constant current in the internal memory, and outputs a setting signal indicating the set current value to the constant current drive circuit 10.
  • the constant current drive circuit 10 controls so that the current value according to the setting signal flows to the light source 80 during normal operation.
  • the control circuit 40 may be configured to specify the value of the constant current without referring to the information table. For example, when the maximum value of the output current of the light source drive device 100 is 100%, the control circuit 40 is configured to read what percentage of the output current is to be from the level of the signal received from the conversion circuit 30. May be
  • FIG. 3 is a flowchart for explaining an example of the current setting method according to the first embodiment.
  • the current setting unit 90 is connected to the output terminal 52 of the light source drive device 100 (step S10).
  • the current setting unit 90 inputs a setting voltage (for example, a voltage as shown in FIG. 2) for setting the output current of the light source drive device 100 to a desired value to the output terminal 52 (step S12).
  • the constant voltage circuit 20 converts the set voltage into a constant voltage, and supplies the constant voltage to the control circuit 40 as a power supply voltage.
  • the conversion circuit 30 compares the set voltage and the reference voltage, and outputs binary signals (High signal and Low signal) as a comparison result to the control circuit 40 (step S14).
  • Control circuit 40 refers to the information table stored in the internal memory to identify the current value of the constant current associated with the data corresponding to the binary signal, and stores the identified current value in the internal memory (Step S16).
  • the current setting unit 90 is removed from the output terminal 52 of the light source drive device 100, and the ammeter 82 is connected in series between the output terminal 52 and the light source 80. Are connected in parallel to the output terminal 52, and the voltage source 84 is connected in parallel to the input terminal 51 (step S18).
  • the voltage source 84 applies a voltage to the input terminal 51 of the light source drive device 100 (step S20).
  • Control circuit 40 outputs a setting signal indicating the current value stored in the internal memory in step S16 to constant current drive circuit 10 (step S22).
  • the control circuit 40 converts the current value into an analog voltage value by a digital-to-analog (DA) conversion function provided internally, and outputs the converted analog voltage value as a setting signal.
  • the constant current drive circuit 10 executes constant current drive control of the light source 80 according to the setting signal (step S24).
  • the ammeter 82 measures the output current of the light source drive device 100 (that is, the current flowing to the light source 80) (step S26). Subsequently, it is determined whether the output current is within the target range (that is, within the tolerance of the target value) (step S28). Specifically, the determination may be performed by the user, or may be performed by a terminal device (not shown) such as a PC (personal computer) that has received the input of the measurement value of the ammeter 82. .
  • step S28 If the measured value of the output current is within the target range (YES in step S28), the light source 80, the ammeter 82, and the voltage source 84 are removed from the light source driving device 100 (step S30), and the process ends. If the output current is not within the target range (NO in step S28), the value of the set voltage of current setting unit 90 is adjusted to correct the deviation between the measured value of output current and the target value (step S32) ), Return to step S10. At this time, at least the voltage source 84 is removed from the light source drive device 100. The ammeter 82 and the light source 80 may remain connected to the light source drive device 100.
  • FIG. 4 is a diagram showing an example of a circuit configuration of current setting unit 90 according to the first embodiment.
  • current setting unit 90 includes an internal voltage source 92, resistors Ra, Rb, Rc, Rd and Re, transistors Qa and Qb, a SIGNAL terminal, a Vout terminal, and a GND terminal. .
  • the transistor Qa When a High signal is input to the SIGNAL terminal from a terminal device (for example, a PC, a microcomputer or the like), the transistor Qa is turned on (closed), so both ends of the resistor Rc are shorted.
  • a voltage Vhi obtained by subtracting the base-emitter voltage Vbe of the transistor Q2 from the voltage obtained by dividing the voltage Vs of the internal voltage source 92 by the resistors Ra and Rb is output to the Vout terminal.
  • the voltage Vhi is expressed as the following equation (1).
  • Vhi Vs x (Rb) / (Ra + Rb)-Vbe (1)
  • the transistor Qa is turned off (opened).
  • the voltage Vlo is represented by the following equation (2).
  • Vlo Vs x (Rb + Rc) / (Ra + Rb + Rc)-Vbe (2)
  • FIG. 5 is a block diagram showing a configuration of light source drive device 100A according to the first embodiment.
  • the light source drive device 100A corresponds to the light source drive device 100 shown in FIG. 1, but for the sake of distinction from the modification described later, an additional code such as "A" is added for convenience.
  • the light source drive device 100A includes a constant current drive circuit 10, a constant voltage circuit 20, a conversion circuit 30A, a control circuit 40, an input terminal 51, and an output terminal 52.
  • a voltage source 84 such as a commercial AC power source is connected to the input terminal 51, and a light source 80 such as an LED is connected to the output terminal 52.
  • Constant current drive circuit 10 receives supply of power from voltage source 84 through input terminal 51.
  • the constant current drive circuit 10 drives the light source 80 at a constant current.
  • constant current drive circuit 10 supplies light source 80 with an output current of a current value according to the setting signal received from control circuit 40.
  • the constant voltage circuit 20 converts the voltage applied to the output terminal 52 into a constant voltage, and supplies the converted constant voltage to the control circuit 40.
  • the constant voltage circuit 20 is configured by the IC 21.
  • the IC 21 is a three-terminal regulator IC configured of three terminals: an input terminal (“IN” in the drawing), an output terminal (“OUT” in the drawing), and a ground terminal (“GND” in the drawing).
  • the IC 21 outputs a constant voltage if the input voltage is within the input voltage range of the IC 21.
  • the constant voltage output by the IC 21 is used as a power supply voltage of the control circuit 40.
  • the control circuit 40 outputs, to the constant current drive circuit 10, a setting signal indicating the current value set (stored) in the internal memory.
  • the current value is a current value of the output current (that is, constant current) supplied from the constant current drive circuit 10 to the light source 80.
  • the control circuit 40 is configured of, for example, an IC 41 having a non-volatile memory such as a microcomputer.
  • the IC 41 includes a VDD terminal as a power supply terminal on the positive side, a VSS terminal as a power supply terminal on the negative side, an IN terminal as an input terminal, an OUT terminal as an output terminal, and an IN_PWR terminal as an input terminal of a detection signal.
  • the constant current drive circuit 10 includes a detection circuit 11 that detects an input voltage applied to the input terminal 51. Specifically, when detecting that the input voltage is equal to or higher than the threshold Th, the detection circuit 11 outputs a detection signal indicating the detection result to the control circuit 40 (IC 41).
  • the control circuit 40 (IC41) is configured not to change the setting of the output current when receiving the input of the detection signal via the IN_PWR terminal.
  • control circuit 40 when the control circuit 40 receives an input of a detection signal through the IN_PWR terminal (that is, when the voltage of the input terminal 51 is equal to or higher than the threshold Th), the control circuit 40 converts the signal through the IN terminal. Even when a voltage signal is received from 30, the current value of the constant current corresponding to the voltage signal is not set (stored) in the internal memory. In other words, control circuit 40 stores the current value of the constant current corresponding to the voltage signal in the internal memory when the input of the detection signal is not received (that is, when the voltage of input terminal 51 is less than threshold Th). Do.
  • the detection circuit 11 may output a detection signal indicating the detection result to the control circuit 40 (IC 41).
  • the control circuit 40 (IC 41) determines that the input voltage is less than the threshold value based on the detection signal, and stores the current value of the constant current corresponding to the voltage signal in the internal memory.
  • the current setting unit 90 is connected to the output terminal 52.
  • the current setting unit 90 inputs a set voltage for setting the output current to a desired value to the output terminal 52.
  • the constant voltage circuit 20 receives the set voltage and supplies a constant voltage to the control circuit 40.
  • the conversion circuit 30A outputs, to the control circuit 40, a voltage signal obtained by converting the set voltage received into an input voltage range of the control circuit 40.
  • conversion circuit 30A is configured of a voltage comparison circuit including resistors R1 and R2, NPN transistor Q1, and zener diode ZD1 to determine whether the voltage at output terminal 52 is equal to or higher than the reference voltage. Be done.
  • the setting voltage applied to the output terminal 52 by the current setting unit 90 is equal to or more than "the voltage between the base emitter of the NPN transistor Q1 + the Zener voltage of the Zener diode", the current limited by the resistor R1. Flows to the base of the NPN transistor Q1, and the NPN transistor Q1 is turned on. As a result, the current amplified by the current amplification action of the NPN transistor Q1 is drawn from the collector of the NPN transistor Q1 to cause a voltage drop of the resistor R2, so the Llow signal is sent to the control circuit 40 (IN terminal of IC41). It is output.
  • the control circuit 40 receives the High signal and the Low signal output from the conversion circuit 30A, and rewrites the set value of the output current stored in the internal memory according to the contents of these signals.
  • FIG. 6 is a block diagram showing a light source drive device 100B according to the first modification of the first embodiment.
  • the light source drive device 100B has a configuration in which the conversion circuit 30A of the light source drive device 100A is replaced with a conversion circuit 30B. Therefore, the detailed description of the configuration other than conversion circuit 30B in light source drive device 100B will not be repeated.
  • the conversion circuit 30B is a resistive voltage dividing circuit including resistors R3 and R4 and a Zener diode ZD2.
  • a voltage obtained by dividing the voltage of the output terminal 52 by the resistors R3 and R4 is input to the IN terminal of the IC 41.
  • the control circuit 40 converts a voltage input by an AD (Analog-to-digital) converter provided therein into a digital signal, and is stored in the internal memory according to the content of the digital signal. Rewrite the set value of the output current.
  • AD Analog-to-digital
  • a voltage dividing resistor for detecting an output voltage is provided between ⁇ of the output terminal 52, so that the conversion circuit 30B can be configured without newly adding a resistance element.
  • the Zener diode ZD2 serves as a protection element so that the voltage input from the conversion circuit 30B to the control circuit 40 (specifically, the IN terminal) does not exceed the input voltage range of the control circuit 40. Connected in parallel to R4.
  • FIG. 7 is a block diagram showing a light source drive device 100C according to the second modification of the first embodiment.
  • the light source drive device 100C has a configuration in which the conversion circuit 30A of the light source drive device 100A is replaced with a conversion circuit 30C. Therefore, the detailed description of the configuration other than conversion circuit 30C in light source drive device 100C will not be repeated.
  • the conversion circuit 30C is a voltage comparison circuit including resistors R5, R6, R7 and R8, a Zener diode ZD3 and a comparator 31.
  • a voltage obtained by dividing the voltage of the output terminal 52 by the resistors R 7 and R 8 is input to the non-inverting input terminal of the comparator 31.
  • a voltage obtained by dividing the output voltage of the IC 21 by the resistors R5 and R6 is input to the inverting input terminal of the comparator 31.
  • the voltage input to the inverting input terminal is the threshold voltage of the comparator 31.
  • a Zener diode ZD3 as a protection element is connected in parallel to the resistor R8 so that the voltage obtained by dividing the voltage of the output terminal 52 by the resistors R7 and R8 does not exceed the input voltage range of the comparator 31.
  • V1 and V2 two voltage values input from the current setting unit 90 to the output terminal 52 be a voltage value V1 and a voltage value V2, respectively.
  • the voltage (that is, the threshold voltage) input to the inverting input terminal is set between the voltage value V1p and the voltage value V2p.
  • the comparator 31 receives the input of the voltage value V1p, it outputs the voltage corresponding to the data “1” to the IC 41, and when the input of the voltage value V2p is received, the data “0” The voltage corresponding to “1” is output to the IC 41.
  • a voltage having good temperature characteristics such as the output voltage of the three-terminal regulator IC, can be used as the threshold voltage of the comparator 31. Thereby, the conversion accuracy from the voltage of the output terminal 52 to the signal for the control circuit 40 is improved.
  • the current setting unit can be connected to the terminal for light source connection provided in the light source drive device, and the output current of the constant current drive circuit can be set by the current setting unit. . Therefore, there is no need to provide a connection terminal dedicated to the current setting unit. Further, only the input terminal and the output terminal of the light source drive device are exposed to the outside, so that the waterproof measure of the light source drive device is facilitated. In addition, it is not necessary to provide the current setting unit in the light source drive device.
  • fine adjustment of the output current can also be performed by repeatedly measuring and resetting the output current after setting the output current. Furthermore, even after the lighting device to which the light source drive device is applied is installed on a ceiling or the like, the brightness of the lighting device can be changed simply by connecting the current setting unit to the connection terminal for the light source. , The work of the change becomes easy.
  • Second Embodiment In light source drive device 100 according to the first embodiment, when the load voltage of light source 80 connected to output terminal 52 is high during normal operation, high voltage is applied to constant voltage circuit 20, and constant voltage circuit 20 is damaged. there's a possibility that. Therefore, in the second embodiment, even if the load voltage of the light source 80 is high, a protection circuit for protecting the constant voltage circuit 20 from high voltage is added to the light source drive device so that the constant voltage circuit 20 is not damaged. The described configuration is described.
  • the light source drive device differs from the light source drive device 100 according to the first embodiment in that the light source drive device according to the second embodiment includes the protection circuit of the constant voltage circuit 20.
  • the configurations of ⁇ an outline of the current setting system> and ⁇ a current setting unit> are the same as in the first embodiment, and therefore detailed description thereof will not be repeated.
  • FIG. 8 is a block diagram of a light source drive device 200A according to the second embodiment.
  • light source drive device 200A includes constant current drive circuit 10, constant voltage circuit 20, conversion circuit 30A, control circuit 40, input terminal 51, output terminal 52, and protection circuit 60A. including. That is, the light source drive device 200A has a configuration in which a protection circuit 60A is added to the light source drive device 100A shown in FIG. Therefore, the detailed description of the configuration other than protection circuit 60A in light source drive device 200A will not be repeated.
  • the protection circuit 60A is provided between the output terminal 52 and the constant voltage circuit 20.
  • the protection circuit 60A reduces the voltage of the output terminal 52 to such an extent that the constant voltage circuit 20 is not damaged, and outputs the reduced voltage to the constant voltage circuit 20.
  • protection circuit 60A includes resistors R10 and R11, an NPN transistor Q10, and a zener diode ZD10.
  • the resistor R10 and the zener diode ZD10 create a constant voltage from the voltage of the output terminal 52.
  • the NPN transistor Q10 and the resistor R11 enhance the current drive capability.
  • a predetermined voltage (constant voltage) lower than the Zener voltage of the Zener diode ZD10 by the base-emitter voltage of the NPN transistor Q10 is a constant voltage circuit. Supplied to 20. That is, the protection circuit 60A reduces the voltage of the output terminal 52 to a predetermined voltage and outputs the predetermined voltage to the constant voltage circuit 20. Thereby, the constant voltage circuit 20 can be protected.
  • the conversion accuracy of the signal input to the control circuit 40 is improved.
  • the protection circuit 60A the constant voltage circuit 20 is not damaged even if a high voltage is input from the current setting unit 90 to the output terminal 52, so that the signal conversion accuracy can be improved.
  • Modification 1 During normal operation of the light source drive device, when the load voltage of the light source 80 connected to the output terminal 52 is high, the bias current of the constant voltage circuit 20, the conversion circuit 30A and the control circuit 40 is protected from the constant current drive circuit 10. If it flows through the circuit 60A, the loss is large. Therefore, in the first modification of the second embodiment, the auxiliary power supply circuit is provided in the constant current drive circuit, and the bias current is not supplied from the constant current drive circuit through the protection circuit during the normal operation.
  • FIG. 9 is a block diagram of a light source drive device 200B according to the first modification of the second embodiment.
  • light source drive device 200B has a configuration in which constant current drive circuit 10 of light source drive device 200A is replaced with constant current drive circuit 10B, and protection circuit 60A of light source drive device 200A is replaced with protection circuit 60B. . Therefore, the detailed description of the configuration other than the constant current drive circuit 10B and the protection circuit 60B in the light source drive device 200B will not be repeated.
  • the auxiliary power supply circuit 12 is constituted by, for example, a DC-DC switching control circuit, and the output voltage value is about 15V.
  • voltage source 84 is connected to constant current drive circuit 10B through input terminal 51, so that auxiliary power supply circuit 12 operates, and the output voltage of auxiliary power supply circuit 12 is input to the input terminal of constant voltage circuit 20. Ru.
  • Protection circuit 60B includes resistors R10 and R11, an NPN transistor Q10, a Zener diode ZD10, and a diode D10.
  • the resistor R10 and the zener diode ZD10 create a constant voltage from the voltage of the output terminal 52.
  • the NPN transistor Q10 and the resistor R11 enhance the current drive capability. Further, at the time of setting the output current, a bias current is supplied from the output terminal 52 to the constant voltage circuit 20, the conversion circuit 30A, and the control circuit 40 through the diode D10.
  • the emitter voltage of the NPN transistor Q10 is set lower than the output voltage of the auxiliary power supply circuit 12 by the forward voltage of the diode D10 or more.
  • the diode D10 is reverse biased by the output voltage of the auxiliary power supply circuit 12. Therefore, no bias current flows to the constant voltage circuit 20, the conversion circuit 30A, and the control circuit 40 through the diode D10, so that the power loss can be reduced.
  • the auxiliary power supply circuit 12 when the voltage source 84 is connected to the input terminal 51 during the normal operation, the auxiliary power supply circuit 12 outputs the voltage Vx1 to the constant voltage circuit 20.
  • the protection circuit 60B performs the constant voltage circuit 20 on the voltage Vx2. Output to The voltage Vx1 output from the auxiliary power supply circuit 12 to the constant voltage circuit 20 and the voltage Vx2 output from the protection circuit 60B to the constant voltage circuit 20 may be within the input voltage range of the IC 21 and may be the same. It may be different.
  • the auxiliary power supply circuit is provided in the constant current drive circuit to prevent the bias current from flowing from the constant current drive circuit through the protection circuit in the normal operation.
  • the protection circuit in order to prevent the bias current from flowing from the constant current drive circuit through the protection circuit at the time of normal operation, an example in which the protection circuit is configured by a voltage control circuit of switching control system explain.
  • FIG. 10 is a block diagram of a light source drive device 200C according to the second modification of the second embodiment.
  • light source drive device 200C has a configuration in which protection circuit 60A of light source drive device 200A is replaced with protection circuit 60C. Therefore, detailed description of the configuration other than protection circuit 60C in light source drive device 200C will not be repeated.
  • the protection circuit 60C is a step-down chopper circuit including a switching element Q11, a capacitor C10, an inductor L10, a free wheeling diode D11, a diode D12, and an IC 61.
  • the switching element Q11 is an N-channel type MOSFET (metal-oxide-semiconductor field-effect transistor).
  • the IC 61 is an IC for controlling the on / off of the switching element Q11.
  • the diode D12 is a diode for supplying a current to the IC 61.
  • the protection circuit 60C converts the voltage of the output terminal 52 into a predetermined voltage, and outputs the predetermined voltage to the constant voltage circuit 20. Further, according to the protection circuit 60C configured by the voltage control circuit of the switching control method, the bias current flowing from the constant current drive circuit 10 is reduced during the normal operation of the light source drive device 200C. Power loss can be reduced. The power loss due to the bias current is reduced because of the difference between the linear method and the switching method.
  • Wloss1 Vout ⁇ Ibais (1)
  • the loss when the bias current flows from the output of the switching control method voltage conversion circuit is Wloss2
  • the output voltage of the switching control method voltage conversion circuit is Vaux
  • the bias current is Ibias
  • the power conversion of the switching control method voltage conversion circuit Assuming that the efficiency is ⁇ , the following equation (2) is established.
  • Wloss2 Vaux ⁇ Ibais ⁇ ⁇ (2) Therefore, when Vout> Vaux ⁇ ⁇ holds, the power loss due to the bias current is smaller when the voltage control circuit of the switching control method is used. Normally, 70% or more can be expected.
  • the third modification of the second embodiment describes a configuration in which the protection circuit 60C according to the second modification is provided in the constant current drive circuit.
  • FIG. 11 is a block diagram of a light source drive device 200D according to the third modification of the second embodiment.
  • the light source drive device 200D has a configuration in which the constant current drive circuit 10 of the light source drive device 200A is replaced with a constant current drive circuit 10D. Therefore, the detailed description of the configuration other than the constant current drive circuit 10D in the light source drive device 200D will not be repeated.
  • the constant current drive circuit 10D includes a detection circuit 11, a switching control circuit 13 for controlling an output current (constant current), and a protection circuit 60C.
  • the switching control circuit 13 is a step-down chopper circuit including a switching element Q20, a body diode D21, a capacitor C20, an inductor L20, a free wheeling diode D20, and an IC 15.
  • the switching element Q20 is an N-channel MOSFET.
  • the protection circuit 60C can be provided in the constant current drive circuit 10D.
  • a voltage can be supplied from the output terminal 52 to the protection circuit 60C through the body diode D21 of the switching element Q20 of the switching control circuit 13.
  • the protection circuit 60C reduces the voltage of the output terminal 52 to a predetermined voltage and inputs the predetermined voltage to the IN terminal of the constant voltage circuit 20 to protect the constant voltage circuit 20.
  • the protection circuit 60C also functions as an auxiliary power supply circuit. Specifically, during normal operation of the light source drive device 200D, even if the load voltage of the light source 80 is high, bias current is supplied to the constant voltage circuit 20, the conversion circuit 30A, and the control circuit 40 while suppressing the power loss. can do. An increase in the number of elements can also be suppressed by using the protection circuit 60C as an auxiliary power supply circuit.
  • the constant voltage circuit can be appropriately protected.
  • FIG. 12 is a block diagram showing an example of a configuration of lighting device 300 according to the third embodiment.
  • lighting device 300 includes light source driving device 200B shown in FIG. 9 and light source 80.
  • the light source drive device 200 B is connected to the light source 80 via the output terminal 52.
  • the light source drive device 200B will be described as a representative example of the "light source drive device", it is not limited thereto.
  • the “light source drive device” may be any of the light source drive devices 100A to 100C, 200A, 200C, and 200D described above.
  • the output terminal 52 is exposed to the outside by removing the light source 80 from the output terminal 52. Therefore, by connecting the current setting unit 90 to the output terminal 52, the output current of the constant current drive circuit 10 can be set.
  • the lighting device 300 is a type of lighting device in which the light source 80 can not be separated, it is possible to connect the output terminal 52 from the outside by removing a part of the housing of the lighting device 300. Good.
  • the current setting unit 90 can be connected to the output terminal 52 to set the output current of the constant current drive circuit 10.
  • FIG. 13 is a block diagram showing an example of a configuration of a lighting apparatus 400 according to a modification of the third embodiment.
  • lighting device 400 includes light source driving device 200 ⁇ / b> B shown in FIG. 9 and light source 80.
  • the light source drive device 200 B is connected to the light source 80 via the output terminal 52.
  • Lighting device 400 differs from lighting device 300 shown in FIG. 12 in that output terminal 52 is exposed to the outside.
  • the output terminal 52 of the lighting device 400 is exposed to the outside while maintaining an appropriate insulation distance from the outer shell of the housing of the lighting device 400.
  • the lighting device 400 further includes another output terminal connected in parallel to the output terminal 52, and the other output terminal is provided outside while maintaining an appropriate insulation distance from the outer shell of the housing of the lighting device 400. It may be exposed.
  • the output terminal 52 or the other output terminal may be covered with a cover or the like to prevent adhesion of dust or the like.
  • the current setting unit 90 can be connected to the output terminal 52 or another output terminal to set the output current of the constant current drive circuit 10.
  • the output terminal of the light source drive device can be accessed from the outside, so that the output current can be set by the current setting unit. .
  • the output current can be easily changed without performing work such as disassembly or construction of the lighting device.
  • the current setting method in the case where the light source 80 can be separated from the light source driving device 100 has been described with reference to FIG.
  • the light source driving device and the light source 80 are integrally configured, and a current setting method in the case where the light source 80 can not be separated from the light source driving device will be described.
  • FIG. 14 is a conceptual diagram for illustrating an outline of a current setting system according to the fourth embodiment.
  • FIG. 14A is a view showing a connection form of each device in the case of setting the output current of the light source drive device 100.
  • FIG. 14B is a diagram showing a connection form of each device in the case of confirming the illuminance of the light emitted from the light source 80 by the set output current.
  • the current setting system includes a lighting device 500, a current setting unit 90, and a light meter 86.
  • the illumination device 500 includes a light source drive device 100, a light source 80, and an output terminal 54 connected in parallel to the output terminal 52 of the light source drive device 100.
  • the output terminal 54 is exposed to the outside of the lighting device 500.
  • the illumination device 500 is a type of illumination device in which the light source drive device 100 and the light source 80 are integrally configured, and the light source 80 can not be separated from the light source drive device 100.
  • the light source drive device 100 will be described as a representative example of the “light source drive device”, it is not limited thereto.
  • the “light source drive device” may be any of the light source drive devices 200A to 200D described above.
  • FIG. 15 is a flowchart for illustrating an example of the current setting method according to the fourth embodiment.
  • current setting unit 90 is connected to output terminal 54 of lighting device 500 as shown in FIG. 14A (step S50).
  • the current setting unit 90 inputs a setting voltage for setting the output current of the light source drive device 100 to a desired value through the output terminal 54 (step S52).
  • steps S54 and S56 are the same as the processes of steps S14 and S16 in FIG. 3, the detailed description thereof will not be repeated.
  • the current setting unit 90 is removed from the output terminal 54, the voltage source 84 is connected in parallel to the input terminal 51, and the illuminance meter 86 is installed around the lighting device 500.
  • Step S58 The processes of steps S60 to S64 are similar to the processes of steps S20 to S24 in FIG. 3, respectively, and therefore the detailed description thereof will not be repeated.
  • the illuminance meter 86 measures the illuminance of the lighting device 500 (light source 80) (step S66). Subsequently, it is determined whether the measured illuminance is within the target range (that is, within the tolerance of the target value) (step S68). Specifically, the user may make the determination, or the determination may be made by a terminal device (not shown) that has received the input of the measurement value of the illuminance meter 86.
  • step S68 If the measured value of the illuminance is within the target range (YES in step S68), voltage source 84 is disconnected from lighting device 500 (step S70), and the process ends. If the illuminance is not within the target range (NO in step S68), the value of the set voltage of the current setting unit 90 is adjusted to correct the deviation between the measured value of the illuminance and the target value (step S72), It returns to step S50. At this time, the voltage source 84 is removed from the lighting device 500.
  • the constant current drive circuit has a switching control circuit for constant current output control as a voltage conversion circuit. I can not.
  • the constant current drive circuit may be connected in series to the output terminal (light source), and the voltage conversion circuit may be provided separately from the constant current drive circuit.
  • FIG. 16 is a block diagram showing a light source drive device 100D according to another embodiment. Specifically, FIG. 16A is a block diagram showing the whole of the light source drive device 100D. FIG. 16B is a block diagram showing an example of the constant current drive circuit 10E.
  • light source drive device 100D includes a constant current drive circuit 10E, a constant voltage circuit 20, a conversion circuit 30, a control circuit 40, and a voltage conversion circuit 70.
  • the detailed description of the configuration other than the constant current drive circuit 10E and the voltage conversion circuit 70 in the light source drive device 100D will not be repeated.
  • the voltage conversion circuit 70 is, for example, a switching control type voltage conversion circuit, and controls the output voltage such that the negative terminal of the output terminal 52 is a constant voltage as small as possible. This is because the product of the voltage between GND and the negative terminal of the output terminal 52 and the output current is a loss, so controlling by giving a margin to the lowest voltage at which the constant current drive circuit 10E operates is a loss. This is because it can be minimized.
  • constant current drive circuit 10E is connected in series to output terminal 52 (minus terminal side), and performs constant current control on the current flowing to light source 80 connected to output terminal 52.
  • constant current drive circuit 10E includes a constant current element Q25, a diode D25, a resistor R15, and an operational amplifier 35.
  • the constant current element Q25 is an N-channel MOSFET or a bipolar transistor.
  • the reference voltage (setting signal) from the control circuit 40 is input to the positive terminal of the operational amplifier 35.
  • negative feedback is applied such that the voltage across the resistor R15 is equal to the positive terminal voltage of the operational amplifier 35.
  • the output terminal of the operational amplifier 35 is connected to the gate of the constant current element Q25.
  • the operational amplifier 35 controls so that a constant current according to the setting signal flows to the resistor R15 (that is, the light source 80 connected to the output terminal 52). That is, the constant current drive circuit 10E can execute constant current control such that a current value according to the setting signal flows to the light source 80 connected to the output terminal 52 during normal operation.
  • the diode D25 bypasses the constant current element Q25 so that the current output from the current setting unit 90 connected to the output terminal 52 can return.
  • constant current element Q25 is an N-channel MOSFET, a body diode is incorporated as a parasitic element. Therefore, in this case, the constant current drive circuit 10E may not include the diode D25.
  • the light source drive device 100D may be adopted as the light source drive device of the illumination device described in the third and fourth embodiments described above, and the protection circuit described in the second embodiment is added to the light source drive device 100D. It may be a light source drive device.
  • the light source driving device includes the constant voltage circuit, but the present invention is not limited to this configuration.
  • the power supply voltage of the control circuit is configured to correspond to an arbitrary voltage
  • the constant voltage circuit may not be provided.
  • each of the auxiliary power supply circuit and the detection circuit may be provided independently of the constant current drive circuit.
  • the configuration exemplified as the above-described embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part of the configuration can be made without departing from the scope of the present invention. It is also possible to change and configure, such as omitting.

Abstract

A light source drive device (100) is provided with: a first terminal (52), to which a light source can be connected, and a setting unit (90) for setting a current flowing to the light source can be also connected; a constant current drive circuit (10) that controls the current flowing to the light source so that the current is a constant current; a conversion circuit (30), which converts a voltage supplied from the setting unit (90) connected to the first terminal (52), and which outputs a voltage signal thus converted; and a control circuit (40), which sets the current value of the constant current on the basis of the voltage signal thus converted, and which outputs, to the constant current drive circuit (10), a setting signal indicating the current value thus set.

Description

光源駆動装置、照明装置、および電流設定方法Light source drive device, lighting device, and current setting method
 本開示は、光源駆動装置、照明装置、および電流設定方法に関する。本出願は、2017年12月1日に出願した日本特許出願である特願2017-231636号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a light source drive device, a lighting device, and a current setting method. This application claims priority based on Japanese Patent Application No. 2017-231636 filed on Dec. 1, 2017. The entire contents of the description of the Japanese patent application are incorporated herein by reference.
 従来、定電流で発光ダイオード(LED:light emitting diode)等の光源を点灯制御する光源駆動装置が知られている。このような光源駆動装置を有する各種の照明装置(例えば、看板、ショーケース等で使用される照明装置、家庭で用いられるLED照明等)においては、明るさについての要望がユーザあるいは設置場所ごとに異なる。そのため、各要望に沿った多種の製品を揃えておく必要があった。また、天井、店舗等への照明装置の設置後に明るさを変更する場合には、照明装置を分解して、内部の光源駆動装置または光源を交換したり、光源駆動装置を改造して出力電流を変更したりする必要があった。 2. Description of the Related Art Conventionally, a light source drive device has been known which controls lighting of a light source such as a light emitting diode (LED) with a constant current. In various lighting devices having such a light source driving device (for example, a lighting device used in a signboard, a showcase, etc., an LED lighting used in home, etc.), the demand for brightness is determined by the user or the installation location. It is different. Therefore, it was necessary to prepare various products in line with each request. In addition, when changing the brightness after installing the lighting device in a ceiling, a store, etc., disassemble the lighting device, replace the internal light source drive device or light source, or modify the light source drive device to output current I needed to change it.
 例えば、上記出力電流を変更する技術として、特許文献1(米国特許第9161410号明細書)は、出力電流が可変である発光ダイオード駆動装置を開示している。この発光ダイオード駆動装置では、ユーザ設定部がユーザ側設定信号をパルス幅変調制御部に送り、調光部が調光信号をパルス幅変調制御部に送り、パルス幅変調制御部がユーザ側設定信号の値に調光信号の値を乗算して出力電流制御信号を取得し、発光ダイオード駆動部に送る。発光ダイオード駆動部は、出力電流制御信号の値に最大出力電流の値を乗算した駆動電流によって発光ダイオードを駆動する。 For example, as a technique for changing the above output current, Patent Document 1 (US Pat. No. 9,161,410) discloses a light emitting diode drive device in which the output current is variable. In this light emitting diode drive device, the user setting unit sends the user side setting signal to the pulse width modulation control unit, the light adjustment unit sends the light adjustment signal to the pulse width modulation control unit, and the pulse width modulation control unit makes the user side setting signal The output current control signal is acquired by multiplying the value of D by the value of the dimming signal and sent to the light emitting diode driver. The light emitting diode drive unit drives the light emitting diode with a drive current obtained by multiplying the value of the output current control signal by the value of the maximum output current.
米国特許第9161410号明細書U.S. Patent No. 9161410
 しかしながら、特許文献1に係る発光ダイオード駆動装置においては、発光ダイオードが発光ダイオード駆動部に電気的に接続され、ユーザ設定部がパルス幅変調制御部に電気的に接続されている。このことから、発光ダイオード駆動装置には、ユーザ設定部を接続するための専用の接続端子を設けておく必要があるため、装置構成が複雑になる可能性がある。 However, in the light emitting diode driving device according to Patent Document 1, the light emitting diode is electrically connected to the light emitting diode driving unit, and the user setting unit is electrically connected to the pulse width modulation control unit. From this, the light emitting diode drive device needs to be provided with a dedicated connection terminal for connecting the user setting unit, which may make the device configuration complicated.
 本開示は、ある局面では、光源駆動装置から光源に出力される電流を容易に変更することが可能な光源駆動装置を提供することを目的とする。本開示は、他の局面では、上記の光源駆動装置を含む照明装置を提供することを目的とする。本開示は、さらに他の局面では、光源駆動装置から光源に出力される電流を容易に変更することが可能な電流設定方法を提供することを目的とする。 The present disclosure, in one aspect, aims to provide a light source drive capable of easily changing the current output from the light source drive to the light source. In another aspect, the present disclosure aims to provide a lighting device including the above-described light source driving device. In still another aspect, the present disclosure aims to provide a current setting method capable of easily changing the current output from a light source driver to a light source.
 ある実施の形態に従う光源駆動装置は、光源を接続可能であって、かつ、光源に流れる電流を設定するための設定ユニットを接続可能な第1の端子と、光源に流れる電流が定電流になるように制御する定電流駆動回路と、第1の端子に接続された設定ユニットから供給される電圧を変換し、当該変換された電圧信号を出力する変換回路と、変換された電圧信号に基づいて定電流の電流値を設定し、当該設定した電流値を示す設定信号を定電流駆動回路に出力する制御回路とを備える。 In the light source drive device according to an embodiment, the light source can be connected and the first terminal to which the setting unit for setting the current flowing to the light source can be connected, and the current flowing to the light source becomes a constant current And a conversion circuit for converting the voltage supplied from the setting unit connected to the first terminal and outputting the converted voltage signal, and based on the converted voltage signal. And a control circuit configured to set a current value of the constant current and to output a setting signal indicating the set current value to the constant current drive circuit.
 他の実施の形態に従う照明装置は、上記光源駆動装置と、光源とを備える。
 さらに他の実施の形態に従うと、光源駆動装置から光源に供給される電流を設定するための電流設定方法が提供される。光源駆動装置は、光源、および、光源に流れる電流を設定するための設定ユニットを接続可能な端子と、光源に流れる電流が定電流になるように制御する定電流駆動回路とを備える。電流設定方法は、端子に接続された設定ユニットから供給される電圧を変換し、当該変換された電圧信号を出力するステップと、変換された電圧信号に基づいて、定電流の電流値を設定するステップと、設定するステップにより設定された電流値を示す設定信号を定電流駆動回路に出力するステップとを含む。
A lighting device according to another embodiment includes the above light source driving device and a light source.
According to yet another embodiment, a current setting method is provided for setting the current supplied from the light source driver to the light source. The light source driving device includes a light source, a terminal to which a setting unit for setting a current flowing to the light source can be connected, and a constant current driving circuit that controls the current flowing to the light source to be a constant current. The current setting method converts the voltage supplied from the setting unit connected to the terminal and outputs the converted voltage signal, and sets the current value of the constant current based on the converted voltage signal. And a step of outputting a setting signal indicating a current value set in the setting step to the constant current drive circuit.
 本開示によると、光源駆動装置から光源に出力される電流を容易に変更することが可能となる。 According to the present disclosure, it is possible to easily change the current output from the light source drive device to the light source.
実施の形態1に従う電流設定システムの概要を説明するための概念図である。FIG. 1 is a conceptual diagram for illustrating an overview of a current setting system according to a first embodiment. 実施の形態1に従う信号変換方式の一例を説明するための図である。FIG. 7 is a diagram for describing an example of a signal conversion method according to the first embodiment. 実施の形態1に従う電流設定方法の一例を説明するためのフローチャートである。7 is a flowchart for illustrating an example of a current setting method according to the first embodiment. 実施の形態1に従う電流設定ユニットの回路構成の一例を示す図である。FIG. 7 is a diagram showing an example of a circuit configuration of a current setting unit according to the first embodiment. 実施の形態1に従う光源駆動装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a light source drive device according to a first embodiment. 実施の形態1の変形例1に従う光源駆動装置を示すブロック図である。FIG. 7 is a block diagram showing a light source drive device according to a first modification of the first embodiment. 実施の形態1の変形例2に従う光源駆動装置を示すブロック図である。FIG. 10 is a block diagram showing a light source drive device according to a second modification of the first embodiment. 実施の形態2に従う光源駆動装置のブロック図である。FIG. 10 is a block diagram of a light source drive device according to a second embodiment. 実施の形態2の変形例1に従う光源駆動装置のブロック図である。FIG. 16 is a block diagram of a light source drive device according to a first modification of the second embodiment. 実施の形態2の変形例2に従う光源駆動装置のブロック図である。FIG. 17 is a block diagram of a light source drive device according to a second modification of the second embodiment. 実施の形態2の変形例3に従う光源駆動装置のブロック図である。FIG. 17 is a block diagram of a light source drive device according to a third modification of the second embodiment. 実施の形態3に従う照明装置の構成の一例を示すブロック図である。FIG. 16 is a block diagram showing an example of a configuration of a lighting device according to a third embodiment. 実施の形態3の変形例に従う照明装置の構成の一例を示すブロック図である。FIG. 17 is a block diagram showing an example of a configuration of a lighting device according to a modification of the third embodiment. 実施の形態4に従う電流設定システムの概要を説明するための概念図である。FIG. 16 is a conceptual diagram for illustrating an overview of a current setting system according to a fourth embodiment. 実施の形態4に従う電流設定方法の一例を説明するためのフローチャートである。FIG. 16 is a flowchart for illustrating an example of a current setting method according to the fourth embodiment. その他の実施の形態に従う光源駆動装置を示すブロック図である。It is a block diagram which shows the light source drive device according to other embodiment.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description about them will not be repeated.
 [実施の形態1]
 <電流設定システムの概要>
 図1は、実施の形態1に従う電流設定システムの概要を説明するための概念図である。具体的には、図1(a)は、光源駆動装置100の出力電流を設定する場合の各装置の接続形態を示す図である。図1(b)は、設定された出力電流の値を確認する場合の各装置の接続形態を示す図である。
First Embodiment
<Overview of current setting system>
FIG. 1 is a conceptual diagram for illustrating an outline of a current setting system according to the first embodiment. Specifically, FIG. 1A is a diagram showing a connection form of each device in the case of setting the output current of the light source drive device 100. As shown in FIG. FIG. 1B is a diagram showing a connection form of each device in the case of confirming the value of the set output current.
 図1を参照して、電流設定システムは、光源駆動装置100から光源に出力(供給)される(すなわち、光源に流れる)電流を設定するためのシステムである。具体的には、電流設定システムは、光源駆動装置100と、光源80と、電流計82と、電圧源84と、電流設定ユニット90とを含む。 Referring to FIG. 1, the current setting system is a system for setting the current output (supplied) to the light source from the light source driving device 100 (that is, flowing to the light source). Specifically, the current setting system includes a light source drive device 100, a light source 80, an ammeter 82, a voltage source 84, and a current setting unit 90.
 図1(a)および図1(b)を参照して、光源駆動装置100は、定電流駆動回路10と、定電圧回路20と、変換回路30と、制御回路40と、入力端子51と、出力端子52とを含む。出力端子52は、光源80、および電流設定ユニット90を接続可能に構成される。 Referring to FIGS. 1A and 1B, the light source drive device 100 includes a constant current drive circuit 10, a constant voltage circuit 20, a conversion circuit 30, a control circuit 40, and an input terminal 51. And an output terminal 52. The output terminal 52 is configured to be able to connect the light source 80 and the current setting unit 90.
 定電流駆動回路10は、光源80に流れる電流が定電流になるように制御する。具体的には、光源駆動装置100が光源80を駆動する通常動作時において、定電流駆動回路10は、電圧源84からの電力を受けて、光源80の定電流駆動制御を実行する。 The constant current drive circuit 10 controls the current flowing through the light source 80 to be a constant current. Specifically, during the normal operation in which the light source drive device 100 drives the light source 80, the constant current drive circuit 10 receives power from the voltage source 84 and executes constant current drive control of the light source 80.
 定電圧回路20は、出力端子52に印加される電圧を一定電圧に変換して、当該一定電圧を制御回路40に出力する。当該一定電圧は、制御回路40の電源電圧である。変換回路30は、出力端子52を介して、電流設定ユニット90から供給される電圧を変換して、当該変換された電圧信号を制御回路40に出力する。 The constant voltage circuit 20 converts the voltage applied to the output terminal 52 into a constant voltage, and outputs the constant voltage to the control circuit 40. The constant voltage is a power supply voltage of the control circuit 40. The conversion circuit 30 converts the voltage supplied from the current setting unit 90 via the output terminal 52, and outputs the converted voltage signal to the control circuit 40.
 図2は、実施の形態1に従う信号変換方式の一例を説明するための図である。図2を参照して、出力端子52の負極側を0Vとしたときに、定電圧回路20から制御回路40に出力される電源電圧(ここでは、5V)よりも大きい電圧(ここでは、10Vあるいは6V)が出力端子52の正極側に印加されている。また、信号変換に利用する参照電圧が8Vに設定されている。 FIG. 2 is a diagram for explaining an example of a signal conversion method according to the first embodiment. Referring to FIG. 2, when the negative side of output terminal 52 is 0 V, a voltage (here, 10 V or more) which is larger than the power supply voltage (here, 5 V) output from constant voltage circuit 20 to control circuit 40. 6 V) is applied to the positive electrode side of the output terminal 52. In addition, a reference voltage used for signal conversion is set to 8V.
 この場合、変換回路30は、電流設定ユニット90から出力端子52に印加される電圧(例えば、10Vあるいは6V)と参照電圧(例えば、5V)とを比較して、比較結果を示す二値の信号を制御回路40に出力する。図2の例では、変換回路30は、出力端子52に印加される電圧が参照電圧以上である場合には、High信号を制御回路40に出力し、出力端子52に印加される電圧が参照電圧未満である場合には、Low信号を制御回路40に出力する。 In this case, the conversion circuit 30 compares the voltage (for example, 10 V or 6 V) applied from the current setting unit 90 to the output terminal 52 with the reference voltage (for example, 5 V), and outputs a binary signal indicating the comparison result. Are output to the control circuit 40. In the example of FIG. 2, when the voltage applied to the output terminal 52 is equal to or higher than the reference voltage, the conversion circuit 30 outputs a High signal to the control circuit 40, and the voltage applied to the output terminal 52 is the reference voltage. If it is less than this, a Low signal is output to the control circuit 40.
 再び、図1を参照して、制御回路40は、変換回路30により変換された二値の信号に基づいて、定電流駆動回路10から出力される定電流の電流値を設定する。ここでは、例えば、High信号をデータ”1”に対応させ、Lоw信号をデータ”0”に対応させるものとする。なお、High信号をデータ”0”に対応させ、Lоw信号をデータ”1”に対応させてもよい。 Again referring to FIG. 1, control circuit 40 sets the current value of the constant current output from constant current drive circuit 10 based on the binary signal converted by conversion circuit 30. Here, for example, the High signal corresponds to data “1”, and the Low signal corresponds to data “0”. The High signal may correspond to data "0" and the Low signal may correspond to data "1".
 図2の例では、変換回路30からHigh信号、Low信号の順に、交互に3回出力されているため、制御回路40は、変換回路30から受けた信号をデータ”101010”として認識する。制御回路40は、各データと定電流の電流値とを関連付けた情報テーブルを参照して、当該データに対応する定電流の値を特定する。なお、情報テーブルは、制御回路40の内部メモリ(例えば、不揮発性メモリ)に記憶されている。制御回路40は、当該特定した定電流の電流値を内部メモリに設定し(すなわち、記憶し)、当該設定した電流値を示す設定信号を定電流駆動回路10に出力する。定電流駆動回路10は、通常動作時において、設定信号に従う電流値が光源80に流れるように制御する。 In the example of FIG. 2, the control circuit 40 recognizes the signal received from the conversion circuit 30 as data “101010” because the conversion circuit 30 alternately outputs the High signal and the Low signal three times in this order. The control circuit 40 specifies the value of the constant current corresponding to the data with reference to the information table in which each data is associated with the current value of the constant current. The information table is stored in an internal memory (for example, non-volatile memory) of the control circuit 40. The control circuit 40 sets (that is, stores) the current value of the specified constant current in the internal memory, and outputs a setting signal indicating the set current value to the constant current drive circuit 10. The constant current drive circuit 10 controls so that the current value according to the setting signal flows to the light source 80 during normal operation.
 なお、制御回路40は、情報テーブルを参照せずに、定電流の値を特定する構成であってもよい。例えば、制御回路40は、光源駆動装置100の出力電流の最大値を100%とした場合に、何%の出力電流とするのかを変換回路30から受けた信号のレベルから読み取るように構成されていてもよい。 The control circuit 40 may be configured to specify the value of the constant current without referring to the information table. For example, when the maximum value of the output current of the light source drive device 100 is 100%, the control circuit 40 is configured to read what percentage of the output current is to be from the level of the signal received from the conversion circuit 30. May be
 図3は、実施の形態1に従う電流設定方法の一例を説明するためのフローチャートである。図3を参照して、電流設定方法では、図1(a)に示すように、光源駆動装置100の出力端子52に電流設定ユニット90が接続される(ステップS10)。電流設定ユニット90は、光源駆動装置100の出力電流を所望値に設定するための設定電圧(例えば、図2に示すような電圧)を出力端子52に入力する(ステップS12)。このとき、定電圧回路20は、設定電圧を一定電圧に変換して、当該一定電圧を電源電圧として制御回路40に供給する。 FIG. 3 is a flowchart for explaining an example of the current setting method according to the first embodiment. Referring to FIG. 3, in the current setting method, as shown in FIG. 1A, the current setting unit 90 is connected to the output terminal 52 of the light source drive device 100 (step S10). The current setting unit 90 inputs a setting voltage (for example, a voltage as shown in FIG. 2) for setting the output current of the light source drive device 100 to a desired value to the output terminal 52 (step S12). At this time, the constant voltage circuit 20 converts the set voltage into a constant voltage, and supplies the constant voltage to the control circuit 40 as a power supply voltage.
 変換回路30は、設定電圧と参照電圧と比較し、比較結果として二値の信号(High信号およびLow信号)を制御回路40に出力する(ステップS14)。制御回路40は、内部メモリに記憶されている情報テーブルを参照して、二値の信号に対応するデータに関連付けられた定電流の電流値を特定し、当該特定した電流値を内部メモリに記憶する(ステップS16)。 The conversion circuit 30 compares the set voltage and the reference voltage, and outputs binary signals (High signal and Low signal) as a comparison result to the control circuit 40 (step S14). Control circuit 40 refers to the information table stored in the internal memory to identify the current value of the constant current associated with the data corresponding to the binary signal, and stores the identified current value in the internal memory (Step S16).
 次に、図1(b)に示すように、光源駆動装置100の出力端子52から電流設定ユニット90が外され、電流計82が出力端子52と光源80との間に直列接続され、光源80が出力端子52に並列接続され、電圧源84が入力端子51に並列接続される(ステップS18)。電圧源84は、光源駆動装置100の入力端子51に電圧を印加する(ステップS20)。 Next, as shown in FIG. 1B, the current setting unit 90 is removed from the output terminal 52 of the light source drive device 100, and the ammeter 82 is connected in series between the output terminal 52 and the light source 80. Are connected in parallel to the output terminal 52, and the voltage source 84 is connected in parallel to the input terminal 51 (step S18). The voltage source 84 applies a voltage to the input terminal 51 of the light source drive device 100 (step S20).
 制御回路40は、ステップS16において内部メモリに記憶した電流値を示す設定信号を定電流駆動回路10に出力する(ステップS22)。例えば、制御回路40は、当該電流値を、内部に設けられたDA(digital-to-Analog)変換機能によりアナログ電圧値に変換し、当該変換したアナログ電圧値を設定信号として出力する。定電流駆動回路10は、当該設定信号に従って光源80の定電流駆動制御を実行する(ステップS24)。電流計82は、光源駆動装置100の出力電流(すなわち、光源80に流れる電流)を測定する(ステップS26)。続いて、出力電流が目標範囲内(すなわち、目標値の公差内)か否かを判定する(ステップS28)。具体的には、ユーザが当該判定を行なってもよいし、電流計82の測定値の入力を受け付けたPC(personal computer)等の端末装置(図示しない)により、当該判定が行なわれてもよい。 Control circuit 40 outputs a setting signal indicating the current value stored in the internal memory in step S16 to constant current drive circuit 10 (step S22). For example, the control circuit 40 converts the current value into an analog voltage value by a digital-to-analog (DA) conversion function provided internally, and outputs the converted analog voltage value as a setting signal. The constant current drive circuit 10 executes constant current drive control of the light source 80 according to the setting signal (step S24). The ammeter 82 measures the output current of the light source drive device 100 (that is, the current flowing to the light source 80) (step S26). Subsequently, it is determined whether the output current is within the target range (that is, within the tolerance of the target value) (step S28). Specifically, the determination may be performed by the user, or may be performed by a terminal device (not shown) such as a PC (personal computer) that has received the input of the measurement value of the ammeter 82. .
 出力電流の測定値が目標範囲内である場合には(ステップS28においてYES)、光源80、電流計82、および電圧源84は光源駆動装置100から外され(ステップS30)、処理は終了する。出力電流が目標範囲内ではない場合には(ステップS28においてNO)、出力電流の測定値と目標値とのずれを補正するように電流設定ユニット90の設定電圧の値を調整して(ステップS32)、ステップS10に戻る。このとき、少なくとも電圧源84は、光源駆動装置100から外される。電流計82および光源80は、光源駆動装置100に接続されたままであってもよい。 If the measured value of the output current is within the target range (YES in step S28), the light source 80, the ammeter 82, and the voltage source 84 are removed from the light source driving device 100 (step S30), and the process ends. If the output current is not within the target range (NO in step S28), the value of the set voltage of current setting unit 90 is adjusted to correct the deviation between the measured value of output current and the target value (step S32) ), Return to step S10. At this time, at least the voltage source 84 is removed from the light source drive device 100. The ammeter 82 and the light source 80 may remain connected to the light source drive device 100.
 <電流設定ユニットの構成>
 図4は、実施の形態1に従う電流設定ユニット90の回路構成の一例を示す図である。図4を参照して、電流設定ユニット90は、内部電圧源92と、抵抗Ra,Rb,Rc,Rd,Reと、トランジスタQa,Qbと、SIGNAL端子と、Vout端子と、GND端子とを含む。
<Configuration of current setting unit>
FIG. 4 is a diagram showing an example of a circuit configuration of current setting unit 90 according to the first embodiment. Referring to FIG. 4, current setting unit 90 includes an internal voltage source 92, resistors Ra, Rb, Rc, Rd and Re, transistors Qa and Qb, a SIGNAL terminal, a Vout terminal, and a GND terminal. .
 SIGNAL端子に、端末装置(例えば、PC、マイコン等)からHigh信号が入力されると、トランジスタQaがON状態(閉状態)になるため、抵抗Rcの両端がショートされる。この場合、Vout端子には、内部電圧源92の電圧Vsを抵抗Raと抵抗Rbとで分圧した電圧から、トランジスタQ2のベースエミッタ間電圧Vbeを減じた電圧Vhiが出力される。具体的には、電圧Vhiは以下の式(1)のように表わされる。 When a High signal is input to the SIGNAL terminal from a terminal device (for example, a PC, a microcomputer or the like), the transistor Qa is turned on (closed), so both ends of the resistor Rc are shorted. In this case, a voltage Vhi obtained by subtracting the base-emitter voltage Vbe of the transistor Q2 from the voltage obtained by dividing the voltage Vs of the internal voltage source 92 by the resistors Ra and Rb is output to the Vout terminal. Specifically, the voltage Vhi is expressed as the following equation (1).
 Vhi=Vs×(Rb)/(Ra+Rb)-Vbe・・・(1)
 SIGNAL端子に、端末装置からLow信号が入力されると、トランジスタQaがOFF状態(開放状態)になる。この場合、Vout端子には、電圧Vsを抵抗Raと、抵抗Rbおよび抵抗Rcの合成抵抗Rbc(=Rb+Rc)とで分圧した電圧から、トランジスタQ2のベースエミッタ間電圧Vbeを減じた電圧Vloが出力される。具体的には、電圧Vloは以下の式(2)のように表わされる。
Vhi = Vs x (Rb) / (Ra + Rb)-Vbe (1)
When a low signal is input from the terminal device to the SIGNAL terminal, the transistor Qa is turned off (opened). In this case, a voltage Vlo obtained by subtracting the base-emitter voltage Vbe of the transistor Q2 from the voltage obtained by dividing the voltage Vs by the resistor Ra and the combined resistor Rbc (= Rb + Rc) of the resistors Rb and Rc is given to the Vout terminal. It is output. Specifically, the voltage Vlo is represented by the following equation (2).
 Vlo=Vs×(Rb+Rc)/(Ra+Rb+Rc)-Vbe・・・(2)
 電圧Vs、抵抗Ra,Rb,Rcの抵抗値を適切に選択することにより、定電圧回路20の出力電圧(すなわち、制御回路40の電源電圧)よりも大きな電圧であって、かつ電圧値が異なる2つの電圧を出力することができる。そのため、電流設定ユニット90は、制御回路40の電源電圧に信号を重畳した設定電圧を出力することができる。
Vlo = Vs x (Rb + Rc) / (Ra + Rb + Rc)-Vbe (2)
By appropriately selecting the voltage Vs and the resistance values of the resistors Ra, Rb and Rc, the voltage is larger than the output voltage of the constant voltage circuit 20 (that is, the power supply voltage of the control circuit 40), and the voltage values are different. Two voltages can be output. Therefore, the current setting unit 90 can output a set voltage in which a signal is superimposed on the power supply voltage of the control circuit 40.
 <光源駆動装置の構成>
 図5は、実施の形態1に従う光源駆動装置100Aの構成を示すブロック図である。光源駆動装置100Aは、図1に示す光源駆動装置100と対応するが、後述する変形例との区別のため、便宜上「A」といった追加の符号を付している。
<Configuration of light source drive device>
FIG. 5 is a block diagram showing a configuration of light source drive device 100A according to the first embodiment. The light source drive device 100A corresponds to the light source drive device 100 shown in FIG. 1, but for the sake of distinction from the modification described later, an additional code such as "A" is added for convenience.
 光源駆動装置100Aは、定電流駆動回路10と、定電圧回路20と、変換回路30Aと、制御回路40と、入力端子51と、出力端子52とを含む。 The light source drive device 100A includes a constant current drive circuit 10, a constant voltage circuit 20, a conversion circuit 30A, a control circuit 40, an input terminal 51, and an output terminal 52.
 光源駆動装置100Aが光源80を駆動する通常動作時の動作例について説明する。通常動作時には、商用交流電源等の電圧源84が入力端子51に接続され、LED等の光源80が出力端子52に接続される。 An operation example during normal operation in which the light source drive device 100A drives the light source 80 will be described. During normal operation, a voltage source 84 such as a commercial AC power source is connected to the input terminal 51, and a light source 80 such as an LED is connected to the output terminal 52.
 定電流駆動回路10は、入力端子51を介して電圧源84から電力の供給を受ける。定電流駆動回路10は、光源80を定電流駆動する。具体的には、定電流駆動回路10は、制御回路40から受けた設定信号に従う電流値の出力電流を光源80に供給する。 Constant current drive circuit 10 receives supply of power from voltage source 84 through input terminal 51. The constant current drive circuit 10 drives the light source 80 at a constant current. Specifically, constant current drive circuit 10 supplies light source 80 with an output current of a current value according to the setting signal received from control circuit 40.
 定電圧回路20は、出力端子52に印加されている電圧を一定電圧に変換し、変換した一定電圧を制御回路40に供給する。具体的には、定電圧回路20は、IC21により構成されている。IC21は、入力端子(図中の「IN」)、出力端子(図中の「OUT」)、およびグラウンド端子(図中の「GND」)の3端子から構成される三端子レギュレータICである。IC21は、入力電圧がIC21の入力電圧範囲以内であれば一定電圧を出力する。IC21により出力された一定電圧は、制御回路40の電源電圧として利用される。 The constant voltage circuit 20 converts the voltage applied to the output terminal 52 into a constant voltage, and supplies the converted constant voltage to the control circuit 40. Specifically, the constant voltage circuit 20 is configured by the IC 21. The IC 21 is a three-terminal regulator IC configured of three terminals: an input terminal (“IN” in the drawing), an output terminal (“OUT” in the drawing), and a ground terminal (“GND” in the drawing). The IC 21 outputs a constant voltage if the input voltage is within the input voltage range of the IC 21. The constant voltage output by the IC 21 is used as a power supply voltage of the control circuit 40.
 制御回路40は、内部メモリに設定(記憶)されている電流値を示す設定信号を定電流駆動回路10に出力する。電流値は、定電流駆動回路10から光源80に供給される出力電流(すなわち、定電流)の電流値である。制御回路40は、例えば、マイクロコンピュータ等の不揮発メモリを有するIC41により構成される。IC41は、正極側の電源端子であるVDD端子、負極側の電源端子であるVSS端子、入力端子であるIN端子、出力端子であるOUT端子、および検出信号の入力端子であるIN_PWR端子を含む。 The control circuit 40 outputs, to the constant current drive circuit 10, a setting signal indicating the current value set (stored) in the internal memory. The current value is a current value of the output current (that is, constant current) supplied from the constant current drive circuit 10 to the light source 80. The control circuit 40 is configured of, for example, an IC 41 having a non-volatile memory such as a microcomputer. The IC 41 includes a VDD terminal as a power supply terminal on the positive side, a VSS terminal as a power supply terminal on the negative side, an IN terminal as an input terminal, an OUT terminal as an output terminal, and an IN_PWR terminal as an input terminal of a detection signal.
 ここで、定電流駆動回路10は、入力端子51に印加されている入力電圧を検出する検出回路11を含む。具体的には、検出回路11は、入力電圧が閾値Th以上であることを検出した場合には、当該検出結果を示す検出信号を制御回路40(IC41)に出力する。制御回路40(IC41)は、IN_PWR端子を介して、検出信号の入力を受け付けている場合、出力電流の設定を変更しないように構成される。 Here, the constant current drive circuit 10 includes a detection circuit 11 that detects an input voltage applied to the input terminal 51. Specifically, when detecting that the input voltage is equal to or higher than the threshold Th, the detection circuit 11 outputs a detection signal indicating the detection result to the control circuit 40 (IC 41). The control circuit 40 (IC41) is configured not to change the setting of the output current when receiving the input of the detection signal via the IN_PWR terminal.
 具体的には、制御回路40は、IN_PWR端子を介して検出信号の入力を受け付けている場合には(すなわち、入力端子51の電圧が閾値Th以上である場合)、IN端子を介して変換回路30から電圧信号を受け付けた場合であっても、当該電圧信号に対応する定電流の電流値を内部メモリに設定しない(記憶しない)ように構成される。換言すると、制御回路40は、検出信号の入力を受け付けていない場合に(すなわち、入力端子51の電圧が閾値Th未満である場合)、電圧信号に対応する定電流の電流値を内部メモリに記憶する。これにより、光源駆動装置100Aの通常動作時において、光源80が出力端子52から外された場合等に出力端子52において発生し得るチャタリングにより、出力端子52から設定電圧が入力されたと制御回路40が誤認識して、当該設定電圧により定電流の電流値を変更するのを防ぐことができる。 Specifically, when the control circuit 40 receives an input of a detection signal through the IN_PWR terminal (that is, when the voltage of the input terminal 51 is equal to or higher than the threshold Th), the control circuit 40 converts the signal through the IN terminal. Even when a voltage signal is received from 30, the current value of the constant current corresponding to the voltage signal is not set (stored) in the internal memory. In other words, control circuit 40 stores the current value of the constant current corresponding to the voltage signal in the internal memory when the input of the detection signal is not received (that is, when the voltage of input terminal 51 is less than threshold Th). Do. As a result, during normal operation of the light source drive device 100A, when the set voltage is input from the output terminal 52 by chattering that can occur at the output terminal 52 when the light source 80 is removed from the output terminal 52, etc. Misrecognition can prevent the current value of the constant current from being changed by the set voltage.
 なお、検出回路11は、入力電圧が閾値Th未満であることを検出した場合に、当該検出結果を示す検出信号を制御回路40(IC41)に出力してもよい。この場合、制御回路40(IC41)は、当該検出信号により入力電圧が閾値未満であると判断して、電圧信号に対応する定電流の電流値を内部メモリに記憶する。 When detecting that the input voltage is less than the threshold Th, the detection circuit 11 may output a detection signal indicating the detection result to the control circuit 40 (IC 41). In this case, the control circuit 40 (IC 41) determines that the input voltage is less than the threshold value based on the detection signal, and stores the current value of the constant current corresponding to the voltage signal in the internal memory.
 次に、定電流駆動回路10の出力電流設定時の動作例について説明する。出力電流設定時には、出力端子52に電流設定ユニット90が接続される。電流設定ユニット90は、出力電流を所望値に設定するための設定電圧を出力端子52に入力する。定電圧回路20は、設定電圧を受けて、制御回路40に一定電圧を供給する。 Next, an operation example at the time of setting the output current of the constant current drive circuit 10 will be described. At the time of setting the output current, the current setting unit 90 is connected to the output terminal 52. The current setting unit 90 inputs a set voltage for setting the output current to a desired value to the output terminal 52. The constant voltage circuit 20 receives the set voltage and supplies a constant voltage to the control circuit 40.
 変換回路30Aは、入力を受けた設定電圧を、制御回路40の入力電圧範囲以内に変換した電圧信号を制御回路40に出力する。具体的には、変換回路30Aは、出力端子52の電圧が参照電圧以上か否かを判断するために、抵抗R1,R2と、NPNトランジスタQ1と、ツェナーダイオードZD1とを含む電圧比較回路により構成される。 The conversion circuit 30A outputs, to the control circuit 40, a voltage signal obtained by converting the set voltage received into an input voltage range of the control circuit 40. Specifically, conversion circuit 30A is configured of a voltage comparison circuit including resistors R1 and R2, NPN transistor Q1, and zener diode ZD1 to determine whether the voltage at output terminal 52 is equal to or higher than the reference voltage. Be done.
 詳細には、電流設定ユニット90により出力端子52に印加された設定電圧が、「NPNトランジスタQ1のベースエミッタ間電圧+ツェナーダイオードのツェナー電圧」以上である場合には、抵抗R1により制限された電流がNPNトランジスタQ1のベースに流れるため、NPNトランジスタQ1はON状態となる。これにより、NPNトランジスタQ1の電流増幅作用により増幅された電流が、NPNトランジスタQ1のコレクタから引き込まれ、抵抗R2の電圧降下を引き起こすため、制御回路40(IC41のIN端子)に対してLоw信号が出力される。 In detail, when the setting voltage applied to the output terminal 52 by the current setting unit 90 is equal to or more than "the voltage between the base emitter of the NPN transistor Q1 + the Zener voltage of the Zener diode", the current limited by the resistor R1. Flows to the base of the NPN transistor Q1, and the NPN transistor Q1 is turned on. As a result, the current amplified by the current amplification action of the NPN transistor Q1 is drawn from the collector of the NPN transistor Q1 to cause a voltage drop of the resistor R2, so the Llow signal is sent to the control circuit 40 (IN terminal of IC41). It is output.
 一方、電流設定ユニット90により出力端子52に印加された設定電圧が、「NPNトランジスタQ1のベースエミッタ間電圧+ツェナーダイオードのツェナー電圧」未満である場合には、抵抗R1を介して電流は流れ込まないためNPNトランジスタQ1はOFF状態となる。これにより、抵抗R2によりNPNトランジスタQ1のコレクタは、定電圧回路20の出力電圧まで上昇して、制御回路40に対してHigh信号を出力する。 On the other hand, when the setting voltage applied to the output terminal 52 by the current setting unit 90 is less than "the voltage between the base emitter of the NPN transistor Q1 + the Zener voltage of the Zener diode", no current flows through the resistor R1. Therefore, the NPN transistor Q1 is turned off. As a result, the collector of the NPN transistor Q1 rises to the output voltage of the constant voltage circuit 20 by the resistor R2 and outputs a High signal to the control circuit 40.
 制御回路40は、変換回路30Aにより出力されたHigh信号およびLow信号を受け取り、これらの信号の内容に応じて内部メモリに記憶されている出力電流の設定値を書き換える。 The control circuit 40 receives the High signal and the Low signal output from the conversion circuit 30A, and rewrites the set value of the output current stored in the internal memory according to the contents of these signals.
 (変形例1)
 図6は、実施の形態1の変形例1に従う光源駆動装置100Bを示すブロック図である。光源駆動装置100Bは、光源駆動装置100Aの変換回路30Aを、変換回路30Bに置き換えた構成である。そのため、光源駆動装置100Bにおける変換回路30B以外の構成についてはその詳細な説明は繰り返さない。
(Modification 1)
FIG. 6 is a block diagram showing a light source drive device 100B according to the first modification of the first embodiment. The light source drive device 100B has a configuration in which the conversion circuit 30A of the light source drive device 100A is replaced with a conversion circuit 30B. Therefore, the detailed description of the configuration other than conversion circuit 30B in light source drive device 100B will not be repeated.
 変換回路30Bは、抵抗R3,R4と、ツェナーダイオードZD2とを含む抵抗分圧回路である。この場合、IC41のIN端子には、出力端子52の電圧を、抵抗R3および抵抗R4により分圧した電圧が入力される。この場合、制御回路40は、内部に設けられたAD(Analog-to-digital)変換器により入力された電圧をディジタル信号に変換し、当該ディジタル信号の内容に応じて内部メモリに記憶されている出力電流の設定値を書き換える。 The conversion circuit 30B is a resistive voltage dividing circuit including resistors R3 and R4 and a Zener diode ZD2. In this case, a voltage obtained by dividing the voltage of the output terminal 52 by the resistors R3 and R4 is input to the IN terminal of the IC 41. In this case, the control circuit 40 converts a voltage input by an AD (Analog-to-digital) converter provided therein into a digital signal, and is stored in the internal memory according to the content of the digital signal. Rewrite the set value of the output current.
 一般的に、出力端子52の±間には出力電圧を検出するための分圧抵抗が設けられているため、抵抗素子を新たに追加することなく変換回路30Bを構成することができる。なお、通常動作時において、変換回路30Bから制御回路40(具体的には、IN端子)に入力される電圧が制御回路40の入力電圧範囲を超えないように、保護素子としてツェナーダイオードZD2が抵抗R4に並列接続されている。 Generally, a voltage dividing resistor for detecting an output voltage is provided between ± of the output terminal 52, so that the conversion circuit 30B can be configured without newly adding a resistance element. During normal operation, the Zener diode ZD2 serves as a protection element so that the voltage input from the conversion circuit 30B to the control circuit 40 (specifically, the IN terminal) does not exceed the input voltage range of the control circuit 40. Connected in parallel to R4.
 (変形例2)
 図7は、実施の形態1の変形例2に従う光源駆動装置100Cを示すブロック図である。光源駆動装置100Cは、光源駆動装置100Aの変換回路30Aを、変換回路30Cに置き換えた構成である。そのため、光源駆動装置100Cにおける変換回路30C以外の構成についてはその詳細な説明は繰り返さない。
(Modification 2)
FIG. 7 is a block diagram showing a light source drive device 100C according to the second modification of the first embodiment. The light source drive device 100C has a configuration in which the conversion circuit 30A of the light source drive device 100A is replaced with a conversion circuit 30C. Therefore, the detailed description of the configuration other than conversion circuit 30C in light source drive device 100C will not be repeated.
 変換回路30Cは、抵抗R5,R6,R7,R8と、ツェナーダイオードZD3と、コンパレータ31とを含む電圧比較回路である。図7の例では、出力端子52の電圧を、抵抗R7および抵抗R8で分圧した電圧がコンパレータ31の非反転入力端子に入力される。また、IC21の出力電圧を、抵抗R5および抵抗R6で分圧した電圧がコンパレータ31の反転入力端子に入力される。反転入力端子に入力される電圧は、コンパレータ31の閾値電圧となる。出力端子52の電圧を抵抗R7と抵抗R8で分圧した電圧がコンパレータ31の入力電圧範囲を超えないように、保護素子としてツェナーダイオードZD3が抵抗R8に並列接続されている。 The conversion circuit 30C is a voltage comparison circuit including resistors R5, R6, R7 and R8, a Zener diode ZD3 and a comparator 31. In the example of FIG. 7, a voltage obtained by dividing the voltage of the output terminal 52 by the resistors R 7 and R 8 is input to the non-inverting input terminal of the comparator 31. Further, a voltage obtained by dividing the output voltage of the IC 21 by the resistors R5 and R6 is input to the inverting input terminal of the comparator 31. The voltage input to the inverting input terminal is the threshold voltage of the comparator 31. A Zener diode ZD3 as a protection element is connected in parallel to the resistor R8 so that the voltage obtained by dividing the voltage of the output terminal 52 by the resistors R7 and R8 does not exceed the input voltage range of the comparator 31.
 ここで、電流設定ユニット90から出力端子52に入力される2つの電圧値を、それぞれ電圧値V1および電圧値V2とする。この場合、非反転入力端子には、電圧値V1を抵抗R7およびR8で分圧した電圧値V1p(=V1×R8/(R7+R8))、あるいは電圧値V2を抵抗R7およびR8で分圧した電圧値V2p(=V2×R8/(R7+R8))が入力される。 Here, let two voltage values input from the current setting unit 90 to the output terminal 52 be a voltage value V1 and a voltage value V2, respectively. In this case, a voltage value V1p (= V1 × R8 / (R7 + R8)) obtained by dividing the voltage value V1 by the resistors R7 and R8 or a voltage obtained by dividing the voltage value V2 by the resistors R7 and R8. The value V2p (= V2 × R8 / (R7 + R8)) is input.
 そのため、反転入力端子に入力される電圧(すなわち、閾値電圧)を、電圧値V1pと電圧値V2pとの間に設定する。これにより、例えば、コンパレータ31は、電圧値V1pの入力を受けた場合には、データ”1”に対応する電圧をIC41に出力し、電圧値V2pの入力を受けた場合には、データ”0”に対応する電圧をIC41に出力する。 Therefore, the voltage (that is, the threshold voltage) input to the inverting input terminal is set between the voltage value V1p and the voltage value V2p. Thus, for example, when the comparator 31 receives the input of the voltage value V1p, it outputs the voltage corresponding to the data “1” to the IC 41, and when the input of the voltage value V2p is received, the data “0” The voltage corresponding to “1” is output to the IC 41.
 変換回路30Cでは、三端子レギュレータICの出力電圧のように温度特性が良好な電圧を、コンパレータ31の閾値電圧として利用することができる。これにより、出力端子52の電圧から制御回路40用の信号への変換精度が向上する。 In the conversion circuit 30C, a voltage having good temperature characteristics, such as the output voltage of the three-terminal regulator IC, can be used as the threshold voltage of the comparator 31. Thereby, the conversion accuracy from the voltage of the output terminal 52 to the signal for the control circuit 40 is improved.
 <利点>
 実施の形態1によると、光源駆動装置に設けられた光源接続用の端子に電流設定ユニットを接続可能に構成されており、当該電流設定ユニットにより定電流駆動回路の出力電流を設定することができる。そのため、電流設定ユニット専用の接続端子を設ける必要がない。また、光源駆動装置の入力端子および出力端子のみが外部に露出することになるため、光源駆動装置の防水対策が容易となる。また、電流設定ユニットを光源駆動装置内に設ける必要もない。
<Advantage>
According to the first embodiment, the current setting unit can be connected to the terminal for light source connection provided in the light source drive device, and the output current of the constant current drive circuit can be set by the current setting unit. . Therefore, there is no need to provide a connection terminal dedicated to the current setting unit. Further, only the input terminal and the output terminal of the light source drive device are exposed to the outside, so that the waterproof measure of the light source drive device is facilitated. In addition, it is not necessary to provide the current setting unit in the light source drive device.
 また、出力電流の設定後に、出力電流の測定および再設定を繰り返し行なうことで、出力電流の微調整も可能となる。さらに、光源駆動装置を適用した照明装置が天井等に設置された後であっても、光源用の接続端子に電流設定ユニットを接続するだけで、照明装置の明るさを変更することができるため、当該変更の作業が容易となる。 In addition, fine adjustment of the output current can also be performed by repeatedly measuring and resetting the output current after setting the output current. Furthermore, even after the lighting device to which the light source drive device is applied is installed on a ceiling or the like, the brightness of the lighting device can be changed simply by connecting the current setting unit to the connection terminal for the light source. , The work of the change becomes easy.
 [実施の形態2]
 実施の形態1に従う光源駆動装置100においては、通常動作時に出力端子52に接続される光源80の負荷電圧が高い場合には、定電圧回路20に高電圧が印加されて定電圧回路20が損傷する可能性がある。そこで、実施の形態2では、光源80の負荷電圧が高い場合であっても、定電圧回路20が損傷しないように定電圧回路20を高電圧から保護するための保護回路を光源駆動装置に追加した構成について説明する。
Second Embodiment
In light source drive device 100 according to the first embodiment, when the load voltage of light source 80 connected to output terminal 52 is high during normal operation, high voltage is applied to constant voltage circuit 20, and constant voltage circuit 20 is damaged. there's a possibility that. Therefore, in the second embodiment, even if the load voltage of the light source 80 is high, a protection circuit for protecting the constant voltage circuit 20 from high voltage is added to the light source drive device so that the constant voltage circuit 20 is not damaged. The described configuration is described.
 実施の形態2に従う光源駆動装置は、定電圧回路20の保護回路を有している点で、実施の形態1に従う光源駆動装置100と異なる。<電流設定システムの概要>および<電流設定ユニット>の構成については実施の形態1と同様であるため、その詳細な説明は繰り返さない。 The light source drive device according to the second embodiment differs from the light source drive device 100 according to the first embodiment in that the light source drive device according to the second embodiment includes the protection circuit of the constant voltage circuit 20. The configurations of <an outline of the current setting system> and <a current setting unit> are the same as in the first embodiment, and therefore detailed description thereof will not be repeated.
 図8は、実施の形態2に従う光源駆動装置200Aのブロック図である。図8を参照して、光源駆動装置200Aは、定電流駆動回路10と、定電圧回路20と、変換回路30Aと、制御回路40と、入力端子51と、出力端子52と、保護回路60Aとを含む。すなわち、光源駆動装置200Aは、図5に示した光源駆動装置100Aに保護回路60Aを追加した構成である。そのため、光源駆動装置200Aにおける、保護回路60A以外の構成についてはその詳細な説明は繰り返さない。 FIG. 8 is a block diagram of a light source drive device 200A according to the second embodiment. Referring to FIG. 8, light source drive device 200A includes constant current drive circuit 10, constant voltage circuit 20, conversion circuit 30A, control circuit 40, input terminal 51, output terminal 52, and protection circuit 60A. including. That is, the light source drive device 200A has a configuration in which a protection circuit 60A is added to the light source drive device 100A shown in FIG. Therefore, the detailed description of the configuration other than protection circuit 60A in light source drive device 200A will not be repeated.
 保護回路60Aは、出力端子52と定電圧回路20との間に設けられている。保護回路60Aは、定電圧回路20が損傷されない程度に出力端子52の電圧を低減して、当該低減した電圧を定電圧回路20に出力する。 The protection circuit 60A is provided between the output terminal 52 and the constant voltage circuit 20. The protection circuit 60A reduces the voltage of the output terminal 52 to such an extent that the constant voltage circuit 20 is not damaged, and outputs the reduced voltage to the constant voltage circuit 20.
 具体的には、保護回路60Aは、抵抗R10,R11と、NPNトランジスタQ10と、ツェナーダイオードZD10とを含む。抵抗R10およびツェナーダイオードZD10は、出力端子52の電圧から一定電圧を作る。NPNトランジスタQ10および抵抗R11は、電流駆動能力を上げている。保護回路60Aによると、高電圧がNPNトランジスタQ10に印加された場合であっても、ツェナーダイオードZD10のツェナー電圧よりもNPNトランジスタQ10のベースエミッタ間電圧だけ低い所定電圧(一定電圧)が定電圧回路20に供給される。すなわち、保護回路60Aは、出力端子52の電圧を所定電圧まで低下させ、当該所定電圧を定電圧回路20に出力する。これにより、定電圧回路20を保護することができる。 Specifically, protection circuit 60A includes resistors R10 and R11, an NPN transistor Q10, and a zener diode ZD10. The resistor R10 and the zener diode ZD10 create a constant voltage from the voltage of the output terminal 52. The NPN transistor Q10 and the resistor R11 enhance the current drive capability. According to the protection circuit 60A, even when a high voltage is applied to the NPN transistor Q10, a predetermined voltage (constant voltage) lower than the Zener voltage of the Zener diode ZD10 by the base-emitter voltage of the NPN transistor Q10 is a constant voltage circuit. Supplied to 20. That is, the protection circuit 60A reduces the voltage of the output terminal 52 to a predetermined voltage and outputs the predetermined voltage to the constant voltage circuit 20. Thereby, the constant voltage circuit 20 can be protected.
 また、出力電流の設定時において、電流設定ユニット90から出力端子52に入力される電圧が高いほど、制御回路40に入力される信号の変換精度が向上する。保護回路60Aを設けることにより、電流設定ユニット90から高電圧を出力端子52に入力しても定電圧回路20が損傷することがないため、信号の変換精度を向上させることができる。 Further, at the time of setting the output current, as the voltage input from the current setting unit 90 to the output terminal 52 is higher, the conversion accuracy of the signal input to the control circuit 40 is improved. By providing the protection circuit 60A, the constant voltage circuit 20 is not damaged even if a high voltage is input from the current setting unit 90 to the output terminal 52, so that the signal conversion accuracy can be improved.
 (変形例1)
 光源駆動装置の通常動作時において、出力端子52に接続される光源80の負荷電圧が高い場合に、定電圧回路20、変換回路30A、制御回路40のバイアス電流を、定電流駆動回路10から保護回路60Aを介して流すと損失が大きい。そこで、実施の形態2の変形例1では、定電流駆動回路内に補助電源回路を設けて、通常動作時にはバイアス電流を、定電流駆動回路から保護回路を介して流さないように構成される。
(Modification 1)
During normal operation of the light source drive device, when the load voltage of the light source 80 connected to the output terminal 52 is high, the bias current of the constant voltage circuit 20, the conversion circuit 30A and the control circuit 40 is protected from the constant current drive circuit 10. If it flows through the circuit 60A, the loss is large. Therefore, in the first modification of the second embodiment, the auxiliary power supply circuit is provided in the constant current drive circuit, and the bias current is not supplied from the constant current drive circuit through the protection circuit during the normal operation.
 図9は、実施の形態2の変形例1に従う光源駆動装置200Bのブロック図である。図9を参照して、光源駆動装置200Bは、光源駆動装置200Aの定電流駆動回路10を定電流駆動回路10Bに置き換え、光源駆動装置200Aの保護回路60Aを保護回路60Bに置き換えた構成である。そのため、光源駆動装置200Bにおける定電流駆動回路10Bおよび保護回路60B以外の構成についてはその詳細な説明は繰り返さない。 FIG. 9 is a block diagram of a light source drive device 200B according to the first modification of the second embodiment. Referring to FIG. 9, light source drive device 200B has a configuration in which constant current drive circuit 10 of light source drive device 200A is replaced with constant current drive circuit 10B, and protection circuit 60A of light source drive device 200A is replaced with protection circuit 60B. . Therefore, the detailed description of the configuration other than the constant current drive circuit 10B and the protection circuit 60B in the light source drive device 200B will not be repeated.
 補助電源回路12は、例えば、DC-DCスイッチング制御回路により構成され、出力電圧値は15V程度である。通常動作時には、入力端子51を介して定電流駆動回路10Bに電圧源84が接続されるため補助電源回路12が動作し、補助電源回路12の出力電圧が定電圧回路20の入力端子に入力される。 The auxiliary power supply circuit 12 is constituted by, for example, a DC-DC switching control circuit, and the output voltage value is about 15V. In normal operation, voltage source 84 is connected to constant current drive circuit 10B through input terminal 51, so that auxiliary power supply circuit 12 operates, and the output voltage of auxiliary power supply circuit 12 is input to the input terminal of constant voltage circuit 20. Ru.
 保護回路60Bは、抵抗R10,R11と、NPNトランジスタQ10と、ツェナーダイオードZD10と、ダイオードD10とを含む。抵抗R10およびツェナーダイオードZD10は、出力端子52の電圧から一定電圧を作る。NPNトランジスタQ10および抵抗R11は、電流駆動能力を上げている。また、出力電流の設定時においては、ダイオードD10を通して出力端子52からバイアス電流を定電圧回路20、変換回路30A、制御回路40へ流すように構成される。 Protection circuit 60B includes resistors R10 and R11, an NPN transistor Q10, a Zener diode ZD10, and a diode D10. The resistor R10 and the zener diode ZD10 create a constant voltage from the voltage of the output terminal 52. The NPN transistor Q10 and the resistor R11 enhance the current drive capability. Further, at the time of setting the output current, a bias current is supplied from the output terminal 52 to the constant voltage circuit 20, the conversion circuit 30A, and the control circuit 40 through the diode D10.
 また、NPNトランジスタQ10のエミッタ電圧は、補助電源回路12の出力電圧よりもダイオードD10の順方向電圧分以上低く設定される。これにより、通常動作時においては、補助電源回路12の出力電圧によりダイオードD10は逆バイアス状態となる。そのため、ダイオードD10を通じて、定電圧回路20、変換回路30A、制御回路40へバイアス電流は流れないことから、電力損失を低減することができる。 Further, the emitter voltage of the NPN transistor Q10 is set lower than the output voltage of the auxiliary power supply circuit 12 by the forward voltage of the diode D10 or more. Thus, in the normal operation, the diode D10 is reverse biased by the output voltage of the auxiliary power supply circuit 12. Therefore, no bias current flows to the constant voltage circuit 20, the conversion circuit 30A, and the control circuit 40 through the diode D10, so that the power loss can be reduced.
 このように、光源駆動装置200Bでは、通常動作時に電圧源84が入力端子51に接続されている場合には、補助電源回路12が、電圧Vx1を定電圧回路20に出力する。また、出力電流の設定時において、電圧源84が入力端子51に接続されておらず電流設定ユニット90が出力端子52に接続されている場合には、保護回路60Bが電圧Vx2を定電圧回路20に出力する。補助電源回路12から定電圧回路20に出力される電圧Vx1と、保護回路60Bから定電圧回路20に出力される電圧Vx2とは、IC21の入力電圧範囲以内であればよく、同一であっても異なっていてもよい。 As described above, in the light source drive device 200B, when the voltage source 84 is connected to the input terminal 51 during the normal operation, the auxiliary power supply circuit 12 outputs the voltage Vx1 to the constant voltage circuit 20. In addition, at the time of setting the output current, when the voltage source 84 is not connected to the input terminal 51 and the current setting unit 90 is connected to the output terminal 52, the protection circuit 60B performs the constant voltage circuit 20 on the voltage Vx2. Output to The voltage Vx1 output from the auxiliary power supply circuit 12 to the constant voltage circuit 20 and the voltage Vx2 output from the protection circuit 60B to the constant voltage circuit 20 may be within the input voltage range of the IC 21 and may be the same. It may be different.
 (変形例2)
 実施の形態2の変形例1では、定電流駆動回路内に補助電源回路を設けることにより、通常動作時にはバイアス電流を、定電流駆動回路から保護回路を介して流さないようにする構成について説明した。実施の形態2の変形例2では、通常動作時に、定電流駆動回路から保護回路を介してバイアス電流を流さないようにするため、保護回路をスイッチン制御方式の電圧変換回路で構成する例について説明する。
(Modification 2)
In the first modification of the second embodiment, the auxiliary power supply circuit is provided in the constant current drive circuit to prevent the bias current from flowing from the constant current drive circuit through the protection circuit in the normal operation. . In the second modification of the second embodiment, in order to prevent the bias current from flowing from the constant current drive circuit through the protection circuit at the time of normal operation, an example in which the protection circuit is configured by a voltage control circuit of switching control system explain.
 図10は、実施の形態2の変形例2に従う光源駆動装置200Cのブロック図である。図10を参照して、光源駆動装置200Cは、光源駆動装置200Aの保護回路60Aを保護回路60Cに置き換えた構成である。そのため、光源駆動装置200Cにおける保護回路60C以外の構成についてはその詳細な説明は繰り返さない。 FIG. 10 is a block diagram of a light source drive device 200C according to the second modification of the second embodiment. Referring to FIG. 10, light source drive device 200C has a configuration in which protection circuit 60A of light source drive device 200A is replaced with protection circuit 60C. Therefore, detailed description of the configuration other than protection circuit 60C in light source drive device 200C will not be repeated.
 保護回路60Cは、スイッチング素子Q11と、コンデンサC10と、インダクタL10と、環流ダイオードD11と、ダイオードD12と、IC61とを含む降圧チョッパ回路である。スイッチング素子Q11は、Nチャネル型のMOSFET(metal-oxide-semiconductor field-effect transistor)である。IC61は、スイッチング素子Q11のオンオフを制御するためのICである。ダイオードD12は、IC61に電流を供給するためのダイオードである。 The protection circuit 60C is a step-down chopper circuit including a switching element Q11, a capacitor C10, an inductor L10, a free wheeling diode D11, a diode D12, and an IC 61. The switching element Q11 is an N-channel type MOSFET (metal-oxide-semiconductor field-effect transistor). The IC 61 is an IC for controlling the on / off of the switching element Q11. The diode D12 is a diode for supplying a current to the IC 61.
 保護回路60Cは、出力端子52の電圧を所定電圧に変換して、定電圧回路20に所定電圧を出力する。また、スイッチング制御方式の電圧変換回路で構成される保護回路60Cによると、光源駆動装置200Cの通常動作時において、バイアス電流は定電流駆動回路10から流れるバイアス電流が低減されるため、バイアス電流による電力損失を低減することができる。バイアス電流による電力損失が減る理由は、リニア方式とスイッチング方式の違いのためである。 The protection circuit 60C converts the voltage of the output terminal 52 into a predetermined voltage, and outputs the predetermined voltage to the constant voltage circuit 20. Further, according to the protection circuit 60C configured by the voltage control circuit of the switching control method, the bias current flowing from the constant current drive circuit 10 is reduced during the normal operation of the light source drive device 200C. Power loss can be reduced. The power loss due to the bias current is reduced because of the difference between the linear method and the switching method.
 具体的には、定電流駆動回路10の出力からバイアス電流が全て流れる場合の損失をWLoss1、定電流駆動回路10の出力電圧をVоut、バイアス電流をIbiasとすると、以下の式(1)が成立する。 Specifically, assuming that the loss when all the bias current flows from the output of the constant current drive circuit 10 is WLoss 1, the output voltage of the constant current drive circuit 10 is Vоut, and the bias current is Ibias, the following equation (1) holds Do.
 Wloss1=Vout×Ibais・・・(1)
 また、スイッチング制御方式の電圧変換回路の出力からバイアス電流が流れる場合の損失をWloss2、スイッチング制御方式の電圧変換回路の出力電圧をVaux、バイアス電流をIbias、スイッチング制御方式の電圧変換回路の電力変換効率をηとすると、以下の式(2)が成立する。
Wloss1 = Vout × Ibais (1)
In addition, the loss when the bias current flows from the output of the switching control method voltage conversion circuit is Wloss2, the output voltage of the switching control method voltage conversion circuit is Vaux, the bias current is Ibias, and the power conversion of the switching control method voltage conversion circuit Assuming that the efficiency is η, the following equation (2) is established.
 Wloss2=Vaux×Ibais×η・・・(2)
 そのため、Vout>Vaux×ηが成立する場合には、バイアス電流による電力損失はスイッチング制御方式の電圧変換回路を使用したほうが小さくなる。ηは通常70%以上が見込める。
Wloss2 = Vaux × Ibais × η (2)
Therefore, when Vout> Vaux × η holds, the power loss due to the bias current is smaller when the voltage control circuit of the switching control method is used. Normally, 70% or more can be expected.
 (変形例3)
 実施の形態2の変形例3は、上記の変形例2に従う保護回路60Cを定電流駆動回路内に設ける構成について説明する。
(Modification 3)
The third modification of the second embodiment describes a configuration in which the protection circuit 60C according to the second modification is provided in the constant current drive circuit.
 図11は、実施の形態2の変形例3に従う光源駆動装置200Dのブロック図である。図11を参照して、光源駆動装置200Dは、光源駆動装置200Aの定電流駆動回路10を定電流駆動回路10Dに置き換えた構成である。そのため、光源駆動装置200Dにおける定電流駆動回路10D以外の構成についてはその詳細な説明は繰り返さない。 FIG. 11 is a block diagram of a light source drive device 200D according to the third modification of the second embodiment. Referring to FIG. 11, the light source drive device 200D has a configuration in which the constant current drive circuit 10 of the light source drive device 200A is replaced with a constant current drive circuit 10D. Therefore, the detailed description of the configuration other than the constant current drive circuit 10D in the light source drive device 200D will not be repeated.
 定電流駆動回路10Dは、検出回路11と、出力電流(定電流)を制御するためのスイッチング制御回路13と、保護回路60Cとを含む。 The constant current drive circuit 10D includes a detection circuit 11, a switching control circuit 13 for controlling an output current (constant current), and a protection circuit 60C.
 スイッチング制御回路13は、スイッチング素子Q20と、ボディダイオードD21と、コンデンサC20と、インダクタL20と、環流ダイオードD20と、IC15とを含む降圧チョッパ回路である。スイッチング素子Q20は、Nチャネル型のMOSFETである。 The switching control circuit 13 is a step-down chopper circuit including a switching element Q20, a body diode D21, a capacitor C20, an inductor L20, a free wheeling diode D20, and an IC 15. The switching element Q20 is an N-channel MOSFET.
 このように、定電流を制御する回路として、スイッチング制御回路13のようなスイッチング制御方式の降圧回路を用いる場合には、保護回路60Cを定電流駆動回路10D内に設けることができる。 As described above, when the step-down circuit of the switching control system such as the switching control circuit 13 is used as the circuit for controlling the constant current, the protection circuit 60C can be provided in the constant current drive circuit 10D.
 出力電流の設定時には、スイッチング制御回路13のスイッチング素子Q20のボディダイオードD21を通じて、出力端子52から保護回路60Cに電圧を供給することができる。保護回路60Cは、出力端子52の電圧を所定電圧まで低減し、当該所定電圧を定電圧回路20のIN端子に入力して、定電圧回路20を保護する。 When setting the output current, a voltage can be supplied from the output terminal 52 to the protection circuit 60C through the body diode D21 of the switching element Q20 of the switching control circuit 13. The protection circuit 60C reduces the voltage of the output terminal 52 to a predetermined voltage and inputs the predetermined voltage to the IN terminal of the constant voltage circuit 20 to protect the constant voltage circuit 20.
 また、保護回路60Cは、補助電源回路としても機能する。具体的には、光源駆動装置200Dの通常動作時において、光源80の負荷電圧が高い場合であっても、電力損失を抑えながら定電圧回路20、変換回路30A、制御回路40へバイアス電流を供給することができる。保護回路60Cを補助電源回路と兼用することにより、素子数の増加を抑えることもできる。 The protection circuit 60C also functions as an auxiliary power supply circuit. Specifically, during normal operation of the light source drive device 200D, even if the load voltage of the light source 80 is high, bias current is supplied to the constant voltage circuit 20, the conversion circuit 30A, and the control circuit 40 while suppressing the power loss. can do. An increase in the number of elements can also be suppressed by using the protection circuit 60C as an auxiliary power supply circuit.
 <利点>
 実施の形態2によると、実施の形態1の利点に加えて、定電圧回路を適切に保護することが可能となる。
<Advantage>
According to the second embodiment, in addition to the advantages of the first embodiment, the constant voltage circuit can be appropriately protected.
 [実施の形態3]
 実施の形態3では、実施の形態1または2に従う光源駆動装置と、光源80とを含む照明装置の構成について説明する。
Third Embodiment
In the third embodiment, a configuration of a lighting device including the light source drive device according to the first or second embodiment and the light source 80 will be described.
 図12は、実施の形態3に従う照明装置300の構成の一例を示すブロック図である。図12を参照して、照明装置300は、図9に示した光源駆動装置200Bと、光源80とを含む。光源駆動装置200Bは、出力端子52を介して光源80に接続されている。ここでは、光源駆動装置200Bを、「光源駆動装置」の代表例として説明するが、これに限られない。「光源駆動装置」は、上述した光源駆動装置100A~100C、200A,200C,200Dのいずれであってもよい。 FIG. 12 is a block diagram showing an example of a configuration of lighting device 300 according to the third embodiment. Referring to FIG. 12, lighting device 300 includes light source driving device 200B shown in FIG. 9 and light source 80. The light source drive device 200 B is connected to the light source 80 via the output terminal 52. Here, although the light source drive device 200B will be described as a representative example of the "light source drive device", it is not limited thereto. The “light source drive device” may be any of the light source drive devices 100A to 100C, 200A, 200C, and 200D described above.
 照明装置300が光源80を分離できるタイプの照明装置である場合には、光源80を出力端子52から外すことにより、出力端子52が外部に露出する。そのため、出力端子52に電流設定ユニット90を接続することにより、定電流駆動回路10の出力電流の設定を行なうことができる。 When the lighting device 300 is a type of lighting device capable of separating the light source 80, the output terminal 52 is exposed to the outside by removing the light source 80 from the output terminal 52. Therefore, by connecting the current setting unit 90 to the output terminal 52, the output current of the constant current drive circuit 10 can be set.
 また、照明装置300が光源80を分離できないタイプの照明装置である場合であっても、照明装置300の筐体の一部を取り外すことで出力端子52に外部から接続可能に構成しておけばよい。これにより、同様に、出力端子52に電流設定ユニット90を接続して、定電流駆動回路10の出力電流の設定を行なうことができる。 Further, even in the case where the lighting device 300 is a type of lighting device in which the light source 80 can not be separated, it is possible to connect the output terminal 52 from the outside by removing a part of the housing of the lighting device 300. Good. Thus, similarly, the current setting unit 90 can be connected to the output terminal 52 to set the output current of the constant current drive circuit 10.
 (変形例)
 図13は、実施の形態3の変形例に従う照明装置400の構成の一例を示すブロック図である。図13を参照して、照明装置400は、図9に示した光源駆動装置200Bと、光源80とを含む。光源駆動装置200Bは、出力端子52を介して光源80に接続されている。照明装置400では、出力端子52が外部に露出している点で、図12に示す照明装置300と異なる。
(Modification)
FIG. 13 is a block diagram showing an example of a configuration of a lighting apparatus 400 according to a modification of the third embodiment. Referring to FIG. 13, lighting device 400 includes light source driving device 200 </ b> B shown in FIG. 9 and light source 80. The light source drive device 200 B is connected to the light source 80 via the output terminal 52. Lighting device 400 differs from lighting device 300 shown in FIG. 12 in that output terminal 52 is exposed to the outside.
 照明装置400の出力端子52は、照明装置400の筐体の外殻と適切な絶縁距離を保ちながら外部に露出している。または、照明装置400に、出力端子52に並列に接続される他の出力端子をさらに設けて、当該他の出力端子が照明装置400の筐体の外殻と適切な絶縁距離を保ちながら外部に露出していてもよい。この場合、出力端子52または他の出力端子は、埃などの付着を防ぐためにカバー等で覆われていてもよい。これにより、出力端子52あるいは他の出力端子に電流設定ユニット90を接続して、定電流駆動回路10の出力電流の設定を行なうことができる。 The output terminal 52 of the lighting device 400 is exposed to the outside while maintaining an appropriate insulation distance from the outer shell of the housing of the lighting device 400. Alternatively, the lighting device 400 further includes another output terminal connected in parallel to the output terminal 52, and the other output terminal is provided outside while maintaining an appropriate insulation distance from the outer shell of the housing of the lighting device 400. It may be exposed. In this case, the output terminal 52 or the other output terminal may be covered with a cover or the like to prevent adhesion of dust or the like. Thus, the current setting unit 90 can be connected to the output terminal 52 or another output terminal to set the output current of the constant current drive circuit 10.
 <利点>
 実施の形態3によると、光源駆動装置を照明装置に組み込んだ場合であっても、光源駆動装置の出力端子へ外部からアクセスすることができるため、電流設定ユニットにより出力電流の設定が可能となる。また、照明装置が天井等に設置された後であっても、照明装置の分解あるいは工事等の作業をすることなく、容易に出力電流の変更が可能となる。
<Advantage>
According to the third embodiment, even when the light source drive device is incorporated in the lighting device, the output terminal of the light source drive device can be accessed from the outside, so that the output current can be set by the current setting unit. . In addition, even after the lighting device is installed on a ceiling or the like, the output current can be easily changed without performing work such as disassembly or construction of the lighting device.
 [実施の形態4]
 実施の形態1では、図3において、光源駆動装置100から光源80を分離可能な場合の電流設定方法について説明した。実施の形態4では、光源駆動装置および光源80が一体で構成されており、光源駆動装置から光源80を分離できない場合の電流設定方法について説明する。
Fourth Embodiment
In the first embodiment, the current setting method in the case where the light source 80 can be separated from the light source driving device 100 has been described with reference to FIG. In the fourth embodiment, the light source driving device and the light source 80 are integrally configured, and a current setting method in the case where the light source 80 can not be separated from the light source driving device will be described.
 図14は、実施の形態4に従う電流設定システムの概要を説明するための概念図である。具体的には、図14(a)は、光源駆動装置100の出力電流を設定する場合の各装置の接続形態を示す図である。図14(b)は、設定された出力電流により光源80から照射される光の照度を確認する場合の各装置の接続形態を示す図である。 FIG. 14 is a conceptual diagram for illustrating an outline of a current setting system according to the fourth embodiment. Specifically, FIG. 14A is a view showing a connection form of each device in the case of setting the output current of the light source drive device 100. FIG. 14B is a diagram showing a connection form of each device in the case of confirming the illuminance of the light emitted from the light source 80 by the set output current.
 図14を参照して、電流設定システムは、照明装置500と、電流設定ユニット90と、照度計86とを含む。照明装置500は、光源駆動装置100と、光源80と、光源駆動装置100の出力端子52に並列接続された出力端子54とを含む。出力端子54は、照明装置500の外部に露出している。照明装置500は、光源駆動装置100と光源80とが一体で構成されており、光源駆動装置100から光源80を分離できないタイプの照明装置である。ここでは、光源駆動装置100を、「光源駆動装置」の代表例として説明するが、これに限られない。「光源駆動装置」は、上述した光源駆動装置200A~200Dのいずれであってもよい。 Referring to FIG. 14, the current setting system includes a lighting device 500, a current setting unit 90, and a light meter 86. The illumination device 500 includes a light source drive device 100, a light source 80, and an output terminal 54 connected in parallel to the output terminal 52 of the light source drive device 100. The output terminal 54 is exposed to the outside of the lighting device 500. The illumination device 500 is a type of illumination device in which the light source drive device 100 and the light source 80 are integrally configured, and the light source 80 can not be separated from the light source drive device 100. Here, although the light source drive device 100 will be described as a representative example of the “light source drive device”, it is not limited thereto. The “light source drive device” may be any of the light source drive devices 200A to 200D described above.
 図15は、実施の形態4に従う電流設定方法の一例を説明するためのフローチャートである。図15を参照して、電流設定方法では、図14(a)に示すように、照明装置500の出力端子54に電流設定ユニット90が接続される(ステップS50)。電流設定ユニット90は、光源駆動装置100の出力電流を所望値に設定するための設定電圧を出力端子54を介して入力する(ステップS52)。 FIG. 15 is a flowchart for illustrating an example of the current setting method according to the fourth embodiment. Referring to FIG. 15, in the current setting method, current setting unit 90 is connected to output terminal 54 of lighting device 500 as shown in FIG. 14A (step S50). The current setting unit 90 inputs a setting voltage for setting the output current of the light source drive device 100 to a desired value through the output terminal 54 (step S52).
 ステップS54,S56の処理は、それぞれ図3中のステップS14,S16の処理と同様であるため、その詳細な説明は繰り返さない。続いて、図14(b)に示すように、出力端子54から電流設定ユニット90が外され、電圧源84が入力端子51に並列接続され、照度計86が照明装置500の周囲に設置される(ステップS58)。ステップS60~S64の処理は、それぞれ図3中のステップS20~S24の処理と同様であるため、その詳細な説明は繰り返さない。 Since the processes of steps S54 and S56 are the same as the processes of steps S14 and S16 in FIG. 3, the detailed description thereof will not be repeated. Subsequently, as shown in FIG. 14B, the current setting unit 90 is removed from the output terminal 54, the voltage source 84 is connected in parallel to the input terminal 51, and the illuminance meter 86 is installed around the lighting device 500. (Step S58). The processes of steps S60 to S64 are similar to the processes of steps S20 to S24 in FIG. 3, respectively, and therefore the detailed description thereof will not be repeated.
 照度計86は、照明装置500(光源80)の照度を測定する(ステップS66)。続いて、測定された照度が目標範囲内(すなわち、目標値の公差内)か否かを判定する(ステップS68)。具体的には、ユーザが当該判定を行なってもよいし、照度計86の測定値の入力を受け付けた端末装置(図示しない)により、当該判定が行なわれてもよい。 The illuminance meter 86 measures the illuminance of the lighting device 500 (light source 80) (step S66). Subsequently, it is determined whether the measured illuminance is within the target range (that is, within the tolerance of the target value) (step S68). Specifically, the user may make the determination, or the determination may be made by a terminal device (not shown) that has received the input of the measurement value of the illuminance meter 86.
 照度の測定値が目標範囲内である場合には(ステップS68においてYES)、電圧源84が照明装置500から外され(ステップS70)、処理は終了する。照度が目標範囲内ではない場合には(ステップS68においてNO)、照度の測定値と目標値とのずれを補正するように電流設定ユニット90の設定電圧の値を調整して(ステップS72)、ステップS50に戻る。このとき、電圧源84は、照明装置500から外される。 If the measured value of the illuminance is within the target range (YES in step S68), voltage source 84 is disconnected from lighting device 500 (step S70), and the process ends. If the illuminance is not within the target range (NO in step S68), the value of the set voltage of the current setting unit 90 is adjusted to correct the deviation between the measured value of the illuminance and the target value (step S72), It returns to step S50. At this time, the voltage source 84 is removed from the lighting device 500.
 <利点>
 実施の形態4によると、光源駆動装置および光源を一体で構成した照明装置であっても、照度計を用いることにより、光源駆動装置の出力電流、すなわち照明装置の明るさの微調整を行なうことができる。
<Advantage>
According to the fourth embodiment, even with the illumination device in which the light source drive device and the light source are integrally formed, fine adjustment of the output current of the light source drive device, that is, the brightness of the illumination device is performed by using the illuminance meter. Can.
 [その他の実施の形態]
 (1)上述した実施の形態では、図11に示すように、定電流駆動回路が、電圧変換回路として、定電流出力制御のためのスイッチング制御回路を有する構成について説明したが、当該構成に限られない。例えば、図16に示すように、定電流駆動回路が出力端子(光源)と直列に接続され、電圧変換回路が当該定電流駆動回路とは別に設けられる構成であってもよい。
[Other Embodiments]
(1) In the embodiment described above, as shown in FIG. 11, the configuration has been described in which the constant current drive circuit has a switching control circuit for constant current output control as a voltage conversion circuit. I can not. For example, as shown in FIG. 16, the constant current drive circuit may be connected in series to the output terminal (light source), and the voltage conversion circuit may be provided separately from the constant current drive circuit.
 図16は、その他の実施の形態に従う光源駆動装置100Dを示すブロック図である。具体的には、図16(a)は、光源駆動装置100Dの全体を示すブロック図である。図16(b)は、定電流駆動回路10Eの一例を示すブロック図である。 FIG. 16 is a block diagram showing a light source drive device 100D according to another embodiment. Specifically, FIG. 16A is a block diagram showing the whole of the light source drive device 100D. FIG. 16B is a block diagram showing an example of the constant current drive circuit 10E.
 図16(a)を参照して、光源駆動装置100Dは、定電流駆動回路10Eと、定電圧回路20と、変換回路30と、制御回路40と、電圧変換回路70とを含む。なお、光源駆動装置100Dにおける定電流駆動回路10Eおよび電圧変換回路70以外の構成についてはその詳細な説明は繰り返さない。 Referring to FIG. 16A, light source drive device 100D includes a constant current drive circuit 10E, a constant voltage circuit 20, a conversion circuit 30, a control circuit 40, and a voltage conversion circuit 70. The detailed description of the configuration other than the constant current drive circuit 10E and the voltage conversion circuit 70 in the light source drive device 100D will not be repeated.
 電圧変換回路70は、例えば、スイッチング制御方式の電圧変換回路であり、出力端子52のマイナス端子がなるべく小さい一定電圧になるように出力電圧を制御する。これは、GNDおよび出力端子52のマイナス端子間の電圧と、出力電流との積が損失になるため、定電流駆動回路10Eが動作する最低電圧に少しマージンを持たせて制御するのが損失を最小にできるためである。 The voltage conversion circuit 70 is, for example, a switching control type voltage conversion circuit, and controls the output voltage such that the negative terminal of the output terminal 52 is a constant voltage as small as possible. This is because the product of the voltage between GND and the negative terminal of the output terminal 52 and the output current is a loss, so controlling by giving a margin to the lowest voltage at which the constant current drive circuit 10E operates is a loss. This is because it can be minimized.
 図16(b)を参照して、定電流駆動回路10Eは、出力端子52(マイナス端子側)に直列接続されており、出力端子52に接続された光源80に流れる電流を定電流制御する。具体的には、定電流駆動回路10Eは、定電流素子Q25と、ダイオードD25と、抵抗R15と、オペアンプ35とを含む。 Referring to FIG. 16B, constant current drive circuit 10E is connected in series to output terminal 52 (minus terminal side), and performs constant current control on the current flowing to light source 80 connected to output terminal 52. Specifically, constant current drive circuit 10E includes a constant current element Q25, a diode D25, a resistor R15, and an operational amplifier 35.
 定電流素子Q25は、Nチャネル型のMOSFETあるいはバイポーラドランジスタである。オペアンプ35のプラス端子には、制御回路40からの参照電圧(設定信号)が入力される。また、抵抗R15の両端電圧がオペアンプ35のプラス端子電圧と同じになるように負帰還がかかる。また、オペアンプ35の出力端子は、定電流素子Q25のゲートに接続されている。これにより、オペアンプ35は、設定信号に応じた一定電流が抵抗R15(すなわち、出力端子52に接続される光源80)に流れるように制御する。すなわち、定電流駆動回路10Eは、通常動作時において、設定信号に従う電流値が出力端子52に接続された光源80に流れるように定電流制御を実行できる。 The constant current element Q25 is an N-channel MOSFET or a bipolar transistor. The reference voltage (setting signal) from the control circuit 40 is input to the positive terminal of the operational amplifier 35. In addition, negative feedback is applied such that the voltage across the resistor R15 is equal to the positive terminal voltage of the operational amplifier 35. The output terminal of the operational amplifier 35 is connected to the gate of the constant current element Q25. Thereby, the operational amplifier 35 controls so that a constant current according to the setting signal flows to the resistor R15 (that is, the light source 80 connected to the output terminal 52). That is, the constant current drive circuit 10E can execute constant current control such that a current value according to the setting signal flows to the light source 80 connected to the output terminal 52 during normal operation.
 ダイオードD25は、出力端子52に接続された電流設定ユニット90から出力された電流が戻ってくることができるように定電流素子Q25をバイパスする。なお、定電流素子Q25が、Nチャネル型のMOSFETである場合には、寄生素子としてボディダイオードが内蔵されている。そのため、この場合には、定電流駆動回路10Eは、ダイオードD25を含まない構成であってもよい。 The diode D25 bypasses the constant current element Q25 so that the current output from the current setting unit 90 connected to the output terminal 52 can return. When constant current element Q25 is an N-channel MOSFET, a body diode is incorporated as a parasitic element. Therefore, in this case, the constant current drive circuit 10E may not include the diode D25.
 なお、上述した実施の形態3,4で説明した照明装置の光源駆動装置として、光源駆動装置100Dを採用してもよいし、実施の形態2で説明した保護回路を光源駆動装置100Dに追加した光源駆動装置としてもよい。 The light source drive device 100D may be adopted as the light source drive device of the illumination device described in the third and fourth embodiments described above, and the protection circuit described in the second embodiment is added to the light source drive device 100D. It may be a light source drive device.
 (2)上述した実施の形態では、光源駆動装置が定電圧回路を含む構成となっているが、当該構成に限られない。例えば、制御回路の電源電圧が任意の電圧に対応可能に構成されている場合には、定電圧回路を設けなくてもよい。 (2) In the embodiment described above, the light source driving device includes the constant voltage circuit, but the present invention is not limited to this configuration. For example, when the power supply voltage of the control circuit is configured to correspond to an arbitrary voltage, the constant voltage circuit may not be provided.
 (3)上述した実施の形態では、補助電源回路および検出回路を定電流駆動回路内に設ける構成について説明したが、当該構成に限られない。例えば、補助電源回路および検出回路の各々は、定電流駆動回路とは独立して設けられる構成であってもよい。 (3) In the embodiment described above, the configuration in which the auxiliary power supply circuit and the detection circuit are provided in the constant current drive circuit has been described, but the present invention is not limited to this configuration. For example, each of the auxiliary power supply circuit and the detection circuit may be provided independently of the constant current drive circuit.
 (4)上述の実施の形態として例示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能である。 (4) The configuration exemplified as the above-described embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part of the configuration can be made without departing from the scope of the present invention. It is also possible to change and configure, such as omitting.
 さらに、上述した実施の形態において、他の実施の形態で説明した処理や構成を適宜採用して実施する場合であってもよい。 Furthermore, in the embodiment described above, the processes and configurations described in the other embodiments may be adopted appropriately and implemented.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is indicated not by the above description but by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 10 定電流駆動回路、11 検出回路、12 補助電源回路、13 スイッチング制御回路、20 定電圧回路、30 変換回路、31 コンパレータ、35 オペアンプ、40 制御回路、51 入力端子、52,54 出力端子、60A,60B,60C,60D 保護回路、80 光源、82 電流計、84 電圧源、86 照度計、90 電流設定ユニット、92 内部電圧源、100,200A~200D 光源駆動装置、300,400,500 照明装置、C10,C20 コンデンサ、D10,D12 ダイオード、D11,D20 環流ダイオード、D21 ボディダイオード、L10,L20 インダクタ。 DESCRIPTION OF SYMBOLS 10 constant current drive circuit, 11 detection circuit, 12 auxiliary power supply circuit, 13 switching control circuit, 20 constant voltage circuit, 30 conversion circuit, 31 comparator, 35 operational amplifier, 40 control circuit, 51 input terminal, 52, 54 output terminal, 60A , 60B, 60C, 60D protection circuit, 80 light sources, 82 ammeters, 84 voltage sources, 86 illuminance meters, 90 current setting units, 92 internal voltage sources, 100, 200A to 200D light source drive devices, 300, 400, 500 lighting devices , C10, C20 capacitor, D10, D12 diode, D11, D20 free wheeling diode, D21 body diode, L10, L20 inductor.

Claims (10)

  1.  光源を接続可能であって、かつ、前記光源に流れる電流を設定するための設定ユニットを接続可能な第1の端子と、
     前記光源に流れる電流が定電流になるように制御する定電流駆動回路と、
     前記第1の端子に接続された前記設定ユニットから供給される電圧を変換し、当該変換された電圧信号を出力する変換回路と、
     前記変換された電圧信号に基づいて前記定電流の電流値を設定し、当該設定した電流値を示す設定信号を前記定電流駆動回路に出力する制御回路とを備える、光源駆動装置。
    A first terminal to which a light source can be connected and to which a setting unit for setting a current flowing to the light source can be connected;
    A constant current drive circuit that controls the current flowing to the light source to be a constant current;
    A conversion circuit that converts a voltage supplied from the setting unit connected to the first terminal and outputs the converted voltage signal;
    A control circuit configured to set a current value of the constant current based on the converted voltage signal and output a setting signal indicating the set current value to the constant current drive circuit.
  2.  前記制御回路に一定電圧を供給する定電圧回路をさらに備え、
     前記設定ユニットが前記第1の端子に接続されている場合には、前記定電圧回路は、前記設定ユニットから供給される電圧を前記一定電圧に変換する、請求項1に記載の光源駆動装置。
    It further comprises a constant voltage circuit for supplying a constant voltage to the control circuit,
    The light source drive device according to claim 1, wherein when the setting unit is connected to the first terminal, the constant voltage circuit converts a voltage supplied from the setting unit into the constant voltage.
  3.  前記第1の端子と前記定電圧回路との間に接続され、前記定電圧回路を保護するための保護回路をさらに備え、
     前記保護回路は、前記第1の端子の電圧を所定電圧まで低下させ、前記所定電圧を前記定電圧回路に出力する、請求項2に記載の光源駆動装置。
    It further comprises a protection circuit connected between the first terminal and the constant voltage circuit for protecting the constant voltage circuit,
    The light source drive device according to claim 2, wherein the protection circuit reduces the voltage of the first terminal to a predetermined voltage and outputs the predetermined voltage to the constant voltage circuit.
  4.  外部電源を接続可能な第2の端子と、
     前記定電圧回路に所定電圧を出力する補助電源回路とをさらに備え、
     前記外部電源が前記第2の端子に接続されている場合には、前記補助電源回路は、前記所定電圧を前記定電圧回路に出力するように構成され、
     前記外部電源が前記第2の端子に接続されておらず、前記設定ユニットが前記第1の端子に接続されている場合には、前記保護回路は、前記所定電圧を前記定電圧回路に出力するように構成されている、請求項3に記載の光源駆動装置。
    A second terminal to which an external power supply can be connected;
    An auxiliary power supply circuit for outputting a predetermined voltage to the constant voltage circuit;
    When the external power supply is connected to the second terminal, the auxiliary power supply circuit is configured to output the predetermined voltage to the constant voltage circuit.
    When the external power supply is not connected to the second terminal and the setting unit is connected to the first terminal, the protection circuit outputs the predetermined voltage to the constant voltage circuit. The light source driving device according to claim 3 configured as follows.
  5.  前記変換回路は、前記設定ユニットから供給される電圧と参照電圧とを比較し、比較結果を示す二値の信号を前記電圧信号として前記制御回路に出力する、請求項1~4のいずれか1項に記載の光源駆動装置。 The converter circuit according to any one of claims 1 to 4, wherein the conversion circuit compares a voltage supplied from the setting unit with a reference voltage, and outputs a binary signal indicating a comparison result as the voltage signal to the control circuit. The light source drive device as described in a term.
  6.  前記変換回路は、前記設定ユニットから供給される電圧を複数の抵抗により分圧し、当該分圧された電圧に対応する信号を前記電圧信号として前記制御回路に出力する、請求項1~4のいずれか1項に記載の光源駆動装置。 The converter circuit according to any one of claims 1 to 4, wherein the conversion circuit divides the voltage supplied from the setting unit by a plurality of resistors and outputs a signal corresponding to the divided voltage as the voltage signal to the control circuit. The light source drive device according to any one of the preceding items.
  7.  前記定電流駆動回路は、前記第1の端子に直列接続されており、前記設定信号に従って、前記第1の端子に接続された前記光源に流れる電流が定電流になるように制御する、請求項1~6のいずれか1項に記載の光源駆動装置。 The constant current drive circuit is connected in series to the first terminal, and controls the current flowing to the light source connected to the first terminal to become a constant current according to the setting signal. The light source driving device according to any one of items 1 to 6.
  8.  請求項1~7のいずれか1項に記載の光源駆動装置と、
     前記光源とを備える、照明装置。
    A light source drive device according to any one of claims 1 to 7;
    A lighting device comprising the light source.
  9.  前記第1の端子は、外部に露出している、請求項8に記載の照明装置。 The lighting device according to claim 8, wherein the first terminal is exposed to the outside.
  10.  光源駆動装置から光源に供給される電流を設定するための電流設定方法であって、
     前記光源駆動装置は、光源、および、前記光源に流れる電流を設定するための設定ユニットを接続可能な端子と、前記光源に流れる電流が定電流になるように制御する定電流駆動回路とを備え、
     前記電流設定方法は、
     前記端子に接続された前記設定ユニットから供給される電圧を変換し、当該変換された電圧信号を出力するステップと、
     前記変換された電圧信号に基づいて、前記定電流の電流値を設定するステップと、
     前記設定するステップにより設定された電流値を示す設定信号を前記定電流駆動回路に出力するステップとを含む、電流設定方法。
    A current setting method for setting a current supplied from a light source driving device to a light source, the current setting method comprising:
    The light source drive device includes a light source, a terminal to which a setting unit for setting a current flowing to the light source can be connected, and a constant current driving circuit that controls the current flowing to the light source to be a constant current. ,
    The current setting method is
    Converting a voltage supplied from the setting unit connected to the terminal and outputting the converted voltage signal;
    Setting the current value of the constant current based on the converted voltage signal;
    Outputting a setting signal indicating the current value set in the setting step to the constant current drive circuit.
PCT/JP2018/006910 2017-12-01 2018-02-26 Light source drive device, illuminating device, and current setting method WO2019106855A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019556536A JP6944538B2 (en) 2017-12-01 2018-02-26 Light source drive, lighting device, and current setting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017231636 2017-12-01
JP2017-231636 2017-12-01

Publications (1)

Publication Number Publication Date
WO2019106855A1 true WO2019106855A1 (en) 2019-06-06

Family

ID=66664048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006910 WO2019106855A1 (en) 2017-12-01 2018-02-26 Light source drive device, illuminating device, and current setting method

Country Status (2)

Country Link
JP (1) JP6944538B2 (en)
WO (1) WO2019106855A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018780A (en) * 2013-07-12 2015-01-29 東芝ライテック株式会社 Lighting device and illumination device
US9161410B1 (en) * 2014-04-11 2015-10-13 Chicony Power Technology Co., Ltd. Light emitting diode driving apparatus with variable output current and method for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018780A (en) * 2013-07-12 2015-01-29 東芝ライテック株式会社 Lighting device and illumination device
US9161410B1 (en) * 2014-04-11 2015-10-13 Chicony Power Technology Co., Ltd. Light emitting diode driving apparatus with variable output current and method for the same

Also Published As

Publication number Publication date
JPWO2019106855A1 (en) 2020-11-26
JP6944538B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
US8188680B2 (en) Illuminating device
US8610368B2 (en) Serial-type light-emitting diode (LED) device
KR100677041B1 (en) Lighting apparatus using light emitting diode
EP1579735B1 (en) Leds driver
US7307614B2 (en) Light emitting diode driver circuit
US7675240B2 (en) Light emitting diode circuit having even current
US20110204797A1 (en) LED array control circuit with voltage adjustment function and driver circuit and method for the same
US9504110B2 (en) AC lighting system with a control unit for controlling power of an LED
JP2007157423A (en) Power supply device
JP2016058148A (en) Visible light communication modulation circuit, lighting equipment, luminaire and visible light communication system
KR200405272Y1 (en) lighting apparatus using light emitting diode
WO2019106855A1 (en) Light source drive device, illuminating device, and current setting method
JP6978914B2 (en) Power supply unit and light irradiation system equipped with it
KR102168029B1 (en) Apparatus for driving the lamp using mcu
US11197356B2 (en) Lighting circuit and vehicle lamp
CN112351551A (en) Light modulation circuit
WO2023188965A1 (en) Semiconductor device and module
KR101394519B1 (en) Constant current circuit and illumination system using the same
KR20150031060A (en) Power conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556536

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882946

Country of ref document: EP

Kind code of ref document: A1